Home

Panel-Check - User Manual

image

Contents

1. end condition may be 1 this end simply supported other end encastre 0 simply supported at both ends 1 this end encastre other end simply supported or 2 encastre at both ends The end conditions affect the calculated buckling load and non linear behaviour In the present version of the PANEL program end condition 2 is always assumed in the calculation of moments caused by local water pressure torln1 is used to specify the torsional buckling length for the top stiffener torln2 is used to specify the torsional buckling length for the bottom stiffener The maximum effective length between points of restraint against torsional buckling can be input by specifying values torln1 and torln2 When the STIFFENER END CONDITION is used as in the first example above without specifying values for torln1 and torln2 the program then causes torln1 and torln2 to default to the overall span of the respective stiffener Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 76 Panel Check User Manual Command Formats Command STIFFENER IMPERFECTIONS Syntax STIFFENER IMPERFECTIONS es ls esmin esmax er bs ermin ermax Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example STIFFENER IMPERFECTIONS 0 002 0 0 20 0 0 005 4 0 40 0 Description The STIFFENER IMPERFECTIONS instruction is used to specify the parameters of stiffener im
2. The SERVICE CHECK instruction is used to specify that serviceability checks are to be performed at subsequent DO CHECKS instructions until overridden by a SERVICE CHECK OFF instruction Optionally an extreme wave number may be specified to select the wave number to use SERVICE CHECK with no following data is equivalent to SERVICE CHECK ON Until a SERVICE CHECK instruction has been issued no serviceability checks will be performed Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 68 Panel Check User Manual Command Formats Command SET Syntax SET set Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example SET 23 Description The SET instruction or its synonym the GROUP instruction specifies the set group number in the stress analysis of the area being analysed This directs the program to locate the correct stresses when post processing results from a stress analysis system Otherwise the set number is required for identification purposes only Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 69 Panel Check User Manual Command Formats Command SET ENVELOPE Syntax SET ENVELOPE OFF ON class Applicable to Ultimate strength checks Serviceability checks Examples SET ENVELOPE OFF SET ENVELOPE ON 3 Description The SET ENVELOPE instruction is used to se
3. Defaults to 0 1 times the yield stress The default values are used if no IMPERFECTIONS instruction is included Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 38 Panel Check User Manual Command Formats Command KEY FIELDS Syntax KEY FIELDS field field2 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples KEY FIELDS COMBIN NODE KEY FIELDS GROUP NODE POSITION Description The KEY FIELDS instruction is used to specify the names of fields used to create an index allowing results to be stored and retrieved Separate keying structures may be used for storing combinations for fatigue checks envelopes for ultimate strength and serviceability checks and fatigue damage for fatigue checks Each key consists of a number of integer fields up to a maximum of ten These are referred to by symbols which must have been created with a NEW SYMBOL instruction or be one of the following pre defined symbols ENVELOPE envelope number NODE node number zero for a set or global envelope GROUP and SET group set number zero for a global envelope CLASS class number The values of the pre defined symbols are adjusted automatically as appropriate The values of other symbols must be set with the SYMBOL VALUE instruction The range of each key field must be indicated to the program with a KEY RANGES instruction It is recommende
4. Shell Elements GCS6 GCS8 TCS6 TCS8 1BC3 QUS4 QUM8 QUM4 TRM6 TRM3 SND6 SND8 Although the SLB8 and IRB3 elements are theoretically available PANEL ENVELOPE processes only the mid plane stresses from shell elements and will therefore return zero stress for these elements PANEL CHECK can also handle a full range of ASAS beam elements The following can be handled Beam Elements FLA2 FLA3 GRIL BM2D BM3D BEAM CURB GCB3 BMGN TCBM TUBE Some of the above elements do not produce all of the stress force components required by PANEL ENVELOPE For example the FLA elements do not produce bending or shear and the GRIL and BM2D elements produce bending results in one plane only Where forces are not available they are set to zero The only exception to this is that the shear forces on GCB3 elements which are not directly available are derived by finding the slope of the bending moment diagram at the Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates B 1 Panel Check User Manual ASAS FE Interface B 3 B 4 required node The orientation of shell stresses and beam axes are described in Section F 4 STRESS SIGN CONVENTION The sign convention for stress in ASAS is tensile positive compression negative The sign convention for shear and bending depends largely on the element type as defined in Appendix A of the ASAS User Manual PANEL ENVELOPE will maintain
5. Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 52 Panel Check User Manual Command Formats Command NUMBER OF SPECTRA Syntax NUMBER OF SPECTRA nspecl nspec2 Applicable to Fatigue checks Example NUMBER OF SPECTRA 8 8 Description The NUMBER OF SPECTRA instruction is used to specify the number of spectra associated with each transfer function one transfer function being associated with each fatigue wave direction There is a maximum of four hundred spectral points per transfer function There is a maximum of four wave directions and hence four transfer functions Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 53 Panel Check User Manual Command Formats Command OCCURRENCE Syntax OCCURRENCE nwavel nwave2 Applicable to Fatigue checks Example OCCURRENCE 134161 4 123412 7 1235418 0 762480 3 1857635 5 341566 7 1345791 3 14517 1 Description The OCCURRENCE instruction is used to specify the number of fatigue waves expected each year The wave occurrence data starts on the line following the instruction Each line contains the number of waves associated with each wave height period for a single wave direction It is recommended that the table be aligned neatly for ease of checking Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliat
6. FORMAT OPAINS T RUC TIONS eie iii eE E G EE E C E E 4 2 4 5 ABBREVIATION OF INSTRUCTIONS eeeeesesessesessresesesteresrsreseserrerentsrsesesrereeretse 4 2 AG e COMMENT LI ES pecena a ea E EE una aia 4 3 Ay CONTINUATION LINES oirra a T N S 4 3 48 SUMMARY FILE COMMENTS aa ea a A E R N A 4 3 49 RECOVERY OP ENVELOPES oe E NE E ETR grees 4 4 5 COMMAND FORMATS sie scicsesccssosecatessincaud casuanciaassetsseseasbansvdcauy cbecanncsboesadoseauaetauidsaersactens 5 1 Appendix A SUMMARY OF INSTRUCTIONS 0 cece ccc ceeeescseeeeceeeeeeaeeeseaecaeeeeeneees A 1 AT SINPUT OUTPUT CON TROD iii casted ste pursues spins a T A A E A 1 A2 NODESELECTION a e R sees E A RN a A 1 A3 FILE HANDEING an hesassa aia ease r agiies arsti A 1 PRA e BASIC DATA oeer onei aea a a e les e a a e a Gee a A 1 A 5 STRENGTH SERVICEABILITY CHECKS s s sccosiis ss ccsssgsnesded ssedacajinqatdusrecseaenedantss A 2 A6 FATIGUE CHECKS Tonn ARAO A R T E R A A A 2 A 7 WATER PRESSURE EVALUATION ccccsccsccssscnsssscssessceseseestetsssesensnsesssessoesees A 3 Appendix B ASAS FE INTERFACE tovssceics bia quel stussseadedabas saved gs duvtatestdvlauwadysghesbuecd gee avestey ss B 1 B1 INTRODUCTION marrone chance Sides Bindu a a ssa isaac aah eden ebions B 1 B2 AVAILABLE BLEMENT PY PES j 0 ccSsivseiets aaia oedema B 1 Bo STRESS SIGN CONVENTION cessitats iois isoa eisiaa B 2 B 4 SYSTEM DEPENDANT COMMAND icici cccscsseecrseeeceeeeeeeseeseeaecsseaeenenseeneens B 2 B
7. PLATE DIMENSIONS PLATE DIMENSIONS 1 s t wps r fcb fep Ultimate strength checks Serviceability checks Fatigue checks PLATE DIMENSIONS 1400 0 250 0 25 0 1 2000 0 1 3 1 2 The PLATE DIMENSIONS instruction is used to specify the basic configuration of the panel This is defined by seven values fcb fep stiffener length millimetres stiffener spacing millimetres panel plate thickness millimetres multiplying factor on water pressure A ve value indicates that the water pressure acts on the side of the plate opposite to the stiffener outstand ve indicates that the water pressure acts on the side of the plate with the stiffener outstand Defaults to 0 0 if blank radius of curvature of stiffener millimetres Flat plate is assumed if this value is zero or omitted curved plate bending stress correction factor Defaults to 1 0 if omitted curved plate pressure modification factor Defaults to 1 0 if omitted fcb and fcp are to be used with great care The program applies an effective pressure loading on an equivalent flat plate Qeff equal to water plate plate thickness Qeff fcp pressure fcb s stress stiffener radius Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 59 Panel Check User Manual Command Formats Command REFERENCE NODE COMBINATION Syntax REFERENCE NODE COMBI
8. summary file extensions are set to be LIS and SUM No directory path to the executable is specified the batch file assumes that the executable is located in the default installation directory C Program Files ANSYS Inc vvvv asas bin win32 where vvvv is the version number or that the directory is included in the path See the ANSYS Installation Guide for more details ECHO OFF ECHO ECHO Running PANEL CHECK ECHO ECHO Data file 1 DAT ECHO Results file 1 LI8 ECHO Summary file 1 SUM ECHO PCAS 1 1 LIS END ECHO ECHO Problem Complete ECHO ECHO ON If this file were called CHECK BAT and were located on the path then a run using EXAMPLE DAT as input would be started as follows gt CHECK EXAMPLE Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 3 2 Panel Check User Manual Data Preparation 4 DATA PREPARATION 4 1 4 2 4 3 INTRODUCTION Input data for the PANEL CHECK program is used to control the execution of the program organise file handling provide data values select results etc Input data is initially read from the file assigned to unit 5 This input may subsequently be redirected to other physical files using a CHANGE INPUTSTREAM command UNITS Several commands in PANEL CHECK require values to be input in specific units The program expects input data units which have been chosen t
9. 1 then the appropriate location will be used for fatigue checks No checks will be performed if the appropriate flag is set to zero Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 56 Panel Check User Manual Command Formats Command PLATE BUCKLING Syntax PLATE BUCKLING BS5400 restraint nbmax nbmin PLATE BUCKLING DNV dnvrad Applicable to Ultimate strength checks Examples PLATE BUCKLING BS5400 RESTRAINED 1 0 0 5 PLATE BUCKLING BS5400 UNRESTRAINED PLATE BUCKLING DNV 5000 0 Description The PLATE BUCKLING command can be defined in two ways as shown in the format above In the first case it is used to define the restraint condition and maximum minimum in plane web bending stresses for flat panels when checked against the BS5400 code In the second case the command is used to specify the radius of a curved panel which is to be checked against the DnV code BS5400 British Standard Code of Practice for Design of Steel Bridges Part 3 1982 DNV Det Norske Veritas Rules for the Design Construction and Inspection of Offshore Structures Appendix C Steel Structures restraint Panel edge restraint condition which can be defined either as RESTRAINED or UNRESTRAINED nbmax is used to specify the maximum in plane web bending load MNm corresponding to the maximum nodal load envelope nbmin is used to specify the minimum in plane web bending load MN
10. 10 0 NODE ENVELOPE STRENGTH MINIMUM 23 1 44 3 1 3 15 2 3 3 Description The NODE ENVELOPE instruction is used to input envelope data for the node when this data is not available from an attached stress analysis system via the PANEL ENVELOPE program The data following the instruction keyword consists of identification of the type of data to follow STRENGTH or SERVICE data and whether this is a minimum or maximum envelope This is followed by five items of loading data ns force per unit width parallel to the stiffener axis np in plane force per unit width perpendicular to the stiffener axis nsp in plane shear per unit width lime moment per unit width about the perpendicular to the stiffener axis si out of plane shear force per unit width All forces are in meganewtons per metre width Moments are in meganewton metres per metre width The forces and moments input are for the combined section of plate plus stiffener These commands will normally occur in pairs defining the maximum and minimum limits of the envelope Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 50 Panel Check User Manual Command Formats Command NODE POSITION Syntax i NODE POSITION GLOBAL LOCAL x yz Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples NODE POSITION LOCAL 10 000 10 000 100 000 NODE POSITION GLOBAL 23 432 18 111 4
11. COMBINATION STATIC combin ns np nsp m s NODE COMBINATION DYNAMIC REAL IMAGINARY combin ns np nsp m s Applicable to Fatigue checks Examples NODE COMBINATION DYNAMIC REAL 10 25 0 25 0 10 0 30 0 10 0 NODE COMBINATION STATIC 14 25 3 14 2 7 0 33 8 49 6 Description The NODE COMBINATION instruction is used to input combination data for the node The data following the instruction keyword consists of identification of the type of data to follow STATIC DYNAMIC REAL or DYNAMIC IMAGINARY followed by the appropriate combination number This is followed by five items of loading data ns in plane force per unit width parallel to the stiffener axis np in plane force per unit width perpendicular to the stiffener axis nsp in plane shear per unit width m moment per unit width about the perpendicular to the stiffener axis se out of plane shear force per unit width All forces are in meganewtons per metre width Moments are in meganewton metres per metre width The forces and moments input are for the combined section of plate plus stiffener Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 49 Panel Check User Manual Command Formats Command NODE ENVELOPE Syntax NODE ENVELOPE STRENGTH SERVICE MINIMUM MAXIMUM ns np nsp ms Applicable to Ultimate strength checks Serviceability checks Examples NODE ENVELOPE SERVICE MAXIMUM 25 0 25 0 50 0 100 0
12. FILE HANDLING KEY FIELDS field field2 KEY RANGES mini maxi min2 max2 NEW SYMBOL symbol value SYMBOL VALUE name value BASIC DATA DISCONTINUITY switch xplat IMPERFECTIONS tolr wmu sres pres LOAD REDISTRIBUTION NODE fl f2 f25 LOAD REDISTRIBUTION REFERENCE NODE fl f2 25 MATERIAL PROPERTIES emod shearmod nul nu2 yield gamma MATERIAL PROPERTIES yield gamma Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates A 1 Panel Check User Manual Summary of Instructions A 5 A 6 NODE STRESS CONCENTRATION FACTORS scfs scfp scfsp PLATE BUCKLING BS5400 DNV restraint dnvrad sbmax sbmin PLATE DIMENSIONS 1 s t wps r fcb fep REFERENCE NODE STRFSS CONCENTRATION FACTORS scfs scfp scfsp SIGNS factns factnp factnsp factm facts STIFFENER BUCKLING pmethod spmethod STIFFENER DATA stiffno type dd tw b tf a STIFFENER END CONDITION end torinl torin2 STIFFENER IMPERFECUONS es ls esmin esmax er bs ermin ermax STIFFENER MODEL motype setl set2 offset STIFFENER TYPE tops bots UNITS faclen facfor USE flagl flag2 flag3 WEB BUCKLING restraint sbmax sbmin WELD FACTORS factor factor2 STRENGTH SERVICEABILITY CHECKS ENVELOPE NAME description ENVELOPE NUMBER number NODE ENVELOPE SERVICE STRENGTH MAXIMUM MINIMUM ns np nsp m s REFERENCE NODE ENVELOPE SERVICE STRENGTH MAXIMUM MINIMUM ns np nsp m s SERVICE CHECK ON OFF extreme wave SET ENVE
