Home

Network Gateway Implementation and Operation

image

Contents

1. N Figure 4 2 Roll Right View of NG Status Detail Display NG Implementation and Operation 4 2 12 96 4 2 2 4 2 2 NG Object Detail Status Display Access method From the Main Menu select SYSTEM STATUS From System Status select GATEWAYS select STATUS DETAIL select VIEW OBJECT DETAIL 12 Apr 91 15 11 57 Aux Node Status Detail Display LCNs with Aux Node Status messages pending are highlighted in RE Figure 4 3 NG Object Detail Status Display This display shows each of the configured remote systems on this PIN Each is identified by its System Title and its Local System Number The box for an individual remote system shows in red if there are any status messages pending that concern that LCN Selecting one of the remote system boxes produces the display showing the local LCN s view of that remote LCN NG Implementation and Operation 4 3 12 96 4 2 3 4 2 3 View of Connections to Remote LCN Access method From the Main Menu select SYSTEM STATUS From System Status select GATEWAYS select STATUS DETAIL select VIEW OBJECT DETAIL From View Object Detail select a Remote LCN NG 01 s VIEW OF CONNECTIONS TO LCN 02 CONNECTION EVENT CONNECTION STATUS No Connection Events Occurred Mutually Disconnected LCN 01 FE LCN 02 FW FUELS EAST FUELS WEST RESPONSIBLE SERVER 1 NG 01 ADDR 44 NG 00 a ADDR 00
2. x _ 1 Network Load 8 The constant 8 is required by the Token Bus Controller Network Load is the percentage of the network load above which the nodes stop transmitting frames from the designated priority TRT in octet times is the token rotation time at zero percent network load i e no data messages SLOT TIME TRT Number of Nodes 26 2 The constant 26 represents the number of octets in a token frame DEFAULTS FOR TARGET ROTATION TIME Priority 1 8190 octet times Priority 2 6800 octet times Priority 3 3500 octet times NOTE These times are calculated based on 64 nodes and 13 miles of copper cable on each branch for fiber NG Implementation and Operation A 3 12 96 A 5 Honeywell recommends that the network load for priorities 1 through 3 be set at 75 65 and 50 respectively Using these values the target rotation times will be 1 TRT PRIORITY 1 TARGET ROTATION TIME x 0 50 TRT 1 0 75 8 1 TRT PRIORITY 2 TARGET ROTATION TIME x 0 35 TRT 1 0 65 8 1 TRT PRIORITY 3 TARGET ROTATION TIME x 0 25 TRT 1 0 50 8 IMPORTANT The numbers derived from the above equations for the target rotation time for each priority must be an integer smaller than 8190 and should be decreasing The 8190 limit is a Token Bus Controller requirement A 5 TARGET ROTATION TIME FOR RING MAINTENANCE This parameter is calcul
3. ALTERNATE SERVER 2 NG 03 ADDR 45 NG 00 ADDR 00 Figure 4 4 NG View of Connections to a Remote LCN Display This display presents a comprehensive view of the connection status between the local responsible and alternate NGs and the responsible Server 1 and alternate Server 2 NGs at the selected remote system NG Implementation and Operation 4 4 12 96 4 2 3 The following figure repeats the preceding detail display and adds reference numbers that identify its key fields 1 NG 01 s VIEW OF CONNECTIONS TO LCN 02 q 2 3 4 CONNECTION EVENT CONNECTION STATUS No Connection Events Occurred Mutually Disconnected 6 8 5 t LCN 01 FE LCN 02 FW 9 7 1 gt FUELS EAST i i FUELS WEST a 10 RESPONSIBLE SERVER 1 NG 01 ADDR 44 NG 00 ADDR 00 ALTERNATE i SERVER 2 NG 03 ADDR 45 NG 00 ADDR 00 Figure 4 5 NG View of Connections to a Remote LCN Display with Callouts Added The reference numbers in Figure 4 3 correspond to the following field definitions 1 The Local System Number of the local NG that is supplying the data for this display and corresponds to the NG you selected before you selected STATUS DETAIL on the Gateways display 2 The Local System Number of the remote system you selected on Page 1 of the Aux Node Status Detail display NG Implementation and Operation 4 5 12 96 3 10 11 1
4. display reached from the Main Menu by way of the System Wide Values Menu Redefinition of the values for the broadband network parameters is an additional step that may be necessary in the configuration of an NG For networks over 10 miles long it is essential to recalculate the value for the parameter SLOT TIME otherwise the network may collapse Change of network parameters should not be necessary for cable lengths up to 10 miles 16 kilometers and with up to 10 repeaters per branch of the network Incorrect recalculation and change of the network parameters can cause network collapse Thus it is recommended that these changes be made only by the Honeywell services group responsible for the network configuration The information necessary for recalculation of network parameters is located in Appendix A of this document Network parameter redefinition is done through the NG MODEM DEFINITION display reached from the MAIN MENU by way of the SYSTEM WIDE VALUES menu Following a change to values in the modem definition you must shut down all NG nodes on the PIN that have modems of the same frequency Only after all of these NGs have been shut down and configured to the same parameters both on the local LCN and on all the remote systems can the NGs be restarted 3 4 NETWORK STARTUP Startup or restart of a PIN requires some coordination between the local LCN and each remote system The establishment of communications between any p
5. e the System Title 2 characters at least one of which must be an alpha e the System Description 20 characters e the first half of the optional PIN global address future You can use form SW88 415 page 7 to record this data in advance of the configuration session at the US You will need one copy of this form for each LCN on the network Sample forms suitable for copying are located in the publication Network Forms SW88 405 Step 2 Add each individual local NG to the system s NCF through the NETWORK GATEWAY MODULE display reached from the Main Menu via the LCN NODES and SELECT NODE TYPE displays During this process you will for each local NG assign e the local LCN node address for communications on the LCN e the PIN local address for communications on the PIN e the second half of the optional PIN global address future and e the PIN cables A or B or A and B NG Implementation and Operation 3 1 12 96 3 2 You can use the form SW88 409 page 10 to record this data in advance of the configuration session at the US You will need one copy of this form for each NG on the network Step 3 Identify the remote components of the network through the NG Remote Systems menu reached from the Main Menu via the System Wide Values Menu The components to be specified for each remote system LCN are e the remote system s identification number 1 64 e the remote system s PIN title 2 characters the fir
6. cable cable A status is always in the lower left hand part of the box and cable B status is always shown in the lower right hand part of the box A blank in either the lower left hand or lower right hand portion of the box indicates that the associated cable A or B is not configured NG Implementation and Operation 4 10 12 96 4 3 Figure 4 9 NG Remote System Communication Status Display left hand column The left hand column of this display shows up to eight of the possible 63 remote systems that could communicate with the local LCN Each box in this column serves as a header for the 10 by 8 matrix row to its right Each block of the column shows the System Name and the Local System Number of a remote system plus the LCN node address of the local NG that is assigned as the responsible communication path to this remote system Each of the row header boxes in the left hand column is an individually selectable target When one is selected additional targets appear on the bottom row of the display To display the next eight remote systems press Page Fwd The last page may not be full depending on the number of remote systems configured NG Implementation and Operation 4 11 12 96 4 3 CONNECT DISCOUNT CANCEL ONLY USE CONNECT PRIMARY JONLY USE ALL ALL ONLY A NET B REMOTE NET A ALT NG Figure 4 10 NG Remote System Communication Status Display bottom row of boxes s915 The bottom row of boxes prov
