Home

Sound Level Meter

image

Contents

1. You should not need to calibrate the Sound Level Meter for classroom use Calibration is possible but it will require access to a special calibrator not commonly available in the classroom This sensor is equipped with circuitry that supports auto D When used with LabQuest 2 LabQuest LabQuest Mini LabPro Go Link SensorDAQ TI Nspire Lab Cradle EasyLink or CBL 2 the data collection software identifies the sensor and uses pre defined parameters to configure an experiment appropriate to the recognized sensor Suggested Experiments Sound Level Studies You can collect sound level data in many real world situations for example you can e collect sound levels before during and after a concert or dance e collect sound levels throughout the day in a school hallway or shopping mall e use the Sound Level Meter to judge cheering contests at pep rallies e collect data outside and inside a car equipped with a stereo system e make a model of an ear and ear canal Measure sound levels at the ear drum when a headset is placed over the ear Repeat the experiment but place an earplug between the headset and the meter e Set up the Sound Level Meter to collect readings in a variety of situations Use the following chart to determine the acceptable duration for exposure to the sound level you measure 3 A table of the frequency bands for each octave band appears in the Additional References section of this manual The foll
2. All other marks not owned by us that appear herein are the property of their respective owners who may or may not be affiliated with connected to or sponsored by us py W Printed on recycled paper 12
3. Hz to 8000 Hz 0 1 dB 1 5 dB ref 94 dB 1 kHz DC 10 mV dB AC 1 0 Vrms corresponding to the top of the selected range 100 dB V 0 dB V How the Sound Level Meter Works The Sound Level Meter uses an electric condenser microphone mounted on the end of a shaft The output of this microphone is fed into a series of filters amplifiers integrators and adder circuits to produce a single sound pressure level measurement The Sound Level Meter uses a directional microphone which requires the instrument be pointed in the direction of the noise source unless ambient noise levels are being monitored Acoustical engineers organize the audio spectrum into sound octave bands The weighting switch on your Sound Level Meter is used to add or subtract different values to the octave band components The A weighted sound level discriminates against low frequencies in a manner similar to the response of the ear In this setting the meter primarily measures in the 500 to 10 000 Hz range It is the weighting scale most commonly used for OSHA and DEQ regulatory measurements The C weighted sound level does not discriminate against low frequencies and measures uniformly over the frequency range of 30 to 10 000 Hz This weighting scale is useful for monitoring sources such as engines explosions and machinery The sound levels measured with these two weightings have units of dBA and dBC respectively Calibration Information
4. displays noise levels in dB A low battery level indicator and an upper lower range indicator are also displayed The sensor comes with a foam windscreen The windscreen helps reduce the detection of false high signals caused by wind blowing across the microphone It also protects the microphone from dust and debris Panel Switches Maximum Hold Level Time Weighting Frequency Weighting Power Measurement Range Switch Power Measurement Range Switch This slide switch labeled O 35 90 75 130 turns the sensor on and sets the measurement range When set to the 35 90 range LO the sensor is designed to measure sound levels in the range of 35 to 90 dB When the switch is set to the 75 130 range HI the sensor is designed to measure sound levels in the range of 75 to 130 dB A range warning will appear if the measured sound is beyond the range of the current setting If this warning appears continuously set the switch to the appropriate range Time Weighting The S F switch just below the LCD sets the time weighting For normal measurements set the switch to the slow setting S For fluctuating noise set the weighting to fast F In the classroom you will probably set it to S Maximum Level Hold Setting the MAX RESET button to MAX sets the sensor meter to show the maximum weighted sound level In the classroom you will probably set it to RESET in which case the display will continually display the sa
5. as a uniform spectral level over the range of human hearing This means that every frequency between 20 Hz and 20 000 Hz has an equal energy level White noise sounds like it is rich in high frequencies but this is not the case This perception occurs because each successive octave is twice as wide as the one preceding it For example the 500 Hz octave band has width of 354 Hz The next octave the 1000 octave band has a width of 707 Hz The net result is that there is More energy in the high frequency components The sound of water and wind resemble white noise Pink noise is a variant of white noise Pink noise is white noise that has been filtered so that each octave has equal energy This is done to compensate for the increase in the number of frequencies per octave You can demonstrate the difference between pink and white noise using the Sound Level Meter Set the Sound Level Meter to measure C weighted sounds Pick several sounds that have the same C weighted sound level Now measure these same sounds with the A weighting Compare the difference between the two weightings for each sound om T T ami T C J O cI Static with an AM radio using A Weighting and C Weighting Sound Isolation Sound isolation is important in everyone s life People living near a freeway or an airport hear that difference when they go inside and close the door Acoustical engineers work with architectural engineer