13. S N curve is used CUT a cut off S N curve i e with a fatigue limit is used The SPECTRAL instruction is used to initiate spectral fatigue calculations By default if no SPECTRAL instruction is used spectral fatigue calculations will not be performed If SPECTRAL is used without specifying the details of the spectrum type and with no preceding SPECTRAL instruction the default is a linear S N curve Gaussian quadrature and a flared spectrum i e the same as a SPECTRAL ON LINEAR GAUSSIAN FLARED instruction If an earlier SPECTRAL instruction has been used the type of spectrum will remain the same unless overridden SPECTRAL GENERATE must be used for the first fatigue analysis This will process the specified spectra and store the ordinates for later use when a SPECTRAL ON instruction is used SPECTRAL ON will then cause the pre calculated spectral ordinates to be used The spectra are defined in the fixed format used by the FATJACK program part of the ASAS OFFSHORE suite version H08 and must be in a file on Fortran unit 0 The ordinates are stored on and retrieved from Fortran unit 1 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 73 Panel Check User Manual Command Formats Command STIFFENER BUCKLING Syntax STIFFENER BUCKLING pmethod spmethod Applicable to Strength checks Examples STIFFENER BUCKLING HARDING HARDING STIFFENER BUCKLING IDWR HARDING Descrip
14. and its subsidiaries and affiliates 5 87 Panel Check User Manual Command Formats Command TRANSFORMATION MATRIX Syntax TRANSFORMATION MATRIX tml tm2 tm2 tm3 tm4 tm5 tm6 tm7 tm8 tm9 TRANSFORMATION MATRIX tml tm2 tm3 tm4 tm5 tm6 tm7 tm8 tm9 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example TRANSFORMATION MATRIX 0 0000 1 0000 0 0000 1 0000 0 0000 0 0000 0 0000 0 0000 1 0000 Description The TRANSFORMATION MATRIX instruction is used to specify the transformation matrix which will rotate and optionally although not usually scale coordinates from the FE model axis system into the PANEL system The transformation matrix may be specified either on a single line or alternatively on three lines as in the example above which allows them to be laid out in matrix format By default if no TRANSFORMATION MAIRIX instruction is used the model s axis system and the PANEL axis system are assumed to be scaled and oriented identically The ORIGIN instruction must be used in addition to the TRANSFORMATION MATRIX instruction if the two coordinate systems do not have coincident origins Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 88 Panel Check User Manual Command Formats Command UNITS Syntax UNITS faclen facfor Applicable to All limit state checks Example UNITS 1000 0 1 0 Description The UNITS command is
15. and writing results to an output file and a summary file All PANEL programs contain a command line interpreter so that input output and other file names can be entered after the program name as a single command on all machine types e g program_name file file2 Data items on the command line must be specified in the following order 1 data file name and location 2 output file name and location 3 summary file name and location The data file name must always be specified although it need not be given an extension if it is dat or DAT on machines that are not case specific or require upper case Other file names are optional If not given the last specified file name on the command line is used as a basis with a new extension defined by the program The following default extensions are given to file types output files are out or OUT summary files are sum or SUM Examples of the use of the command line will follow for specific platforms operating systems Existing output files with the same name are always deleted by the program at the start of execution A suitable message is given but the user should ensure that required results are not lost in this way CHANGED INPUT STREAMS All PANEL programs feature a CHANGE INPUT STREAM command that allows data input to be redirected to another input file on another unit or stream This is achieved by specifying in the data the unit number and file name t
16. be performed the smaller longitudinal stiffeners and the plate should be analysed first using dimension a as the length and b as the spacing of the stiffeners the larger transverse stiffeners may then be analysed using dimensions B and a as the length and spacing respectively The true thickness of plate must be used to obtain the correct composite properties but the plate forces perpendicular to the stiffener direction should be modified to allow for load in the smaller longitudinal stiffeners This approach is slightly conservative as the stiffness of the smaller stiffeners is ignored in determining buckling of the larger stiffeners but has been shown to be quite accurate for reasonably dissimilar stiffener strengths Stiffener properties may be defined for the following section types tees angles bulb flats flat plates The stiffener plate connection will be determined and sized by the program and may be double sided fillet or single or double sided butt weld SELECTION AND CLASSIFICATION OF INSPECTION POINTS To analyse a given panel or plate the PANEL CHECK program should be used to assess one or more inspection points across the panel when running as a stand alone program these inspection points are assigned arbitrary numbers for use in output identification only when running as a post processor to an FE system via PANEL ENVELOPE the inspection points must correspond to node num
17. calculated from the water pressure acting on the panel For this calculation the stiffener is assumed to be continuous Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 5 Panel Check User Manual Command Formats Command i CHANGE INPUT STREAM Syntax CHANGE INPUT STREAM stream Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example CHANGE INPUT STREAM 21 Description The CHANGE INPUT STREAM instruction indicates that further instructions are to be read from the specified stream which should have been assigned to a file by an operating system command before commencing the run Input may be re directed back to the original input file on unit 5 with a CHANGE INPUT STREAM instruction with no unit specified Input will then resume at the instruction immediately following the CHANGE INPUT STREAM instruction This feature allows the user to separate the input data into reference data which does not change significantly between runs e g environmental data and run control data which will change as various alternative structural configurations are investigated for instance stiffener geometry and spacing To do this two files should be created run control file which commences with a CHANGE INPUT STREAM instruction specifying an appropriate unit number to cause the reference file to be read Typically this file would be given
18. forces in the elements that make up the PE model PANEL allows the stiffened plate structure to be modelled in a variety of ways and still is able to extract the necessary results Available modelling methods at this time are stiffener effective area smeared over plate stiffeners modelled as beam elements in plane of plate with composite properties one beam may represent more than one stiffener stiffeners modelled as beam elements offset from plane of plate One beam may again represent more than one stiffener stiffeners modelled with plate elements for the web and beam elements for the flange Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 2 1 Panel Check User Manual Program Description 2 2 2 3 Further details of the PANEL ENVELOPE program may be found in a separate user manual The remainder of this manual describes the PANEL CHECK program only PROGRAM SCOPE The PANEL CHECK program is primarily designed to assess unidirectionally stiffened or unstiffened panels However orthogonally stiffened panels may also be handled by analysing each direction of stiffener in turn This approach will give reasonably accurate results when the stiffnesses of the two orthogonal stiffeners are dissimilar and the panel can be handled as a series of small unidirectionally stiffened panels framing between larger transverse frames Figure 2 2 1 In this case two PANEL analyses should
19. remaining letters must be in the correct order the resulting abbreviation must not be ambiguous in that two different instructions could both be abbreviated in the same way for example SE is not an acceptable abbreviation for SELECT because it is also a possible abbreviation of SPECTRAL This restriction of non ambiguity extends to all instructions in PANEL ENVELOPE and PANEL CHECK regardless of which programs are actually installed Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 2 Panel Check User Manual Data Preparation 4 6 4 7 4 8 Keywords in the data following an instruction keyword may also be abbreviated subject to the same rules provided that the abbreviation is not ambiguous with respect to any other keyword that could be used with a particular instruction If an ambiguous instruction is supplied in the input data PANEL CHECK will print a warning and arbitrarily choose which instruction to execute COMMENT LINES Comment lines may be included in the input data file These are denoted by an exclamation mark in column one of the line All text following the exclamation mark is echoed but otherwise ignored It is recommended that comment lines are used liberally to indicate for example the source of the input data assumptions that are being made etc as they prove invaluable when it is necessary to rerun an old analysis CONTINUATION LINES T
20. the ASAS sign convention when forming envelopes of load The sign convention for PANEL CHECK is tensile negative compression positive Shear stress directions are of no importance but positive bending is assumed to cause compression in the plate Clearly the sign conventions are different and the SIGN command must be used with negative factors as required to correct this The following offers some guidance 7 the SIGN factors for direct stress Ns Np should always be negative to change from the tensile positive to compressive positive scheme the SIGN bending factor may be positive or negative depending on the ASAS local axis system and the side of the plate on which the stiffener lies the SIGN of the shear stress factors is immaterial but included for completeness The exception to the above is when the stiffener is modelled with plate elements to represent the web In this case the calculations in PANEL ENVELOPE will maintain the ASAS convention and the SIGN of the bending factor should always be negative reflecting the change from tensile positive to compression positive SYSTEM DEPENDANT COMMANDS The PANEL CHECK SUPER ELEMENT command takes on a different format when used with the ASAS interface The format of the SUPER ELEMENT card is as follows SUPER ELEMENT dataarea project structure SYOP number Where dataarea is the required data area in words project is the four character project name structure is
21. the four character structure name SYOP signifies that system options are to be read number is the assembled super element number given at the end of the assembly run in the component tree diagram SYOP is optional If given the program expects to read two lines of system options after the SUPER ELEMENT command each in 4012 format This is an advanced feature that should not generally be used without advise from support staff Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates B 2 Panel Check User Manual ASAS FE Interface B 5 The component number is also optional but must be specified for a component analysis run FILE HANDLING PANEL CHECK acts on the files produced by the preceding ASAS ASAS POST and PANEL ENVELOPE analyses Optionally ASAS LOCO may be run after ASAS to combine load cases although this may also be performed in PANEL ENVELOPE However since ASAS LOCO produces identically formatted files to ASAS either can be used as required The appropriate physical files from the ASAS or ASAS LOCO ASAS POST and PANEL ENVELOPE runs must be present on disc for PANEL CHECK to run To produce these files the programs should have been run with appropriate SAVE and WRITE options In all cases there will be the Project File which contains information about all other files in the current set of analyses The name of this file is derived from the four character Project
22. tl t2 FATIGUE WAVE PRESSURE FACTORS STATIC DYNAMIC pf 1 pf2 GRAVITY g NODE POSITION GLOBAL LOCAL x y z ORIGIN x yz REFERENCE NODE POSITION GLOBAL LOCAL x y z TRANSFORMATION MATRIX tml tm2 tm3 tm4 tm5 tm6 tm7 tm8 tm9 WATER DENSITY density WATER DEPTH depth WATER PRESSURE COMBINATION comb wpstat wpdynr wpdyni WATER PRESSURE ENVELOPE envelope wpstat wpdynr wpdyni WATER PRESSURE FROM AQWA envelope combination reference Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates A 3 Panel Check User Manual ASAS FE Interface Appendix B ASAS FE INTERFACE B 1 B 2 INTRODUCTION PANEL CHECK is available as a post processor to the ASAS package of programs through the PANEL ENVELOPE program Only certain ASAS element types may be accessed by the PANEL suite Available elements are listed in Section D 2 of this Appendix The ASAS sign convention for stresses is described briefly in Section D 3 and details are given as to how this is converted to the PANEL system for post processing Section B 4 of this Appendix describes the format of the SUPER ELEMENT command that is specific to the ASAS interface The final section of this Appendix B 5 described the files required for a successful run of PANEL CHECK AVAILABLE ELEMENT TYPES PANEL CHECK can work directly from ASAS POST results for shell elements The following three four six and eight noded shells can be handled
23. used to specify factors used to convert the units of the FE analysis into the units of length and force assumed by the PANEL CHECK program PANEL CHECK assumes the following units Length in metres m Force in meganewtons MN If the analysis units are different from the above the UNITS command may be used to specify faclen and facfor to factor lengths and forces from the analysis prior to enveloping and storage If no UNITS command is given length and force factors of unity will be assumed If non zero values are given the loads and dimensions from the analysis will be multiplied by these factors prior to use in the various checks Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 89 Panel Check User Manual Command Formats Command USE Syntax USE nodeflag refnodeflag holeflag Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example USE 101 The USE instruction controls the application of the factoring matrices for loads and or stress concentration factors Each flag takes a value of 0 do not factor or 1 use factors The flags have the meanings nodeflag use the load redistribution matrix for the node defined on a LOAD REDISTRIBUTION NODE instruction refnodeflag use the load redistribution matrix for the reference node defined on a LOAD REDISTRIBUTION REFERENCE NODE instruction holeflag use the hole s
24. waves used in the fatigue checks Up to four directions may be listed For each direction the name of the direction up to four characters long must be given followed by the bearing of the wave relative to PANEL s global axis system measured in degrees The bearing of the wave is taken as the direction of wave propagation Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 31 Panel Check User Manual Command Formats Command FATIGUE WA VE HEIGHTS Syntax FATIGUE WAVE HEIGHTS heightl height Applicable to Fatigue checks Example FATIGUE WAVE HEIGHITS 1 4 2 4 5 3 6 2 Description The FATIGUE WAVE HEIGHTS instruction is used to specify the heights of the waves used in the fatigue checks Up to twelve wave heights may be specified which must correspond with the periods in the FATIGUE WAVE PERIODS instruction Wave heights not amplitudes must be given in metres Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 32 Panel Check User Manual Command Formats Command FATIGUE WAVE PERIODS Syntax FATIGUE WAVE PERIODS period period Applicable to Fatigue checks Example FATIGUE WAVE PERIODS 10 5 11 7 12 6 Description The FATIGUE WAVE PERIODS instruction is used to specify the periods of the waves used in fatigue checks Up to twelve wave periods may be specified which must correspond with the hei