7. safety margin PD Propagation delay time in microseconds per unit cable length mile kilometer etc The actual propagation delay time depends on the type of cable used However the values below are close enough that they can be used for SLOT TIME calculation for any type of cable PD 8 usec per mile if cable length is calculated in miles PD 5 usec per kilometer if cable length is calculated in kilometers PD 1 5 usec per 1000 feet of cable if cable length is calculated in 1000 foot units CL Cable length in the longest branch of the network from headend to the terminator Honeywell does not offer NG in Broadband only in Fiber 10 Mbit second and Carrierband UCN 5 Mb second This parameter must use the same unit of measurement miles kilometers or 1000 feet units as the cable length for the PD parameter as described above RD Repeater s delay in microseconds This is the propagation delay through the repeaters in the branch with the most repeaters OT Octet Time Octet time is the time required to transmit receive each extra 8 bits of data on the network OT 8 microsecond for 10 Mbit second network 1 6 microseconds for 5 Mbit second network Default Slot Time 625 octets NOTE The default slot time is large enough to accommodate long networks using Fiber or Carrierband technology However it can be recalculated based on the network characteristics of each site NG Implementation and Operati
8. when the node state is Pwr On or Qualified New remote systems can be added on line by selecting System Wide Values then NG Remote Systems and adding the remote LCN by specifying the necessary data A remote system can only be deleted off line Additionally the Local System Number System Title or System Description of a remote system can only be changed off line Modification of the NG Security Database occurs without the need to disconnect the remote systems The effect of these security changes is immediate and can result in file parameter access timeouts Broadband only Modification of the NG Modem definition causes the affected NG to disconnect from all of its remote systems Following a change to values in the modem definition you must shut down all NG nodes on the PIN that have modems of the same frequency Only after all of these NGs have been shut down and configured to the same parameters both on the local LCN and on all the remote systems can the NGs be restarted Change in the selection of PIN network cable A or B to be used for sending messages to a particular remote does not cause disconnection from the remote system All NGs on the system are notified as part of the installation and respond by sending the next message on the specified cable When making on line NCF changes that affect NG Remote Systems it is important to reload all local nodes showing moderate or high impact after the new NCF has been
9. 3 1 2 1 3 4 Glossary Glossary 2 2 Glossary 3 3 2 2 1 3 4 Section 4 Section 2 3 4 1 3 1 3 4 Glossary 1 1 Glossary 12 96 Index Network rules Network startup Plant Information Network see PIN Primary NG Server Priority of NG functions Reconfiguration of PIN network References Remote LCN see remote system Remote System Communication Status Display Remote system Response time Responsible NG Restrictions tag name length Secondary NG Server Security Slot Time value Software configuration steps Startup of PIN network System Description System System Title Tag name length restrictions Target Rotation Time Token Hold Time Tuning of modem parameter values NG Implementation and Operation Index 2 _ n n ary U Q70 w BRARAD4 Rw fy ww D ee A 2 2 Glossary Glossary 2 2 Glossary 1 3 5 A 4 A 5 A 3 Appendix A 12 96 FAX Transmittal FAX No 602 313 4842 TO Maria Nelson Total pages 56 including this page Reader Comments Title of Document Network Gateway Implementation and Operation Document Number NGO9 510 Issue Date 12 96 Comments FROM Name Date Title Company Address City State ZIP Telephone FAX You may also call 800 822 7673 available in the 48 contiguous states except Arizona in Arizona dial 602 313 5558 or write to Honeywell Inc Industrial Automation and
10. Gateway its characteristics and its functions Section 2 Provides the framework for the planning of a Plant Information Network that is used to connect two or more TPS Local Control Networks Section 3 Discusses each of the steps required to configure Network Gateways on a local LCN to prepare for communication with other LCNs over the Plant Information Network Section 4 Discusses the displays that are available for network operation and problem analysis Appendix A Explains how to change modem definition parameters when required Appendix B Is a glossary of terms and acronyms specific to the Network Gateway Change bars are used to indicate paragraphs tables or illustrations containing changes that have been made to this manual Pages revised only to correct minor typographical errors contain no change bars NG Implementation and Operation 12 96 NG Implementation and Operation 12 96 Table of Contents 1 INTRODUCTION Network Gateway Description 1 NG Performance and Throughput 2 Other NG Characteristics Plant Information Network Description 1 PIN Characteristics 2 PIN Layouts How the NG and PIN Work Together 1 Rules and Limitations 2 Local and Global PIN Addressing 3 LCN Data Security 4 Network Load Leveling 5 Tag Name Length Restrictions 6 Software Configuration Choices Options References 2 PLANNING THE NETWORK Define Network Characteristics 1 Local LCN with Multiple NGs 2 Remote System with Mult
11. System Communication Status Display is To interpret contents of this display let s first break it into its major parts e the heading e the top row of boxes e the left hand column of boxes e the bottom row of boxes e the 10 column by 8 row matrix of boxes NG Implementation and Operation 4 9 12 96 4 3 The heading consists of fixed text NG REMOTE SYSTEM COMMUNICATION STATUS and a variable part composed of the Local System Title in the above example FC the Local System Number 12 and the local System Description FUELS CENTRAL NGO1 NG02 NGO3 NG04 NG05 NGO6 NGO7 NG08 NGO09 NG10 Figure 4 8 NG Remote System Communication Status Display top row of boxes The top row of of boxes in this display shows the 10 possible NGs for the local LCN each identified by its local LCN node address The LCN node address of the NG used to call up this display is shown in reverse video The number in the upper half of each box identifies the NG s PIN local address The characters in the lower half represent the worst case status of communication for that NG with all other remote NGs with which it communicates e A cable A status is good e A cable A status is fair e B cable B status is good e B cable B status is fair e cable A or B has been disabled status is good cable A or B has been disabled status is fair e cable A or B has failed Note that in this top row
12. both an A cable and a B cable for the PIN The B cable is an option that improves system availability requirements in the event of A cable failure Because this example uses a single NG at each LCN the failure of either NG would cause the LCNs to loose communication NG Implementation and Operation 1 4 12 96 1 2 2 A B LCN 1 Cables Modems Plant Information Network Process PIN Cables Networks LCN 2 Cables Process Networks Figure 1 2 Block Diagram of an Improved LCN to LCN Interconnection Figure 1 2 shows an improved interconnection that provides alternate routing capability by placing two NGs on each LCN Note that the NGs are not redundant Each NG is a separate node on both the LCN and PIN networks and software configuration determines what communication traffic runs on each and selects alternate paths for communication This allows for continued system operation even if one NG should fail NG Implementation and Operation 1 5 12 96 1 2 2 System 1 LCN System 2 LCN NG NG NGI NGI NGI NGI FO Modemi FO Modem FO Modem FO Modem 5 B A Star Network Network Couplers Splitter Ce FO
