Home

LP02 Pyranometer - Campbell Scientific

image

Contents

1. Range Cable replacement Spectral range Levelling Expected accuracy for daily sums Dome diameter Height Body diameter Weight with 15 ft cable Second class pyranometer 18s 15W m lt 4Wm lt 1 change per year lt 196 100 to 1000 W m within 25 W m 5 280 to 3000 nm 3 10 to 40 C within 2 15 uV W m 0 1 to 50 mV in natural sunlight 40 to 80 C Between 40 and 60 Q 0 to 2000 W m Cable can be replaced by the user 280 to 3000 nm 50 transmission points Level and levelling feet included 10 3 cm 1 2 in 5 9 cm 23 in 7 8 cm 3 1 in 363 g 0 8 Ib f Operation 7 1 Wiring User Manual lGuide to Meteorological Instruments and Methods of Observation fifth edition WMO Geneva and ISO9060 If you are programming your datalogger with Short Cut skip Section 7 1 Wiring p 9 and Section 7 2 Programming p 10 Short Cut does this work for you See Section 4 Quickstart p 2 for a Short Cut tutorial A schematic diagram of the LPO2 is shown in Figure 7 1 White M N J Green N Clear is bi Figure 7 1 LP02 Schematic When Short Cut is used to create the datalogger program the sensor should be wired to the channels shown in the wiring diagram created by Short Cut A differential voltage measurement is recommended because it has better noise rejection than a single ended measurement If a differential
2. 1 oz ounce 28 35 g 1 Ib pound weight 0 454 kg Length 1 in inch 25 4 mm 1 ft foot 2 304 8 mm Pressure 1 psi Ib in 68 95 mb 1 yard 0 914 m 1 mile 1 609 km Volume 1 UK pint 568 3 ml 1 UK gallon 4 546 litres 1 US gallon 3 785 litres In addition while most of the information in the manual is correct for all countries certain information is specific to the North American market and so may not be applicable to European users Differences include the U S standard external power supply details where some information for example the AC transformer input voltage will not be applicable for British European use Please note however that when a power supply adapter is ordered it will be suitable for use in your country Reference to some radio transmitters digital cell phones and aerials may also not be applicable according to your locality Some brackets shields and enclosure options including wiring are not sold as standard items in the European market in some cases alternatives are offered Details of the alternatives will be covered in separate manuals Part numbers prefixed with a symbol are special order parts for use with non EU variants or for special installations Please quote the full part number with the when ordering Recycling information At the end of this product s life it should not be put in commercial or domestic refuse but sent for recycling Any batteries contained within t
3. Care should be taken when opening the shipping package to not damage or cut the cable jacket If damage to the cable is suspected consult with a Campbell Scientific application engineer Initial Inspection e Upon receipt of the LPO2 inspect the packaging and contents for damage File damage claims with the shipping company e The model number and cable length are printed on a label at the connection end of the cable Check this information against the shipping documents to ensure the correct product and cable length are received e See Section 3 1 Ships With p 1 to ensure that all of your parts are included 3 1 Ships With 1 Bolt for mounting from original manufacturer 2 Nuts for mounting from original manufacturer 1 Calibration certificate see Section 3 2 Calibration Certificate p 1 2 Bolts for mounting from original manufacturer 1 ResourceDVD 3 2 Calibration Certificate Included with the sensor is a calibration certificate with the sensor calibration constant and serial number Cross check this serial number against the serial number on your LPO2 to ensure that the given calibration constant corresponds to your sensor LP02 Pyranometer 4 Quickstart Please review Section 7 Operation p 9 for wiring and CRBasic programming 4 1 Siting Considerations 4 2 Mounting CAUTION The LP02 is usually installed horizontally but can also be installed at any angle including an inverted position In