25. 321 Description The NODE POSITION instruction is used to give the location of the node in either the coordinates used by the stress analysis system indicated by LOCAL or the coordinates used by PANEL indicated by GLOBAL If LOCAL is specified the node s coordinates will be transformed to the PANEL coordinate system by using the transformation data supplied in previous ORIGIN and TRANSFORMATION MATRIX instructions The global position of the node determines the value of any local water pressure calculated by the PANEL program but is not important if water pressures are included in the input data Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 51 Panel Check User Manual Command Formats Command NODE STRESS CONCENTRATION FACTORS Syntax NODE STRESS CONCENTRATION FACTORS scfs scfp scfsp Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example NODE STRESS CONCENTRATION FACTORS 3 0 1 0 0 0 Description The stresses in plating adjacent to a stiffener are calculated from the applied forces and then factored by the SCF vector The final stresses are calculated as stress scf stress stressp scfp stressp Stress scf stresssp Note that this is distinct from the load redistribution facility see the LOAD REDISTRIBUTION NODE instruction in that load redistribution occurs before the stresses are calculated and factored
26. ATIGUE CHECK instruction is used fatigue checking is off Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 29 Panel Check User Manual Command Formats Command FATIGUE WA VE COMBINATIONS Syntax FATIGUE WAVE COMBINATIONS comb11 combl2 comb21 comb 22 Applicable to Fatigue checks Example FATIGUE WAVE COMBINATIONS 3456 9101112 Description The FATIGUE WAVE COMBINATIONS instruction is used to specify the combinations associated with each fatigue wave direction and height These combinations will usually be stored on the backing files of the stress analysis system The combinations for all wave heights for the first direction are listed first followed by the combinations for all wave heights for the second direction and so on Continuation lines may be used freely but it is recommended that the combination numbers are arranged in a neat table for ease of reference Up to four wave directions and twelve wave heights may be used Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 30 Panel Check User Manual Command Formats Command FATIGUE WA VE DIRECTIONS Syntax FATIGUE WAVE DIRECTIONS namel bearing name2 bearing Applicable to Fatigue checks Example FATIGUE WAVE DIRECTIONS N 0 E 90 S 180 Description The FATIGUE WAVE DIRECTIONS instruction is used to specify the directions of the
27. Command LIST STIFFENER DATA Syntax LIST STIFFENER DATA Applicable to Ultimate strength checks Serviceability checks Fatigue checks Description The LIST STIFFENER DATA instruction causes a table to be printed of the current stiffener data i e only taking into account instructions preceding the LIST STIFFENER DATA instruction This command and LIST REFERENCE DATA are used most commonly to tabulate a list of input data immediately prior to a DO CHECKS instruction and therefore provide a user flexible check on the data provided Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 43 Panel Check User Manual Command Formats Command LOAD REDISTRIBUTION NODE Syntax LOAD REDISTRIBUTION NODE fl f2 f3 f4 f5 f6 f7 f8 9 f10 fl1 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example LOAD REDISTRIBUTION NODE 0 90 1 0 1 0 00 0 0 1 0 9 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 4 Description The LOAD REDISTRIBUTION NODE instruction is used to specify a load redistribution matrix for the node The redistribution matrix will only be used if the nodeflag on the last USE instruction before the DO CHECKS instruction is set to 1 If this flag is set to 1 but no LOAD DISTRIBUTION NODE instruction is used an identity null redi
28. E PARTIAL SAFETY FACTORS STATIC 1 2 1 2 1 2 Description The EXTREME WAVE PARTIAL SAFETY FACTORS instruction is used to list the partial safety factors associated with static or dynamic loads for the various extreme waves associated with each envelope If no EXTREME WAVE PARTIAL SAFETY FACTORS instruction is used the partial safety factors all default to 1 0 Up to four partial safety factors of each type may be specified The set to use is identified on the STRENGTH CHECK and SERVICE CHECK instructions Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 26 Panel Check User Manual Command Formats Command EXTREME WAVE PERIODS Syntax EXTREME WAVE PERIODS period1 period2 period3 period4 Applicable to Ultimate strength checks Serviceability checks Example EXTREME WAVE PERIODS 9 8 10 3 11 5 Description The EXTREME WAVE PERIODS instruction is used to specify the periods of the various extreme waves The periods must be listed in the same order as the data on corresponding EXTREME WAVE HEIGHTS etc instructions Wave periods must be given in seconds Up to four extreme waves may be specified The wave to use is selected on the STRENGTH CHECK and SERVICE CHECK instructions Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 27 Panel Check User Manual Command Formats Command EXTREME WAVE PRESSURE FAC
29. E system via PANEL ENVELOPE The command is intended to allow the user to change from an FE analysis specific sign convention to the PANEL suite convention where these differ Refer to the appropriate appendix to see if this is necessary By default at program start up the five factors for Ns Np Nsp M and S loads are unity PANEL CHECK uses the factors to multiply the load components prior to use It is possible to factor the loads by non unit values as well as changing signs if this is so required The PANEL CHECK sign convention for loads is given in Section 4 3 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 72 Panel Check User Manual Command Formats Command SPECTRAL Syntax SPECTRAL OFF SPECTRAL ON distribution SPECTRAL GENERATE distribution Applicable to Fatigue checks Examples SPECTRAL OFF SPECTRAL GENERATE FLARED Description The SPECTRAL instruction is used to switch spectral fatigue calculations on or off The distribution may be specified by a series of key words These are FLARED the spectrum is assumed to be flared to zero at zero frequency NOT FLARED the spectrum is assumed not to be flared GAUSSIAN Gaussian quadrature is used for the gamma function integral when the S N curve is not linear RECTANGULAR rectangular summation is used for the gamma function integral BILINEAR a bilinear S N curve is used LINEAR a linear
30. ELOPE will produce a COP021 file PANEL CHECK itself produces no backing files The ASAS system reserves streams to 50 for interval file handling and I O These streams and 51 52 and 53 should not be used for CHANGE INPUT STREAM commands Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates B 3 Panel Check User Manual SESAM FE Interface Appendix C SESAM FE INTERFACE C 1 C 2 C 3 INTRODUCTION PANEL CHECK is available as a post processor to the SESAM PE system through the PANEL ENVELOPE program SESAM beam and plate elements should be used to model the concrete structure Available element types are listed in Section C 2 The PANEL suite will obtain geometric and element stress data from the SESAM Interface File SIF produced by an enhanced version of PREPOST However PREPOST will not produce nodally averaged stresses for the plate elements These must be added by the SW AVERAGE program which allows the user to select groups of elements and nodally average stresses in consistent axes for selected load cases The user should refer to the SIF AVERAGE manual for details Section C 3 of this Appendix does however contain details of the format of loadcase stresses on the SIF Section C 4 contains details of the SUPER ELEMENT command format that is dependent on the PE system The final section of this Appendix C 5 gives details of the files required for PANEL CHECK
31. FICATIONS Syntax DEFAULT S N CLASSIFICATIONS csr11 cpr11 rot11 csr12 cprl2 rot12 csr18 cpr18 rotl8 csr88 cpr88 rot88 Applicable to Fatigue checks Example DEFAULT S N CLASSIFICATIONS E F 0 E F 20 E F2 40 F F2 60 F F2 90 F F2 120 F F2 140 E F 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 EF 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 EF 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 EF 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 E F 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 E F 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 E F 160 EFOEF 20EF240FF260 F F2 90 F F2 120 F F2 140 EF 160 Description The DEFAULT S N CLASSIFICATIONS instruction defines the default S N classifications for the various node classes and angles relative to the stiffener axis Eight triplets of values are input for node class 1 followed by eight triplets for node class 2 class 3 etc to node class 8 i e 3 x 8 x 8 192 items of data in all Continuation lines may be used freely except that no triplet of values should be split over two lines The data for each node class consists as described above of eight triplets of S N classifications Each triplet gives the S N classification for a particular location on the plate or stiffener refer to the PASS instruction The first item of each triplet is the S N classification for the stresses at angle A to the stiffener direction The second
32. Fatigue checks Example WATER DEPTH 110 5 Description The WATER DEPTH instruction is used to specify the water depth i e the distance between still water level and the seabed The depth must be entered in metres Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 92 Panel Check User Manual Command Formats Command WATER PRESSURE COMBINATION Syntax WATER PRESSURE COMBINATION combination wpstat wpdynr wpdyni Applicable to Fatigue checks Example WATER PRESSURE COMBINATION 3 84 5 Description The WATER PRESSURE COMBINATION instruction is used to specify the water pressures associated with a particular combination Three pressures can be supplied the static or mean component of the water pressure wpstat and the real wpdynr and imaginary wpdyni parts of the dynamically varying component The two optional pressures default to zero The units for water pressures are meganewtons per square metre If neither this instruction nor the WA T ER PRESSURE FROM AQWA instruction is used the water pressure will be calculated as the pressure due to the undisturbed incident wave Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 93 Panel Check User Manual Command Formats Command WATER PRESSURE ENVELOPE Syntax WATER PRESSURE ENVELOPE envelope wpstat wpdynr wpdyni Applicable to Ultimate
33. LOPE ON OFF class STRENGTH CHECK ON OFF wave FATIGUE CHECKS COMBINATION number DEFAULT S N CLASSIFICATIONS csrll cprll rotll csrl8 cprl8 rotl8 csr88 cpr88 rot88 DEFECTS stiffener plate DE TERMINISTICS ON OFF ENTRY number FATIGUE CHECK ON OFF FATIGUE WAVE COMBINATIONS combll combl2 comb21 comb22 HOLE SCFS number scfs scfp scfsp NODE COMBINATION STATIC DYNAMIC REAL IMAGINARY combin ns np nsp m s NUMBER OF SPECTRA nspecl nspec2 OCCURRENCE nwavel nwave2 PASS flagl flag8 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates A 2 Panel Check User Manual Summary of Instructions A 7 REFERENCE NODE COMBINATION STATIC DYNAMIC REAL IMAGINARY combin ns np nsp m s REQUIRED LIFE life S N CLASSIFICATIONS class csrl cprl rotl csr8 cpr8 rot8 SPECTRAL OFF ON GENERATE distribution WATER PRESSURE EVALUATION AQWA REFERENCE COMBINATIONS ENVELOPES casel case CALCULATE STIFFENER FORCES DRAUGHT INCREASE dincl dinc2 dinc3 dinc4 EXTREME WAVE DATA number period height dinc psfs psfd EXTREME WAVE HEIGHTS hi h2 h3 h4 EXTREME WAVE PERIODS ti t2 t3 t4 EXTREME WAVE PARTIAL SAFETY FACTORS STATIC DYNAMIC psf 1 psf2 psf3 psf4 EXTREME WAVE PRESSURE FACI ORS STATIC DYNAMIC pf 1 pf2 pf3 pf4 FATIGUE WAVE DIRECTIONS namel bearing name bearing2 FATIGUE WAVE HEIGHTS hl h2 FATIGUE WAVE PERIODS
34. NATION STATIC combin ns np nsp m s REFERENCE NODE COMBINATION DYNAMIC REAL IMAGINARY combin ns np nsp m s Applicable to Fatigue checks Examples REFERENCE NODE COMBINATION DYNAMIC IMAGINARY 12 25 0 25 0 10 5 100 1 5 0 REFERENCE NODE COMBINATION STATIC 14 25 3 14 2 7 0 33 8 49 6 Description The REFERENCE NODE COMBINATION instruction is used to input combination data for the reference node It is identical in format to the NODE COMBINATION instruction described above Reference node values determine the non linear P delta behaviour of plates and stiffeners Stresses from these effects are combined with the linear values at a given node Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 60 Panel Check User Manual Command Syntax Applicable to Examples Description Command Formats REFERENCE NODE ENVELOPE REFERENCE NODE ENVELOPE STRENGTH SERVICE MINIMUM MAXIMUM ns np nsp m s Ultimate strength checks Serviceability checks REFERENCE NODE ENVELOPE SERVICE MAXIMUM 25 0 25 0 10 0 100 0 5 0 REFERENCE NODE ENVELOPE STRENGTH MINIMUM 23 1 44 3 1 3 15 2 3 3 The REFERENCE NODE ENVELOPE instruction is used to input envelope data for the reference node when this is not available from an attached stress analysis system via the PANEL ENVELOPE program It is identical in format to the NODE ENVELOPE instruction described above Reference node values determine th
35. Name defined on all JOB cards in the runs For example if the project name is PRDH then the Project File will be PRODH10 For an ASAS or ASAS LOCO analysis with a SAVE LOCO FILES card in its preliminary deck there will be a physical file containing the stress and displacement information from that analysis For a single step analysis the physical file name will be derived from the second four character name on the JOB card of the ASAS of ASAS LOCO preliminary deck or from the FILES card For example if this name had been RNDH then the backing file containing stresses and displacements would be RNDH35 For a post processing run on a substructured analysis the file name for the results is derived from the second four character name on the JOB card of the relevant stress recovery run If this name has been SRGP then the file would be SRGP35 For an ASAS POST run with a SAVE PLOT FILES card in its preliminary deck there will be a physical file containing nodal stress data This file will be based on the four character name given on the JOB card of the ASAS POST data file If the name is ASPO then the file name will be ASPO12 Multiple ASAS POST runs may produce more than one 12 file Appropriate PANEL ENVELOPE backing files should also be present on disc For runs of PANEL ENVELOPE with appropriate options set ENVELOPE ON WRITE ON these results will be stored in 21 files If the file name given on the JOB card is COPO then PANEL ENV
36. PANEL Beams and plates should be grouped in this way Nodally averaged stresses should then be produced at all nodes on these groups for selected load cases For more information refer to the SIF AVERAGE User Manual The stresses and group information will be stored back to the SIF where they can be access by PANEL ENVELOPE The sign convention for stress in ASAS is tensile positive compression negative The sign convention for shear and bending depends largely on the element type as defined in Appendix A of the ASAS User Manual PANEL ENVELOPE will maintain the ASAS sign convention when forming envelopes of load The sign convention for PANEL CHECK is tensile negative compression positive Shear stress directions are of no importance but positive bending is assumed to cause compression in the plate Clearly the sign conventions are different and the SIGN command must be used with negative factors as required to correct this The following offers some guidance 7 the SIGN factors for direct stress Ns Np should always be negative to change from the tensile positive to compressive positive scheme the SIGN bending factor may be positive or negative depending on the ASAS local axis system and the side of the plate on which the stiffener lies the SIGN of the shear stress factors is immaterial but included for completeness The exception to the above is when the stiffener is modelled with plate elements to represent the web In thi
