Home
        ^2 Accessory 68E
         Contents
1.                    24 inputs and 24 outputs  low power  all optically isolated              12     24 inputs and 24 outputs  high power  all optically isolated         14     48 bits TTL level VO  ACC 65E   Sourcing 24 inputs        24 outputs  self protecting  all optically isolated  250mA outputs             ACC 66E   48 optically isolated  self protecting  sourcing inputs       ACC 67E   48 optically isolated  self protecting  sourcing outputs  250mA outputs          ACC 68E   Sinking 24 inputs and 24 outputs  self protecting  all optically isolated       The inputs to the ACC 68E board have an activation range from 12V to 24V  Due to the self   protecting circuitry  the inputs can only be configured as sinking inputs  Although self protecting  there are still limits to power supplied to the inputs of the ACC 68E  The limiting voltages are Vr      57 volts input to the VO and the V      33 volts input to the I O  These limitations are due to the  protective circuitry including the MMBZ33VALT 1 Zener diodes     The output drivers are organized in a set of three 8 bit groups  The output chip used for the  sinking configuration is the ULN2803  Each open collector output line can sink up to 100mA  when pulled up to a voltage level between 12 and 24 volts  external pull up resistors are not  supplied      Introduction 1    Accessory 68E       HARDWARE SETUP       The ACC 68E uses expansion port memory locations defined by the type of PMAC  3U Turbo or  MACRO Station  it is dire
2.                   dbe Ge          33  DB15 STYLE CONNECTOR J1 TOP     INPUTS 1 THROUGH 12        33    Table of Contents i    Accessory 68E       JL Top  Connector MEER 33  DB15 STYLE CONNECTOR J2 TOP     INPUTS 12 THROUGH 24              ese se ee ee ee es ee 000000000000              34  J2         GORROC  OF RE eet aid                 ed                       ese ses          34  DB15 STYLE CONNECTOR J1 BOTTOM     OUTPUTS 1 THROUGH 12        35  JI Bottom OOE O                                              35  DB15 STYLE CONNECTOR 12 BOTTOM     OUTPUTS 12 THROUGH 24 ee ees ese     35  J2 Bottom                         222 22 20 7 000000000      ee ee ee ee      S er e eer             35                           ii Table of Contents    Accessory 68E       INTRODUCTION          The UMAC Accessory 68E is a general purpose input output board to the UMAC Turbo or  UMAC MACRO systems  Both the inputs and outputs of this board are to be configure as  Sinking signals ONLY  ACC 68E provides 24 lines of self protected optically isolated inputs  and 24 lines of self protected optically isolated outputs  The actual I O Reads are carried out  using M variables  which will be described later  ACC 68E is one of the series of 3U rack I O  accessories designed to transfer data through the UMAC BUS  UBUS   Other boards in the  family of the UMAC I O Accessory products include the following     ACC 9E 48 optically isolated inputs              10     48 optically isolated outputs  low power  
3.           1 gt 0     198 5409807        10          Disable PLC10    Close    26           countdown         countdown             timer for Turbo Ultralite  timer for Ultralite        countdown timer for non turbo PMAC     2 second delay to ensure MACRO      Stal      set    control        wril    word for ACC 68        te  07 into    58807        50 msec delay     set control  write 5     into    59807    word for ACC 66E          750 msec delay    tion is powered up properly    GI        control word         control word     Setting Up Control Word for MACRO IO    Accessory 68E       LEGACY MACRO SYSTEMS       The legacy systems are defined as MACRO CPU with the following part numbers   602804 100   602804 101   602804 102   602804 103   602804 104   These systems do not have the extended addressing of the newer model MACRO CPU s   602804 105 through 602804 109   The addressing scheme for the legacy MACRO systems is  listed below     The ACC 9E  ACC 10E  ACC 11E  and ACC 12E will have the following table  E1 E4        Gate Transfer Jumpers    TENE   8800 or SFFEO   8840 or SFFE8     8880 or SFFFO       The ACC 68E  ACC 66E  and ACC 67E are not direct replacements for ACC 9E  ACC 10E  and  ACC 11E IO cards  The reason      self protected IO is not a direct replacement is because of the  addressing scheme  The older IO cards used the LOW  MIDDLE  and HIGH bytes of a base  address and the MACRO I variables would read consecutive IO cards in this manner  The self   protected I
4.           59            5      ACC 57E 16 Feedback 16 B   ACC 58E Devices   Chip Select Addresses   Chip UMAC Turbo   MACRO UMAC Turbo MACRO   Select                        Type A Card                      Type    Card   10  078C00 SFFEO or  8800    078C00   079C00  8800  9800   07ACO00  507    00  A800  B800   12  078D00  FFE8 or 58840    078D00   079D00  8840  9840   07AD00   07BD00  A840  B840   14  078E00  FFFO or  8880    078E00   079E00  8880  9880   07AE00   07EC00 5  880 5  880   16 5078  00 588  0  078F00   079F00  88C0  98C0  507      0   07BF00 5  8  0 5  8  0   Hardware Setup 5       Accessory 68E       Addressing Conflicts    When just using only the type A UMAC cards or using only the type B UMAC cards in an  application  the user does not have to worry about potential addressing conflicts other than  making sure the individual cards are set to the addresses as specified in the manual     If the user has both type A and type B UMAC cards in their rack they should be aware of the  possible addressing conflicts  If the customer is using the Type A card on a particular Chip Select     510  CS12  CS14  or CS16  then they cannot use a Type B card with the same Chip Select  address unless the Type B card is a general IO type  If the Type B card is a general IO type  then  the Type B card will be the low byte card at the Chip Select address and the Type A card s  will  be setup at as the middle byte and high byte addresses     Type A and Type B Example 1  ACC 11E and A
5.        20  21  22  23    7042  gt                B SLtop PLC          This PLC will abort all motion programs and kill the bus  E stop is depressed     7024   Y   7025   Y   M7026   Y   M7027   Y   M7028   Y   M7029   Y   M7030   Y   M7031   Y   M7032   Y   M7033   Y   M7034   Y   M7035   Y   M7036   Y   M7037   Y   7038   Y   7039   Y   7040   Y   7041   Y     7043   Y   7044   Y   7045   Y   7046   Y   7047   Y     When     078C03 0 1   078C03 1 1   078C03 2 1   078C03 3 1   078C03 4 1   078C03 5 1   078C03 6 1   078C03 7 1   078C04 0 1    5078  04   5078  04   5078  04   5078  04  5078  04   5078  04  5078  04               OU DU N H       p  ret  ret  re  p  po    po     078C05 0 1   078C05 1 1    078C05 2 1   078C05 3 1   078C05 4 1   078C05 5 1   078C05 6 1        078C05 7 1         allowing 5 seconds for proper bus voltage        P7000 used    M7000 used    M8000 used     I5111 used       OPEN PLC 5 CLEAR             IF    7000 1 and   7000 0   CMD A    15111 500 8388608 110  WHILE ENDWHILE    CMD      1511120        K      8000 0    7000 1       Endif             IF  M7000 0 and P7000 1     8000 1      5111 5000 8388608 110    WHILE ENDWHILE        1511120           T       as a Latch variable  Emergency Stop Input  as Main Contact for main AC for  as count down timer     from        9          Input    Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu  Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu    Input    
