Home
S6100 Manual UK
Contents
1. 20 ms worst case 2 AC 8 A 250 VAC DC 8 A 35 VDC Normally energized 0 to 20 of BPPV default 10 Steady light within limits Steady light when all three phases are live and sequence is correct Delay before controls becomes active Revision 15 08 2008 15 08 2008 13 09 00 Page 51 of 52 SELCO A S SIGMA S6100 S LS Module CAN Bus Connection Protocol RS232 Connection Function Protocol Baud rate Parity Data bits Stop bits RS485 Connection Protocol Address range Baud rate Parity Data bits Stop bits EMC EMI tests Marine tests systems Connections Dimensions Weight Fixation 0 to 60 s default 5 s Screw terminals 2 wire with COM limp back function CANOpen derivative Customized plug 4 wire non isolated Configuration Debugging or firmware update ANSI terminal 1200 2400 4800 9600 or 19200 baud None even or odd 7 or8 1 or 2 Screw terminals 2 wire isolated MODBUS RTU 1 to 254 1200 2400 4800 9600 or 19200 baud None even or odd 7 or 8 1 or 2 EN 50081 2 1993 Generic Residential commercial amp light industry EN 50263 1999 Product Measuring relays and protection equipment EN 60945 1997 Marine Navigation and radio comm equipment and IACS E10 1997 IACS unified environmental test specification Plug in screw terminals spring terminals available as option 145 x 190 x 64 5 mm H x W x D 1150 g Screw mounting 4 pcs 4 2 x
2. The CB trip level is expressed in percent without decimals The trip level is set according to full load nominal load Resolution is 1 WRITE REACTLS CBTRIPLEVEL lt Percentage gt 7 13 8 PID The PID parameters are only used when the voltage adjustment is configured to operate with an analogue output signal The P proportional parameter is expressed as a gain factor and is set by the following command Resolution is 0 1 WRITE REACTLS PID P lt Factor gt The I integral parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE REACTLS PID I lt Duration gt The D differential parameter is expressed in milliseconds and is set by the following command resolution is 1 ms WRITE REACTLS PID D lt Duration gt 7 14 VO amp Relays This part of the configuration determines the functions and properties of the relays The relays can be configured for normal de energized or energized operation Non latching relays can also be configured with regard to reset delay 7 14 1 Alarm Relay Function The alarm relay can be configured to signal either system alarm or system and protection alarms The relay function is set by the following command The choice can be either SYS or SYSPROT WRITE IORELAYS ALARMRELAYFUNC lt Choice gt Revision 15 08 200815 08 2008 13 09 00 Page 43 of 52 SELCO A S SIGMA S6100 S LS Module 7 14 2 C B Trip Relay The C B trip relay can be configure
3. The active load sharer changes the active load level by increasing or decreasing engine speed through the governor The magnitude of the governor control signals compared to the actual deviation in active load is determined by the stability parameter Too mush stability provides accurate but slow load sharing while too little stability introduces risk of overshoot and instability Stability is expressed as a number without decimals Stability is set by the following command Resolution is 1 WRITE ACTES STABILITY lt Value gt 7 10 3 Deadband The deadband parameter determines the responsive range of the active load sharer The active load sharer will only attempt to outbalance the deviation in active load when deviation falls outside the deadband compared to the pre configured load deviation A deadband which is too narrow will cause constant fine tuning of the active load balance while an overly wide deadband will cause deviation according to the reference The deadband is expressed in percent with one decimal and is set by the following command Resolution is 0 1 WRITE ACTLS DEADBAND lt Percentage gt 7 10 4 Parallel Lines The parallel settings of the lines minimum and maximum DC voltage determines the voltage level used to communicate balance in active load between multiple S LS modules The voltage range can be changed to obtain compability with e g SELCO T4400 or T4800 load sharers However the default range should be maintained
4. WRITE VOLTMATCH PID D lt Duration gt 7 13 Reactive Load Sharing The S LS module moves reactive load to and from the generator by increasing or decreasing the voltage The reactive load balance is communicated two a set of parallel lines that operates with a pre configured DC voltage The load sharer includes a bonus feature of programmable ramp up and ramp down of reactive load Revision 15 08 2008 15 08 2008 13 09 00 Page 41 of 52 SELCO A S SIGMA S6100 S LS Module 7 13 1 Load Deviation The load deviation parameter can be used to fine tune the balance of the reactive load sharing Imbalance might occur due to inaccuracy within the current transformers etc The load deviation is set according to ideal zero deviation The parameter is expressed as a percentage without decimals The parameter has reference to perfect balance Resolution is 1 WRITE REACTLS LOADDEV lt Percentage gt 7 13 2 Stability Stability defines the response of the reactive load sharer The reactive load sharer will alter the reactive load by altering the voltage in order to obtain the required load balance The reactive load sharer changes the reactive load level by increasing or decreasing generator voltage through the AVR The magnitude of the AVR control signals compared to the actual deviation in reactive load is determined by the stability parameter Too mush stability provides accurate but slow load sharing while too little stability introd
5. 1 and 2 when the voltage regulation rests When in operation the S6100 module will toggle the relay between position 1 and 2 The duration of the relay pulses and the rest time between pulses will depend on the voltage deviation as well as the configuration of the controlling function 6 6 3 Alarm The ALARM includes two contact sets The alarm relays can only operate as a normally energized relay This is to ensure that the ALARM relay will trip in case both supplies fail Revision 15 08 2008 15 08 2008 13 09 00 Page 23 of 52 SELCO A S SIGMA S6100 S LS Module 6 7 Analogue Outputs Two sets of analogue outputs are provided on board of the S6100 module The analogue outputs are intended for direct control of electronic speed governors and or AVR s Each of the two outputs can be individually configured to provide a DC voltage current or PWM signal in relation to the speed or voltage control Each analogue output can be configured to provide a DC voltage within the range of 10 to 10 V DC a DC current within the range of 0 to 20 mA or a PWM signal with a default base frequency of 500 Hz The outputs are isolated from each other and from the remaining electronics of the module This means that the references of the outputs have no connection to each other or to the common reference COM of the module Terminal Description Signal Connection 1 ANALOG OUTPUT 1 VDC DC voltage
6. 1 to 100 default 5 Proportional control 1 0 to 20 0 default 1 0 Integral control 0 to 100 ms default 10 ms Derivative control O to 100 ms default 1 ms By configuration Pulse duration as a function deviation from actual busbar voltage 1 to 100 default 5 offset around actual busbar voltage where no regulation occurs 0 1 to 20 0 default 5 0 Ramp rate used before optimized PID control is released 1 to 100 default 5 Proportional control 1 0 to 20 0 default 1 0 Integral control 0 to 100 ms default 10 ms Derivative control O to 100 ms default 1 ms 3 phase configurable By Manual input By C B Block input Pulse duration as a function deviation from busbar frequency 1 to 100 default 1 offset around deviation from busbar frequency where no regulation occurs 0 1 to 20 0 default 1 0 Revision 15 08 200815 08 2008 13 09 00 Page 49 of 52 SELCO A S SIGMA S6100 S LS Module Frequency Deviation closed C B Close time Electronic Speed Control Stability Phase Deviation P I D Active Load Sharing On Off Control Load Deviation Parallel Lines Ramp Time C B Trip Level Conventional Speed Control Stability Deadband Electronic Speed Control Stability Deadband P I D Reactive Load Sharing On Off Control Load Deviation Parallel Lines Ramp Time Conventional Speed Control Stability Deadband Electronic Speed Control
7. 12 mm The specifications are subject to change without notice Revision 15 08 2008 15 08 2008 13 09 00 Page 52 of 52
8. AUTOSYNC PID P lt Factor gt The I integral parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE AUTOSYNC PID I lt Duration gt The D differential parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms Revision 15 08 2008 15 08 2008 13 09 00 Page 37 of 52 SELCO A S SIGMA S6100 S LS Module WRITE AUTOSYNC PID D lt Duration gt 7 10 Active Load Sharing The S LS module moves active load to and from the generator by increasing or decreasing the speed and generator frequency The active load balance is communicated two a set of parallel lines that operates with a pre configured DC voltage The active load sharer includes a bonus feature of de loaded trip together with programmable ramp up and ramp down of active load 7 10 1 Load Deviation The load deviation parameter can be used to fine tune the balance of the active load sharing Imbalance might occur due to inaccuracy within the current transformers etc The load deviation is set according to ideal zero deviation The parameter is expressed as a percentage without decimals The parameter has reference to perfect balance Resolution is 1 WRITE ACTES LOADDEV lt Percentage gt 7 10 2 Stability Stability defines the response of the active load sharer The active load sharer will alter the active load by altering the frequency in order to obtain the required load balance
9. DB Out and DB In terminals should be connected to a common point in the installation preferably with wires of equal length 6 12 4 DB In The DB In input is together with in DB Out signal These two signals are used to prevent simultaneous closure to dead bus among multiple S6100 modules All DB Out and DB In terminals should be connected to a common point in the installation preferably with wires of equal length 6 12 5 Engine Failed The Engine Failed input is used by the optional S6600 module to determine if the generator has failed e g on engine error 6 12 6 Off Duty The Off Duty input is used in conjunction with the optional S6600 module The input is used as external request to set the generator off duty e g for servicing Revision 15 08 200815 08 2008 13 09 00 Page 27 of 52 SELCO A S SIGMA S6100 S LS Module 7 Configuration The S6100 module can be configured in three different ways This section describes the configuration by RS232 as this method of configuration does not require the use of additional modules the S6500 or S6600 The S6100 module will however require a partner S6000 module as the S6000 provides many of the basic parameters required by the S6100 The S6100 module is delivered with a default configuration 7 1 PID Regulation The S6100 module includes a total of six independent PID regulators The PID regulators are only used when the modules is configured for electronic control e g contro
10. Stability Deadband P Tolerated frequency deviation from busbar voltage when breaker is 0 1 to 10 0 Hz default 0 2 Hz Anticipated closure time of the circuit breaker 1 to 1000 ms default 80 ms Ramp rate used before optimized PID control is released 1 to 100 default 1 Tolerated phase deviation from busbar voltage when breaker is closed 1 to 15 degrees default 5 degrees Proportional control 1 0 to 20 0 default 6 0 Integral control 0 to 100 ms default 10 ms Derivative control O to 100 ms default 1 ms By Manual input or by configuration Offset compared to 50 50 balance in active load 100 to 100 default 0 Communication of active load balance to other load sharers 6 0 to 6 0 V DC default 0 0 to 6 0 V DC Time to ramp up down from zero to max or max to zero active load 1 to 100 s default 20 s Level of active load for automatic trip of C B at de loaded trip 1 to 50 default 5 Pulse duration as a function of deviation in active load balance 1 to 100 default 5 offset around dev from active load balance where no regulation occurs 0 1 to 20 0 default 2 0 Ramp rate used before optimized PID control is released 1 to 100 default 5 offset around dev from active load balance where no regulation occurs 0 1 to 20 0 default 2 0 Proportional control 1 0 to 20 0 default 1 0 Integral control 0 to 100 ms default 10 ms Derivative control O to 100 ms default 1 ms By
11. VO amp COM The S6100 module can be switched into manual mode When in manual all control of both speed and voltage will stop the speed and voltage relays will stop operation and the analogue outputs will stay at the present levels Inputs are provided for manual external control of both speed and voltage The C B Trip Cause amp COM plug in terminal also houses a COM terminal Terminal Description Signal Connection 1 MANUAL CTRL NO contact to COM External switch output or relay 2 SPEED INCR NO contact to COM External push button output or relay 3 SPEED DECR NO contact to COM External push button output or relay 4 VOLT INCR NO contact to COM External push button output or relay Revision 15 08 200815 08 2008 13 09 00 Page 24 of 52 SELCO A S SIGMA S6100 S LS Module 5 VOLT DECR NO contact to COM External push button output or relay 6 COM Common reference External reference The manual control signals has no function when the MANUAL CTRL signal is active 6 9 Par Lines The signals of the parallel lines plug in connector is used for balancing the active and reactive current load between multiple S6100 modules The signal levels of the parallel lines can also be adapted to suit other types of SELCO load sharers e g the SELCO T series Terminal Description Signal Connection 1 KW BALANCE DC
