Home
PPA5xx_15xx User Manual
Contents
1. 7 7 PPA5xx 15xx KinetiQ user manual 7 3 COUPLING coupling options There are three coupling options AC only AC DC or DC only AC DC coupling is the normal option and should be used where possible AC coupling should be used for measuring signals that are biased on a dc level Such as an amplifier operating on a single supply or the output of a dc PSU DC coupling should be selected when making DC measurements as it prevents noise from resetting the frequency measurement algorithm In multi phase applications if independent CH3 input control has been set in the acquisition menu for the PPA1530 then the coupling options are independently set for PH1 PH2 together and PH3 separately Coupling Measurement Notes option bandwidth ac dc dc 1MHz default ac 5Hz 1MHz dc dc 1MHz _ dc coupling disables auto frequency search and no compensation is applied Measurement bandwidth is limited to c 100kHz in internal x10 mode regardless of the coupling setting 7 8 PPA5xx 15xx KinetiQ user manual 7 4 RANGE input channel options All the input channels are fully isolated from each other and from earth with very high CMRR common mode rejection ratio They are controlled independently but sampled synchronously Each input channel has an external input as well as an internal shunt or high voltage attenuator The external input gives versatility in the input ranging by using external
2. The 3 phase 2 wattmeter phase 3 configuration can be used as an additional Torque amp Speed application to supplement the existing EXT BNC connections on the rear panel With the 3 phase 3 wattmeter configuration each measurement phase is connected to a phase of the load with the voltage inputs measuring to neutral In this mode phase to neutral voltages are measured directly and phase to phase voltages are also computed The wiring configuration is the first item to be selected under the ACQU menu y Bae Wiring diagrams Single Phase 7 2 PPA5xx 15xx KinetiQ user manual Two Phase Two Wattmeter HI LO DE asi oror Ma Three Phase Two Wattmeter Phase Source 7 3 PPA5xx 15xx KinetiQ user manual Three Phase Three Wattmeter simulated neutral Phase Source A A Three Phase Three Wattmeter Phase geram AA CCCA AA On a multi phase instrument all the phases usually use the same input control data internal external scaling factor etc It is possible to select independent so that the phases can be set up differently This is useful if different scaling factors are required for external shunts or if one phase Is using internal shunt when others are external 7 4 PPA5xx 15xx KinetiQ user manual 7 2 ACQU Acquisition options In normal acquisition mode the window over which the measurements are computed is adjusted to give an integral number of cycles o
3. term3 term4 2 term1 term2 x term3 term4 3 terml1 x term2 term3 term4 Each term comprises a result scaled by a signed factor or a signed constant For example consider the formula maths Vpk Apk V2 Select formula 2 with terml1 voltage peak x 1 0 term2 disabled term3 current peak x 1 0 term4 constant x 1 414 or term1 voltage peak x 1 0 term2 disabled term3 current peak x 0 7071 term4 disabled The selected formula is applied to the data from each phase The result is displayed with a user definable label of up to 12 characters and units up to 8 characters 7 14 PPA5xx 15xx KinetiQ user manual 7 7 AUX Auxiliary Devices PCIS Inrush Switch Phase Controlled Inrush Switch Accessory for the PPA range to provide the precise measurement of Inrush Current on a single phase AC load Application When measuring the maximum inrush current taken by a load it is necessary to switch on the supply at a specific point in the voltage cycle The point at which maximum inrush current will be drawn is dependent upon the type of load being tested but usually this is 909 or 2709 for capacitive loads and 09 or 1809 for an inductive load It can also be useful to measure the inrush current at intermediate points between the maximum and minimum levels therefore an ideal phase switching device allows the selection of phase angle at increments of 459 7 15 PPA5xx 15xx KinetiQ user manual 8 A
4. The test leads supplied meet the safety requirements of BSEN61010 1 to an operating voltage of up to 1000V rms cat II or 600V rms cat III The Quick Start guide Section 3 below gives an introduction to the operating modes of the KinetiQ and the selection of options and parameters The Quick Start guide may be followed with no inputs connected to the instrument In the event of any problem with this procedure please contact customer services at Newtons4th Ltd or your local authorised representative contact addresses and telephone numbers are given in the appendix at the back of this manual 2 2 PPA5xx 15xx KinetiQ user manual 3 Quick Start guide 3 1 Operating Mode Keys POWER HARM RMS SCOPE Operating Mode selection Power on default is Power Analyzer diagram below shows single phase display Note that with no inputs connected display will be showing noise levels only POWER ANALYZER 15 26 40 range ll v Arange 300mA4v coupling ac dc PH1 total fundamental watts 443 85nLV 101 01pl 65 7 41nlwde va 43 295 pVA 121 96pV 4 pf 0 010 0 828 voltage 18 919mV 62 019 pl 000 00 current 2 2885mA 1 9665 pA 214 08 frequency 1 0374MHz Var 43 293 pVAr 68 347 pVAr Press the POWER HARM RMS or SCOPE PPA15xx only keys to access the operating modes directly other modes are available via the MODE menu see below 3 1 PPA5xx 15xx KinetiQ user manual Select Menu Options Press
5. i 0 Where n is the number of samples for an integral number of complete cycles of the input waveform The rms value of a periodic waveform v is given by 27 rms sf 1 2n v o do 0 For a sampled signal the formula becomes i n 1 rms v 1 n gt vti i 0 Where n is the number of samples for an integral number of complete cycles of the input waveform 9 3 PPA5xx 15xx KinetiQ user manual The dc present is given by 27 dc 1 27 vb do 0 For a sampled signal the formula becomes i n 1 dc 1 n gt vii i 0 Where n is the number of samples for an integral number of complete cycles of the input waveform From these elementary values of W rms and dc the following secondary values can be derived VA Vms X Arms VAr VA W power factor W VA Wac Vac X Adc 9 4 PPA5xx 15xx KinetiQ user manual The fundamental in phase and quadrature values of a periodic waveform v are given by 27 l r v o cos o do 0 a1 27 b Un v o sin d 0 For a sampled signal the formulae become i n 1 a 1 n 2 vli cos 2rci n i 0 i n 1 b 1 n gt vlil sin 2xci n i 0 Where n is the number of samples for an integral number of complete cycles of the input waveform and c is the number of cycles These a and b values yield the further elementary parameters magnitude V a b phase angle tan b a
6. speed option in the ACQU menu Using the window option for speed allows greater control of the measurement interval In this mode the display flashes DATALOG RUNNING and only shows the acquisition time The minimum datalog interval depends on the function but is typically 10ms Note that in all cases the measurement interval is necessarily adjusted to be an integral number of cycles of the measured waveform Press DATALOG to set up the datalog options The datalog is started with the START key and stopped with the STOP key unless the store becomes full first The zero reference 7 12 PPA5xx 15xx KinetiQ user manual for the elapsed time is taken as the first data measurement after START The data can be viewed as a table or as individual graphs Pressing GRAPH steps the graph through the stored parameters If more than 250 records have been stored the graph can show the data for the whole period or pressing ZOOM redraws the graph to show 250 records about the cursor The cursor can be moved in single steps L or R or large steps UP or DOWN Movements of the cursor are synchronised in both the TABLE and GRAPH views 7 13 PPA5xx 15xx KinetiQ user manual 7 6 MATHS custom result computation Non standard results may be computed from a combination of voltage and current parameters signals on the torque and speed inputs and constants There are 3 formulae each combining up to 4 terms 1 term1 term2
7. 9 5 PPA5xx 15xx KinetiQ user manual From these elementary a and b values of voltage and current the following secondary values can be derived fundamental Watts Va X Ag Vb X Ap fundamental VA Vmag X Amag fund power factor Wruna VAfund fundamental VAr Va X Ab Vp X Aa The signs of Watts and VAr are a direct result of the computation watts has the sign of cos phase angle VAr has the sign of sin phase angle The sign of fundamental power factor is determined by convention such that a lagging current inductive load is shown as a positive power factor and a leading current capacitive load is shown as a negative power factor this is effectively the sign of sin phase angle Optionally the signs of fundamental VAr and power factor can be independently inverted 9 6 PPA5xx 15xx KinetiQ user manual 9 2 Sum computations When in 3 phase wiring modes 2 Wattmeter or 3 Wattmeter the values for the total load are computed from the data for each individual channel W VA VAr W f VA f VAr f W dc and W h are computed as the sum of the individual phase data V rms V mag V pprms and V ppmag are computed as the average of the individual phase data A rms and A mag are computed from sum VA sum V and sum VA f sum V f respectively then may optionally be divided by the number of phases to give the average Sum power factor is computed as sum W sum VA and the fundamental power factor is co
8. The process will be very quick if the location has not been used When supervisor mode is disabled See system options programs can only be recalled not stored nor deleted to avoid accidental modification When recalling a program it may be desirable for the program to recall the selected communications interface 5 2 PPA5xx 15xx KinetiQ user manual that was in use when the program was stored RS232 or USB etc Alternatively it is more common for the communications interface to be associated with the instrument rather than a stored program There is a selectable option in the REMOTE menu to enable the recall with program If this is off then recalling the program will not change the communications interface All file directory information can be displayed by pressing the PROG key and then the TABLE button This will allow all the information to be displayed as a table and show what the internal file directory contains pressing the TABLE button again exits the directory Datalog can be stored directly onto a USB memory stick or logged to RAM and stored subsequently The data then can be recalled for viewing or to download to a PC for further analysis Measurement results can be stored in one of 20 locations Press REAL TIME to hold the results press PROG and select memory results Each location holds the entire set of computed results for all the phases no matter what phase is on the display Oscilloscope and
9. 27 mean 1 2n lv do 0 For a sampled signal the formula becomes i n 1 mean 1 n gt vlil i 0 11 1 PPA5xx 15xx KinetiQ user manual where n is the number of samples for an integral number of complete cycles of the input waveform Note that the mean value will not give the same measurement as rms The form factor indicates the ratio of mean to rms form factor rms mean For an undistorted sinewave the form factor is given by sine wave form factor a 2V2 1 11072 There is also an option to normalise the rectified mean measurement factor pi 2root2 1 11072 as form factor is always computed from the absolute value before normalisation Both Voltage and Current positive and negative peak are available filtered and unfiltered 11 2 PPA5xx 15xx KinetiQ user manual 12 Harmonic analyser The HARM mode of KinetiQ computes multiple DFTs on the input waveforms in real time There are two modes of operation difference THD and series harmonics Series harmonic mode includes options for THD TIF THF TRD TDD and phase There is also an option of a series harmonic bargraph display PPA15xx only which shows both the voltage and current harmonics simultaneously In difference THD mode the THD Total Harmonic Distortion is computed from the rms and fundamental THD 1 hi V rms h 2 In series THD mode the THD is computed from a series of up to 50 harmonics i n THD 1 h
