Home
Previous Project Report - Fall 2013
Contents
1. Kring LabVIEW For Everyone Third Edition New York Prentice Hall January 2007 Page 26
2. Project 1 My Computer TEAR File Edit View Project Operate Tools Window Help Sule ebe EME Untitled Project 1 My Computer lt Figure 9 Block Diagram for Alarm System Ultimately the wireless sensor network has an unlimited number of uses but it is purely restricted to receiving numerical values on the analog inputs numerical values on the digital inputs and sending Boolean true false to digital devices These two examples are just some of the many possible uses of the wireless sensor network Page 13 5 Experiments In order to test the functionality of the sensor network following all of our new implementations we devised the following tests 1 Connecting to the WSN gateway in NI s Measurement and Automation Explorer using MAX 2 Adding Removing nodes from the gateway using MAX 3 Creating a new LabView project 4 Creating a remotely executed startup application for the wireless sensor network 5 Future projects for WSN using LabView UDP and GUIs 5 1 First load up the NI Max program If the device is connected on the same subnet MAX will auto identify the WSN 9792 gateway If the device is connected to a different subnet you will need to specify the device via IP address Figures 10 amp 11 Remote Systems Measurement amp Automation Explorer a 9 My System H Create New lt f ohc E E Data Neighborhood f 4 gl Devices and Interfaces ma Scales Remote Systems a a porga
3. WSN gateway LabView is utilized to create a visual instruction set which is then executed in real time to either acquire data from sensors connected to wireless nodes or trigger events such as arming a buzzer or create a local warning message if appropriate conditions are met To summarize in the system outlined in Figure 4 a user on the client PC runs a LabView program which connects to the WSN Gateway The LabView program utilizes the protocols included in the high level language to access the wireless nodes which then communicate with the attached sensors and devices Once connected LabView then either display the acquired data or executes a specified task If the LabView program that is currently being executed is instructed to display information to the user it will be shown on the project window For Page 9 example if the program was designed to display the voltage transmitted by an analog device it could be displayed in a waveform graph within the program see Figure 6 gt Waveform _Graph_Direct vi fie Ect Operate Took Growse Window tie Figure 6 Waveform Chart Showing Data Retrieval in LabView Page 10 4 Implementation Due to the non traditional format of LabView programming creating programs to operate the wireless sensor network in LabView is done in a single window rather than a document style seen in C and Java A sample program in LabView for the wireless sensor network may operate as follows 1 re
4. and the operation of analog sensor circuitry in order to write programs for data acquisition 4 After the data from analog sensors can be acquired work on creating additional functionality for the sensor network can begin Switch Executive 3 50 49154 Measurement amp Automation Explo o 21e Je ame Saaa File Edit View Tools Help 4 Q My System E Data Neighborhood g Devices and Interfaces Version 44 Scales H 3 50 49154 4 6 Software iy NI DAQm x ADE Support 9 3 iy NI DAQm x Device Driver 9 3 2s NI DAQmx MAX Configuration 9 3 NI SWITCH 4 1 FH Switch Executive 3 50 49154 ff M Drivers E Remote Systems m s B Attributes Figure 3 National Instrument s Measurement amp Automation Explorer For additional functionality one could create an alarm system by using the PING device to trigger a local warning message or instruct LabView to send a message back to the triggering node instructing it to enable an ultrasonic alarm device One could also create an activity monitoring program that would theoretically be able to count the number of people entering or exiting a building or keep track of the number of available parking spaces within a parking garage through the use of the PIR sensor It appears that the device may have problems performing complex tasks such as changing the color of an LED designed for Arduino boards Page 5 but it should excel at simple data acquisition such as temperature and ke