13. 2 13 14 15 4 2 3 Under the heading CONNECTION EVENT is a message that identifies the most recent connection event that has occurred relative to this local remote system pair The event messages that can appear here are e No Connection Events Occurred e Disconnected By Request e Disconnected By System e Connection Rerouted By User e Connection Rerouted By System e Connection By User e Remote Requested Connection e Requesting Connection Under the heading CONNECTION STATUS is a message that identifies the status of the connection between the local LCN and the remote system The status messages that can appear here are e Connected To Remote e Remote Connected to this LCN e Mutually Connected e Mutually Disconnected The Local System Number assigned to the local LCN The System Title assigned to the local LCN The System Description assigned to the local LCN The Local System Number assigned to the remote system The System Title assigned to the remote system The System Description assigned to the remote system Indicates any change of the responsible NG assignment for the local LCN since the previous configuration The possible values are e blank no changes since the last configuration activity e NEW there was not a responsible NG and one has been assigned e CHANGED a different responsible NG has been assigned e DELETED there was a responsible NG but it has been de assigned The LCN node
14. Control Automation College 2820 West Kelton Lane Phoenix AZ 85023 3028 Honeywell Industrial Automation and Control Helping You Control Your World Automation College 2820 W Kelton Lane Phoenix AZ 85023 3028
15. Honeywell Network Gateway Implementation and Operation NGO09 510 Tetal Plant Honeywell Implementation Network Gateway Network Gateway Implementation and Operation NGO9 510 Release 500 12 96 Tetal Plant Copyright Trademarks and Notices Copyright 1995 1996 by Honeywell Inc Revision 02 December 20 1996 While this information is presented in good faith and believed to be accurate Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer In no event is Honeywell liable to anyone for any indirect special or consequential damages The information and specifications in this document are subject to change without notice TotalPlant and TDC 3000 are U S registered trademarks of Honeywell Inc Other brand or product names are trademarks of their respective owners About This Publication This publication supports TotalPlant Solution TPS System network Release 500 through 520 TPS is the evolution of TDC 3000X This publication is intended for the following types of users e Engineers for planning and configuring Plant Information Networks e Operators for network startup and restart e Service technicians for network analysis and troubleshooting The sections in this publication are organized as follows Section 1 Introduces the Network
16. IN Address is physically pinned on the NG s PIN interface board If the NG node is connected to a two cable PIN both of the PIN interface boards in the node must be pinned to the same PIN address An additional PIN address feature provides for added security on multi user PIN s This additional PIN addressing feature is called Global Addressing and is optional With Global Addressing enabled all messages will carry a Global Address in addition to the normal PIN address NG personality software will insist that all incoming messages match a unique configured in NCF Global Address value and the physically pinned PIN address before it is accepted See step 2 at heading 3 2 for software configuration details Note that global addresses are not fully implemented as of Release 500 and should be left blank on all data entry displays where PIN address information is entered The global form of address uses a 48 bit number which is required to be unique throughout the world These numbers are assigned in blocks of one million by IEEE Honeywell has obtained a block of these numbers and assigns each customer a subset of numbers from this block The global address number is divided into two parts to reduce the number of digits entered during configuration and thus reduce the chance for errors The upper part is known as the PIN Global Vendor Number and is common to all NGs on a given network The lower part is known as the PIN Glo
17. Modem FO Modem FO Modem FO Modem FO Modem NGI NGI NGI i NGI NGI NG NG NG LCN System 3 LCN System 4 LCN System 5 LCN System 6 52582 Figure 1 3 Block Diagram of a Typical PIN Implementation Figure 1 3 shows a broader application of the PIN It illustrates how more than two LCNs could be interconnected Note that this example still shows only two NGs on each LCN The LCN software supports up to 10 NGs per LCN thus permitting a wide variety of possible communications paths NG Implementation and Operation 1 6 12 96 1 3 1 3 HOW THE NG AND PIN WORK TOGETHER 1 3 1 Rules and Limitations e Each LCN can communicate with every other LCN on the PIN e An NG on an LCN can be connected to only one PIN e An LCN can be connected to a PIN by up to 10 Network Gateways e There can be up to 64 NGs per PIN e Use of multiple NGs on LCNs reduces the number of LCNs that can be connected to a PIN since each NG takes one of the 64 available network addresses For example a 16 LCN network with 4 NGs on each LCN would require all 64 of the available PIN addresses Do not attempt to access removable media on a remote system This functionality is not supported and will cause NG s to crash in releases prior to R430 1 3 2 Local and Global PIN Addressing Each node NG connected to the PIN must be configured with a unique PIN address This NG Local P
18. address of the current responsible NG at the local LCN The previous responsible NG for the local LCN This value will not appear if no changes have occurred Indicates that cable A has been configured for the local NG Indicates that cable B has been configured for the local NG NG Implementation and Operation 4 6 12 96 16 17 18 19 20 21 22 23 24 4 2 3 This line from the local NG provides two indications First its presence indicates that a connection to the remote NG using this path is possible Second its color indicates the transmission quality of the communication path e Black cable quality information not available e Green good e Yellow suspect degraded e Red failed The arrow if present indicates that the last message in the direction indicated by the arrow occurred on this cable The arrowhead will be the same color as the line leading from the local NG The arrow if present indicates that the last message in the direction indicated by the arrow occurred on this cable The arrowhead will be the same color as the line leading from the remote NG This line from the remote NG provides two indications First its presence indicates that a connection to the local NG using this path is possible Second its color indicates the transmission quality of the communication path e Black cable quality information not available e Green good e Yellow suspect degraded e Red f
19. ailed Indicates that cable A has been configured for the remote NG Indicates that cable B has been configured for the remote NG The PIN local address of the current responsible NG Server 1 at the remote system The previous responsible NG for the remote system This value will not appear if no changes have occurred Indicates any change of the responsible NG Server 1 assignment for the remote system The possible values are e NEW e CHANGED e DELETED The definitions for the local Alternate and remote Server 2 NG blocks are almost identical to those for the local Responsible and remote Server 1 NG blocks Use the DISP FWD key to move to the next node detail display NG Implementation and Operation 4 7 12 96 4 2 4 4 2 4 NG Status Messages Display Access method From the Main Menu select SYSTEM STATUS From System Status select GATEWAYS select STATUS DETAIL From Status Detail select PIN COMM then om Sats petal i Setectviewourecroeran 01 Nov 91 13 59 58 1 AUS MODE STATUS MESSAGES PENDING AGAINST LCN l Cable quality from Resp NG To Resp Server over Cable A is failed Figure 4 6 NG Status Messages Display This detail display provides up to 20 current network status messages resulting from configuration or operation errors at the local LCN Each message is specific to the problem and is intended to be self explanatory Each of these messages is due to one of four types of error e On line NCF con