10. The data on the screen will be the measurement that first triggered the alarm condition 5 5 PPA5xx 15xx KinetiQ user manual The linear alarm option allows tests to be carried out even if it is not possible to see the display Pressing ZERO in the alarm menu sets the upper and lower threshold to 4 3 and 1 3 of the measured value respectively The repetition rate of the sounder then varies linearly as the value changes between these thresholds 5 6 PPA5xx 15xx KinetiQ user manual 5 5 Data hold When in real time display mode the data on the display can be held at any time by pressing the REAL TIME key When HOLD is activated the word HOLD flashes in the top right hand corner of the display Press the REAL TIME key again or the HOME key or START key to release HOLD in this case HOME and START do not have their normal functions Changing mode also releases hold When HOLD has been activated the DSP continues to sample compute and filter the results but the data is ignored by the CPU When HOLD is released the display is updated with the next available value from the DSP HOLD can also be triggered by a an alarm condition see section 5 4 alarm function 5 7 PPA5xx 15xx KinetiQ user manual Using remote control KinetiQ is fitted with RS232 serial communications port and a USB port as standard and may have a LAN interface fitted as an option All the interfaces use the same ASCII protocol with the following end of l
11. button had been pressed Setting the integration time to zero disables the timer The Watt hour integration and the Ampere hour integration can be selected to be signed or magnitude To integrate the total power in terms of heating effect choose magnitude If signed integration is selected then the rms current is given the sign of the power before integration The Ampere hours and Watt hours then reflect the power taken by the load less any power generated by the load such as during regenerative braking in battery systems The integrated results may be displayed as the total accumulated values or as the average over the integration period 10 2 PPA5xx 15xx KinetiQ user manual 11 True RMS Voltmeter The RMS voltmeter displays the additional secondary parameters of ac crest factor surge mean and form factor Having computed the true rms and the dc component the ac component can be derived from rms ac dc gt ac rms de Crest factor is derived from the peak and rms cf peak rms In order to measure surge conditions the maximum instantaneous peak value unfiltered is also recorded It is important that KinetiQ does not autorange while measuring surge either set the range to manual or repeat the test several times with ranging set to up only To reset the maximum press TRIGGER The mean value also known as rectified mean is computed by the arithmetic mean of the absolute value of the samples
12. by autoranging default To speed up the autoranging the start range for autoranging may be selected if it is known that the signal will not be below a certain level There is also an option to autorange up only so that a test may be carried out to find the highest range Once the highest range has been determined the range can be set to manual and the test carried out without losing any data due to range changing Pressing the TRIGGER key or sending TRG restarts the autoranging from the selected minimum range In multi phase applications it is usual to allow the phases to independently range but there is an option to lock the ranges across the phases When enabled this means that all the voltage channels will be on the same range and all the current channels will be on the same range 7 10 PPA5xx 15xx KinetiQ user manual When in an input channel menu the ZERO key provides a quick way to lock and unlock the range When no flashing box is visible in the input channel menu and autoranging is selected pressing the ZERO key selects the range that the instrument is currently using and sets the autoranging to manual thus locking the range and preventing further autoranging Pressing the ZERO key again returns to full autoranging from the bottom range For most measurement functions full autoranging is the most suitable option but some applications such as where transient events are occurring are more reliable with manual
13. free from defects in materials and workmanship for a period of 36 months from the date of purchase In the unlikely event of any problem within this guarantee period first contact Newtons4th Ltd or your local representative to give a description of the problem Please have as much relevant information to hand as possible particularly the serial number and release numbers press SYSTEM then LEFT If the problem cannot be resolved directly then you will be given an RMA number and asked to return the unit The unit will be repaired or replaced at the sole discretion of Newtons4th Ltd This guarantee is limited to the cost of the instrument itself and does not extend to any consequential damage or losses whatsoever including but not limited to any loss of earnings arising from a failure of the product or software In the event of any problem with the instrument outside of the guarantee period Newtons4th Ltd offers a full repair and re calibration service contact your local representative It is recommended that the instrument be re calibrated annually PPA5xx 15xx KinetiQ user manual ABOUT THIS MANUAL This manual describes the general features usage and specifications of the KinetiQ PPA5xx 15xx range of power analysers Detailed descriptions of the communications command set for RS232 USB and LAN where fitted is given in the separate document PPA5xx 15xx Communications Manual PPA5xx 15xx Firmware revision 2 54 1
14. harmonic series data can also be stored but these take 3 contiguous locations each because of the large amount of data In each case the full instrument set up is stored with the data and recalled so that measurements may easily be repeated and verified When using a large capacity or slow USB memory device all the data may not be transferred within the transfer time window If this happens it will be recognised and a display caption appears to prompt the user to press any key to terminate the transfer when completed 5 3 PPA5xx 15xx KinetiQ user manual 5 3 Zero compensation There are 2 levels of zero compensation 1 Trims out the dc offset in the input amplifier chain 2 Measures any remaining offset and compensates The trim of the dc offset in the input amplifier chain can be manually invoked with the ZERO key or over the RS232 with the REZERO command This dc offset trim measures the dc present while the autozero switch is active and applies an equal and opposite offset via a D A converter so that the input range to the A D is optimised The measurement of the remaining offset also happens when the offset is trimmed but is also repeated at regular intervals This is to compensate for any thermal drift in the amplifier chain The remaining DC offset is precisely measured and stored so that the measurements can be compensated by an appropriate algorithm in the instrument firmware Real time measurement is not possible
15. ranging Manual ranging or up only autoranging is essential for low frequency Measurements Separately from the current shunt and attenuator value a scaling factor can be entered for each channel In multi phase applications if independent ranging has been set see system options then the ranging options may be independently set on each phase Press the R and L keys to step between the phases 7 11 PPA5xx 15xx KinetiQ user manual 7 5 DATALOG datalog options KinetiQ can store and display measurements recorded at regular intervals over a time period Each data record consists of the elapsed time and up to four data values selected by ZOOM The instrument can graph and display all four sets of measurements simultaneously The actual interval between data points is governed by the measurement speed and the datalog interval KinetiQ stores the next available measurement after the datalog interval has elapsed the actual elapsed time is attached to each datalog record displayed with the data on the table or each graph and returned with each record over the communications RS232 USB or LAN The data values may be stored to an external memory device memory stick as each value becomes available In this mode the data may be viewed in real time as it is being acquired For high speed data acquisition the datalog interval may be set to zero so that each measurement is stored The measurement interval is controlled with the
16. the Operating Mode key e g POWER a second time or press the MODE key to access mode specific options diagram below shows Power Analyzer options POWER ANALYZER mode power analyzer power factor sign neqative leading penultimate line L2 ph ph last line V r VAr sign negative lagging more options gt Use UP and DOWN keys to highlight option and ENTER to confirm see para 3 2 Menu Control Keys Parameter values within the selected option may be adjusted using the L or R keys or by entering a numeric value directly as indicated Press ENTER to confirm With operating mode highlighted use the L and R keys to cycle through operating modes and to access Phase Meter mode Use ENTER or HOME to return to readout display For text entry see 3 7 Data Entry Guide 3 2 PPA5xx 15xx KinetiQ user manual 3 2 Menu Control Keys A HOME ESC DELETE 5 ENTER BACK NEXT ENTER NEXT confirms your selection or parameter value data entry HOME ESC returns to the original entry or to your previous action DELETE BACK removes a previous selection or value or returns to your previous action ARROW KEYS UP DOWN L R move around menu options make incremental decremental changes etc They are also used to position cursors in Scope mode 3 3 PPA5xx 15xx KinetiQ user manual 3 3 Display Control Keys ZOOM REAL TIME TABLE GRAPH OOO PPA15xx ZOOM up to 4 displayed values
17. 0 1 800 computations per second Non volatile internal Memory 192kB 192kB 1GB USB port for memory drive y v Plug in USB memory drive supplied standard exe Non volatile real time clock y v Analogue output y Internal datalog functions 4 4 16 4 x 4 Datalog record storage capacity 16 000 8 000 10 000 000 Frequency measurement accuracy 0 02 0 02 0 001 Application modes PWM v y Lighting v y v Inrush y y 4 Transformer y v Standby Power y v y Mechanical Handle Adjustable Fixed Adjustable Tilt Multiple position Single position Multiple position 19 Rack mounting option 2600 v PPA1500 500 X10 range mode 16 4 PPA5xx 15xx KinetiQ user manual Appendix A Accessories Supplied Standard Accessories Leads Power RS232 USB Connection 20Arms rated 1 5 meter long leads with 4mm cables stackable terminals 1x Yellow 1 x Red and 2x Black per phase Connection 4mm terminated alligator clips clips 1x Yellow 1 x Red and 2x Black per phase Documentation Calibration Certificate User manual with quick start guide Communications manual A 1 PPA5xx 15xx KinetiQ user manual External shunts A range of high bandwidth external shunts are available to extend the operating range of the current measurements The external shunts are built using an N4L proprietary shunt design to give high accuracy from DC to 1MHz They are designed to comply with the safety standards of BS EN61010 1 to 1000V rms cat II The sense output is
18. 8 March 2015 This manual is copyright 2015 Newtons4th Ltd and all rights are reserved No part may be copied or reproduced in any form without prior written consent PPA5xx 15xx KinetiQ user manual CONTENTS 1 Introduction general principles of operation 1 1 2 Getting started 512 En eee iea sne Far ek ale 2 1 2 1 Unpacking ANd power UP cccceeeee eee eeeeeeeeeeeeaneeennes 2 1 3 Quick Start g lden senie e E ences cus 3 1 3 1 Operating Mode KE yS ssssssssssrrrrrrrrrrreesssrrrrrrrrrrrrre 3 1 3 2 Menu Control Keys ccccccecceeeseeeseeeeeeeeaeeesaeeeneees 3 3 3 3 Display Control Keys selwwiincedcatuerdseareed vat eednere scat 3 4 3 4 Setup KeyS Keypad sssssssssssssrrrrrrrrrressssrrrrrrrrrrrree 3 6 3 5 Control KYS LE ne ca udian kaeida aiae ia EN DE daa WaN 3 8 3 6 Scope Mod mimesia A E een 3 9 3 7 Data Entry Guide sssssssssrrrrrsrsessssrrrrrrrrrrrrreeessse 3 11 4 Using the MenUS sessreserrrsrrrrnsrrrerrrrsrrresrrere 4 1 4 1 Selection from a list ssssssossssssnnrrrrrrrrrssssrrrrrrrrrrrene 4 3 4 2 Numeric data entry sssssrersereessssrrrrrrrrrrrrrereessee 4 4 4 3 TEXt Enty a rare 4 5 5 Special PUMCUONG ssas needs eaae ae a AEE 5 1 5 1 Display ZOO M eiui tienes aa aa aa aa aa aa 5 1 5 2 PROG store and recall 2 4 isi sees ncdchides ctnedvey vtbidul vale 5 2 5 3 ZEFO compensatio is ian aa ia orale ni als es 5 4 5 4 ALARM alarm function ccceeeee eee e cent
