Home
        InversePELMO Manual (pdf, 1 MB, not barrier-free) - BVL
         Contents
1.      29  Figure 19  InversePELMO  Experimental concentrations in the percolate                              30  Figure 20  InversePELMO  Experimental soil Concentrations         serrrnvrnnvnnvennvvrnnvnvverrvvrnnvnnn 31  Figure 21  InversePELMO  define fitting parameters for the hydrology in soil                        32  Figure 22  InversePELMO  Parameter for fitting pesticide fate          rrrrrnnnnnnrrrrnnrrnrrrrnnnnnnrnnnn 33  Figure 23  InversePELMO  start optimisation of the pesticide fate            rrrrrrrrnrnnrrnnrnnnnnrnnnnn 34  Figure 24  InversePELMO  Analyse the results of the optimisation for soil hydrology   HOT COALS   ae eisen Ba ea IN pe 35  Figure 25  InversePELMO  View the results of the optimisation  soil concentrations             36  Figure 26  InversePELMO  View the results of the optimisation  cumulative flux                   37  Figure 27  InversePELMO  Evaluate the results of the optimisation  pesticide fate               38  Figure 28  Parameters used in the optimisation of the percolate  hypothetical test data set 1   EE OSE EE NT EE EN ne 43  Figure 29  Results of the optimisation  percolate  hypothetical test data set 1                        43  Figure 30  Parameters used in the optimisation of the substance flux  test data set 1           44  Figure 31  Results of the optimisation  substance flux  hypothetical test data set 1              45  Figure 32  Daily precipitation at the lysimeter station from August 2008 to December 2009 46    aes 
2.     0031  0092  0122  0153  0184  0212  0396  0457  0487  0518       08  10  11  12  01  02  08  10  11  12    01  01  01  01  02  02  02  02  02  02    69 143    120    Lede  221     264    331   451   564   710   790      7133  0434  62815   20235  35835  87768  81468  48953  618272            86      PEST output file  Pest water rec       PEST RUN RECORD  CASE PEST WATER    PEST run mode      Parameter estimation mode    Case dimensions      Number of parameters   Number of adjustable parameters   Number of parameter groups   Number of observations   1  Number of prior estimates    oon a    Model command line s        run_water    Jacobian command line      na    Model interface files      Templates   SCENARIO TPL   for model input files   BORSTEL SZE     Parameter values written using single precision protocol       Decimal point always included    Instruction files   PEST INS  for reading model output files   PEST_WATER PLM    PEST to model message file      na    Derivatives calculation         Param Increment Increment Increment Forward or Multiplier Method  group type low bound central  central   central   kcO relative 1 0000E 02 none switch 2 000 parabolic  kel relative 1 0000E 02 none switch 2 000 parabolic  kc2 relative 1 0000E 02 none switch 2 000 parabolic  moid relative 1 0000E 02 none switch 2 000 parabolic  Parameter definitions    ame Trans  Change Initial Lower Upper  formation limit value bound bound  kco none relative 1 00000 0 500000 10 0000  kc1 none rel
3.     Figure 2  Flow chart  File handling of a flux optimisation with InversePELMO     13     4 3  InversePELMO  Main form    After successful installation the main form of inverse PELMO appears as shown in Figure 3          inversePELMO    Path to PELMO  DAFOCUS aktuelles_FOCUSPELMO  Version  1 0  13 Sep 2011     Table of Projects     Sickerwasser und Boden  Sickerwasser   Test   UBA              project Exit       Figure 3  InversePELMO  Main form    4 3 1  Status Information  Two fields on top of the form give information about the path to the FOCUS PELMO  installation and about the current version of the software  If the user clicks at the path a form  will be loaded to change the current setting as shown in Figure 4      14         Enter Path to PELMO    DAFOCUS aktuelles_ FOCUSPELMO   D     EJ inverse Modellierung  amp   Projects    Source          Done    Figure 4  InversePELMO  Path to FOCUS PELMO        d   Daten          After a mouse click at the information field on current the software version the form shown in  Figure 5 will appear      a Release Info    nversePELMO    Tool fo perform inverse modelling studies  with PELO  Version  1 0  13 Sep 2011     developed by     Michael Klein  Fraunhofer Institut  f  r Molekularbiologie und Angewandte Okologie  D 57392 Schmallenberg  Germany  Phone   49 2972 302 317  Fax   49 2972 302 319  E mail  michael klein ime fraunhofer de    Umwelt  Bundes  Amt       F  r Mensch und Umwelt       check for  update   ok      Figure 5  I
4.    DAY    1000E 09   1600E 10   9000E 11   1300E 10   0000    ooo0o0    0O DISP COEFF 1 DISP LENGTH   0 INPUT  1 PRZM 2 PELMO    0 INPUT  1 CALCULATED   0 INPUT  1 CALCULATED     INIT  SOIL  WATE    CONT     G CM  3   CM     IAL  R  ENT    CM     DRAINAGE  PARAMETER      DAY     30 0000  5 7000  30 0000  4 9000  15 0000  4 9000  15 0000  5 0000  20 0000  4 8000       OUTPUT FILE PARAMETERS    OUTPUT    WATR  PEST    TIME STEP    DAY  DAY     5000 0   6000 0   5800 0   6200 0   6000 0  LAYER FREQ     2000     2000     2000     2000     2000    2 3000    2 3000    2 2000    0 0000    0 0000    0 0000 0 0000 0 0000 0 0000  19 00 0 0000 0 0000 0 0000  19 00 0 0000 0 0000 0 0000  19 00 0 0000 0 0000 0 0000   0 0000 100 0 0 7000 0 0000   14 79  0 9000   eg 0 0000  0 0000  0 1000E 19  MET  B1 MET  Cl MET  D1 BR CO2    DAY    DAY    DAY    DAY   0 1000E 09 0 1000E 09 0 1000E 09 0 3304E 01  0 1600E 10 0 1600E 10 0 1600E 10 0 5286E 02  0 9000E 11 0 9000E 11 0 9000E 11 0 2974E 02  0 1300E 10 0 1300E 10 0 1300E 10 0 4295E 02  0 0000 0 0000 0 0000 0 0000  110 0  5  44  0  2  1  0  free drainage  ORGANIC DISPERSION  SAND CLAY CARBON COEFFICIENT               CM  2 DAY   68 3000 7 2000 1 5000  0000  67 0000 6 7000 1 0000  0000  96 2000 0 9000 0 2000  0000  99 8000 0 0000 0 0000  0000  100 0000 0 0000 0 0000  0000     82     CONC DAY 1    CALCULATED HYDRAULIC PROPERTIES    HORIZON FIELD CAPACITY WILTING POINT   CM3 CM3   CM3 CM3   L 0 2778 0 0592  2 0 2794 0 0586  3 0 2094 0 0336  4 0 2004 0
5.    Figure 33  Actual ET at the lysimeter station from from August 2008 to December 2009       Figure 34  Parameters used in the optimisation of the percolate  test data set 2                    Figure 35  Results of the optimisation  percolate  test data Set 2        rrnrrnnnnnnnnnrnnnnnrrrrnnnnnnenn  Figure 36  Parameters used in the optimisation of the substance flux  test data set 2            Figure 37  Results of the optimisation  substance flux  test data set 2        Figure 38  Results of the standard simulation with optimised parameters  FOCUS Hamburg     1  Summary    A software called InversePELMO was developed that can be used to perform inverse   modelling studies with PELMO using the results of higher tier outdoor studies  e g  lysimeter   experiments  as input  This is done in order to obtain key parameters for leaching models   such as Kfoc  Freundlich sorption constant related to organic carbon  and DT50  degradation   time to 50    Aim of such a study is on one hand to get a deeper look into the processes that   led to a certain lysimeter result  On the other hand inverse modelling studies can be used to   improve the standard modelling on tier 1 by considering additional information from higher   tier studies  The results of InversePELMO can be used to make   e Predictions about the most likely behaviour if the lysimeter study had been conducted  over a longer time period    e Translations of the lysimeter results to a different situation with respect to the
6.   4 4 3  Step 3  Check initial simulation   After clicking at the button it is checked whether the initial simulation runs without problems   After PELMO terminates the user has to confirm that the simulation didn t quit with an error  condition  Only after confirmation the arrow will move to the next button  see Figure 10        Optimisation  testtest    Optimisation sequence  ae  Enter experimental data    KE  Create PELMO input files    oo    Import PELMO input files    V    Check initial simulation view opt or view optimisatior       PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm  bi  gt   bi     End simulation day  dd mm   31  gt   fiz  gt   Number of years    BM  Study begin  dd mm yy     gt    u     Pesticide input file  Pesticide A Maizepm StS  Scenario input file  IH MAIZEsze    Climate input file s   HMBGNORM CLI          Figure 10  InversePELMO  experimental data  percolate     4 4 4  Step 4  Enter experimental data  percolate   In step 4 the experimental percolate has to be entered in a specific form  see Figure 11        22      Experimental Percolate            3      D    Percolate  Lim    Weighting factor  60 31   10 28   70 03   0   0   0          2  3  4  5  6  Z  8    0       Figure 11  InversePELMO  Experimental Percolate    For each sampling during the study the date and the amount of percolate in L m  is needed   The user should not enter any cumulative numbers here  because they will be automatically  calculated b
7.   98      Objective function        gt    Sum of squared weighted residuals  ie phi    10 19  Correlation Coefficient        gt    Correlation coefficient   0 9995  Analysis of residuals        gt     All residuals    Number of residuals with non zero weight   10    Mean value of non zero weighted residuals   8 8320E 02  Maximum weighted residual  observation  08     2 556  Minimum weighted residual  observation  09      1 620  Standard variance of weighted residuals   1 274  Standard error of weighted residuals   1 129    Note  the above variance was obtained by dividing the objective   function by the number of system degrees of freedom  ie  number of  observations with non zero weight plus number of prior information  articles with non zero weight minus the number of adjustable parameters    If the degrees of freedom is negative the divisor becomes   the number of observations with non zero weight plus the number of   prior information items with non zero weight        Parameter covariance matrix        gt   koc kdeg   koc 2 698  1 5992E 03   kdeg  1 5992E 03 9 5288E 07   Parameter correlation coefficient matrix        gt   koc kdeg   koc 1 000  0 9975   kdeg  0 9913 1 000   ormalized eigenvectors of parameter covariance matrix        gt    Vector 1 Vector 2   koc  5 9283E 04  1 000   kdeg  1 000 5 9283E 04   Eigenvalues        gt     4 8263E 09 2 698    Parameter Estimated 95  percent confidence limits   value lower limit upper limit  koc 95 1700 91 3826 98 9574  DT50 22 
8.   CROP INFORMATION    MAXIMUM   INTERCEPT  MAXIMUM MAXIMUM MAXIMUM  USLE COVER MANAGEMENT  CROP POTENTIAL ROOT DEPTH COVER WEIGHT    AMC RUNOFF CURVE NUMBERS  C  FACTOR    1 000  1 000  1 000    15 00    MONTH  MAR   JUNE  SEP   DEC     0 4600  12    IRRIGATION PERENNIAL TILLAGE    FLAG     0 NO     DAY HOURS    11 59  16 78  12 33  7 221    CROP     0 NO     FLAG     0 NO     SURFACE  CONDITION    AFTER    NUMBER  FALLOW      100       CM   CM   5   KG M  2   1 YES   1 YES   CROP RESIDUE FALLOW CROP RESIDUE  72 S   72  0 0000 100 0 90 00 0 0000 0 0  86 70 86 1 0000 1 0000 1 0000  94 84 94    CROP ROTATION INFORMATION    CROP TILLAGE EMERGENCE MATURATION  HARVEST   NUMBER DATE DATE DATE  DATE   Winter Rape 2 SEP   1 5 MAY   28 JULY  2   Winter Rape 2 SEP   2 5 MAY    28 JULY   3   Winter Rape 2 SEP   3 5 MAY   28 JULY  4        PARAMETERS OF ACTIVE SUBSTANCE  Parent         KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK    PESTICIDE APPLICATION INFORMATION    PESTICIDE INCORPORATION   APPLICATION APPLIED DEPTH   DATE  KG HA   CM    21 AUG   1 200 0 0000   PLANT PESTICIDE PARAMETERS   MODEL UTILIZED  1 SOIL  2 LINEAR  3 EXPONENTIAL 1  VOLATILIZATION PARAMETERS ACTIVE SUBSTANCE                   TEMPERATURE  deg C  20 00  HENRY CONSTANT  Pa m3 mole  or  J mole  0 2000E 04  CALCULATED USING   VAPOUR PRESSURE  Pa  0 1000E 03  MOLECULAR MASS  g mole  100 0  WATER SOLUBILITY  mg 1  500 0  TEMPERATURE  deg C  30 00  HENRY CONSTANT  Pa m3 mole  or  J mole  0 4000E 04  CALCULATED USING   VAPOU
9.   Figure 38  Results of the standard simulation with optimised parameters  FOCUS Hamburg       55      Table 15  Pesticide in the percolate at 1 m soil depth   FOCUS Hamburg        Year Pesticide Flux Percolate Pesticide Conc    g ha   Um    g L   1 3 47E 10 273 300 0 000  2 2 50E 07 78 8200 0 000  3 0 0215800 265 900 0 008  4 0 1968000 252 600 0 078  5 1 3630000 431 100 0 316  6 4 5400000 470 500 0 965  7 1 6590000 140 900 1 177  8 0 8473000 138 600 0 611  9 0 4894000 234 600 0 209  10 0 4048000 281 600 0 144  11 0 4784000 226 100 0 212  12 1 7700000 459 900 0 385  13 2 6330000 432 900 0 608  14 1 1830000 185 600 0 637  15 1 5250000 372 000 0 410  16 1 4950000 308 300 0 485  17 0 6419000 176 500 0 364  18 0 6015000 234 800 0 256  19 0 6459000 266 800 0 242  20 1 1640000 314 600 0 370  21 0 4984000 156 000 0 319  22 0 1471000 78 8200 0 187  23 0 1690000 265 900 0 064  24 0 2439000 252 600 0 097  25 1 3740000 431 100 0 319  26 4 5400000 470 500 0 965  Total 22 5106 5428 12 0 415  Perc  8 13  3 4803000 571 500 0 610         annual applications of 1 2 kg ha on 21    August 2011  optimised parameter setting      56      6  Discussion and Conclusions    The example simulations with all four test data set demonstrate that the link between  InversePELMO and PELMO works sufficiently and results in adequate descriptions of what  processes may have been occurred in lysimeter studies  Furthermore higher tier data on  mobility and degradation can be obtained which can be used for refined
10.   Number of prior estimates    CONN N    Model command line s        run_pesticide    Jacobian command line      na    Model interface files      Templates   PESTICIDE TPL   for model input files   SUBSTANCE_2 PSM     Parameter values written using single precision protocol       Decimal point always included    Instruction files   PEST INS  for reading model output files   PEST_FLUX PLM    PEST to model message file      na    Derivatives calculation      Param Increment Increment Increment Forward or Multiplier Method   group type low bound central  central   central   koc relative 1 0000E 02 none switch 2 000 parabolic  kdeg relative 1 0000E 02 none switch 2 000 parabolic    Parameter definitions      Name Trans  Change Initial  formation limit value   koc none relative 50 0000   kdeg none relative 1 099000E 02   Name Group Scale Offset   koc koc 1 00000 0 00000   kdeg kdeg 1 00000 0 00000    Prior information      No prior information supplied    Observations      Observation name Observation Weight Group    Lower Upper  bound bound  1 00000 1000 00    6 900000E 04 0 693150    Model command number  1  1      94         ol 0 00000  000 no_name   o2 0 00000  000 no_name   03 0 00000  000 no_name   04 0 00000  000 no_name   05 0 00000  000 no_name   06 0 00000  000 no name   o7 0 00000  000 no_name   08 12 2710  000 no name   09 54 1210  000 no name   o10 104 309  000 no_name   Control settings     Initial lambda   5 0000  Lambda adjustment factor   2 0000  Sufficient new ol
11.   environmental conditions  e g  different climate     e Translations of the lysimeter result to a different situation with respect to the application  pattern of the substance  e g  change of the rate      e Use of optimised parameter settings for a refined standard tier 1 simulation    Test simulations are performed in order to check the suitability of InversePELMO for the  above mentioned aims  The example simulations with two different test data sets  demonstrate that the link between InversePELMO and PELMO works sufficiently and leads  to adequate descriptions of the processes occurred in lysimeter studies    InversePELMO guides the user to a sequential process including first the calibration of soil  hydrology followed by the optimisation of the substance fluxes  The user can stop the inverse  modelling study at any times  exit InversePELMO and continue at a later time where he left   All inverse modelling studies are saved as projects and can be re evaluated at a later time   The quality of the optimised parameters is reported according to the recommendations of  FOCUS degradation kinetics  e g  chi  test  t test      2  Background    Within the registration of pesticides for all active compounds and metabolites concentrations  in the environment  soil  groundwater and surface water  have to be calculated  This is done  using different computer models such as Exposit  UBA 2011   PELMO  Klein 1995  Jene  1998  FOCUS 2009   EVA  Holdt et al  2011   ESCAPE  Klein 2008  co