37. PROPERTIES Syntax MATERIAL PROPERTIES emod shearmod nul nu2 yield gamma Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples MATERIAL PROPERTIES 205000 0 80000 0 0 3 0 3 345 0 1 25 MATERIAL PROPERTIES 345 0 1 15 Description The MATERIAL PROPERTIES instruction is used to define the material properties of the steel The various fields and their default values which are used if there is no MATERIAL PROPERTIES instruction are emod elastic modulus in meganewtons per square metre or newtons per square millimetre defaults to 205000 shearmod shear modulus in meganewtons per square metre or newtons per square millimetre defaults to 78846 nul Poisson s ratio for serviceability and fatigue checks defaults to 0 3 nu2 Poisson s ratio for strength checks defaults to 0 0 yield stress in meganewtons per square metre or newtons per square millimeter defaults to 355 gamma material factor of safety defaults to 1 15 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 46 Panel Check User Manual Command Formats Command MAXIMUM ERRORS Syntax MAXIMUM ERRORS maxerr Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example MAXIMUM ERRORS 10 Description The MAXIMUM ERRORS instruction is used to set the maximum number of severe errors not code check failures that are pe
38. Panel Check User Manual Version 12 ANSYS Inc Southpointe 275 Technology Drive Canonsburg PA 15317 ansysinfo ansys com http www ansys com T 724 746 3304 F 724 514 9494 Copyright 2009 Century Dynamics Limited All Rights Reserved Century Dynamics is a subsidiary of ANSYS Inc Unauthorised use distribution or duplication is prohibited ANSYS Inc is certified to ISO 9001 2008 Revision Information The information in this guide applies to all ANSYS Inc products released on or after this date until superseded by a newer version of this guide This guide replaces individual product installation guides from previous releases Copyright and Trademark Information 2009 SAS IP Inc All rights reserved Unauthorized use distribution or duplication is prohibited ANSYS ANSYS Workbench AUTODYN CFX FLUENT and any and all ANSYS Inc brand product service and feature names logos and slogans are registered trademarks or trademarks of ANSYS Inc or its subsidiaries located in the United States or other countries ICEM CFD is a trademark used by ANSYS Inc under license All other brand product service and feature names or trademarks are the property of their respective owners Disclaimer Notice THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS INC ITS SUBSIDIARIES OR LICENSORS The software products and documentati
39. SPRCE HANDLING ane n R ys fief ocSsced cage Wasa A T a N ia B 3 Appendix C SESAM FE INTERFACE soetrienae eni nhi eee Bh C 1 C1 INTRODUCTION 6 sesdaiscestdistssecesaurduviat conssedsvesnjeatsientcnuedielacessusien a i iassa C 1 C27 AVAILABLE ELEMENT TYPES sicisicstecssGessesatsauctlataweietine uteri wh ciredamacsstte tated C 1 C3 STRESS EX TRAC TION jcc ker aA ERE RE AE AAE S C 1 C 4 SYSTEM DEPENDENT COMMANDS vis io scjccaeiesdieedecsieivesensucousu senate deesnsotgusesiasuensaste C 2 CS FLE HANDLING riepen etaesy ein a aaa na Sts C 3 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates i Panel Check User Manual 1 INTRODUCTION PANEL CHECK is part of the PANEL suite of programs that also includes PANEL ENVELOPE The suite is designed to allow the user to rapidly check stiffened plate structures against codes of practice such as IDWR BS5400 Department of Energy DEn guidelines and Det Norske Veritas DnV and so assess their strength serviceability and fatigue performance PANEL CHECK performs the following tasks allows the user to select areas of an existing FE model to check given results extracted by PANEL ENVELOPE optionally runs in a stand alone mode letting the user input geometry and loads directly combines the above loads with pressure stresses in the plate if so required performs ultimate limit state calculations to determine the stability again
40. STIFFENER DATA 23 TEE 2 150 0 20 0 50 0 15 0 The STIFFENER DATA instruction defines a type of stiffener Each stiffener type is referred to by a number stiffno which must be in the range 1 to 50 inclusive Subsequent data defines the geometry of the stiffener type dd y tw b _ tf Lyn f a may be TEE ANGLE BULB or FLAT overall depth of stiffener thickness of stiffener web overall breadth of flange for TEE or ANGLE stiffeners breadth of bulb excluding breadth of web for BULB stiffeners thickness of flange overall cross sectional area of stiffener All dimensions are in millimetres Immediately after input the stiffener dimensions are checked for plausibility A warning is produced if a TEE or ANGLE stiffener is not stabilised properly by its flange Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 75 Panel Check User Manual Command Formats Command STIFFENER END CONDITION Syntax STIFFENER END CONDITION end torinl torin2 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples STIFFENER END CONDITION 1 STIFFENER END CONDITION 2 2000 0 2500 0 Description The STIFFENER END CONDITION command is used to define the type of support condition at the ends of the stiffener undergoing checks and to specify the torsional buckling lengths for the stiffener s under consideration end
41. TORS Syntax EXTREME WAVE PRESSURE FACTORS STATIC DYNAMIC pfl pf2 pf3 pf4 Applicable to Ultimate strength checks Serviceability checks Example EXTREME WAVE PRESSURE FACTORS DYNAMIC 1 5 1 5 1 5 EXTREME WAVE PRESSURE FACTORS STATIC 1 11 1 1 1 Description The EXTREME WAVE PRESSURE FACTORS instruction is used to list up to four factors to be applied to the pressures calculated for each extreme wave They are useful when the pressure data is available from a diffraction analysis that is not linked to PANEL In this case PANEL will calculate the incident wave pressure and this will be multiplied by the specified pressure factors If no EXTREME WAVE PRESSURE FACTORS instruction is used the pressure factors all default to 1 0 Up to four pressure factors of each type may be specified The set to use is selected on the STRENGTH CHECK or SERVICE CHECK commands Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 28 Panel Check User Manual Command Formats Command FATIGUE CHECK Syntax FATIGUE CHECK ON OFF Applicable to Fatigue checks Examples FATIGUE CHECK ON FATIGUE CHECK OFF Description The FATIGUE CHECK instruction is used to switch fatigue checking on or off FATIGUE CHECK with no ON or OFF specified is equivalent to FATIGUE CHECK ON The type of fatigue checking used is controlled by the DETERMINISTICS and SPECTRAL instructions By default if no F
42. a However an alternative date may be specified following the word DATE which will override the current date This may be useful if no date is available from the computer system This date may be up to twenty characters long in any format including intervening spaces Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 11 Panel Check User Manual Command Syntax Applicable to Examples Description Command Formats DEBUG DEBUG level OFF routine values Ultimate strength checks Serviceability checks Fatigue checks DEBUG OFF DEBUG 1 DOCHKS DEBUG OFF DOCHKS DEBUG 100 STOREE 3 1 3 2 3 4 The DEBUG command may be used to force the program to monitor progress through selected routines It is only of use to users who are familiar with the internal operation of the program and should be used with care as it can produce considerable amounts of output The debug level has different effects depending on the routine to be checked A debug level over 99 forces the routine to overwrite certain routine arguments with debug data values specified on the end of the line DEBUG OFF cancels all debugging for all routines DEBUG OFF with a routine name cancels debugging for that routine Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 12 Panel Check User Manual Command Formats Command DEFAULT S N CLASSI
43. ata listed on DRAUGHT INCREASE EXTREME WAVE HEIGHTS EXTREME WAVE PERIODS and EXTREME WAVE PARTIAL SAFETY FACTORS instructions The effective instruction is the last one before the DO CHECKS instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 24 Panel Check User Manual Command Formats Command EXTREME WAVE HEIGHTS Syntax EXTREME WAVE HEIGHTS height height2 height3 height4 Applicable to Ultimate strength checks Serviceability checks Example EXTREME WAVE HEIGHTS 11 3 15 2 17 4 Description The EXTREME WAVE HEIGHTS instruction is used to specify the heights of the various extreme waves The heights must be listed in the same order as the data on corresponding EXTREME WAVE PERIODS etc instructions Wave heights must be given in metres Note that heights not amplitudes of waves are required Up to four extreme waves may be specified The choice of which wave to use is selected on the STRENGTH CHECK and SERVICE CHECK cards Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 25 Panel Check User Manual Command Formats Command EXTREME WAVE PARTIAL SAFETY FACTORS Syntax EXTREME WAVE PARTIAL SAFETY FACTORS STATIC DYNAMIC psfl psf2 psf3 psf4 Applicable to Ultimate strength checks Serviceability checks Examples EXTREME WAVE PARTIAL SAFETY FACTORS DYNAMIC 1 5 1 51 5 EXTREME WAV
44. ate panel web Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 96 Panel Check User Manual Command Syntax Applicable to Example Description Command Formats WELD FACTORS WELD FACTORS outfac infac Ultimate strength checks Serviceability checks Fatigue checks WELD FACTORS 0 38 0 42 The WELD FACTORS instruction is used to specify the outer and inner weld factors for weld sizes according to Lloyd s Rules Part 3 Chapter 10 Section 2 The default factors i e if no WELD FACTORS instruction is used are as if a WELD FACTORS 0 34 0 34 instruction had been used Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 97 Panel Check User Manual Summary of Instructions Appendix A SUMMARY OF INSTRUCTIONS A l A 2 A 3 A 4 INPUT OUTPUT CONTROL CHANGE INPUT STREAM stream CODE CHECK ON OFF DATA CHECK ONLY DATE date DEBUG level OFF routine values DO CHECKS ECHO ON OFF END LIST INPUT DATA ON OFF LIST REFERENCE DATA LIST STIFFENER DATA MAXIMUM ERRORS maxerr STOP SUBROUTINE TRACE ON OFF SUPER ELEMENT data TITLE title TRACE levell level2 NODE SELECTION ALL ANALYSE NODE CLASSES class class CLEAR SELECT class nodel node GROUP set REFERENCE NODE NUMBER node class SAMPLE angtol SELECT class nodel node SET set SWEEP angtol
45. beam offset depending on how the stiffener is modelled As indicated in the example above if the modelling type is SMEARED no beam web or flange set numbers are specified If the modelling type is COPLANAR the value 1001 specified represents the beam set number and if the modelling type is WEB PLATE or FULL PLATE the values 2001 and 3001 would represent the web and flange set numbers respectively For stiffeners modelled as OFFSET beams the value 1002 represents the beam set number while the value 0 100 represents in metres the offset of the beam from the plate panel motype this parameter is used to indicate the method by which the stiffeners have been modelled in the plate The options are SMEARED COPLANAR OFFSET WEB PLATE and FULL PLATE sea represents the beam set number when the modelling type is either COPLANAR or OFFSET while it represents the web set number when the modelling type is WEB PLATE or FULL PLATE sett represents the flange set number when the modelling type is WEB PLATE or FULL PLATE offset represents the offset of the modelled beam stiffener from the plate panel when the modelling type is OFFSET Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 78 Panel Check User Manual Command Formats Command STIFFENER TYPE Syntax STIFFENER TYPE tops bots Applicable to Ultimate strength checks Serviceability checks Fatigue c
46. bers used in the analysis Options are available to scan all or selected nodes or to assess panels as a whole based on representative results Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 2 2 Panel Check User Manual Program Description Each inspection point must be associated with a classification The classification is used to identify the position of the inspection point on the panel and may be an integer in the range 1 to 8 Figure 2 3 1 shows typical locations of nodes of varying class Class 1 identifies all corner nodes on the panel Class 2 identifies the end locations of all stiffeners Class 3 identifies all edge nodes on edges that do not contain stiffeners Class 4 identifies all intermediate nodes on the outermost two stiffeners Class 5 identifies all intermediate nodes on internal stiffeners Class 6 identifies all further edge nodes on stiffened edges Class 7 identifies all remaining nodes Class 8 is identical to Class 2 but is assumed to be slightly outboard such that the flange may be considered fully restrained The flange is not restrained at nodes of Class 2 Node classification is primarily used to define whether or not a stiffener is present at a node stiffeners are present for node Classes 2 4 5 and 8 but is also used in fatigue analysis to determine which S N curves are used and in serviceability and fatigue analysis to determine the effective wi
47. bols The maximum key value is given by MAXKEY 4 14 1 10 1 1 100 0 1 4040 Suppose the symbol values are as follows for the storage of a particular envelope CASE 2 GROUP 3 NODE 35 The key evaluation for this data would be as follows KEY 35 0 3 1 100 04 1 2 1 100 0 1 10 1 1 35 202 1010 1247 It is clear that there is therefore one unique key value for each combination of the values of the symbols as long as each value stays within the specified range The following should be noted once a keying system is defined it may not be changed without the risk of overwriting all previously stored envelopes so care should be taken to ensure that the keying system is correctly defined at the start particularly that the ranges are large enough for all eventualities the keying system should therefore generally be the same between different PANEL SUITE runs on the same structure the reserved symbols are of great use in setting keys for all nodes across a set all sets etc and should be included in the key definition where possible The above example is a very simple use of this the user defined symbols allow other parameters to be used to govern keys such as loadcase superelement number etc the key system defined in PANEL ENVELOPE should generally be the same as that defined in PANEL CHECK to allow the required envelopes to be recovered by using the same key calculation Contains pr
48. cks Examples LIST INPUT DATA ON LIST INPUT DATA OFF Description The LIST INPUT DATA instruction controls whether data is listed in expanded form that is with labelling to explain the meaning of each number This is distinct from the input echo controlled by the ECHO instruction which merely echoes the input character for character LIST INPUT DATA with no following ON or OFF is equivalent to LIST INPUT DATA ON By default if no LIST INPUT DATA instruction is used the expanded listing is on The expanded listing may be switched on and off in different parts of the input file as required Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 41 Panel Check User Manual Command Formats Command LIST REFERENCE DATA Syntax LIST REFERENCE DATA Applicable to Ultimate strength checks Serviceability checks Fatigue checks Description The LIST REFERENCE DATA instruction causes a table to be printed of the current reference data i e only taking into account instructions preceding the LIST REFERENCE DATA instruction This command and LIST STIFFENER DATA are used most commonly to tabulate a list of input data immediately prior to a DO CHECKS instruction and therefore provide a user flexible check on the data provided Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 42 Panel Check User Manual Command Formats