4. Division Leclerc 92160 ANTONY FRANCE www campbellsci fr e info campbellsci fr Campbell Scientific Spain S L Avda Pompeu Fabra 7 9 Local 1 08024 BARCELONA SPAIN www campbellsci es e info campbellsci es Campbell Scientific Ltd Germany Fahrenheitstrasse13 D 28359 Bremen GERMANY www campbellsci de e info campbellsci de Campbell Scientific Beijing Co Ltd 8B16 Floor 8 Tower B Hanwei Plaza 7 Guanghua Road Chaoyang Beijing 100004 P R CHINA www campbellsci com e info 9 campbellsci com cn Please visit www campbellsci com to obtain contact information for your local US or International representative
5. add to an existing custom program Short Cut cannot edit programs after they are imported and edited in CRBasic Editor A Short Cut tutorial is available in Section 4 Quickstart p 24 If you wish to import Short Cut code into CRBasic Editor to create or add to a customized program follow the procedure in Appendix A Importing Short Cut Code Into a Program Editor p A 1 Programming basics are provided in the following section A complete program example can be found in Appendix B Example Programs p B 1 Solar radiation can be reported as an average flux density W m or daily total flux density MJ m The appropriate multipliers are listed in Table 7 3 Programming examples are given for both average and daily total solar radiation The LP02 outputs a low level voltage ranging from 0 to a maximum of up to 35 mV in natural light depending on the calibration factor and radiation level A differential voltage measurement is recommended because it has better noise rejection than a single ended measurement If a differential channel is not available a single ended measurement can be used The acceptability of a single ended measurement can be determined by simply comparing the results of single ended and differential measurements made under the same conditions 7 2 1 7 2 2 Multiplier 7 2 3 Offset Input Range User Manual The output voltage of the LPO2 is usually between 10 and 35 mV per 1000 W m When estimat
6. align the sensor s mounting holes with two of the bracket s mounting holes see Figure 4 2 and Figure 4 3 User Manual Mounting Hole Figure 4 2 LP02 mounting hole Mounting Hole Mounting Hole Mounting Hole Figure 4 3 CM225 bracket mounting holes LP02 Pyranometer 2 Place the mounting screws in the mounting holes and slightly tighten them The levelling screws should lightly touch the mounting plate see Figure 4 4 LP02 Pyranometer Bubble Level 3 Leveling Screws CM225 Solar Cable Tie Sensor Mounting Stand 2 Mounting Screws CM200 Series Crossarm Figure 4 4 LP02 Pyranometer attached to CM225 Solar Sensor Mounting Stand Starting with the levelling screw nearest the bubble level turn the levelling screws to bring the bubble of the bubble level within the ring see Figure 4 4 Tighten the mounting screws to secure the assembly in its final position Route the sensor cable to the instrument enclosure Use cable ties to secure the cable to CM225 bracket and to the vertical pipe or crossarm and tripod tower see Figure 4 4 4 3 Short Cut Programming Short Cut is an easy way to program your datalogger to measure the pyranometer and assign datalogger wiring terminals Use the following procedure to get started 1 Install Short Cut by clicking on the install file icon Get the install file from either www campbellsci com the ResourceDVD or find it in installations of LoggerNet PC20
7. all cases it will measure the flux that is incident on the surface that is parallel to the sensor surface Site the LPO2 to allow easy access for maintenance while ideally avoiding any obstructions above the plane of the sensing element It is important to mount the LPO2 such that no shadow or reflection will not be cast on it at any time If this is not possible try to choose a site where any obstruction over the azimuth range between earliest sunrise and latest sunset has an elevation not exceeding 5 Diffuse solar radiation is less influenced by obstructions near the horizon For instance an obstruction with an elevation of 5 over the whole azimuth range of 360 decreases the downward diffuse solar radiation by only 0 846 Below shows the steps for using the CM225 mounting bracket kit to mount the LPO2 to a vertical pipe 1 0 to 2 1 in OD or to a CM202 CM203 CM204 or CM206 crossarm If the sensor needs to be mounted at an angle a CM255 or CM255LS adjustable angle mount can be used instead see the CM225 CM255 and CM255LS Solar Mount Application Note The CM225 should never be mounted directly to a vertical pipe Instead the CM225 should be mounted to a crossarm This avoids reflections from the vertical pipe onto the sensor Attach the CM225 to crossarm see Figure 4 1 Figure 4 1 CM225 bracket attached to a crossarm 1 Place the LPO2 in the centre of the CM225 with the cable pointing to the nearest magnetic pole and