12. as a percentage of the rated power defined in the S6000 module assigned to the grid With power import mode configured to PEAK this command defines the maximum load of the connected generators This max load level is expressed as a percentage of the rated power of the connected generators and defined by the command PWRIMPORT VALUE In case the installation requires more power than defined by this parameter all excess power will be imported from the grid WRITE SYS PWRIMPORT VALUE lt value gt The value can be between 1 and 100 the resolution is 1 and default is 25 7 16 Grid parallel operation power export During grid parallel operation it is necessary to assign one pair S6000 S6100 to the grid This unit must be connected across the tie breaker The parameters mentioned under are only relevant for the S6100 module assigned to the grid For more detailed information regarding grid parallel operation please see manual S6100 Paralleling with grid or shaft on the SELCO internet page 7 16 1 Power export In case power shall be exported to the grid the power export function has to be enabled This can be done by following command WRITE SYS PWREXPORT ENABLED lt Choice gt The choice can be YES or NO default is NO 7 16 2 Power Export Max With this command the maximum limit of power to be exported can be defined as a percentage of the capacity defined in the S6000 module assigned to the grid WRITE SYS PWREXPORT MAX lt V
13. breaker with near zero deviation in frequency and phase Revision 15 08 200815 08 2008 13 09 00 Page 13 of 52 SELCO A S SIGMA S6100 S LS Module When speed is corrected by relay signals the auto synchronization function is configured with stability and deadband Stability defines the magnitude of the control signal as a function of the actual frequency deviation between the generator and busbar voltage while the deadband defines the frequency deviation required for the auto synchronizer to regulate When operating by the speed relay the auto synchronizing function will alter the engine speed to obtain a small positive frequency deviation between the generator and busbar voltage The automatic synchronizing function will then issue the signal to close the circuit breaker shortly before it expects zero phase deviation between the generator and busbar voltage The closure signal is issued prior to the moment of zero phase deviation in order to compensate for the make time of the circuit breaker The frequency deviation and circuit breaker closure time parameters are only used when the speed control is configured to operate by the speed relay A low setting for the frequency deviation provides high accuracy but will increase the time required to synchronize the generator A high setting provides quick synchronization but might cause more wear and tear on the breaker contacts The circuit breaker closure time must be set according to the breake
14. configured with close angle 7 9 1 Check Synchonizer function The check synchronizer function offers the possibility of closing the circuit breaker automatically during manual synchronization The condition for closing the breaker is defined by tolerated phase deviation The function can be disabled or enabled Choice can be YES or NO WRITE AUTOS YNC CHKSYNC lt Choice gt In default configuration this function is disabled 7 9 2 Dead Bus Closure The dead bus closure function provides the possibility of closing the circuit breaker when no voltage exists between either one of the three phases on the busbar The dead bus closure function requires the connection of the DB IN and DB OUT I O signals These two signals are used to prevent simultaneous closure by two or more S LS modules The dead bus closure function can be disabled or enabled Choice can be YES or NO WRITE AUTOS YNC DBCLOSE lt Choice gt 7 9 3 Stability Stability defines the response of the auto synchronizer The auto synchronizer will alter the frequency in order to obtain the required frequency and phase deviation or in case of electronic governor control in order to obtain zero frequency and phase deviation The auto synchronizer changes the frequency by increasing or decreasing engine speed through control of the speed governor The magnitude of the governor control signals compared to the actual deviation in frequency is determined by the synchronizer stability p
15. dead bus facility includes external I O signals to prevent simultaneous dead bus connection of two or more generators A synchronization time parameter is provided for the purpose of automation An error will be issued through the LED of the C B Close relays if the synchronization is not completed within the synchronization time 3 6 Check Synchronizer The check synchronizer function offers the possibility of closing the circuit breaker automatically during manual synchronization The condition for closing the breaker is defined by tolerated phase deviation Revision 15 08 2008 15 08 2008 13 09 00 Page 14 of 52 SELCO A S SIGMA S6100 S LS Module 3 7 Active Load Sharing Active load sharing is initiated the moment that the circuit breaker is closed The active load sharer function will increase decrease engine speed and thereby generator frequency to make the generator take or release active current load The S6100 module will balance the active current load based on a DC voltage communicated through the kW parallel lines This DC voltage can be adapted to suit other types of active load sharers e g SELCO T4800 or T4400 The active load sharer is configured with load deviation stability and deadband The load deviation parameter is used to balance out small load deviations which might be caused by inaccuracy within the external current transformers Stability determines the magnitude of the speed control signal as a function of
16. deviation in the balance of active current load A low stability setting will provide minimal overshoot and relatively slow balancing of the active current load while a high stability setting gives fast regulation with risk of overshoot instability The deadband simply defines the amount of load deviation required before the active load sharing kicks in The kW parallel lines can be adjusted to operate with any voltage in the range of 6 to 6 V DC The voltage range of the parallel lines is programmable in order to ensure compatibility with other types of SELCO load sharers The active load sharing function includes the feature of unloaded trip When activated through the unload input the active load sharer will decrease speed at a predefined rate 100 to 0 load The S6100 module will then trip the breaker automatically when the pre programmed trip level is reached provided that the reactive current load has also been unloaded The active load sharing function ramps up at with the same ramp time when the unload signal is removed The PID parameters only used with electronic speed control works in conjunction with the stability parameter Stability will affect the magnitude of the control signal when the deviation in load is relatively large while the P parameter determines the magnitude of the control signal when the deviation is small Both stability and the P parameter operate as a function of the load deviation The I parameter can be
17. disabled Revision 15 08 2008 15 08 2008 13 09 00 Page 16 of 52 SELCO A S SIGMA S6100 S LS Module 4 System Preparation 4 1 CAN Bus Address The 4 point dip switch located on the right hand side of the S6000 module is used to set the CAN bus address The CAN bus address is set as a binary value on 4 ON OFF switches Valid CAN bus address are to 15 The CAN bus address should be set according to the generator reference number thus the CAN address of an S6000 module and its partner S6100 should be the same It is advisable to assign address to the first pair of S6000 S6100 modules number 2 to the second pair etc S6500 user interface modules can be set to any address in the range to 15 However it is typically most practical to set a single S6500 to number 1 S6600 or S6610 Power Manager modules should be configured with address 1 Each pair of S6000 and S6100 modules must be assigned a unique CAN bus address The binary system works on the principle described below e Switch 1 represents the decimal value 1 e Switch 2 represents the decimal value 2 e Switch 3 represents the decimal value 4 e Switch 4 represents the decimal value 8 As an example the address 1 is assigned by setting switch 1 to ON and the remaining switches to OFF Address 10 is assigned by setting switch 2 and 4 to ON and switch 1 and 3 to OFF The decimal value corresponds to the sum of the values ON switch values Revision 15 08 200815 08 2008 1
18. e g 0 1 V DC signals must have COM as reference Terminal Description Signal Connection 1 UNLOAD NO contact to COM External switch output or relay 2 F V CTRL DISABLE NO contact to COM External switch output or relay 3 VOLT IN DC voltage External output 1 to 1 V DC 4 FREQ IN DC voltage External output 1 to 1 V DC 5 C B CLOSE BLOCK NO contact to COM External switch output or relay Revision 15 08 2008 15 08 2008 13 09 00 Page 21 of 52 SELCO A S SIGMA S6100 S LS Module 6 4 1 Unload The UNLOAD input is used to do a ramped unload of the generator before the breaker is tripped UNLOAD is typically initiated from an external switch Unload starts once the UNLOAD signal is put to COM level Disconnecting the UNLOAD signal causes reconnection of the generator where after the load is applied by ramp 6 4 2 F V Ctrl Disable The F V CTRL DISABLE input is used to deactivate the voltage and frequency stabilization of the S6100 module The signal is considered active when the input is connected to COM level and inactive when left open The signal is typically used when the generator is operated in parallel with a shaft generator or the grid power sources that determines the voltage and frequency or when the voltage and frequency is controlled by external equipment through the VOLT IN and FREQ IN analogue inputs 6 4 3 Volt In The VOLT IN input is an analogue input The
19. from the preset level Alternators controlled by conventional voltage regulators operate with voltage droop The voltage droop causes excitation and alternator voltage to decrease slightly when reactive load is applied to the generator The voltage will typically only drop few percent between zero to full load Alternators controlled by electronic voltage regulators can be configured to operate in isynchronous mode Isynchronous mode utilizes a voltage feedback signal to compensate for the droop effect Thus isynchronous mode provides zero droop stable voltage with increase in reactive load Electronic voltage regulators can also be configured to operate in droop mode with a certain percentage of droop The voltage stabilization function of the S6100 module will do much the same as the isynchronous feature of the electronic voltage regulator However there are some advantages to the S6100 voltage stabilization First of all it works with both conventional and electronic voltage regulators Secondly it provides seamless coexistence with other functions controlling the voltage e g voltage matching and reactive load sharing SELCO recommends that the voltage regulator is configured to operate with a few percent droop This is to avoid a conflict between the S6100 voltage regulation and the isynchronous compensation feature of the voltage regulator The set point of the S6100 voltage stabilization is defined by the nominal voltage parameter NO
20. input can be used for external control of the generator voltage provided that the F V CTRL DISABLE input is active connected to COM The analogue control signal must be a voltage between 1 and 1 V DC The VOLT IN input uses the COM terminal as reference If not used the VOLT IN input should be connected to COM This is especially important while the F V CTRL DISABLE input is active 6 4 4 Freq In The FREO IN input is an analogue input The input can be used for external control of the generator frequency provided that the F V CTRL DISABLE input is active connected to COM The analogue control signal must be a voltage between 1 and 1 V DC The FREO IN input uses the COM terminal as reference If not used the FREO IN input should be connected to COM This is especially important while the F V CTRL DISABLE input is active 6 4 5 C B Close Block The C B CLOSE BLOCK can be used to disable the closure of the circuit breaker The input is active when at COM level and inactive if left open The C B CLOSE BLOCK will not prevent auto synchronization it will only prevent closure of the circuit breaker activation of the C B CLOSE relay Thus the C B CLOSE BLOCK input is handy during test and commissioning e g to test auto synchronization without closing the breaker 6 5 C B The terminals of the relays intended for closing and tripping the circuit breaker closing by auto synchronization and tripping by the busbar protection funct
21. poles of the primary and back up supplies should not be connected to ground hull or switchboard chassis 3 Negative poles of the primary and back up supplies and COM can be connected together provided that the negative poles of the primary and back up supplies are not connected to ground hull or switchboard chassis Revision 15 08 2008 15 08 2008 13 09 00 Page 7 of 52 SELCO A S SIGMA S6100 S LS Module 3 Function The S6100 module provides integrated busbar monitoring as well as control for a single generator The S6100 includes a programmable control and output scheme which makes it adaptable to almost any brand and type of speed governor The same applies to the control of the automatic voltage regulator AVR 3 1 Protection The S6100 module provides three built in protection functions These protection functions operate from the 3 phased voltage measurements conducted by the S6100 module thus all three functions are intended for monitoring of the busbar The protection functions can be configured with trip level s Delays are provided for filtering The protection functions operate on RMS readings sampled over one or four periods depending on the rated frequency The C B Trip LED will start flashing and the delay will begin counting the moment the trip level of the related protection function is exceeded If the level is exceeded for the full duration of the delay the C B Trip LED will change to steady light and the ci
22. rating Function Alarm Relay Relay response time Contact set s Contact rating Function Voltage OK Level Indication Phase OK indication Indication Power up delay Integral control 0 to 100 ms default 10 ms Derivative control O to 100 ms default 1 ms Control of speed governor or frequency out signal 20 ms worst case 2 Increase decrease AC 8 A 250 VAC DC 8 A 35 VDC Normally de energized at middle position 10 to 10000 ms default 250 ms 0 0 to 25 5 s default 2 0 s 10 000 to 10 000 V DC default 5 000 to 5 000 V DC 0 000 to 24 000 mA default 4 000 to 20 000 mA 100 to 32000 Hz 8 000 to 8 000 V DC default 8 000 V DC 500 Hz nominal duty cycle 50 Control of AVR or voltage out signal 20 ms worst case 2 Increase decrease AC 8 A 250 VAC DC 8 A 35 VDC Normally de energized at middle position 10 to 10000 ms default 250 ms 0 0 to 25 5 s default 2 0 s 10 000 to 10 000 V DC default 5 000 to 5 000 V DC 0 000 to 24 000 mA default 4 000 to 20 000 mA 100 to 32000 Hz 8 000 to 8 000 V DC default 8 000 V DC 500 Hz nominal duty cycle 50 External Frequency Control 1 0 to 1 0 VDC External Voltage Control 1 0 to 1 0 VDC 20 ms worst case 1 AC 8 A 250 VAC DC 8 A 35 VDC Normally de energized Default or normally energized 20 ms worst case 1 AC 8 A 250 VAC DC 8 A 35 VDC Normally de energized Default or normally energized