5. program to be developed and migrate the collected information into a friendly clean looking GUI WSN can also be a great tool for long term monitoring solutions because of its low power consumption devices WSN boasts that their devices can run on 4 AA batteries for 3 or more years which beats their competitors by more than 1000 The most challenging portion of this project is the applications for the device and the device network setup The WSN Gateway requires many ports to be open in order for the device to be properly recognized and to transfer data to associated computers Also a lot of the sensors that we connected to the device seemed as if they didn t collect data accurately enough to be reliable For future projects it would be best to order additional nodes such as the thermocouple node and possibly one other working WSN 3212 node along with some official NI analog sensors Once these devices are hooked up to the gateway deploying these devices in a field situation to collect information such as temperature CO2 levels etc would make the most out of this technology Some of these sensors include thermal couple measurement devices for measuring temperature http sine ni com nips cds view p lang en nid 208177 Differential pressure sensors for measuring pressure from water lines http www sensirion com en products differential pressure sensors differential pressure sensor sdp1000 series Barometric pressure sensors that measure
6. sensor inputs on the white page introduce objects such as histograms data analysis tools etc On the checkerboard screen you can create real time monitoring windows to examine data as it is being pulled from the nodes In this small example you can see that the data from the first analog channel on Node 1 is being channeled into the chart to display the information Once your VI file has been created you can click on the circular arrows to deploy the project onto the gateway which will then remotely execute the LabView code and consequently send the information to the locations specified in the LabView project Figure 18 Page 20 P Untitled 1 Block Diagram on Untitled Project 1 NI NI9792 0169571E File Edit View Eile Edit Yiew Project Operate Tools Window Help 13pt Application Font 9 5 tax Hee leb Deployment Progress Deployment Status Initializing Calculating dependencies Checking items for conflicts This operation could take a while Preparing items for download This operation could take a while Deploying Untitled Project 1 Deploying NI NI9792 0169571E successfully deployed target settings Deployment Progress Close on successful completion Close Cancel Project Explorer Untitled Project 1 O X File Edit View Project Operate Tools Wi
7. which makes the program function In the Page 11 block diagram example in Fig 8 one can see that the AIO output is connected to the input of the waveform chart This instructs the program to feed information retrieved from the analog input 1 on the currently selected node to feed its information to the waveform chart gt Untitled 2 Block Diagram File Edit View Project Operate Tools Window Help wap a gt 10 O 25 bal at 32 Waveform Chart Untitled Project 1 My Computer lt Figure 8 Block Diagram for Data Retrieval Another more complicated program that can be created in LabView is an example of a sort of alarm system Due to the functionality of the PING sensor it can be used to detect if an object moves in front of it because of its range sensing functionality This can be utilized in a LabView program to trigger a buzzer attached to the same sensor For example see Figure 9 instead of connecting the output of AIO to a waveform chart it is connected to a comparison operator that compares the output of AIO to another value in this case a constant 5 This essentially will compare the voltage of the PING sensor and if an object moves in front of the sensor causing the voltage to drop from 5V to a lower voltage the output of the comparison operator will be true This Boolean value will be sent to the Digital I O 1 which will then arm the buzzer Page 12 Untitled 3 Block Diagram on Untitled
8. Address After the target device has been identified in max you can change several different settings such as specifying a static IP adding removing nodes formatting the device s HDD to update the LabView software etc 5 2 In order to add nodes to the device you need to expand the Devices amp Interfaces section under the gateway Figure 11 WSN Measurement amp Automation Explorer Fie Edit View Tools Help B O My System H E Refresh t addNode X Remove N FA Configure Node QB Update Firmware Hide Help m E Data Neighborhood pin m g Devices and Interfaces Geak Ba HA Scales Wireless Channel i3 v A S E Software Configuring a m f 11 Drivers 7 aE eas maa Gateway Node Type SerialNumber ID Last Communication Time Battery State Link Quality Network Mode Firmware Version E 9 Remote Systems To configure a gatevey L 6 NI WSN 3202 15CA60D 1 12 13 2013 1 20 12PM _No Battery Excellent End Node NI WSN 3202 1 4 0f0 on the network select S fy NI NI9792 0169571E iheigatewayinahe ry Devices and Interfaces configuration tree a Network Devices You can view the nodes Eir associated vith your ce Serial amp Parallel epuer ii nodes and update the En vireless channel The aE Software folloving options are available for configuring Figure 11 Adding Removing nodes using MAX Page 15 Once on this page you can use the Add Node button to add a node the Remove Node button to r