8. 000 3 Sensors 4 Outputs 5 Finish White 1H Green 1L Clear Ground 1L Ground Wiring Diagram Wiring Text 7 Select any other sensors you have and then finish the remaining Short Cut steps to complete the program The remaining steps are outlined in Short Cut Help which is accessed by clicking on Help Contents Programming Steps 8 If LoggerNet PC400 RTDAQ or PC200W is running on your PC and the PC to datalogger connection is active you can click Finish in Short Cut and you will be prompted to send the program just created to the datalogger 9 If the sensor is connected to the datalogger as shown in the wiring diagram in step 6 check the output of the sensor in the datalogger support software data display to make sure it is making reasonable measurements The LP02 pyranometer is designed for continuous outdoor use Due to its flat spectral sensitivity from 280 to 3000 nm it can be used in natural sunlight under plant canopies in green houses or buildings and inverted to measure reflected solar radiation Two LP02s can be used in combination to measure albedo The LPO2 can also be used to measure most types of artificial light Xenon lamps Halogen lamps etc The LP02 pyranometer consists of a thermopile sensor housing dome and cable The thermopile is coated with a black absorbent coating The paint absorbs the radiation and converts it to heat The resulta
9. 0W PC400 or RTDAO software E The Short Cut installation should place a Short Cut icon on the desktop of your computer To open Short Cut click on this icon Do User Manual 3 When Short Cut opens select New Program File Program Tools Help Test Pr ogress Welcome to Short Cut Short Cut will 1 New Open help you generate a datalogger program The basic steps are 1 Create New Open Program 2 Select Datalogger 3 Select Sensors 4 Select Outputs 5 Finish Compile the Program lt L sm Program to eg Click Open Program to open an e as Open boga existing Short Cut program 4 Select Datalogger Model and Scan Interval default of 5 seconds is OK for most applications Click Next File Program Tools Help Test Progress Datalogger Model Select the Datalogger Model for New Open which you wish to create a y program S nialguer EM CR1000 lt a 1 2 3 Sensors 4 5 Outputs Scan Interval Select the Scan Interval pm This is how frequently measurements are made Finish s Seconds Wiring Wiring Diagram Wiring Text V Next gt LP02 Pyranometer 5 Under the Available Sensors and Devices list select Sensors Meteorological Solar Radiation folder Select LP02 Pyranometer Click e to move the selection to the Selected device window Enter the Sensitivity supplied on the manufacturer s certificate of calibration this calibration factor is uni
10. T VAN VIN JASA CAMPBELL SI SCIENTIFIC WHEN MEASUREMENTS MATTER LPO2 Pyranometer ae type serial n n 17 sensitivi o Issued 9 9 15 Copyright 2006 2015 Campbell Scientific Inc Printed under licence by Campbell Scientific Ltd CSL 528 Guarantee This equipment is guaranteed against defects in materials and workmanship This guarantee applies for 24 months from date of delivery We will repair or replace products which prove to be defective during the guarantee period provided they are returned to us prepaid The guarantee will not apply to e Equipment which has been modified or altered in any way without the written permission of Campbell Scientific e Batteries e Any product which has been subjected to misuse neglect acts of God or damage in transit Campbell Scientific will return guaranteed equipment by surface carrier prepaid Campbell Scientific will not reimburse the claimant for costs incurred in removing and or reinstalling equipment This guarantee and the Company s obligation thereunder is in lieu of all other guarantees expressed or implied including those of suitability and fitness for a particular purpose Campbell Scientific is not liable for consequential damage Please inform us before returning equipment and obtain a Repair Reference Number whether the repair is under guarantee or not Please state the faults as clearly as possible and if the product is out of the guarante