23. starting Voltages above 690 VAC are supported through use of external transformers PT s When using PT s it is important to ensure that the PT s do not affect the phase of the voltage measurement Phase shift in the PT s will directly affect the calculation of the power factor and thereby the calculation of active and reactive current load The S6100 measures the individual phase phase voltage between phases L1 and L2 L2 and L3 and L3 and L1 Phase neutral voltages are also measured on 4 wire sources while on 3 wire sources the phase neutral voltages are estimated based on the assumption that loads are distributed equally among the three phases Terminal Description Signal Connection Ll VOLTAGE INPUTS L1 AC voltage Busbar phase L1 L2 VOLTAGE INPUTS L2 AC voltage Busbar phase L2 L3 VOLTAGE INPUTS L3 AC voltage Busbar phase L3 N VOLTAGE INPUTS N Neutral Busbar Neutral optional The three phases of the source L1 L2 and L3 should be connected to L1 L2 and L3 of the VOLTAGE INPUTS plug in terminal Intermediate 2 A slow blow fuses should be inserted between the individual phases and the related voltage inputs It is very important that the phases are connected in the correct order Interchanging the phases will affect the measurements It is very import that the three phases are connected to the corresponding terminals phase to L1 phase 2 to L2 and phase 3 to L3 Connection of
24. the enable command ENABLE Revision 15 08 2008 15 08 2008 13 09 00 Page 28 of 52 SELCO A S SIGMA S6100 S LS Module Enable mode will prompt for a pin code The default pin code is 0000 The console can be switched back to read only mode by the disable command DISABLE Please note that the RS232 console pin code is separate for each module Also the RS232 pin code is independent from the menu pin code of the UI or PM module 7 3 System Settings The first thing to do is to configure the S6100 to fit the controls of the generator including the speed governor and the automatic voltage regulator 7 3 1 Power up Delay The power up delay determines the time between generator start up generator on voltage and initiation of regulation when the S6100 will begin frequency and voltage stabilization The power up delay should be set so that the generator has time to settle before the S6100 starts regulation of the speed and voltage The power up delay is expressed in seconds without decimals The power up delay is set by the following command The resolution is 1 s WRITE SYS POWERUPDELAY duration 7 4 Voltage OK Window The S6100 module needs to verify whether or not the busbar voltage is OK that is whether or not the voltage level on each of the three phase phase voltages are within limits The voltage window defines the boundaries around the nominal voltages which the module regards are acceptable for safe op
25. the power supply of this relay must be connected with one of the COM terminals of the SIGMA Module This power supply must be 24V DC 16 24 24 En 1 6 KA Som OO St OO Dje Nomaaa O E B Cese CyB Trip oa tae Alarm ES di Su 3 E CB RELAY CONTACTS ENGINE 10 S LS MODULE 6100 Revision 15 08 2008 15 08 2008 13 09 00 Page 26 of 52 SELCO A S SIGMA S6100 S LS Module Terminal Description Signal Connection 1 ENGINE START Open collector output Engine Controller start input 2 ENGINE STOP Open collector output Engine Controller start input 3 DB OUT Open collector output DB IN OUT of other S6100 4 DB IN NO contact to COM DB IN OUT of other S6100 5 ENGINE FAILED NO contact to COM Engine Controller fail output 6 OFF DUTY NO contact to COM External switch output or relay 7 COM Common reference External reference 6 12 1 Engine Start The Engine Start outputs can be controlled either from the RS485 MODBUS or from the optional S6600 module The signal is typically used to start the generator 6 12 2 Engine Stop The Engine Stop outputs can be controlled either from the RS485 MODBUS or from the optional S6600 module The signal is typically used to stop the generator 6 12 3 DB Out The DB Out signal is together with in DB In input These two signals are used to prevent simultaneous closure to dead bus among multiple S6100 modules All
26. to provide the best possible dynamics Resolution is 0 1 V DC WRITE ACTLS PARLINES VOLTMIN lt Voltage gt WRITE ACTLS PARLINES VOLTMAX lt Voltage gt Revision 15 08 2008 15 08 2008 13 09 00 Page 38 of 52 SELCO A S SIGMA S6100 S LS Module 7 10 5 Ramp Time Ramp time defines how quickly the load sharer takes or releases active load The active load is ramped up when the active load sharing is enabled This happened after synchronization or after the unload signal has been released The load is ramped down when the unload signal is enabled The parameters defines the time to go from zero to full load nominal load or opposite The ramp time parameter is expressed in seconds without decimals Resolution is 1 s WRITE ACTLS RAMPTIME lt Duration gt 7 10 6 Ramp Stability Ramp stability defines the response of the active load sharer during ramp up and ramp down The active load sharer will alter the active load by altering the frequency in order to obtain the required ramp ratio The active load sharer changes the active load level by increasing or decreasing engine speed through the governor The magnitude of the governor control signals compared to the actual deviation in active load is determined by the ramp stability parameter Too mush stability provides accurate but slow correction of the ramp ratio while too little stability introduces risk of overshoot and instability Ramp stability is expressed as a number without decima
27. voltage BPPV Busbar phase neutral voltage BPNV Frequency Stabilization On Off Control Conventional Speed Control Stability Deadband Electronic Speed Control Stability P I D Voltage Stabilization On Off Control Conventional AVR Stability Deadband Electronic AVR Stability P I D Voltage Matching On Off Control Conventional AVR Stability Deadband Electronic AVR Stability P I D Auto Synchronization Dead Bus Closure On Off Control C B Close Disable Conventional Speed Control Stability Deadband 24 V DC 30 30 Isolated 24 V DC 30 30 Isolated 63 to 690 VA C 2 2 three phased default 400 V AC BPPV V3 measured only with neutral connection By F V Disable input Pulse duration as a function deviation from rated frequency GRF 1 to 100 default 10 offset around rated frequency GRF where no regulation occurs to 0 1 to 20 0 default 0 2 Ramp rate used before optimized PID control is released 1 to 100 default 10 Proportional control 1 0 to 20 0 default 4 0 Integral control 0 to 100 ms default 10 ms Derivative control O to 100 ms default 1 ms By F V Disable input Pulse duration as a function deviation from nominal voltage GPPV 1 to 100 default 5 offset around nominal voltage GPPV where no regulation occurs 0 1 to 20 0 default 0 2 Ramp rate used before optimized PID control is released
28. 008 15 08 2008 13 09 00 Page 32 of 52 SELCO A S SIGMA S6100 S LS Module 7 6 7 Voltage Range The voltage minimum and maximum references define the lower and upper limits of the voltage output signal These parameters are only used when voltage control is done by analogue output and when the analogue signal has been set to voltage The resolution is 0 001 V DC WRITE SYS VOLTCTRL ANAOUT VOLTMIN lt Voltage gt WRITE SYS VOLTCTRL ANAOUT VOLTMAX lt Voltage gt 7 6 8 Current Range The current minimum and maximum references define the lower and upper limits of the current output signal These parameters are only used when voltage control is done by analogue output and when the analogue signal has been set to current The resolution is 0 001 mA WRITE SYS VOLTCTRL ANAOUT CURMIN lt Current gt WRITE SYS VOLTCTRL ANAOUT CURMAX lt Current gt 7 6 9 PWM Settings The PWM settings describe the properties of the pulse width modulated PWM output signal These settings are only used when voltage control is done by analogue output and when the analogue signal has been set to PWM The resolution of the PWM base frequency is 1 Hz WRITE SYS VOLTCTRL PWMOUT FREQ lt Frequency gt The PWM maximum reference defines the amplitude of the PWM signal 0 VDC being the minimum reference The resolution is 0 001 V DC WRITE SYS VOLTCTRL PWMOUT VOLTMAX lt Voltage gt 7 7 Protection Voltage and frequency establish protection is provided for monito
29. 3 09 00 Page 17 of 52 SELCO A S SIGMA S6100 S LS Module 5 Installation The S6100 module is secured to the rear of the switch board using four 4 mm 3 16 screws DIN rail mounting is not advisable due to the weight of the module Please ensure that there is enough space around the module so that the plug in terminals and RS232 connector can be removed and reinserted The length of the cables should also allow for the easy removal and insertion of the plug in terminals Access to the dip switches located at the lower right hand corner of the unit might also be necessary Revision 15 08 2008 15 08 2008 13 09 00 Page 18 of 52 SELCO A S SIGMA S6100 S LS Module 6 Connection The S6100 module is connected using plug in terminals The plug in terminals provide safe and durable connection without sacrificing ease of installation and servicing Wires should be good quality with a reasonable low internal resistance It is advisable to use colour coding as this makes trouble shooting and servicing far easier Please ensure that all wires are stripped properly and that the screws of the plug in terminal rest on the copper and not on the insulation Insufficient wire stripping is a frequent cause for poor connections 6 1 Power Supply The electronics of the S6100 module is powered by two individual supplies the primary and the backup supply Both the primary and the backup supply operate on a nominal voltage of 24 V DC The S
30. 6 Stop Signal This function is only active in connection with a S6600 or S6610 PM Module The output is the stop signal to the engine It can be programmed to be continous active as long as the engine is stopped or a pulse signal WRITE IORELAYS STOPSIGNAL lt Choice gt Choice can be CONT or PULSE default is pulse 7 14 7 Stop Pulse This function is only active in connection with a S6600 or S6610 PM Module In case the stop signal is programmed as a pulse signal the length of the pulse can be programmed by following command Revision 15 08 2008 15 08 2008 13 09 00 Page 44 of 52 SELCO A S SIGMA S6100 S LS Module WRITE IORELAYS STOPPULSE lt ms gt The range can be between 100ms and 5000ms The resolution is 1ms and default is 1000ms 7 14 8 Cool Down Time This function is only active in connection with a S6600 or S6610 PM Module With this command the cool down time for the engine can be defined The cool down time is the time the engine continues running after the circuit breaker has been tripped The length of the cool down time can be programmed by following command WRITE IORELAYS COOLDOWN lt s gt The range of this delay is between 0 and 10000s The resolution is 1s and the default setting is 5s 7 15 Grid parallel operation power import During grid parallel operation it is necessary to assign one pair S6000 S6100 to the grid This unit must be connected across the tie breaker The parameters mentioned under ar
31. 6100 module is capable of operating on both or either one of the two supplies However an alarm will be raised if the backup supply fails Furthermore each supply will tolerate wide variations in the supply voltage as required by the marine classification societies The primary supply occupies terminal 1 and 2 of the POWER SUPPLY plug in connectors while the backup supply occupies terminal 3 and 4 Terminal Description Signal Connection 1 PRIMARY SUPPLY 24 VDC __ Positive terminal of primary supply 2 PRIMARY SUPPLY 24 V DC Negative terminal of primary supply 3 BACKUP SUPPLY 24 V DC Positive terminal of backup supply 4 BACKUP SUPPLY 24V DC Negative terminal of backup supply The primary and backup supplies are isolated from each other and from the remaining electronics of the module This means that the supply reference terminals terminal 2 and 4 have no connection to the modules COM terminals The primary and backup supply is designed to cope with relative large voltage fluctuations as required by the marine classification societies However please note that some marine classification societies require that the S6100 module is powered by the generators voltage This is easily done through adding an auxiliary 24 V DC supply powered by the generator voltage Please make sure that the auxiliary supply is able to cope with the power demand 6 1 1 Primary Supply The switch board 24 V DC
32. CO A S SIGMA S6100 S LS Module 8 AA etna daar tain tod actu ie eco pede reas N EASES ET 44 714 6 Stop SIGUA oroctsate wads e veins irae ean eae elit E R 44 A SCOP PUSS O OO 44 TAS Cool Oye tis Tai Gece sets aS acess cee cas bakers E A eb cas tenincs sees tena ER dada 45 7 15 Grid parallel operation power import wiccsscscivesseseevssassrscsnasscucatarsereccesegecccaatesecavecnccervinedend 45 PIST ROMEO Son acla e Rotate te EE E E dape be de Tue eae Seashore eeedteol 45 115 2 Power Import MaX a iia 45 LIS gt Power Import Mode is lecusasia thd recone diag dlduead twas a even TE 45 TISA Power Import Valea e a ones edbtonsavlp ons ea hccnupue EE 46 7 16 Grid parallel operations power Sx POUL a aa 46 TIO A eset SS OR te E OEE E Rigas 46 1162 Power EXPO M aA ses xa poses ye a a cated ese oo e O O ER 46 TL gt Power Exp rt Modein ia 46 LIGA Power Export Valle its 47 MAT POwWersoUr Erea ences eyed estes 47 OS 47 E a A aia n ask ad dover aca hatiad A a a deans ge 47 QU n gt A E cae 48 7 21 Restoring to factory default configurations id 48 Specifications ni TA outa AO ds 49 Revision 15 08 2008 15 08 2008 13 09 00 Page 5 of 52 SELCO A S SIGMA S6100 S LS Module 1 Preface The SELCO SIGMA S6100 S LS module provides integrated bus bar monitoring frequency stabilization voltage stabilization check automatic synchronisation and active reactive load sharing The S6100 module relies upon the measurements and calcula