49. classes of nodes will be checked see ANALYSE NODE CLASSES instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 17 Panel Check User Manual Command Formats Command DRAUGHT INCREASE Syntax DRAUGHT INCREASE dincl dinc2 dinc3 dinc4 Applicable to Ultimate strength checks Serviceability checks Example DRAUGHT INCREASE 5 1 4 3 2 7 1 3 Description The DRAUGHT INCREASE instruction gives the increase in the vessel s draught associated with the various extreme waves being considered These increases in draught will correspond to changes in the vessel s configuration associated for example with its survival as opposed to operating load cases Note that the values given are the difference increase between the actual draught and the nominal draught not the total draught All the input values must be given in metres Up to four draught increases may be specified The one to be used is selected by the wave parameter in the STRENGTH CHECK or SERVICE CHECK instruction See also the ORIGIN and WATER DEPTH instructions Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 18 Panel Check User Manual Command Formats Command ECHO Syntax ECHO ON OFF Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples ECHO ECHO OFF Description The ECHO instruction control
50. d that the KEY RANGES instruction immediately follow the KEY FIELDS instruction To recall a set of envelopes etc from backing file the KEY FIELDS and KEY RANGES instructions should relate to the same keying system that was used to store the results in PANEL ENVELOPE The use of the PANEL keyed filing system is described more fully in Section 4 9 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 39 Panel Check User Manual Command Formats Command gt KEY RANGES Syntax KEY RANGES minl maxi min2 max Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples KEY RANGES 1 20 0 100 KEY RANGES 1 99 1 9000 0 8 Description The KEY RANGES instruction specifies the possible range of values for each of the fields defined on the corresponding KEY FIELDS instruction The minimum and maximum values of the fields are defined in the same order as the fields in the KEY FIELDS instruction This command should generally be identical to the corresponding command used in PANEL ENVELOPE The use of the keyed filing system is more fully described in Section 4 9 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 40 Panel Check User Manual Command Formats Command LIST INPUT DATA Syntax i LIST INPUT DATA ON OFF Applicable to Ultimate strength checks Serviceability checks Fatigue che
51. diaries and affiliates Panel Check User Manual Update Sheet for Version 12 April 2009 Modifications The following modifications have been incorporated Section Page s Update Addition Explanation All All Update Conversion to Microsoft Word format 3 4 3 02 3 03 Update Unsupported platforms removed 3 5 3 04 Update Unsupported platforms removed 4 1 4 01 Update Unsupported platforms removed Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates Panel Check User Manual Table of Contents TABLE OF CONTENTS by INTRODUCTION seenen tances recta atime pyeetesarantis diet E Sutde g 1 1 2 PROGRAM DESCRIPTION seinieni iian einasi iai i aana DA Te 2 1 21 gt OVERVIEW OFTHE PANEL SUITE ai e a iar aa a EER aes 2 1 2 2 PROGRAM SCOPE e i e RE e E A E E A KEE E a R 2 2 2 3 SELECTION AND CLASSIFICATION OF INSPECTION POINTS 2 2 37 RUNNING THE PROGRAM vscncttis essencinustelt aaia a a e a ia A aS 3 1 3 INTRODUCTION e a a aar a E A EE A EARS 3 1 32 CHANGED INPUT STREAMS a a RA A AA A EE ENRE Na 3 1 3 3 INPUT AND OUTPUT CHANNELS esesssssesessesessrsesescertntssssssessssesessenesesreeenisersseseses 3 1 3 4 BATCH FILES insonini iiinn o E AE a E E A ESS Eies 3 2 As DATA PREPARATION igenre a a TAR a Nai 4 1 Al INTRODUCTION iioa ia n E TA R AE E O ES 4 1 AZ O H IN EEE E E E 4 1 43 SIGN CONVENTION AND AXFS esscesussaapticatnrdieeukttnunient mapanysreatiaeenlsudavin tal 4 1 44
52. directions of the imperfections are known in advance they may be specified as positive or negative A further option is to take the imperfection direction as being in the worst direction for any particular load case This is obtained by the DEFECTS WORST WORST instruction If no DEFECTS instruction is used the default is DEFECTS BOTH BOTH Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 14 Panel Check User Manual Command Formats Command DETERMINISTICS Syntax DERMINISTICS ON OFF Applicable to Fatigue checks Examples DETERMINISTICS ON DETERMINISTICS OFF Description The DETERMINISTICS instruction is used to switch deterministic fatigue calculations on or off The initial default is deterministic fatigue checking on DETERMINISTICS with no following ON or OFF is equivalent to DETERMINISTICS ON Spectral fatigue checking is controlled separately by the SPECTRAL instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 15 Panel Check User Manual Command Formats Command DISCONTINUITY Syntax DISCONTINUITY switch xlplat Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example DISCONTINUITY 1 50 0 Description The DISCONTINUITY command is used to specify that the plate is discontinuous on one side of the stiffener and to give the distance from the stiffener centr
53. dth factors for section property calculations to DnV rules Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 2 3 Program Description Panel Check User Manual STRUCTURAL MODEL Moon ASY SARSY NYS ANS S 4 oy FE ANALYSIS SYSTEM BACKING FILES FROM FE SYSTEM GEOMTRIC amp STRESS DATA PANEL CHECK RESULTS ENVELOPE BACKING FILE PANEL ENVELOPE ENVELOPE a i OVAN OAOA CEA USE OF PANEL PROGRAM 1 FIGURE 2 1 2 4 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates Panel Check User Manual Program Description j NY YN FIGURE 2 2 1 ORTHOGONALLY STIFFENED PANEL Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 2 5 Panel Check User Manual Program Description PANEL CHECK Page 2 User Manual AYVONNOS QANSSSILSNN nD agi 1m STIFFENED BOUNDARY STIFFENED BOUNDARY AYVONNOd GANSSSILSNNA FIGURE 2 3 1 STIFFENED PANEL CLASSIFICATION FIGURE 2 3 1 STIFFENED PANEL CLASSIFICATION Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 2 6 Panel Check User Manual Running the Program 3 RUNNING THE PROGRAM 3 1 3 2 3 3 INTRODUCTION PANEL CHECK operates by taking data from a text file called the data file
54. e line to the edge of this discontinuity PANEL will thereafter evaluate section properties with due allowance for this reduced effective width of plate The default if no DISCONTINUITY instruction is used is identical to using a DISCONTINUITY 0 0 0 instruction i e that the plating is continuous on both sides of the stiffener The switch data item is set to 1 if a hole on one side of the stiffener is to be taken into account or to 0 if the plating is continuous The xIplat data item is the remaining width of plating from the stiffener web centre line to the edge of the hole in millimetres Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 16 Panel Check User Manual Command Formats Command DO CHECKS Syntax DO CHECKS Applicable to Ultimate strength checks Serviceability checks Fatigue checks Description The DO CHECKS instruction causes the selected checks to be performed on the currently selected nodes Different types of checks are selected by the STRENGTH CHECK SERVICE CHECK and FATIGUE CHECK instructions at least one of which must appear before the DO CHECKS instruction for it to have any effect All the data in the file appearing before the DO CHECKS instruction controls how the checks are performed Following data has no effect Only nodes selected by SELECT commands back to and including the last CLEAR SELECT instruction will be considered Only active
55. e non linear P delta behaviour of plates and stiffeners Stresses from these effects are combined with the linear nodal values for serviceability checks For strength checks only the reference values are used Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 61 Panel Check User Manual Command Formats Command REFERENCE NODE NUMBER Syntax REFERENCE NODE NUMBER node class Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples REFERENCE NODE NUMBER 100 REFERENCE NODE NUMBER 55 3 Description The REFERENCE NODE NUMBER instruction is used to indicate the number of the reference node being used and its class This number will be printed on all results tables If the reference node s class is omitted or given as zero it will be assumed to have the same class as specified for the node itself on the CLEAR SELECT and SELECT instructions Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 62 Panel Check User Manual Command Formats Command REFERENCE NODE POSITION Syntax REFERENCE NODE POSITION GLOBAL LOCAL x y z Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples REFERENCE NODE POSITION LOCAL 10 000 20 000 50 000 REFERENCE NODE POSITION GLOBAL 23 432 18 111 4 321 Description The REFERENCE NODE POSITION instruction is used to give the
56. e of a panel is straight or not It is input in degrees Element edges within angtol of being straight will be considered as panel edges Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 84 Panel Check User Manual Command Formats Command SYMBOL VALUE Syntax SYMBOL VALUE name value Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example SYMBOL VALUE POSITION 4 Description The SYMBOL VALUE instruction varies the value of a symbol used in storing or retrieving results It takes the same data as the NEW SYMBOL instruction The symbol name must have been previously defined in the data file with a NEW SYMBOL instruction Note that the value of the symbol must be integer and should not overlap the range defined for it in a KEY RANGES instruction Refer to the description of the NEW SYMBOL instruction for more information Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 85 Panel Check User Manual Command Formats Command TITLE Syntax TITLE description Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example TITLE GBS DECK ASSESSMENT DECK TRANSITION Description The TITLE instruction is used to specify a title which will be included in the heading of each page of tabular output The title may be up to 80 characters long includin
57. e range 1 to 8 inclusive indicating the classes to be analysed Classes not listed will not be checked These instructions are not cumulative and apply to succeeding DO CHECKS instructions until the next ANALYSE NODE CLASSES instruction See also the SELECT instruction which is used in conjunction with this instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 3 Panel Check User Manual Command Syntax Applicable to Examples Description Command Formats AQWA REFERENCE AQW A REFERENCE COMBINATIONS ENVELOPES casel case2 Ultimate strength checks Serviceability checks Fatigue checks AQWA REFERENCE ENVELOPES 1 2 AQWA REFERENCE COMBINATIONS 3 5 8 The AQWA REFERENCE instruction gives reference numbers relating to an AQWA analysis to allow PANEL to retrieve water pressures which it may then use to calculate stiffener and plate forces The AQWA REFERENCE instruction is not available at present Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 4 Panel Check User Manual Command Formats Command CALCULATE STIFFENER FORCES Syntax CALCULATE STIFFENER FORCES Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example CALCULATE STIFFENER FORCES Description The CALCULATE STIFFENER FORCES instruction indicates that the forces and moments in stiffeners are to be
58. efault value of 9 81 m s is usually acceptable Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 35 Panel Check User Manual Command Formats Command GROUP Syntax GROUP number Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example GROUP 23 Description The GROUP instruction or its synonym the SET instruction specifies the group or set number used in the stress analysis for the area being analysed This directs the program to locate the correct stresses when post processing results from a stress analysis system Otherwise the group number is required for identification purposes only Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 36 Panel Check User Manual Command Formats Command HOLE SCFS Syntax HOLE SCFS number scfs scfp scfsp Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example HOLE SCFS 1 2 3 3 2 2 2 Description The HOLE SCFS instruction is used to specify additional stress concentration factors SCFs relating to the presence of holes in the plate Up to 24 holes or 24 locations around a smaller number of holes in the plate may be considered and are referenced by the value of hole number Three SCFs are required corresponding to the three plate stress directions s is parallel to the stiffener direction p
59. es 5 54 Panel Check User Manual Command Formats Command ORIGIN Syntax ORIGIN x yz Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example ORIGIN 2 000 40 000 10 333 Description The ORIGIN instruction specifies the location of the origin of the coordinate system used in the stress analysis in the PANEL axis system Together with the TRANSFORMATION MATRIX instruction it defines the relationship between the two axis systems If the ORIGIN instruction is not used it will be assumed that the two coordinate systems have coincident origins This is equivalent to an ORIGIN 0 0 0 instruction The X and Y axes of the PANEL axis system lie in the plane of the mean water level The Z axis is to the depth below mean water level and corresponds to the WATER DEPTH instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 55 Panel Check User Manual Command Formats Command PASS Syntax PASS flagl flag2 flag3 flag4 flag5 flag6 flag flag8 Applicable to Fatigue checks Example PASS 10000111 Description The PASS instruction is used to control the locations at which fatigue analysis is performed The locations are 1 top of stiffener flange 2 bottom of stiffener flange 3 top of web 4 bottom of web 5 top of plate 6 bottom of plate 7 web to flange weld 8 web to plate weld If a flag is set to
60. g embedded blanks It may be changed several times during the run if required It is not necessary to include node etc identification in the title as this is automatically written when appropriate Hence the title should be used to indicate the structure and its location within the global structure as well as identifying the variant of the design being considered The DATE instruction may also be used for run identification as this causes the current or other date to be written with the title If no TITLE instruction is used a blank title line will be printed Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 86 Panel Check User Manual Command Formats Command TRACE Syntax TRACE levell level2 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example TRACE 2 20 Description The TRACE instruction is used to switch tracing facilities in the PANEL program on or off It is only rarely used when it is necessary to understand precisely what calculations PANEL has performed in producing its output The TRACE instruction causes a large amount of output to be produced and should only be used under the guidance of Century Dynamics Limited Two trace levels are specified The meanings of these will be notified when necessary Trace is cancelled with the instruction TRACE 0 0 Contains proprietary and confidential information of ANSYS Inc
61. ghts in the FATIGUE WAVE HEIGHTS instruction Wave periods must be given in seconds Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 33 Panel Check User Manual Command Formats Command FATIGUE WA VE PRESSURE FACTORS Syntax FATIGUE WAVE PRESSURE FACTORS STATIC DYNAMIC pfl pf2 Applicable to Fatigue checks Example FATIGUE WAVE PRESSURE FACTORS STATIC 1 2 1 2 Description The FATIGUE WAVE PRESSURE FACTORS instruction is used to list factors to be applied to static or dynamic pressures calculated for each fatigue wave The factors apply to each height period and cannot be varied by direction Up to twelve pressure factors can be supplied and should be consistent with all the other FATIGUE WAVE data If no FATIGUE WAVE PRESSURE FACTORS instruction is used the pressure factors all default to 1 0 See also the EXTREME WAVE PRESSURE FACTORS instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 34 Panel Check User Manual Command Formats Command GRAVITY Syntax GRAVITY g Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example GRAVITY 9 806 Description The GRAVITY instruction is used to specify the acceleration due to gravity The acceleration is measured in metres per second squared In general it will not be necessary to use this instruction as the d