11. and comply with all instructions provided in product manuals Manuals are available at www campbellsci eu or by telephoning 44 0 1509 828 888 UK You are responsible for conformance with governing codes and regulations including safety regulations and the integrity and location of structures or land to which towers tripods and any attachments are attached Installation sites should be evaluated and approved by a qualified engineer If questions or concerns arise regarding installation use or maintenance of tripods towers attachments or electrical connections consult with a licensed and qualified engineer or electrician General e Priorto performing site or installation work obtain required approvals and permits Comply with all governing structure height regulations such as those of the FAA in the USA e Use only qualified personnel for installation use and maintenance of tripods and towers and any attachments to tripods and towers The use of licensed and qualified contractors is highly recommended e Read all applicable instructions carefully and understand procedures thoroughly before beginning work e Wear a hardhat and eye protection and take other appropriate safety precautions while working on or around tripods and towers e Do not climb tripods or towers at any time and prohibit climbing by other persons Take reasonable precautions to secure tripod and tower sites from trespassers e Use only manufacturer recommended part
12. channel is not available a single ended measurement can be used Connections to Campbell Scientific dataloggers for a differential measurement are given in Table 7 1 A user supplied jumper wire should be connected between the low side of the differential input and ground AG or to keep the signal in common mode range Connections to Campbell Scientific dataloggers for a single ended measurement are given in Table 7 2 Table 7 1 Differential Connections to Campbell Scientific Dataloggers CR6 CR9000 X CR5000 CR3000 CR1000 CR800 Colour Description CR850 White Signal DIFF Analog High Green Signal DIFF Analog Low Clear Shield 4 Jumper to AG or with user supplied wire LP02 Pyranometer 10 Table 7 2 Single Ended Connections to Campbell Scientific Dataloggers CR6 CR9000 X CR5000 CR3000 CR1000 CR800 Colour Description CR850 White Signal Single Ended Analog Green Signal 4 Clear Shield 4 7 2 Programming NOTE Programming code is needed when e Creating a program for a new datalogger installation e Adding sensors to an existing datalogger program If your data acquisition requirements are simple you can probably create and maintain a datalogger program exclusively with Short Cut If your data acquisition needs are more complex the files that Short Cut creates are a great source for programming code to start a new program or
13. ched to a crossarm i 2 4 2 LP02 mounting bole metet Beste sen 3 4 3 CM225 bracket mounting holes i 3 4 4 LP02 Pyranometer attached to CM225 Solar Sensor Mounting Stand ss iss sos 4 O DAA A aaa 9 Tables 7 1 7 2 7 3 Differential Connections to Campbell Scientific Dataloggers 9 Single Ended Connections to Campbell Scientific Dataloggers 10 Multipliers Required for Flux Density and Total Fluxes 11 LP02 Pyranometer 1 Introduction The LP02 is an ISO second class pyranometer that monitors solar radiation for the full solar spectrum range It produces a millivolt signal that can be measured directly by a Campbell Scientific datalogger The LPO2 can provide solar radiation measurements for many meteorological applications This pyranometer is manufactured by Hukseflux Before using the LP02 please study e Section 2 Cautionary Statements p 1 e Section 3 Initial Inspection p 1 e Section 4 Quickstart p 2 For Edlog datalogger support check the availability of an older manual at www campbellsci com old manuals or contact a Campbell Scientific application engineer for assistance Cautionary Statements e READ AND UNDERSTAND the Precautions section at the front of this manual e Although the LPO2 is rugged it is also a highly precise scientific instrument and should be handled as such e