33. E PROTECT PMSTART lt Choice gt 7 8 Frequency Stabilization The frequency stabilization feature ensures that the generator frequency is kept at a fixed level The frequency control facility uses the rated frequency as its reference The frequency stabilization feature will compensate for frequency deviations caused by change in active load 7 8 1 Stability The stability parameter determines the response of the frequency stabilization The response determines how much signal is provided to the governor and thereby how quickly the frequency is stabilized as a function of the actual deviation in frequency A low setting will result in slow but accurate stabilization while a high setting provide fast regulation with the potential risk of overshoot and instability Stability is expressed as a number without decimals Stability is set by the following command Resolution is 1 WRITE FREQSTAB STABILITY lt Value gt 7 8 2 Deadband The deadband parameter is only used when the speed adjustment is configured to operate with the speed relay The deadband parameter determines the responsive range of the frequency stabilization feature The frequency stabilization function will only attempt to correct the frequency if it is outside the deadband A deadband which is too narrow will cause constant fine tuning of the frequency while an overly wide deadband will cause deviation according to the reference rated frequency The deadband is expressed in percen
34. Governor voltage input 2 ANALOG OUTPUT 1 mA DC current Governor current input 3 ANALOG OUTPUT 1 PWM PWM signal Governor PWM input 4 ANALOG OUTPUT 1 REF _ reference isolated Governor reference 5 ANALOG OUTPUT 2 VDC DC voltage AVR voltage input 6 ANALOG OUTPUT 2 mA DC current AVR current input 7 ANALOG OUTPUT 2 PWM PWM signal AVR PWM input 8 ANALOG OUTPUT 2 REF reference isolated AVR reference It is important to note that each analogue output is protected against short circuit by an internal 10 kOhm resistor The resistor is placed in series on the output terminal The output resistor might affect the magnitude of the output signal if the internal resistance of the driven equipment is low The principle of voltage division applies between the output resistor and the internal resistance of the driven equipment Example equipment with an internal resistance of only 10 kOhm would reduce a 10 V DC output voltage to 5 VDC The two 10 kOhm resistors in series would make up a 1 2 voltage divider Likewise the amplitude of the PWM signal is limited to 8 V DC Speed control is done either by the speed relay described elsewhere in this manual or by the electronic outputs described above The same applies to the voltage control It is of cause possible to do speed control by electronic output while doing voltage control by relays and opposite The mode of control and also be mixed among the parallel operating generators 6 8 Manual
35. MVOLT of the partner S6000 module The voltage stabilization function becomes active once the power up delay has passed provided that the function has not been disabled Revision 15 08 2008 15 08 2008 13 09 00 Page 11 of 52 SELCO A S SIGMA S6100 S LS Module The configuration of the voltage stabilization function depends on the chosen mode of voltage control The relay based voltage control Increase decrease contact signals is configured with stability and deadband while the electronic control is set up with stability and PID parameters The stability parameter determines the magnitude of the control signal as a function of the actual deviation in voltage compared to nominal voltage A high stability setting provides fast regulation with the potential risk of over shoot and instability A low stability setting provides accurate but slow regulation The deadband parameter only used with relay based voltage control determines the level of deviation required for the voltage stabilization to regulate The system will not do any regulation as long as the voltage deviation is within the deadband A low deadband setting results in continues fine tuning of the voltage while a high deadband setting results in infrequent corrections at the expense of accuracy The deadband is expressed as a percentage of the nominal voltage The PID parameters only used with electronic voltage control works in conjunction with the stability parameter Sta
36. Manual input or by configuration Offset compared to 50 50 balance in reactive load 100 to 100 default 0 Communication of reactive load balance to other load sharers 6 0 to 6 0 V DC default 0 0 to 6 0 V DC Time to ramp up down from zero to max or max to zero reactive load 1 to 100 s default 20 s Pulse duration as a function of deviation in reactive load balance 1 to 100 default 5 offset around dev from reactive load balance where no regulation occurs 0 1 to 20 0 default 2 0 Ramp rate used before optimized PID control is released 1 to 100 default 1 offset around dev from reactive load balance where no regulation occurs 0 1 to 20 0 default 2 0 Proportional control 1 0 to 20 0 default 1 0 Revision 15 08 200815 08 2008 13 09 00 Page 50 of 52 SELCO A S SIGMA S6100 S LS Module I D Governor Frequency Control Function Increase Decrease Relay Relay response time Contact set s Contact rating Function Minimum Pulse Duration Duty Cycle Analogue Output 1 DC Voltage Current PMW AVR Voltage Control Function Increase Decrease Relay Relay response time Contact set s Contact rating Function Minimum Pulse Duration Duty Cycle Analogue Output 2 DC Voltage Current PMW Frequency In Voltage In C B Close Relay Relay response time Contact set s Contact rating Function C B Trip Relay Relay response time Contact set s Contact
37. N L CAN H and COM wires starts at one end of the total network a termination resistor of 124 Ohm is connected between CAN L and CAN H preferably directly on the CAN bus plug in connector The cable is connected form SIGMA module to SIGMA module without T connections On the other end of the cable again a 124 Ohm terminator resistor is connected between the CAN lines The maximum cable length is 40 meters The cable type should be 0 25 0 34 mm AWG23 AWG22 Wires for CAN Lo and CAN Hi must be twisted twisted pair The reference COM must be interconnected between all modules and the cable should be shielded The shield must only be connected to chassis ground at one end Every SIGMA module of the installation must be connected to the same CAN bus network Third party CAN nodes may not be connected to the SIGMA CAN bus 6 12 Auxiliary VO The auxiliary I O plug in connector houses general purpose I O signals The Inputs are considered activated when connected to COM inactive when open The outputs are open collector outputs An open collector output works as an electronic contact to COM Please note that the COM terminals are isolated from the power supplies Therefore it is necessary to connect the minus of the power supply that supplies the equipment that is to be used with the open collector output with one of the COM terminals of the SIGMA module Example In case a relay is to be activated by an open collector output the minus of
38. SELCO SIGMA 56100 S LS Module an St A User s Manual Revision 15 08 2008 SELCO A S Betonvej 10 DK 4000 Roskilde Denmark Phone 45 7026 1122 Fax 45 7026 2522 e mail selco dk selco com Web site www selco com SELCO A S SIGMA S6100 S LS Module Table of Contents My PRTG tase scp O 6 2 Asolation and Grounding csi cd dei dieta 7 O E E a ade E A cae ea E E E 8 3 1 PTO LOC UI EA E E A E A A ES 8 31 1 Voltage Establishment 15 ccisicecceaccesicvcesstenetunassquibea a adn 8 ATL gt Frequency ESTADO a A A as 9 3 1 3 Frequency Deviation Protection Rate of Change of Frequency ROCOF df dt relay 9 3 1 4 Start of standby generator in case of bus bar error PM Start oooooccnocononccnocononnconnanannnnnos 9 3 27 Fr g eney SUADIIZ AU a olaasachdeen E E 10 3 3 Voltage Stabilization A A E ANERE 11 34 Voltage M A 12 IM seene a a E E EEE A E E 13 3 6 CHECK Synchromizer resore oeorvan id 14 Sue Active koad Sharing t rense an E E AEE E a Era o eN 15 38 Re c ye Load Sharing csipet diroris a E a O EE AE Ss 15 A System Preparation eera A a a a e r a o e ets cos 17 4 1 GAIN BUS AGOUTESS rita ii eco icons iii 17 E Beet nt ed plead dan RAEE eA 18 Bo COMMER EON au A A 19 6 1 O Ea 19 LL Prmary Supply ios 19 A SE AIC KU Uy A CO 20 G2 SV Ollase A esate teene a aa a ner Sake mite atte etna stat 20 6 3 VIG a sorte aa A ee Oe ees oe ea 21 OA Oeste a ei ea ie eee E 21 A O 22 O O ere minannar a O
39. UT WRITE SYS VOLTCTRL MODE lt Choice gt 7 6 3 Output The output can be either the speed increase decrease relay contacts or analogue output 2 The choice can be set to VOLTRELAY or ANAOUT2 WRITE SYS VOLTCTRL OUT lt Choice gt 7 6 4 Minimum Pulse Duration The minimum pulse duration determines the duration of the shortest possible voltage control pulse The pulse duration setting is only in use when voltage control is done by relays Resolution is 1 ms WRITE SYS VOLTCTRL MINPULSE lt Duration gt Setting the parameter too low will result in slow regulation while a high setting will result in overshoot on the voltage regulation 7 6 5 Duty Cycle The duty cycle parameter is only used when the voltage control is done by relays The duty cycle defines the minimum duration of the pulse and the rest time until the next pulse is issued Resolution is 0 1 s WRITE SYS VOLTCTRL DUTYCYCLE lt Duration gt Setting the duty cycle too low might result in overshoot and instability with a slow reacting lagging AVR A high setting might slow down the regulation 7 6 6 Analogue Signal The voltage control by analogue output 2 can be configured to operate with either a DC voltage current or a PWM signal The type of output signal is set by the following command Choice can be VOLT CUR or PWM WRITE SYS VOLTCTRL ANAOUT SIGNAL lt Choice gt The signal can be set to VOLT CUR or PWM The default setting is VOLT Revision 15 08 2
40. alue gt The range is between 1 and 100 the resolution is 1 and the default value is 100 7 16 3 Power Export Mode With this command the export mode can be defined WRITE SYS PWREXPORT MODE lt Choice gt The choice can be FIXED or EXCESS default is FIXED FIXED means that a fixed amount of power defined by the command PWREXPORT VALUE will be exported to the grid Revision 15 08 2008 15 08 2008 13 09 00 Page 46 of 52 SELCO A S SIGMA S6100 S LS Module EXCESS means that all power above a certain value defined by the command PWREXPORT VALUE will be exported to the grid 7 16 4 Power Export Value With power export mode configured to FIXED this command defines how much power will be exported to the grid The amount of power is expressed as a percentage of the rated power defined in the S6000 module assigned to the grid With power export mode configured to EXCESS this command defines the load of the connected generators This load level is expressed as a percentage of the rated power of the connected generators and defined by the command PWREXPORT VALUE In case the installation requires less power than defined by this parameter all excess power will be exported to the grid WRITE SYS PWREXPORT VALUE lt value gt The value can be between 1 and 100 the resolution is 1 and default is 25 7 17 Powersource This command defines if the S6100 module is assigned to an auxiliary generator or any power sourc
41. and Resolution is 0 1 WRITE VOLTSTAB PID P lt Factor gt The I integral parameter is expressed in milliseconds and is set by the following command Resolution is 0 1 ms WRITE VOLTSTAB PID I lt Duration gt The D differential parameter is expressed in milliseconds and is set by the following command Resolution is 0 1 ms WRITE VOLTSTAB PID D lt Duration gt 7 12 Voltage Matcher The S LS module includes voltage matching which can be enabled or disabled Voltage matching can automatically bring the voltage within the range specified by the Voltage OK Window The S LS module will control the voltage by the AVR If enabled voltage matching will be conducted before automatic synchronization is initiated The voltage matching function is configured with stability and deadband Stability determines the response of the voltage control signal as a function Revision 15 08 2008 15 08 2008 13 09 00 Page 40 of 52 SELCO A S SIGMA S6100 S LS Module of voltage deviation while the deadband defines the active area of regulation PID parameters are provided for tuning the voltage matcher when it controls an electronic AVR 7 12 1 Stability The stability parameter determines the response of the voltage matching function The response determines how much signal is provided to the AVR and thereby how quickly the voltage is brought into the permitted operational area compared to the Voltage OK Window A low setting will result in sl
42. arameter Too much stability provides accurate but slow synchronization while too little stability introduces the risk of overshoot and instability Stability is expressed as a number without decimals Stability is set by the following command Resolution is 1 WRITE AUTOSYNC STABILITY lt Value gt 7 9 4 Deadband The deadband parameter is only used when the speed adjustment is configured to operate with with the speed relay The deadband parameter determines the responsive range of the auto synchronizer The synchronizer will only attempt to correct the frequency while is outside the deadband Revision 15 08 2008 15 08 2008 13 09 00 Page 36 of 52 SELCO A S SIGMA S6100 S LS Module compared to the frequency on the bus bar A deadband which is too narrow will cause constant fine tuning of the frequency while an overly wide deadband will cause deviation according to the reference The deadband is expressed in percent with one decimal and is set by the following command Resolution is 0 1 WRITE AUTOSYNC DEADBAND lt Percentage gt 7 9 5 Frequency Deviation The frequency deviation parameter is only used when the speed adjustment is configured to the speed relay This parameter describes the tolerated frequency deviation at breaker closure Setting this parameter to high might stress the breaker and generator A low setting will however make the synchronization procedure a lengthy process The frequency deviation is expressed in Hz w