62. hecks Examples STIFFENER TYPE 10 STIFFENER TYPE 23 29 Description The STIFFENER TYPE instruction is used to specify the type of stiffeners employed on the top and bottom faces of the panel being checked The stiffener types tops and bots refer to the stiffener type defined on an earlier STIFFENER DATA instruction and may therefore be in the range 0 to 50 If blank or zero no stiffener is assumed on the corresponding plate face Thus a command of STIFFENER TYPE 0 defines an unstiffened plate Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 79 Panel Check User Manual Command Formats Command STOP Syntax STOP Applicable to Ultimate strength checks Serviceability checks Fatigue checks Description The STOP instruction is identical in effect to the END instruction described above It should be the last instruction in every data file For convenience the END instruction is provided as an alternative to STOP Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 80 Panel Check User Manual Command Formats Command STRENGTH CHECK Syntax STRENGTH CHECK OFF ON wave Applicable to Ultimate strength checks Examples STRENGTH CHECK OFF STRENGTH CHECK ON 4 Description The STRENGTH CHECK instruction is used to specify that ultimate strength checks are to be performed at subsequent DO CHECKS instruct
63. here is as described above a limit of eighty characters for any line of data Some instructions require more data than can be easily be fitted within this limit and so allow the use of continuation lines A continuation line is denoted by a plus character in the first column of the line Comment lines may be included before each continuation line Individual data fields may not be split over two separate lines so for example INSTRUCTION 12 34 Would be interpreted as INSTRUCTION 12 34 not as INSTRUCTION 1234 Where continuation lines are allowed this is clearly demonstrated in the description of the command SUMMARY FILE COMMENTS The comments described in the previous section have no effect beyond being listed in the main data echo However comments may also be included for echoing in the summary output file Such comments are indicated by a hash sign in the first column of a date line These comments are copied to the summary file and to the main data echo if appropriate but are otherwise ignored The user also has control over the headings for the summary file An asterisk results in a new page and new column headings Any comments following the will also be copied to the summary file Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 3 Panel Check User Manual Data Preparation 4 9 These facilities give the user considerable control over the for
64. in corresponding to the minimum nodal load envelope The dnvrad parameter specifies the radius of the curved panel when stiffened longitudinally When the panel is stiffened circumferentially this parameter is not specified but the radius of the circumferential stiffener specified using the PLATE DIMENSIONS command is used in its place for the DnV checks Both nbmax and nbmin default to zero when they are not specified In plane web bending stresses arising from the difference between nodal and reference node axial stresses in the direction of the stiffeners are added internally by the program to whatever value of nbmax or nbmin is specified Hence the total effective in plane bending stresses are given by sbmax nbmax Nnmax Nrmax t sbmin nbmin Nnmin Nrmin t Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 57 Panel Check User Manual Command Formats where nbmax nbmin are the values specified using the PLATE BUCKING command Nnmax Nnmin represents max min axial node stress in panel in stiffener direction Nrmax Nrmin represents max min axial reference node stress in panel in stiffener direction t thickness of the plate panel web Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 58 Panel Check User Manual Command Formats Command Syntax Applicable to Example Description
65. ing files The exact meaning of the entry number depends on the particular stress analysis system but in general relates to possible multiple results stored for a single node for a particular load case The ENTRY instruction has no effect if PANEL is used in stand alone mode Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 21 Panel Check User Manual Command Formats Command ENVELOPE NAME Syntax ENVELOPE NAME description Applicable to Ultimate strength checks Serviceability checks Example ENVELOPE NAME SURVIVAL CONDITION Description The ENVELOPE NAME instruction is used to associate a description with the envelope being analysed This description will appear in the main output when referring to the envelope The envelope description may be up to thirty two characters long including embedded blanks When used as a post processor to an FE system the envelope name given by this instruction will overwrite any envelope name picked up from the backing files In the stand alone mode there is no such default envelope name Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 22 Panel Check User Manual Command Formats Command ENVELOPE NUMBER Syntax ENVELOPE NUMBER number Applicable to Ultimate strength checks Serviceability checks Example ENVELOPE NUMBER 3 Description The ENVELOPE NUMBER instr
66. ions until overridden by a STRENGTH CHECK OFF instruction Optionally an extreme wave number may be specified to select the wave used for pressure calculations STRENGTH CHECK with no following data is equivalent to STRENGTH CHECK ON If no STRENGTH CHECK instruction is used ultimate strength checks will not be performed Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 81 Panel Check User Manual Command Formats Command SUBROUTINE TRACE Syntax SUBROUTINE TRACE ON OFF Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples SUBROUTINE TRACE ON SUBROUTINE TRACE OFF Description The SUBROUTINE TRACE instruction is purely a debugging tool When subroutine trace is on entry into and exit from each subroutine is logged with a one line message in the main output file This can result in a large amount of output and is of no use to the ordinary user SUBROUTINE TRACE with no ON or OFF specified is equivalent to SUBROUTINE TRACE ON Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 82 Panel Check User Manual Command Formats Command SUPER ELEMENT Syntax SUPER ELEMENT data Applicable to All limit state checks Example SUPER ELEMENT CAOO T113 Description The SUPER ELEMENT instruction allows the user to specify the FE analysis model that is to be used for the rec
67. is perpendicular to the stiffener direction and sp is the in plane shear stress The final stress is calculated stress scf stress stressp SCfp stress Stresss SCfsp stresssp Hole SCFs will be applied unless the holeflag in the last USE instruction before a DO CHECKS is set false i e set to a value of 0 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 37 Panel Check User Manual Command Formats Command IMPERFECTIONS Syntax IMPERFECTIONS tolr wmu sres pres Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example IMPERFECTIONS 5 3 33 40 0 40 0 Description The IMPERFECTIONS instruction is used to specify data about workmanship residual stresses due to welding etc The data items have the following meanings tolr plate fabrication imperfection including a partial safety factor on tolerance measured in millimetres Defaults to 4 8 mm wmu quality of workmanship defined according to Table 23 lc in Merrison IDWR This is only applicable to ultimate strength and serviceability checks sres residual stress parallel to the stiffener axis in newtons per square millimetre or equivalently meganewtons per square metre Defaults to 0 1 times the yield stress pres residual stress perpendicular to the stiffener axis in newtons per square millimetre or equivalently meganewtons per square metre
68. item is the S N classification for stresses at angle A 90 to the stiffener direction The third item is the angle A in degrees For most analyses angle A is 0 Valid S N classifications are B C D E F F2 G and W Note that S N data must be given for all eight node classes even if the checking of some of these has been disabled with the ANALYSE NODE CLASSES instruction described above There are no defaults for this instruction During the run individual rows i e data for a single node class may be overridden by use of the S N CLASSIFICATIONS instruction described below Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 13 Panel Check User Manual Command Formats Command DEFECTS Syntax DEFECTS stiffener plate Applicable to Fatigue checks Examples DEFECTS NEGATIVE DEFECTS WORST BOTH Description The DEFECTS instruction controls the checking of straightness and flatness imperfection directions during fatigue calculations Separate specifications may be made for stiffener defects and for plate defects Each of the options may be POSITIVE or NEGATIVE or BOTH or WORST The calculation of the fatigue life for hogging or sagging stiffener straightness imperfections with hogging or sagging plate flatness imperfections would require four separate fatigue analyses and results from the DEFECTS BOTH BOTH instruction Alternatively if the
69. lect or cancel the calculation of set envelopes in preference to nodal envelopes Set envelopes are envelopes of maximum and minimum values of all of a particular node class in a given set If a check on the set envelope shows that the plating is satisfactory it is not usually necessary to perform checks on individual nodes Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 70 Panel Check User Manual Command Formats Command S N CLASSIFICATIONS Syntax S N CLASSIFICATIONS class csr1 cprl rotl cpr8 rot8 Applicable to Fatigue checks Example S N CLASSIFICATIONS 2 F2 FODFOD F20DF20FF OFEODWODWO Note the instruction and data must appear on a single line within the input data Description The S N CLASSIFICATIONS instruction is used to override any single row i e data for one node class of S N classification data specified in the DEFAULT S N CLASSIFICATIONS instruction Refer to the description of DEFAULT S N CLASSIFICATIONS instruction for an explanation of the meaning of csr cpr and rot Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 71 Panel Check User Manual Command Formats Command SIGNS Syntax SIGNS factns factnp factnsp factm facts Example SIGNS 1 0 1 0 1 0 1 0 1 0 Description The SIGNS command may be used to change the sign of selected load components obtained from the F
70. led by the ANALYSE NODE CLASSFS instruction then selecting a class forces the following Chosen class Node Classes Checked DN oo v NYDN WN rR YWNNF WN HE The ANALYSE NODE CLASSFS instruction controls whether classes specified with a CLEAR SELECT instruction are actually checked or not Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 7 Panel Check User Manual Command Formats Command CODE CHECK Syntax CODE CHECK ON OFF Applicable to All Checks Examples CODE CHECK CODE CHECK OFF Description The CODE CHECK command allows code checking to be enabled or disabled for succeeding DO CHECKS instructions throughout the data file CODE CHECK ON or CODE CHECK with no arguments enables code checking the default condition at program start up CODE CHECK OFF disables this checking and is synonymous with DATA CHECK ONLY With code checking switched off the program will only perform data checks when a DO CHECKS instruction is reached and will then proceed to input further data Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 8 Panel Check User Manual Command Formats Command COMBINATION Syntax COMBINATION number Applicable to Fatigue checks Example COMBINATION 23 Description The COMBINATION instruction indicates the combination to be used for estimating static stresses in fatig
71. ll therefore experience negative tensile stress under positive bending The sign of shear in both the stiffener web and the plate is not significant in the analysis Plate stresses and loads are referred to in the PANEL SUITE as being in the stiffener direction or perpendicular to it Thus the subscripts s and p are used to denote the direction of these loads Refer to Figure 4 3 1 for details FORMAT OF INSTRUCTIONS Each instruction consists of a keyword generally followed by additional data which may be numeric or text Each instruction starts on a new line and the items of data are separated from the instruction keyword and from each other by blank spaces Each instruction line must be eighty characters or less in length including embedded blank characters For some instructions which require substantial amounts of data continuation lines may be used as described below Note that upper case letters are used throughout for keywords both for instructions and in the data ABBREVIATION OF INSTRUCTIONS Most of the instruction keywords are quite long generally comprising several words separated by dashes such as DATA CHECK ONLY Although it is recommended that the instruction be entered in full as this renders most data files reasonably legible without extra comments the keyword may be abbreviated subject to certain conditions the first letter all dashes and the letters immediately following dashes must be included the
72. location of the reference node in either the coordinates used by the stress analysis system indicated by LOCAL or the coordinates used by PANEL indicated by GLOBAL If LOCAL is specified the reference node s coordinates will be transformed to the PANEL coordinate system by using the transformation data supplied in previous ORIGIN and TRANSFORMATION MATRIX instructions The global position of the reference node determines the value of any local water pressure calculated by the PANEL program but is not important if water pressures are included in the input data Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 63 Panel Check User Manual Command Syntax Applicable to Example Description Command Formats REFERENCE NODE STRESS CONCENTRATION FACTORS REFERENCE NODE STRESS CONCENTRATION FACTORS scfs scfp scfsp Ultimate strength checks Serviceability checks Fatigue checks REFERENCE NODE STRESS CONCENTRATION FACTORS 1 2 1 1 1 0 The stresses in plating adjacent to a stiffener at the reference node are calculated from the applied forces and then factored by the SCF vector The final stress is calculated as stress scf stress stress scf stress stress scf stress p P P Note that this is distinct from the load redistribution facility see the LOAD REDISTRIBUTION REFERENCE NODE instruction in that load redistribution occurs before the st
73. lt prefix gt lt filename gt SIN The extension SIN signifies a NORSAM formatted direct access file The CONCRETE suite of programs can work only with this file type The SESAM system uses streams 10 11 and 12 for internal file handling These streams as well as streams 5 6 51 52 and 53 should not be used by the CHANGE INPUT STREAM command Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates C 3
74. mand WEB BUCKLING Syntax WEB BUCKLING restraint sbmax sbmin Applicable to Ultimate strength checks Example WEB BUCKLING RESTRAINED WEB BUCKLING UNRESTRAINED 1 0 0 5 Description The WEB BUCKLING command is used to define the restraint condition of the panels and to specify maximum minimum in plane web bending stresses restraint panel edge restraint condition which can be defined either as RESTRAINED or UNRESTRAINED sbmax is used to specify the maximum in plane web bending load MNm h corresponding to the maximum nodal load envelope sbmin is used to specify the minimum in plane web bending load MNm corresponding to the minimum nodal load envelope When the WEB BUCKLING command is used as in the first example the values of sbmax and sbmin default to zero In plane web bending stresses arising from the difference between nodal and reference node axial stresses in the direction of the stiffeners are added internally by the program to whatever value of sbmax or sbmin is specified Hence the total effective in plane bending stresses are given by sbmax sbmax Nnmax Nrmax t sbmin sbmin Nnmin Nrmin t where sbmax sbmin are the values specified using the WEB BUCKLING command Nnmax Nnmin represents max min axial node stress in panel in stiffener direction Nrmax Nrmin represents max min axial reference node stress in panel in stiffener direction t thickness of the pl