14. e period it should be accompanied by a purchase order Quotations for repairs can be given on request It is the policy of Campbell Scientific to protect the health of its employees and provide a safe working environment in support of this policy a Declaration of Hazardous Material and Decontamination form will be issued for completion When returning equipment the Repair Reference Number must be clearly marked on the outside of the package Complete the Declaration of Hazardous Material and Decontamination form and ensure a completed copy is returned with your goods Please note your Repair may not be processed if you do not include a copy of this form and Campbell Scientific Ltd reserves the right to return goods at the customers expense Note that goods sent air freight are subject to Customs clearance fees which Campbell Scientific will charge to customers In many cases these charges are greater than the cost of the repair E CAMPBELL SCIENTIFIC Campbell Scientific Ltd 80 Hathern Road Shepshed Loughborough LE12 9GX UK Tel 44 0 1509 601141 Fax 44 0 1509 601091 Email support campbellsci co uk www campbellsci co uk PLEASE READ FIRST About this manual Please note that this manual was originally produced by Campbell Scientific Inc primarily for the North American market Some spellings weights and measures may reflect this origin Some useful conversion factors Area lin square inch 645 mm Mass
15. ero If Solar Wm2 0 Then Solar Wm2 20 Calculate units in MJ where MJ m t 0 000001 m Solar Wm2 from above and t 10 scan interval Solar MJ Solar Wm2 0 00001 Call Data Tables and Store Data CallTable Table1 CallTable Table2 NextScan EndProg B 1 Appendix B Example Programs B 2 CAMPBELL SCIENTIFIC COMPANIES Campbell Scientific Inc CSI 815 West 1800 North Logan Utah 84321 UNITED STATES www campbellsci com e info campbellsci com Campbell Scientific Africa Pty Ltd CSAf PO Box 2450 Somerset West 7129 SOUTH AFRICA www csafrica co za e salesOcsafrica co za Campbell Scientific Australia Pty Ltd CSA PO Box 8108 Garbutt Post Shop QLD 4814 AUSTRALIA www campbellsci com au e info campbellsci com au Campbell Scientific do Brazil Ltda CSB Rua Apinag s nbr 2018 Perdizes CEP 01258 00 S o Paulo SP BRAZIL www campbellsci com br e vendas campbellsci com br Campbell Scientific Canada Corp CSC 14532 131 Avenue NW Edmonton Alberta T5L 4X4 CANADA www campbellsci ca e dataloggers campbellsci ca Campbell Scientific Centro Caribe S A CSCC 300N Cementerio Edificio Breller Santo Domingo Heredia 40305 COSTA RICA www campbellsci cc e info campbellsci cc Campbell Scientific Ltd CSL 80 Hathern Road Shepshed Loughborough LE12 9GX UNITED KINGDOM www campbellsci co uk e sales campbellsci co uk Campbell Scientific Ltd France 3 Avenue de la
16. he product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases Sz arrange collection and the correct disposal of it although charges may apply for some items or territories For further advice or support please contact Campbell Scientific Ltd or your local agent fz CAMPBELL E SCIENTIFIC Campbell Scientific Ltd Campbell Park 80 Hathern Road Shepshed Loughborough LE12 9GX UK Tel 44 0 1509 601141 Fax 44 0 1509 601091 Email support O campbellsci co uk www campbellsci co uk Precautions DANGER MANY HAZARDS ARE ASSOCIATED WITH INSTALLING USING MAINTAINING AND WORKING ON OR AROUND TRIPODS TOWERS AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS CROSSARMS ENCLOSURES ANTENNAS ETC FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE INSTALL OPERATE USE AND MAINTAIN TRIPODS TOWERS AND ATTACHMENTS AND FAILURE TO HEED WARNINGS INCREASES THE RISK OF DEATH ACCIDENT SERIOUS INJURY PROPERTY DAMAGE AND PRODUCT FAILURE TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS CHECK WITH YOUR ORGANIZATION S SAFETY COORDINATOR OR POLICY FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK Use tripods towers and attachments to tripods and towers only for purposes for which they are designed Do not exceed design limits Be familiar
17. ing the maximum likely value of sensor output a maximum value of solar radiation of 1100 W m can be used for field measurements on a horizontal surface Select the input range as follows Estimate the maximum expected input voltage by multiplying the maximum expected irradiance W m by the calibration factor u V W m Divide the answer by 1000 to give the maximum in millivolt units 2 Select the smallest input range which is greater than the maximum expected input voltage Normally the 50 mV range for the CR3000 CR9000 X and CR5000 and the 25 mV or 250 mV range for the CR6 CR800 CR850 and CR1000 will be suitable The exact range will depend on the sensitivity of your individual sensor and the maximum expected reading With some dataloggers an autorange option can be used if measurement time is not critical The parameter code for the input range also specifies the measurement integration time The slow or 60 Hz rejection integration gives a more noise free reading A fast integration takes less power and allows for faster throughput The multiplier converts the millivolt reading to engineering units The calibration supplied by the manufacturer gives the output of the sensor c as microvolts V x 109 per W m As the datalogger voltage measurement instructions give a default output in mV the following equation should be used to calculate the multiplier m to give the readings in W m m 1000 c Other units can be