6. ch can be downloaded from the Vernier web site www vernier com easy easydata html and then transferred to the calculator See the Vernier web site www vernier com calc software index html for more information on the App and Program Transfer Guidebook e DataMate program Use DataMate with LabPro or CBL 2 and TI 73 TI 83 TI 84 TI 86 TI 89 and Voyage 200 calculators See the LabPro and CBL 2 Guidebooks for instructions on transferring DataMate to the calculator e DataQuest Software for TI Nspire This calculator application for the TI Nspire can be used with the EasyLink or TI Nspire Lab Cradle e LabVIEW National Instruments LabVIEW software is a graphical programming language sold by National Instruments It is used with SensorDAQ and can be used with a number of other Vernier interfaces See www vernier com labview for more information NOTE Vernier products are designed for educational use Our products are not designed nor recommended for any industrial medical or commercial process such as life support patient diagnosis control of a manufacturing process or industrial testing of any kind Specifications Sensor Power Battery life Display Measurement range Frequency range Resolution Accuracy Output Stored calibrations slope intercept 2 electret prepolarized condenser microphone four AAA batteries 50 hours typical 3 2 LCD Low 35 dB to 90 dB High 75 dB to 130 dB 31 5
7. g Vernier LabQuest 2 Go Link CBL 2 or EasyLink Collecting Data with the Sound Level Meter This sensor can be used with the following interfaces to collect data e Vernier LabQuest 2 or original LabQuest a standalone device or with a computer e Vernier LabQuest Mini with a computer e Vernier LabPro with a computer or TI graphing calculator e Vernier Go Link e Vernier EasyLink e Vernier SensorDAQ e CBL 2 e TI Nspire Lab Cradle Here is the general procedure to follow when using the Sound Level Meter Connect the Sound Level Meter to the interface Start the data collection software The software will identify the Sound Level Meter and load a default data collection setup You are now ready to collect data Data Collection Software This sensor can be used with an interface and the following data collection software e Logger Pro 3 This computer program is used with LabQuest 2 LabQuest LabQuest Mini LabPro or Go Link e Logger Lite This computer program is used with LabQuest 2 LabQuest LabQuest Mini LabPro or Go Link A table of common sources of noise appears in the Additional References section of this manual e LabQuest App This program is used when LabQuest 2 or LabQuest is used as a standalone device e EasyData App This calculator application for the TI 83 Plus and TI 84 Plus can be used with CBL 2 LabPro and Vernier EasyLink We recommend version 2 0 or newer whi
8. mpled reading Setting this switch to MAX does not affect the output signal sent to the data collection interface Frequency Weighting The A C switch is used to set the weighting scale A weighted setting is the sound level value that most closely matches that of the human hearing range It is the weighting scale most commonly used for Occupational Safety and Health Administration OSHA and Department of Environmental Quality DEQ regulatory measurements The C weighted scale is useful for monitoring sources such as engines explosions and machinery This setting would also be used if you wish to use the Sound Level Meter to get the total unweighted sound level of the noise source Operating the Sound Level Meter Here are the general operating procedures 1 Slide the power switch to the appropriate range 2 Set the time weighting switch to S 3 Set the maximum level hold switch to RESET 4 Set the frequency weighting to A The Sound Level Meter functions as a standalone device and you can monitor sound levels by reading the LCD panel If you want to collect sound level data you need to connect the Sound Level Meter to a data collection interface Connecting the Sound Level Meter to Vernier Products The Sound Level Meter package includes a removable cable order code CB SLM Connect the mini plug end of the cable into the bottom of the sensor Connect the other end to the data collection interface e
9. owing chart shows the sound level exposure rates set by the OSHA Occupational Noise Exposure Standard In a work environment for example it is acceptable to be exposed to 90 dB for eight hours as measured on the A weighted scale If the sound level is 100 dB the acceptable duration is two hours Duration per day Sound level slow response hrs dBA 8 0 90 6 0 92 4 0 95 2 0 100 1 0 105 0 5 110 0 25 115 Environmental Measurements Environmental measurements can be made anywhere people spend significant amounts of time such as their residence The DEQ noise standard uses statistical sound level values that are applied to residential measurements One of these measurements is the equivalent hourly sound level Leg You can collect sound level data with the Sound Level Meter set on A weighting and slow response If you collect data for an hour and determine the average you will have an estimate of Leg These values can then be compared to the local DEQ standards Room Acoustics One goal of acoustic engineers is to tune a room for a specific purpose A room tuned for lecture will be tuned differently than a library The Sound Level Meter can be used to investigate acoustics in a room One of the indicators of good room acoustics is the length of time sound stays in the room Hard surface in a room allow sound to reverberate for relatively long periods of time Soft surfaces dampen