75. mat of the summary file so that report quality output can be produced RECOVERY OF ENVELOPES When used as a post processor to PANEL ENVELOPE PANEL CHECK recovers its envelopes from backing file The PANEL suite uses a keyed filing system for storage of envelopes on backing file This keyed filing system is a flexible system that allows the user full control over the storage of results and later retrieval by PANEL CHECK However due to the flexibility the system requires careful explanation to fully describe its capabilities That explanation is provided here Each envelope produced by PANEL ENVELOPE may be stored on backing file for subsequent access by PANEL CHECK Panel node envelopes will be produced per node in a set and per class over an entire set Class envelopes are distinguished by a node number of zero Global envelopes may also be stored Each envelope stored by the program is allocated a key so that it can be recalled directly by PANEL CHECK Instead of the user specifying this key directly PANEL ENVELOPE will internally calculate the key given a user specified key definition The same definition should be provided in PANEL CHECK to access these envelopes Each key is defined by a set of fields Up to fifteen are allowed currently Each field is allocated a symbol and a range by the KEY FIELDS and KEY RANGES instructions The symbol may be a user defined symbol see the NEW SYMBOL and SYMBOL VALUE commands which can ha
76. o be used for future data input Input may be redirected as required to other files or returned to an original file as required This is a useful facility that allows repetitive data to be located in separate files and accessed when needed from several different runs Refer to the CHANGE INPUT STREAM command in Section 5 0 for more details INPUT AND OUTPUT CHANNELS Several units streams or channels are used by the program for input output These are listed here as they should not be used for CHANGE INPUT STREAM input file redirection Unit 5 data input Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 3 1 Panel Check User Manual Running the Program 3 4 Unit 6 main output Unit 52 summary file Units 1 and 99 screen display on some computers When an FE package is used to provide stress and geometry data it may use additional units Refer to the appropriate appendix for details The user should avoid redirecting input to any of the above unit numbers BATCH FILES A convenient method of running the program is to create a batch file that includes the necessary instructions for program execution and perhaps echoes back information on the program version and data files that are in use A sample batch file is given below This example includes echoing of data to the screen checking to see if a plot file is specified and running the program as required Output and
77. o follow standard engineering practice namely stiffener dimensions and thicknesses in millimetres mm plate dimensions and thickness in millimetres mm coordinates and water depth in metres m stresses and pressures in MNm or Nmm forces per unit width in MNm moments per unit width in MNm per metre MN times in seconds s angles in degrees deg When obtaining results from an FE system via PANEL ENVELOPE the data will have the units of the FE analysis PANEL CHECK works internally in units of Newtons and millimetres The UNITS card may be used to change the analysis units to the PANEL CHECK system SIGN CONVENTION AND AXES The entire PANEL suite including PANEL CHECK uses a compression positive tension negative sign convention for all stresses This system is used because panel buckling is the dominant criteria and compressive stresses are therefore the most important The user should be careful that the correct sign of stress is used especially when using results from an FE system Refer to the FE appendix for details PANEL CHECK also has a sign convention for bending moments A positive moment on Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 1 Panel Check User Manual Data Preparation 4 4 4 5 the stiffener plate section is one that causes positive compressive stress in the plate The stiffener flange wi
78. on are furnished by ANSYS Inc its subsidiaries or affiliates under a software license agreement that contains provisions concerning non disclosure copying length and nature of use compliance with exporting laws warranties disclaimers limitations of liability and remedies and other provisions The software products and documentation may be used disclosed transferred or copied only in accordance with the terms and conditions of that software license agreement ANSYS Inc is certified to ISO 9001 2008 U S Government Rights For U S Government users except as specifically granted by the ANSYS Inc software license agreement the use duplication or disclosure by the United States Government is subject to restrictions stated in the ANSYS Inc software license agreement and FAR 12 212 for non DOD licenses Third Party Software The products described in this document contain the following licensed software that requires reproduction of the following notices Formula One is a trademark of Visual Components Inc The product contains Formula One from Visual Components Inc Copyright 1994 1995 All rights reserved See the legal information in the product help files for the complete Legal Notice for ANS YS proprietary software and third party software If you are unable to access the Legal Notice please contact ANSYS Inc Published in the U S A Contains proprietary and confidential information of ANSYS Inc and its subsi
79. ontains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 66 Panel Check User Manual Command Formats Command SELECT Syntax SELECT class nodel node Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example SELECT 3 54 83 Description The SELECT instruction is used to specify which nodes are to be checked at the next DO CHECKS instruction Each SELECT instruction specifies a node class between 1 and 4 and a list of nodes in that class to be checked SELECT instructions are cumulative CLEAR SELECT instructions are identical in effect except that they are not cumulative and all previous selections are cancelled Hence a CLEAR SELECT instruction will usually follow a DO CHECKS instruction If the appropriate classes are enabled by the ANALYSE NODE CLASSES instruction then selecting a class forces the following Chosen class Node Classes Checked nN ioe v NYDN BWNR YAN BRWNH The ANALYSE NODE CLASSES instruction controls whether classes specified with a SELECT instruction are actually checked or not Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 67 Panel Check User Manual Command Formats Command SERVICE CHECK Syntax SERVICE CHECK OFF ON extreme wave Applicable to Serviceability checks Examples SER VICE CHECK OFF SER VICE CHECK ON 3 Description
80. oprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 5 Panel Check User Manual Data Preparation however it is possible to change key structures as long as care is taken In particular it is possible to use a single key field to allow a key to be defined directly via the SYMBOL VALUE command Experienced users may attempt this Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 6 Panel Check User Manual Data Preparation Np Nsp Ns Np FIGURE 43 1 NOMENCLATURE AND DIRECTION OF LOADS Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 7 Panel Check User Manual Command Formats 5 COMMAND FORMATS The following pages describe the commands available within the input data file for PANEL CHECK Commands are presented on individual pages in alphabetical order The following convention is used to describe the instructions in the syntax keywords are presented in capital letters _ other text numerical data is represented by lower case words optional data is enclosed in brackets choices of keywords or data are separated by slashes a lists of data are indicated thus The logic of the repetition list is often self explanatory but may be augmented in the command description A summary of the commands available is presented in Appendix A The
81. overy of geometry and loads in subsequent limit state checks The data specified on the instruction line is very much dependent on the actual FE system in use The user should refer to the appendix appropriate to the FE system for details Some FE systems allow multiple SUPER ELEMENT entries in one data file so that the model for which stresses are recovered can be changed Once again reference should be made to the appropriate appendix A valid SUPER ELEMENT instruction must be present in the data if limit state loads are to be recovered directly from an FE system via PANEL ENVELOPE Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 83 Panel Check User Manual Command Formats Command SWEEP Syntax SWEEP angtol Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example SWEEP 30 0 Description The SWEEP instruction is used to request the program to analyse all available nodes in the relevant group Use of this instruction will generally cause a lot of information to be calculated and printed so is not recommended The SAMPLE instruction may be used to request the program to select a sample of nodes from those available for checking In general however the user will know which nodes should be investigated and will specify these with the CLEAR SELECT or SELECT instructions Angtol is an angular tolerance used when determining if an edg
82. perfections These are es Is ratio of absolute stiffener imperfection to length default 0 0018 esmin lower limit for absolute stiffener imperfection default 0 0 esmax upper limit for absolute stiffener imperfection default 18 0 er bs ratio of relative stiffener imperfection to breadth default 0 0048 ermin lower limit for relative stiffener imperfection default 3 0 ermax upper limit for relative stiffener imperfection default 36 0 The default values listed above will be used if no STIFFENER IMPERFECTIONS instruction is used The relative imperfection is the straightness imperfection relative to the stiffeners on either side of the stiffener under consideration Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 77 Panel Check User Manual Command Formats Command STIFFENER MODEL Syntax STIFFENER MODEL motype setl set2 STIFFENER MODEL motype sea offset Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples STIFFENER MODEL SMEARED STIFFENER MODEL COPLANAR 1001 STIFFENER MODEL WEB PLATE 2001 3001 STIFFENER MODEL OFFSET 1002 0 100 Description The STIFFENER MODEL command is used to specify the method of modelling employed in the FE analysis of the stiffeners used in the stiffened steel plate structure In addition it is used to define the necessary beam web and flange set numbers and the
83. resses are calculated and factored Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 64 Panel Check User Manual Command Formats Command REQUIRED LIFE Syntax REQUIRED LIFE life Applicable to Fatigue checks Example REQUIRED LIFE 50 Description The REQUIRED LIFE instruction is used to specify the required fatigue life in years for the structure This affects the allowable stresses for the required life and hence the usage factors on these stresses If no REQUIRED LIFE instruction is used a life of sixty years will be assumed Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 65 Panel Check User Manual Command Formats Command SAMPLE Syntax SAMPLE angtol Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example SAMPLE 30 0 Description The SAMPLE instruction is used to request the program to choose a representative set of nodes in the current group for investigation If all nodes are to be investigated the SWEEP instruction should be used instead If the user wishes to investigate particular nodes only the CLEAR SELECT and SELECT instructions should be used Angtol is an angular tolerance used when determining if an edge of a panel is straight or not It is input in degrees Element edges within angtol of being straight will be considered as panel edges C
84. rmitted before the run is automatically aborted By default the run is aborted at the first error The program should only be allowed to proceed beyond a severe error with a very good reason as results may not be reliable Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 47 Panel Check User Manual Command Formats Command NEW SYMBOL Syntax NEW SYMBOL name value Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example NEW SYMBOL POSITION 5 Description The NEW SYMBOL instruction is used to introduce a symbol which will be used in calculating keys for the storage and retrieval of results Each symbol name can be up to twelve characters long Up to twenty symbols may be defined Each symbol can take an integer value which defaults to zero unless specified on the NEW SYMBOL instruction This value may be varied throughout the run by using SYMBOL VALUE instructions Certain symbols are pre defined and vary automatically through the run These are ENVELOPE NODE GROUP SET CLASS Symbols only have any effect on the run if they are used in a KEY FIELDS instruction A detailed description of the PANEL keyed filing system is included in Section 4 9 Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 48 Panel Check User Manual Command Formats Command NODE COMBINATION Syntax NODE
85. s case the calculations in PANEL ENVELOPE will maintain the ASAS convention and the SIGN of the bending factor should always be negative reflecting the change from tensile positive to compression positive SYSTEM DEPENDENT COMMANDS The SUPER ELEMENT command takes on a different format when used with the SESAM interface The format of the SUPER ELEMENT card is as follows Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates C 2 Panel Check User Manual SESAM FE Interface C 5 SUPER ELEMENT prefix filename superelement Where prefix is a file prefix for the required SIF filename is the SIF filename superelement is the hierarchy reference number of the required superelement If onlyone superelement exists within the SIF this parameter is not required FILE HANDLING PANEL CHECK acts on the SESAM Interface File produced by the enhanced PREPOST program and modified by the SIF AVERAGE program to contain nodally averaged stresses for groups or sets of elements in a consistent axis system For PANEL CHECK to run this file must be present on the default disc Several SIF files may be produced for different superelements The referenced superelement SIF must be present PANEL ENVELOPE also writes results to the SIF and these may also be accessed if the file is on the current disc The file name for the SIF is created using the data on the SUPER ELEMENT command as follows
86. s the input data echo When the input data echo is enabled with the ECHO or ECHO ON instruction each line of data from the input file is copied character for character to the main output file prefixed by a sequence number giving the line s position in the input file Following an ECHO OFF instruction this output is suppressed The LIST INPUT DATA instruction described later controls the expanded data listing which prints PANEL s interpretation of each instruction as it is processed The default if no ECHO instruction is used is for no input data echo to be produced Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 19 Panel Check User Manual Command Formats Command END Syntax END Applicable to Ultimate strength checks Serviceability checks Fatigue checks Description The END instruction marks the end of the input data and must appear in every input file Any instructions following the END instruction will be ignored For convenience STOP is accepted as a synonym for END Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 20 Panel Check User Manual Command Formats Command ENTRY Syntax ENTRY number Applicable to Fatigue checks Example ENTRY 15 Description The ENTRY instruction is used for indicating an entry number to be used when retrieving stresses from a stress analysis system s back