18. inning with heading Wiring for CRXXX into the CRBasic program usually at the head of the file After pasting edit the information such that a character single quotation mark begins each line This character instructs the datalogger compiler to ignore the line when compiling the datalogger code Appendix A Importing Short Cut Code Into a Program Editor Appendix B Example Programs The following programs measure the LPO2 every 10 seconds and convert the mV output to W m and MJ m A sensor calibration of 15 02 uV per W m is used for the example programs Both programs output an hourly average flux W m and a daily total flux density MJ m B 1 CR1000 Example Program CR1000 Declare Variables and Units Public Solar Wm2 Public Solar MJ Units Solar Wm2 W m2 Units Solar MJZMJ m Hourly Data Table DataTable Table1 True 1 DataInterval 0 60 Min 10 Average 1 Solar_Wm2 FP2 False EndTable Daily Data Table DataTable Table2 True 1 DataInterval 0 1440 Min 10 Totalize 1 Solar_MJ IEEF4 False EndTable Main Program BeginProg Scan 10 Sec 1 0 LP02 Pyranometer measurement in Wm The Multiplier m for this example is based upon a sensor calibration c of 15 02 uV Wm and will be different for each sensor Multiplier m 1000 c 66 577896 VoltDiff Solar Wm2 1 mV25 1 True 0 60Hz 66 577896 0 use the 50 mV range for the CR3000 CR5000 and CR9000 Set negative readings to z
19. istances somewhat lower than expected could be due to water ingress into the sensor or enclosure connectors If the resistance is infinite there is a broken connection check the wiring 4 Disconnect the sensor cable and check the voltage between pins 1 and 3 on the sensor With the sensor located 8 inches below a 60 W incandescent light bulb the voltage should be approximately 2 5 mV No voltage indicates a problem with the sensor Symptom sensor signal is unrealistically high or low 1 Check that the right calibration factor has been properly entered into the datalogger program Please note that each sensor has its own individual calibration factor 2 Check the condition of the sensor cable 12 User Manual Symptom sensor signal shows unexpected variations 1 Check for the presence of strong sources of electromagnetic radiation radar radio etc 2 Check the condition and the connection of the sensor shield wire 3 Check the condition of the sensor cable 13 LP02 Pyranometer 14 Appendix A Importing Short Cut Code Into a Program Editor This tutorial shows NOTE e How to import a Short Cut program into a program editor for additional refinement e How to import a wiring diagram from Short Cut into the comments of a custom program Short Cut creates files that can be imported into the CRBasic program editor These files normally reside in the C campbellsci SCWin folder and have the following extensi
20. nt temperature difference is converted to a voltage by the copper constantan thermopile The thermopile is encapsulated in the housing in such a way that it has a field of view of 180 degrees and the angular characteristics needed to fulfil the cosine response requirements LP02 Pyranometer 6 Specifications Features e Compatible with the following CRBasic dataloggers CR6 CR800 CR850 CR1000 CR3000 CR5000 and CR9000 X e Measures reflected solar radiation when inverted e Provides measurements in direct sunlight under plant canopies when the sky is cloudy and in artificial light e Includes bubble level and levelling screws eliminating need for a separate levelling base which simplifies installation e Compatible with the CWS900 series interfaces allowing it to be used in a wireless sensor network e Acceptable for providing the solar radiation data used in stability estimations e Dome protects thermopile and allows water to roll off of it Overall classification according to ISO 9060 WMO Response time for 95 response Zero offset response to 200 W m net thermal radiation Zero offset response to 5 K h change in ambient temperature Non stability Non linearity Directional response for beam radiation Spectral selectivity Temperature response within an interval of 50 C Tilt response Sensitivity nominal Expected voltage output Operating temperature range Sensor resistance