19. DO Newtons4th Ltd PPA500 1500 KinetiQ USER MANUAL eeoe na Firmware v2 54 18 March 2015 gt BP P P Pp DANGER OF ELECTRIC SHOCK Only qualified personnel should install this equipment after reading and understanding this user manual If in doubt consult your supplier RI SQUE D ELECTROCUTI ON L installation de cet quipement ne doit tre confi e qu un personnel qualifi ayant lu et compris le pr sent manuel d utilisation Dans le doute s adresser au fournisseur GEFAHR VON ELEKTRI SCHEM SCHOCK Nur entsprechend ausgebildetes Personal ist berechtigt diese Ausr stung nach dem Lesen und Verst ndnis dieses Anwendungshandbuches zu installieren Falls Sie Zweifel haben sollten wenden Sie sich bitte an Ihren Lieferanten RISCHIO DI SCARI CHE ELETTRICHE Solo personale qualificato pu installare questo strumento dopo la lettura e la comprensione di questo manuale Se esistono dubbiconsultate il vostro rivenditore PELI GRO DE DESCARGA EL CTRI CA Solo personal cualificado debe instalar este instrumento despu s de la lectura y comprensi n de este manual de usuario En caso de duda consultar con su suministrador PPA5xx 15xx KinetiQ user manual IMPORTANT SAFETY INSTRUCTI ONS This equipment is designed to comply with BSEN 61010 1 2001 Safety requirements for electrical equipment for measurement control and laboratory use observe the following precautions Ensure that the supply
20. GER Q START amp STOP datalog function when enabled or integration Integ mode Either key also triggers single shot in Scope mode Use ZERO key for a Zero compensation of input amplifier chain b Reset integrator to zero Integ mode TRI GGER or START returns display to Real Time from Hold It also arms single shot triggering in Scope mode 3 8 PPA5xx 15xx KinetiQ user manual 3 6 Scope Mode PPA15xx only Selecting Scope mode from the operating mode keys or by cycling through the operating modes in any of the operating mode select options current waveforms as a conventional oscilloscope diagram below shows the default display with no inputs displays voltage and connected OSCILLOSCOPE 15 42 25 VYrange Ll Arange 300m4 coupling ac dc PH1 voltage current 10 00ms div The following diagram shows the options available in Scope mode 3 9 PPA5xx 15xx KinetiQ user manual mode timebase trigger reference trigger level trigger mode trigger polarity trigger HF reject pretrigger cursors trace MEASUREMENT SETTINGS oscilloscope 10 00ms div voltage 200 0ml auto rising edge off 25 off dual A typical display of voltage and current waveforms for a switched mode power supply is shown below Lrange 300L PH1 voltage current 10 00ms div OSCILLOSCOPE 16 20 18 Arange 14 coupling ac dc When operating in Scope mode th
21. an exponential response to a step change The frequency may be measured from the voltage or current On a multi phase instrument any channel may be selected for the frequency Measurement Phase angle measurements have to be made with reference to a specific input normally phase 1 voltage The phase angle reference can be set to current which is useful if operating the instrument with only current inputs or with low level voltage inputs In multi wattmeter wiring modes phase 1 is always used for the phase angle reference phase 2 or phase 3 is used when in single phase 2 wiring or single phase 3 wiring A frequency filter 4kHz low pass may be selected to filter out the hf carrier component of a PWM waveform ensuring measurements are carried out on the fundamental frequency Normal frequency measurement is from 5Hz upwards so that there is not a very long delay if measuring dc There is a low frequency option that extends the frequency measurement down to 20mHz This low frequency option also applies a digital filter which can be useful when measuring in a low frequency noisy environment 7 2 1 Advanced options Pressing ACQU to access the acquisition control menu then the R arrow key gives access to some advanced options 7 6 PPA5xx 15xx KinetiQ user manual which would not be needed for normal measurement applications The analysis for the fundamental component uses a DFT discrete Fourier transform algorithm The sele
22. arly TDD Total Demand Distortion scales the computed harmonic distortion by the measured rms For voltage TDD is the same as TRD for current TRD is less 12 2 PPA5xx 15xx KinetiQ user manual than TDD unless the measured rms current is greater than the entered rated current The value for TRD and TDD will always be lower than the computed THD as rms is always greater than the fundamental i n TDD 1 rms V gt he i 2 where hj is the i harmonic Harmonic phase can be selected instead of a thd computation and each harmonic in the series is computed as a magnitude and phase angle The number of harmonics used for THF TIF TRD TDD and series harmonic phase computation is selectable in the same way as for THD In all cases the harmonics are phase referred to Phase 1 voltage fundamental so that their in phase and quadrature components may be separately filtered to minimise noise Accurate frequency synchronisation is essential for reliable harmonic measurement Good results can be obtained in a reasonable time using the medium speed setting which runs a little slower than other modes but for the best results use the slow speed setting 12 3 PPA5xx 15xx KinetiQ user manual 13 Impedance meter The IMP mode on KinetiQ uses the real and imaginary components at the fundamental frequency using DFT analysis as described previously to compute the impedance of the load and associated parameters From the fundamen
23. ase 3 phase 3 phase 3 phase 1 Phase to phase values are computed for rms fundamental magnitude and phase Consider the fundamental component Vi2 t Vi t V2 t V sin wt V2sin wt P12 V sin wt V2 sin wt cos i2 cos at sin 2 sin wt Vi V2 CcoS Q i2 V2 cos ot sin 2 In a balanced system Vi V V2 V and 120 Vi2 sin wt V V cos 120 V cos wt sin 120 1 5 V sin ot V3 2 V cos wt V3 Vsin wt 30 So the phase to phase voltage would have a magnitude V3 times larger than the phase to neutral voltage at a phase displacement of 30 KinetiQ applies the computations in the general way without any assumptions about the system It therefore computes the correct values whatever the waveform 9 9 PPA5xx 15xx KinetiQ user manual The phase to phase values may also be displayed as a rectified mean measurement 9 5 Efficiency Efficiency may be computed as a ratio of phase 1 and phase 2 power phase 3 and sum power In both cases either term may be input power or output power Total efficiency is computed from the total power fundamental efficiency is computed from the fundamental power 9 6 Torque amp Speed Torque amp Speed can be set for power measurement mode by independently using Phase 3 within the 3 Phase 2 Wattmeter Phase 3 wiring configuration Channel 3 Voltage Input BNC Torque Channel 3 Current Input BNC Speed If using Multilog s
24. can be accessed using the CONFIG command CONFIG parameter CONFIG parameter data Number Function System parameters 1 operating mode 2 digital resolution 4 autozero manual or auto 6 phase convention 7 Frequency lock on off 8 graph 9 keyboard beep on off 10 ignore overload 11 low frequency mode 12 window size 13 speed 14 Smoothing 15 Smoothing response 16 baud rate 18 LAN IP address nibble 3 19 LAN IP address nibble 2 20 LAN IP address nibble 1 21 LAN IP address nibble 0 22 Independent ranging Input parameters phase 1 24 enable channel 1 25 enable channel 2 26 input range channel 1 27 input range channel 2 28 input ranging channel 1 29 input ranging channel 2 30 coupling E 1 32 33 35 38 40 41 42 43 45 46 47 48 49 50 51 52 53 B 2 PPA5xx 15xx KinetiQ user manual scale factor channel 1 voltage scale factor channel 2 current external shunt channel 1 external shunt channel 2 General parameters Remote resolution voltage or current frequency reference Display parameters display page zoom level function zoomed on 1 function zoomed on 2 function zoomed on 3 function zoomed on 4 datalog display type Advance parameters manual frequency DFT selectivity program 1 4 direct load language if installed frequency filter voltage or current phase reference Datalog parameters datalog zoom 1 datalog zoom 2 datalog zoom 3 datalog zoom 4 datal
25. cece eee eee teen ees 9 3 2 Sum computations sssssssssssssrrrrrrrrrrrrreresrrrrrrrrrrrrrre 9 7 3 Neutral synthesis sairin ida iia ii less 9 8 4 Phase to phase COMPUTATIONS sssssssssrrrrrrrrrrrrreess 9 9 5 BPN CICNCY ain a T a 9 10 6 Torque amp Speed u u sss sees eee k Sieh eee edt ike ed 9 10 Integrated power measurements eeeeee eee 10 1 True RMS Voltmeter siccsacicsandtivende dan tietieneneiaenac 11 1 Harmonic analyser M1 1 s suse reen kenk erne kk rr kke 12 1 Impedance Meter cceecceceeeeeeeeeeeeeesseeeeeeees 13 1 Oscilloscope Moderen E 14 1 Phase miete meien i E a an EE EA 15 1 Specifications amp COMPALiSONS ccceeeeeeeeeeees 16 1 Appendix A Appendix B Appendix C Appendix D Appendix E PPA5xx 15xx KinetiQ user manual APPENDICES Accessories Serial command summary Available character set Configurable parameters Contact details vii PPA5xx 15xx KinetiQ user manual 1 Introduction general principles of operation KinetiQ is a sophisticated and versatile power analyser for accurate wide bandwidth power measurements The PPA5xx 15xx family of power analysers covers 1 to 3 phase applications in both low current and high current models Each phase input has wide ranging voltage and current channels which are fully isolated from each other and from ground The voltage input has a built in high voltage attenuator or may be used with an external attenuator The current i
26. ctivity of the DFT analysis is a compromise between noise rejection of frequencies close to the frequency of the fundamental component and the required stability of the frequency component Selecting narrow increases the selectivity of the DFT analysis reducing the effective bandwidth which has the effect of improving the noise rejection It does however require that the frequency of the fundamental component is more stable In a noisy application any spikes present on the signal may push the instrument onto a higher range than is necessary for the signal being measured If the nature of the Spurious spikes are such that they do not contribute to the measurement and can safely be ignored then the range can be manually set as appropriate for the signal to be measured and the instrument can be told to ignore any overload If using this mode it is wise to check the signal on the oscilloscope to be sure that the signal being measured is not genuinely overrange In a very noisy application where the frequency of the signal is known but KinetiQ is unable to measure the frequency even with low frequency mode filters applied it is possible to enter the frequency to be used for analysis When frequency lock is selected to be on the present measured frequency is displayed but this can be overwritten with the known frequency This entered frequency is then used for all the analysis and the frequency of the input signal is not measured