6.       078   078   078                 PLC to     078E   078E   078E   078E   078E   078E   078E   078E    C00 0   C01 0   C02 0   C03 0   C04 0   C05 0     06 0   C07 0       07 0 8       OPEN PLC 1 CLI          EAR          initialize    read write I O    Bits 0 7 are read write  Bits 8 15 are read write  Bits 16 23 are read write    Bits 24 31 are read write  Bits 32 39 are read write  Bits 40 47 are read write    21 0  21 0          21 0         ROJO      register       bits  bits  bits  bits  bits  bits    0 7  port A ICO   8 15  port A ICO   16 23  port A ICO   0 7  port B ICQ   8 15  port B ICO   16 23  port B ICO   selected           control register    21 0         21 0  21 0  21 0  71 0    bits  bits  bits  bits  bits  bits    0 7  port             8 15  port             16 23  port             0 7  port             8 15  port               16 23  port B                register    selected     control register    21 0    UZO  21 0  21 0   T 0  21 0     register    bits  bits  bits  bits  bits  bits    0 7  port A IC2   8 15  port A IC2   16 23  port A IC2   0 7  port B IC2   8 15  port B IC2   16 23  port B IC2   selected           control register    control  ole ode da    control    for  T8000 0 8  for 578000 0 8  for S7BE00 0  28    word  word  word       KKK    bits       79C05 0 8    7800508     79C05  AA         2007 507  define bits 0 23 as inputs and bits 24 47 as outputs  ACC 68E   M2015  3F  define bits 0 23 and 24 47 as inputs  ACC 66E      2023 500  defin
7.       2 Setup Register 2_    Setup Register 3     Base   6  Register  Selected  Data Register  Setup                   n  a                       In a typical application  non zero combined values of Bits 6 and 7 are used only for initial  configuration of the IC  These values are used to access the setup registers at the other addresses   After the configuration is finished  zeros are written to both Bits 6 and 7  so the data registers at  the other registers can be accessed     Control Word Setup Example    You need to set up the control words for the IO card at power up  To accomplish this task  a  simple PLC could be written to set up the control word properly  For this example  we will be  setting up one ACC 68E  ICO    24in 24out   one ACC66E           48 inputs   and one ACC 67E   IC2   48 outputs         Using Acc 68E with UMAC Turbo 9    Accessory 68E       Control Word for ACC 68E    2007  gt    5078  07 0 8                 Hex     0 0  Binary                       Bit 71615  413121110                                  Register    M2000   Y   M2001   Y     2002  gt    5078    2003  gt    5078    2004  gt    5078    2005  gt    5078    2006  gt    5078    2007  gt    5078    5078  5078    M2008   Y   M2009   Y   M2010   Y   M2011   Y   M2012   Y   M2013   Y   M2014   Y   M2015   Y      078   078   078   078   078   078   078   078    M2016   Y   M2017   Y   M2018   Y   M2019   Y   M2020   Y   M2021   Y   M2022  gt Y   M2023  gt Y     M2007   Y   M2015   Ys   M2023   Y
8.      Control Register    CS10 CS12 CS14 CS16 Description  SW1 1 ON SW1 1 OFF SW1 1 ON SW1 1 OFF  SW1 2      SW1 2 ON SW1 2 OFF SW1 2 OFF     5078  00 0 8 Y  DOO  0 8 Y  E00 0 8    5078  00 0 8 I O bits 0 7  Z Z      5078  01 0 8 Y   D01 0 8 Y  E01 0 8    5078  01 0 8 I O bits 8 15            5078  02 0 8    5078002 0 8 Y  E02 0 8    5078  02 0 8      bits 16 23  ea  t      5078  03 0 8 Y   0 8 Y  E03 0 8    5078  03 0 8 I O bits 24 31  z z    5078  04 0 8 Y   0 8 Y  E04 0 8    5078  04 0 8 I O bits 32 39  22      5078  05 0 8 Y   0 8 Y  E05 0 8 Y  078F05 0 8 I O bits 40 47  1 5078C07 0 8 Tas 0 8 Yt E07 0 8 1  078F07 0 8 Control Word     5079  00 0 8 Y  079D00  0 8    5079  00 0 8 Y S079F00 0 8      bits 0 7  E Z      5079  01 0 8 Y 5079D01  0 8    5079  01 0 8    8079  01 0 8 I O bits 8 15         v 5079c02 0 8 Y  079D02 0 8    5079  02 0 8    5079  02 0 8      bits 16 23  e        5079  03 0 8    5079003 0 8    5079  03 0 8    5079  03 0 8 I O bits 24 31     gt  Y  079C04 0 8    5079004 0 8    5079  04 0 8    5079  04 0 8      bits 32 39  22 Y  079C05 0 8    5079005 0 8    5079  05 0 8 Y  079F05 0 8 I O bits 40 47     5079C07 0 8 Y 9079D07 0 9 1 5079E07 0 8    5079  07 0 8 Control Word  Y  07AC00 0 8 Y  07AD00 0 8    507    00 0 8    507    00 0 8 I O bits 0 7         Y  07AC01 0 8 Y S07AD01 0 8    507    01 0 8 Y  07AF01 0 8 I O bits 8 15         v 5072c02 0 8    507  002 0 8 Y S07AE02 0 8 Y SO7AF02 0 8      bits 16 23         507    03 0 8 Y 507AD03  0 8 Y S07AE03 0 8 Y SO
9.     a BOTTOM   1 J2 3     L Y       H            jo            EI    DELTA  TAU    AT                        TREO      24 IN 24 OUT                                                                                      ACC 68E DB15 Option        VS E af              i             HI  Qu  d       24 IN 24 OUT  i x 1  puc       top 2         A       Ha 25 m  HERE B       B     5       5 B                    E     Pom                 P1  Sr        lp ds m   TB1     3    S  pus Ins mn  vb ms E         E  aa  ms 5    na TD            da  i     J2 BOTTOM J1                             _                  eseooc  DE  00445                          Hardware Setup 3    Accessory 68E       Address Select DIP Switch S1    The switch one  S1  settings will allow the user to select the starting address location for the first IO gate  on the ACC 68E  The following two tables show the dip switch settings for both the TURBO PMAC 3U       and the MAC    RO Station     TURBO PMAC 3U Switch Settings                                                                                                                                                                CHIP 3U Turbo        SWITCH SW1 POSITION  SELECT   PMAC 6 5 4 3 2 1  Address  Y  78C00 03   CLOSE CLOSE CLOSE CLOSE   CLOSE   CLOSE  CS10 Y  79C00 03   CLOSE CLOSE CLOSE OPEN CLOSE   CLOSE  Y  7AC00 03   CLOSE CLOSE OPEN CLOSE   CLOSE   CLOSE  Y  7BC00 03   CLOSE CLOSE OPEN OPEN CLOSE   CLOSE  Y  78D00 03   CLOSE CLOSE CLOSE CLOSE   CLOSE   OPEN 
10.   2 1  0      value  o  o  ojojojo o ojo o o o r r ojo       MS0    975  000                 50   1975 54   Enable VO Node 2 alone    50     975 5     Enable I O Nodes 2  amp  3    50     975 54     Enable I O Nodes 2  3   amp  6    50     975 5       Enable I O Nodes 2  3  6   amp  7    50     975 54       Enable I O Nodes 2 3  6  7   amp  10    50     975 5         Enable I O Nodes 2  3  6  7  10   amp  11    54     975 540   Enable I O Node 6 alone    54     975 5  0   Enable 1    Nodes 6  amp  7    58     975 5400   Enable I O Node 10 alone    58     975 5  00   Enable I O Nodes 10  amp  11    MACRO VO Software Settings 15    Accessory 68E       MI69 and MI70 specify the registers used      16 bit I O transfers between MACRO node  interface registers and I O registers on the MACRO Station I O accessory board  They are used  only if MI19 is greater than 0     Note  The examples for the setup of MI69 and MI70 require MACRO firmware 1 16 and above     MI69 and MI70 are 48 bit variables represented as 12 hexadecimal digits  The first 6 digits  specify the number and address of 48 bit  3 x 16  real time MACRO node register sets to be  used  The second 6 digits specify the number and address of 16 bit I O sets on the MACRO  Station I O accessory board to be used  The individual digits are specified as follows     1 0 1 2 3 Number of MACRO      nodes to use  0 disables   this  should also match the number of 48 bit I O sets you  intend to use  see Digit 7      COA1  Node 2    C0