12.  02   kdeg    OPTIMISATION ITERATION NO  3  Model calls so far   8  Starting phi for this iteration  1 55900E 05  Lambda   0 62500 sees  gt   Phi 9 59417E 05   6 154 times starting phi   Lambda   0 31250         gt   Phi    60826E 06   10 316 times starting phi   Lambda   1 2500        gt   Phi    80902E 05   1 160 times starting phi   Lambda   2  50000          gt   Phi    33430E 05   0 856 of starting phi   Lambda   5 0000   x Haste  gt   Phi    51729E 05   0 973 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  1 33430E 05       Current parameter values    Previous parameter values    koc 6 01900 koc 5 04200  kdeg 2 063000E 02 kdeg 1 671000E 02  Maximum relative change  0 2346   kdeg    OPTIMISATION ITERATION NO  4  Model calls so far 17    Starting phi for this iteration     Lambda   25000   Phi   1 31355E 05  Lambda   1 2500   Phi   1 30446E 05    No more lambdas   Lowest phi this iteration     Current parameter values          1 33430E 05      0 984 of starting phi       0 978 of starting phi     relative phi reduction between lambdas less than 0 0300    1 30446E 05    Previous parameter values    koc 6 10300 koc 6 01900  kdeg 2 147000E 02 kdeg 2 063000E 02  Maximum relative change  4 0717E 02   kdeg    OPTIMISATION ITERATION NO  5  Model calls so far 23  Starting phi for this iteration  1 30446E 05  Lambda   0 62500          Phi   1 19313E 05   0 915 of starting phi   Lambda   0 31250         gt   Phi   91098    0 698 of starting phi   Lambda   
13.  0301  5 0 2000 0 0300  Total number of layers in the top meter  41    PLOT FILE INFORMATION    NUMBER OF PLOTTING VARIABLES 1    TIMSER NAME MODE DEPTH  CM  ARGUMENT CONSTANT SUBSTANCE    LEAC TSER 100  al 0 1000E 10 PESTIC     83      8 2  Example data set 2    8 2 1  Optimisation of soil hydrology  InversePELMO control file  sampling water txt                01 08 01   10  31 8 4 47 9  31 10 1 124 6  30 11 1 177 38  31 12 1 222 4  31 1 2 25545  28 2 2 346 9  31 8 2 495 25  31 10 2 582 9  30  1 2 67549  31 12 2 767 15               84      PEST control file  Pest water pst             pef    control data  restart  4 10 4 0  A 1 single point  5x 0 2 0 03 0 03 10  3 0 300001  0 1  30 0 01 3 3  GAL 3  1 1 1      group definitions and derivative data       KcO relative 0 01 0 0 switch 2 0 parabolic   Kel relative 0 01 0 0 switch 2 0 parabolic   Kc2 relative 0 01 0 0 switch 2 0 parabolic   OIO relative 0 01 0 0 switch 2 0 parabolic     parameter data   c0 none relative 1 0 5 10 KcO 1 0000 0 00000  cl none relative 1 0 5 10 Kel 1 0000 0 00000  c2 none relative 1 0 5 10 Kc2 1 0000 0 00000  OIO none relative 0 2 0 05 0 5 MOIO 1 0000 0 00000    observation data   ol 47 9 1   02 124 6      03 171 235 1   04 222 4 1    05 255 5 1   06 346 9 T   07 495 25 L   o8 582 9 1   09 675 9 a   010 767 15 1      model command line  run_water     model input output  scenario tpl BORSTEL SZE  pest ins pest_water plm     prior information          PELMO output file  PEST water pim         85       
14.  1 06E 01  0 5 1 30E 02  5 10 2 95E 02  10 15 5 31E 02  15 20 7 56E 02  0 5 1 03E 03  5 10 2 32E 03  10 15 4 45E 03  15 20 7 51E 03  20 25 1 14E 02  25 30 1 57E 02  30 35 1 47E 02  35 40 1 79E 02  40 45 2 08E 02  45 50 2 30E 02  2 43E 02       C Percolate concentrations       Soil concentrations       Figure 20  InversePELMO  Experimental soil concentrations    Soil concentrations have to be given in ug kg together with the sampling date and the  sampling depth    For both tables it is not necessary to type all information the user can also paste them in as a  table  e g  from MS Excel or MS Word     If the form has been filled correctly  e g  no negative figures  it can be closed using the     Done    button and the arrow on the optimisation form will jump to the next button to enter all  information about the input parameters used in the optimisation  see Figure 21      32 x      Optimisation  testtest         Optimisation sequence  a  3  Enter experimental data    MEN  Create PELMO input files    Import PELMO input files Start optimisation Start optimisation    V    Check initial simulation View optimisation View optimisation            PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm  bi  gt   bi     End simulation day  dd mm   31   fiz  gt   Number of years  b     Study begin  dd mm yy   bi   jor   or     Pesticide input file  Pesticide A Maizepsm ss   Scenario input file  HMAZEse  i     i                OCO        Climate input file
15.  486 38523  31 3 3 490 07456  30 4 3 490 07456              70     PEST control file  Pest pesticide pst             pot    control data  restart   2 24 2 0    1 1 single point  5 0 2 0 0 3 0 03 10  3 0 3 0 0 001  OL  30 0 01 3 3 0 01 3  1 1 1      group definitions and derivative data   KOC relative 0 01 0 0 switch 2 0 parabolic   KDEG relative 0 01 0 0 switch 2 0 parabolic     parameter data   KOC none relative 5 1 1000 KOC 1 0000 0 00000   KDEG none relative 1 09861228866811E 02 6 93147180559945E 04 0 693147180559945 KDEG  1 0000 0 00000     observation data          ol 0 1   o2 0 Al   03 0 1   04 0 1   05 0 1   06 0 1   o7 0 T   o8 1 46124 1  09 25 03332 1  010 112 65269   oll 215 17544   012 273 90689   013 330 16014   ol4 330 16014   015 364 9787 1  016 418 91302   017 418 91302   018 418 91302 1  019 434 77234   020 477 43926   0o21 485 54307   022 486 38523   023 490 07456   024 490 07456 I      model command line   run_pesticide     model input output   pesticide tpl Pesticide_B_example_1 psm  pest ins pest_flux plm     prior information          PELMO output file  PEST flux pim                      0031 31 05 0 0   0061 30 06 01 0   0092 31 07 0 0   0123 31 08 01 0   0153 30 09 01 0   0184 31 10 0 0 0000019122  0214 30 11 01 0 00010610627  0245 31 12 0 0 51728890627  0276 31 01 02 17 42258290627  0304 28 02 02 101 64738290627  0335 31 03 02 210 59816290627  0365 30 04 02 274 92216290627  0396 31 05 02 333 87266290627  0426 30 06 02 333 87266290627  0457 31 07 02 367
16.  80666290627    0488 31 08 02 421 59516290627  0518 30 09 02 421 59516290627  0549 31 10 02 421 59516290627  0579 30 11 02 435 93256290627  0610 31 12 02 476 53836290627  0641 31 01 03 483 26630590627  0669 28 02 03 483 92267590627  0700 31 03 03 486 58290790627  0730 30 04 03 486 58290790627           72     PEST output file    Pest_pesticide rec       PEST RUN RECORD  CASE PEST_PESTICIDE    PEST run mode      Parameter estimation mode    Case dimensions      Number of parameters   Number of adjustable parameters   Number of parameter groups   Number of observations 5 2  Number of prior estimates    OPDNDDNDMN    Model command line  s        run_pesticide    Jacobian command line      na    Model interface files      Templates   PESTICIDE TPL   for model input files   PESTICIDE_B_EXAMPLE_1 PSM     Parameter values written using single precision protocol       Decimal point always included    Instruction files   PEST INS  for reading model output files   PEST_FLUX PLM    PEST to model message file      na    Derivatives calculation      Param Increment Increment Increment Forward or Multiplier Method   group type low bound central  central   central   koc relative 1 0000E 02 none switch 2 000 parabolic  kdeg relative 1 0000E 02 none switch 2 000 parabolic    Parameter definitions      Name Trans  Change Initial  formation limit value   koc none relative 5 00000   kdeg none relative 1 099000E 02   Name Group Scale Offset   koc koc 1 00000 0 00000   kdeg kdeg 1 00000 0 00000   
17.  Concentrations for Pesticides    Dependent on FOCUS Degradation Kinetics  FKZ  360 03 037  Umweltbundesamt   Dessau Ro  lau   Watermark  2003   PEST  Model Independent Parameter Estimation  Watermark Numerical  Computing  http   www pesthomepage org Downloads php   UBA  2011   Exposit 3 0 beta  Available at  http   www bvi bund de DE 04 Pflanzenschutzmittel 03 Antragsteller 04 Zulassungs  verfahren 07 Naturhaushalt psm naturhaush node htmli     59     8  Documentation of Model Output  InversePELMO    8 1  Example data set 1    8 1 1  Optimisation of soil hydrology  InversePELMO control file  sampling water txt                      01 05 01   24   31 5 0   30 6 0   31 7 0   31 8 0   30 9 51 60   31 10 32 96  30 11 51 18  3a 12 L 117 6  31 1 2 179 96  28 2 2 242 59  31 3 2 289 34  30 4 2 315 27  31 5 2 342 38  30 6 2 342 38  31 7 2 361 81  31 8 2 402 18  30 9 2 402 18  31 10 2 402 18  30 11 2 419 16  31 12 2 513 14  31 1 3 569 81  28 2 3 579 49  31 3 3 649 1  30 4 3 649 1            60      PEST control file  Pest water pst             pef    control data  restart   5 24 SG       1 single point  5 0 2 0 0 3  0 03 10  3 0 3 0 0 001  0 1  30 0 01 3 3 0 01 3  1 1 1      group definitions and derivative data   Kc0 relative 0 01 0 0 switch 2 0 parabolic  Ke relative 0 01 0 0 switch 2 0 parabolic  Kc2 relative 0 01 0 0 switch 2 0 parabolic  ANETD relative 0 01 0 0 switch 2 0 parabolic  OIO relative 0 01 0 0 switch 2 0 parabolic    parameter data                   c0 none relative 0 
18.  Prior information      No prior information supplied    Observations      Observation name Observation Weight Group    Lower Upper  bound bound  1 00000 1000 00    6 900000E 04 0 693150    Model command number  1  1     73           ol 0 00000  000 no_name  o2 0 00000  000 no_name  03 0 00000  000 no_name  04 0 00000  000 no_name  05 0 00000  000 no_name  06 0 00000  000 no_name  o7 0 00000  000 no_name  08 1 46124  000 no_name  09 23 0333  000 no_name  0o10 112 653  000 no_name  oll 215 115  000 no_name  012 273 907  000 no_name  o13 330 160  000 no_name  014 330 160  000 no_name  015 364 979  000 no_name  016 418 913  000 no_name  017 418 913  000 no_name  o18 418 913  000 no_name  019 434 772  000 no_name  020 477 439  000 no_name  o21 485 543  000 no name  022 486 385  000 no_name  023 490 075  000 no_name  024 490 075  000 no name    Control settings         Initial lambda 5 0000  Lambda adjustment factor 2 0000  Sufficient new old phi ratio per optimisation iteration 0 30000  Limiting relative phi reduction between lambdas 3 00000E 02  Maximum trial lambdas per iteration 10  Maximum factor parameter change  factor limited changes  na  Maximum relative parameter change  relative limited changes  3 0000  Fraction of initial parameter values used in computing  change limit for near zero parameters 1 00000E 03  Allow bending of parameter upgrade vector no  Allow parameters to stick to their bounds no  Relative phi reduction below which to begin use of  central derivatives 
19.  TOTAL HORIZONS IN CORE  TOTAL COMPARTMENTS IN CORE  DPFLAG FLAG  THETA FLAG       PARTITION COEFFICIENT FLAG    BULK DENSITY FLAG  SOIL HYDRAULICS MODULE                           SOIL HORIZON INFORMATION    BIODEG     FACTOR  HORIZON    PH    THICKNESS DENSITY     CM           winter     TRANSFORMATION RATE TO    MET  Al    DAY   0 1000E 09  0 5000E 10  0 3000E 10  0 3000E 10  0 3000E 10    MET  Bl     DAY   0 1000E 09  0 5000E 10  0 3000E 10  0 3000E 10  0 3000E 10    100 0  5  20    0O DISP COEFF 1 DISP LENGTH  1  0 INPUT  1 PRZM 2 PELMO  0  0 INPUT  1 CALCULATED   0 INPUT  1 CALCULATED     DRAINAGE  PARAMETER      DAY     1  0    100 0  100 0  0 0000  100 0    TES EQ SITES         MET  C1    0  0  0   0  0      DAY     1000E 09   5000E 10  3000E 10   3000E 10   3000E 10    free drainage    FIELD  CAPACITY  WATER  CONTENT     CM CM      7000   7000   0000   7000       19 55     1000E 19    MET  D1    DAY   0 1000E 09  0 5000E 10  0 3000E 10  0 3000E 10  0 3000E 10    OO       BR CO2    DAY   0 3086E 01  0 1543E 01  0 9258E 02  0 9258E 02  0 9258E 02    0 3000  4  0 3000    5  0 3000    30 0000  6 4000  30 0000  5 6000  15 0000  5 6000  15 0000  5 7000  10 0000  5 5000       OUTPUT FILE PARAMETERS    OUTPUT    WATR  PEST  CONC    TIME STEP    DAY  DAY  DAY       INITIAL  SOIL  BULK WATER  CONTENT   G CM  3   CM CM   5000 0 28   6000 0 28   5600 0 28   6200 0 28   6000 0 28  LAYER FREQ    Hm    2 3000    2 3000    2 3000    2 3000    0 0000    0 2920    0 2770    0 2290    
20.  appear     see section 4 4      Open project  After a click at this button InversePELMO will load all details of the  project  The user may have a look at the current parameter setting  improve the  optimisation or produce tabular or graphical output  see also the section on new  project   More information about project can be found in section 4 4    Copy project  A click at that button will first open a form where the name for the new  project can be entered  see Figure 6   Then  all information of the selected project is  copied into a second folder  The option can be useful when a certain modification of  an existing inverse modelling study should be performed without loosing information  of the current status and without going through whole sequence of an inverse  modelling study    Delete project  After a click at this button the selected project will be removed from  the system  To avoid accidental deleting the user has to confirm the command in an  additional message box    Exit  A click at that button will terminate InversePELMO       18     4 4  InversePELMO  Optimisation    This form is used for new projects  see Figure 7  as well as existing projects  see Figure 8    However  if a new inverse modelling study should be performed a certain sequence has to  be followed  A red arrow is used to guide the user through this process  For the same reason  most of the buttons are disabled at the beginning       Optimisation  user project    Optimisation sequence          Cr
21.  end    Optimisation of the hydrology in soil   Fitting parameters     evapotranspiration  min  depth for evaporation     initial soil water     Optimisation of chemicals fate   software  PEST oder R Tool    parameters in optimisation  KOC  DT50  Freundlich 1 n     Re assessment of  Kfoc and DT50    Quality check based on information provided in standard PELMO output    files       Figure 1  General flowchart of inverse modelling studies    As shown by the previous considerations inverse modelling studies for the calibration of  lysimeter results are not totally uncomplicated but require detailed knowledge about the  leaching model with its input and output file structure  Only part of this will be the creation of  input data for weather and soil properties  users must be also able to manipulate pesticide    input files in a dos environment  So  even if users are familiar with the normal shell and are     10     able to create input files for standard simulations  it will be not sufficient to go through the  complex inverse modelling procedure unless special supporting software is available   Background is the additional optimisation tool in the procedure which is part of the package  and which needs special input files created by the user  These additional input files are read  in by this optimisation tool and used to create PELMO input files automatically by the within  the optimisation sequence  Also the   Also the post processing of PELMO output files during the sequence 
22.  example is based on real  lysimeter data     5 1  Example data set 1  Leaching of Parent over a two years    5 1 1  Environmental data  For the soil data the standard Borstel soil was used with exactly the same description as  given in the PELMO 3 0 soil data base  The soil profile information is summarised in Table 1     Table 1  Borstel soil profile in the lysimeter  hypothetical test data set 1           Horizon  cm  0 30 30 57 57 73 73 90 90 110  Soil density  g cm   1 5 1 6 1 58 1 62 1 6  Sand     68 3 67 0 96 2 98 8 100  Silt     24 5 26 3 2 9 0 2 0   Clay     7 2 6 7 0 9 0 0   OC     1 5 1 0 0 2 0 0   initial soil water content  m  m   0 05 0 05 0 05 0 05 0 05  Biodegradation factor     1 0 16 0 09 0 13 0  pH value 5 7 4 9 4 9 5 0 4 8    The Hamon equation was used to estimate potential evapotranspiration  The parameter  linked to that process are summarised in the following table     Table 2  Further input parameters influencing evapotranspiration  hypothetical test data set 1           Parameter Value  Minimum depth for evaporation  cm  15  KcO  no crop  1 0  Kc1  mid season  1 3  Kc2  late season  0 5    The crop considered for the simulation was maize with standard crop parameter setting       40   For the climate during the lysimeter study the standard PELMO 3 0 climate files  Hamburg  normal and wet weather  are used  The monthly and annual precipitation and temperature    data is given in Table 3  Begin of the study 1 the 1  May     Table 3  Climate data during
23.  kdeg 4 159000E 02  Maximum relative change  0 1763    OPTIMISATION ITERATION NO   Model calls so far 3  for this iteration     Starting phi  Lambda   9 76563E 03        gt   Phi   36 266   0 161    No more lambdas  phi is less than 0             Lowest phi this iteration  36 266  Current parameter values  koc 89 3100  kdeg 3 423000E 02  Maximum relative change  0 1770  OPTIMISATION ITERATION NO   Model calls so far    Starting phi for this iteration   Lambda   4 88281E 03        gt   Phi   12  915    0 356  Lambda   2 44141E 03        gt   Phi   11 162   0 308  Lambda   1 22070E 03        gt   Phi   10 545   0 291  No more lambdas  phi is less than 0  Lowest phi this iteration  10 545  Current parameter values  koc 94 2900  kdeg 3 138000E 02  Maximum relative change  8 3260E 02  OPTIMISATION ITERATION NO   Model calls so far  Starting phi for this iteration   Lambda   6 10352E 04        gt   Phi   10 203   0 968  Lambda   3 05176E 04        gt   Phi   10 203   0 968    No more lambdas   Lowest phi this iteration  10 203      96      Previous parameter values    koc 53 3100  kdeg 6 387000E 02    koc    8  24  1095 6  of starting phi    3000 of starting phi  Previous parameter values  koc 66 4100  kdeg 5 008000E 02    koc    9  27  225 40    of starting phi      3000 of starting phi    Previous parameter values  koc 78 1200  kdeg 4 159000E 02    kdeg    10  30  36 266    of starting phi     of starting phi      3000 of starting phi    Previous parameter values    koc 89 3100  