43. ations caused by change in reactive load 7 11 1 Stability The stability parameter determines the response of the voltage stabilisation The response determines how much signal is provided to the AVR and thereby how quickly the voltage is stabilized as a function of the actual deviation in voltage A low setting will result in slow but accurate stabilization while a high setting provide fast regulation with a potential risk of overshoot and instability Stability is expressed as a number without decimals Stability is set by the following command Resolution is 1 WRITE VOLTSTAB STABILITY lt Value gt 7 11 2 Deadband The deadband parameter is only used when the voltage adjustment is configured to operate with the voltage relay The deadband parameter determines the responsive range of the voltage control feature The voltage control function will only attempt to stabilize the voltage if it is outside the deadband A deadband which is too narrow will cause constant fine tuning of the voltage while an overly wide deadband will cause deviation according to the reference The deadband is expressed in percent with one decimal and is set by the following command Resolution is 0 1 WRITE VOLTSTAB DEADBAND lt Percentage gt 7 11 3 PID The PID parameters are only used when the voltage adjustment is configured to operate with the analogue output signal The P proportional parameter is expressed as a gain factor and is set by the following comm
44. bility will affect the magnitude of the control signal when the deviation in voltage is relatively large while the P parameter determines the magnitude of the control signal when the deviation is small Both stability and the P parameter operate as a function of the voltage deviation The I parameter can be used to slow down the regulation by increasing I The D parameter is seldom used and should be left at its default setting Voltage stabilization can be disabled together with frequency stabilization by connecting the F V CTRL DISABLE input to COM If disabled it is important to ensure that a defined signal is applied to the external voltage and frequency control input FREQ IN and VOLT IN 3 4 Voltage Matching The voltage matching function is used to match the voltage of the generator voltage to the busbar voltage If enabled voltage matching operates simultaneously with automatic synchronization The voltage matching function works much like the automatic synchronization function however voltage matching corrects the generator voltage instead of the frequency phase deviation The reference for the voltage matching function is the actual busbar voltage not the nominal voltage Do not mistake the voltage matching function with the voltage stabilization function Voltage matching works only in conjunction with auto synchronization while voltage stabilization work continuously if enable Furthermore the reference for voltage matching
45. ctronic governors Secondly it provides seamless coexistence with other functions controlling the frequency e g auto synchronization and active load sharing SELCO recommends that the governor is configured to operate with a few percent droop This is to avoid a conflict between the 6100 frequency regulation and the isynchronous compensation feature of the governor The set point of the S6100 frequency stabilization is defined by the rated frequency parameter RATEDFREQ of the partner S6000 module The frequency stabilization function becomes active once the power up delay has passed provided that the function has not been disabled The configuration of the frequency stabilization function depends on the chosen mode of speed control The relay based speed control Increase decrease contact signals is configured with stability and deadband while the electronic control is set up with stability and PID parameters The stability parameter determines the magnitude of the control signal as a function of the actual deviation in frequency compared to rated frequency A high stability setting provides fast Revision 15 08 2008 15 08 2008 13 09 00 Page 10 of 52 SELCO A S SIGMA S6100 S LS Module regulation with the potential risk of over shoot and instability A low stability setting provides accurate but slow regulation The deadband parameter only used with relay based speed control determines the level of deviation required for the
46. d for normally de energized or normally energized operation The command to set this property is as follows Choice can be ND or NE WRITE IORELAYS CBTRIP CONTACT lt Choice gt 7 14 3 Start Signal This function is only active in connection with a S6600 or S6610 PM Module The output is the start signal to the engine It can be programmed to be continous active as long as the engine is running or a pulse signal WRITE IORELAYS STARTSIGNAL lt Choice gt Choice can be CONT or PULSE default is pulse 7 14 4 Start Pulse This function is only active in connection with a S6600 or S6610 PM Module In case the start signal is programmed as a pulse signal the length of the pulse can be programmed by following command WRITE IORELAYS STARTPULSE lt ms gt The range can be between 100ms and 5000ms The resolution is 1ms and default is 1000ms 7 14 5 Start Time Out This function is only active in connection with a S6600 or S6610 PM Module After S6100 has issued the start command to the generator it expects the voltage to be built up within the Start Time Out delay If the generator does not build up voltage S6100 will generate an ENGINE START ERROR and the Power Manager Module will issue a start command to the next stand by generator The length of this delay can be defined by following command WRITE IORELAYS STARTTIMEOUT lt s gt The range of this delay is between 0 and 5000s The resolution is 1s and the default setting is 10s 7 14
47. e deviation in voltage is relatively large while the P parameter determines the magnitude of the control signal when the deviation is small Both stability and the P parameter operate as a function of the voltage deviation The I parameter can be used to slow down the regulation by increasing I The D parameter is seldom used and should be left at the default setting The purpose of the voltage matching function is typically just to bring the generator voltage within a reasonable range of the busbar voltage e g 2 to 10 Thus voltage matching is in a way analogue to automatic synchronization but without strict tolerances The reference of the voltage matching function is defined by the VOLTOKWND parameter of the 6100 3 5 Auto Synchronization The auto synchronization function of the S6100 module is used to automatically connect the generator to the busbar Auto synchronization is initiated the moment the S6100 module detects that a viable reference voltage exists on the busbar The main purpose of the automatic synchronization function is to ensure quick and automatic connection of the generator to the busbar A number of conditions must apply before the generator circuit breaker can be closed First of all the magnitude of the generator voltage must be equal or close to the magnitude of the busbar voltage 1f voltage matching is enabled Secondly the frequency of the generator voltage must be a little higher or equal to the freq
48. e e ae i Peper meen Cnc re 22 OFS MONG Ui piece Fas sas sad yaaa a En ooo UG Ave ee a TASE ei RETA 22 GAM PRC Cai dad 22 6 4 3 FEB Close Block Ss 22 O eee cacao cera E A a T E A scarey ees ean aor 22 60 Relay Con aio 23 o a A E EE E E A AT 23 6 6 2 VA Ea Ea a ae ep eos 23 A TAE e a aa a E a OE TEER ETETA 23 67 AMARC BUS IPS A ios 24 6 8 gt Manual VOS COM icc oe A eae este a eas eee aed 24 Revision 15 08 2008 15 08 2008 13 09 00 Page 2 of 52 SELCO A S SIGMA S6100 S LS Module e AP A Nann dE eslied EETA 25 MeN eo E S A A AE E E E A R A TST 25 OTI CAN BUS ios 25 6 127 Atay NO estrene e E E E R EERE PENT ET a ERR OS 26 NA A A iden ies E E E A a 27 6 12 25 ENSIN E STOP erana OO 27 6123 DB Oul snn in A 27 EZ TB A E E SAET AE E T E ENEA 27 612 5 Engine Faedis onenen a a a speed e N r a a a a TEET 27 0120 OM D soie O E EE E AEE ae aero es 27 1 Confisurat ois eresian a T a a N A a e a N eins N 28 7 1 PID R gulation seeen ereraa EEE e ONE Ee AEE A EE E eaten A CAEP TERESE costes 28 7 1 1 Proportional control parameter P ssssseseesessseesseessessseressersseresssesseesseeesseresseesseesseresee 28 7 1 2 Integrator control parameter Di 28 7 1 3 Differentiator control parameter Dra ri iaa 28 7 2 Console PassWord A a 28 71 3 SVS Le Tis UL E fs dss A 29 Tad Powerup Delaye bis 29 TA Voltaire OK WV GW tr tai 29 7 5 Speed Co ii 29 TL Speed control enabled edades 30 Deed gt A A A as 30 a II e
49. e nominal phase phase voltage The lower trip level is set by the following command Resolution is 1 WRITE PROTECT FE LOWLEVEL lt Level gt The upper trip level is expressed in percent without decimals The trip level refers to the nominal voltage The upper trip level is set by the following command Resolution is 1 WRITE PROTECT FE UPLEVEL lt Level gt The lower delay is expressed in seconds with one decimal The delay is set by the following command Resolution is 0 1 s WRITE PROTECT FE LOWDELAY lt Duration gt The upper delay is expressed in seconds with one decimal The delay is set by the following command Resolution is 0 1 s WRITE PROTECT FE UPDELAY lt Duration gt 7 7 3 Frequency Deviation Protection The frequency deviation protection can be enabled or disabled This is done by the following command The choice can be set to either YES or NO WRITE PROTECT FD ENABLED lt Choice gt The trip level is expressed in hertz per second with one decimal The lower trip level is set by the following command Resolution is 0 1 Hz WRITE PROTECT FD LEVEL lt Level gt Revision 15 08 200815 08 2008 13 09 00 Page 34 of 52 SELCO A S SIGMA S6100 S LS Module 7 7 4 PM Start pre start of generator in case of bus bar fault The PM START function can be enabled or disabled This is done by the following command The choice can be set to either YES or NO In default configuration this function is disabled WRIT
50. e only relevant for the S6100 module assigned to the grid For more detailed information regarding grid parallel operation please see manual S6100 Paralleling with grid or shaft on the SELCO internet page 7 15 1 Power Import In case power shall be imported from the grid into the system the power import function has to be enabled This can be done by following command WRITE SYS PWRIMPORT ENABLED lt Choice gt The choice can be YES or NO default is NO 7 15 2 Power Import Max With this command the maximum limit of power to be imported can be defined as a percentage of the capacity defined in the S6000 module assigned to the grid WRITE SYS PWRIMPORT MAX lt Value gt The range is between 1 and 100 the resolution is 1 and the default value is 100 7 15 3 Power Import Mode With this command the import mode can be defined WRITE SYS PWRIMPORT MODE lt Choice gt The choice can be FIXED or PEAK default is FIXED FIXED means that a fixed amount of power defined by the command PWRIMPORT VALUE will be imported from the grid Revision 15 08 2008 15 08 2008 13 09 00 Page 45 of 52 SELCO A S SIGMA S6100 S LS Module PEAK means that all load above a certain value defined by the command PWRIMPORT VALUE will be imported from the grid 7 15 4 Power Import Value With power import mode configured to FIXED this command defines how much power will be imported from the grid The amount of power is expressed
51. e that allows the S6100 to control its speed a shaft generator or the grid WRITE SYS POWERSOURCE lt Choice gt The choice can be AUXILIARY SHAFT OR GRID default is AUXILIARY 7 18 Dutyhour This command defines the running hours of the generator set It is used in connection with the S6600 or S6610 PM Module for the Duty Hour start stop scheme When the generator is running S6100 will count the running hourson this parameter It is possible to assign the amount of running hours This is necessary when the control equipment of an older generatyor will be replaced by S6100 or after a firmware upgrade of the S6100 module The amount of running hours can be defined by following command WRITE SYS DUTYHOUR lt value gt The value is the amount of running hours The range can be between 0 and 999999 The resolution is 1h and the default value is 0 7 19 Priority This parameter is only relevant in connection with the S6600 or S6610 PM Module It defines the start stop priority for the generators The priority can be assigned by following command WRITE SYS PRIORITY lt Value gt The value can be between 1 and 15 the resolution is 1 and default is 1 Revision 15 08 2008 15 08 2008 13 09 00 Page 47 of 52 SELCO A S SIGMA S6100 S LS Module 7 20 RS485 The RS485 communication interface can be configured with regard to MODBUS slave address baud rate data bit parity and stop bits It is important to ensure that the addre
52. eed control is not used it should be disabled 7 5 2 Mode The mode of operation is either governor control or frequency output The choice can be either GOVCTRL or FREQOUT WRITE SYS SPEEDCTRL MODE lt Choice gt 7 5 3 Output The output can be either the speed increase decrease relay contacts or analogue output 1 The choice can be set to SPEEDRELAY or ANAOUT WRITE SYS SPEEDCTRL OUT lt Choice gt 7 5 4 Minimum Pulse Duration The minimum pulse duration determines the duration of the shortest possible speed control pulse The pulse duration setting is only in use when speed control is done by relays Resolution is 1 ms WRITE SYS SPEEDCTRL MINPULSE lt Duration gt Setting the parameter too low will result in slow regulation while a high setting will result in overshoot on the speed regulation 7 5 5 Duty Cycle The duty cycle parameter is only used when the speed control is done by relays The duty cycle defines the minimum duration of the pulse and the rest time until the next pulse is issued Resolution is 0 1 s WRITE SYS SPEEDCTRL DUTYCYCLE lt Duration gt Setting the duty cycle too low might result in overshoot and instability with a slow reacting lagging governor A high setting might slow down the regulation 7 5 6 Analogue Signal The speed control by analogue output 1 can be configured to operate with either a DC voltage current or a PWM signal The type of output signal is set by the following command Cho
53. eration The VOLTAGE OK LED will be lit provided that all three phase phase voltage measurements are within the limits defined by the voltage window The voltage window is configured by the following command The resolution is 1 WRITE SYS VOLTOKWND lt Voltage Window gt 7 5 Speed Control Speed control can be done using either increase decrease relay signals or analogue output 1 The contact signals are well suited for control of either a conventional governor or a motorized electronic potentiometer Alternatively speed control can be done by analogue output 1 using a voltage current or PWM signal The analogue speed output is intended for direct control of an electronic speed governor The S6100 speed regulator can reconfigured to operate as a frequency control signal e g for remote control of other S6100 modules through the FREQ IN input A minimum pulse time defines the minimum closure time for the relay contacts likewise min max references define the operational range of analogue output The S6100 speed regulator is configured using the following commands Revision 15 08 200815 08 2008 13 09 00 Page 29 of 52 SELCO A S SIGMA S6100 S LS Module 7 5 1 Speed control enabled The speed control can be enabled or disabled by following command WRITE SYS SPEEDCTRL ENABLED lt Choice gt The choice can be YES or NO The speed control function is required for frequency control synchronizing and load sharing In case the sp