20. air of LCNs on the PIN following NG configuration at both requires that each LCN must request connection with the other Whenever an NG comes into operation it attempts automatic connection of the local LCN to any remote LCNs on the PIN that it is the responsible NG for Successful connection of the local LCN to each remote LCN requires PIN address assignment validations at both the local and the remote LCN Operator connection of LCNs via the PIN can be done through the NG REMOTE SYSTEM COMMUNICATION STATUS display reached from the MAIN MENU by way of the SYSTEM STATUS display From this display you can connect to or disconnect from all remote systems by a single request or connect selectively to an individual remote system Additional information about the NG Remote System Communication Status display can be found in the network operation section of this manual NG Implementation and Operation 3 4 12 96 3 5 3 5 NETWORK RECONFIGURATION The following restrictions apply to PIN related NCF configuration changes e An LCN s Local System Number can be assigned on line only once See caution below Once a nonzero Local System number has been configured that LCN s Local System number must be changed off line This means that following the update every node on the local LCN must be shut down and restarted e Modification to the configuration of an existing NG node is not allowed You can add new nodes and delete existing nodes
21. al Control Network Local Control Network LCN The TPS communications bus that connects multiple processing nodes A Network Gateway NG is one such node type Local LCN Term used to differentiate a host LCN from other remote systems during PIN planning and configuration The PIN configuration information is entered separately at each individual LCN thus each LCN is local for one configuration session and a remote for all others Local System Number A two digit number 1 64 that uniquely identifies an LCN system on a PIN Network Gateway NG An LCN node used to exchange information between the local LCN and one or more remote systems Currently the list of supported remote systems is limited to TPS Local Control Networks The NG interconnects with other systems through an open system Plant Information Network PIN running an IEEE 802 4 protocol on either a 5 Mb s Carrierband network a 10 Mb s Broadband network or a 10 Mb s fiber optic network Network Gateway Server Communication with a remote system involves the use of a local Network Gateway that communicates with a remote Network Gateway server both of which are connected to the same PIN When the target system is an LCN the remote Network Gateway Server is a Network Gateway node NG Abbreviation of Network Gateway PIN Abbreviation of Plant Information Network PIN global address An optional method of PIN node identification that is not currently suppo
22. and alternate server NGs to our hypothetical network configuration Local Primary Alternate LCN 1 1 1 AAA W W UW NNN NG 17 18 19 21 22 23 25 26 27 29 30 31 NG 18 19 20 22 23 24 26 21 28 30 31 32 NG Implementation and Operation Remote LCN RNR BWR AUN WNre 2 2 Responsible Server 5 NG 21 9 NG 25 13 NG 29 1 NG 17 10 NG 26 14 NG 30 2 NG 18 6 NG 22 15 NG 31 3 NG 19 7 NG 23 11 NG 27 Alternate Server 6 NG 26 10 NG 26 14 NG 30 2 NG 18 11 MG 27 15 MG 31 3 NG 19 7 NG 23 16 NG 32 4 NG 20 8 NG 24 12 NG 28 12 96 2 1 3 Cable Selection at the Local LCN For each local NG responsible and alternate pair you will have to define which cable A B is primary for transmission This adds the final element to our hypothetical configuration Local i i Alternate Remote Responsible Alternate LCN Cable NG NG LCN Server Server 1 A 17 18 2 5 NG 21 6 NG 22 1 A 18 19 3 9 NG 25 10 NG 26 1 A 19 20 4 13 NG 29 14 NG 30 2 B 21 22 1 1 NG 17 2 NG 18 2 B 22 23 3 10 NG 26 11 NG 27 2 B 23 24 4 14 NG 30 15 NG 31 3 A 25 26 1 2 NG 18 3 NG 19 3 A 26 27 2 6 NG 22 7 NG 23 3 A 27 28 4 15 NG 31 16 NG 32 4 B 29 30 1 3 NG 19 4 NG 20 4 B 30 31 2 7 NG 23 8 NG 24 4 B 31 32 3 11 NG 27 12 NG 28 The preceding example is not intended to be a recommendation Rather it was chosen to show the type of planning that must go into y
23. ated by using the equation for token rotation time using the network load at 40 1 TRT x 0 20 TRT 1 0 40 8 TARGET ROTATION TIME FOR RING MAINTENANCES IMPORTANT The resulting value must be an integer value smaller than 8190 DEFAULT 3500 octet time A 6 MAXIMUM INTER SOLICIT COUNT The MAXIMUM INTER SOLICIT COUNT parameter controls how often the nodes on the network try to extend invitation to the other nodes to join the token ring The value for this parameter should be selected as large as possible so that the band within an established network is not wasted The range of values for this parameter is 16 through 255 DEFAULT 250 NG Implementation and Operation A 4 12 96 GLOSSARY Appendix B This appendix explains terms and acronyms unique to the Network Gateway For a complete glossary of TotalPlant Solution TPS System terms and acronyms consult Appendix A of the System Overview SW70 400 Alternate NG The NG selected as the alternate communications path between the local system and a remote system connected to the same PIN There must be at least two NGs at both the local and the remote system in order to establish responsible and alternate NGs Alternate NG Server tThe alternate NG server is another name for the remote LCN s alternate Network Gateway It is described in terms of its PIN local address LCN node address A two digit number that uniquely identifies a node e g an NG ona TPS Loc
24. bal Vendor Number Offset and is specific to a single NG on the network 1 3 3 LCN Data Security Each local LCN defines its own data access read write security through restrictions placed on remote access to local data During configuration of each local LCN you will establish specific limitations on each remote system whether it can both read and write read only or have no access at all to the LCN being configured You then can establish exceptions to these access limitations either more or less restrictive that will apply to individual files and nodes on the local LCN Security is only checked on requests coming in to the LCN from the PIN not on requests going to the PIN from the LCN NG Implementation and Operation 1 7 12 96 1 3 4 1 3 4 Network Load Leveling Input to an LCN can be load leveled by having different LCNs use different NGs as receivers at a target LCN Output from an LCN can be load leveled by having different NGs associated with various remote systems When dual cables are used a primary cable for output from the local LCN to each individual remote system is specified By dividing the load between Cable A and Cable B throughput is increased and response time diminished 1 3 5 Tag Name Length Restrictions The following limitations affect transfers between LCNs that use different tag name lengths e A point data request from an LCN using the short name form eight characters or less sent to an LCN using
25. e how it relates to each other system on the PIN At the local LCN you define communication routing with each other system and define data access restrictions to be placed on each of the other systems For each remote system LCN that will be communicated with you must be prepared to describe it by a Local System Number Local System Title and Local System Description You then must specify which local NG and which PIN cable A or B will be used to transmit to each individual remote system When the local LCN has more than one NG you can define a second NG as an alternate transmitter to be used if the responsible primary NG becomes unavailable You also must identify by PIN local address which NG on the remote system will be the primary receiver If the remote system has more than one NG you can also specify an alternate receiver Use of the optional PIN global address is not yet implemented Section 2 of this manual will take you through the detailed steps required for the planning of a PIN network that connects two or more LCNs via Network Gateways 1 4 REFERENCES The initiation of communications that use the NG is by other nodes on the LCN such as the AM or US How these nodes initiate these data transfers and how they use the information gathered is documented in the user manuals associated with individual LCN node types such as the AM CG and US and with CM50S Details of how these functions are used can be found within thes