24.  modelling studies   With test simulations it was demonstrated that the results of inverse modelling studies with  InversePELMO can also be used to transfer the lysimeter study to hypothetical situations  such as   e extension of the study   e modification of the application pattern   e modification of crop data    e other climate scenarios       57     7  References    FOCUS  2000     FOCUS groundwater scenarios in the EU review of active substances     Report of the FOCUS Groundwater Scenarios Workgroup  EC Document Reference  Sanco 321 2000 rev 2  202pp   FOCUS  2006     Guidance Document on Estimating Persistence and Degradation Kinetics  from Environmental Fate Studies on Pesticides in EU Registration    Report of the  FOCUS Work Group on Degradation Kinetics  EC Document Reference  Sanco 10058 2005 version 2 0  434 pp    FOCUS  2009     Assessing Potential for Movement of Active Substances and their  Metabolites to Ground Water in the EU    Report of the FOCUS Ground Water Work  Group  EC Document Reference Sanco 13144 2010 version 1  604 pp    FOCUS  2009     Assessing Potential for Movement of Active Substances and their 32  Metabolites to Ground Water in the EU    Report of the FOCUS Ground Water Work  Group  33 EC Document Reference Sanco     2009 version 1  594 pp    FOCUS  2009   Assessing Potential for Movement of Active Substances and their  Metabolites to Ground Water in the EU     Bericht der FOCUS Groundwater Work    Group  EC Document Reference Sanco 2009 ve
25.  optimisation PEST will  call PELMO several times  After PEST terminated the user has to confirm that the  optimisation didn   t quit with an obvious error conditions       Optimisation  testtest    Optimisation sequence  Mg   3  Enter experimental data    KREM  Create PELMO input files    oo    Import PELMO input files    V    Check initial simulation       PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm  for  gt   for     End simulation day  dd mm   31  gt   h2  gt   Number of years    E  Study begin  dd mm yy   for  gt   for  gt   for  gt     Pesticide input file   Pesticide A Maizepm    Scenario input file  HMAZEse    Climate input file s   HMBGNORM CLI          Figure 14  InversePELMO  start optimisation for the hydrology in soil    Only after confirmation the arrow will move to the next button  see Figure 15      4 4 7  Step 7  View the optimisation  percolate   In step 7 the user can evaluate the results of the percolate optimisation      26        Optimisation  testtest          m Optimisation sequence  IH  Enter experimental data       Create PELMO input files     o Lie   wae    Import PELMO input files Start optimisation Start optimisation    V    Check initial simulation View optimisation view optimisation              PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm  for   01    End simulation day  dd mm  s       number EEE E  Study begin  dd mm yy   jor bi  gt   or     Pesticide input fi
26.  s   HMBGNORM CLI  gt    About    a    Figure 21  InversePELMO  define fitting parameters for the hydrology in soil             4 4 9  Step 9  Enter fitting parameter  pesticide fate   In step 9 the parameters used in the optimisation have to be characterised in a specific form     see Figure 22        33     Substance considered  FOCUS DUMMY A v    Parameter Initial value Min  value Max  value    M Freundlich 1 n    vw DT50  d   3 58   1 000    2           Figure 22  InversePELMO  Parameter for fitting pesticide fate       Three PELMO input parameters dominating pesticide fate in soil can be used to do the fitting   e KOC Kfoc  linear or non linear sorption factor  e Freundlich 1 n Kc factor  mid season   linear correction factor for daily potential  evapotranpiration when the crop is growing    e DT50  Time to reach 50   degradation in soil    If parameters shall be considered for the optimisation their initial values and their range have  to be specified  If a parameter is not checked the respective input field is invisible    As the DT50 in soil is not an input parameter in PELMO it will be converted into the  respective rate constant  which is the actual input parameter  internally    InversePELMO is able to analyse the fate of pesticides as well as of transformation products   If metabolites have been defined in the PSM file previously  the user can select the  compound using the list box on top of the form    If the form has been filled correctly  e g  no negative figu
27.  study  substance flux  hypothetical test data set 1               Month Leachate  L m   Concentration  L L  Remark  August 69 14 0  September 10 63 0  October 40 94 0  November 90 33 0  December 50 59 0  January 42 58 0  February 67 16 0  March 77 79 0 002 inverse modelling  April 0 9 study  May 10 8 0 006  June 0 0  July 31 93 0 017  August 0 0  September 13 82 0 028  October 99 12 0 087  November 145 7 0 316  Decenmiber 80 14 0 597  January 53 46 0 75  February 67 16 0 889  March 77 79 0 991  April 9 2  May 10 8 0 956  June 0 0 prediction  July 31 93 0 89  August 0 0  September 13 82 0 618  October 99 12 0 424  November 145 7 0 248  December 80 14 0 18         optimised parameter setting      54      Based on the results of the previously performed inverse modelling study the PELMO  calculation showed that the lysimeter study did not cover the peak maximum  instead the  maximum peak is estimated to occur in March of the following year  The calculation  furthermore showed that also in the next winter concentration above 0 1 ug L can be    expected    5 2 6  Translation into standard conditions  The most interesting question usually is what concentrations can be considered if the  lysimeter study had been performed under the official standard conditions  The results of the    respective simulation  FOCUS Hamburg  26 years of annual applications  are presented in  Table 15     Average Pesticide concentration in leachate  1m depth   1g L     1 5    0 5    0 5 10 15 20 Period  
28.  the study  hypothetical test data set 1                 Month Montly Annual Monthly Annual  Precipitation Precipitation Temperature Temperature   mm   mm     C     C   January 62 8  0 25  February 75 9 4 80  March 69 8 6 09  April 66 4 10 25  May 80 4 10 45  June 30 4 16 29  July 142 6 15 23  August 110 9 15 27  September 25 8 15 78  October 51 7 11 17  November 55 5 4 37  December 99 8  0 75  January 67 6 1 81  February 18 3  0 69  March 93 7 4 95  April 13 0 789 7 5 39 8 3  May 21 0 12 54  June 94 5 15 55  July 73 7 15 57  August 72 9 15 74  September 153 2 12 20  October 52 9 10 45  November 33 5 6 57  December 83 2  0 23  January 62 8  0 25  February 75 9 4 80  March 69 8 6 09  April 66 4 859 8 10 25 9 1       5 1 2  Pesticide data  For the pesticide input data the example compound FOCUS B was considered  a fast  leaching substance with KOC 17 L kg of and DT50 of 20 d  Q10  2 58    The application pattern was a single application of 1 kg ha to the soil surface on 1  May  An  overview on all pesticide data is given in Table 4      41     Table 4  Pesticide input parameters used for the test simulations          Parameter Unit Value   Molar mass  g mol 1  300   Solubility in water  mg L 1  90   Molar enthalpy of dissolution  kJ mol 1  27   Vapour pressure at 20  C  mPa  0 1   Molar enthalpy of vaporisation  kJ mol 1  95   Diffusion coefficient in water  m2 d 1  4 3   10 5   Gas diffusion coefficient  m2 d 1  0 43   Reference temperature for degradation  vaporisation and di
29.  tools  provided in the    Control Panel    under    Add Remove Programs       After successful installation the main form of InversePELMO will appear when calling the file  InversePELMO exe  Figure 3     If you call InversePELMO for the first time  please make sure that the path to PELMO which  is given on top of the main form is correct  You can modify the path after clicking at the input  field on the form     4 2  File handling between InversePELMO and PELMO    PELMO is the standard model for doing leaching simulations for registration purposes in  Germany  Holdt et al  2011  and in Europe FOCUS  2009   However  PELMO with its normal  shell is not designed to perform inverse modelling studies because these studies require  several model runs including automatic modification of input files based on the comparison  with experimental results    A scheme that shows the file handling is presented in Figure 2 for an optimisation of  pesticide properties based on cumulative fluxes in the leachate  All pesticide and application  parameters are gathered in text files with extension    psm     The scenario input data can be  found in files with extension    sze     Before starting the inverse modelling calculation a first  simulation  with initial conditions for either the soil hydrology or pesticide properties  should  be prepared using the normal shell  which can be called directly from InversePELMO     The optimisation itself is done automatically by InversePELMO    As shown in 
30.  value  0 00000  0 00000  0 00000  0 00000  0 00000  1 912200E 06  1 061063E 04  0 517289  17 4226    101    598    210    274   333   333   367    595  421   421   435   476   483   483   486    583    421    486    647    922  873  873  807    Residual    0 00000  0 00000  0 00000  0 00000  0 00000   1 912200E 06   1 061063E 04  0 943951  7 61074  11 0053  4 57728   1 02527  F3x71252   3 71252   2 82796   2 68214   2 68214   2 68214   1 16022  0 900897  2 27676  2 46255  3 49165  3 49165       Weight     000   000   000   000     000    Group    no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name  no name    See file PEST PESTICIDE RES for more details of residuals in graph ready format     See file PEST PESTICIDE SEO for composite observation sensitivities     Objective function    Sum of squared weighted residuals    Correlation Coefficient    Correlation coefficient     ie phi     296 8    0 9999      68      Analysis of residuals        gt     All residuals    Number of residuals with non zero weight   24    Mean value of non zero weighted residuals   0 6786  Maximum weighted residual  observation  o010     Lis Oo  Minimum weighted residual  observation  o013      3 713  Standard variance of weighted residuals   13 49  Standard error of weighted residuals   36 13     Note  the above variance was obtained by dividing th
31.  values Previous parameter values  koc 5 04200 koc 5 00600  kdeg 1 671000E 02 kdeg 1 560000E 02    Maximum relative change  7 1154E 02   kdeg                        OPTIMISATION ITERATION NO    3  Model calls so far   8  Starting phi for this iteration  1 55900E 05  Lambda   0 62500        gt   Phi   9 59417E 05   6 154 times starting phi   Lambda   0 31250         gt   Phi    60826E 06   10 316 times starting phi   Lambda   152500           gt   Phi    80902E 05   1 160 times starting phi   Lambda   2 5000          gt   Phi    33430E 05   0 856 of starting phi   Lambda   5 0000         gt   Phi    51729E 05   0 973 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  1 33430E 05    Current parameter values Previous parameter values  koc 6 01900 koc 5 04200  kdeg 2 063000E 02 kdeg 1 671000E 02  Maximum relative change  0 2346   kdeg    OPTIMISATION ITERATION NO    4  Model calls so far   17    Starting phi for this iteration  1 33430E 05    Lambda   2 5000        gt    Phi   1 31355E 05   0 984 of starting phi   Lambda   1 2300  gt  See  gt    Phi   1 30446E 05   0 978 of starting phi     No more lambdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration  1 30446E 05    Current parameter values Previous parameter values  koc 6 10300 koc 6 01900  kdeg 2 147000E 02 kdeg 2 063000E 02    Maximum relative change  4 0717E 02   kdeg            OPTIMISATION ITERATION NO    5  Model calls so far   23  Starting phi for this iteratio
32.  z   e DEG Number of years     i     Study begin  dd mm yy    Pesticide input file     Scenario input file     Climate input file s         se aize psm   H MAIZE sze    HMBGNORM CLI             Figure 18  InversePELMO  InversePELMO  experimental data  pesticide fate     4 4 8  Step 8  Enter experimental data  pesticide fate     For the optimisation of the pesticide fate the experimental results has to be entered ina    specific form  see Figure    19        30      Experimental Residues       o  3      D    Cone   ug L  Weighting factor       7  2  3  4  5  6     8                N   o       Percolate concentrations       Soil concentrations       Figure 19  InversePELMO  Experimental concentrations in the percolate    Dependent on what input data is available  see the radio button on the form in Figure 19   either percolate concentrations or soil concentrations have to be entered    If percolate concentrations should be used for the optimisation the concentration in ug L are  needed for each sampling date during the study  If appropriate the individual sampling could  be characterised by weighting factors in the final column  The user cannot enter any date  her  because the sampling dates are taken from the previous percolate optimisation    If the user wants to use soil concentrations instead  the respective table is loaded when the  radio button is used  Figure 20       31     Experimental Residues    Upper depth  cm  Lower depth  cm   Conc   ug kg  Weighting factor  15 20
33. 0 10000  Relative phi reduction indicating convergence 0 10000E 01  Number of phi values required within this range 3  Maximum number of consecutive failures to lower phi 3  Minimal relative parameter change indicating convergence 0 10000E 01  Number of consecutive iterations with minimal param change 3  Maximum number of optimisation iterations 30  Attempt automatic user intervention no  OPTIMISATION RECORD  INITIAL CONDITIONS    Sum of squared weighted residuals  ie phi    6 10098E 05   Current parameter values   koc 5 00000   kdeg 1 099000E 02   OPTIMISATION ITERATION NO    1   Model calls so far 5 1  Starting phi for this iteration  6 10098E 05   Lambda   55 0000    gt    Phi   1 65784E 05   0 272 of starting phi    No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  1 65784E 05   Current parameter values Previous parameter values   koc 5 00600 koc 5 00000   kdeg 1 560000E 02 kdeg 1 099000E 02    Maximum relative change  0 4195   kdeg        74      OPTIMISATION ITERATION NO  5 2  Model calls so far   4  Starting phi for this iteration  1 65784E 05    Lambda   225000      gt    Phi   1 56340E 05   0 943 of starting phi   Lambda   1 25000      gt    Phi   1 55900E 05   0 940 of starting phi     No more lambdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration  1 55900E 05   Relative phi reduction between optimisation iterations less than 0 1000  Switch to central derivatives calculation    Current parameter
34. 0 15625         gt   Phi   2 56993E 05   1 970 times starting phi     No more lambdas  phi rising                                         65                  Lowest phi this iteration  91098   Current parameter values Previous parameter values  koc 7 81500 koc 6 10300  kdeg 2 668000E 02 kdeg 2 147000E 02  Maximum relative change  0 2805 kogt   OPTIMISATION ITERATION NO  6  Model calls so far x 30  Starting phi for this iteration  91098   Lambda   0 15625         gt   Phi   1 92513E 05   2 113 times starting phi   Lambda   7 81250E 02        gt   Phi   4 90305E 05   5 382 times starting phi   Lambda   0 31250         gt   Phi   47871    0 525 of starting phi   Lambda   0 62500         gt   Phi   72670    0 798 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  47871   Current parameter values Previous parameter values  koc 10 2400 koc 7 81500  kdeg 3 122000E 02 kdeg 2 668000E 02  Maximum relative change  0 3103   koc    OPTIMISATION ITERATION NO  7  Model calls so far   38  Starting phi for this iteration  47871   Lambda   0 31250         gt   Phi   15984    0 334 of starting phi   Lambda   0 15625        gt   Phi   LYLL2     0 399 of starting phi   Lambda   0 62500        gt   Phi   29252    0 611 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  15984   Current parameter values Previous parameter values  koc 12 1100 koc 10 2400  kdeg 3 225000E 02 kdeg 3 122000E 02  Maximum relative change  0 1826   koc    OPTIMISATION ITERATION 