54. es in the grid frequency will not cause the unit to trip However a rapid change in the frequency will cause the frequency deviation function to trip Typical adjustment could be of 0 5 1 5 Hz sec 3 1 4 Start of standby generator in case of bus bar error PM Start This function can be used for reducing the black out time in case of protection trips due to voltage or frequency errors The function will use the frequency and voltage protection of the S6100 Module as pre alarm Thus the C B trip relay output of S6100 should not be connected to the trip coil of the circuit breaker if this function should be used Revision 15 08 2008 15 08 2008 13 09 00 Page 9 of 52 SELCO A S SIGMA S6100 S LS Module When the voltage or frequency protection function of the S6100 module trips the S6610 Power Manager Module will start up the next available stand by generator The standby generator will start and establish rated frequency and voltage However it will not synchronize to the bus bar as there is a voltage or frequency problem there After the voltage or frequency protection of the S6000 Module has tripped the breaker of the duty generator and caused black out on the bus bar the standby generator will connect to the dead bus bar For this function the voltage and frequency protection functions of S6100 modules must be adjusted to the same level as the voltage and frequency protection functions of S6000 modules however the delay must be
55. es the amount of load deviation required before the reactive load sharing kicks in The kVAr parallel lines can be adjusted to operate with any voltage in the range of 6 to 6 V DC The voltage range of the parallel lines is programmable in order to ensure compatibility with other types of SELCO load sharers The reactive load sharing function includes the feature of unloaded trip When activated through the unload input the reactive load sharer will decrease speed at a predefined rate 100 to 0 load The S6100 module will then trip the breaker automatically when the pre programmed trip level is reached provided that the active current load has also been unloaded The reactive load sharing function ramps up at with the same ramp time when the unload signal is removed The PID parameters only used with electronic voltage control works in conjunction with the stability parameter Stability will affect the magnitude of the control signal when the deviation in load is relatively large while the P parameter determines the magnitude of the control signal when the deviation is small Both stability and the P parameter operate as a function of the load deviation The I parameter can be used to slow down the regulation by increasing I The D parameter is seldom used and should be left at the default setting Please note that for reactive load sharing deadband is also active with electronic speed control The reactive load sharing function can be
56. frequency stabilization to regulate The system will not do any regulation as long as the frequency deviation is within the deadband A low deadband setting results in continues fine tuning of the frequency while a high deadband setting results in infrequent corrections at the expense of accuracy The deadband is expressed as a percentage of the rated frequency The PID parameters only used with electronic speed control works in conjunction with the stability parameter Stability will affect the magnitude of the control signal when the deviation in frequency is relatively large while the P parameter determines the magnitude of the control signal when the deviation is small Both stability and the P parameter operate as a function of the frequency deviation The I parameter can be used to slow down the regulation by increasing I The D parameter is seldom used and should be left at its default setting Frequency stabilization can be disabled together with voltage stabilization by connecting the F V CTRL DISABLE input to COM If disabled it is important to ensure that a defined signal is applied to the external frequency and voltage control input FREQ IN and VOLT IN 3 3 Voltage Stabilization The main purpose of the voltage stabilization function is to maintain the voltage at a fixed level despite fluctuations in reactive load The voltage stabilization must also be able to provide quick and instant compensation should the voltage deviate
57. function is the actual busbar voltage as opposed to the nominal voltage which is reference for voltage stabilization The configuration of the voltage matching function depends on the chosen mode of voltage control The relay based voltage control Increase decrease contact signals is configured with stability and deadband while the electronic control is set up with stability and PID parameters The stability parameter determines the magnitude of the control signal as a function of the actual deviation in voltage compared to busbar voltage A high stability setting provides fast regulation with the potential risk of over shoot and instability A low stability setting provides accurate but slow regulation The deadband parameter only used with relay based voltage control determines the level of deviation required for the voltage matching to regulate The system will not do any regulation as long as the voltage deviation is within the deadband A low deadband setting results in continues Revision 15 08 2008 15 08 2008 13 09 00 Page 12 of 52 SELCO A S SIGMA S6100 S LS Module fine tuning of the voltage while a high deadband setting results in infrequent corrections at the expense of accuracy The deadband is expressed as a percentage of the nominal voltage The PID parameters only used with electronic voltage control works in conjunction with the stability parameter Stability will affect the magnitude of the control signal when th
58. he delay is configured in seconds Trip will occur only if the low or the high critical level is exceeded continuously for the duration of the delay 3 1 2 Frequency Establishment The frequency establishment protection function can be enabled or disabled If enabled the frequency establishment protection will trip the breaker in case the busbar frequency becomes either too low or too high f The trip level is configured as a percentage according to the rated frequency specified within the system configuration of the related S6000 module Lower Level RATEFREO 100 f lt or Lower Level RATEFREQ f 100 The delay is configured in seconds Trip will occur only if the low or the high critical level is exceeded continuously for the duration of the delay 3 1 3 Frequency Deviation Protection Rate of Change of Frequency ROCOF df dt relay This function is only used for generators running in parallel with the grid When running in parallel with the grid it is very important to detect short time interruptions of the grid When the grid returns after a short interruption it can be expected to be out of synchronism Thus a reconnection of the generator to the grid must be avoided The FD function is doing that by measuring the change of frequency over time rate of change of frequency The module will measure the time between two zero crossings of the measurement voltage and calculate a frequency for each period Slow chang
59. ice can be VOLT CUR or PWM WRITE SYS SPEEDCTRL ANAOUT SIGNAL lt Choice gt The signal can be set to VOLT CUR or PWM The default setting is VOLT Revision 15 08 2008 15 08 2008 13 09 00 Page 30 of 52 SELCO A S SIGMA S6100 S LS Module 7 5 7 Voltage Range The voltage minimum and maximum references define the lower and upper limits of the voltage output signal These parameters are only used when speed control is done by analogue output and when the analogue signal has been set to voltage The resolution is 0 001 V DC WRITE SYS SPEEDCTRL ANAOUT VOLTMIN lt Voltage gt WRITE SYS SPEEDCTRL ANAOUT VOLTMAX lt Voltage gt 7 5 8 Current Range The current minimum and maximum references define the lower and upper limits of the current output signal These parameters are only used when speed control is done by analogue output and when the analogue signal has been set to current The resolution is 0 001 mA WRITE SYS SPEEDCTRL ANAOUT CURMIN lt Current gt WRITE SYS SPEEDCTRL ANAOUT CURMAX lt Current gt 7 5 9 PWM Settings The PWM settings describe the properties of the pulse width modulated PWM output signal These settings are only used when speed control is done by analogue output and when the analogue signal has been set to PWM The resolution of the PWM base frequency is Hz WRITE SYS SPEEDCTRL PWMOUT FREQ lt Frequency gt The PWM maximum reference defines the amplitude of the PWM signal 0 VDC being the minimum
60. ions is on the C B plug in connector The built in C B close relay has two contact sets and is normally de energized by default The C B trip relay has two contact sets and is also normally de energized by default Note that the C B trip relay can be reconfigured to be normally energized operation Terminal Description Signal Connection 1 C B CLOSE 1 Relay de energized position Breaker remote close 2 C B CLOSE 2 Relay contact Signal source 3 C B CLOSE 3 Relay energized position Breaker remote close 4 C B TRIP 4 Relay de energized position Breaker remote trip Revision 15 08 200815 08 2008 13 09 00 Page 22 of 52 SELCO A S SIGMA S6100 S LS Module 5 C B TRIP 5 Relay contact Signal source 6 C B TRIP 6 Relay energized position Breaker remote trip The C B close relay connects to the remote close control input of the generator circuit breaker Terminal 1 and 3 is typically not connected at the same time Only one of this signals are taken to the breaker depending on whether the C B close relay is configured for normally de energized or energized operation The C B trip relay connects to the remote trip control input of the generator circuit breaker Terminal 4 and 6 is typically not connected at the same time Only one of this signals are taken to the breaker depending on whether the C B trip relay is configured for normally de energized or energized operation 6 6 Rela
61. ith one decimal The parameter is set by the following command Resolution is 0 1 Hz WRITE AUTOSYNC FREQDEV lt Frequency gt 7 9 6 Phase Deviation The phase deviation is only used when the speed adjustment is configured to use analogue output 1 This parameter describes the tolerated phase deviation for closing the circuit breaker The phase deviation is expressed in degrees without decimals The parameter is set by the following command Resolution is 1 deg WRITE AUTOS YNC PHASEDEV lt Degrees gt 7 9 7 Circuit Breaker Close Time The circuit breaker closure time is only used when the speed control is configured to the speed relay This parameter determines when the actual closure signal is issued to the circuit breaker through the C B close relay Auto synchronization by relay control requires the existence of a small positive frequency deviation thus in order to compensate for the breaker closure time it is necessary to issue the closure signal just before phase accordance is expected to occur The circuit breaker closure time is expressed in milliseconds without decimals The parameter is set by the following command Resolution is 1 ms WRITE AUTOS YNC CBCLOSETIME lt Duration gt 7 9 8 PID The PID parameters are only used when the speed adjustment is configured to operate with an analogue output signal The P proportional parameter is expressed as a gain factor and is set by the following command Resolution is 1 0 WRITE
62. l by voltage current or PWM signal There is one PID controller for each of the following functions e Frequency Stabilization e Voltage Stabilization e Auto Synchronization e Voltage Matching e Active Load Sharing e Reactive Load Sharing 7 1 1 Proportional control parameter P The proportional control parameter P determines the strength of the control signal as a function of the deviation the difference between the actual value and the target value Too much P will make the control unstable hunting and too little P will disable the control all together The correct P setting will make the control responsive with no instability I should be noted that Stability parameter works in a similar way Stability operates as P when the deviation is large while P is used at smaller deviations 7 1 2 Integrator control parameter I The integrator control parameter I works as a delay It provides the patience of the system as it allows the system to wait for a response change in the actual value before it proceeds to step up the control signal A large I will slow down the response of the system but it may be necessary if the response of the speed control or voltage regulator is slow 7 1 3 Differentiator control parameter D This parameter is not used and should be left at its default setting 7 2 Console Password By default the RS232 console will operate in read only mode The console can be switched to read write mode by
63. ls Ramp stability is set by the following command Resolution is 1 WRITE ACTLS RAMPSTABILITY lt Value gt 7 10 7 CB Trip Level CB trip level defines the level of active load where following an unload the circuit breaker should be automatically tripped The CB Trip level works in AND relation to the reactive CB Trip level The CB trip level is expressed in percent without decimals The trip level is set according to full load nominal load Resolution is 1 WRITE ACTLS CBTRIPLEVEL lt Percentage gt 7 10 8 PID The PID parameters are only used when the speed adjustment is configured to operate with an analogue output signal The P proportional parameter is expressed as a gain factor and is set by the following command Resolution is 0 1 WRITE ACTLS PID P lt Factor gt The I integral parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE ACTLS PID I lt Duration gt The D differential parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE ACTLS PID D lt Duration gt Revision 15 08 2008 15 08 2008 13 09 00 Page 39 of 52 SELCO A S SIGMA S6100 S LS Module 7 11 Voltage Stabilization The voltage control feature ensures that the generator voltage is kept at a fixed level The voltage control facility uses the nominal phase phase voltage as reference The voltage stabilization feature will compensate for voltage devi