11.   823  gt     0010  0 15    824  gt     0010  0 16    825  gt     0010  0 17    826  gt     0010  0 18    827  gt     0010  0 19    828  gt     0010  0 20    829  gt     0010  0 21    830  gt     0010  0 22  M831  gt Y  0010F0 23    Reading and Writing to Node Addresses    M832  gt X  0010F 1 8   M833  gt X  0010F 1 9   M834  gt X  0010F 1 10  M835  gt X  0010F 1 11  M836  gt X  0010F 1 12  M837  gt X  0010F 1 13  M838  gt X  0010F 1 14  M839  gt X  0010F 1 15  M840  gt X  0010F 1 16  M841  gt X  0010F 1 17  M842  gt X  0010F 1 18  M843  gt X  0010F 1 19  M844  gt X  0010F 1 20  M845  gt X  0010F 1 21  M846  gt X  0010F 1 22  M847  gt X  0010F 1 23       21    Accessory 68E       IO word  4 IO Word  5 IO Word Z6    M900    Y  0010F1 8     901  gt     0010  1 9     902  gt     0010  1 10  M903  gt Y  0010F 1 11  M904  gt Y  0010F 1 12  M905  gt Y  0010F 1 13  M906  gt Y  0010F 1 14  M907  gt Y  0010F 1 15  M908  gt Y  0010F 1 16  M909  gt Y  0010F 1 17  M910  gt Y  0010F 1 18  M911  gt Y  0010F 1 19  M912  gt Y  0010F 1 20  M913  gt Y  0010F 1 21  M914  gt Y  0010F 1 22  M915  gt Y  0010F 1 23    M916  gt X  0010F2 8   M917  gt X  0010F2 9   M918  gt X  0010F2 10  M919  gt X  0010F 2 11  M920  gt X  0010F2 12  M129  gt X  0010F2 13  M922  gt X  0010F2 14  M923  gt X  0010F2 15  M924  gt X  0010F2 16  M925  gt X  0010F2 17  M926  gt X  0010F2 18  M927  gt X  0010F2 19  M928  gt X  0010F2 20    129  gt     0010  2 21    930  gt     0010  2 22    931  gt     0010  2 23       M932
12.   Y  A840 Y 9A847 0 8 MI198  40A847  Y  B840  5      8        5  847 0 8       198 540  847  Y  8880 Y  8887 0 8   MI198  408887  Y  9880    59887 0 8       198 5409887  Y  A880 Y SA887 0 8   MI198  40A887  Y  B880  SFFFO        5  887 0 8     1198 5408887  Y  88C0 Y  88C7 0 8       198 54088  7  Y  98C0 Y  98C7 0 8       198 54098  7  Y  A8CO    5  8  7 0 8   MI198  40A8C7  Y  B8C0 Y  B8C7 0 8   MI198  40B8C7               for legacy systems    Setting Up Control Word for MACRO IO    25    Accessory 68E       Once we have the control word defined to MI198  we can write to the individual bytes associated  with the IO gate and make them either read only or read write  default                     Byte 0 Byte 1 Byte 2 Byte 3 Byte4 Byte 5     58800 0 8      58801 0 8    58802 0 8    58803 0 8    58804 0 8    58805 0 8     59800 0 8      59801 0 8    59802 0 8    59803 0 8    59804 0 8    59805 0 8                      Example  MACRO Station has        68    24in 24out  and ACC 66E 48       set to base  addresses  8800 and  9800 respectively     mer  15111    tdefine Ti            define Timerl M70   M70   X 50700 0 24 8    Open PLC 10 Clear  Timer1 2000 8388608 110    While     Timer1 gt 0            Endwhile          CMD   MS0 MI             50   11       99 507          Timer1 50 8388608 1             1 gt 0     While          198  408807      10    Endwhile       CMDYMSO  MI                  50   11       99 53            Timer1 50 8388608 1  Endwhile          While  Tin      
13.   gt Y  0010F2 8   M933  gt Y  0010F2 9     934  gt     0010  2 10    935  gt     0010  2 11    936  gt     0010  2 12    937  gt     0010  2 13    938  gt     0010  2 14    939  gt     0010  2 15    940  gt     0010  2 16    941  gt     0010  2 17    942  gt     0010  2 18    943  gt     0010  2 19    944  gt     0010  2 20    945  gt     0010  2 21    946  gt     0010  2 22    947  gt     0010  2 23    Example 1  48 inputs 48 outputs using 1x24 bit transfers    For this example  the inputs and outputs are not sharing the same Node Transfer Address    C0A0  C0A4  COAS8   COAC   Each of the node transfer addresses        be defined as 24 bit  addresses     Ultralite   Axis    Turbo Ultralite   Axi    1996  0FB3FF 16841  0FB3FF Enable nodes 0 1 2 3 4 5 6 7 8 9 12   amp  13 at PMAC  Ultralite      970  gt       0  0 0 24  M970  gt X  78420 0 24 IO word  1  24 bit word node2    971  gt       0  4 0 24    971  gt     78424 0 24      word  2  24 bit word node 3      972  gt       0  8 0 24    972  gt    578428 0 24 IO word  3  24 bit word node 6  IM973  gt X  COAC 0 24  M973  gt X  7842C 0 24 IO word  1  24 bit word node 7    0  IM 1003  gt Y  0771 0 24    1003  gt    80010  1 0 24           mirror word  2     1010  gt    50772 0 24  M1010  gt X  0010F2 0 24  Old Input mirror word  2     1011  gt    80772 0 24 1  1011  gt    80010  2 0 24   Old Input mirror word  3    MSO MI71  20C0A0218800  MS0 MI975  CC               1000  gt    80770 0 24  M1000  gt X  0010F0 0 24  Input mirror
14.   gt Y  771 21  M914  gt Y  771 22    915  gt    9771 23    20    M816  gt Y  770 8   M817  gt Y  770 9   M818  gt Y  770 10  M819  gt Y  770 11  M820  gt Y  770 12  M829  gt Y  770 13    822  gt     770 14  M823  gt Y  770 15  M824  gt Y  770 16  M825  gt Y  770 17  M826  gt Y  770 18  M827  gt Y  770 19  M828  gt Y  770 20  M829  gt Y  770 21  M830  gt Y  770 22  M831  gt Y  770 23    M916  gt X  772 8   M917  gt X  772 9     918  gt     772 10  M919  gt X  772 11  M920  gt X  772 12  M129  gt X  772 13    922  gt     772 14  M923  gt X  772 15    924  gt     772 16    925  gt     772 17    926  gt     772 18    927  gt     772 19    928  gt     772 20    129  gt     772 21    930  gt     772 22    931  gt     772 23      832  gt     771 8     833  gt     771 9     834  gt     771 10    835  gt     771 11    836  gt     771 12    837  gt     771 13    838  gt     771 14    839  gt     771 15    840  gt     771 16    841  gt     771 17    842  gt     771 18    843  gt     771 19    844  gt     771 20    845  gt     771 21    846  gt     771 22    847  gt     771 23    M932  gt Y  772 8   M933  gt Y  772 9   M934  gt Y  772 10    935  gt     772 11  M936  gt Y  772 12  M937  gt Y  772 13    938  gt     772 14    939  gt     772 15  M940  gt Y  772 16  M941  gt Y  772 17  M942  gt Y  772 18  M943  gt Y  772 19  M944  gt Y  772 20  M945  gt Y  772 21  M946  gt Y  772 22  M947  gt Y  772 23       Reading and Writing to Node Addresses    Accessory 68E       PMAC2 TURBO Ultralite 
15.  29   I     29       984  gt    578426 8 16      1000  gt    50010  0 8 16    1001  gt    50010  0 8 16    m   ss    M1005  gt Y  0010F2 8  16  M1010  gt X  0010F3 8 16  M1011  gt Y  0010F3 8 16    M1012  gt X  0010F4 8 16       8800       sets up macro to transfer data for ACC 68E        66E    enable node 2 and 3 for VO  sets interrupt period for data transfer  save to macro station  reset macro station to enable    IF  M1000    M1010  OR  M1001    M1011     M1010   M1000    Reading and Writing to Node Addresses    new input mirror equal to actual input word  new input mirror equal to actual input word  new input mirror equal to actual input word    if inputs change  process outputs    old input mirror equal to new input mirror    23    Accessory 68E       ENDIF  CLOSE    24    M1011   M1001    M983   M1003  M984     1004  M985   M1005    old input mirror equal to new input mirror    Set outputs based on inputs or program logic    Output word equals Output Mirror Word  Output word equals Output Mirror Word  Output word equals Output Mirror Word    Reading and Writing to Node Addresses    Accessory 68E       SETTING UP CONTROL WORD FOR MACRO IO       The Delta Tau IO gate array used on the UMAC IO accessories has the ability to allow any of the  48 bits be used as an input  read  or an output  write   To protect the inputs to be read only the  user can define the individual bits as read only on a byte by byte basis  This accomplished by  writing to the control word of the IO
16.  6  X  078428 7   X 8078429  X  07842A     5078428     Example  If the user wanted to read the inputs from the MACRO Station of the first 24 bit I O    node address of node 2  X  C0A0   then he she could point an M variable to the Ultralite or  TURBO Ultralite VO node registers to monitor the inputs        M980   X  C0A0 0 24  Ultralite node2 address    1980  gt    5078420 0 24 TURBO Ultralite MACRO ICO node 2 address    These M variable definitions  M980 or M1980  could then be used to monitor the inputs for  either the Ultralite or TURBO Ultralite  respectively        14 MACRO Station VO Transfer    Accessory 68E       MACRO       SOFTWARE SETTINGS       The MACRO Station I O can be configured as either an input or an output  The hardware  connected to the MACRO I O boards determines whether or not the addresses defined are inputs  or outputs  Each I O node has 72 bits of data to be transferred automatically to the Ultralite  As  stated previously  there are three methods of transfer  3x16 bit  1x24 bit  or 72 bit transfer     There are several variables at the MACRO Station and PMAC2 Ultralite that enable the I O data  transfer  Once these variables are set to the appropriate values  the user can then process the data  like a normal PMAC or PMAC2  The variables to be modified at the MACRO Station are        MI69      70  or MI71     To read multiple extended address UMAC IO cards efficiently  a new function was added to  MACRO firmware 1 16 to read consecutive extended add