35. 0 1630    0 1630    WILTING   POINT   WATER DISPERSION ORGANIC   CONTENT LENGTH CARBON    CM CM   CM   3   0 0640 5 0000 5000  0 0470 5 0000 0000  0 0400 5 0000  2000  0 0220 5 0000  0000  0 0220 5 0000  0000    Total number of layers in the top meter     PLOT FILE INFORMATION    NUMBER OF PLOTTING VARIABLES    TIMSER NAME MODE    LEAC TSER    DEPTH CM  ARGUMENT    100       102      21    21    CONSTANT    0 1000E 10    SUBSTANCE    PESTIC    
36. 00  kdeg 2 103000E 02 kdeg 1 099000E 02  Maximum relative change  0 9136   kdeg    OPTIMISATION ITERATION NO    2  Model calls so far   4    Starting phi for this iteration  8 43319E 07    Lambda   2 5000  gt  sene  gt   Phi 1 14493E 07   0 136 of starting phi     No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  1 14493E 07    Current parameter values Previous parameter values  koc 50 1100 koc 50 0400  kdeg 3 124000E 02 kdeg 2 103000E 02    Maximum relative change  0 4855   kdeg        95      OPTIMISATION ITERATION NO    3  Model calls so far i 7  Starting phi for this iteration  1 14493E 07    Lambda 1 2500  _ 0  e  gt   Phi   1 49660E 06   0 131 of starting phi     No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  1 49660E 06    Current parameter values Previous parameter values  koc 50 2400 koc 50 1100  kdeg 4 157000E 02 kdeg 3 124000E 02  Maximum relative change  0 3307   kdeg    OPTIMISATION ITERATION NO    4  Model calls so far i 10    Starting phi for this iteration  1 49660E 06    Lambda 0 62500 ees  gt   Phi   1 81613E 05   0 121 of starting phi     No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  1 81613E 05    Current parameter values Previous parameter values  koc 50 5300 koc 50 2400  kdeg 5 155000E 02 kdeg 4 157000E 02  Maximum relative change  0 2401   kdeg    OPTIMISATION ITERATION NO    5  Model calls so far   13    Starting phi for this iteration  1 816
37. 085 1              91     PEST control file  Pest pesticide pst             pct    control data  restart   25 TEO 2 0    1 1 single point  5 0 2 0 0 3 0 03 10  3 0 3 0 0 001  0   30 0 01 3 3 0 01 3  1 1 1      group definitions and derivative data   KOC relative 0 01 0 0 switch 2 0 parabolic   KDEG relative 0 01 0 0 switch 2 0 parabolic     parameter data   KOC none relative 50 1 1000 KOC 1 0000 0 00000   KDEG none relative 1 09861228866811E 02 6 93147180559945E 04 0 693147180559945 KDEG  1 0000 0 00000     observation data   ol  o2  o3  o4  o5  o6  o7 0  08 12 271 ab   09 54 121 1  010 104 3085 1    model command line   run_pesticide     model input output   pesticide tpl Substance 2 psm  pest ins pest flux plm     prior information    ooooo0o0  HFHrHrHreHhrrr           92     PELMO output file  PEST flux pim             0031  0092  0122  0153  0184  0212  0396  0457  0487  0518    31  31  30  31  31  28  3  31  30  31       08  10  TI  12  01  02  08  10  11  12    01  01  01  01  02  02  02  02  02  02    2 NER 5 GU  aS     4360315E 16   517069544315E 11   25404336295443E 07   03420123362954E 05   8029550123363E 03    742968255012336   9     71547825501234    55 7414252550123  103 614612255012         93      PEST output file    Pest_pesticide rec       PEST RUN RECORD  CASE PEST_PESTICIDE    PEST run mode      Parameter estimation mode    Case dimensions      Number of parameters   Number of adjustable parameters   Number of parameter groups   Number of observations   alt
38. 13E 05    Lambda   0 31250         gt   Phi 19869    0 109 of starting phi     No more lambdas  phi is less than 0 3000 of starting phi    Lowest phi this iteration  19869   Current parameter values Previous parameter values  koc 51 2500 koc 50 5300  kdeg 5 993000E 02 kdeg 5 155000E 02  Maximum relative change  0 1626   kdeg    OPTIMISATION ITERATION NO  7 6  Model calls so far   16  Starting phi for this iteration  19869   Lambda   0 15625         gt   Phi   3407 5   0 172 of starting phi   No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  3407 5  Current parameter values Previous parameter values  koc 53 3100 koc 51 2500  kdeg 6 387000E 02 kdeg 5 993000E 02    Maximum relative change  6 5743E 02   kdeg            OPTIMISATION ITERATION NO    7  Model calls so far   19  Starting phi for this iteration  3407 5  Lambda   7 81250E 02        gt   Phi   1394 7   0 409 of starting phi   Lambda   3 90625E 02        gt   Phi   1095 6   0 322 of starting phi   Lambda   1 95313E 02        gt   Phi   2830 2   0 831 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  1095 6       Current parameter values   koc 66 4100   kdeg 5 008000E 02  Maximum relative change  0 2457    OPTIMISATION ITERATION NO   Model calls so far s  for this iteration     Starting phi  Lambda   1 95313E 02        gt   Phi   225 40 C 0 206    No more lambdas   Lowest phi this iteration     phi is less than 0  225 40    Current parameter values   koc 78 1200  
39. 2200E 06 000 no_name  o7 0 00000 1 061063E 04  1 061063E 04 000 no_name  08 1 46124 0 517289 0 943951 000 no_name  09 25 0333 17 4226 7 61074 000 no_name  o10 112 653 101 647 11 0053 000 no_name  oll 215 175 210 598 4 57728 000 no_name  012 273 907 274 922  1 01527 000 no name  olg 330 160 333 873  3 71252 000 no name  ol4 330 160 333 813  3 71252 000 no name  ols 364 979 367 807  2 82796 000 no name  o16 418 913 421 595  2 68214 000 no name  o17 418 913 421 595  2 68214 000 no name  018 418 913 421 595  2 68214 000 no_name  019 434 772 435 933  1 16022 000 no name  020 477 439 476 538 0 900897 000 no name  021 485 543 483 266 2 27676 000 no name  022 486 385 483 923 2 46255 000 no name  023 490 075 486 583 3 49165 000 no name  024 490 075 486 583 3 49165 000 no name       See file PEST PESTICIDE RES for more details of residuals in graph ready format     See file PEST PESTICIDE SEO for composite observation sensitivities     Objective function        gt    Sum of squared weighted residuals  ie phi    296 8  Correlation Coefficient         Correlation coefficient   0 9999    Analysis of residuals      78      All residuals    Number of residuals with non zero weight   24    Mean value of non zero weighted residuals   0 6786  Maximum weighted residual  observation  o010     11 01  Minimum weighted residual  observation  o013      3 713  Standard variance of weighted residuals   13 49  Standard error of weighted residuals   34673    Note  the above variance was obtained by divi
40. 24  501524  136824  136824  136824   461424  514924  392164   281764   351524  351524            62     PEST output file  Pest water rec       PEST RUN RECORD  CASE PEST PESTICIDE    PEST run mode      Parameter estimation mode    Case dimensions      Number of parameters   Number of adjustable parameters   Number of parameter groups   Number of observations   2  Number of prior estimates    OPNN DN    Model command line s        run_pesticide    Jacobian command line      na    Model interface files      Templates   PESTICIDE TPL   for model input files   PESTICIDE_B_EXAMPLE_1 PSM     Parameter values written using single precision protocol       Decimal point always included    Instruction files   PEST INS  for reading model output files   PEST_FLUX PLM    PEST to model message file      na    Derivatives calculation      Param Increment Increment Increment Forward  group type low bound central  koc relative 1 0000E 02 none switch  kdeg relative 1 0000E 02 none switch    Parameter definitions      Name Trans  Change Initial  formation limit value   koc none relative 5 00000   kdeg none relative 1 099000E 02   Name Group Scale Offset   koc koc 1 00000 0 00000   kdeg kdeg 1 00000 0 00000    Prior information      No prior information supplied    Observations      or Multiplier Method     central   central   2 000 parabolic  2 000 parabolic  Lower Upper  bound bound  1 00000 1000 00  6 900000E 04 0 693150  Model command number      1      63            Observation name Observa
41. 46 20 93 24 23    Minimum error for which the Chi  Test passes according to FOCUS  4 75        99      PELMO output file    ECHO PLM             KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK           PESTICIDE LEACHING MODEL 8  i PELMO 4 00  Dec 2010 x                   KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK    DEVELOPED BY   U S  ENVIRONMENTAL PROTECTION AGENCY  OFFICE OF REASEARCH AND DEVELOPMENT  ATHENS ENVIRONMENTAL RESEARCH LABORATORY  ATHENS  GA  30613  404 546 3138   AND  ANDERSON NICHOLS  2666 EAST BAYSHORE RD   PALO ALTO  CA  94303   AND  FRAUNHOFER INSTITUTE  POSTFACH 1260  D 57377 SCHMALLENBERG  Tel   49 2972 302 317   AND  SLFA Neustadt   DEPARTMENT ECOLOGY  D 67435 NEUSTADT WSTR   Tel    49 6321 671 422          PELMO 4 00  Dec 2010    kkkkkkkxkkkx kx x xx x xHYDROLOGY DATAS   KKK KKK KKK KKK    YEAR 1  Grafschaft 1  YEAR 2  Grafschaft 2    HYDROLOGY AND SEDIMENT RELATED PARAMETERS    Temperature data are used to calculate pan evaporation     LATTITUDE OF THE LOCATION  53 50    PAN COEFFICIENT FOR EVAPORATION  NO CROP    PAN COEFFICIENT FOR EVAPORATION  MID SEASON   PAN COEFFICIENT FOR EVAPORATION  LATE SEASON   FLAG FOR ET  0 EVAP 1 TEMP  2 EVAP TEMP  3 HAUDE   DEPTH TO WHICH ET IS COMPUTED YEAR ROUND  CM     MONTHLY DAYLIGHT HOURS       MONTH DAY HOURS MONTH DAY HOURS  JAN  7 728 FEB  9 314  APR  14 04 MAY 15 98  JULY 16 33 AUG  14 68  OCT  9 890 NOV  8 016    SNOW MELT COEFFICIENT  CM DEG C DAY   INITIAL CROP NUMBER  INITIAL CROP CONDITION    NO CALCULATION OF RUNOFF EVENTS
42. 5 0 1 10 KcO 1 0000  ei none relative 0 5 0 1 10 Kel 1 0000  c2 none relative 0 5 0 1 10 Kc2 1 0000   ANETD none relative 30 5 100 ANETD 1 0000  O10 none relative 0 2 0 01 0 5 MOTO     observation data   ol 0 1   o2 0 1   03 0 1   04 0 1   05 5 6 1   06 32 96 1   07 51 18 T   o8 117 6 1   09 179 96 di   010 242 59   oll 289 34   012 315  27   013 342 38   ol4 342 38   015 361 81   016 402 18   017 402 18   018 402 18   019 419 16   020 513 14   o21 569 81   022 579 49   023 649  1   024 649  1     model command line   run_water     model input output   scenario tpl BORSTEL_Example_1 SZE       pest ins pest_water plm    prior information    1 0000    0 00000  0 00000  0 00000  0 00000  0 00000          PELMO output file  PEST water pim        61           0031 3105 01    0061  0092  0123  0153  0184  0214  0245  0276  0304  0335  0365  0396  0426  0457  0488  0518  0549  0579  0610  0641  0669  0700  0730    30  31  3  30  3  30  31  3   28  3  30  31  30  31  31  30  31  30  31  31  28  3   30       06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04    01  01  01  01  01  01  01  02  02  02  02  02  02  02  02  02  02  02  02  03  03  03  03    22  4 5  13   13   13    32   oly    117     180    243   290   314   344     344    362   402   402   402     417    io  568     578  648    648     205E 14  7984E 14  8470000000001  8470000000001  8470000000001  6090000000001  1211000000001  7021    24083   13033   329424  046424  161524   1615
43. 6 15 6 5   November 159 0 5 8   December 96 483 1 126  1 4 8 0         PET   potential evpotranspiration      48      The crop considered for the simulation was winter rape  two seasons  The standard crop and    crop rotation information was used  Begin of the study 2 was the 1  August with an    application of 1 2 kg ha on 21   August     5 2 2  Pesticide data  An overview on all pesticide data is given in Table 10     Table 10  Pesticide input parameters used for the test simulations          Parameter Unit Value   Molar mass  g mol 1  100   Solubility in water  mg L 1  90   Molar enthalpy of dissolution  kJ mol 1  27   Vapour pressure at 20  C  mPa  0 1   Molar enthalpy of vaporisation  kJ mol 1  95   Diffusion coefficient in water  m2 d 1  4 3   10 5   Gas diffusion coefficient  m2 d 1  0 43   Reference temperature for degradation  vaporisation and    C  20   dissolution   Reference soil moisture for degradation     at 10 kPa    field capacity    Q10 factor  increase of degradation rate with an increase of     2 58  temperature of 10  C    Arrhenius activation energy  kJ mol 1  65 4   B  exponent of degradation   moisture relationship according to     0 7   Walker    Exponent of the FREUNDLICH Isotherm     0 9    Non equilibrium sorption  TSCF   transpiration stream concentration factor    5 2 3  Lysimeter results  test data set 2     not considered  0 0    The main results of the study 2 are summarised in Table 11  The maximum concentration in    the leachate was detecte
44. 6 85      77      1 000 times starting phi     No more lambdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration     Current parameter values  14 7900    koc  kdeg    296     3 304000E 02    Maximum relative change     Optimisation complete     Total model calls     79    0 000    85    Previous parameter values  14 7900    koc  kdeg      koc      3 successive iterations     3 304000E 02    relative parameter change less than 1 0000E 02  over    The model has been run one final time using best parameters   Thus all model input files contain best parameter values  and model  output files contain model results based on these parameters     OPTIMISATION RESULTS    Parameters        gt    Parameter Estimated 95  percent confidence limits  value lower limit upper limit   koc 14 7900 14 6360 14 9440   kdeg 3 304000E 02 3 298439E 02 3 309561E 02    Note  confidence limits provide only an indication of parameter uncertainty     They rely on a linearity assumption which    may not extend as far in    parameter space as the confidence limits themselves   see PEST manual     See file PEST_PESTICIDE SEN for parameter sensitivities        Observations        gt   Observation Measured Calculated Residual Weight Group  value value  ol 0 00000 0 00000 0 00000 000 no name  o2 0 00000 0 00000 0 00000 000 no_name  o3 0 00000 0 00000 0 00000 000 no_name  o4 0 00000 0 00000 0 00000 000 no_name  o5 0 00000 0 00000 0 00000 000 no_name  o6 0 00000 1 912200E 06  1 91
45. ATION    DATE    15 BRP 2  15 SEP    15 SEP      LY SEP G      20 00  0 3333E 03    0 1000E 03  300 0  90 00    30 00  0 3333E 03    0 1000E 03    4303   0 1000  0 1368E 06  0 1322E 06    0 5000    MOISTURE DURING STUDY    ABSOLUTE    RELATIVE     1 YES     MOISTURE    EXPONENT    HARVEST  3   SENESCENCE  DATE  21 AUG   1  21 AUG   1  21 AUG   1  21 AUG   1   REL     IN NEO DOMAIN    MET  Al  MET  Bl  MET  C1  MET  D1  BR CO2      DAY   0 1000E 09  0 1000E 09  0 1000E 09  0 1000E 09  0 3304E 01    SORPTION PARAMETERS    DEPTH DEPENDEND SORPTION AND TRANSFORMAT      PARAMETERS TO CALCULATE KD VALUES WIT    KOC  CM  3 G     FREUNDLICH SORPTION EXPONENT 1 n   PEARL  FACTOR DESCRIBING NON EQ S   PEARL  DESORPTION RATE     C     0 0000  20 00  20 00  20 00  20 00    CIZDI      81      MIN  CONC FOR FREUNDLICH SORPTION   amp G L         5     TH KOC      TES EQ SITES    ON PARAMETERS    HORIZON    RUNE    5  Pest         KOC KD  CM  3 G      CM  3 G   14 79 0 2219  14 79 0 1479  14 79 0 2958E 01  0 0000 0 0000  0 0000 0 0000    Borstel Mais Mais Mais    GENERAL SOIL INFORMATION    CORE       PART  BUL                DEPTH  CM    TOTAL HORIZONS IN CORE  TOTAL COMPARTMENTS IN CORE  DPFLAG FLAG  THETA FLAG    TION COEFFICIENT FLAG    DENSITY FLAG  SOIL HYDRAULICS MODULE                  SOIL HORIZON INFORMATION    BIODEG    FACTOR    HORIZON  CM     BUL  PH  THICKNESS DEN           K    SITY    FR EXP         0 9000  0 9000  0 9000  0 9000  0 9000    TRANSFORMATION RATE TO    MET  Al 
46. D     PALO ALTO  CA     FRAUNHOFER INSTI  POSTFACH 1260    13    94303    TUTE    D 57377 SCHMALLENBERG    Tel   49 2972 30    SLFA Neustadt        DEPARTMENT ECOLOGY   WSTR   Tel    49 6321 671 422    D 67435 NEUSTADT    Dec    2 317       2010    kkkkkkkkkkx kx kx x x xHYDROLOGY DATAS  X  kkkkkkKKK    HYDROLOGY AND    YEAR 1  Hamburg 1978  normal    YEAR 2  Hamburg 1961  na      YEAR 3  Hamburg 1978  normal   SEDIMENT RELATED PARAMETERS    Temperature data are used to calculate pan evaporation     LATTITUDE OF THE LOCATION     50     PAN COEFFICIENT FOR EVAPORATION  PAN COEFFICIENT FOR EVAPORATION  PAN COEFFICIENT FOR EVAPORATION       00   NO CROP    MID SEASON      LATE SEASON     FLAG FOR ET  0 EVAP  1 TEMP  2 EVAP TEMP  3 HAUDE   DEPTH TO WHICH ET IS COMPUTED YEAR ROUND  CM   MONTHLY DAYLIGHT HOURS  MONTH DAY HOURS MONTH DAY HOURS  JAN  8  312 FEB  9 681  APR  12 76 MAY 15 40  JULY 15593 AUG  14 31  OCT  10 18 NOV  8 561  SNOW MELT COEFFICIENT  CM DEG C DAY   INITIAL CROP NUMBER  INITIAL CROP CONDITION  NO CALCULATION OF RUNOFF EVENTS  CROP INFORMATION  MAXIMUM  INTERCEPT  MAXIMUM MAXIMUM MAXIMUM  USLE COVER MANAGEMENT  CROP POTENTIAL ROOT DEPTH COVER WEIGHT  AMC RUNOFF CURVE NUMBERS  C  FACTOR    0 9805  1 340  4 072    30 00    MONTH  MAR   JUNE  SEP   DEC     0 4600    IRRIGATION PERENNIAL TILLAGE    FLAG     0 NO     DAY  11 64  16 12    28   7 874    CROP     0 NO     HOURS    FLAG     0 NO     SURFACE  CONDITION    AFTER       NUMBER  CM   CM   3   FALLOW CROP RES