64. nina 36 179 5 A A 37 PJO A cone a e aa oes erecta a estes eae eee eam ea 37 1397 Circuit Breaker Close TIE Ai 37 BOB S I D E E E oe 37 TTO SAGES Load AA O AEE ee 38 FIOI Load Deyiation snee at ane BARA E ARs 38 WZ CAD MIS tects ae Pacts sec E ETE E A E E A A E eaaa 38 T103 Deadband A a a a a a O a a 38 LADA Parallel si 38 A A avon tacataspdedeaundensaasoneaiarwatebnazaeris 39 710 6 A walpslocs Susie longs Spe EE EE E ee alta oe e Sucle dbo 39 TIOE EB Trip Levele e e teta sa chsts a E acca S E e E ee deep ia 39 A O 39 Dahl e A O 40 ALL SAIs aims 40 LAR DE aia 40 O A O N TA A Capa othcedde cate tabas E deacon anata 40 TZ Voltage Nat rias 40 TA OA A O RT 41 TI2 2 A eee denezeannstinenancans spugs NENE EANES eaS 41 A A idos 41 E A LE E aea o5 5 Aenea eta pieces a uede a a aa aa E aT 41 213 1 Load Deviation iii rd ii dci cdi 42 TA SCAB ee ee e o o 42 E A anaes away E aad gts alata stad bead E ttle hate state Coates 42 1134 Parallel En atte 42 AS A Ramp Hime siea a a a a sheave dna sia dond eau uaed yamatpadualeciasaes 42 13165 RAM Stability sg ices ke eects A ts Aelia a 43 Td mam sd ap Ws h rene erro Re oN er Sree RecN cen PT ace Ne Ore re eAn ery Waren Met R 43 A O coe tots uaretedea aa Nesas 43 TIA MOR ai 43 114 1 Alarm Relay F n tion is ii A O RAE 43 IAZ C B Trip Relayer a n Er E A E R E ORE S a 44 A E Pe A O AA ATA 44 2144 Start Pulse T E A 44 Revision 15 08 200815 08 2008 13 09 00 Page 4 of 52 SEL
65. o oasis 30 Tas Minimum Pulse Duration A an 30 LR D ty Cl 30 1200 malos Simi pri 30 To o A A en lc ld tis Oe aa 31 AA Ai A A A oder as 31 KEI BIN AN 31 Tor Voltage Contoh sene a a a e a a araa a a ns 31 LOLE Voltase control enabled tua eii aa 31 AD MO A A A is 32 POD A r nt acmes Mel a a e coadcams a a aea coeghsatauaaante qaahh ce dace cam 32 2 64 Minimum Pulse D ratons r oea ii 32 LO S DU io 32 706 A O A O ese AROS 32 T6 Voltas Ran sd Sate cstv ea EE A edie A E E E E R 33 TES C rrent RAS A A TA EREE 33 TOD PWM Setting Sen ia toes Saas a E Cenaiaeay einer nia E eed S 33 Tels A a E aha ss cua eg E sens etna See 33 7 71 1 Voltage Establishment Protection sink aces coxcesssnsesats paca orensgeuagabenesereuassennsanngrenetaas 33 17 1 2 Frequency Establishment Protec OM in 34 7 1 3 Frequency Deviation Protec Mi ida 34 Revision 15 08 200815 08 2008 13 09 00 Page 3 of 52 SELCO A S SIGMA S6100 S LS Module 7 7 4 PM Start pre start of generator in case of bus bar fault oonoonnncnnnoninnnnocanocnnnnncnnnoss 35 2 8 Brequency Stabilization siesena e a ernie N eae 35 Tegl ASta bility issa ai a err e le e AO ee 35 PBL ICAA DA A eect eee needs 35 TSS A PID ecstatic E A ate einai pasa ote aa aos aaa ate E E E 35 T9 Ri do eed iy et os acreage ae moa tec ese E E EEE Balas 36 7 9 1 Check Synchonizer function ni at dic 36 79 2 Dead US LOS UEC O 36 ESS Stability A e erae eE EEE kts ai eas ieee 36 TIA A a a aA a R e a ae a
66. ow but accurate correction while a high setting provide fast correction with a potential risk of overshoot and instability Stability is expressed as a number without decimals Stability is set by the following command Resolution is 1 WRITE VOLTMATCH STABILITY lt Value gt 7 12 2 Deadband The deadband parameter is only used when the voltage adjustment is configured to operate with relays The deadband parameter controls the accuracy of the voltage matching function The voltage matching function will only attempt to correct the voltage if the is outside the voltage OK window plus minus the deadband A deadband which is too narrow will cause constant fine tuning of the AVR while an overly wide deadband will cause an inaccurate setting The deadband is expressed in percent with one decimal and is set by the following command Resolution is 0 1 WRITE VOLTMATCH DEADBAND lt Percentage gt 7 12 3 PID The PID parameters are only used when the voltage adjustment is configured to operate with an analogue output signal The P proportional parameter is expressed as a gain factor and is set by the following command Resolution is 0 1 WRITE VOLTMATCH PID P lt Factor gt The I integral parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE VOLTMATCH PID I lt Duration gt The D differential parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms
67. power supply system is typically used as the source of the primary supply The front folio Primary Supply LED illuminates with a steady green light to indicate that the supply voltage is OK and within the limits of safe operation A failure of the primary supply will cause the Primary Supply LED to turn off after a brief delay Revision 15 08 2008 15 08 2008 13 09 00 Page 19 of 52 SELCO A S SIGMA S6100 S LS Module 6 1 2 Backup Supply The engine starter battery or the switch board 24 V DC backup power supply system is typically used as the source of the backup supply The front folio Backup Supply LED illuminates with a steady green light to indicate that the supply voltage is OK and within the limits of safe operation A failure of the backup supply will cause the backup Supply LED to turn off after a brief delay and the ALARM relay to de energize 6 2 Voltage Inputs The AC voltages connect to the VOLTAGE INPUTS plug in terminal The S6100 module supports both 3 wire and 4 wire power sources As an example busbars supplied by land based generators are typically 4 wired while marine based generators typically use 3 wired The voltage inputs can operate with high voltage up to 690 VAC nominal so precaution must be taken to avoid electrical shock and personal injury Do not touch the VOLTAGE INPUTS plug in terminal unless you are absolutely sure that power source is off e g all the generator are stopped and blocked against
68. ppened after synchronization or after the unload signal has been released The load is ramped down when the unload signal is enabled The parameters defines the time to go from zero to full load nominal load or opposite The ramp time parameter is expressed in seconds without decimals Duration is 1 s WRITE REACTLS RAMPTIME lt Duration gt Revision 15 08 2008 15 08 2008 13 09 00 Page 42 of 52 SELCO A S SIGMA S6100 S LS Module 7 13 6 Ramp Stability Ramp stability defines the response of the reactive load sharer during ramp up and ramp down The reactive load sharer will alter the reactive load by altering the voltage in order to obtain the required ramp ratio The reactive load sharer changes the reactive load level by increasing or decreasing voltage through the AVR The magnitude of the AVR control signals compared to the actual deviation in reactive load is determined by the ramp stability parameter Too mush stability provides accurate but slow correction of the ramp ratio while too little stability introduces risk of overshoot and instability Ramp stability is expressed as a number without decimals Ramp stability is set by the following command Resolution is 1 WRITE REACTLS RAMPSTABILITY lt Value gt 7 13 7 CB Trip Level CB trip level defines the level of reactive load where following an unload the circuit breaker should be automatically tripped The CB Trip level works in AND relation to the active CB Trip level
69. r specification breaker make time The auto synchronization function is a bit more advanced when speed control is done by electronic output The speed feed back feature of an electronic governor makes it possible for the auto synchronization function to keep the generator in phase with the bus bar without closing the breaker In this case the synchronization will alter the frequency only to obtain close to zero phase deviation where after the auto synchronization function can close the breaker at will When configured for governor control by electronic output the condition for closing the breaker is defined by tolerated phase deviation A narrow phase deviation windows will provide accurate but slow synchronization while a wider window provides speed at the cost of wear and tear on the breaker contacts The PID parameters only used with electronic voltage control works in conjunction with the stability parameter Stability will affect the magnitude of the control signal when the phase deviation is outside a 45 deg window while the P parameter determines the magnitude of the control signal when the phase deviation is small Both stability and the P parameter operate as a function of the frequency and phase deviation The I parameter can be used to slow down the regulation by increasing I The D parameter is seldom used and should be left at the default setting The auto synchronization function can be configured to close on dead bus The
70. rcuit breaker will trip Otherwise the LED will go off and the delay will reset Unlike the generator protection functions provided in the S6000 module no dedicated front folio LED s and digital outputs open collector outputs are provided Reset can be issued by and external input C B RESET at the related S6000 module or from the keyboard of the optional S6500 S6600 or S6610 module The S6100 module protects the external equipment by tripping the related breaker The breaker is tripped through the built in C B trip relay The C B trip relay can be configured for normally de energized or normally energized operation 3 1 1 Voltage Establishment The voltage establishment protection function can be enabled or disabled If enabled the voltage establishment protection will trip the breaker in case the phase phase voltages between any of the three phases becomes either too low or too high The voltage establishment protection will act on the lowest or the highest of the three phase phase voltage measurements depending on whether the low or the high level is exceeded Ur Uz U3 The trip level is configured as a percentage according to the nominal phase phase voltage specified within the system configuration of the related S6000 module Lower Level NOMVOLT U or U orU 12 23 AK 100 Or Upper Level NOMVOLT U orU 0rU 0 Revision 15 08 200815 08 2008 13 09 00 Page 8 of 52 SELCO A S SIGMA S6100 S LS Module T
71. reference The resolution is 0 001 V DC WRITE SYS SPEEDCTRL PWMOUT VOLTMAX lt Voltage gt 7 6 Voltage Control Voltage control can be done using either increase decrease relay signals or analogue output 2 The contact signals are well suited for control of either a conventional governor or a motorized electronic potentiometer Alternatively speed control can be done by analogue output 2 using a voltage current or PWM signal The analogue voltage output is intended for direct control of an electronic AVR The S6100 voltage regulator can reconfigured to operate as a voltage control signal e g for remote control of other S6100 modules through the VOLT IN input A minimum pulse time defines the minimum closure time for the relay contacts likewise min max references define the operational range of analogue output The S6100 voltage regulator is configured using the following commands 7 6 1 Voltage control enabled The voltage control can be enabled or disabled by following command Revision 15 08 200815 08 2008 13 09 00 Page 31 of 52 SELCO A S SIGMA S6100 S LS Module WRITE SYS VOLTCTRL ENABLED lt Choice gt The choice can be YES or NO The voltage control function is required for voltage regulation voltage matching and reactive load sharing In case the voltage control is not used it should be disabled 7 6 2 Mode The mode of operation is either AVR control or voltage output The choice can be either AVRCTRL or VOLTO
72. ring the bus bar 7 7 1 Voltage Establishment Protection The voltage establishment protection can be enabled or disabled This is done by the following command The choice can be set to either YES or NO WRITE PROTECT VE ENABLED lt Choice gt The lower trip level is expressed in percent without decimals The trip level refers to the nominal phase phase voltage The lower trip level is set by the following command Resolution is 1 WRITE PROTECT VE LOWLEVEL lt Level gt The upper trip level is expressed in percent without decimals The trip level refers to the nominal voltage The upper trip level is set by the following command Resolution is 1 Revision 15 08 2008 15 08 2008 13 09 00 Page 33 of 52 SELCO A S SIGMA S6100 S LS Module WRITE PROTECT VE UPLEVEL lt Level gt The lower delay is expressed in seconds with one decimal The delay is set by the following command Resolution is 0 1 s WRITE PROTECT VE LOWDELAY lt Duration gt The upper delay is expressed in seconds with one decimal The delay is set by the following command Resolution is 0 1 s WRITE PROTECT VE UPDELAY lt Duration gt 7 7 2 Frequency Establishment Protection The frequency establishment protection can be enabled or disabled This is done by the following command The choice can be set to either YES or NO WRITE PROTECT FE ENABLED lt Choice gt The lower trip level is expressed in percent without decimals The trip level refers to th
73. shorter on the S6100 modules for allowing the generators to power up before black out Otherwise the black out time would be increased The Bead bus closure DB CLOSE function must be enabled for this function 3 2 Frequency Stabilization The main purpose of the frequency stabilization function is to maintain the frequency at a fixed level despite fluctuations in active load The frequency stabilization is also able to provide quick and instant compensation should the frequency deviate from the preset level Engines controlled by conventional governors operate with speed droop The speed droop causes engine revolutions and generator frequency to decrease slightly when active load is applied to the generator The frequency will typically only drop few percent between zero to full load Engines controlled by electronic governors can be configured to operate in isynchronous mode Isynchronous mode utilizes a speed feedback signal e g from a flywheel pick up to compensate for the droop effect Thus isynchronous mode provides zero droop stable frequency with increase in active load Electronic governors can also be configured to operate in droop mode with a certain percentage of droop The frequency stabilization function of the S6100 module will do much the same as the isynchronous feature of the electronic governor However there are some advantages to the S6100 frequency stabilization First of all it works with both conventional and ele