17.  CS12 Y  79D00 03   CLOSE CLOSE CLOSE OPEN CLOSE   OPEN  Y  7AD00 03   CLOSE CLOSE OPEN CLOSE   CLOSE   OPEN  Y  7BD00 03   CLOSE CLOSE OPEN OPEN CLOSE   OPEN  Y  78E00 03 CLOSE CLOSE CLOSE CLOSE   OPEN CLOSE  CS14 Y  79E00 03 CLOSE CLOSE CLOSE OPEN OPEN CLOSE  Y  7AE00 03   CLOSE CLOSE OPEN CLOSE   OPEN CLOSE  Y  7BE00 03   CLOSE CLOSE OPEN OPEN OPEN CLOSE  Y  78F00 03 CLOSE CLOSE CLOSE CLOSE   OPEN OPEN  CS16 Y  79F00 03 CLOSE CLOSE CLOSE OPEN OPEN OPEN  Y  7AF00 03   CLOSE CLOSE OPEN CLOSE   OPEN OPEN  Y  7BF00 03   CLOSE CLOSE OPEN OPEN OPEN OPEN  MACRO Station Switch Settings  CHIP 3U Turbo PMAC        SWITCH SW1 POSITION  SELECT   Address 6 5 4 3 2 1  Y  8800 CLOSE CLOSE CLOSE   CLOSE   CLOSE   CLOSE  CS10 Y  9800 CLOSE CLOSE CLOSE   OPEN CLOSE   CLOSE  Y  A800 CLOSE CLOSE OPEN CLOSE   CLOSE   CLOSE  Y  B800   FFEO   CLOSE CLOSE OPEN OPEN CLOSE   CLOSE  Y  8840 CLOSE CLOSE CLOSE   CLOSE   CLOSE   OPEN  CS12 Y  9840 CLOSE CLOSE CLOSE   OPEN CLOSE   OPEN  Y  A840 CLOSE CLOSE OPEN CLOSE   CLOSE   OPEN  Y  B840   FFE8   CLOSE CLOSE OPEN OPEN CLOSE   OPEN  Y  8880 CLOSE CLOSE CLOSE   CLOSE   OPEN CLOSE  CS14 Y  9880 CLOSE CLOSE CLOSE   OPEN OPEN CLOSE  Y  A880 CLOSE CLOSE OPEN CLOSE   OPEN CLOSE  Y  B880   FFFO   CLOSE CLOSE OPEN OPEN OPEN CLOSE     588  0 CLOSE CLOSE CLOSE   CLOSE   OPEN OPEN  CS16    598  0 CLOSE CLOSE CLOSE   OPEN OPEN OPEN  Y  A8CO CLOSE CLOSE OPEN CLOSE   OPEN OPEN  Y  B8CO CLOSE CLOSE OPEN OPEN OPEN OPEN                                     The default 
18.  gate     Each IO gate has eight 8 bit words     IO word 0   IO bits 0 7   IO word 1    O bits 8 15  IO word 2    O bits 16 23  IO word 3    O bits 24 31  IO word 4    O bits 32 39  IO word 5    O bits 40 47  IO word 6   Data Word   IO word 7   Control Word    IO words 0 through 5 contain the actual IO data  IO word 7 is the control word that allows us to  turn any of the IO words into read only bits  The lower 6 bits of the Control Word are used to tell  the IO gate whether or not the data in the six IO word bytes are read only or read write registers   For example  if the user wanted to make IO word 0  IO word 1  and IO word 2  bits 0 23  read  only they would have to set the IO control word equal to 7  binary 000111      As of MACRO firmware release 1 16 there are no MI variables to support direct access to the IO  control words  An easy method can be used to write directly to the control word of the IO gate  using MI198        MI199  place the register you want to read or write to into MI198 and the read  or write to that value using   1199   This will usually be done in a one time read PLC at power    up                                                                    Base Address from Control Word MII98 Setting  SWI Setting Location   Y  8800    58807 0 8   MI198  408807  Y  9800 Y  9807 0 8   MI198  409807  Y  A800 Y SA807 0 8   MI198  40A807  Y  B800         0      5  807 0 8   MI198  40B807  Y  8840    58847 0 8   MI198  408847  Y  9840    59847 0 8   MI198  409847
19.  word  1    1002  gt    80771 0 24    1002  gt    80010  1 0 24   Output mirror word  1  1   a       IM1001  gt Y  0770 0 24  M1001  gt Y  0010F0 0 24  Input mirror word  2    sets up macro to transfer data for        68   and 66E  enable node 2  3  6  and 7 for VO at MACRO Station      50   119 4 sets interrupt period for data transfer  MSSAVEO save to macro station  MS   0    reset macro station to enable    OPEN PLC1 CLEAR      1000   970    1001   971    new input mirror equal to actual input word  new input mirror equal to actual input word    IF  M1000    M1010  OR  M1001    M1011  if inputs change  process outputs    22 Reading and Writing to Node Addresses    Accessory 68E       M1010   M1000  M1011   M1001    M973   M1002  M974   M1003    ENDIF  CLOSE    old input mirror equal to new input mirror  old input mirror equal to new input mirror    Set outputs based on inputs or program logic    Output word equals Output Mirror Word  Output word equals Output Mirror Word    Example 2  48 inputs 48 outputs using 3x16 bit transfers       For this example  the inputs and outputs are not sharing the same Node Transfer Address    C0A1  C0A2  C0A3   COAS   COA6  and  COA7   Each of the node transfer addresses can  be defined as 16 bit addresses     MS0 MI697 20C0A131  MS0 MI975  C    50   119 4  MSSAVEO   MS   0    OPEN PLC1 CLEAR      1000   980    1001   981    1002   982       M1003  gt Y  0771 8 16    Turbo Ultralite  8 Axis     16841  0FB33F    M981  gt X  78422 8 16    I  
20. 18 Reading and Writing to Node Addresses    Accessory 68E       Active Nodes for Compact MACRO I O Station  example     Node s  Gate Addresses Node Transfer Addresses   8800 SCOAI SCOA2 8C0A3    96 Bit 2 3  8800  C0A1  C0A2  C0A3   9800  C0A5  C0A6  COA7    144 Bit  C0OA1  C0A2  C0A3   C0A5  C0A6  COA7   C0A9  COAA SCOAB       The data in this application will transfer 48 bits of data per node as specified by MI69  These  memory locations could be utilized by pointing an M variable to the node locations  In your PLC  program  these M variables would be considered the actual input words and actual output words  or a combination of the two  8 inputs  8 outputs for 16 bit read write   To efficiently read and  write to these memory locations  Delta Tau suggests using image input words to read the actual  input words and then write to the actual output word if the inputs have changed states  The  following block diagram shows the typical logic for PMAC   s inputs and outputs        input mirror  lt  input word                         yes  in mirror   old in mirror    no             old input mirror   input word                Process Inputs  Build Output Word  Perform Desired Actions                output word   out mirror                d END                   For this application  we are using six 16 bit data transfers and will use the following M Variable  definitions in our application     Reading and Writing to Node Addresses 19    Accessory 68E       PMAC2 Ultralite Example 
21. 7AF03 0 8      bits 24 31   gt  m      5074  04 0 8    507  004 0 8 Y S07AE04 0 8 Y SO7AF04 0 8 T O bits 32 39  GE Y  07AC05 0 8 Y  07AD05 0 8    507    05 0 8    507    05 0 8 I O bits 40 47  Y 5072007 0 8              0 8 Y 50TAEQT 0 9 Y 507A8F07 0 8 Control Word  Y  078C00 0 8 Y  07BD00 0 8    507    00 0 8    507    00 0 8 I O bits 0 7  E E      507    01 0 8    507  001 0 8    507    01 0 8    507    01 0 8      bits 8 15            507    02 0 8    507  002 0 8    507    02 0 8    507    02 0 8 I O bits 16 23               507    03 0 8    507  003 0 8    507    03 0 8    507    03 0 8      bits 24 31  m m   Y  07BC04 0 8    507  004 0 8    507    04 0 8 Y  07BF04 0 8 I O bits 32 39     2    507    05 0 8    507  005 0 8    507    05 0 8 Y  07BF05 0 8 I O bits 40 47  3 5079007 0 8 Y 9078DQ07 0 59 1Y 9078E07 0 8 Y 5078F07 0 8 Control Word  Note  SW1 5 and SW1 6 must be set to ON       The control register at address  Base 7  permits the configuration of the IOGATE IC to a  variety of applications  The control register consists of 8 write read back bits     Bits 0 7  The  control register consists of two sections  Direction Control and Register Select     The direction control allows setting input bytes to be read only  One of the advantages of the  IOGATE IC is the ability to define the bits as inputs or outputs  This  control  mechanism       Using Acc 68E with UMAC Turbo       Accessory 68E       allows you to ensure the inputs will always be read properly  Our traditi