27. ds set when data available bit 2 QYE unterminated query error set if no message ready when data read bit 3 DDE device dependent error set when the instrument has an error bit 4 EXE execution error set when the command cannot be executed bit 5 CME command interpretation error set when a command has not been recognised bit 7 PON power on event set when power first applied or unit has reset The bits in the standard event status register except for OPC are set by the relevant event and cleared by specific command ESR CLS RST OPC is also cleared by most commands that change any part of the configuration of the instrument such as MODE or START 5 11 PPA5xx 15xx KinetiQ user manual 5 7 Serial Poll status byte ESB MAV ALA FDV RDV bit 0 RDV bit 2 FDV bit 3 ALA bit 4 MAV bit 5 ESB 5 12 result data available set when results are available to be read as enabled by DAVER fast data available streaming set when data streaming results are available to be read as enabled by DAVER alarm active set when an alarm becomes active as enabled by ALARMER message available set when a message reply is waiting to be read standard event summary bit set if any bit in the standard event status register is set as well as the corresponding bit in the standard event status enable register set by ESE PPA5xx 15xx KinetiQ user manual 5 8 RS232 con
28. e Current 20Arms 0 1 Rdg 0 1 Rng 1mA or 200HA in X10 mode 30Arms 0 1 Rdg 0 1 Rng 3mA or 600HA in X10 mode External sensor input 0 1 Rdg 0 1 Rng 10uV 16 1 PPA5xx 15xx KinetiQ user manual Total Harmonic Distortion THD Accuracy 1 THD THDE i d a hi Voltage hi error Voltage 0 05 h x10 mode hi error Voltage 0 05 h rdg 0 1 rng 0 005 KHz 5mV rdg 0 1 rng 0 01 KHz 1mV Current 20A hi error Current 0 05 hi rdg 0 1 rng 0 005 KHz 500uA X10 mode hi error Current 0 05 hi rdg 0 1 rng 0 01 KHz 100uUA 30A hi error Current 0 05 hi rdg 0 1 rng 0 005 KHz 1A X10 mode hi error Current 0 05 hi rdg 0 1 rng 0 01 KHz 300uUA External Sensor Input hi error Voltage 0 05 hi rdg 0 1 rng 0 005 KHz luV Common Mode Rejection Total Common Mode and Noise effect on current channels Applied 250V 50Hz typical 1mA 150dB Applied 100V 100KHz typical 3mA 130dB Datalog Up to 4 measured functions user selectable 30 with optional PC software Datalog window From 10ms with no gap between each log Memory RAM up to 16 000 records Functions 16 2 PPA5xx 15xx KinetiQ user manual General Crest factor Sample rate Low power accuracy Remote operation Application modes Ports RS232 LAN option L USB Extension Aux Physical Display Size Weight Safe
29. e L and R control keys operate in one of two ways A With the cursor option off default the L and R control keys change the timebase 3 10 PPA5xx 15xx KinetiQ user manual B With the cursor option on the L and R control keys change the cursor position and the UP and DOWN keys toggle between cursor 1 control and cursor 2 control When cursors are enabled the scope screen will display the following parameters Vrms Vpk Watts pf Arms Apk 3 7 Data Entry Guide Text Entry Use MODE key to select text entry Enter text via the 4 function keys in the upper right of the panel Each function key jumps to a different letter of the alphabet POWER A HARM I RMS O SCOPE space Choose other characters by stepping forward or backward using the UP and DOWN keys Select upper lower case with the ZOOM key Values may be overwritten or edited by use of the L R and DELETE keys Alternatively text entry can be made via the numerical keypad resembling a telephone keypad where key 1 is symbols key 2 ABC key 3 DEF etc Numeric Entry Use MODE numeric keys for number decimal point or to enter parameter value The 4 function keys in the upper right of the panel may be used as quick multipliers where 3 11 PPA5xx 15xx KinetiQ user manual POWER is 10 M HARM is 10 k RMS is 10 m and SCOPE is 10 p Press ENTER menu control keys to set value Press HOME menu control k
30. e versions and calibration dates These cannot be changed by the user 6 2 PPA5xx 15xx KinetiQ user manual 6 1 User data KinetiQ can be personalised by entering up to 3 lines of user data as text see section on text entry User data is displayed every time that the instrument is switched on to identify the instrument The entered text may also be read over the communications to identify the instrument see USER Typical arrangement of the user data might be line 1 company name line 2 department or individual name line 3 unique identifying number eg asset number Any user data may be entered as required as the lines are treated purely as text and are not interpreted by KinetiQ at all After changing the user data execute store to save the data in non volatile memory For use in a production environment KinetiQ supports two modes of operation supervisor and user When supervisor mode is disabled the stored programs can only be recalled not changed KinetiQ saves the mode of operation with the user data so that it may be configured to power up in either mode as required 6 3 PPA5xx 15xx KinetiQ user manual 7 Measurement options 7 1 Wiring configuration Unlike the single phase version of KinetiQ PPA1510 the three phase version PPA1530 can be used in a variety of wiring configurations configuration 1530 1520 1510 530 520 510 single phase 1 v v 2 phase v 3 phase 2 wattmet
31. eeeeeeeeeeeeneees 5 5 5 5 Data OIG 5 2c eei a oe eaena need ove nede sweden ee R ESA eum ee 5 7 5 6 Standard event status reGiSter ccceceeeeee eee eeeee eee 5 11 5 7 Serial Poll status byte cc cccceeeesceeeee esas eeneeees 5 12 5 8 RS2Z 32 CONNECCION S Hati ai a a edie 5 13 5 9 RS232 PAA ER reire akaa a ei oaia iiA 5 14 6 System OptIONS 4 5 hien EE 6 1 6 1 User datas ry aideso aai e eaid anin 6 3 7 Measurement optionS ssssssseeresresrrrerresrrsrrrene 7 1 7 1 Wiring configuration ieee clad adecoricerbiespeeroineeneres 7 1 7 2 ACQU ACQUISITION OPTIONS c ccc ecee eee eee erne nens 7 5 7 3 COUPLING coupling OPTIONS c cece cece eeeeeeeaeeeeas 7 8 7 4 RANGE input channel Options cccceeeeeeeee renee ees 7 9 7 5 DATALOG datalog OptiOns ccccceeeeeeeeeeeeeneeeeas 7 12 7 6 MATHS custom result computation c cece eee eee 7 14 7 7 AUX Auxiliary D VICES cccccece eens eeeeee ee eeneeeeeanes 7 15 8 8 8 8 9 10 11 12 13 14 15 16 vi oe ees PPA5xx 15xx KinetiQ user manual Application Specific modes cccceceeeeeeeeeeeeeeees 8 1 1 Lighting DallaStiscmusiireice acre an Miss eee neta 8 1 2 IN USN GUEPOIE wand canecteras ccowtesupredeerceed EAE EEA EERE cme 8 2 3 Standby power measurement ssssessssrrrrrrrrrrrrre 8 3 Power measurements ccecceeeeeeeeeeeeeeeeueeeeeues 9 1 1 Individual phase COMPUtATIONS
32. election of the input gain and the sampling of the A D converter are under the control of the DSP There is an autozero switch at the front end for dc accuracy The analogue circuitry is optimised for high linearity over a wide dynamic range and high frequency performance The PPA5xx 15xx includes an internal x10 mode which adds a x10 gain stage to the analogue amplifier chain This allows measurement of even smaller signals with the caveat that the bandwidth is reduced to c 100 kHz Both input channels are fully isolated with very good CMRR and noise rejection The current shunt is of a proprietary design which gives very wide bandwidth with minimum phase shift The voltage attenuator is of a proprietary design which has a wide bandwidth response matched to that of the current shunt Both the voltage and current channels are calibrated digitally so there are no physical adjustments to be made 1 2 PPA5xx 15xx KinetiQ user manual 2 Getting started KinetiQ is supplied ready to use it comes complete with an appropriate power lead and a set of test leads It is supplied calibrated and does not require anything to be done by the user before it can be put into service 2 1 Unpacking and power up Inside the carton there should be the following items one KinetiQ unit one appropriate mains lead one red one yellow and two black 4mm leads per phase one red one yellow and two black crocodile clips per phase one nul
33. em and a new flashing box appears Having selected the desired results pressing the ZOOM key steps through the zoom levels until the highest is reached at which point a further press returns to no zoom Note that any of the parameters selected for the zoom function can be used as the input for the alarm monitoring and datalog 5 1 PPA5xx 15xx KinetiQ user manual 5 2 PROG store and recall There are 3 types of data which can be saved Programs Data log Measurement results There are 100 program locations where the settings for the entire instrument can be saved for recall at a later date Each of the 100 locations has an associated name of up to 20 characters that can be entered by the user to aid identification Program numbers 1 4 may be recalled with a single press of the function keys if the direct load option is selected in the system menu see system options The instrument can be restored to the factory default settings at any time by recalling program number 0 Any program saved to location 1 will automatically be loaded every time the instrument is restarted The program menu is accessed using the PROG key The program location can be selected either by stepping through the program locations in turn to see the name or by entering the program number directly When storing a configuration in a program there will be a short pause of about 1 second if the program location had previously been written or deleted
34. er v 3 phase 3 wattmeter y single phase 2 single phase 3 3 phase 2 wattmeter phase 3 SINIISISISINSIS In the single phase modes phase 1 phase 2 phase 3 the other phase inputs are completely ignored and the selected phase acts as a completely independent single phase power analyser In the 3 phase 2 wattmeter configuration the voltages are measured relative to phase 3 The phase 1 voltage input is connected across phase 1 and phase 3 and phase 2 voltage input is connected across phase 2 and phase 3 thus measuring phase to phase voltage directly Phase 1 and 2 current inputs are connected normally There is no need to measure the current in phase 3 as phase 3 has no voltage relative to itself so the power contribution is zero In this mode the neutral channel displays the synthesised phase 3 current 7 1 PPA5xx 15xx KinetiQ user manual The advantage of this connection method is that 3 phase power can be measured with only 2 wattmeters This frees up phase 3 of a 3 phase instrument to simultaneously measure the power of a single phase input 3 phase 2 wattmeter phase 3 configuration This allows direct measurement of efficiency in a 3 phase motor drive or 3 phase inverter application The frequency reference for the independent phase 3 may be selected to be voltage current the mains line frequency or the same as phase 1 amp 2 In this mode frequencies up to 1kHz can be measured with phase 3
35. eters are displayed but the cursor is hidden 4 1 PPA5xx 15xx KinetiQ user manual Pressing the HOME key again exits the menu sequence and reverts to normal operation To abort the menu sequence press the HOME key twice There are three types of data entry selection from a list numeric text 4 2 PPA5xx 15xx KinetiQ user manual 4 1 Selection from a list This data type is used where there are only specific options available such as the smoothing May be normal slow or none the graph drawing algorithm may use dots or lines When the flashing cursor is highlighting the parameter the R key steps forward through the list and the L key steps backwards through the list The number keys 0 9 step directly to that point in the list which provides a quick way to jump through long lists There is no need to press the ENTER key with this data type For example if the smoothing selection list comprises the options normal item 0 slow item 1 none item 2 and the presently selected option is normal there are 3 ways to select none press R twice press L once press number 2 4 3 PPA5xx 15xx KinetiQ user manual 4 2 Numeric data entry Parameters such as external shunt impedance and scale factor are entered as real numbers shunt impedance is an example of an unsigned parameter scale factor is an example of a signed parameter Real numbers are entered using the number k