26. e publications e Application Module Control Functions AM09 502 e Application Module Implementation Guidelines AM12 510 e Control Language Application Module Reference Manual AM27 510 e CM50S User Manual CM1 1 530 e Computer Gateway User Manual CG11 510 e Process Operations Manual SW11 501 Other publications that contain information that you will need in implementing a Plant Information Network are e Network Data Entry SW11 505 e Network Forms SW88 505 e Network Form Instructions SW12 505 e Network Gateway Site Planning and Installation NGO2 500 NG Implementation and Operation 1 9 12 96 NG Implementation and Operation 1 10 12 96 PLANNING THE NETWORK Section 2 This section provides you with the information necessary to plan the layout of a PIN that will connect two or more LCNs 2 1 DEFINE NETWORK CHARACTERISTICS Start by preparing a diagram similar to Figure 1 3 that shows the following network characteristics e The number of LCNs to be connected by this Plant Information Network 2 64 e The number of NGs on each LCN 1 10 e Single or dual A B cables connecting each NG to the PIN When there is more than one NG per LCN and or more than one cable connecting nodes to the PIN you will need to plan for the various combinations of communication routing that the configuration will allow The primary variable is the number of NGs connected to each LCN 2 1 1 Local LCN with Multiple NGs When there are
27. ears in the right hand quarter The status indicators are A status of cable A is good A status of cable A is fair B status of cable B is good B status of cable B is fair cable A or B has been disabled status is good cable A or B has been disabled status is fair _status of cable A or B is degraded blank not configured Inverse video in the box representing the active local NG is used to show the status of software connection between the local and remote systems The inactive local NG box is always shown in normal video For the purpose of indicating connection status each box in the matrix is divided into upper and lower halves The rules are Box normal neither the local LCN nor the remote system has requested connection and no information can be exchanged Upper half inverse lower half normal only the remote system has requested connection and no information can be exchanged Independent of cable quality Lower half inverse upper half normal only the local LCN has requested connection and no information can be exchanged Cable quality must be good Box inverse both the local and remote systems have requested connection and information can be exchanged Cable quality must be good NG Implementation and Operation 4 15 12 96 NG Implementation and Operation 4 16 12 96 MODEM PARAMETER TUNING Appendix A This appendix explains when the Network Gateway s modem definition
28. eration 1 2 12 96 1 1 2 Other NG Characteristics e Reasonably current data i e seconds old is provided over the PIN e Failure of the PIN will not prevent the LCNs from operating independently e Allows AM type control to be performed between LCNs e The LCN does not care about the internal structure of nodes with which it is communicating e Communications priority and bad values propagation are not affected by the fact that data is being moved between LCNs e The order of replies may not be the same as the order of requests 1 2 PLANT INFORMATION NETWORK DESCRIPTION 1 2 1 PIN Characteristics A Plant Information Network PIN consists of a token passing network compatible with IEEE specification 802 4 It has the following characteristics e 10 Mb s broadband 5 Mb s carrierband or 10 Mb s fiber optic network Honeywell no longer sells new broadband configurations but they will support them with a previously installed PIN e The PIN can be either single A or B cable or dual A and B cables e The two cables are independent with a separate token for each cable e Each NG can be connected to either or to both cables e When connected to both cables each NG transmits on a preferred cable and receives on both e High performance proprietary token passing protocol e PIN network is expected to be provided by another vendor Honeywell may in some cases handle the subcontracting for the installation and maintenance of this
29. ests are being made to a third NG since the third NG would have to operate at twice the maximum rate to service the requests 1 1 1 2 Response Time Under the maximum load conditions stated above the time for a request initiation to reply completion is increased no more than 5 seconds over the time required if it were a local request For example a group display referencing 8 points from another LCN will take up to 5 seconds longer than a group display that references 8 local points 1 1 1 3 Overload Characteristics On overload conditions the NG rejects new requests in each functional queue as it becomes full except for parameter access requests where it will replace already queued requests with new requests of higher priority When a request is rejected or removed from the queue the request initiator is notified through the request return status Data Access requests The return status will be something other than D_OK File Transfer requests The return status will be something other than FMS_ Successful The application that initiated the rejected removed request must provide recovery actions 1 1 1 4 Priority The relative priority of functions processed by the NG is e Parameter access e File transfer The priority within parameter access requests is e Operator changes e AM prefetch poststore e CM fetch stores e Display update following change e Display initiations e Display periodic updates NG Implementation and Op
30. eter access reading or writing parameters of a point either singly or in lists e File transfer reading or writing entire files and auxiliary information e Advanced control Application Modules and Computing Modules can execute advanced control schemes on remote LCNs NOTE With R400 through R430 certain unit configurations of LCNs would allow a local LCN to access history data directly on a remote LCN HM Because this was not supported and did not always work satisfactorily the LCN s data access mechanism has been changed to block such requests Effective with releases later than R430 access of remote network history will no longer be allowed NG Implementation and Operation 1 1 12 96 1 1 1 1 1 1 NG Performance and Throughput 1 1 1 1 Total Throughput The total simultaneous throughput of an NG assuming the serving nodes can supply the data consists of e 1200 parameters per second by means of parameter access requests from up to 6 networks 200 parameters are allowed per parameter access request e A file transfer rate of 1 block per second maximum of 12 000 words e All normal node administration messages for the LCN e Normal PIN and LCN status accessing Note that every transaction across the PIN requires two NGs one at the sending system and one at the receiving system and the throughput described above applies to each NG individually Therefore two NGs cannot operate at maximum throughput if all their requ
31. f LCNs to a Plant Information Network It also includes references to other publications needed or useful for preparation of a Plant Information Network 3 1 HARDWARE INSTALLATION AND PINNING As previously mentioned each NG requires the pinning of two hardware addresses One is its PIN local address which is located on the PIN interface board NGIO NIM MODEM or fiber optic board The other is its LCN address which is located on the K2LCN board in dual node modules For necessary information on NG installation and board pinning see the Network Gateway Site Planning and Installation manual 3 2 SOFTWARE CONFIGURATION STEPS Each LCN on the Plant Information Network has to be configured individually using the information you prepared during the conceptual steps above At each LCN you will have to enter information about e each NG on the LCN being configured and e each remote system that the local LCN will communicate with Refer to the Network Data Entry manual for additional information about the displays used in the following software configuration steps Step 1 Define common characteristics of the local LCN that apply to all of its NGs This is done through the NG Local System ID menu reached from the Main Menu via the System Wide Values Menu Note that this step must be completed before the system will allow you to add any NGs to its NCF The local LCN characteristics entered at this step are e the Local System Number 1 64