22. A5  Node 3   MACRO Station X Address of MACRO I O node first   C0A9  Node 6    COAD  Node 7   of three 16 bit registers   COBI  Node 10    COB5  Node 11     7 0  1  2 3 Number of 16 bit I O sets to use  1x16  2x16  3x16  0  disables   1 Set to 1 for        14    ACC 68E         66    ACC 67E  consectutive address read  Base   1000   2000   9 12  8800   8840 MACRO Station Y Base Address of ACC 14E  ACC    8880   88CO 68E  ACC 66E  ACC 67E     When this function is active  the MACRO Station will copy values from the MACRO command   input  node registers to the I O board addresses  it will copy values from the I O board addresses  to the MACRO feedback  output  node registers  Writing a    0    to a bit of the I O board enables it  as an input  letting the output pull high  Writing a    1    to a bit of the I O board enables it as an  output and pulls the output low        Example    1  48 bit I O transfer using node 2 with IO card base address of  8800    MS0 MI69  10C0A1318800   2  96 bit I O transfer using nodes 2 and 3  with IO card base address of  8800 and  9800  MS0 MI69  20C0A1318800           3  288 bit I O transfer using nodes 2  3  6  7  10  and 11 using 6 IO cards  Setup using 144   bit transfer with MI69 and 144 bit transfer with MI70  The first three IO cards are addressed  at  8800   9800  and  A800  The second three IO cards are addressed at  8840   9840  and   A840     MS0 MI69  30C0A1318800  MS0 MI70  30C0AD318840          16 MACRO VO Software Settings    Acces
23. Accessory 68E       DELTA TAU    Data Systems  Inc     NEW IDEAS IN MOTION        Single Source Machine Control Power    Flexibility    Ease of Use  21314 Lassen Street Chatsworth  CA 91311    Tel   818  998 2095 Fax   818  998 7807    www deltatau com    Accessory 68E       Table of Contents    INTRODUCTION ccc N OE EE EE OE    1  HARDWARE SETUP                                                                    ede see 2  LAYOUT DIAGRAM    EE t HE E Ed ER OE OE EE Re EE ERES Ce            3  ADDRESS SELECT        SWITCH  1                 se ee ee ee es ee ee ee se ee ee ee ee nennen enne nnne RR Re Re ee        4  TURBO PMAC 30 Switch Settings cossis anran eene        enne A E nnne nennt 4  MACRO Station Switch Settings                   4  JUMPERS EE E                                      Ee 5  HARDWARE ADDRESS IMITATIONS                                                                ei Se           5  Addressing Conflicts                          EE OE EN               nde N 6              and             Example 1  ACC 11E and        6                                 6           A                    Example 2              and        68      0     0          9                        6  USING ACC 68E WITH                                                8  UMAC TURBO MEMORY MAPPING FOR        68                                                                          8  CONTROL REGISTER      cccsccsccccecsessseceeececsessnseeecceeceeseuaeseescecsesuaseesececeesuaeseeecesseua
24. CC 36E  If the user has an ACC 11E and ACC 36E the user cannot allow both cards to use the same Chip    Select because the data from both cards will be overwritten by the other card     The solution to this problem is to make sure you do not address both cards to the same chip  select     Type A and Type B Example 2  ACC 11E and ACC 68E    For this example the user could allow the two cards to share the same chip select because the  ACC 68E is a general purpose IO Type B card  The only restriction in doing so is that the ACC   68E must be considered the low byte addressed card and the ACC 11E must be jumpered to  either the middle or high bytes  jumper E6A E6H         6 Hardware Setup    Accessory 68E          Hardware Setup    Accessory 68E       USING ACC 68E WITH UMAC TURBO          For the UMAC Turbo  the ACC 68E can be used for either general purpose I O or as latched  inputs  The registers used for general I O use are 8 bit registers and you will define three 8 bit  registers for each 24 bit I O port     UMAC Turbo Memory Mapping for        68         The Delta Tau I O Gate used on the ACC 68E is an 8 bit processor and therefore the memory  mapping to the I O bits is processed as 8 bit words at the Turbo UMAC  Using this simple    scheme the user could process up to 768  48x16  bits of data for general purpose I O                                                                                                                                                               
25. Example M Variable Definitions      980  gt     78421 8 16      word  1  1    16 bit word node2     981  gt     78422 8 16      word  2  2    16 bit word node 2    982  gt     78423 8 16  IO word  3  34 16 bit word node 2    983  gt     78425 8 16      word  1  1    16 bit word node 3  M984  gt X  78426 8  16  IO word  2  2    16 bit word node 3  M985  gt X  78427 8 16  IO word  3  34 16 bit word node 3      1000  gt     0010  0 8 16          mirror word  1  M1001  gt Y  0010F0 8 16 Input mirror word  2  M1002  gt X  0010F 1 8 16 Input mirror word  3  M1003  gt Y  0010F 1 8 16  Output mirror word  1  M1004  gt X  0010F2 8 16  Output mirror word  2  M1005  gt Y  0010F2 8 16  Output mirror word  3  M1010  gt X  0010F3 8 16  Old Image mirror word  1  M1011  gt Y  0010F3 8 16  Old Image mirror word  2    1012  gt     0010  4 8 16  Old Image mirror word  3    IO word 71 IO Word  2 IO Word  3      800  gt     0010  0 8     801  gt     0010  0 9     802  gt     0010  0 10    803  gt     0010  0 11    804  gt     0010  0 12    805  gt     0010  0 13    806  gt     0010  0 14    807  gt     0010  0 15    808  gt     0010  0 16    809  gt     0010  0 17    810  gt     0010  0 18    811  gt     0010  0 19    812  gt     0010  0 20    813  gt     0010  0 21    814  gt     0010  0 22    815  gt     0010  0 23      816  gt     0010  0 8   M817  gt Y  0010F0 9     818  gt     0010  0 10    819  gt     0010  0 11    820  gt     0010  0 12    829  gt     0010  0 13    822  gt     0010  0 14  
26. G 3x16 BIT TRANSFERS      2       404004  4     eke ee ee         23  SETTING UP CONTROL WORD FOR MACRO 1O                        eee se ee eese      25  LEGACY MACRO SYSTEMS    ss esse sesse se Ge aoo                              ee        e voe see                   sees ee oog eed e ee ed Ge gee ee eg uve Even 27  EI E4  VO Gate Transfer Jumper       iis se ee se ese ee ee se ee Ge ee Ge ee GR ee GR Ge ee ee Ge eke Ge ee GR ee ek Ge ek ee ee 27  MACRO VO ACCESSORY CONNECTORS                    ee eeee eese enne es ss se ees se ee Ge Ge ee Ge Ge ee Ge ee Ge AG ee ee 29  PI UBUS   06 PINHEADER    ii Ee ee Ge ER Ee Se Ee neg ee Eg ee INR Gee Ge GE bee ER Ee      29                        6 P                                                                                30  IBI Top  12 Pin Terminal Block  5    ies Ee a oe e aa eins totae b QURE e                     AS era eue bl ese es das 30   182          12 Pin Terminal BloCk  a ia a asi cesis cte daniele cta UV a ERR Eee UE    30   TB3 Top  3 Pin Terminal Block   e e e                                   30   IBI Bottom  12 Pin Terminal Block             vids tener rhe               ER oe Se                       31   182 Bottom  12 Pin Terminal Block     ic Wigs  te ets wines eshte        SU web RE cepe        31   TB3 Bottom  3 Pin Terminal Block     se      GR                            Ge ek Ge ee         31      15 CONNECTOR                   5522                                                      FN o URN EE        