9. Collapse All Properties Figure 13 Adding the 9792 gateway to the project Add Targets and Devices on Untitled Project 1 T Targets and Devices gt Project Explorer Untitled Project 1 Enisting target or device Bie Edt o Yew Project Operate Tool Winda Q Discover an existing target s or device s 56 a n AX ae F He Specify a target or device by IP address Items Files _ O New target or device ck Project Untitled Project 1 IP address My Computer BP Dependencies i ES Build Specifications Target and Device Types Compact Vision System E Embedded Vision System G Ethernet RIO w Real Time CompactRIO f Real Time Desktop E Real Time Industrial Controller jaf Real Time PXI w Real Time Single Board RIO E Smart Camera WSN Gateway ad wi C Figure 14 Specifying the gateway by IP address Page 17 Once the gateway has been added to the project you will then be able to adjust settings for the individual nodes and sensors connected to the gateway In order to edit the sample rate voltages and power on times for the sensors you will need to expand the wireless sensor network tree under the device right click a node connected to the gateway and click properties From here you will see a screen which a couple of tabs that will allow you to change these settings Figure 15 amp 16 Node Properties ame Channels Node De
10. Wireless Sensor Network with LabView Michael Bizub amp An Nguyen Final Draft 12 16 2013 CNT 4104 Software Project in Computer Networks Instructor Dr Janusz Zalewski Computer Science amp Software Engineering Programs Florida Gulf Coast University Ft Myers FL 33965 Page 1 1 Introduction The wireless sensor network is an array of devices manufactured by National Instruments designed to receive information from analog sensors such as ultraviolet sensors ping sensors thermocouples etc and transmit this information through a wireless device Figure 1 to a central gateway This central gateway allows users whether on local LAN or the Internet to access information about the configuration of these sensors and wireless devices and also to utilize a program created in LabView to control how information is sent or received by the sensors in real time Figure 1 NI 3212 Wireless Hub Node 2 LabView is a graphics based programming language used to control how this wireless sensor network behaves This means that instead of traditional programing languages that use textual expressions for variables if then statements while loops etc the programmer creates a program by using visual objects to represent the variables and links between the objects to instruct the program on how to manipulate these objects The wireless sensor network is an asset to modern society because it allows users to interact with remote nodes wh
11. emove a node or the Configure Node to change the state of the node to either routing or end point For most scenarios you will want the nodes running in an end node state to conserve power 5 3 Once the gateway and nodes are configured using MAX it is time to create a new project in LabView which will let you interact with the devices and retrieve real time data First open LabView and create a new project file Figure 12 New Latest from ni com a Blank VI LabVIEW News gm Empty Project LabVIEW in Action ky Real Time Project Example Programs More Training Resources Figure 12 Creating a new project in LabView Once the new project is created you will be greeted by a new project screen On this screen you will want to right click the project gt new gt targets and devices gt existing devices by IP address if the gateway is on a different subnet or right click the project gt new gt targets and devices gt discover an existing device if it is on the same subnet to add the 9792 gateway to the project Figure 13 amp 14 Page 16 Project Explorer Untitled Project 1 DER File Edit View Project Operate Tools Window Help Items Files k GEESE eee Som m TS tarot Flier at DY save Save As Save All this Project View Find Items with No Callers Find Missing Items Find Items Incorrectly Claimed by a Library Find Project Items Arrange By Expand All
12. en the device turns on This enables you to create a long term application that will allow you to monitor several things such as temperature CO2 levels etc over a long period of time and even develop GUIs to display the information on clean friendly user interfaces 5 5 In addition to what we have tested in LabView for monitoring analog and digital nodes connected to the WSN nodes We have found additional uses for the NI sensor networks LabView has built in UDP functionality that allows LabView to export data to other computers via the internet or local area network Future students or researchers working on these devices Page 23 could use the UDP portion of LabView and the fact that the NI 9792 gateway has the ability to run onboard real time applications to create a truly wireless network of sensors By utilizing this UDP functionality and real time application developers can use GUIs built in Java or C and datagram packets to create virtual maps that host information collected from the WSN devices to monitor things such as parking garages green houses outdoor environments etc Page 24 6 Conclusion The best part about the WSN is the deployable VI programs and how they let developers uploaded them directly to the gateway through LabView The gateway doesn t need a computer to be directly connected once a project build has been deployed to the device and set to execute on start up This allows a long term monitor