47. Figure 2 InversePELMO calls PEST which then reads the control file   pest pesticide pst with all information about the parameters considered for the optimisation  including their initial values and their allowed ranges  Also the experimental data  e g   cumulative fluxes  can be found in pest pesticide pst      12     According to the information in pesticide tpl PEST exe is able to create pesticide input files   pesticide psm  for PELMO including the correct position for the input parameters used in the  optimisation  After this file has been written PEST calls PELMO for a simulation  To make the  interface between PELMO and PEST more stable a second program is always executed  after PELMO  in the example presented in Figure 2  PELMO results pesticide exe  which  gathers the important simulation results  e g  calculated cumulative pesticide fluxes  and  writes them into the file pest plm  After both programs  PELMO and   PELMO results pesticide exe  are finished PEST gets control again and will read the  important simulation results listed in pest plm  instructions for PEST to read pest plm is given  in pest ins   According to the simulation results a new iteration is initiated with new DT50 and  Kfoc data for the optimisation until the optimisation is finalised     pest pesticide pst   PEST control file     pesticide tpl   PELMO Input file description     pest ins   PELMO Output file description               Pest plm Pesticide psm    Sze files  Cli files       pestflux plm
48. IDUE FALLOW CROP  I 72 67 72   3 0 0000 100 0 90 00  II 86 83 86 1 0  III 94 92 94  CROP ROTATION INFORMATION  CROP TILLAGE  HARVEST  NUMBER DATE  DATE  Sillage Maize  20 OCT s  1  Sillage Maize  20 OCT 54 2  Sillage Maize  20  06T4    3  Sillage Maize  20 OCT    4        PARAMETERS OF ACTIVE SUBSTANCE    KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK    PESTICIDE APPLICATION INFORMATION     KG M  2       80      RESIDUE    0 0000  000    1 0000    EMERGENCE    DATE    5 MAY    5 MAY    5 MAY    5 MAY     FOCUS DUMMY B         PESTICIDE INCORPORATION  APPLICATION APPLIED DEPTH  DATE  KG HA   CM   1 MAY   1 000 0 0000  PLANT PESTICIDE PARAMETERS  MODEL UTILIZED  1 SOIL  2 LINEAR  3 EXPONENTIAL       VOLATILIZATION PARAMETERS ACTIVE SUBSTANCE    TEMPERATURE  deg C    HENRY CONSTANT  Pa m3 mole  o  CALCULATED USING  VAPOUR PRESSURE  MOLECULAR MASS  WATER SOLUBIL     Pa   g mole     TY  mg 1     r  J mole     TEMPERATURE  di  HENRY CONSTANT  CALCULATED US    eg C   Pa m3 mole  or    NG    VAPOUR PRESSURE  MOLECULAR MASS  WATER SOLUBIL     Pa   g mole    mg 1              TY    Q10 Factor for Henry s consta    DIFFUSION COEFF AIR  cm2 d     nt      J mole     DEPTH OF SURFACE LAYER FOR VOLATILIZATION  CM     HENRY CONSTANT AT  HENRY CONSTANT AT    20 0 deg C  30 0 deg C    PLANT UPTAKE OF ACTIVE SUBSTANCE    PLANT UPTAKE FACTOR                    TRANSFORMATION PARAMETERS    TRANSFORM  TRANSFORM  TEMP  Q10  TRANSFORM  TO in EQ Domaine OF STUDY VALUE     1 YES     1 0000     1 YES     MATUR
49. InversePELMO    A tool to perform    inverse modelling studies with PELMO 4 0    FKZ  360 03 050    Fraunhofer Institut f  r    Molekularbiologie und Angewandte   kologie  57392 Schmallenberg    Head of the Institute   Prof  Dr  R  Fischer    Developed by   Dr  M  Klein    Schmallenberg  30 November 2011    Content    1     2     4 1     4 2     4 3     4 4     5 1     5 2     8 1     8 2     Summary   Background   Description of InversePELMO   Working with InversePELMO   Installing InversePELMO   File handling between InversePELMO and PELMO  InversePELMO  Main form   InversePELMO  Optimisation   Results of test simulations   Example data set 1  Leaching of Parent over a two years  Test data set 2  Leaching of Parent over a 17 months  Discussion and Conclusions   References   Documentation of Model Output  InversePELMO  Example data set 1    Example data set 2    11    11    11    13    18    39    39    46    56    57    59    59    83    List of Tables    Table 1  Borstel soil profile in the lysimeter  hypothetical test data set 1                                39  Table 2  Further input parameters influencing evapotranspiration  hypothetical test data set    EE EEE EE EE 39  Table 3  Climate data during the study  hypothetical test data set 1     40  Table 4  Pesticide input parameters used for the test simulations            rrrnrrnnrrnrrrrrrrrrrrnnnrn 41    Table 5  Percolate and percolate concentrations in the lysimeter  hypothetical test data set 1     EN KE EEE EE EE 
50. NE NR ee 42  Table 6  Optimised parameter for the percolate  hypothetical test data set 1                        44  Table 7  Optimised parameter for the substance fluxes  hypothetical test data set 1            45  Table 8  Borstel soil profile in the lysimeter  test data Set 2             uunsssssrssssenennnnnnnnnnnnnen nenn 46  Table 9  Climate data during the study  test data Set 2          rrnrrrnnnnnnvrvnnnnnnnvrnnnrnnnrnnnrnnnrrnnnnnnr 47  Table 10  Pesticide input parameters used for the test Simulations                    en 48  Table 11  Percolate and percolate concentrations in the lysimeter  test data set 2                49  Table 12  Optimised parameter for the percolate  test data set 2          rrrrrrrrrrnnnnrnrnrrrrrrrrrnnnnn 50  Table 13  Optimised parameter for the substance fluxes  hypothetical test data set 2          52    Table 14  Extension of the lysimeter study  substance flux  hypothetical test data set 1       53  Table 15  Pesticide in the percolate at 1 m soil depth   FOCUS Hamburg                             55    List of Figures    Figure 1  General flowchart of inverse modelling studies         rrrrrrrrrnrvnvvrnrvnrnrrnvvenrvnrnrrnvanrrnne 9  Figure 2  Flow chart  File handling of a flux optimisation with InversePELMO                       12  Figure 3  InversePELMO  Main form                4444444444440RnHnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnn nn 13  Figure 4  InversePELMO  Path to FOCUS PELMO      ernnnnnvnnnnnnnrrnnnnnnrrrrnnnnrnnrr
51. NO  8  Model calls so far   45  Starting phi for this iteration  15984   Lambda   0 31250         gt   Phi   11485    0 719 of starting phi   Lambda   0 15625         gt   Phi   12288    0 769 of starting phi   Lambda   0 62500         gt   Phi   99057   0 620 of starting phi   Lambda   1 2500      gt   Phi   6987 3   0 437 of starting phi   Lambda   2 5000 ees  gt   Phi   2734 8   0 171 of starting phi   No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  2734 8       Current parameter values  koc 14 4200  kdeg 3 334000E 02    Previous parameter values  koc 12 1100  kdeg 3 225000E 02    Maximum relative change  0 1908    OPTIMISATION ITERATION NO   Model calls so far    for this iteration     Starting phi  Lambda   2 5000      gt   Phi   478 67  6 051 28    phi is less than 0  478 67    No more lambdas   Lowest phi this iteration     Current parameter values   koc 14 5200   kdeg 3 300000E 02  Maximum relative change  1 0198E 02    OPTIMISATION ITERATION NO   Model calls so far    Starting phi for this iteration   Lambda   142500      r     gt   Phi   309 72   0 647  Lambda   0 62500        gt   Phi   300 94      No more lambdas   Lowest phi this iteration  300 94   Current parameter values   koc 14 7800   kdeg 3 305000E 02  Maximum relative change     OPTIMISATION ITERATION NO   Model calls so far    for this iteration     Starting phi  Lambda   0 31250         gt   Phi   296 85    Lambda   0 15625        gt   Phi   296 85      No more lambda
52. R PRESSURE  Pa  0 4000E 03  MOLECULAR MASS  g mole  100 0  WATER SOLUBILITY  mg 1  1000   Q10 Factor for Henry s constant  2 000  DIFFUSION COEFF AIR  cm2 d  4303   DEPTH OF SURFACE LAYER FOR VOLATILIZATION  CM  0 1000  HENRY CONSTANT AT 20 0 deg C     0 8206E 08  HENRY CONSTANT AT 30 0 deg C     0 1587E 07    PLANT UPTAKE OF ACTIVE SUBSTANCE    PLANT UPTAKE FACTOR     0 0000    TRANSFORMATION PARAMETERS    TRANSFORM   TRANSFORM  TO    MET  Al    TRANSFORM  TEMP  010 MOISTURE DURING STUDY  in EQ Domaine OF STUDY VALUE ABSOLUTE RELATIVE    DAY   C               0 1000E 09 20 00 2 580 0 0000 100 0    2    3    4     1 YES     MOISTURE    EXPONENT       0 7000    HARVEST    SENESCENCE    DATE    28 JUNE  2  28 JUNE  3    28 JUNE  4    REL     IN NEQ DOMAIN       0 0000    MET  Bl  MET  C1  MET  D1  BR CO2     1000E 09   1000E 09   1000E 09   3086E 01    SORPTION PARAMETERS      PARAMETERS TO CALCULATE KD VALUES WIT    DEPTH DEPENDEND SORPTION AND TRANSFORMAT    KOC  CM  3 G     FREUNDLICH SORPTION EXPONENT 1 n   PEARL  FACTOR DESCRIBING NON EQ S   PEARL  DESORPTION RATE    20 00  20 00  20 00  20 00     1 D        101       580   580    NNNN     580    MIN  CONC FOR FREUNDLICH SORPTION   amp G L        0 0000  0 0000   19 00  0 0000    TH KOC      ON PARAMETERS    HORIZON KOC   CM  3 G   1 9517  2 95 17 0  3 95 17 0  4 0 0000 0  5 0 0000 0  Subs    Ver 3 Hamburg  oil    KD    seed rape     CM  3 G   1 428  9357   1903   0000   0000    GENERAL SOIL INFORMATION    CORE DEPTH  CM  
53. See file PEST_WATER SEO for composite observation sensitivities     Objective function        gt    Sum of squared weighted residuals  ie phi    4779   Correlation Coefficient        gt    Correlation coefficient   0 9958    Analysis of residuals        gt     All residuals    Number of residuals with non zero weight   10    Mean value of non zero weighted residuals    3 8712E 03  Maximum weighted residual  observation  o7     43 37  Minimum weighted residual  observation  09      34 59  Standard variance of weighted residuals   796 6  Standard error of weighted residuals   28 22    Note  the above variance was obtained by dividing the objective   function by the number of system degrees of freedom  ie  number of  observations with non zero weight plus number of prior information  articles with non zero weight minus the number of adjustable parameters    If the degrees of freedom is negative the divisor becomes   the number of observations with non zero weight plus the number of   prior information items with non zero weight     Covariance and other statistical matricies cannot be determined    Normal matrix nearly singular  cannot be inverted     Minimum error for which the Chi  Test passes according to FOCUS  4 75        90      8 2 2  Optimisation of pesticide fate    InversePELMO control file    sampling pesticide txt                   01 08 01 0 10 5  31 8 1 0   31 0 1 0   30 1 1 0   31 2 1 0   31 2 0   28 2 2 0   31 8 2 0   31 0 2 12 271   30 1 2 54 121 1   31 2 2 104 3
54. Their initial values and their possible range are shown in Figure 28       43      Parameter Initial value Min  value Max  value  Kc factor  no crop     Kc factor  mid season     Kc factor  late season     Minimum depth for evaporation  cm     Initial soil water content  m  m      Cancel o   a Done    Figure 28  Parameters used in the optimisation of the percolate  hypothetical test data set 1        After the optimisation the results summarised in Figure 29 were obtained         Zumulative percolate  Lim    600  500  400  300  200    100    ays  0 100 200 300 400 500 600 700    Figure 29  Results of the optimisation  percolate  hypothetical test data set 1       44      The minimum error for which the Chi  Test passes according to FOCUS was found to be  1 28   which supports the excellent agreement shown in the figure     Table 6  Optimised parameter for the percolate  hypothetical test data set 1           Parameter Estimated value  KCO 0 98  KC1 1 34  KC2 4 07  ANETD 30  MOIO 0 2    The results summarised in Table 6 shows that the inverse modelling tool did not find the  same parameter setting as used when producing the hypothetical test data  However  more  important than identical parameters is the correct description of the percolate by the leaching    model because many parameter combinations lead to similar results     For the optimisation of the substance fluxes the parameters    DT50    and    KOC    were  considered in the fitting  Their initial values and their po
55. ative 1 00000 0 500000 10 0000  ko none relative 1 00000 0 500000 10 0000  moid none relative 0 200000 5 000000E 02 0 500000  ame Group Scale Offset Model command number  kco kc0 1 00000 0 00000 1  kel kel 1 00000 0 00000 T  kc2 kc2 1 00000 0 00000 I  moid moid 1 00000 0 00000 1    Pri    Obs    Obs  ol  02  03  o4  o5     87      or information      No prior information supplied    ervations     ervation name Observation Weight Group  47 9000  000 no name  124 600  000 no_name  177 350  000 no_name  222 400  000 no_name  255 500  000 no_name  346 900  000 no_name  495 250  000 no_name  582 900  000 no_name  675 900  000 no_name   0 767 150  000 no_name       Control settings         Initial lambda 5 0000  Lambda adjustment factor 2 0000  Sufficient new old phi ratio per optimisation iteration 0 30000  Limiting relative phi reduction between lambdas 3 00000E 02  Maximum trial lambdas per iteration 10  Maximum factor parameter change  factor limited changes  na  Maximum relative parameter change  relative limited changes  3 0000  Fraction of initial parameter values used in computing  change limit for near zero parameters 1 00000E 03  Allow bending of parameter upgrade vector no  Allow parameters to stick to their bounds no  Relative phi reduction below which to begin use of  central derivatives 0 10000  Relative phi reduction indicating convergence 0 10000E 01  Number of phi values required within this range 3  Maximum number of consecutive failures to lower phi 3  Minimal re
56. ative phi reduction between optimisation iterations less than 0 1000  Switch to central derivatives calculation    Current parameter values Previous parameter values    kco 1 00000 kc0 1 00000  kc1 1 00000 kc1 1 00000  kc2 1 00000 kc2 1 00000  moid 0 281140 moiO0 0 285800   Maximum relative change  1 6305E 02   moi0     OPTIMISATION ITERATION NO     3  Model calls so far   12  Starting phi for this iteration  4779 6    Parameter  kc0  has no effect on observations   Parameter  kcl  has no effect on observations   Parameter  kc2  has no effect on observations   Lambda   1 2500     gt   Phi   4779 4   1 000 of starting phi   Lambda   0 62500         gt   Phi   4779 4   1 000 of starting phi        No more lambdas  relative phi reduction between lambdas less than 0 0300    Lowest phi this iteration  4779 4  Current parameter values Previous parameter values  kcO 1 00000 kco 1 00000  kel 1 00000 kel 1 00000  kc2 1 00000 kc2 1 00000  moid 0 280990 moid 0 281140  Maximum relative change  5 3354E 04   moi0    OPTIMISATION ITERATION NO    4  Model calls so far 22  Starting phi for this iteration  4779 4  Parameter  kc0  has no effect on observations   Parameter  kc1  has no effect on observations   Parameter  kc2  has no effect on observations   Lambda   0 62500        gt   Phi   4779 4   1 000 of starting phi   Lambda   0 31250        gt   Phi   4779 4   1 000 of starting phi     No more lambdas   Lowest phi this iteration     Current parameter values    kco  kc1  kc2  moid    Maxim
57. bdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration  300 94  Current parameter values Previous parameter values  koc 14 7800 koc 14 5200  kdeg 3 305000E 02 kdeg 3 300000E 02    Maximum relative change  1 7906E 02   koc      OPTIMISATION ITERATION NO    TA  Model calls so far   65  Starting phi for this iteration  300 94  Lambda   0 31250         gt   Phi   296 85   0 986 of starting phi   Lambda   0 15625         gt   Phi   296 85   0 986 of starting phi   No more lambdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration  296 85  Current parameter values Previous parameter values  koc 14 7900 koc 14 7800  kdeg 3 304000E 02 kdeg 3 305000E 02    Maximum relative change  6 7659E 04   koc      OPTIMISATION ITERATION NO    12  Model calls so far E 71  Starting phi for this iteration  296 85  Lambda   0 15625         gt   Phi   296 85   1 000 times starting phi   Lambda   7 81250E 02        gt   Phi   296 85   1 000 times starting phi   No more lambdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration  296 85  Current parameter values Previous parameter values  koc 14 7900 koc 14 7900  kdeg 3 304000E 02 kdeg 3 304000E 02  Maximum relative change  0 000  tkoc      OPTIMISATION ITERATION NO  B 13  Model calls so far   ED  Starting phi for this iteration  296 85  Lambda   7 81250E 02        gt   Phi   296 85   1 000 times starting phi     Lambda   3 90625E 02        gt     Phi   29