27. Inpu    E Stop button      lt ctrl gt     command     Bus Voltage     emergancy stop condition     global motion program abort       24  25  26  27  28  29  30  31   32  33  34  35  36  37  38  39  40       n        OU i         voltage to  in pulled    after                         101    7500 msec delay for deceleration     kill all axes     turn off BUS voltage     latch input     enable BUS volatge  759000 msec delay for bus voltage       Using Acc 68E with UMAC Turbo    11    Accessory 68E       CMD A    7000 0  Endif        close loop for all servos   latch input       12    Using Acc 68E with UMAC Turbo    Accessory 68E       MACRO STATION       TRANSFER    A fundamental understanding of the MACRO Station I O transfer is needed to set up the  MACRO VO family of accessories     The MACRO station typically will have up to eight axis nodes  0  1  4  5  8  9  12  and 13  and up  to six I O transfer nodes  2  3  6  7  10  and 11   There are two types of I O transfers allowed to  send the information to the Ultralite from the MACRO Station  48 bit transfer and 24 bit transfer   The PMAC2 Ultralite and the MACRO Station enable the user to transfer 72 bits per VO node   For a multi Master system  432 bits  6x72  of data may be transferred for each Master  Ultralite   in the ring  If only one Master is used in the ring  node 14 could be used for I O transfer  which  would give us 504 bits  7x72  of I O transfer data        For all MACRO Station I O accessories  the information 
28. M Variable Definitions    M980  gt X  C0A1 8 16      word  1  1 16 bit word node2   M981   X  C0A2 8 16      word  2  2    16 bit word node 2  M982  gt X  C0A3 8 16      word  3  34 16 bit word node 2  M983  gt X  C0A5 8 16      word  1  1    16 bit word node 3  M984  gt X  C0A6 8  16      word  2  2    16 bit word node 3  M985  gt X  C0A7 8 16  IO word  3  34 16 bit word node 3      1000  gt     0770 8 16  M1001  gt Y  0770 8 16  M1002  gt X  0771 8 16  M1003  gt Y  0771 8 16  M1004  gt X  0772 8 16  M1005  gt Y  0772 8 16  M1010  gt X  0773 8 16  M1011  gt Y  0773 8 16  M1012  gt X  0774 8 16    IO word  1 IO Word  2 IO Word  3     Input mirror word  1   Input mirror word  2   Input mirror word  3   Output mirror word  1   Output mirror word  2   Output mirror word  3   Old Image mirror word  1   Old Image mirror word  2   Old Image mirror word  3    M800  gt X  770 8   M801  gt X  770 9     802  gt     770 10    803  gt     770 11    804  gt     770 12  M805  gt X  770 13  M806  gt X  770  14  M807  gt X  770 15    808  gt     770 16    809  gt     770 17  M810 2X  770 18    811  gt     770 19    812  gt     770 20    813  gt     770 21    814  gt     770 22  M815 2X  770 23    IO word  4 IO Word  5 IO Word  6    M900  gt Y  771 8   M901  gt Y  771 9   M902  gt Y  771 10  M903  gt Y  771 11  M904  gt Y  771 12  M905  gt Y  771 13  M906  gt Y  771 14  M907  gt Y  771 15  M908  gt Y  771 16  M909  gt Y  771 17  M910  gt Y  771 18  M911  gt Y  771 19  M912  gt Y  771 20  M913
29. O cards are addressed from the LOW bytes only  Because of this  the MACRO I   variables  MI69  MI70  and MI71  were modified to read up to three consecutive base address  cards in MACRO firmware version 1 16                                               Chip Select MACRO Address DIP SWITCH SW1 POSITION   6 5 4 3 2 1  CS 10  FFEO OPEN OPEN OPEN OPEN CLOSE CLOSE  CS 12  FFE8 OPEN OPEN OPEN OPEN CLOSE OPEN  CS 14  FFFO OPEN OPEN OPEN OPEN OPEN CLOSE  CS 16 Cannot Use OPEN OPEN OPEN OPEN OPEN OPEN       To use the new IO cards with the older firmware systems  the user can use each of the IO transfer  variables  MI69  MI70  MI71  to transfer 48 bits each  The main problem is that the older  systems did not have the new extended addressing and the user can only use three IO cards per  MACRO station     e For systems with only one IO card the user will not have to change anything      If any of these New IO cards are used with the ACC 9E  ACC 10E  ACC 11E  or ACC   12E  then the user should address the New IO card as the first card  LOW byte  in  addressing scheme     Legacy MACRO Systems 27       Accessory 68E       28    Legacy MACRO Systems    Accessory 68E       MACRO       ACCESSORY CONNECTORS    C32 00000000000000000000000000000000       P1 UBUS  96  B32  OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOIBI  A321OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO AM    PIN HEADER                55              BS            Pi            7  1    5 0            2  2  2  2  2  2 S 2  2  2  2    2    ANALOG  2    F
30. ctly communicating to  These memory locations are typically used  with other Delta Tau 3U 1    accessories such as     ACC 9E         10                ACC 12E         65    ACC66E  ACC 67E  ACC 68E           28   16 bit A D Converter Inputs  up to four per card     ACC 53E SSI Encoder Inputs         of these accessories have settings  which tell them where the information is to be processed at either the    PMAC 3U Turbo or the MACRO Station        3U Turbo PMAC  Memory Locations    MACRO Station  Memory Locations                          078C00   079C00  8800  9800   07AC00   07BC00  A800  B800   078D00   079D00  8840  9840   07AD00   07BD00  A840  B840   078E00   079E00 58880 59880   07AE00   07    00  A880  B880   078F00   079F00  88C0  98C0   07AF00   07BF00  A8C0  B8C0          The ACC 68E has a set of dip switches telling it where to process its data  Once the information is at these  locations  we can process the binary word in the encoder conversion table to use for servo loop closure   Proper setting of the dip switches ensures all of the UBUS IO boards used in the application do not    interfere with each other        Hardware Setup    Accessory 68E       Layout Diagram       ACC 68E Terminal Block Option                                     e      ress ae  33 BS Ed              OO    B        DELTA  TAU  24                   J2   H TOP   n m m    m   H        m   H        m   l           m         P1  H             1   2 TB1            m     a     m   4         m  
31. e bits 0 23 and 24 47 as outputs  ACC 67E    DIS            CLOSE   10 Using Acc 68E with UMAC Turbo    Accessory 68E       Accessory 68E       M Variables for UMAC Turbo    The following 15 a list of suggested M variables for the default Jumper settings is provided  You    may assign any M variables to these addresses  You may make these M variable definitions and  use them as general purpose I O for their PLC s or motion programs     M701  M701  M701  M701    0  gt          7021  gt                                     the motors when    out      the motors will servo to actual position    7000   Y   7001   Y   M7002   Y   M7003   Y   M7004   Y   M7005   Y   M7006   Y   M7007   Y   M7008   Y   M7009   Y    5078  01  1   gt      2  gt      3   Y   7014   Y   J015  2Y   7016   Y   7017   Y   7018   Y   7019   Y   7020   Y     078C02 5 1  7022   Y   7023   Y      078C00 0 1   078C00 1 1   078C00 2 1   078C00 3 1   078C00 4 1   078C00 5 1   078C00 6 1   078C00 7 1  5078  01   5078  01    p  pore    rere    5078  01  5078  01  5078  01  5078  01  5078  01   5078  02 0 1  5078  02 1 1  5078  02 2 1  5078  02 3 1  5078  02 4 1    pig    rd    79         1 0  1 1  1 2  L  3 3   1 4  Ls  1 6          p     078C02 6 1   078C02 7 1          Sample       Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu  Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu  Inpu    Input    Inpu                             N HO       HOU BU N HO        