74. signal is used by the S6100 module to determine the zero crossing of the alternator voltage AC curves This time critical information is required by the S6100 module in order to do automatic synchronization The synchronization signal is based on dedicated non isolated RS485 interface Thus wiring must be done according to standard RS485 requirements Terminal Description Signal Connection 1 SYNC A RS485 A Terminal 1 of the partner S6000 SYNC 2 SYNC B RS485 B Terminal 2 of the partner S6000 SYNC 3 COM COM Terminal 3 of the partner S6000 SYNC The wires from terminal 1 and 2 should be twisted A 150 ohm termination resistor must be placed between terminal 1 and 2 directly at the plug in terminal to prevent signal reflections Terminal 1 must be connected to terminal 1 of the SYNC terminal on the partner S6000 module Likewise terminal 2 must be connected to terminal 2 of the SYNC terminal on the partner S6000 module Lastly terminal 3 must be connected between the SYNC terminals of both modules Terminal 3 will also serve as the common COM connection between the S6100 and the S6000 module 6 4 T O The V O plug in connector houses a number of digital and analogue inputs The digital inputs works with negative reference meaning the inputs are considered active when at COM level and inactive when left open disconnected The analogue signals use negative reference as well which means that the analogue voltages
75. ss is unique on the bus and that the remaining parameters are set according to specifications The MODBUS slave address is set by the following command WRITE RS485 ADDRESS lt Addr gt The data transmission rate is defined by the baud rate which is set as follows WRITE RS485 BAUDRATE lt Baudrate gt The parity can be set by the following command WRITE RS485 PARITY lt Parity gt The number of data bits is set as follows WRITE RS485 DATABITS lt Databits gt The number of stop bits is set as follows WRITE RS485 STOPBITS lt Stopbits gt In case the data from the MODBUS master is send irregular compared to MODBUS specification it is possible to adjust a delay for detection of the end of the MODBUS frame send by the master Following command is used for that WRITE RS485 TXDELAY 0 2552 0 The range is between 0 and 2552ms Default is Oms In case the frames send by the MODBUS master comply with the MODBUS specifications it is not necessary to change this parameter it can remain in default setting 7 21 Restoring to factory default configuration The factory default configuration can be restored at any time by issuing the command WRITE SYS SETUPDEFAULT YES The default configuration is then restored after the power to the module has been turned off and on Revision 15 08 2008 15 08 2008 13 09 00 Page 48 of 52 SELCO A S SIGMA S6100 S LS Module 8 Specifications Primary Supply Backup Supply Busbar phase phase
76. t with one decimal and is set by the following command Resolution is 0 1 WRITE FREQSTAB DEADBAND lt Percentage gt 7 8 3 PID The PID parameters are only used when the speed adjustment is configured to operate with the analogue output signal The P proportional parameter is expressed as a gain factor and is set by the following command Resolution is 0 1 WRITE FREQSTAB PID P lt Factor gt The I integral parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE FREQSTAB PID I lt Duration gt The D differential parameter is expressed in milliseconds and is set by the following command Resolution is 1 ms WRITE FREQSTAB PID D lt Duration gt Revision 15 08 2008 15 08 2008 13 09 00 Page 35 of 52 SELCO A S SIGMA S6100 S LS Module 7 9 Auto Synchronizing The configuration of the auto synchronizing function depends on whether the speed control is done by the speed relay increase decrease contacts or by analogue output 1 The difference exists due to the fact that synchronization by conventional and electronic speed governor works according to different principles A generator controlled by an electronic governor can be locked in phase while this is not possible with conventional speed control The main difference in the configuration is that the relay driven operation is configured with frequency difference and circuit breaker close time while the analogue control is
77. the neutral terminal terminal N is optional The neutral terminal terminal N is isolated from the remaining electronics of the module This means that the neutral terminal have no connection to the modules COM terminals The VOLTAGE OK LED shows whether or not the voltage levels measured between each of the three phases are within limits The reference is the nominal phase phase voltage NOMVOLT The voltage levels are compared to the limits defined by the voltage OK window VOLTOKWND of Revision 15 08 2008 15 08 2008 13 09 00 Page 20 of 52 SELCO A S SIGMA S6100 S LS Module the configuration The VOLTAGE OK LED will flash if generator is not on voltage and the busbar is live The PHASE OK LED will ignite steady green light to indicate that the phase sequence is correct However the S6100 module is not able to verify that the each phase is connected to the correct terminal The S6100 module cannot detect the difference between L1 L2 L3 L3 L1 L2 and L2 L3 L1 The S6100 module can only verify that 120 degrees displacement exist between the three phases The PHASE OK LED requires a reasonable level of voltage to become operational The best way to ensure correct connection is to follow the wire all the way from the phase copper rail to the specific terminal within the VOLTAGE INPUTS plug in connector 6 3 Sync The SYNC plug in terminal provides a synchronization signal from the partner S6000 module The synchronization
78. tions broadcasted by its partner SELCO SIGMA S6000 IO P module The S6000 provides integrated protection basic I O and data acquisition Finally the S6100 module will operate as an interface between the optional SELCO SIGMA S6600 S6610 Power Manager and the engine related signals e g start stop engine fail etc Revision 15 08 2008 15 08 2008 13 09 00 Page 6 of 52 SELCO A S SIGMA S6100 S LS Module 2 Isolation and Grounding In marine installations ground and common reference COM should not be connected together In a ship installation the hull is the ground Connecting any of the COM connections on any of the modules within a SIGMA system to ground hull or switchboard chassis may cause instability within the system One and only one COM connection should to be made between SIGMA modules This is preferably the COM connection of the CAN bus The Primary and Backup 24 VDC supplies are isolated from the remaining electronics of the module and therefore also from the common reference COM The negative poles of the 24 VDC supplies can be connected to the common reference COM provided that the either one or both supplies serves as references for auxiliary relays driven by SIGMA open collector outputs In this case the supplies negative poles should not be connected to ground hull or switchboard chassis As a general rule 1 COM terminals should not be connected to ground hull or switchboard chassis 2 Negative
79. uces risk of overshoot and instability Stability is expressed as a number without decimals Stability is set by the following command Resolution is 1 WRITE REACTLS STABILITY lt Value gt 7 13 3 Deadband The deadband parameter determines the responsive range of the reactive load sharer The reactive load sharer will only attempt to outbalance the deviation in reactive load when deviation falls outside the deadband compared to the pre configured load deviation A deadband which is too narrow will cause constant fine tuning of the reactive load balance while an overly wide deadband will cause deviation according to the reference The deadband is expressed in percent with one decimal and is set by the following command Resolution is 0 1 WRITE REACTLS DEADBAND lt Percentage gt 7 13 4 Parallel Lines The parallel settings of the lines minimum and maximum DC voltage determines the voltage level used to communicate balance in active load between multiple S LS modules The voltage range can be changed to obtain compability with e g SELCO T4900 VAr load sharer However the default range should be maintained to provide the best possible dynamics Resolution is 0 1 V DC WRITE REACTLS PARLINES VOLTMIN lt Voltage gt WRITE REACTLS PARLINES VOLTMAX lt Voltage gt 7 13 5 Ramp Time Ramp time defines how quickly the load sharer takes or releases reactive load The reactive load is ramped up when the reactive load sharing is enabled This ha
80. uency of the busbar voltage The third and last condition is that the phase deviation between the generator and busbar voltages must within a few degrees at the time of connection breaker closure The matching of the generator voltage is done by the voltage matching function described elsewhere in this document Voltage matching is optional The S6100 auto synchronization function will alter the speed of the generator by control of the speed governor to obtain the required deviation in frequency and phase Once all three conditions are true the S6100 module will issue the signal to close the circuit breaker The auto synchronization function works differently depending on whether the S6100 module is configured for speed control by relays increase decrease contact signals or by electronic output Governor control by the speed relay does not provide the facility to command and maintain exact frequency match and near zero phase deviation between the generator and busbar voltage Synchronizing by speed relay is done by aiming for a small positive frequency deviation between the generator and busbar voltage where after the closure signal is issued shortly before the generator voltage is expected to be in phase with the busbar voltage to compensate for the circuit breaker make time Auto synchronization by electronic speed control provides the possibility of bringing the generator voltage in phase with the busbar voltage and thereafter closing the
81. used to slow down the regulation by increasing I The D parameter is seldom used and should be left at the default setting Please note that for active load sharing deadband is also active with electronic speed control The active load sharing function can be disabled 3 8 Reactive Load Sharing Reactive load sharing is initiated the moment that the circuit breaker is closed The reactive load sharer will increase generator voltage to make the generator take reactive current load and decrease generator voltage to release reactive current load The S6100 module will balance the reactive current load based on a DC voltage communicated through the kVAr parallel lines This DC voltage can be adapted to suit other types of reactive load sharers e g SELCO T4900 The reactive load sharer is configured with load deviation stability and deadband The load deviation parameter is used to balance out small load deviations which might be caused by inaccuracy within the external current transformers Stability determines the magnitude of the voltage control signal as a function of deviation in the reactive current load balance A low stability setting will provide minimal overshoot and relatively slow balancing of the reactive current load while a high stability setting gives fast regulation with risk of overshoot and instability The Revision 15 08 2008 15 08 2008 13 09 00 Page 15 of 52 SELCO A S SIGMA S6100 S LS Module deadband simply defin
82. voltage KW BALANCE of other 6100 modules 2 COM Common reference COM of the other S6100 modules 3 KVAR BALANCE DC voltage KVAR BALANCE of other S6100 modules 6 10 RS485 The S6100 module includes an isolated RS485 interface Terminal Description Signal Connection 1 REF Reference isolated Reference of the RS485 bus 2 A RS485 A A signal of the RS485 bus 3 B RS485 B B signal of the RS485 bus It is important to note that the RS485 reference is isolated from the common COM of the module The 3 wires RS485 bus is connected from module to module A termination resistor of 150 ohm must be connected between terminal 2 and 3 at each end of the RS485 bus preferably directly on the RS485 bus plug in connector of the first RS485 slave and on the master The maximum cable length is 1000 meters The cable type should be 0 25 0 34 mm AWG23 AWG22 Wires for A and B must be twisted twisted pair 6 11 CAN Bus The CAN bus is the backbone of the SIGMA system The CAN bus carries all the measured and calculated parameters between the modules Terminal Description Signal Connection 1 COM Common reference Reference of the CAN bus 2 CANL CAN Lo data CAN Lo signal of the CAN bus 3 E y a 4 CANH CAN Hi data CAN Hi signal of the CAN bus 5 a E Terminals 3 and 5 are not used Revision 15 08 200815 08 2008 13 09 00 Page 25 of 52 SELCO A S SIGMA S6100 S LS Module The CA
83. y Contacts The RELAY CONTACTS plug in connector includes the terminals of the two built in toggling relays necessary to control relay operated speed governors and or AVRs or motor electronic potentiometers The toggling relays can also be reconfigured for external frequency and or voltage control The last relay is the general alarm relay that will de energize on system faults Terminal Description Signal Connection 1 SPEED Relay position 1 Governor speed increase 2 SPEED REF Relay contact toggle Governor ref 3 SPEED Relay position 2 Governor speed decrease 4 VOLT Relay position 1 AVR voltage increase 5 VOLT REF Relay contact toggle AVR ref 6 VOLT Relay position 2 AVR voltage decrease 7 ALARM 1 Relay de energized position ALARM signal 8 ALARM 2 Relay contact Signal source 9 ALARM 3 Relay energized position All OK signal 6 6 1 Speed The speed relay is a toggling relay which means that the relay contact is disconnected from both positions 1 and 2 when the speed frequency regulation rests When in operation the S6100 module will toggle the relay between position 1 and 2 The duration of the relay pulses and the rest time between pulses will depend on the speed frequency deviation as well as the configuration of the controlling function 6 6 2 Volt The volt relay is a toggling relay which means that the relay contact is disconnected from both positions
Download Pdf Manuals
Related Search
Related Contents
Humidity Calculation Module 3M Mobile Projector Comment charger la batterie EFI Production Textile-Banner 1180 Valueline VLAP24000B20 User Manual - GS Global Resources Copyright © All rights reserved.
Failed to retrieve file