13. eping track of a massive amount of repetitive events Page 6 3 Design Solution The physical architecture of the system is shown in Figure 4 Individual components of this architecture are described below Client PC Running LabView WSN 9792 Gateway wh WSN 3212 WSN 3202 4 g am a Aw O Ultrasonic Sensor WSN 3202 Buzzer Thermalcouple PIR Sensor Figure 4 Physical Diagram of Operating Components Page 7 WSN 9792 Gateway is both a wireless and wired device which manages the connection between the client PC and the wireless nodes In order to manage the wireless nodes the device must be accessed through its web page available by connecting to its IP address via a browser with Silverlight Once setup it will then allow the client PC to send commands via LabView 2011 which assists with data acquisition or delivering instructions from to the wireless nodes WSN 3202 Wireless Node is responsible for direct interaction with the analog and digital sensors The WSN gateway forwards commands issued by the client PC s LabView program to this node which then instructs it to send receive information to from the devices connected to it WSN 3212 Wireless Node is similar to the WSN 3202 wireless node however it is only functional when acquiring data from a thermocouple Thermocouple is a sensing device used to measure temperature It works by using two different conductors intertwined wi
14. ich can convey measurement data from analog sensors about physical quantities and stimuli or instruct digital sensors to carry out a specific command For Page 2 example a person with access to the wireless network could instruct a wireless node to activate either a local warning message or a remote alarm speaker if a motion detector attached to a specific node detects motion within its parameters With this system anyone can remotely access virtually any information and use that information to interact with the environment in a multitude of ways similar to how one would access the weather view the security of their home and car etc On a personal level this project is important because it introduces the student to networking devices both locally and on the Internet Since one of the requirements of of this project is the ability to interact with wireless nodes via programs created in LabView this teaches the student how to properly configure wireless networks but also teaches the importance of networking security In addition this project teaches the student involved the importance of being able to diagnose problems with devices that we are not familiar with and how to program in a language that we have no practical experience with Most important this project also teaches the importance of creating detailed reports in order to maintain professional communication and records for future use Page 3 2 Definition of the Problem The p
15. ndow Help Se x oOx ie a ae 2 Ttems Files Build Specifications a NI NI9792 0169571E 172 28 79 189 Wireless Sensor Network Nodel ID 1 15CA60D NI WSN 3202 Untitled Project 1 NI NI9792 0169571E Mesh Router VI Deployed Vivi Figure 18 Deploying a VI file to the WSN Gateway Once you have deployed your VI you can either let the program run and collect data or you can create an application consisting of your VI files that will be executed on the gateway whenever it boots up in order to always keep the wireless sensor network retrieving sensor information 5 4 Once you have created and deployed your VI you can now build an application that will be executed by the gateway every time it boots without the need for a computer to be connected To do this right click the Build Specifications tree in the project explorer and click New gt Real time application The new real time application builder will be launched Figure 19 Page 21 My Real Time Application Properties E Category mmm mnt ss Information lt Project Explorer Destinations File Edit Yiew Projeq Source File Settings Advanced Additional Exclusions items PERS Pre Post Build Actions Li Component Definition Preview Project Files ah ia Startup VIs e Save VI vi Always Included OK Cancel al Help Figure 19 Building a