32. erminal block provides the inputs 13 24 for the ACC 68E I O Card    Output  Output  Output       o o         sel H3  E E    TB3 Bottom  3 Pin Terminal Block     Top View    Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking        2  1    Symbol         EET  OGND Reference voltage      24   uv       This terminal block can be used to provide the input reference for the ACC 68E for the 24 outputs    MACRO VO Accessory Connectors       3l    Accessory 68E       32    MACRO VO Accessory Connectors    Accessory 68E       DB15 CONNECTOR OPTION          DB15 Style Connector J1 Top   Inputs 1 through 12          J1 Top Connector Front View     00000000        OOOOOOO     15    Pin   Notes  NO       pct sg  mo  mw       sn  Sinking  o   Sinking  Sinking   DNI EE EE EE    REFI Reference Voltage for Inputs   24V for Sinking  1 8    2 22              Mm  BY  LI PD               9 16   Sinking   10 Sinking   1     mos Sinking      Sinking   i Sinking   i Sinking   15 REF3 Reference Reference Voltage for Inputs   24V for Sinking  17 24                   DB15 Connector Option    33       Accessory 68E       DB15 Style Connector J2 Top   Inputs 12 through 24          J2 Top Connector              Mm  BY  LI NTR                Pin   Notes  Sinking  Sinking  Sinking  Sinking  Sinking  mr     pa         np 3  inn    REFI Reference Voltage for Inputs   24V for Sinking  1 8    Front View     00000000        OOOOOOO     15                9 16   5 Sinking      Sinking      Sink
33. ing   12 Sinking      Sinking   i Sinkine   15 REF3 Reference Reference Voltage for Inputs   24V for Sinking  17 24   34 DB15 Connector Option    Accessory 68E       DB15 Style Connector J1 Bottom     Outputs 1 through 12          Front View  ODOOOOOO    Pin   Notes  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking    O424V Voltage 12 24V    J1 Bottom Connector           oo  ND  NY  BY  WwW  NMI  Re                       DR  LI  PD     o         CA                   DB15 Style Connector J2 Bottom   Outputs 12 through 24          Front View    BO OOOOOOO    J2 Bottom Connector    OOOOOOO    15    Pin   Notes  ouri            Sinking  our  out      operis     ining  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking    O424V Voltage 12 24V          Ol  Cl  ALD  NY BY  WwW  NI                          Ph  Lol  PD                                       DB15 Connector Option    35       
34. is transferred to or from the accessory  I O Gate to the MACRO Station CPU Gate 2B  Information from the MACRO Station Gate 2B  Is then read or written directly to the MACRO IC on the Ultralite  Once the information is at the  Ultralite  it can be used in the users application motion programs or PLC programs        o 7 0 8 JG  Ultralite MACRO Station  MACRO IC Gate 2B      Iu P  UN  VO Accessory  Gate  Ss    Each I O board has jumper and software settings to select the I O transfer memory locations at  both the VO transfer Gate and the MACRO transfer addresses  These jumpers and software  settings are discussed in this manual     MACRO Station VO Node Transfer Addresses    Node 16 bit  upper 16 bits   Transfer Addresses  X  COA1  X  COA2  X  C0A3  X  C0AS  X  C0A6  X  C0A7   s  xscms       XSCM  XSCMAXSCUB      X  COAC X  COAD  X  COAD  X  COAE  X  COBO X  C0B1  X  COB2  X  COB3  X  C0B4 X  C0B5  X  C0B6  X  C0B7              Ultralite I O Node Addresses    Node 24 bit  Transfer Addresses Node 16 bit  upper 16 bits   Transfer Addresses  X  C0A0 X  C0A1  X  C0A2  X  C0A3  X  C0A4 X  C0A5  X  C0A6  X  C0A7        6      5  0  8 X  C0A9  X  COAA  X  COAB  X  C0AC X  COAD  X  COAD  X  COAE       MACRO Station VO Transfer 13    Accessory 68E       X  COBO X  COBI  X  COB2  X  COB3             0  4    8  0  5  X  COB6  X  COB7    PMAC2 TURBO Ultralite 1    Node Addresses   MACR Node 24 bit  Node 16 bit  upper 16 bits     O IC Node Transfer Addresses Transfer Addresses   Node  acos 
35. node registers  Writing a    0    to a bit of the I O board enables it  as an input  letting the output pull high  Writing a    1    to a bit of the I O board enables it as an  output and pulls the output low        Example    1  48 bit I O transfer using nodes 2 and 3 with IO card base address of  8800    MS0 MI71  10C0A01218800     2  96 bit I O transfer using nodes 2  3  6  and 7 with IO card base address of  8800 and   9800    MS0 MI71  20C0A0218800     3  144 bit I O transfer using nodes 2  3  6  7  10  and 11 using three IO cards at base address   8800   9800 and  A800     MS0 MI71  30C0A0218800             MACRO VO Software Settings 17    Accessory 68E       READING AND WRITING TO NODE ADDRESSES          Delta Tau recommends that you read and write to the node address as complete words  If the  node address is 24 bits wide or 16 bits wide  read or write to the M Variable assigned to that  address     Example     Ultralite TURBO Ultralite     970  gt       0  0 0 24 M970  gt X  78420 0 24   M980  gt X  C0A 1 8 16 M980  gt X  78421 8 16  M981  gt X  C0A2 8 16 M981  gt X  78422 8 16  M982  gt X  C0A3 8 16 M982  gt X  78423 8 16  M1000  gt X  0770 0 24 M1000  gt X  0010F0 0 24  image word  M1001  gt X  0771 8 16 M1001  gt X  0010F0 8 16  image word  For Outputs   M970  F00011  sets bits 0 4 20 21 22  amp  23  M980  8101  sets bits 0 8  amp  23  M970 M 1000  sets M970 equal to M1000  M980 M1001  sets M980 equal to M1001                                              For Input
36. onal I O accessories  always define the inputs and outputs by hardware     The register select bits allow you to define the input or output bytes inversion control or the  latching input features     Direction Control Bits    Bits 0 to 5 ofthe control register simply control the direction of the I O for the matching  numbered data register  That is  Bit n controls the direction of the I O at  Base        A value of  0 in the control bit  the default  permits a write operation to the data register  enabling the output  function for each line in the register  Enabling the output function does not prevent the use of any  or all of the lines as inputs  as long as the outputs are off  non conducting      value of 1 in the  control bit does not permit a write operation to the data register  disabling the output  reserving  the register for inputs     Example  A value of 1 in Bit 3 disables the write function into the data register at address  Base    3   ensuring that lines 1024   IO31 can always be used as inputs   Register Select Control Bits    Bits 6 and 7 of the control register together select which of 4 possible registers can be accessed at  each of the addresses  Base   0  through  Base   5   They also select which of 2 possible  registers can be selected at  Base   6      The following table explains how these bits select registers               Bit7   Bit6   Combined Value    Base   0  to  Base   5     Register Selected        DataRegister 2   1   1                       
37. or more details about the JEXP please see the UBUS Specification Document     D  BS1   SEL BAG  3    0  1  1  1  1  1  1  1  1  1  8  3    2  3  4  5  6  7  8  9  0  2  3  4  5  6  7  9  0       195          MACRO VO Accessory Connectors 29    Accessory 68E       VO Terminals    TB1         12        Terminal Block            pt   Top View M  Pin        mo    1  2    02     is             05 m         Input  NOT         08 m  NO Input    This terminal block provides the inputs 1 12 for the ACC 68E I O Card     TB2 Top  12 Pin Terminal Block            Top View       Pin    Sinking   Sinking   Sinking   Sinking   Sinking  Sinking  Sinking  Sinking   Sinking   Sinking  Sinking  Sinking    This terminal block provides the inputs 13 24 for the ACC 68E I O Card     Symbol                     c       101         i               li                      Mn  BB  Ww                    i          This connector can be used to provide the input reference for the ACC 68E I O Card for the 24 inputs        30 MACRO VO Accessory Connectors    Accessory 68E             TB1 Bottom  12 Pin Terminal Block        epee  Top View   Pin   Notes  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking  Sinking      Sinking   12 Sinking    This terminal block provide the inputs 1 12 for the ACC 68E I O Card                       ELI          10                          eee       TB2 Bottom  12 Pin Terminal Block     6      OUTI7           8   0019    9  0270    Output    This t