21. onnections WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION USE OR MAINTENANCE OF TRIPODS TOWERS OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS CROSSARMS ENCLOSURES ANTENNAS ETC Contents PDF viewers These page numbers refer to the printed version of this document Use the PDF reader bookmarks tab for links to specific sections o A dai i i i ii A is 1 2 Cautionary Statements 1 3 Initial Inspection ut 1 3 1 Ships With ieiuno eet p RECTE eter EE OR 1 3 2 X Calibration Certificate nennen 1 Ay QUICKSTA E lt a 2 4 1 Siting Considerations a eiie dead tee teer dee tei 2 4 2 Mountig rain 2 4 3 Short Cut Programming i 4 Di JOVBEVIQW ecards E aa cud C Gus aen esu ama Bo andadas ai 7 6 Specifications ee eto eon ER E RIS 8 T Operation er ee en aller 9 7 1 bs tit 9 T22 Programing eeen ette mn eut covets 10 72 1 put R n gE eriin a ne e a nina 11 7 22 Malplena nebst ee ep 11 123 Offset eot ont 11 7 2 4 Output Format Considerations esee 12 SPEM riui 12 9 Troubleshooting ariana 12 Appendices A Importing Short Cut Code Into a Program Edirol A 1 B Example Programs a ae B 1 B 1 CR1000 Example Program eee B 1 Figures 4 CM225 bracket atta
22. ons DEF wiring and memory usage information CR6 CR6 datalogger code CR8 CR800 or CR850 datalogger code CR1 CR1000 datalogger code CR3 CR3000 datalogger code CR5 CR5000 datalogger code CR9 CR9000 X datalogger code Use the following procedure to import Short Cut code into CRBasic Editor CR6 CR800 CR850 CR1000 CR3000 CR5000 or CR9000 X dataloggers 1 Create the Short Cut program following the procedure in Section 4 Quickstart p 2 Finish the program and exit Short Cut Make note of the file name used when saving the Short Cut program Open CRBasic Editor Click File Open Assuming the default paths were used when Short Cut was installed navigate to C CampbellSci SCWin folder The file of interest has a CRO CR8 CRI CR3 CR5 or CR9 extension for CR6 CR800 CR850 CR1000 CR3000 CR5000 or CR9000 X dataloggers respectively Select the file and click Open Immediately save the file in a folder different from Campbellsci SCWin or save the file with a different file name Once the file is edited with CRBasic Editor Short Cut can no longer be used to edit the datalogger program Change the name of the program file or move it or Short Cut may overwrite it next time it is used The program can now be edited saved and sent to the datalogger Import wiring information to the program by opening the associated DEF file Copy and paste the section beg
23. or as it will show the first indication of a fault Be aware of several expected phenomena that can cause strange measurements In particular on clear windless nights the outer dome temperature of horizontally placed pyranometers can fall as low as the dewpoint temperature of the air due to infrared radiation exchange with the cold sky The effective sky temperature can be 30 C lower than the ground temperature which results in an infrared emission of 150 W m If this happens dew glazed frost or hoar frost can be precipitated on the top of the outer dome and can stay there for several hours in the morning An ice cap on the dome is a strong diffuser and can decrease the pyranometer signal by up to 50 in the first hours after sunrise The calibration of the LP02 may drift with time and exposure to radiation Recalibration every two years is recommended The sensor should be returned to Campbell Scientific the manufacturer or a calibration lab with facilities to calibrate radiation sensors 9 Troubleshooting Symptom NAN 9999 or radiation values around 0 1 Check that the sensor is wired to the differential channel specified by the measurement instruction 2 Verify that the range code is correct for the datalogger type 3 Measure the impedance across the sensor wires This should be around 100 O plus the cable resistance typically 0 1 O m If the resistance is very low there may be a short circuit check the wiring Res