16. r With Remote Systems you can view and configure devices and S 1v1 Drivers systems connected over Ethernet Your remote systems appear in the configuration tree when you expand Remote Systems by clicking the plus sign a 9 Remote Systems What is a remote system A remote system denotes a real time target that can be managed Create New Choose the type of item you want to add f a 9 Remote Systems Remote Devic o Remote VISA System Page 14 Figure 10 Adding a remote device on a different subnet Remote Systems Measurement amp Automation Explorer O My System a E Data Neighborhood i Devices and Interfaces m aA Scales Remote Systems E 61 Software create now 8 Show Help With Remote Systems you can view and configure devices and Ef 11 Drivers systems connected over Ethernet Your remote systems appear in 9 Remote Systems the configuration tree when you expand Remote Systems by clicking the plus sign What is a remote system Aremote system denotes a real time target that can be managed ul Create New Remote Device not on the local subnet Enter the hostname or IP address To locate a remote device that is not on the local subnet enter the host name or IP Address of the device IF it can be located it will be added to your list of remote systems O Host Name E OP Address Cancel Figure 11 MAX Target via IP
17. real time application Once the real time application builder has been launched add the VI to the startup VI by clicking the vi file and clicking the arrow to add it to the startup VIs Once added click the build button Once the build has been completed you will now need to deploy the built application to the wireless gateway To do this navigate to the project explorer right click on build specifications and click deploy LabView will then attempt to upload the real time application to the gateway Once uploaded you will need to set the application to run when the device starts up To do this click the set as startup option when right clicking the build specification Figure 20 Page 22 Project Explorer Save lyproj File Edit Yiew Project Op Jnealxuax Items Files amp Nodel ID 1 15CA60D NI WSN 3202 4 i BR AIO i All AIZ AIS Battery Voltage DIOQ DIO1 DIO2 DIOS External Power Link Quality Mesh Router i Me VI Deployed Fs jm Save VLvi BP Dependencies io eee oS Build Specifications kes My Real Time Application E E E T TEE Set as startup Run as startup Duplicate Explore Clean Remove from Project Help Properties Figure 20 Setting the application to run on device start Once the application has been set to launch at startup the VI file will be stored on the device and executed wh
18. revious project group had made great progress by making the ultrasonic sensor PIR and thermocouple to work with the sensor network Near the end of the previous group s work they have tried to introduce the use of a newer version of the NI 9792 wireless gateway Figure 2 with some minor problems They had listed some of their potential resolutions at the end of their previous report which we plan to use to troubleshoot Figure 2 NI 9792 Wireless Gateway 3 This semester it is our plan to fix the minor issues with the sensor array and then possibly seek additional functionality to improve upon its uses In order to repair the sensor array a plan has been created to introduce the newer NI 9792 gateway and get it functioning again with the NI 3212 wireless nodes with analog sensors The detailed plan of work lists as follows 1 Connect the WSN nodes to the NI 9792 gateway This will be done according to the manufacturer s manual or contacting National Instruments directly to seek troubleshooting help to reset the nonfunctional wireless nodes Page 4 2 Attempt to introduce the newer NI 9792 wireless gateway with National Instruments MAX program Figure 3 Once the NI 9792 is configured properly with the MAX program LabView should once again be able to detect all NI 3212 wireless nodes connected to the gateway 3 After LabView can detect all wireless gateways and nodes one can start the familiarization with coding to LabView
19. th each other which creates a measurable voltage representing the surrounding temperature The thermocouple is connected to a WSN 3212 wireless node Buzzer is a simple device that emits a high pitch buzzing sound when it receives a high signal on the I O lead and is off when it receives a low signal on the I O lead The buzzer is connected to a WSN 3202 wireless node PIR Sensor is a sensor that allows for the detection of motion It takes a quick snapshot of the room and if anything moves it will trigger a high signal on the alarm pin The PIR sensor is connected to a WSN 3202 wireless node Page 8 e Ping Ultrasonic Distance Sensor Figure 5 detects an object s range by emitting a sound that bounces off the object and returns similar to echolocation This device is connected to a WSN 3202 wireless node Figure 5 PING Ultrasonic Distance Sensor 4 There are two system software packages used in this project e NI MAX Program is used to initially setup the WSN 9792 gateway Basic device settings such as network settings node connectivity etc are editable as long as the devices are on the same subnet Once the WSN gateway s settings are finalized MAX is no longer needed for device functionality e NI LabView 2011 is a graphical programming language developed by National Instrument for data acquisition and control In this project its networking feature is use to allow a client PC to interact with a