32. figuration error e Mismatch of the local LCN database with remote system database values e An improper request e g requesting A Cable Only when there is no A cable connection e A cable quality change on a viable communications path Note that some of these errors require NG shutdown and reload as part of the recovery procedure NG Implementation and Operation 4 8 12 96 4 3 4 3 NG REMOTE SYSTEM COMMUNICATION STATUS DISPLAY The NG Remote System Communication Status display presents an overview of the configured PIN network as seen by the local LCN and includes the status of all configured communication paths Depending on the number of systems in the network this can be a multipage display it can show only the communication status of the local LCN with eight remote systems at a time Access method From the Main Menu select SYSTEM STATUS From System Status select GATEWAYS From Gateways select an NG then select NTWK STATUS NG REMOTE SYSTEM COMMUNICATION STATUS FC 12 FUELS CENTRAL NG01 NGO2 NGO3 NGO4 NGOS NGO7 NGO8 NGOS NG10 34 35 37 38 39 A B A B A B A A FE 13 NGO1 FW 14 NGO2 FN 18 NGO3 FS 17 NGO3 s1 15 NGO4 2 19 NGOS 3 20 NGO6 S4 21 NG07 SERVER CONNECT DISCONN CANCEL ONLY US CONNECT PRIMARY ONLY USH ADDRESS ALL ALL ONLY A NET B REMOTE NET A ALT NG Figure 4 7 NG Remote
33. ide the targets that cause various actions to occur Five of the eight boxes always appear although the contents of three of them toggle with use e Server Type or Server Address e Connect All e Disconnect All e Only Use Net A or Cancel Only A e Only Use Net B or Cancel Only B The remaining three target boxes on the bottom row appear only when a specific remote system has been selected by picking its box in the left hand column These targets show e Only Use Alt NG or Cancel Only Alt e Primary Net A or Primary Net B e Connect Remote or Disconnect Remote The following explains the result from selecting one of the bottom row target boxes Server Type initial condition causes boxes in the 10 by 8 matrix to show for each remote system which of its NGs Responsible or Alternate is active Server Address causes boxes in the 10 by 8 matrix to display the PIN local addresses of each remote system s Responsible and Alternate NGs Primary Net A forces all outgoing communications to PIN Network A if possible Retry on PIN Network B is permitted This selection only affects communication with the selected remote system Communications with any other remote systems handled by the same NG are not affected Primary Net B forces all outgoing communications to PIN Network B if possible Retry on PIN Network A is permitted This selection only affects communication with the selected remote system Communicatio
34. ify for an individual remote system or optionally for all remote systems the level of access none read only or read and write for three types of data e System Volumes e User Volumes e Parameters You can use the form SW88 415 page 9 to record this data in advance of the configuration session at the US This form provides space for four remote systems thus for each local LCN you will use one copy of this form for every four remote systems depending on whether you can set the defaults for all LCNs or choose to handle each one separately A two LCN network would require 2 copies of this form one for each local LCN while a 32 LCN network would require 256 copies 8 for each local LCN Next you can define file specific and node specific exceptions to the access levels just established This is done through the NETWORK GATEWAY SECURITY DATABASE EXCEPTIONS display reached by selecting the DEFINE EXCEPTIONS target on the NETWORK GATEWAY SECURITY DATABASE display Page 1 of the Define Exceptions display is used to redefine remote system access to specific files by name Volume ID within the categories of System Files and User Files This access can be set for a single remote system or for all remote systems on the PIN You can use the form SW88 415 page 10 to record file exceptions data in advance of the configuration session at the US This form provides space for recording five local System Files and five local User Files that you
35. installed Use the System Menu s NCF STATUS display to determine which local nodes show moderate or high impact As each of these nodes are reloaded they will be synchronized with the new NCF Also depending what changes are made the NG s residing on the OTHER LCN s may also have to be reloaded to incorporate the changes NG Implementation and Operation 3 5 12 96 NG Implementation and Operation 3 6 12 96 NETWORK OPERATION Section 4 This section introduces you to the Universal Station displays that provide detailed information about the current status of the PIN and this LCN s connections to it 4 1 INTRODUCTION There are two sets of displays that show current operating status of the PIN as it relates to the local LCN e Network Gateway Status Detail displays these displays provide information about the local LCN s PIN connections and communications e NG Remote System Communication Status display this display provides an overview of the PIN network as seen from the local LCN 4 2 NETWORK GATEWAY STATUS DETAIL DISPLAYS The NG Status Detail displays consist of the following e Status Detail Display for NG node nn e NG Object Detail Status Display used to select a detailed view of one remote system e NG xx s View of Connections to Remote LCN yy detail view of a local LCN s connections to a selected remote system and e NG Status Messages Pending Against Remote LCN yy configuration error message log for the l
36. iple NGs 3 Cable Selection at the Local LCN Assign Identifiers to Network Elements Determine Remote Access Controls eo Z w w 69 w W aokhonw INSTALLATION AND CONFIGURATION Hardware Installation and Pinning Software Configuration Steps Network Gateway Modem Definition Network Startup Network Reconfiguration 4 NETWORK OPERATION Introduction Network Gateway Status Detail Displays 1 NG Node Status Detail Display 2 NG Object Detail Status Display 3 View of Connections to Remote LCN 4 NG Status Messages Display NG Remote System Communication Status Display NG Implementation and Operation i 12 96 Table of Contents APPENDIX A MODEM PARAMETER TUNING A 1 P D oe DnR Recommendations Establishing the Slot Time Value High Priority Token Hold Time Target Rotation Time Target Rotation Time for Ring Maintenance Maximum Inter Solicit Count APPENDIX B GLOSSARY NG Implementation and Operation i 12 96 INTRODUCTION Section 1 This section introduces you to characteristics of the Network Gateway and how it is used in connecting a number of LCNs to a Plant Information Network It also includes references to other publications needed or useful for preparation of a Plant Information Network 1 1 NETWORK GATEWAY DESCRIPTION The Network Gateway NG is a standard LCN node that connects the LCN to a Plant Information Network or PIN This connection enables the exchange of data between the local LCN and remote
37. l systems collectively and then establish exceptions on a system by system basis The levels of access to local LCN data that can be assigned to a remote system are e No Access the default condition for all remote systems and all data e Read Only e Read and Write The first level of selection per individual remote system or for all remote systems are for these categories of data e System Volumes files on the HM e User Volumes files on the HM e Parameter Access point data obtained from or through the CG AM HG and NIM nodes For example you can allow parameter read access for all connected systems leaving the default condition of no access to System Volumes and User Volumes and then allow read access of User Volumes to a specified LCN or LCNs Further access exceptions then can be made for specific system and user volumes and for data from specific LCN nodes either for individual remote systems or for all remote systems Thus the parameter read access granted in the example above could be extended to allow for example one or more remote systems to have write access to local UCN point data You may want to begin by providing read only access to all data then add or delete specific access exceptions as required NG Implementation and Operation 2 4 12 96 NG INSTALLATION AND CONFIGURATION Section 3 This section introduces you to characteristics of the Network Gateway and how it is used in connecting a number o