58. d at the end of the study  December  0 55 ug L   The total percolate    collected was 767 L m2       49      Table 11  Percolate and percolate concentrations in the lysimeter  test data set 2           Month Percolate  L m   Concentration  ug L   August 47 9 0 00  October 76 7 0 00  November 52 75 0 00  December 45 05 0 00  January 33 1 0 00  February 91 4 0 00   August 148 35 0 00  October 87 65 0 14   November 93 0 45  December 91 25 0 55    5 2 4  Optimisation  test data set 2    For the optimisation of the percolate all possible parameters were considered in the fitting   Their initial values and their possible range are shown in Figure 28     Initial value Min  value Max  value    Kc factor  mid season     Kc factor  late season     Minimum depth for evaporation  cm     Initial soil water content  m  m      Cancel o   a Done J    Figure 34  Parameters used in the optimisation of the percolate  test data set 2        After the optimisation the results summarised in Figure 35 were obtained       50      a Pulang percolate  Lim      700  600  500     400  300  200    100    days  0 100 200 300 400 500    Figure 35  Results of the optimisation  percolate  test data set 2     The minimum error for which the Chi  Test passes according to FOCUS was found to be  4 13   which supports the excellent agreement shown in the figure     Table 12  Optimised parameter for the percolate  test data set 2           Parameter Estimated value  KCO 0 5  KC1 2 304  KC2 1 00  MOIO 0 269    For 
59. d phi ratio per optimisation iteration   0 30000  Limiting relative phi reduction between lambdas   3 00000E 02  Maximum trial lambdas per iteration go GA  Maximum factor parameter change  factor limited changes    na  Maximum relative parameter change  relative limited changes    3 0000  Fraction of initial parameter values used in computing  change limit for near zero parameters   1 00000E 03  Allow bending of parameter upgrade vector   no  Allow parameters to stick to their bounds   no    Relative phi reduction below which to begin use of       central derivatives   0 10000  Relative phi reduction indicating convergence   0 10000E 01  Number of phi values required within this range   3  Maximum number of consecutive failures to lower phi i 3   Minimal relative parameter change indicating convergence   0 10000E 01  Number of consecutive iterations with minimal param change 8 3  Maximum number of optimisation iterations t 30   Attempt automatic user intervention   no    OPTIMISATION RECORD    INITIAL CONDITIONS     Sum of squared weighted residuals  ie phi    6 20080E 08  Current parameter values  koc 50 0000  kdeg 1 099000E 02  OPTIMISATION ITERATION NO     1  Model calls so far   1    Starting phi for this iteration  6 20080E 08    Lambda 30000   sees  gt   Phi   8 43319E 07   0 136 of starting phi     No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  8 43319E 07    Current parameter values Previous parameter values  koc 50 0400 koc 50 00
60. ding the objective   function by the number of system degrees of freedom  ie  number of  observations with non zero weight plus number of prior information  articles with non zero weight minus the number of adjustable parameters    If the degrees of freedom is negative the divisor becomes   the number of observations with non zero weight plus the number of   prior information items with non zero weight        Parameter covariance matrix        gt   koc kdeg   koc 5 5159E 03 3 6736E 07   kdeg 3 6736E 07 7 1906E 10   Parameter correlation coefficient matrix        gt   koc kdeg   koc 1 000 0 1845   kdeg 0 1845 1 000   ormalized eigenvectors of parameter covariance matrix        gt    Vector 1 Vector 2   koc 6 6602E 05  1 000   kdeg  1 000  6 6602E 05   Eigenvalues        gt     6 9459E 10 5 5159E 03    Parameter Estimated 95  percent confidence limits   value lower limit upper limit  koc 14 7900 14 6360 14 9440  DT50 20 98 20 94 21 01    Minimum error for which the Chi  Test passes according to FOCUS  1 23       79     PELMO output file    ECHO PLM             KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK                        Dec 20    DEVELOPED BY     AND    AND    AND    PELMO 4 00     U S     PESTICIDE LEACHING MODEL  PELMO 4 00     10    KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK                        ENVIRONMENTAL PROTECTION AGENCY    OFFICE OF REASEARCH AND DEVELOPMENT  ATHENS ENVIRONMENTAL RESEARCH LABORATORY    ATHENS  GA  306    404 546 3138    ANDERSON NICHOLS    2666 EAST BAYSHORE R
61. e factor  late season     v Minimum depth for evaporation  cm     M Initial soil water content  nm  m        oja     Figure 13  InversePELMO  Parameter for fitting the percolate    In total five PELMO input parameters influencing the hydrology in soil can be used to do the    fitting     Kc factor  no crop   linear correction factor for daily potential evapotranpiration when  there is no crop in the field   Kc factor  mid season   linear correction factor for daily potential evapotranpiration  when the crop is growing   Kc factor  late season   linear correction factor for daily potential evapotranpiration  when the crop is at senescence   Minimum depth for evaporation  cm   minimum depth for evaporation which is used  independent whether or not a crop is present    initial soil water content  soil water content at the beginning of the simulation    If parameters shall be considered for the optimisation their initial values and their range have    to be specified  If a parameter is not checked the respective input fields is invisible     If the form has been filled correctly  e g  no negative figures  no minimum values higher than    maximum values  it can be closed using the    Done    button and the arrow on the optimisation    form will jump to the next button which is the button for starting the optimisation  see Figure    13        25     4 4 6  Step 6  Optimisation of the hydrology in soil  percolate    In step 6 of the sequence the optimisation is performed  During the
62. e objective   function by the number of system degrees of freedom  ie  number of  observations with non zero weight plus number of prior information  articles with non zero weight minus the number of adjustable parameters    If the degrees of freedom is negative the divisor becomes   the number of observations with non zero weight plus the number of   prior information items with non zero weight        Parameter covariance matrix        gt   koc kdeg   koc 5 5159E 03 3 6736E 07   kdeg 3 6736E 07 7 1906E 10   Parameter correlation coefficient matrix        gt   koc kdeg   koc 1 000 0 1845   kdeg 0 1845 1 000   ormalized eigenvectors of parameter covariance matrix        gt    Vector 1 Vector 2   koc 6 6602E 05  1 000   kdeg  1 000  6 6602E 05   Eigenvalues        gt     6 9459E 10 9 9 L99E 03    Parameter Estimated 95  percent confidence limits   value lower limit upper limit  koc 14 7900 14 6360 14 9440  DT50 20 98 20 94 21 01    Minimum error for which the Chi  Test passes according to FOCUS  1 23        69      8 1 2  Optimisation of pesticide fate    InversePELMO control file    sampling pesticide txt                01 05 01 0 24 22  31 5 1 0 l  30 6 1 0 1  31 7 1 0 a  31 8 1 0 L  30 9 1 0 a  31 10 1 0 1  30 11 1 0 1  31 T2 1 1 461241  31 1 2 25 03332  28 2 2 112 65269  31 3 2 215 17544  30 4 2 273 90689  31 5 2 330 16014  30 6 2 330 16014  31 7 2 364 9787  31 8 2 418 91302  30 9 2 418 91302  31 10 2 418 91302  30 11 2 434 77234  31 12 2 477 43926  31 1 3 485 54307  28 2 3
63. eate PELMO input files    oo    Import PELMO input files                   Figure 7  InversePELMO  Optimisation form  new project     However  these limitations do not held for inverse modelling studies previously performed   see Figure 8     If the user did not go through all steps of the study so far last time  some buttons may be still  disabled when the project is called again  The red arrow will then indicate where to continue      19        Optimisation  Test  Optimisation sequence  5 i  Enter experimental data Enter experimental data    GJEN  Create PELMO input files Define fitting parameters Define fitting parameters      22    LA ii    Import PELMO input files Start optimisation Start optimisation    NG SS     Check initial simulation View optimisation View optimisation    PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm   91   Jol    1 ape  End simulation day  dd mm  12 Number of years  E  Study begin  dd mm yy   a or bi    Pesticide input file  Pesticide_A_Maize psm    Scenario input file  H_MAIZE sze    Climate input file s   HMBGNORM CLI          Figure 8  InversePELMO  Optimisation form  existing project     In the following detailed information about the sequence of doing inverse modelling studies  with InversePELMO is given  assuming that a new project has been created     4 4 1  Step 1  Create PELMO input files   In the first step the necessary input files for the inverse modelling study has to be created   The click at t
64. escription as  given in the PELMO 3 0 soil data base  The soil profile information is summarised in Table 1     Table 8  Borstel soil profile in the lysimeter  test data set 2           Horizon  cm  0 30 30 57 57 73 73 90 90 110  Soil density  g cm   1 5 1 6 1 58 1 62 1 6  Sand     68 3 67 0 96 2 98 8 100  Silt     24 5 26 3 29 0 2 0   Clay     7 2 6 7 0 9 0 0   OC     1 5 1 0 0 2 0 0   initial soil water content  m8 m    0 05 0 05 0 05 0 05 0 05  Biodegradation factor     1 0 5 0 3 0 3 0 3  pH value 5 7 4 9 4 9 5 0 4 8    The Climatic conditions during the lysimeter study are summarised in Table 9  whereas the  following two figures show the daily pattern   Precipitation cm d        il ML   HIMAL ll VL SE    Figure 32  Daily precipitation at the lysimeter station from August 2008 to December 2009      47      Actual evapotranspiration cm d   2    1 5    Day  500    l Nm PN b  l LG    Figure 33  Actual ET at the lysimeter station from from August 2008 to December 2009    Table 9  Climate data during the study  test data set 2              Month Montly Annual Monthly PET  Annual PET  Monthly Annual  Precipitatio Precipitation  mm     C  Temperature Temperature   n  mm   mm     C     C    August 87 105 13 9   September 50 2 8 8   October 60 20 7 9   November 60 0 4 2   December 56 1 0   January 50 6  2 6   February 83 5  1   March 89 20 2 2   April 25 3 10 7   May 72 96 11 4   June 65 3 12 3   July 135 832 108 369 15 8 7 0   August 38 108 16 4   September 64 2 12 6   October 12
65. he respective button  see Figure 7  will open the normal FOUCS PELMO shell  for the editing  If all scenario  climate and pesticide input files are available and FOCUS  PELMO closed the red arrow will jump to the next button     4 4 2  Step 2  Import PELMO input files  In step 2 all PELMO input files will be copied into the project folder and some additional  information about the duration of the lysimeter study has to be provided  This information has      20     to be entered in the frame    PELMO simulation control     The start and end date of the  simulation is related to the PELMO simulation whereas the study begin is related to the start  of the lysimeter study which may be different when a warming up period is considered for  PELMO in order to optimise the soil hydrology       Optimisation  user EIER     Optimisation sequence    inne   Create PELMO input files       heck initial simulatio view optimisatior view optimisation       r PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm      g   End simulation day  damm         Number of years    Study begin  dd mm yy    x  x      Pesticide input file  a ne  Scenario input file  E     Climate input file s   Select climate input files          Figure 9  InversePELMO  Import PELMO input files    During this step also all necessary executables are copied into the project folder  That should    make the documentation of the various programmes used for the analysis more transparent      21   
66. i     296    3 304000E 02    Maximum relative change     Optimisation complete   Total model calls     The model has been run one final time using best parameters   Thus all model input files contain best parameter values     79    0 000    Previous parameter values  14 7900    koc  kdeg      koc      3 successive iterations     relative phi reduction between lambdas less than 0 0300   85    3 304000E 02    relative parameter change less than 1 0000E 02  over    and model    output files contain model results based on these parameters     Parameters          Parameter    koc  kdeg    OPTIMISATION RESULTS    Estimated  value  14 7900    3 304000E 02    lower limit    14 6360    3 298439E 02    14 9440    95  percent confidence limits  upper limit    3 309561E 02    Note  confidence limits provide only an indication of parameter uncertainty     They rely on a linearity assumption which    may not extend as far in    parameter space as the confidence limits themselves   see PEST manual     See file PEST_PESTICIDE SEN for parameter sensitivities     Observations    Observation    ol  o2  o3  o4  o5  o6  07  08  09    O    000000000  vooauPwMN Ho       00006  NNNN  wWNHO    024    Measured  value  0 00000    0  0  0  0  0  0     00000   00000   00000   00000   00000   00000    1 46124  25 0333    112   215   2735  330   330   364   418   418   418   434   477     485    653  17 5  907  160  160  979  913  913  913  772  439     543  486   490   490     385  075  075    Calculated 
67. ific PELMO output file containing information used by PEST  perkolat plm   flux plm  soil concentrationXX plm  XX  number of soil layer e g  soil  concentration01 plm    e MS DOS batch files    Run_water bat    and  Run pesticide bat    created by PEST  used  to start the PELMO simulation and to prepare the simulation results for PEST   e PEST output files  e g   pest soil concentrations rec    with detailed information on the  optimisation  Additional files with the same name  but different file extensions are  created by PEST such as  pest soil concentrations jac    with other information  e g   about parameter sensitivity    The files in the project folder should be not removed manually by the user because it may  lead InversePELMO to crash when scrolling through the project list    After a double click at one of the items in the list box  or when using the button    Open  project     InversePELMO will load the project       17     3 Study name    Enter a name for the new project     Type here new project    o   a     Figure 6  InversePELMO  New project       4 3 3  Command buttons    Five buttons are placed on the main form allowing direct access to important functions of  InversePELMO     New project  This button calls the dialogue shown in Figure 6 to name the new project  It is    not possible to use the name of an existing project  If existing projects should be overwritten     please delete the old project first  After a click at    Done    the optimisation form will
68. kdeg 3 423000E 02    kdeg    11  35  10 545    of starting phi     relative phi reduction between lambdas less than 0 0300    Relative phi reduction between optimisation iterations less than 0 1000  Switch to central derivatives calculation    Current parameter values Previous parameter values    koc 95 1900 koc 94 2900  kdeg 3 085000E 02 kdeg 3 138000E 02  Maximum relative change  1 6890E 02   kdeg    OPTIMISATION ITERATION NO  12    Model calls so far  Starting phi    Lambda    Phi      Lambda    Phi      No more lambdas      97        39  for this iteration  10 203  3 05176E 04        gt   20 130   0 999 of starting phi   1 52588E 04        gt   10 190   0 999 of starting phi     relative phi reduction between lambdas less than 0 0300    Lowest phi this iteration  10 190  Current parameter values Previous parameter values  koc 95 1700 koc 95 1900  kdeg 3 086000E 02 kdeg 3 085000E 02  Maximum relative change  3 2415E 04   kdeg    OPTIMISATION ITERATION NO  13  Model calls so far   45  Starting phi for this iteration  10 190  Lambda   1 52588E 04        gt   Phi   10 195   1 000 times starting phi   Lambda   7 62939E 05        gt   Phi   10 195   1 000 times starting phi     No more lambdas  relative phi reduction between lambdas less than 0 0300    Lowest phi this iteration  10 195  Current parameter values Previous parameter values  koc 95 1600 koc 95 1700  kdeg 3 086000E 02 kdeg 3 086000E 02    Maximum relative change  1 0508E 04   koc      Optimisation complete  the 3 lo
69. lative parameter change indicating convergence 0 10000E 01  Number of consecutive iterations with minimal param change 3  Maximum number of optimisation iterations 30  Attempt automatic user intervention no  OPTIMISATION RECORD  INITIAL CONDITIONS    Sum of squared weighted residuals  ie phi    56927    Current parameter values   kco 1 00000   kc1 1 00000   kc2 1 00000   moid 0 200000   OPTIMISATION ITERATION NO  f 1  Model calls so far B 1  Starting phi for this iteration  56927   Parameter  kc0  has no effect on observations   Parameter  kc1  has no effect on observations   Parameter  kc2  has no effect on observations   Lambda   5 0000      gt   Phi   4984 2   0 088 of starting phi    No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  4984 2   Current parameter values Previous parameter values   kco 1 00000 kcO 1 00000   kel 1 00000 kel 1 00000   kc2 1 00000 kc2 1 00000   moi0 0 285800 moiO0 0 200000    Maximum relative change  0 4290   moiO        88      OPTIMISATION ITERATION NO  5 2  Model calls so far i 6  Starting phi for this iteration  4984 2    Parameter  kc0  has no effect on observations   Parameter  kcl  has no effect on observations   Parameter  kc2  has no effect on observations   Lambda   25000  esse  gt   Phi   4779 6   0 959 of starting phi   Lambda   1 2500      gt   Phi   4779 6   0 959 of starting phi        No more lambdas  relative phi reduction between lambdas less than 0 0300  Lowest phi this iteration  4779 6   Rel