87. st buckling of various components of the stiffened panel such as the stiffener stiffener outstands and the plate panel performs serviceability limit state calculations to determine the level of stress in each component of the structure and compares these against acceptable limits performs deterministic fatigue limit state calculations by performing cumulative damage calculations based on Miner s hypothesis This manual should be read in conjunction with the PANEL Theoretical Manual which contains details of the calculations algorithms and references used in the program The PANEL ENVELOPE User Manual will also be of assistance The PANEL suite can interface with a range of FE analysis programs such as ASAS and SESAM Both PANEL ENVELOPE and PANEL CHECK can be configured to run with any one of these programs PANEL CHECK can also be set up to run only in stand alone mode Details of the FE systems for which this version of the program is available may be found in appendices at the end of this manual Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates Introduction Panel Check User Manual Program Description 2 PROGRAM DESCRIPTION 2 1 OVERVIEW OF THE PANEL SUITE The PANEL post processing suite comprises two separate but integrated programs PANEL ENVELOPE This will produce envelopes maximum minimum ranges of load for selected locations or regions of the struct
88. strength checks Serviceability checks Example WATER PRESSURE ENVELOPE 2 5 0 7 3 8 2 Description The WATER PRESSSURE ENVELOPE instruction is used to specify the water pressures associated with a particular envelope Three pressures must be supplied the static or mean component of the water pressure wpstat and the real wpdynr and imaginary wpdyni parts of the dynamically varying component The units for water pressures are meganewtons per square metre If neither this instruction nor the WATER PRESSURE FROM AQWA instruction is used the water pressure will be calculated as the pressure due to the undisturbed incident wave When using this card an EXTREME WAVE PRESSURE FACTORS card should also be included in the data file Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 94 Panel Check User Manual Command Formats Command WATER PRESSURE FROM AQWA Syntax WATER PRESSURE FROM AQWA envelope combination reference Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example WATER PRESSURE FROM AQWA 46 2 Description This instruction sets up reference values for particular envelopes or combinations for use with AQWA program This instruction is not yet fully implemented Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 95 Panel Check User Manual Command Formats Com
89. stribution matrix will be used Load redistribution for the reference node is controlled separately by the LOAD REDISTRIBUTION REFERENCE NODE instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 44 Panel Check User Manual Command Formats Command LOAD REDISTRIBUTION REFERENCE NODE Syntax LOAD REDIS IRIBUTION REFERENCE NODE fl f2 f3 f4 f5 f6 f7 f8 9 f10 fll f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example LOAD REDISTRIBUTION REFERENCE NODE 0 90 1 0 1 0 00 0 0 1 0 9 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 Description The LOAD REDISTRIBUTION REFERENCE NODE instruction is used to specify a load redistribution matrix for the reference node The redistribution matrix will only be used if the refnodeflag on the last USE instruction before the DO CHECKS instruction is set to 1 If this flag is set to 1 but no LOAD DISTRIBUTION REFERENCE NODE instruction is used an identity null redistribution matrix will be used Load redistribution for the node being checked is controlled separately by the LOAD REDISTRIBUTION NODE instruction Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 45 Panel Check User Manual Command Formats Command MATERIAL
90. summary is useful to remind experienced users of the instruction formats but includes no description of the data Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 1 Panel Check User Manual Command Formats Command ALL Syntax ALL Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples ALL Description This instruction is used to select all nodes in a Set Group for future processing When a DO CHECKS instruction is encountered the program will scan the currently selected plate element set SET or GROUP and identify and classify all nodes on the plate This command is overwritten by the SAMPLE SELEC1 and CLEAR SELECT commands which allow other methods of node selection ALL is synonymous with SWEEP and either may be used in PANEL CHECK Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 2 Panel Check User Manual Command Formats Command ANALYSE NODE CLASSES Syntax ANALYSE NODE CLASSES class class Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples ANALYSE NODE CLASSES 3 ANALYSE NODE CLASSES 1258 Description The ANALYSE NODE CLASSES instruction is used to indicate which classes of node are to be analysed The concept of node class is described in Section 2 3 The instruction is followed by a list of class numbers in th
91. the extension DAT reference file which ends with a CHANGE INPUT STREAM instruction with no unit number specified causing processing of the run control file to be resumed Typically this file would be given the extension REF Initially input is taken from Fortran unit 5 Note that the use of CHANGE INPUT STREAM may require additional commands to be added to the command procedure for running the job to identify the file associated with each unit This command is not available for PANEL CHECK running on an APOLLO DOMAIN series computer Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 6 Panel Check User Manual Command Formats Command CLEAR SELECT Syntax CLEAR SELECT class nodel node2 Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example CLEAR SELECT 3 54 83 Description The CLEAR SELECT instruction is used to specify which nodes are to be checked at the next DO CHECKS instruction Each CLEAR SELECT instruction specifies a node class between 1 and 4 and a list of nodes in that class to be checked Unlike SELEC instructions CLEAR SELECT instructions are not cumulative and all previous selections are cancelled Hence a CLEAR SELECT instruction will usually follow a DO CHECKS instruction and may itself be followed by SELECT instruction to define a list of classes nodes for checking If the appropriate classes are enab
92. tion The STIFFENER BUCKLING command lets the user select the methods to be used in stiffener buckling checks to allow for instability caused by transverse and shear loads in the plate The transverse stress method is given by pmethod the shear stress method by spmethod Valid options for both parameters are IDWR and HARDING as described below IDWR the critical transverse elastic buckling strength Nom is derived in accordance with the theoretical manual The acting stress is derived from the numeric sum of the transverse and shear stresses in the plate if either or both methods are set to IDWR Stiffener instability is checked using combined axial and transverse coefficents HARDING transverse and shear loads in the plate are converted into equivalent transverse distributed loads using formulae by Harding The stresses that these distributed loads cause are added to existing axial and bending stresses in the stiffener plate Refer to the theoretical manual for more details Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 74 Panel Check User Manual Command Syntax Applicable to Example Description Command Formats STIFFENER DATA STIFFENER DATA stiffno FLAT dd tw STIFFENER DATA stiffno TEE dd tw b tf STIFFENER DATA stiffno ANGLE dd tw b tf STIFFENER DATA stiffno BULB dd tw ba Ultimate strength checks Serviceability checks Fatigue checks
93. to run successfully AVAILABLE ELEMENT TYPES Only the following SESAM elements are currently processed by the PANEL suite Shell and Plate Elements CSTA LQUA ILST IQQE FTRS FQUS SCT S SCQS Beam Elements TESS BEAS SECB Other element types may be present in the super element being processed but are currently ignored STRESS EXTRACTION PREPOST should be used to create load combinations for use in PANEL ENVELOPE and PANEL CHECK These combined cases and the original constituent cases are then available to the code checking programs Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates C 1 Panel Check User Manual SESAM FE Interface C 4 The PANEL suite does not handle complex load cases in the same form as SESAM Single complex cases from the analysis should be converted to separate real and imaginary cases by PREPOST so that they can be processed by SIF AVERAGE This is possible by careful use of the CREATE RESULT COMBINATION command in PREPOST Note also that the PANEL suite does not support run numbers and occurrence number of load cases Again PREPOST can be used to create load combinations that have a constant run number to avoid this restriction Once the necessary combined cases have been created SIF AVERAGE can be used to subdivide the super element into groups across which nodal averaging is valid and which can be used for identification purposes in
94. tress concentration factors defined on a HOLE SCFS instruction The default if no USE instruction is used is equivalent to USE 00 0 By default load redistribution matrices are set active although they are unity matrices until reset by the user Similarly hole SCF s are active by default but are unity until otherwise specified The USE command may be used to temporarily turn off the use of user specified matrices and factors without having to redefine them using unity values Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 90 Panel Check User Manual Command Formats Command WATER DENSITY Syntax WATER DENSITY density Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example WATER DENSITY 1025 0 Description The WATER DENSITY instruction is used to specify the density of the surrounding sea water It is not generally necessary to use this instruction as the default value of 1025 kilogrammes per cubic metre is usually acceptable Note that the density is in terms of mass per unit volume not weight per unit volume and is measured in kilogrammes per cubic metre Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 91 Panel Check User Manual Command Formats Command WATER DEPTH Syntax WATER DEPTH depth Applicable to Ultimate strength checks Serviceability checks
95. uction specifies the number of the envelope to be used for ultimate strength and fatigue calculations The envelope number refers to the envelope data in the reference data file and must be compatible with the data specified in the input data to the PANEL ENVELOPE program which will normally have stored the data An envelope number is required even when PANEL is running in the stand alone mode Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 23 Panel Check User Manual Command Formats Command EXTREME WAVE DATA Syntax EXTREME WAVE DATA number period height dinc psfs psfd Applicable to Ultimate strength checks Serviceability checks Example EXTREME WAVE DATA 4 10 5 24 0 2 3 1 3 1 3 Description The EXTREME WAVE DATA instruction defines the properties of the wave associated with an envelope The first item of data number must be in the range 1 to 4 inclusive and is the reference number of the extreme wave or envelope Succeeding data lists the wave s period in seconds height in metres the draught increase associated with the extreme wave dinc in metres and optionally partial safety factors for static stresses psfs and for dynamic stresses psfd Up to four extreme waves may be specified The wave to use is selected by the STRENGTH CHECK or SERVICE CHECK instructions Note that some of this data will supersede or be superseded by similar d
96. ue checks Stresses and forces from this combination will be retrieved from the stress analysis system backing files When PANEL is used standalone with previous stress analysis this combination number should be provided only for identification purposes if a fatigue analysis is required Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 9 Panel Check User Manual Command Formats Command i DATA CHECK ONLY Syntax DATA CHECK ONLY Applicable to Ultimate strength checks Serviceability checks Fatigue checks Example DATA CHECK ONLY Description The DATA CHECK ONLY instruction controls whether DO CHECKS instructions are ignored or acted upon If the DATA CHECK ONLY instruction is used succeeding DO CHECKS instructions are ignored although all other instructions are still effective DATA CHECK ONLY is identical to CODE CHECK OFF Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 5 10 Panel Check User Manual Command Formats Command DATE Syntax DATE date Applicable to Ultimate strength checks Serviceability checks Fatigue checks Examples DATE DATE 11 SEP 2007 15 44 Description The DATE instruction is used to request that the current date is written on the top left hand corner of each page of printed output By default no date is written This instruction is generally used with no following dat
97. ure across selected load cases These envelopes will be used for strength and serviceability checks in PANEL CHECK PANEL CHECK This will perform code checks on selected locations or regions of the structure Strength serviceability and fatigue checks may be performed selectively using loads provided by the user or transferred by PANEL ENVELOPE Both of the above programs will interface with a finite element analysis via the binary interface files produced by the FE system in use The suite of programs may be used in two modes of operation PANEL CHECK may be used as a stand alone program accepting all input data and loading from the user Strength serviceability and fatigue checks may be performed There is no interface with any PE system when operating in this mode PANEL CHECK may interface with the PE system via the PANEL ENVELOPE program PANEL ENVELOPE should be run to scan areas of the structure and identify locations and loads for subsequent checking PANEL CHECK may then access the loading stored and perform strength and serviceability checks as required This facility is particularly useful for rapidly producing checks on large areas of a structure Figure 2 1 1 shows the last mode diagrammatically This figure illustrates the course of post processing for an FE analysis When configured as a post processor to a finite element system via PANEL ENVELOPE PANEL can derive combined plate stiffener stresses directly from the internal
98. ve a user defined value Alternatively the symbol in any field may be one of the following NODE GROUP SET CLASS ENVELOPE These symbols are automatically updated by the program for a given node set class etc when each envelope is stored The range of a field must be defined by the user and must enclose all possible values that the symbol may take Note that the range for a NODE field must start at zero as the symbols will be given the value of zero for a class envelope Similarly the GROUP and SET and symbols may also be zero if global envelopes are used For a given key definition the maximum key that can be produced will be the product of all of the individual key ranges i e MAXKEY max min 1 max2 ming 1 max min 1 where max and min define the ranges of each of 1 to n keys Contains proprietary and confidential information of ANSYS Inc and its subsidiaries and affiliates 4 4 Panel Check User Manual Data Preparation The actual value of a given key will depend on the current values of each of the symbols that occupy the key fields at the time that the key is evaluated when an envelope is to be stored This is best demonstrated by example Suppose a key definition comprises three key fields as follows Field 1 Symbol CASE range to 4 Field 2 Symbol GROUP range to 10 Field 3 Symbol NODE range 0 to 100 CASE is a user defined symbol GROUP and NODE are reserved sym

Download Pdf Manuals

image

Related Search

Related Contents

HP アイデンティティ&アクセス・マネジメント - 日本HP - Hewlett  PDF version of paper  Docteurs&Co n°5, mars 2005  - Universität Wien  fichier Acide Oxalique  PLAYBACK MODE - Airis Support  Ducane (HVAC) RLBF/R80C User's Manual  VOLAMP User Manual  

Copyright © All rights reserved.
Failed to retrieve file