36. etiQ user manual Pretrigger may be set to none 25 50 15 Autoranging can be used with the oscilloscope functions but it is more customary to fix the range manually particularly when looking for a single event in single shot mode Manual ranging is essential for rare events with a low mark space ratio 14 3 PPA5xx 15xx KinetiQ user manual 15 Phase meter The phase meter mode is a secondary function which does not have a separate button It is selected by stepping through the operating mode via the MODE menu The phase meter uses the terminology of channel 1 for voltage and channel 2 for current as it is normal to use a phase meter to compare voltages directly In this case the current input is set to external attenuator in the RANGE menu and a voltage probe oscilloscope probe can be used For optimum phase accuracy the same type of voltage probe should be used for the voltage input which can also be set to external attenuator in the RANGE menu Remember to trim the oscilloscope probes if necessary by connecting them to a 1kHz square wave and adjusting them for 33 3 3 harmonic in the harmonic analyser mode The phase meter measures the phase and gain of channel 2 relative to channel 1 using a discrete Fourier transform DFT algorithm at the fundamental frequency Relative gain is given as an absolute value and in dB The ratio can be inverted to give the gain of channel 1 relative to channel 2 To look at di
37. eys multiplier keys decimal point key or key if signed value is permitted When the character string has been entered pressing the ENTER key sets the parameter to the new value Until the ENTER key is pressed pressing the HOME key aborts the data entry and restores the original number If a data value is entered that is beyond the valid limits for that parameter then a warning is issued and the parameter set as close to the requested value as possible For example the minimum user defined measurement window 10ms if a value of 5ms is entered a warning will be given and the amplitude set to the maximum of 10ms When the parameter is first selected there is no character cursor visible in this condition a new number may be entered directly and will overwrite the existing number To edit a data value rather than overwrite it press the R key and a cursor will appear New characters are inserted at the cursor position as the keys are pressed or the character before the cursor position can be deleted with the DELETE key Data values are always shown in engineering notation to at least 5 digits 1 0000 999 99 and a multiplier 4 4 PPA5xx 15xx KinetiQ user manual 4 3 Text entry There are occasions where it is useful to enter a text string for example a stored program may have some text as a title Numbers and text can be inserted using the number keys which function similarly to a phone keypad The UP and DOWN key
38. eys to abort data entry restore original Values may be overwritten or edited by use of the R L and DELETE keys 3 12 PPA5xx 15xx KinetiQ user manual 4 Using the menus KinetiQ is a very versatile instrument with many configurable parameters These parameters are accessed from the front panel via a number of menus Each of the main menus may be accessed directly from a specific key ACQU data acquisition parameters such as speed and filtering COUPLING select ac dc coupling RANGE select input ranges and scaling DATALOG specify datalog parameters APP Application specific functions MATHS User defined computations ALARM control of audible alarm REMOTE communications options RS232 etc AUX control of auxiliary devices connected to the rear EXTENSION and AUX ports SYSTEM general system options such as phase convention keyboard beep etc MODE function control PROG recall store delete of programs and datalog Each menu starts with the currently set parameters visible but no cursor In this condition pressing the menu key again or the HOME key aborts the menu operation and reverts to normal operation To select any parameter press the UP or DOWN key and a flashing box will move around the menu selecting each parameter In this condition the keys take on their secondary function such as numbers 0 9 etc Pressing the HOME key reverts to the opening state where the param
39. f the input waveform The results from each window are passed through a digital filter equivalent to a first order RC low pass filter There are five pre set speed options very fast fast medium slow and very slow that adjust the nominal size of the window and therefore the update rate and the time constant of the filter Greater stability is obtained at the slower speed at the expense of a slower update rate There is also an option to set a specific size of the window to a value other than the preset options In order to synchronise to an integral number of cycles the window size is either reduced by up to 25 or increased as necessary Note that at low frequencies the window is extended to cover a complete cycle of the input waveform even if this is a longer period than the nominal update rate There are two time constants for the smoothing filter normal or slow or the filter can be deselected The nominal values are speed update normal slow time rate time constant constant Very Fast 1 80s 0 05s 0 2s fast 1 20s 0 2s 0 8s medium 1 3s 1 5s 6s slow 2 5S 12s 48s very slow 10s 48s 192s 7 5 PPA5xx 15xx KinetiQ user manual The smoothing response is usually set to auto reset where the filtering is reset in response to a significant change in data This speeds up the response of the instrument to changing conditions This function can be disabled so that the filtering has a fixed time constant which would have
40. fferences in gain from a nominal value an offset gain can be applied either manually or by pressing ZERO offset gain measured dB offset dB 15 1 PPA5xx 15xx KinetiQ user manual 16 Specifications amp Comparisons Frequency Range Normal DC and 10mHz to 1MHz x10 mode DC and 10mHz to 100kHz Voltage Input Ranges Normal 1Vpk to 2500Vpk 1000Vrms in 8 ranges x10 mode 100mVpk to 300Vpk in 8 ranges Accuracy Normal 0 05 Rdg 0 1 Rng 0 005 x kHz 5mvV x10 mode 0 05 Rdg 0 1 Rng 0 01 x kHz 1mV External sensor input 1mVpk to 3Vpk in 8 ranges BNC connector Accuracy 0 05 Rdg 0 1 Rng 0 005 x kHz 1yV Current Input 20Arms Accuracy Normal 0 05 Rdg 0 1 Rng 0 005 x kHz 500uA x10 mode 0 05 Rdg 0 1 Rng 0 01 x kHz 100uUA 30Arms Accuracy Normal 0 05 Rdg 0 1 Rng 0 005 x kHz 1A x10 mode 0 05 Rdg 0 1 Rng 0 01 x kHz 300uUA External sensor input 1mVpk to 3Vpk in 8 ranges BNC connector Accuracy 0 05 Rdg 0 1 Rng 0 005 x kHz 1yV Phase Accuracy Normal 10 millidegrees 10 millidegrees x kHz x10 mode 10 millidegrees 20 millidegrees x kHz Watts Accuracy Normal 0 1 0 1 pf 0 015 x kHz pf Rdg 0 1 VA Rng x10 mode 0 1 0 1 pf 0 02 x kHz pf Rdg 0 1 VA Rng 40Hz 850Hz Accuracy V A and Watts As above with range error reduced from 0 1 V A VA Rng to 0 05 V A VA Rng DC Accuracy Voltage 0 1 Rdg 0 1 Rng 10mV or 2mV in X10 mod
41. i V gt h 2 where hj is the i harmonic i 2 TIF Telephone Influence Factor is similar to THD but each harmonic has a weighting factor applied to reflect the severity of the potential interference of that harmonic on telephone communication i n TIF 1 rms V gt h x t i l where hj is the i harmonic and ti is the i weighting factor 12 1 PPA5xx 15xx KinetiQ user manual TIF is defined by IEEE standard 115 and the weighting factors are given in ANSI standard C50 13 The harmonic factors for TIF are specified for harmonics of 60Hz THF Telephone Harmonic Factor is a similar computation to TIF but uses different weighting factors and is expressed as a percentage i n THF 1 rms V gt fy x t i 1 where hj is the it harmonic and ti is the i weighting factor The THF computation and weighting factors have been implemented according to IEC standard 60034 part 1 1996 with amendments Al 1997 and A2 1999 The harmonic factors are specified for harmonics of 50Hz TRD Total Rated Distortion uses a different reference to scale the harmonic percentages instead of the fundamental The voltage harmonics are scaled by the rms voltage and the current harmonics are scale by the larger of the rms current or the rated current entered by the HARM menu The rms is computed from the series of harmonics TRD 1 ref V gt he i 2 where hj is the i harmonic and ref is rms or rated current Simil
42. impedance V voltage and A current gives Zmagnitude Vmagnitude Amagnitude Zphase Vphase Aphase As the phase is referred to the voltage Zphase Aphase Therefore using the phase convention from 180 to 180 an inductive load which has an impedance with positive phase would cause a current with negative phase 13 2 PPA5xx 15xx KinetiQ user manual 14 Oscilloscope mode PPA15xx only KinetiQ provides a storage oscilloscope function in order to view the waveforms being measured The display for the oscilloscope is divided into 10 divisions along the time axis with the selected timebase displayed in units of time division The timebase may be set to any real value between 15us div to 5s div using the SCOPE menu Pressing L and R adjust the timebase by a factor of 2 For slow timebase operation gt 0 8s div the display operates in roll mode where the waveform scrolls across from left to right until triggered Two cursors can be enabled on the display If cursors are on in the menu press SCOPE or MODE then the L and R key mode the selected cursor UP and DOWN toggle which cursor is selected The time difference between the 2 cursors delta t is displayed on the lower left of the display When the cursors are enabled L and R no longer adjust the timebase The vertical scaling is shown as a full scale value rather than as a V cm This indicates the range that the instrument is using fo
43. ine terminators Rx expects Tx sends RS232 carriage return carriage return USB line feed ignored and line feed LAN All the functions of KinetiQ can be programmed via any of the interfaces and results read back The commands are not case sensitive and white space characters are ignored e g tabs and spaces Replies from KinetiQ are always upper case delimited by commas without spaces Only the first six characters of any command are important any further characters will be ignored For example the command to set the bandwidth is BANDWI but BANDWIDTH may be sent as the redundant DTH at the end will be ignored Fields within a command are delimited by comma multiple commands can be sent on one line delimited with a semi colon e g BANDWI LOW SPEED SLOW Mandatory commands specified in the EEE488 2 protocol have been implemented e g IDN RST and all commands that expect a reply are terminated with a question mark Data values returned by KinetiQ are in scientific notation with a 5 digit mantissa by default 5 8 PPA5xx 15xx KinetiQ user manual There is also an option for higher speed data transfer by selecting resolution binary where each value is returned in 4 bytes each of which has the msb set so that it will not be interpreted as an ASCII character byte 1 2 s complement signed exponent byte 2 bit 6 mantissa sign bit 5 0 mantissa bits 19 14 byte 3 ma
44. ing range RESOLU format RESULT function number RESULT REZERO SCALE channel factor SCOPE phase channel SCREEN SETUP index data SETUP SHUNT channel resistance SMOOTH type dynamics SPEED value window START STATUS channel STOP SUSPEN on off USER VARCON type VERSIO VRMS VRMS PHASE RMS VRMS PHASE MEAN VRMS PHASE SURGE WIRING type ZERO ZERO DELETE ZOOM level d1 d2 d3 d4 ZOOM freq mag1 61 mag2 62 mag3 03 mag4 64 mag5 5 mag6 o6 freq wl vrmsl arms1 w2 vrms2 arms2 w3 vrms3 arms3 CR terminated text string multiple integers range trigger 250 signed integer data values multiple data values 16 lines of ASCII data range number range text over under ok 3 CR terminated text strings datecode cpu dsp fpga boot Vrms Arms Vdc Adc Vac Aac Vrms Arms Vmean Amean Vff Aff Vrms Arms Vpk Apk Vcf Acf Vsurge Asurge level d1 d2 d3 d4 B 3 PPA5xx 15xx KinetiQ user manual Appendix C Available character set The following characters can be selected in text entry mode The table is to be read across then down eg starting at space and repeatedly pressing NEXT gives 4 amp etc i amp 0 1 2 3 4 6 7 8 9 i lt gt A B C D E F G H J K L M N O P Q R S T U V W xo Y SO g i a b C d e g h i j k m n o p q r S t u V W X y Z PPA5xx 15xx KinetiQ user manual Appendix D Configurable parameters All parameters