70. le  Pesticide A Maizepsm ss  Scenario input file  HMAZEse 2 28       iti                SCS S    Climate input file s   HMBGNORM CLI                Figure 15  InversePELMO  Analyse the results of the optimisation for soil hydrology  percolate     After clicking at the respective button  arrow on Figure 15  a form is loaded showing the  experimental and optimised cumulative percolate graphically  see Figure 16        27        Evaluation    Cumulative percolate  Lim         Figure 16  InversePELMO  View the results of the optimisation  percolate     The circles represent the experimental data  the curve stands for the PELMO optimisation   Detailed output describing the optimisation procedure is available via the button    View output  file     Figure 17       28      Evaluation    Sum of squared weighted residuals  ie phi  3 58ZZE 03    Correlation Coefficient    Correlation coefficient    Analysis of residuals    All residuals    Number of residuals with non zero weight  Mean walue of non zero weighted residuals  Maximum weighted residual  observation  olZ    Minimum weighted residual  observation  ol    Standard variance of weighted residuals  Standard error of weighted residuals    12     58343E 02   6550E 02   0000E 03    980Z2E 04    9950E 0Z    Note  the above variance was obtained by dividing the objective   function by the number of system degrees of freedom  ie  number of  observations with non zero weight plus number of prior information  articles with non zero weigh
71. mum number of optimisation iterations       Attempt automatic user intervention    OPTIMISATION RECORD    INITIAL CONDITIONS     Sum of squared weighted residuals  ie phi    6 10098E 05  Current parameter values  koc 5 00000  kdeg 1 099000E 02  OPTIMISATION ITERATION NO    1  Model calls so far 1    Starting phi for this iteration     5 0000  1 65784E 05   0 2    Lambda    Phi    No more lambdas  phi is less than  Lowest phi this iteration  1 657    Current parameter values   koc 5 00600   kdeg 1 560000E 02  Maximum relative change  0 4195    6 10098E 05    72 of starting phi     0 3000 of starting phi  84E 05    5 0000  2 0000  0 30000  3 00000E 02  10    na  3 0000    1 00000E 03  no  no    0 10000    0 10000E 01  3  3  0 10000E 01  3  30    no    Previous parameter values    koc  kdeg    kdeg      5 00000  1 099000E 02    OPTIMISATION ITERATION NO   Model calls so far    Starting phi for this iteration     Lambda   2 5000   Phi   1 56340E 05  Lambda   1 2300   Phi   1 55900E 05    No more lambdas     relative      64      2  4  1 65784E 05      0 943 of starting phi       0 940 of starting phi     phi reduction between lambdas less than 0 0300    Lowest phi this iteration     1 55900E 05    Relative phi reduction between optimisation iterations less than 0 1000  Switch to central derivatives calculation    Current parameter values                   Previous parameter values       koc 5 04200 koc 5 00600  kdeg 1 671000E 02 kdeg 1 560000E 02  Maximum relative change  7 1154E
72. n  1 30446E 05  Lambda   0 62500           Phi   1 19313E 05   0 915 of starting phi   Lambda   0 31250          gt   Phi   91098    0 698 of starting phi   Lambda   0 15625         gt   Phi   2 56993E 05   1 970 times starting phi     No more lambdas  phi rising                                         75                 Lowest phi this iteration  91098   Current parameter values Previous parameter values  koc 7 81500 koc 6 10300  kdeg 2 668000E 02 kdeg 2 147000E 02  Maximum relative change  0 2805   koc    OPTIMISATION ITERATION NO  6  Model calls so far 30  Starting phi for this iteration  91098   Lambda   0 15625        gt   Phi   1 92513E 05   2 113 times starting phi   Lambda   7 81250E 02        gt   Phi   4 90305E 05   5 382 times starting phi   Lambda   0 31250        gt   Phi   47871    0 525 of starting phi   Lambda   0 62500        gt   Phi   72670    0 798 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  47871   Current parameter values Previous parameter values  koc 10 2400 koc 7 81500  kdeg 3 122000E 02 kdeg 2 668000E 02  Maximum relative change  0 3103   koc    OPTIMISATION ITERATION NO  7  Model calls so far   38  Starting phi for this iteration  47871   Lambda   0 31250         gt   Phi   15984    0 334 of starting phi   Lambda   0 15625         gt   Phi   19112    0 399 of starting phi   Lambda   0 62500        gt   Phi   29252    0 611 of starting phi   No more lambdas  phi rising  Lowest phi this iteration  15984   Current paramete
73. nnnnnnnrennnennnnene 14  Figure 5  InversePELMO  Release information                  44  us4444400nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnannn 15  Figure 6  InversePELMO  New project                    444444444Hnnannnnnnnnnnnnnnnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnn 17  Figure 7  InversePELMO  Optimisation form  new project                  4msss4444snnnensnnnnnnnnnnnnnnn 18  Figure 8  InversePELMO  Optimisation form  existing project                      444n44 nennen 19  Figure 9  InversePELMO  Import PELMO input files                     sur44444s00r nn nnnnnnnnnnnnnnnnnnnnnnn 20  Figure 10  InversePELMO  experimental data  percolate                    ss 44444nn nn nnnnnnnnnnnennnn 21  Figure 11  InversePELMO  Experimental Percolate           aronnnrrnronnnonornrrnnnnnnnrrnnnnnannnnnernnnnenne 22  Figure 12  InversePELMO  define fitting parameters for the hydrology in soil                        23  Figure 13  InversePELMO  Parameter for fitting the percolate                    4u0444444nn nennen 24  Figure 14  InversePELMO  start optimisation for the hydrology in soil                      en 25  Figure 15  InversePELMO  Analyse the results of the optimisation for soil hydrology  peter 26  Figure 16  InversePELMO  View the results of the optimisation  percolate                            27  Figure 17  InversePELMO  Evaluate the results of the optimisation  percolate                      28  Figure 18  InversePELMO  InversePELMO  experimental data  pesticide fate                 
74. nsidering the results  of different studies on degradation and sorption of these compounds in soil  Normally   laboratory studies are performed to get the input parameters for the models considering the  recommendations of FOCUS  e g  FOCUS 1997  FOCUS 2000  FOCUS 2006   Alternatively   the necessary input parameters can be also obtained based on outdoor studies  e g  field  dissipation studies     Recently  the new FOCUS groundwater group suggested a third methodology for the input  parameter setting  FOCUS 2009   The idea is to analyse outdoor studies  especially  lysimeter studies  using the  inverse modelling technique which allows the estimation of  sorption and degradation parameters within a single step  For this procedure an optimisation  tool   in this project the program PEST  Watermark 2005    has to be combined with a  leaching model  in this project PELMO 4     Aim of inverse modelling studies is to find the KOC and DT50 values that could describe the  outdoor study best considering all data recorded during the experiments  e g  rainfall   temperatures  percolate  and substance fluxes     However  the whole procedure is rather complicated and detailed knowledge on leaching  models is needed to successfully perform inverse modelling studies  The software presented  here was developed in order to make available a user friendly tool to perform or check  inverse modelling studies performed with PELMO and PEST     3  Description of InversePELMO    Inverse modelling st
75. nversePELMO  Release information    On this form the button    check for update    can be used to look for new releases of  InversePELMO      16     4 3 2  Project list  On the left side the form shows a list of all inverse modelling studies    projects  available   Information for each project is gathered in a respective directory of the same name  All  project directories are located in the folder    projects     Usually  a project folder has following  content    e Upto 5 executables  the optimisation tool PEST  pest exe   the simulation model  PELMO  pelmo400 exe  and its post processors  pelmo results water exe      gathering information on simulated percolate    belmo results pesticide exe      gathering information on cumulative substance fluxes  and     pelmo_results_soil_profile exe     PELMO gathering information on soil  concentrations     e Standard PELMO input files  the normal pesticide and scenario input files with  extension     psm    and     sze     respectively  Furthermore  at least one climate data file   extension     cli     and the normal control file of PELMO called    pelmo inp      e Standard PEST control files     pest_pesticde pst    and  pest water pst     scenario tpl   information how to create PELMO scenario input files   pesticide tpl  information how  to create PELMO pesticide input files   pest ins  information how to extract simulation  results out of PELMO    e Standard PELMO output files  echo plm  wasser plm  chem plm  plot plm   e Spec
76. of the inverse modelling  study cannot be simply done based on the standard user shell  The optimisation software  needs exact information about the location of individual simulation results  e g  percolate at a  specific day of the simulation  in order to compare predictions with experimental data    The new shell InversePELMO is able to provide both programs  the optimisation tool and the  simulation model  with the necessary input files in the correct format  InversePELMO has  also a built in module to perform standard statistical tests to check the quality of the  optimisation such as the determination of the FOCUS error at which the chi  error passes  described in FOCUS  2006     The optimisation tool selected for InversePELMO was PEST version 7 2  Watermark 2003   because it met all criteria necessary to combine it with PELMO in a DOS environment  It was  also tested that PEST works under all relevant windows systems  Windows XP  Windows  VISTA and Windows 7  32 bit as well as 64 bit version       11     4  Working with InversePELMO    4 1  Installing InversePELMO    To install InversePELMO following steps have to be done    1 Install PELMO 4  if it has not been done so far    Call InversePELMO setup zip   Select a directory and start unzipping the files into a temp folder  After unzipping close InversePELMO setup zip    O W DR    call setup exe in the folder where the files were unzipped    InversePELMO may be un installed using first the standard MS Windows un install
77. ptimisation  testtest    Optimisation sequence    v3    Enter experimental data    AEA  Create PELMO input files    Import PELMO input files Start optimisation Start optimisation    V    Check initial simulation View optimisation View optimisation    PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm  for   for     End simulation day  dd mm   31  gt   fiz Number of years    8  Study begin  dd mm yy   for  gt   for   for  gt     Pesticide input file  Pesticide A Maizepm     ss    sS  Scenario input file  IH  MAIZEsze    Climate input file s   HMBGNORM CLI          Figure 24  InversePELMO  Analyse the results of the optimisation for soil hydrology  percolate     After clicking at the respective button  arrow on Figure 24  a form is loaded showing the  experimental and optimised results graphically  either soil  Figure 25  or percolate  concentrations  Figure 26   If soil concentrations are presented different diagrams are  available for each soil layer  After a click with the left mouse button the next soil layer will be    shown       36        Evaluation    Concentration in soil  mg kg     Soil depth  10 cm to 15 cm       Figure 25  InversePELMO  View the results of the optimisation  soil concentrations     JF         Evaluation    Cumulative Flux  m m         Figure 26  InversePELMO  View the results of the optimisation  cumulative flux     The circles always represent the experimental data  the curve stands for the PELMO  optimisation  De
78. r values Previous parameter values  koc 12 1100 koc 10 2400  kdeg 3 225000E 02 kdeg 3 122000E 02  Maximum relative change  0 1826   koc    OPTIMISATION ITERATION NO  8  Model calls so far   45  Starting phi for this iteration  15984   Lambda   0 31250         gt   Phi   11485    0 719 of starting phi   Lambda   0 15625         gt   Phi   12288    0 769 of starting phi   Lambda   0 62500        gt   Phi   9905 7   0 620 of starting phi   Lambda   1 2500       gt   Phi   6987 3   0 437 of starting phi   Lambda   25000  stans  gt   Phi   2734 8   0 171 of starting phi   No more lambdas  phi is less than 0 3000 of starting phi  Lowest phi this iteration  2734 8  Current parameter values Previous parameter values  koc 14 4200 koc 12 1100  kdeg 3 334000E 02 kdeg 3 225000E 02  Maximum relative change  0 1908   koc       76     OPTIMISATION ITERATION NO    9  Model calls so far   54  Starting phi for this iteration  2734 8  Lambda   2 5000      gt   Phi   478 67   0 175 of starting phi     No more lambdas  phi is less than 0 3000 of starting phi    Lowest phi this iteration  478 67  Current parameter values Previous parameter values  koc 14 5200 koc 14 4200  kdeg 3 300000E 02 kdeg 3 334000E 02    Maximum relative change  1 0198E 02   kdeg      OPTIMISATION ITERATION NO    10  Model calls so far   59  Starting phi for this iteration  478 67  Lambda   125000      gt   Phi   309 72   0 647 of starting phi   Lambda   0 62500         gt   Phi   300 94   0 629 of starting phi   No more lam
79. res  no minimum values higher than  maximum values  it can be closed using the    Done    button and the arrow on the optimisation  form will jump to the next button which is the button for starting the optimisation  see Figure  23       34      4 4 10  Step 10  Optimisation of the hydrology in soil  pesticide fate    In step 10 of the sequence the pesticide fate is optimised  During the optimisation PEST will  call PELMO several times  After PEST terminated the user has to confirm that the  optimisation didn   t quit with an obvious error conditions       Optimisation  testtest    Optimisation sequence    23 Y      Enter experimental data Enter experimental data    EN  Create PELMO input files    eo    Import PELMO input files Start optimisation Start optimisation    V    Check initial simulation View optimisation View optimisation    PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm  bi  gt   oi  gt     End simulation day  dd mm   31  gt   fiz  gt   Number of years    8  Study begin  dd mm yy   for  gt   for  gt   for  gt     Pesticide input file  Pesticide A Maizepm 277  Scenario input file  HMAZEse    Climate input file s   HMBGNORM CLI          Figure 23  InversePELMO  start optimisation of the pesticide fate    Only after confirmation the arrow will move to the next button  see Figure 24      4 4 11  Step 11  View the optimisation  pesticide fate   In step 11 the user can evaluate the results of the fate optimisation       35       O
80. rsion 1   Holdt  G   Gallien  P   Nehls  A   Bonath  l   Osterwald  A   K  nig  W   Gottesb  ren  B   Jene     B  Resseler  H   Sur  R  and Zillgens  B   2011   Recommendations for Simulations to  Predict Environmental Con centrations of Active Substances of Plant Protection  Products and their Metabolites in Groundwater  PECgw  in the National Assess ment    for Authorisation in Germany   Part 1  Tier 1 and Tier 2  available at     http   www bvl bund de SharedDocs Downloads 04 Pflanzenschutzmittel zul umwelt  pelmo pdf jsessionid E7F54E78DA37DBDDCDO6E4901C7EBB08 1 cid094  blob     publicationFile amp v 3  Holdt  G   Gro  mann  D   H  llriegl Rosta  A   Christina Pickl  2011   EVA 2 1 Exposure via    Air  Assessment of the Short Range Transport and Deposition of Pesticides for  Aquatic and Terrestrial Ecosystems  spray drift and volatilisation considered    Umweltbundesamt  Dessau Ro  lau  Available at    http   www bvi bund de DE 04 Pflanzenschutzmittel 03 Antragsteller 04 Zulassungs    verfahren 07 Naturhaushalt psm naturhaush_node html  Jene  B   1998   PELMO 3 0     User manual extension  SLFA Neustadt      58     Klein  2011   Erarbeitung eines Tools zur routinem    igen Durchf  hrung von  Simulationsrechnungen zur inversen Modellierung  FKZ 360 03 050   Umweltbundesamt  laufendes Vorhaben     Klein  M   1995   PELMO   Pesticide Leaching Model  version 2 01 Benutzerhandbuch   Fraunhofer Institut Schmallenberg    Klein  M   2008   Calculation of PECsoil including Plateau