38. multiple NGs connected to an LCN you will have to define at each local LCN which local NG will be the responsible and which will be the alternate NG for communications with each remote system For example let s go back to the hypothetical 4 LCN network defined in Section 1 Local LCN Remote LCNs 1 2 3 4 2 1 3 4 3 1294 4 12 3 gt kd Let s further assume that each LCN has four NGs on the network Local LCN Connected NGs 1 17 18 19 20 2 21 22 23 24 3 25 26 27 28 4 29 30 31 32 NG Implementation and Operation 2 1 12 96 Then one possible way of configuring the network would be Local Primary Alternate LCN 1 p AAA W W UW NNW NG 17 18 19 21 22 23 25 26 27 29 30 31 NG 18 19 20 22 23 24 26 27 28 30 31 32 Remote LCN 2 RNR BWR AU W Ne Thus far we have only identified each remote node by its Local System Number The next step is to add NG addresses for each remote system 2 1 2 Remote System with Multiple NGs When a remote system has multiple NGs you can specify both the responsible and an optional alternate server for communication with each local system Note The responsible alternate servers are specified in terms of their PIN local address The following tables show the PIN local address for the responsible and alternate servers with the LCN node address in parentheses Let s extend the previous example to add primary
39. network e The vendor is expected to supply and maintain the required repeater units e The maximum number of node connections to the PIN is 64 e Both local hard pinned and global software addressing are supported by the PIN global addressing is not implemented as of LCN release R500 When two cables are present the NG transmits on the preferred cable and waits for an acknowledgement If there is no acknowledgement the NG retries once on the same cable before switching to the other cable The condition of both cables is continuously reassessed as a background function A record of unacknowledged messages by cable and destination is kept for use in selecting the preferred cable for each NG message destination 1 2 2 PIN Layouts The following three illustrations show how the PIN can be used to tie together geographically separated LCNs for such inter network operations such as parameter access and file transfers NG Implementation and Operation 1 3 12 96 1 2 2 A B LCN 1 Cables To Plant Information Process Network Networks Carrier Band or Fiber Optic Simplified Diagram A B LCN 2 Cables Process Networks Figure 1 1 Block Diagram of a Simple LCN to LCN Interconnection Figure 1 1 shows a simple interconnection between two LCN systems that uses
40. ns with any other remote systems handled by the same NG are not affected Only Use Alt NG forces all communication with the selected remote system to be routed through the NG configured as the alternate communication path This normally is done when the responsible NG has to be shut down for maintenance Cancel Only Alt forces communication with the selected remote system to be routed through the NG configured as responsible for this communication path Should the responsible NG be unable to communicate with the remote system use of the alternate NG will be attempted NG Implementation and Operation 4 12 12 96 4 3 The ONLY USE ALT NG target is supported in R410 and later releases This target should be used with caution since it leaves the system with no alternate path Its intended use is to provide a bumpless means of powering off the responsible NG If the responsible NG is powered off without selecting the ONLY USE ALT NG target any pending intersystem file manager activity will be suspended and pending parameter accesses may have to be retried After the responsible NG is powered off we recommend that you immediately select the CANCEL ONLY ALT target Then when the responsible NG is reloaded it will automatically and bumplessly become active and the alternate NG will be used as an alternate route if necessary By selecting the CANCEL ONLY ALT target immediately after powering off the responsible NG you eliminate the pos
41. ocal LCN 4 2 1 NG Node Status Detail Display Access method From the Main Menu select SYSTEM STATUS From System Status select GATEWAYS From Gateways select an NG then select STATUS DETAIL This display Figure 4 1 contains configuration and communications information about the selected NG node s connection to the PIN Select ROLL RIGHT to view the portion of these messages not initially visible Figure 4 2 When you select either the PIN Comm or PIN Config line the first or second line of this display a VIEW OBJECT DETAIL target appears Use that target to select the NG Object Detail display NG Implementation and Operation 4 1 12 96 4 2 1 DD MMM YY HH MM SS 1 STATUS DETAIL DISPLAY FOR NODE 30 DATE TIME NOTIFICATION DD MM YY HH MM PIN Comm OK gt OK No Communication Errors DD MM YY HH MM PIN Config gt OK No Configuration Errors DD MM YY HH MM Custom Names OK gt OK Custom Names were successfull NODE COMMENT DD MMM YY HH MM SS Null comment ROLL EDIT NODE HISTORY RIGHT COMMENT DETAIL J Figure 4 1 NG Status Detail Display DD MM YY HH MM SS STATUS DETAIL DISPLAY FOR NODE 30 DATE TI NOTIFICATION gt OK No Communication Errors gt OK No Configuration Errors gt OK Custom Names were successfully loaded NODE COMMENT DD MMM YY HH MM SS Null comment HISTORY DETAIL
42. on A 2 12 96 A 3 A 3 HIGH PRIORITY TOKEN HOLD TIME When the node receives the token frames are transmitted from the highest priority queue until either the HIGH PRIORITY TOKEN HOLD TIME expires or the queue is empty 1024 Octets per Frame HIGH PRIORITY TOKEN HOLD TIME 128 octet times 8 The constant 8 is required by the Token Bus Controller The value of this parameter should not be modified for specific installations since it does not depend on cable length It should only be modified if the maximum frame length used in the Network Gateway software changes from 1024 DEFAULT 128 octet time A 4 TARGET ROTATION TIME After the HIGH PRIORITY TOKEN HOLD TIME expires or the queue is empty the PRIORITY 1 TARGET ROTATION TIME is checked If the PRIORITY 1 TARGET ROTATION TIME has not expired frames from the Priority 1 queue are transmitted until either there are no more frames in the queue or the Priority timer has expired Then the target rotation times for priorities 2 and 3 are checked one after the other and frames from their queues are transmitted until their timers expire This scheme allow the nodes to transmit lower priority frames only when the network load is low enough to permit all higher priority frames to be transmitted by each node on the network Following is the general equation for target rotation times for priorities through 3 1 TRT TARGET ROTATION TIME 1
43. our preparation as size and complexity of a network increases 2 2 ASSIGN IDENTIFIERS TO NETWORK ELEMENTS To each LCN system Assign a Local System Number 1 64 that uniquely defines this LCN system within the network This number is used in LCN configuration and in some LCN displays Assign a System Title 1 or 2 alphanumeric characters that uniquely defines this LCN within the network The System Title must have at least one alpha non blank non numeric character The System Title is used to identify the LCN in the extended point parameter name form used in addressing remote data The System Title is separated from the point name by a backslash delimiter For example id pt_nam param_nm Assign a 20 character System Description that will further identify that LCN on Universal Station displays To each NG Assign a PIN local hardware address 1 64 to be pinned into the PIN interface board NGIO NIM MODEM or fiber optic interface board Optionally each NG may in the future have a PIN global software address as well Assign the LCN node address that will be given to the NG during LCN configuration NG Implementation and Operation 2 3 12 96 2 3 2 3 DETERMINE REMOTE ACCESS CONTROLS On each LCN you need to define what access to its data will be granted to each other remote system on the PIN The configuration procedure allows you to set access controls either one system at a time or to set access controls for al