38. resses  The previous method supported  the low middle high byte addressing of the Type A IO cards  see Hardware Address Limitations  section             controls the data transfer period on a Compact MACRO Station between the MACRO  node interface registers and the I O registers  as specified by station MI variables MI20 through  MI71  If        is set to 0  this data transfer is disabled  If MI19 is greater than 0  its value sets  the period in Phase clock cycles  the same as MACRO communications cycles  at which the  transfer is done     MI975 permits the enabling of MACRO VO nodes      the Compact MACRO Station  MI975 is  a 16 bit value  bits 0 to 15  with bit n controlling the enabling of MACRO node n  If the bit is set  to 0  the node is disabled  if the bit 15 set to 1  the node 15 enabled  The I O nodes on the Compact  MACRO Station are nodes 2  3  6  7  10  and 11  which        be enabled by MI975 bits of these  numbers  Only bits 2  3  6  7  10  and 11 of MI975 should ever be set to 1        MI975 15 used at the power on reset of the Compact MACRO Station in combination with rotary  switch SW 1 and   1976 to determine which MACRO nodes are to be enabled  The net result can  be read in Station variable MI996  To get a value of MI975 to take effect  the value must be  saved  MSSAVE node   and the Station reset  MS    node       Example  Set MI975 to enable nodes 2 and 3   MS0 1975 Set Number MACRO IO nodes to be enabled    _      ps  14 13 12  11 10 98   7  6  5       
39. s   M1000 M970  sets M1000 equal to M970  M1001 M980  sets M1001 equal to M980                   If using the 48 bit read write method  it would be ideal if the inputs and outputs were used in  multiples of 16  Example  48 inputs  32 inputs  16 outputs  16 inputs 32 outputs  or 48 output   see Example 2      If the 16 bit word is to be split  8 in and 8 out   then we would read the word at the beginning of  the PLC and write the word at the end of the PLC  However  instead of writing the value of the  inputs to the output word  you must write zeros to all input bits of this    in out    word  This is  because writing a value of 1 to a MACRO I O register makes that I O bit an output only bit  The  best method to ensure proper input reads is to write directly to the control word of the IO gate  array to set the input words as read only  see Setting Up Control Word for MACRO IO section      Example Setup     System Configuration  8 axis PWM System w  96 bit 1 0  48 inputs  amp  48 outputs   ACC 68E  amp  ACC 68E    PMAC Ultralite Setup   1996                activates nodes 1 2 3 4 5 8 9 12  and 13 at Ultralite  TURBO PMAC Ultralite Setup   16841  FB33F  activates nodes 1 2 3 4 5 8 9 12  and 13 at Turbo Ultralite    Macro Station Definitions   MSO MI69  20C0A1318800 sets up macro to transfer data for IO cards    MS0 MI975  C enable node 2 and 3 for VO    50   119 4 sets interrupt period for data transfer  MSSAVEO save to macro station   MS   0    reset macro station to enable    
40. setting is ALL CLOSED position        Hardware Setup       Accessory 68E       Jumpers       Please refer to the layout diagram of ACC 68E for the location of the jumpers on the board     E Point Jumpers                                                                                                                   Jumper  Config  Description Settings Default  El 1 2 Turbo PMAC MACRO Jump 1 2 for Turbo 3U CPU and MACRO CPU 1 2  Select   Jump 2 3 for legacy MACRO CPU  before 6 00   E2 1 2 Sample Clock Select  1 2 servo clock 1 2  2 3 phase clock     for legacy MACRO Stations  part number 602804 100 thru 602804 104    Hardware Address Limitations   Some of the older UMAC IO accessories might create a hardware address limitation relative to   the newer series of UMAC high speed IO cards  The ACC 66E would be considered a newer   high speed IO card  The new IO cards have four addresses per chip select  CS10  CS12  CS14    and CS16   This enables these cards to have up to 16 different addresses  The ACC 9E  ACC    10    ACC 11E  and ACC 12E all have one address per chip select but also have the low byte    middle byte  and high byte type of addressing scheme and allows for a maximum of twelve of   these IO cards    UMAC Card Types   UMAC Number of Category Maximum Card   CARD Addresses   of cards Type   ACC 9E   ACC 10E 4 General IO 12 A                       12            65           66   16 General IO 16 B   ACC 67E  ACC 68E          14     ACC 28E  ACC 36E 16 ADC and DAC 16 B
41. sory 68E                specifies the registers used in 24 bit I O transfers between MACRO I O node interface  registers and I O registers on the MACRO Station I O accessory board  It is used only if        is  greater than 0     Note  The examples for the setup of MI71 require MACRO firmware 1 16 and above              is a 48 bit variable represented as 12 hexadecimal digits  The first 6 digits specify the  number and address of 48 bit real time MACRO node register sets to be used  The second 6  digits specify the number and address of 48 bit I O sets on the MACRO Station VO accessory  board to be used  The individual digits are specified as follows     1 0 1 2 3 Number of MACRO I O nodes to use times 2  0  disables   this should also match the number of 48 bit  I O sets you intend to use  see Digit 7      COAO  Node 2    COA4  Node 3   MACRO Station X Address of MACRO I O node first   COAS  Node 6    COAC  Node 7   of three 16 bit registers   COBO  Node 10    COB4  Node 11     7 0 1 2 Number of 24 bit I O sets to use  1x24  2x24  0  disables   1 Set to 1 for        14    ACC 68E         66           67    consectutive address read  Base   1000    2000   9 12  8800   8840 MACRO Station Y Base Address of ACC 14E  ACC    8880   88CO 68E  ACC 66E  ACC 67E     When this function is active  the MACRO Station will copy values from the MACRO command   input  node registers to the I O board addresses  it will copy values from the I O board addresses  to the MACRO feedback  output  
42. ssecececeesenssaeeseeseenseeaeeeees   8  Direction Control Bits ee        9  Register Select Control Bits ME RE RE OE          9  Control Word Setup Example                            9  ACCESSORY 68E I O M VARIABLES FOR UMAC TURBO    ee esse esse ee ee ee se een ee ee ee                   ee 11  MACRO STATION      TRANSFER           22                                                                 o vo ru      VN p Ges E 13  MACRO Station I O Node Transfer Addresses           eee eene ener 13          2 Ultralite VO Node Addresses             esee e ee eee nentes ener tete enses eese nenne 13  PMAC2 TURBO Ultralite VO Node Addresses         ee ee ee ee ener enne nennen 14  MACRO VO SOFTWARE                                              15  READING AND WRITING TO NODE             585  8                       2  4     oe ei se sese se Ge sese ense ee 18  Example shes                                              18  Example Setup RE N ACH            xe Cd                                    18  Active Nodes for Compact MACRO I O Station  example           19  PMAC2 ULTRALITE EXAMPLE M VARIABLE DEFINITIONS               se se se ee ee ee ee ee ee ee nennen ee ee ee ee ee ee      nns 20  PMAC2 TURBO ULTRALITE EXAMPLE M VARIABLE DEFINITIONS       eise ees ee ee se ee ee ee ee ee ee ee ee ee ee ee ee ee           21  EXAMPLE 1  48 INPUTS 48 OUTPUTS USING 1x24 BIT TRANSFERS       ese ee esse see se ee ee ee ee ee ee ee ee ee ee ee ee ee tenens 22  EXAMPLE 2  48 INPUTS 48 OUTPUTS USIN
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
Descargar Manual 1  Bajar Manual - Simchoni México    Arkon GN097 mounting kit    NT11 Programmable Terminal, User`s Manual  SAP 1 - Airlan  EDG-6528 User Manual  Bedienungsanleitung  KEEX-1660 User Manual    Copyright © All rights reserved. 
   Failed to retrieve file