45. k current elementary A Rectified mean voltage elementary V Rectified mean current elementary A All elementary parameters e g Watts are computed from their true definitions in real time so the measurements are 9 1 PPA5xx 15xx KinetiQ user manual valid for all waveshapes Secondary parameters are computed from one or more of the elementary parameters eg VA Vrms x Arms Not all of the parameters listed are displayed in POWER mode but they are all computed A multi phase instrument also computes the equivalent values for total power SUM channel and the values for the NEUTRAL current Step through the phase values with NEXT and BACK The measurements are computed over rectangular windows with no gaps The processing power of the DSPs allows the measurements to be made in true real time without missing any samples In this way the measured power is a true value even if the signal is fluctuating The only occasion when data is missed is when an autozero measurement is requested this can be disabled in the SYTEM OPTIONS menu The elementary values are individually filtered before being used for secondary computations 9 2 PPA5xx 15xx KinetiQ user manual 9 1 Individual phase computations The power dissipated in a load subjected to a periodic voltage v with a current flowing a 6 is given by 27 w 1 2n vid al6 do 0 For a sampled signal the formula becomes i n l w 1 n gt viil alil
46. l modem cable one USB cable Communications manual User manual this manual Before connecting the test leads to an active circuit first connect the mains cord from a properly grounded supply outlet to the inlet on the rear panel of the KinetiQ KinetiQ has a universal mains input and accepts any supply voltage from 90 265Vrms at 50 or 60Hz Note If the power is cycled off on within a 10 second time period the message Turn power off for 10 seconds appears A 10 second power off window allows all micro controllers to fully reboot and prevents any errors during the power on sequence Switch on the KinetiQ The display should illuminate with the model name and the firmware version for a few seconds while it performs start up checks It should then 2 1 PPA5xx 15xx KinetiQ user manual default to the power measurement display Note that the switch on message can be personalised see the User Data section under System Options The screen is a 4 3 110mm LCD colour display There are no manual adjustments as the display should be clear and visible in all lighting applications Allow 30 minutes warm up time before commencing any tests to ensure accurate readings The voltage and current leads may now be connected to a circuit under test The high common mode rejection ratio CMRR of the instrument allows the current channel to be connected in the live path high side shunt instead of the neutral path low side
47. may be emphasized a Press ZOOM to display data in zoom level 2 b Press ZOOM twice more to move through zoom level 3 to no zoom c Press DELETE to clear the selection d Position the flashing box over the data to be emphasized using the UP DOWN L and R menu control keys e Press ENTER to confirm flashing stops h Continue to select up to a total of 4 values g Press ZOOM to display emphasized values as desired Diagram below shows top zoom level for Power Analyzer 3 4 PPA5xx 15xx KinetiQ user manual POWER ANALYZER 15 40 45 range ll v Arange 300mAv coupling ac de H R 18 821mv i 2 30 Ym a ma SSSGYk He REAL TIME toggles between continuous display readings and holding an instantaneous reading on screen Note measurements continue to be taken even when display is in Hold TABLE GRAPH selects tabular or graphical presentation of data as collected in DATALOG see 3 4 Setup Keys or in Harmonic Analyzer mode Graph only available in PPA15xx series 3 5 PPA5xx 15xx KinetiQ user manual 3 4 Setup Keys Keypad ACQU COUPLING RANGE 1 2 3 DATALOG APP MATHS 4 5 6 ALARM REMOTE AUX 7 8 9 SYS MODE PROG 0 SELECT MENUS for non mode specific configuration Also use as numeric keypad when entering parameter values or data ACQU use for configuring i
48. mputed as fundamental sum W fundamental sum VA with the sign derived from the sign of sum VAr When calculating 3 phase 2 wattmeter Sum VA and VAr options are as follows For low distortion signals sum VAr phi VAr ph2 VAr sum VA sum W sum V4r For High distortion signals P 3 sum VA gt ph1 VA ph2 VA sum VAr V sum VA sum W 9 7 PPA5xx 15xx KinetiQ user manual 9 3 Neutral synthesis In 3 phase 3 wattmeter configuration the values for the neutral current are synthesised from the calibrated values of the three phases By Kirchoff s law the sum of the instantaneous currents flowing into a node must be zero By convention neutral current is regarded as flowing out of the load so the neutral current can be derived from the sum of the three phase currents In 3 phase 2 wattmeter configuration the neutral current values are synthesised from the 2 phase currents and represent the third phase current Values available are rms fundamental magnitude and phase Additional values for dc ac peak and crest factor are displayed in RMS mode 9 8 PPA5xx 15xx KinetiQ user manual 9 4 Phase to phase computations In 3 phase 3 wattmeter configuration the voltmeters are connected across each individual phase and neutral The phase to phase voltages are synthesised from the individual phase data display phase computation phase 1 phase 1 phase 2 phase 2 phase 2 ph
49. ne index time data one record per line single integer data value single integer data value multiple real data values total efficiency fundamental efficiency B 1 PPA5xx 15xx KinetiQ user manual FAST on off FQLOCK on off FQREF phase channel FREQUE frequency HARMON para h max HARMON phase freq magl mag2 hmag1 hmag2 h1 h2 or thd1 thd2 hphasel hphase2 HARMON SERIES mag X n harmonics or HARMON phase SERIES mag phase X n harmonics HOLD on off INPUT channel type INTEGR type display INTEGR RUNTIM hours mins INTEGR phase time Wh Wh f VArh VArh f VAh VAN f of pf f Vav Vav fAh Ah f KEYBOA value LCR parameter LCR phase freq Vmag Amag impedance phase R L C tans Qf reactance LOWFRE on off MODE type MULTIL index phase func MULTIL up to 30 data values NEWLOC multiple sets of data NOOVER value PFCONV type PHASEM ratio PHASEM phase freq magl mag2 dB phase PHCONV convention POWER sum type POWER PHASE WATTS freq W W f VA VA f Var Var f pf pf f Wdc W h POWER PHASE VOLTAGE freq rms mag dc peak cf mean ff harmonic POWER PHASE CURRENT _freg rms mag dc peak cf mean ff harmonic POWER PH PH freq rms1 mag1 o1 rms2 mag2 62 rms3 mag3 3 POWER RMS freg vrmsl1 vdcl arms1 adcl vrms2 vdc2 arms2 adc2 vrms3 vdc3 arms3 adc3 B 2 PPA5xx 15xx KinetiQ user manual POWER VECTORS POWER WVA PROGRA function number PROGRA RANGE ch rang
50. nections The RS232 port on KinetiQ uses the same pinout as a standard 9 pin serial port on a PC or laptop 9 pin male D type Pin Function Direction 1 DCD in weak pull up 2 RX data in 3 TX data out 4 DTR out 5 GND 6 DSR not used 7 RTS out 8 CTS in 9 RI not used KinetiQ will only transmit when CTS pin 8 is asserted and can only receive if DCD pin 1 is asserted KinetiQ constantly asserts 12V DTR pin 4 so this pin can be connected to any unwanted modem control inputs to force operation without handshaking KinetiQ has a weak pull up on pin 1 as many null modem cables leave it open circuit In electrically noisy environments this pin should be driven or connected to pin 4 To connect KinetiQ to a PC use a 9 pin female to 9 pin female null modem cable 1 amp 6 4 2 3 3 2 4 1 amp 6 5 5 7 8 8 7 5 13 PPA5xx 15xx KinetiQ user manual 5 9 RS232 printer The RS232 port can also be connected to a serial printer for making a hard copy of any screen When printing is enabled in the REMOTE menu then pressing START will commence a screen dump to the printer The graphic protocol used is the ESC P so any printer which supports this protocol should work e g the Seiko DPU 414 The other communication options USB or LAN can still be used while the RS232 printer is enabled 5 14 PPA5xx 15xx KinetiQ user manual 6 System options Press SYS to access the system options The Kine
51. ng the touchproof BNC cable supplied They are powered either by an ac ac mains adaptor or a dedicated 12V dc supply Part numbers ULCP Ultra Low Capacitance Probe A 4 PPA5xx 15xx KinetiQ user manual External input attenuator The KinetiQ voltage inputs have a 3V peak external input for use with probes or attenuators A divide by 10 or divide by 20 passive attenuator with a bandwidth of dc 30MHz 1dB is available to extend the 3V peak input to 30V and 60V respectively The low frequency accuracy is 0 3 max The attenuators have a short flying lead to connect to the external BNC of the instrument Part numbers ATT10 divide by 10 attenuator ATT20 divide by 20 attenuator A 5 PPA5xx 15xx KinetiQ user manual CommVIEW PC software CommVIEW is a self contained software program for a PC which facilitates communication with KinetiQ over RS232 USB or LAN CommVIEW allows strings to be sent and received between a PC and KinetiQ The strings can be viewed in a window and optionally stored in a file Data received from KinetiQ may be displayed in normal scientific notation with an identifying label Strings to be sent to KinetiQ can be stored in a script file and executed automatically The script file is created with any text editor and includes three types of lines interpreted by the first character on each line lines beginning with are sent to KinetiQ lines beginning with are command
52. nput has a built in current shunt or may be used with an external shunt The voltage and current inputs are simultaneously sampled and the data is analysed in real time by a high speed DSP digital signal processor A separate CPU central processing unit takes the DSP results for display and communications At the heart of the system is an FPGA field programmable gate array that interfaces the various elements This powerful versatile structure allows the measurement of a wide range of power related parameters including W VA VAr power factor phase true rms fundamental harmonics TIF integrated values W hours etc impedance inrush current voltage surge oscilloscope PPA15xx only KinetiQ is particularly easy to use with a large clear colour display and single menu levels for all main parameters Even difficult applications such as lighting ballasts can be 1 1 PPA5xx 15xx KinetiQ user manual easily addressed with the special modes application in the firmware of the instrument The whole operation of the instrument may be controlled remotely via a serial interface RS232 USB or optionally a LAN interface The voltage and current channels are identical except for the voltage attenuator and current shunt at the very front end Each channel consists of a selection switch for external or internal attenuator shunt followed by a high impedance buffer then a series of gain stages leading to an A D converter S
53. nputs appropriate to the source and nature of signals being analyzed Diagram below shows Power Analyzer default setup ACQUISITION CONTROL wiring 3 phase 3 wattmeter speed medium smoothing normal smoothing response auto reset frequency reference voltage phase reference voltage frequency filter off low frequency off advanced options gt 3 6 PPA5xx 15xx KinetiQ user manual COUPLING appropriate to input signals RANGE configure according to magnitude voltage and current of input signals DATALOG only available for Power Analyzer and True RMS Voltmeter modes sampling interval and storage location Datalog is disabled by default See also TABLE GRAPH in 3 3 Display Control Keys APP application specific measurements e g inrush current MATHS a choice of three formulae functions of up to four measurements ALARM audible visual indication of thresholds crossed set by ZOOM values see 3 3 Display Control Keys Default is Alarm disabled REMOTE configure external comms AUX Phase Controlled Inrush Switch control SYS configure general system features MODE see 3 1 Operating Mode Keys PROG save recall or delete Mode Display and Setup configurations for user defined applications Recall data saved in DATALOG see DATALOG key above For numeric entry see 3 7 Data Entry Guide 3 7 PPA5xx 15xx KinetiQ user manual 3 5 Control Keys Q ZERO Q TRIG