10. s to select materials that attenuate sound For example a wall constructed with gypsum board on a wooden frame will attenuate sound differently than a cinder block wall with the same area A window with a single pane of glass will attenuate sound differently than a window with two panes of glass separated by an air space You can test this by doing the following experiment Place a radio in a room that has an outside wall and a window Tune the radio to an unused AM frequency so that you hear only static Turn the volume up so that you can just hear the sound through the wall Measure the sound level at the wall Next measure the sound level at the window and then measure the sound level within the room How much did the sound level change Did you notice a difference in frequency content Additional References Web Sites Here are some web sites that provide additional information on sound level measurement This site provides a brief www tir com ms l i introduction to acoustics This site expands on the www nonoise org library whonoise whonoise htm topics presented above Example Sound Levels Sas Sound Pressure Level dBA Large Rocket nearby 180 to 194 Jet Aircraft 150 Shotgun Blast 145 Propeller Aircraft 140 Pneumatic Riveter Threshold of Pain 130 Rock Concert Thunder 120 Construction Noise 110 Subway Train 100 Heavy Truck 90 Noisy Re
11. sound Level Meter Order Code SLM BTA The Sound Level Meter measures sound level in decibels It can be used for activities such as e environmental noise studies e sound level comparisons e investigating room acoustics e sound isolation modeling e sound propagation modeling Inventory of Items Included with the Sound Level Meter Check to be sure that each of these items is included in your Sound Level Meter package e Sound Level Meter e Wind screen black foam cover for the sensing element e 4 AAA batteries preinstalled in the meter e Cable to connect the sensor to a data collection interface order code CB SLM NOTE Vernier products are designed for educational use Our products are not designed nor recommended for any industrial medical or commercial process such as life support patient diagnosis control of a manufacturing process or industrial testing of any kind Sound Level Meter Description The sensing microphone on the Sound Level Meter is located at the end of the silver barrel at the top of the meter Below the LCD you will find three switches labeled S F MAX RESET A C Below these switches you will find the power measurement range switch Further description of these switches follows The battery compartment is located on the back of the Sound Level Meter A signal output terminal is located on the bottom of the meter The output of this terminal is sent to data collection interface The LCD panel
12. staurant 80 Busy Traffic Normal Radio 70 Normal Conversation Dishwasher 60 Quiet Office 50 Library 40 Soft Whisper 30 Rustling Leaves 20 Normal Breathing 10 Threshold of Hearing 0 Standard Octave Band Frequencies Ranges with Corresponding A and C Weighting Values Center Frequency Effective Band A Weighting C Weighting Hz Hz dB dB 31 5 22 1 44 2 39 4 3 0 63 44 2 88 4 26 2 0 8 125 88 4 177 16 1 0 2 250 177 354 8 6 0 500 354 707 3 2 0 1000 707 1 414 0 0 2000 1 414 2 828 12 0 2 4000 2 828 5 657 1 0 0 8 8000 5 657 11 314 1 1 3 0 Warranty This product is manufactured by OMEGA Engineering OMEGA warrants it to be free from defects in materials and workmanship for a period of 13 months from the date of shipment to the customer This warranty does not cover damage to the product caused by abuse or improper use 10 11 Measure Analyze Learn Vernier Software amp Technology 13979 S W Millikan Way e Beaverton OR 97005 2886 Toll Free 888 837 6437 e 503 277 2299 e FAX 503 277 2440 info vernier com e www vernier com Rev 6 5 2012 Logger Pro Logger Lite Vernier LabQuest 2 Vernier LabQuest Vernier LabQuest Mini Vernier LabPro Go Link Vernier EasyLink and other marks shown are our trademarks or registered trademarks in the United States TI Nspire CBL 2 TI GRAPH LINK and TI Connect are trademarks of Texas Instruments
13. the reverberation For example if you clap your hands in an empty gymnasium you will hear a relatively long echo Repeat the experiment in a library music room or concert hall and you will hear a shorter echo Use the Sound Level Meter and a computer or calculator to try this experiment 1 Set the equipment up to collect data for 5 seconds 2 Use the triggering feature of the software so the data collection is initiated with a loud sound 3 Collect a set of data and examine the graph Paragraphs 29 CFR 1910 95 Table G 16 of the OSHA Occupational Noise Exposure Standard 4 Determine how long it takes the sound level to fall by a specific dB level from the peak level 5 Repeat the experiment in a different room In this example room acoustics were investigated in a sound booth and in a large room with hard flat surfaces Two boards were struck together to produce a loud sound The sound level in the sound booth dropped 20 dB in 0 35 s In the room with bare walls it took 0 51 s for the sound level to drop 20 dB m wo a aw mw I gam pe co C Dampening of Sound in Two Rooms The Color of Noise You have probably heard the terms pink noise and white noise You probably cringe when you hear fingernails being drawn across a chalkboard but think nothing of lawn mower noise These sounds may all have the same sound level but the frequency content is vastly different White noise is a sound that h

Download Pdf Manuals

image

Related Search

Related Contents

Electrolux ESL6211LO  Compaq GS140 User's Manual    - Icon Heath & Fitness  Valueline VLSP40942M coaxial connector  GWH 425 PN  USER MANUAL  Platinum HSC Retroviral Expression System  取扱説明書  MODE D`EMPLOI ADDITIONNEL FRANÇAIS AJOUT D  

Copyright © All rights reserved.
Failed to retrieve file