24. que to each sensor The public variable defaults can typically be used After entering the information click on OK and then select Next File Program Tools Help Available Sensors and Devices Selected p Progress Barometric Pressure Sensor Measurement 1 New Open Precipitation 4 CR1000 m T 2 Datalogger Relative Humidity amp Tempe Soil Moisture Sor 4 4 Solar Radiation lt lt 4 Outputs L CM3 Pyranomete 5 Finish L CMP3 CMP6 CMP11 Pyri L CNR1 Net Radiometer L CNR2 Net Radiometer Wiring L CNR4 Net Radiometer a lt Wiring Diagram L CS300 Pyranometer a L LI190SB Quantum Sens Wiring Text LI200S Pyranometer L LI200X Pyranometer L LP02 Pyranometer 24s L NR LITE Net Radiometer Lo NR LITE Net Radiometer 4 Default Battv PTemp_C Properties Flux Density sirkw kW m 2 Total Flux SlrkJ kJ m 2 Sensitivity uV W m 2 from calibration sheet 15 04 lt 5 Overview User Manual 6 After selecting the sensitivity values click at the left of the screen on Wiring Diagram to see how the sensor is to be wired to the datalogger The wiring diagram can be printed out now or after more sensors are added File Program Tools Help CR1000 Progress 1 New Open CR1000 Wiring Diagram forlpO2 SCW Wiring details can be found in the help file 2 Datalogger LP02 SirkW Slrk CR1
25. s materials and tools Utility and Electrical e You can be killed or sustain serious bodily injury if the tripod tower or attachments you are installing constructing using or maintaining or a tool stake or anchor come in contact with overhead or underground utility lines e Maintain a distance of at least one and one half times structure height or 20 feet or the distance required by applicable law whichever is greater between overhead utility lines and the structure tripod tower attachments or tools e Priorto performing site or installation work inform all utility companies and have all underground utilities marked e Comply with all electrical codes Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician Elevated Work and Weather e Exercise extreme caution when performing elevated work e Use appropriate equipment and safety practices e During installation and maintenance keep tower and tripod sites clear of un trained or non essential personnel Take precautions to prevent elevated tools and objects from dropping e Do not perform any work in inclement weather including wind rain snow lightning etc Maintenance e Periodically at least yearly check for wear and damage including corrosion stress cracks frayed cables loose cable clamps cable tightness etc and take necessary corrective actions e Periodically at least yearly check electrical ground c
26. used by adjusting the multiplier as shown in Table 7 3 Table 7 3 Multipliers Required for Flux Density and Total Fluxes Units Multipliers Output Processing Wm m Average MJ m m t 0 000001 Total kJm met 0 001 Total cal cm met 0 0239 0 001 Total cal cm min m 1 434 0 001 Average m calibration factor in W m 2 mV t datalogger program execution interval in seconds The offset will normally be fixed at zero as the sensor should output no significant signal in dark conditions In practice because of the nature of thermopile detector sensors there will be some offset in dark conditions sometimes this offset can give negative light readings This offset varies with several factors for example rate of change of sensor temperature so it cannot be removed with a fixed offset 11 LP02 Pyranometer Some users may wish to remove small negative readings by including code after the measurement instructions that sets negative readings to zero 7 2 4 Output Format Considerations In CRBasic store the data in the IEEE4 format if the measurements will be totalized 8 Maintenance Inspect and clean the outer dome at regular intervals for example every week or so Clean any accumulated dust etc off the dome and pyranometer body using a soft cloth dampened with water or alcohol Check that there is no condensation within the dome It is also important to check the data returned from the sens

Download Pdf Manuals

image

Related Search

Related Contents

17. Comment faire mentir les cartes ?  Manual Easy Home TDT Nano USB  BEDIENUNGSANLEITUNG  Parental Controls Users Guide 2009  Sun Blade 2500 Getting Started Guide (Silver) - es  Audiovox GMRS500SLK (14 Channels) 2  Ơߤຈ ßǢǨȜǩÁDzǨǍȀ ( ˮǠȓÁǣà  Ohaus T32MC Technical Manual  28 - Würth España SA  提案営業の技術プレサポート、営業部門の技術支援、 販売  

Copyright © All rights reserved.
Failed to retrieve file