54. ntissa bits 13 7 byte 4 mantissa bits 6 0 When the msbs are stripped off and the bytes put together there is 6 bit signed exponent a mantissa sign bit and a 20 bit mantissa magnitude The value then is given by Value 2 exponent x mantissa 2720 KinetiQ maintains an error status byte consistent with the requirements of the IEEE488 2 protocol called the standard event status register that can be read by the mandatory command ESR see section 5 1 KinetiQ also maintains a status byte consistent with the requirements of the EEE488 2 protocol that can be read by the mandatory command STB over RS232 USB or LAN see section 5 2 The LAN IP address defaults to auto assigned DHCP but can be set manually by the REMOTE menu RS232 data format is start bit 8 data bits no parity 1 stop bit Flow control is RTS CTS see section 5 2 baud rate is selectable via the REMOTE menu A summary of the available commands is given in the Appendix Details of each command are given in the communications manual 5 9 PPA5xx 15xx KinetiQ user manual Commands are executed in sequence except for two special characters that are immediately obeyed Control T 20 reset interface device clear Control U 21 warm restart 5 10 PPA5xx 15xx KinetiQ user manual 5 6 Standard event status register PON CME EXE DDE QYE OPC bit 0 OPC operation complete cleared by most comman
55. oftware PH3 Watts Power PH3 voltage dc Torque PH3 current dc Speed 9 10 PPA5xx 15xx KinetiQ user manual 10 Integrated power measurements In the INTEG mode KinetiQ computes the following additional values Parameter Units Watt hours Wh VA hours VAh VAr hours VArh Average power factor Average rms voltage V Ampere hours Ah Fundamental watt hours Wh Fundamental VA hours VAh Fundamental VAr hours VArh Average fundamental power factor Average fundamental voltage V Fundamental ampere hours Ah The integrator is started by pressing the START key the elapsed time is displayed in the upper left corner of the display The integration can be stopped by pressing the STOP key then restarted by pressing the START key again To reset the accumulated values and time press the ZERO key While the integration is running pressing the REAL TIME key holds the displayed values but accumulation continues in the background Once started the integration continues to accumulate in the background even if the MODE is changed to POWER or RMS This allows the real time values to be displayed without disturbing the integration To make an integrated measurement over a specific interval an integration run time can be entered in hours and minutes The integration will automatically stop when the integration timer reaches the value entered as if the 10 1 PPA5xx 15xx KinetiQ user manual STOP
56. og memory type datalog interval datalog graph Maths parameters formula argument 1 63 64 65 67 70 72 73 74 75 77 78 79 99 100 101 102 103 104 PPA5xx 15xx KinetiQ user manual sub argument 1 coefficient 1 argument 2 sub argument 2 coefficient 2 Application mode parameters application mode ballast frequency tracking speed low frequency More maths parameters argument 3 sub argument 3 coefficient 3 argument 4 sub argument 4 coefficient 4 Power meter parameters wiring configuration integration type integration display sum current average phase 3 frequency reference power factor sign convention VAr sign convention efficiency computation range lock Harmonic analyser parameters computation mode selected harmonic maximum harmonic harmonic bargraph voltage rated current for TRD harmonic bargraph current E 3 106 107 108 109 110 111 112 113 114 115 119 120 122 128 129 131 132 133 134 135 137 138 139 B 4 PPA5xx 15xx KinetiQ user manual Oscilloscope parameters timebase trigger level pretrigger trigger polarity trigger mode trigger reference trigger phase cursors enable trigger HF reject traces System parameters zoom 2 high resolution brightness Auxiliary parameters Auxiliary drive PICS phase offset PICS cycles Other power parameters 2 wattmeter sum computation integrator run time phase to phase mean phase to phase meas
57. pplication specific modes Select the application specific options form the APP menu 8 1 Lighting ballast Electronic lighting ballast waveforms consist of a high frequency carrier signal modulated by the line frequency KinetiQ measures the line frequency independently of the input waveform frequency and synchronises the measurement period to the line frequency The carrier frequency measurement ignores any dead band around the zero crossing of the ac line to compute the actual switching frequency of the ballast Both the frequency measured on the input waveform and the frequency of the line input are displayed As the switching frequency can vary over the cycle the analysis frequency of the DFT measurement is continually adjusted to give optimum measurement of the fundamental and harmonics The response of the tracking algorithm can be adjusted to suit the ballast being measured Fixed time no adjustment Fast Medium Slow To select lighting ballast mode press the APP key select the mode with the cursor keys move down to the default settings option and press ENTER The defaults are loaded and the particularly important parameters can then be changed 8 1 PPA5xx 15xx KinetiQ user manual 8 2 Inrush current Measurement of inrush current surge requires very fast sampling to catch the highest instantaneous value Measurements must be made under conditions of manual ranging and with the voltage applied
58. r each channel Triggering is very important to obtain a stable trace and there are various options to control the trigger source level type polarity HF reject pretrigger 14 1 PPA5xx 15xx KinetiQ user manual The data source for the trigger can be selected to be either voltage or current On a mutiphase instrument any of the phases may be selected for the trigger source The trigger level is set directly in Volts or Amps and does not change if the range is changed i e it is an absolute trigger level and not relative to the range full scale Pressing NEXT and ENTER adjust the trigger level by a factor of 2 The trigger level is shown as a small horizontal bar on the extreme left hand edge of the display against the appropriate channel If the trigger is set to a value above or below the range of the input channel then a small carat is shown at the top or inverted at the bottom of the display as appropriate The trigger type may be set to auto trigger if possible but do not wait normal wait indefinitely for trigger single shot wait for trigger then hold The single shot option is reset using the TRIGGER key The trigger polarity may be set to rising edge or falling edge When trigger HF reject is on a low pass filter is applied to the trigger data to stabilise the trace with noisy signals The filter only influences the trigger detection and does not change the data displayed 14 2 PPA5xx 15xx Kin
59. s for CommVI EW any other line is a comment The commands that are recognised beep sound the beeper on the PC label i string apply a label to data value i pause t wait for time t reply t wait time t fora reply For an example script file look at example scr on the CommvlEW release disc Other functions in CommVIEW save results results menu set COM port parameters configure menu firmware upgrade instrument menu read store user programs instrument menu A 6 PPA5xx 15xx KinetiQ user manual Appendix B Serial command summary command format CLS ESE value ESR DN OPC RST SRE value SRE STB TRG TST WAI ABORT ALARM latch sounder ALARM ALARM1 type data hi lo ALARM2 type data hi lo ALARME value ALARME APPLIC type setting BEEP BLANKI on off CALSNO CALSTR string CALSTR CONFIG parameter data CONFIG parameter COUPLI phase coupling COUPLI DATALO func interval speed DATALO LINES DATALO 0 DATALO start records DAV DAVER value DAVER DISPLAY page DISPLAY EFFICI reply format single integer data value company product serial no version Oorl single integer data value single integer data value single integer data value single integer data value single integer data value alpha numeric string string single integer or real data value numerical value single integer data value index time data one record per li
60. s step forward and backward using the ASCII character definitions other printable characters such as or can be obtained by stepping on from the Space The available character set is given in the Appendix When entering alphabetic characters the PROG key toggles between upper and lower case for the character preceding the cursor and the next characters to be entered The editing keys R L DELETE and ENTER operate in the Same way as for numeric entry 4 5 PPA5xx 15xx KinetiQ user manual 5 Special functions 5 1 Display zoom KinetiQ normally displays many results on the screen in a combination of small font size no zoom and up to 4 values in a larger font size first zoom level There are two further zoom levels which can display up to four and up to three selected values respectively at larger font sizes second and third zoom levels To set the data values for the larger font size first return to no zoom by pressing ZOOM as many times as necessary Press the ZOOM key to view the presently selected data and press DELETE to clear the selection A flashing box surrounds the first available result The flashing box is moved around the available results using the cursor keys UP DOWN L and R Pressing the ENTER key selects the result for zoom and the box ceases to flash Further results up to four in total can then be selected using the cursor keys in the same way a Solid box remains around the already selected it
61. set clock year PPA5xx 15xx KinetiQ user manual Appendix E Contact details Please direct all queries or comments regarding the KinetiQ instrument or manual to Newtons4th Ltd 1 Bede Island Road Leicester LE2 7EA United Kingdom Tel 0116 230 1066 international 44 116 230 1066 Fax 0116 230 1061 international 44 116 230 1061 E mail address sales newtons4th com office newtons4th com web site www newtons4th com At Newtons4th Ltd we have a policy of continuous product improvement and are always keen to hear comments whether favourable or unfavourable from users of our products An example comment form can be found at the end of this manual if you have any comments or observations on the product please fill a copy of this form with as much detail as possible then fax or post it to us Alternatively send an e mail with your comments E 7 PPA5xx 15xx KINETIQ comments serial main release date number dsp release foga release boot release press SYS then LEFT your contact details comments detailed description of application or circumstances Please post or fax to Newtons4th Ltd
62. shunts or attenuators If the external shunt or external attenuator option is selected the data is scaled by the appropriate value entered under the relevant channel menu The PPA1500 500 also features an internal x10 input mode which applies a gain of 10 to the internal attenuator shunt signals at the expense of bandwidth This input mode has a bandwidth of approximately 100kHz Selection of this feature is indicated in blue in the RANGE menu and in the Operating Mode displays Precision low inductance current shunts or current transformers may be used with the current channels high voltage attenuators or oscilloscope probe may be used with the voltage channels Note that when using external shunts or attenuators on high voltage signals the inputs must not exceed 1000V rms cat Il or 600V cat III to ground There are 8 input ranges with nominal full scale values set with a ratio of 1 V10 This gives the following nominal peak ranges 7 9 PPA5xx 15xx KinetiQ user manual Range internal internal external current voltage input 1 100mA 1V 1mV 2 316mA 3 16V 3 16mV 3 1A 10V 10mV 4 3 16A 31 6V 31 6mV 5 10A 100V 100mV 6 31 6A 316V 316mV 7 100A 1kV 1V 8 316A 3 16kV 3 16V The actual ranges have approximately 20 overload headroom so for example the 300V range which has a nominal full scale of 316V pk has an actual peak input value of 380V allowing for the 20 headroom The ranges may be selected manually or