20. the pressure of the environmental air http www servoflo com pressure sensors suppliers amsys item 389 ams5812 html Also LabView allows for data exportation via UDP which would allow developers to create better looking GUIs to host data on a map like outline of a specific area or in friendlier looking graphs charts Ultimately WSN creates an opportunity for a medium distance monitoring system that not only lasts a long time but allows for better data management and custom GUI incorporation Page 25 7 Reference 1 National Instrument Labview User Manual April 2003 http www ni com pdf manuals 320999e pdf 2 National Instruments NI WSN 3212 User Guide and Specification October 10th 2013 http www ni com pdf manuals 372776d pdf 3 National Instruments NI 9792 WSN Real Time Gateway User Guide and Specification October 10th 2013 http www ni com pdf manuals 372998b pdf 4 Parallax Inc Ping Ultrasonic Distance Sensor October 10th 2013 http www robotics cs umass edu grupen 503 Projects 28015 PING v1 5 pdf 5 C Ruskai Remote Data Acquisition with NI WSN Ethernet Gateway May 28th 2013 http itech fgcu edu faculty zalewski projects files RuskaiLabview Wireless pdf 6 C Ruskai M Hannaford amp G Colas Remote Data Acquisition with NI Wireless Sensor Network December 15th 2011 http itech fgcu edu faculty zalewski projects files Wireless_Sensor_Network pdf 7 T Jeffrey amp J
21. trieve information from a sensor attached to a wireless node 2 analyze that information and do some arithmetic comparisons 3 use that information to instruct the program to trigger an event such as setting off an alarm or displaying a message to the user Creating this program remotely and uploading to the sensor nodes via gateway is also done In this project there are two main uses for the sensor network The first is retrieving information from a node Even though it may seem elementary retrieving information remotely about environmental stimuli is the main function of the sensor network In order to retrieve information from a node two things must be created in a LabView VI project The first is the project window This is a window in which information retrieved from the wireless node can be displayed For example a project window with a waveform chart displays the voltage retrieved from a range sensor Figure 7 As the distance between the object and the Ping sensor Untitled 2 Ele Edit View Project Operate Tools Window Help COIL Waveform Chart 54 Amplitude hee N o m 1 1 Untitled Project 1 My Computer Figure 7 Project Window decreases a corresponding voltage between 5V and OV is retrieved by LabView which then is displayed on a graph In order for the graph to operate correctly the block diagram must be setup A block diagram is the underlying program
22. vice Name ficas Device Type NI WSN 3202 Hardware Configuration ID ae Sample Interval Sensor Power 0 500 Always On Figure 15 Changing the sampling rate and power on time for the node Page 18 Node Properties X Channels Node Channels Channel Configuration Analog Input pange 7 5 to 5 volts v C AI Al2 LAIS Channel Attributes Attribute value Click lt Shift gt or lt Ctrl gt to select multiple channels Figure 16 Changing the voltages for the connect sensors Once the voltages are set to the correct values and the sampling rates are calibrated to the appropriate levels it is now possible to create the VI files which will extract the information from the nodes First navigate back to the project explorer window From there you need to right click the project gt new gt VI You will now be introduced to the LabView VI windows Figure 17 Page 19 Untitled 1 Dock Diagram on Untitiod Project 1441 19792 0169571L Ble Edt View popet Operate Jocs Window Help Sia lM p B alg gt 15t Application Fent Fax 307 CD Sab wy r IGHER EDUCATION DOARDE TETE O1695715 J007 7 gt S fje NiMI9792 0169571E 172 28 79 183 S E Wireless Sensor Network S Neder ID 1 19CAGCO NE WSN IO02 ap an Figure 17 VI creation page Once on the VI creation page you can drag a drop
Download Pdf Manuals
Related Search
Related Contents
Prestation de Service Unique (PSU) Guide Mode d`emploi Avis Technique 14/08-1312 EPP-200 Consola de Corte “Precision Plasmarc” PowerMust 400/600/1000 Offline /\9,r® - Summer Infant Ref 150 - Cahier 1 Toshiba ST-A20 SERIES Cash Register User Manual Copyright © All rights reserved.
Failed to retrieve file