81. s   Lowest phi this iteration     Current parameter values   koc 14 7900   kdeg 3 304000E 02  Maximum relative change     OPTIMISATION ITERATION NO   Model calls so far    Starting phi for this iteration   Lambda   0 15625         gt    Phi   296 85    Lambda   7 81250E 02        gt    Phi   296 85      No more lambdas     1 7906E 02    6 7659E 04      66       koc      9  54  2734 8   of starting phi      3000 of starting phi    Previous parameter values  koc 14 4200  kdeg 3 334000E 02    kdeg    10  99  478 67    0 629 of starting phi     relative phi reduction between lambdas less than 0 0300    Previous parameter values    koc 14 5200  kdeg 3 300000E 02    koc    tL  65  300 94    0 986 of starting phi     relative phi reduction between lambdas less than 0 0300  296 85    Previous parameter values    koc 14 7800  kdeg 3 305000E 02    koc    12  71  296 85    1 000 times starting phi     relative phi reduction between lambdas less than 0 0300    Lowest phi this iteration  296 85   Current parameter values Previous parameter values   koc 14 7900 koc 14 7900   kdeg 3 304000E 02 kdeg 3 304000E 02  Maximum relative change  0 000   koc     OPTIMISATION ITERATION NO  13   Model calls so far   LD  Starting phi for this iteration  296 85  Lambda   7 81250E 02        gt   Phi   296 85   1 000 times starting phi     Lambda    Phi    3 90625E 02  296 85    No more lambdas   Lowest phi this iteration     Current parameter values  14 7900    koc  kdeg     67     1 000 times starting ph
82. ssible range are shown in Figure 30     Substance considered  FOCUS DUMMY B X    Parameter Initial value Min  value Max  value    M Freundlich 1 n    vw DT50  d   50 I 1 000    Psa    Figure 30  Parameters used in the optimisation of the substance flux  test data set 1        After the optimisation the results summarised in Figure 31 were obtained       45      Cumulative Flux  m m      500    400    300    200    100    days  0 100 200 300 400 500 600 700    Figure 31  Results of the optimisation  substance flux  hypothetical test data set 1     The agreement is excellent as also expressed by the small FOCUS chi  error of 2 2       Table 7  Optimised parameter for the substance fluxes  hypothetical test data set 1           Parameter Estimated 95  confidence limits Original parameters  value lower limit value  koc 13 570 13 29 13 570 17  DT50 12 82 12 77 12 82 20    Nevertheless  Table 7 shows that PEST did not find back the original parameter setting  but  suggested different sorption and degradation data  Obviously  there are different  combinations that lead to the same substance fluxes  PEST suggested a slightly lower koc  and compensated the higher mobility by a shorter half life  But according to Figure 31 the  alternative parameter combination leads to the same leaching behaviour in the study       46      5 2  Test data set 2  Leaching of Parent over a 17 months    5 2 1  Environmental data  For the soil data the standard Borstel soil was used with exactly the same d
83. ssolution    C  20   Reference soil moisture for degradation     at 10 kPa   field capacity    Q10 factor  increase of degradation rate with an increase of     2 58   temperature of 10  C    Arrhenius activation energy  kJ mol 1  65 4   B  exponent of degradation   moisture relationship according to     0 7   Walker    Exponent of the FREUNDLICH Isotherm     0 9   Non equilibrium sorption     not considered   TSCF   transpiration stream concentration factor     0 5    5 1 3  Lysimeter results  hypothetical test data set 1     The main results of the hypothetical study 1 are summarised in Table 5  The maximum    concentration in the leachate was detected at the end of the first winter  February     3 37 ug L   The total percolate collected was 649 1 L m       42      Table 5  Percolate and percolate concentrations in the lysimeter  hypothetical test data set 1           Month Percolate  L m   Concentration  ug L   May 0 0  June 0 0  July 0 0   August 0 0   September 5 6 0  October 27 36 0   November 18 22 0   December 66 42 0 022  January 62 36 0 378  February 62 63 1 399   March 46 75 2 193  April 25 93 2 265  May 27 11 2 075  June 0 1 95  July 19 43 1 792   August 40 37 1 336   September 0 0  October 0 0   November 16 98 0 934   December 93 98 0 454  January 56 67 0 143  February 9 68 0 087   March 69 61 0 053  April 0 0 034    5 1 4  Optimisation  hypothetical test data set 1     For the optimisation of the percolate all possible parameters were considered in the fitting   
84. t minus the number of adjustable parameters    If the degrees of freedom is negative the divisor becomes   the number of observations with non zero weight plus the number of   prior information items with non zero weight     Covariance and other statistical matricies cannot be determined     Jacobian and or Normal Matrix not yet calculated or normal matrix singular     Minimum error for which the Chi  Test passes according to FOCUS  0 01      View diagramm Copy Done    Figure 17  InversePELMO  Evaluate the results of the optimisation  percolate        The standard output file of PEST  extension    rec     is used here  but with additional  information included about the error at which the chi  test passes  The methodology is  according to FOCUS degradation kinetics  FOCUS 2006   The copy button puts either  graphic or the text into the clipboard  whereas the Print button can be used to print out the  optimisation results    After the form was closed     Done     the arrow will jump to the next position  the begin of the  pesticide optimisation  see Figure 18        29        Optimisation  testtest       m Optimisation sequence    Enter experimental data Enter experimental data    MEN  Create PELMO input files    ine ng parameters    Start optimisation    Import PELMO input files    V    Check initial simulation     Der       optimisatior           PEMO simulation control      Start simulation day  dd mm   Start simulation day  dd mm   01    01       End simulation day  dd mm 
85. tailed output describing the optimisation procedure is available via the button     View output file     Figure 27        38      i  Evaluation     1 1032E 05  1 3354E 08    ara t ati ici ma i  Parameter correlation coefficient matrix  koc kdeg    1 000  0 9571   0 9571 1 000    5 9488E 03    Parameter Estimeted 95  percent confidence limits  value lower limit upper limit  koc 14 7600 14 5531 14 9669  DT50 11 54 11 50 11 59    Minimum error for which the Chi  Test passes according to FOCUS  1 44      View diagramm       Figure 27  InversePELMO  Evaluate the results of the optimisation  pesticide fate     The standard output file of PEST  extension    rec     is used here  but with additional  information included about the error at which the chi  test passes  The methodology is  according to FOCUS degradation kinetics  FOCUS 2006     As the DT50 in soil is not an input parameter in PELMO it has to be converted into the  respective rate constant  Consequently  PEST will not give information about the optimisation  for DT50 values  This information was therefore also added to the original PEST output file   The copy button puts either graphic or the text into the clipboard  whereas the Print button  can be used to print out the optimisation results       39      5  Results of test simulations    In this chapter results of two different studies are used to check the inverse modelling  abilities of InversePELMO and PEST    Whereas the first case is a hypothetic example the second
86. the optimisation of the substance fluxes the parameters    DT50    and    KOC    were  considered in the fitting  Their initial values and their possible range are shown in Figure 36      51      Substance considered   Parent     Parameter Initial value Min  value Max  value    M Freundlich 1 n    vw DT50  d   i 00 i fi 000    a    Figure 36  Parameters used in the optimisation of the substance flux  test data set 2        After the optimisation the results summarised in Figure 37 were obtained       52         Eyaluation    Cumulative Flux  m m         Figure 37  Results of the optimisation  substance flux  test data set 2     The minimum error for which the Chi  Test passes according to FOCUS was found to be  4 75   which supports the excellent agreement shown in the figure     Table 13  Optimised parameter for the substance fluxes  hypothetical test data set 2           Parameter Estimated 95  confidence limits  value lower limit value  koc 95 2 91 4 99 0    DT50 22 46 20 93 24 23     53     5 2 5  Hypothetical extension of the study  test data set 2  An interesting problem in connection with lysimeter studies is the question what would have  been if the study had been extended  A prediction can be made based on the results of the  inverse modelling studies as shown in the following example which uses the result of test  data set 2 and assuming the same weather conditions as in the second year  The results are  presented in Table 14     Table 14  Extension of the lysimeter
87. tion Weight Group  ol 0 00000  000 no_name  o2 0 00000  000 no_name  03 0 00000  000 no_name  04 0 00000  000 no name  05 0 00000  000 no_name  06 0 00000  000 no_name  o7 0 00000  000 no_name  08 1 46124  000 no_name  09 23 0333 000 no_name  o10 112 653  000 no_name  oll 215 175  000 no name  012 213 307  000 no_name  013 330 160  000 no name  ol4 330 160  000 no name  o15 364 979  000 no_name  016 418 913  000 no_name  017 418 913  000 no_name  018 418 913  000 no_name  019 434 772  000 no_name  020 477 439  000 no_name  o21 485 543  000 no name  022 486 385  000 no name  023 490 075  000 no_name  024 490 075  000 no_name    Control settings      Initial lambda   Lambda adjustment factor   Sufficient new old phi ratio per optimisation iteration  Limiting relative phi reduction between lambdas   Maximum trial lambdas per iteration    Maximum factor parameter change  factor limited changes   Maximum relative parameter change  relative limited changes   Fraction of initial parameter values used in computing  change limit for near zero parameters   Allow bending of parameter upgrade vector   Allow parameters to stick to their bounds    Relative phi reduction below which to begin use of  central derivatives    Relative phi reduction indicating convergence   Number of phi values required within this range   Maximum number of consecutive failures to lower phi  Minimal relative parameter change indicating convergence  Number of consecutive iterations with minimal param change  Maxi
88. udies are performed in order to obtain key parameters for leaching    models such as Kfoc  Freundlich sorption constant related to organic carbon  and DT50     degradation time to 50   from higher tier studies  e g  lysimeter studies  instead directly    from standard laboratory studies on sorption and degradation  Aim of such a study is on one    hand to get a deeper look into the processes that led to a certain lysimeter result  On the    other hand inverse modelling studies can be used to improve the standard modelling on tier    1 by considering additional information from higher tier studies     Furher questions that can be answered based on inverse modelling studies are    Prediction about the most likely behaviour if the lysimeter study had been conducted over  a longer time period    Translation of the lysimeter results to a different situation with respect to the  environmental conditions  e g  different climate     Translation of the lysimeter result to a different situation with respect to the application  pattern of the substance  e g  change of the rate      Use of the optimised parameter setting for a refined standard tier 1 simulation    Generally  two steps have to be conducted when performing inverse modelling studies     First  the hydrology in soil is optimised  followed by the optimisation of pesticide fate as    shown in Figure 1      Collection of available information from lysimeter studies    cumulative fluxes  water  substance   soil residues at study
89. um relative change   Optimisation complete     Total model calls     4779 4  1 00000  1 00000  1 00000  0 281000  3 5588E 05    the 3 lowest phi  of eachother of 1  32       relative phi reduction between lambdas less than 0 0300    Previous parameter values    kcO 1 00000  kel 1 00000  kc2 1 00000  moi0 0 280990      moiO       s are within a relative distance   000E 02      89      The model has been run one final time using best parameters   Thus all model input files contain best parameter values  and model  output files contain model results based on these parameters     OPTIMISATION RESULTS    Covariance matrix and parameter confidence intervals cannot be determined    Normal matrix nearly singular  cannot be inverted     Parameters        gt    Parameter Estimated value  kc0 1 00000   kel 1 00000   kc2 1 00000   moid 0 281000    See file PEST_WATER SEN for parameter sensitivities        Observations        gt   Observation Measured Calculated Residual Weight Group  value value   ol 47 9000 69 1430  21 2430  000 no_name  02 124 600 120713 3 88670 000 no name  03 177 350 171 043 6 30660  000 no_name  o4 222 400 221 628 0 771850  000 no_name  05 255 500 264 202  8 70235  000 no_name  06 346 900 331 338 15 5417  000 no_name  07 495 250 451 878 43 3723  000 no_name  08 582 900 564 815 18 0853  000 no_name  09 675 900 710 490  34 5895  000 no_name  o10 767 150 790 618  23 4683  000 no_name       See file PEST_WATER RES for more details of residuals in graph ready format     
90. west phi s are within a relative distance  of eachother of 1 000E 02  Total model calls  51    The model has been run one final time using best parameters     Thus all model input files contain best parameter values  and model  output files contain model results based on these parameters     OPTIMISATION RESULTS    Parameters        gt    Parameter Estimated 95  percent confidence limits  value lower limit upper limit   koc 95 1700 91 3826 98 9574   kdeg 3 086000E 02 2 860899E 02 3 311101E 02    Note  confidence limits provide only an indication of parameter uncertainty   They rely on a linearity assumption which may not extend as far in  parameter space as the confidence limits themselves   see PEST manual     See file PEST_PESTICIDE SEN for parameter sensitivities     Observations        gt   Observation Measured Calculated Residual Weight Group  value value   ol 0 00000 0 00000 0 00000  000 no_name  o2 0 00000 5 436032E 16  5 436032E 16  000 no_name  03 0 00000 7 517070E 11  7 517070E 11  000 no_name  o4 0 00000 1 254043E 07  1 254043E 07  000 no_name  05 0 00000 1 034201E 05  1 034201E 05 000 no_name  06 0 00000 2 802955E 03  2 802955E 03 000 no_name  07 0 00000 0 742968  0 742968 000 no_name  08 12 270 9 71548 2455552 000 no_name  09 54 1210 55 7414  1 62043 000 no_name  010 104 309 103 615 0 693888 000 no_name       See file PEST PESTICIDE RES for more details of residuals in graph ready format     See file PEST_PESTICIDE SEO for composite observation sensitivities     
91. y InversePELMO  If appropriate the individual sampling can be characterised by  weighting factors in the final column  If the form has been filled correctly  e g  no negative  figures  it can be closed using the    Done    button and the arrow on the optimisation form will  jump to the next button to enter all information about the input parameters used in the  optimisation  see Figure 12   It is not necessary to type all information the user can also  paste them in as a table  e g  from MS Excel or MS Word      93      Optimisation  testtest       m Optimisation sequence   a  3  Enter experimental data    MEN  Create PELMO input files      x 5    Import PELMO input files Start optimisatior Start optimisation    Check initial simulation view optimisation view optimisatior             m PEMO simulation control    Start simulation day  dd mm     Start simulation day  dd mm   01    01       End simulation day  dd mm  Bi   h2 x  number EE p 3  Study begin  dd mm yy   for  gt   for  gt   or     Pesticide input file  Pesticide A Maizepsm ss  Scenario input file  HMAZEse 2 28       iti                SCS S    Climate input file s   HMBGNORM CLI                Figure 12  InversePELMO  define fitting parameters for the hydrology in soil    4 4 5  Step 5  Enter fitting parameter  percolate   In step 5 the parameters used in the optimisation have to be characterised in a specific form     see Figure 13        24      Initial value Min  value Max  value    M Ke factor  mid season     l K
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
CDF18, CDF25, CDF35, CDF45  PCA-6194 User Manual  DVX-100    РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ 车主手册  User Manual - Turtle Beach  Soleus Air HP1-15-50 User's Manual  estos ECSTA for Avaya (CS1000)  Philips Universal cable SJM2102H  Buffalo MiniStation DDR, 500GB    Copyright © All rights reserved. 
   Failed to retrieve file