63. tal components of voltage a jb and those of the current c jd KinetiQ computes the complex impedance given by z v i a jb c jd The components of the complex impedance are filtered independently to minimise the effects of noise which would have random phase and would therefore be filtered out The magnitude of the voltage and current are also computed From the complex impedance the following parameters can be derived resistance inductance capacitance impedance phase tan real imaginary Q factor imaginary real Values can displayed for either series or parallel models If the parameter option in LCR menu is set to auto KinetiQ will display capacitance or inductance according to 13 1 PPA5xx 15xx KinetiQ user manual the phase of the measurement Alternatively the display can be forced to capacitance inductance or impedance Capacitance is displayed with tans inductance is displayed with Q factor and impedance is displayed in its resistive reactive form and as magnitude The phase of the impedance is displayed with all options For phase critical impedance measurements is it possible to offset the phase measurement to allow for phase shift within the connection leads Note that the phase of the impedance is the opposite to the phase of the current in POWER mode This is because the impedance is defined as voltage current which considering the magnitude and phase of Z
64. this mode is taken in the periodic higher current cycles so to accurately measure the power drawn by these devices so the instrument synchronises to the power frequency for the analysis but extends the measurement window to the irregular period of higher energy pulses Because the instrument samples in true real time without any gaps no data is missed and every power cycle is captured It is important that ranging is set to manual or up only autoranging so that the power cycles are not missed while ranging 8 3 PPA5xx 15xx KinetiQ user manual 9 Power measurements In the POWER mode KinetiQ measures the following values for each phase Parameter Type Units Frequency elementary Hz True power elementary W Apparent power secondary VA Reactive power secondary VAr Power factor secondary RMS voltage elementary V RMS current elementary A Fundamental power secondary W Fundamental VA secondary VA Fundamental VAr secondary VAr Fundamental power factor secondary Voltage fundamental elementary V Current fundamental elementary A Voltage magnitude secondary V Current magnitude secondary A phase secondary degrees Voltage harmonic elementary V Current harmonic elementary A Voltage harmonic magnitude secondary V Current harmonic magnitude secondary A DC voltage elementary V DC current elementary A dc power secondary W Peak voltage elementary V Pea
65. tiQ s real time clock can be set to the current date and time The display brightness may be set to low or high depending on viewing conditions Measurements of phase can be expressed in one of three conventional formats 180 to 180 commonly used in circuit analysis 0 to 360 commonly used in power applications 0 to 360 The measurement is exactly the same it is only the way that it is expressed that changes Each key press is normally accompanied by an audible beep as well as the tactile click The beep can be disabled for quiet environments if the feel of the key is sufficient feedback Regular autozero measurements can be suppressed The 4 main function keys POWER HARM RMS SCOPE can be used to load stored configurations as a one touch way of configuring the instrument for specific applications This is particularly useful in a production environment where an operator has a small number of specific tests to perform Independent ranging control for multi phase instruments can be switched on or off 6 1 PPA5xx 15xx KinetiQ user manual Pressing R from the SYSTEM OPTIONS menu selects the USER DATA screen where up to three lines of user specified text may be entered These are displayed on power up and may be read remotely by the command USER to identify the instrument Pressing L from first SYSTEM OPTIONS menu displays the serial numbers manufacture code releas
66. to the instrument Then when the load is switched on the highest peak value can be detected In inrush mode KinetiQ samples and analyses every sample at the full sample rate of 1Msamples s to catch even very fast peaks For the worst case inrush current the input to the device under test must be switched on at the worst point in the cycle 90 or 270 for a capacitive load 0 or 180 for an inductive load The Phase Controlled Inrush Switch or PCIS available as an accessory for KinetiQ controls the switch on of the power to the DUT from 0 to 315 in steps of 45 from the KinetiQ front panel ENTERing the default settings in inrush mode in the application menu selects the PCIS and sets KinetiQ to manual ranging If PCIS is not being used then it can be deselected in the AUX menu Having selected the default settings the current range should be set to an appropriate range for the DUT The oscilloscope mode PPA15xx only is also useful for qualitatively evaluating the inrush current 8 2 PPA5xx 15xx KinetiQ user manual 8 3 Standby power measurement In order to minimise standby power some devices operate in a dormant mode whereby power is only drawn from the supply when needed These devices draw very little current for most of the time and then draw a larger current for a single cycle to charge a reservoir capacitor This pattern is repeated on an irregular basis Most of the power consumed by devices in
67. ty isolation Power supply Voltage and Current 20 Real time no gap 1Ms s on all channels Compliant with EC62301 using internal shunt Refer to low power measurement application note Full capability control and data Ballast Inrush Baud rate to 38400 RTS CTS flow control 10 100 Base T Ethernet auto sensing RJ 45 USB device 2 0 and 1 1 compatible N4L accessory port N4L auxiliary port 480 x 272 pixel 4 3 colour TFT 91H x 213W x 313D mm excluding feet 3 6kg 1 phase 4kg 3 phase 1000V rms or dc category II 90 265 rms 50 60HZ 35VA max measured fundamental value 16 3 PPA5xx 15xx KinetiQ user manual PPA SERI ES COMPARI SON TABLE PPA1500 500 PPA25 2600 PPA5500 Accuracy Basic V amp A reading range 0 05 0 1 0 04 0 04 0 02 0 04 Power reading VA range 0 1 0 1 0 05 0 05 0 03 0 05 Voltage I nput Direct Voltage 2500Vpk 3000Vpk 3000Vpk Ranges 8 8 9 Direct current input options 10Arms 10mA 30Apk 3mA 30Apk Processing power Harmonic Colour Graphic 20Arms 10mA 30Apk 100mA 300Apk 30Arms 100mA 300Apk 30mA 300Apk 50Arms 300mA 1000Apk 100mA 1000Apk Ranges 8 8 9 Bandwidth DC to 1MHz DC to 2MHz DC to 2MHz pete 100KHz OC fe IMHz DC to Miz Selectable Low BW v v General features Display High contrast BW Graphic High contrast Colour Graphic i 300 30
68. urement Difference THD LCR meter parameters parameter measurement Offset 140 144 148 150 152 154 155 156 157 158 159 160 161 167 168 169 170 176 177 178 179 180 181 182 184 185 186 187 PPA5xx 15xx KinetiQ user manual Phase meter parameters voltage peak rectified mean dB offset computation System parameters RS232 printer enable interface recall with program Alarm functions alarm 1 data alarm 1 type alarm 1 high threshold alarm 1 low threshold alarm latch alarm sounder alarm 2 data alarm 2 type alarm 2 high threshold alarm 2 low threshold Input parameters phase 2 enable channel 3 enable channel 4 input range channel 3 input range channel 4 input ranging channel 3 input ranging channel 4 coupling phase 2 scale factor channel 3 voltage scale factor channel 4 current external attenuator channel 3 external shunt channel 4 E 5 217 218 219 220 226 228 229 230 231 B 6 PPA5xx 15xx KinetiQ user manual Input parameters phase 3 enable channel 5 enable channel 6 input range channel 5 input range channel 6 input ranging channel 5 input ranging channel 6 coupling phase 3 scale factor channel 5 voltage scale factor channel 6 current external attenuator channel 5 external shunt channel 6 Program storage memory data action location System clock set clock hrs set clock mins set clock secs set date day set date month
69. via safety BNC connection to connect to the instrument the current connections depend on the device Part numbers HFOO3 470MQ 3A rms 4mm safety HFOO6 100m2 6A rms 4mm safety HFO20 10m22 20A rms 4mm safety HF100 1mQ 100A rms safety terminals HF200 500u2 200A rms M10 stud HF500 200u2 500A rms M16 stud A 2 PPA5xx 15xx KinetiQ user manual PCIS Phase controlled inrush switch To measure the maximum inrush current of a load it is important to switch on the supply to it at the worst point in the cycle usually 90 or 270 for a capacitive load 0 or 180 for an inductive load The PCIS is an active device which is controlled by KinetiQ over the extension port It accurately synchronises to the line input measures the frequency and switches on the output at a precise phase angle selectable from the KinetiQ front panel in steps of 45 Part numbers PCIS Phase Controlled Inrush Switch A 3 PPA5xx 15xx KinetiQ user manual Ultra low capacitance high voltage probes The KinetiQ voltage inputs have a capacitance to ground of around 50pF but even this low value can cause problems with high frequency high voltage waveforms The ultra low capacitance high voltage probes use a differential input arrangement optimised for minimum capacitance to achieve an input capacitance to ground less than 1pF with an input range up to 3kV pk and a bandwidth from dc to 2MHz 1dB The probes connect to the external voltage input usi
70. voltage agrees with the rating of the instrument printed on the back panel before connecting the mains cord to the supply This appliance must be earthed Ensure that the instrument is powered from a properly grounded supply The inputs are rated at 1kV rms or dc cat II 600V rms or dc cat III Do not exceed the rated input Keep the ventilation slots in the top and sides of the cover free from obstruction Do not operate or store under conditions where condensation may occur or where conducting debris may enter the case There are no user serviceable parts inside the instrument do not attempt to open the instrument refer service to the manufacturer or his appointed agent Note Newtons4th Ltd shall not be liable for any consequential damages losses costs or expenses arising from the use or misuse of this product however caused PPA5xx 15xx KinetiQ user manual DECLARATION OF CONFORMITY Manufacturer Newtons4th Ltd Address 1 Bede Island Road Leicester LE2 7EA We declare that the product Description Power Analyser Product name KinetiQ Model PPA5xx 15xx Family conforms to the requirements of Council Directives 89 336 EEC relating to electromagnetic compatibility EN 61326 1997 Class A 73 23 EEC relating to safety of laboratory equipment EN 61010 1 Oct 2012 Eur Ing Allan Winsor BSc CEng MIEE Director Newtons4th Ltd PPA5xx 15xx KinetiQ user manual WARRANTY This product is guaranteed to be
71. while the autozero measurement is in progress so this repeated autozero function can be disabled via the SYSTEM OPTIONS menu 5 4 PPA5xx 15xx KinetiQ user manual 5 4 ALARM alarm function KinetiQ has 2 independent alarms that can be used to generate an audible warning sound the alarm if the value exceeds a threshold sound the alarm if the value is below a threshold sound the alarm if the value is outside a window sound the alarm if the value is inside a window The values to which the alarms are applied can be any of the measurements selected for zoom The alarm status is also available as a logic output via the communications The first alarm also has option to generate a variable sound changing linearly as the value changes between two thresholds To program an alarm first select the functions for the zoom up to four measurements can be selected for the display the alarm is applied to any of them then press ALARM to invoke the alarm Menu select which of the zoom functions is to be used select the type of alarm set the upper limit if appropriate set the lower limit if appropriate select whether the alarm is to be latched select whether the alarm sounder is enabled If the alarm latch is selected then both alarms will continue to sound even if the value returns to within the normal boundaries To clear the alarm press HOME The alarm latch can also be set to HOLD the data so that an event can be captured
Download Pdf Manuals
Related Search
Related Contents
Serie F2 - Certificazione Energetica PDF Instruções de utilização TE 30-AVR (PT), 978.3 kB Philips GC150 Highly Durable 10.4"Industrial Monitors with High Brightness Herunterladen HP sp400 Administrator's Guide Sony VPL-EX4 User's Manual Pack `N Play® Copyright © All rights reserved.
Failed to retrieve file