44. parameters may need to be modified and how to calculate the new parameter values A 1 RECOMMENDATIONS The parameter SLOT TIME must have the correct value for the network otherwise the network will collapse For each network the SLOT TIME value must accommodate delays caused by cable length and repeaters The default values for the Network Gateway modem definition parameters should not require modification for networks with less than 10 miles of cables on each branch and 10 repeaters per branch For networks over 10 miles long on a branch the SLOT TIME value must be recalculated according to the formula in this appendix Values for other related parameters also must be recalculated Tuning of the network parameters based on the number of nodes and total cable length may be necessary to ensure that during high load conditions the higher priority messages are transmitted before lower priority ones If the default values are used during high load conditions nodes can send lower priority messages while other nodes are waiting with higher priority messages However a high load condition is unlikely since the network is fast 10 Mbits per second and in most cases the number of NGs on the network will be less than 30 Tuning of these parameters will not have any effect on network performance when the network load is not high To decrease the probability of errors and resulting network collapse it is strongly recommended that all pa
45. rameter calculations be performed by the Honeywell services group responsible for the network configuration Any network parameters not mentioned in this appendix must not be modified They are TEEE 802 4 standard related network parameters The cable length or number of nodes on the network does not have any impact on those parameters NOTE Before attempting to use the information contained in this appendix be sure that you have a sufficient understanding of IEEE standard 802 4 NG Implementation and Operation A 1 12 96 A 2 A 2 ESTABLISHING THE SLOT TIME VALUE Slot time is proportional to the sum of the following e Node latency to respond to a received message e Propagation delay time in the medium and repeaters connecting the source and destination nodes and e Message reception delay time in the destination node NOTE Making the value of SLOT TIME larger than necessary is always safe However a too small value for SLOT TIME can result in network collapse SLOT TIME is calculated in terms of octet times defined as the time to transmit receive 8 bits of data on the network The following equation is used to derive the SLOT TIME octet_times for a network PD x CL RD SLOT TIME C 4x __ OT C 70 octet_times C is the sum of node delay time to respond modem delays to receive transmit messages head end remodulator latency to receive and to retransmit messages plus 30 octets of
46. ress Server Type target in the bottom row of this display EXCEPTION The box representing the inactive NG always displays either RESP or ALT centered in the top half When Server Address has been selected the upper half of the box representing the active NG shows the PIN local addresses of the active and inactive remote NGs The upper half of the box is divided in half e The left hand portion shows the PIN address of the active remote NG e The right hand portion shows the PIN address of the inactive NG if one is present NG Implementation and Operation 4 14 12 96 4 3 When Server Type has been selected the upper half of the box representing the active NG shows which remote NG is active the Responsible or the Alternate The upper portion of the box is divided in half e The left hand portion contains an R when the Responsible NG is active an A when the Alternate is active or is blank when the active server is unknown or unassigned e The right hand portion contains an R when the Responsible NG is inactive an A when the Alternate is inactive or is blank if there is no Alternate The characters shown in the lower half of each box always represent the status of the communication paths cable A and cable B between the remote and local NGs Communications status on the configured primary PIN cable always appears in the left hand quarter of the bottom half Communication status on the backup cable app
47. rs describing a node system on a PIN System Title Consists of one or two alphanumeric characters that uniquely identifies a node system on a PIN At least one of the characters must be an alpha character nonblank nonnumeric NG Implementation and Operation B 2 12 96 Index Topic Access controls see Data Security Addressing PIN Alternate NG Aux Node Status Detail Display Configuration choices options Configuration NGs on LCN Data access controls see Data Security Database NG Data Security Displays Aux Node Status Detail Remote System Communication Status Hardware installation of Inter Solicit Count LCN see Local Control Network LCN node address LCN configuration of LCN local see Local LCN Load Leveling network Local Control Network Local LCN Local System Number Modem parameters Network elements load leveling operation planning reconfiguration rules startup Network Gateway see NG Network Gateway Server NG database definition of functions Modems performance and throughput Remote System Communication Display Node number LCN see LCN node number Operation of PIN network Overload characteristics of the NG Parameters modem PIN characteristics definition Global address layouts Local address Network operation Network reconfiguration NG Implementation and Operation Index 1 Section Heading 1 3 2 Glossary 4 2 1 3 6 3 2 1 1 1 3 3 2 3 3 2 6 2 Glossary VN PUAA 2
48. rted NG Implementation and Operation B 1 12 96 PIN local address A two digit number that uniquely identifies each NG on the PIN Established by physical pinning on a communications board Plant Information Network PIN A communication bus which links all NGs together independent of the LCNs they also are connected to The PIN often consists of two redundant networks labeled A and B Remote LCN see remote system Remote system Nodes on the local LCN are able to exchange information with systems not attached to the local LCN A remote system can be another Honeywell LCN network or another vendor s network and or computer future implementation Also see System Responsible NG The NG selected as the primary communications path between the local system and a remote system connected to the same PIN Responsible NG Server The responsible NG server is another name for the remote LCN s responsible Network Gateway System A computer or collection of computers with which a Network Gateway is able to exchange files and process control data The generic term system is used in place of the proprietary term LCN to describe the remote systems with which the Network Gateway interfaces This was done to provide for future phases of the NG development that are intended to allow it to operate in a multi vendor environment where foreign networks and computing systems are supported System Description Consists of 20 characte
49. sibility that you might forget to do so later which would leave you running only on the alternate NG even though the responsible NG is available Connect Remote enables communication with the selected remote system Because communication can only occur by mutual consent the selected remote system must also be connected to this local LCN before communication can begin Disconnect Remote disables communication with the selected remote system No further communication takes place until both the local LCN and the remote system have mutually reconnected to each other Connect All enables communication with all configured remote systems Because communication can only occur by mutual consent each individual remote system must also be connected to this local LCN before communication can begin Disconnect All disables communication with all configured remote systems No further communication takes place until both the local LCN and the remote systems have mutually reconnected to each other This function is provided to quickly shed load associated with remote systems during periods of system upset Only Use Net A forces all outgoing communications from all NGs on the local LCN to PIN network A Retry on PIN Network B is explicitly prohibited The message PIN Override Always A appears above the left hand column This function is provided to support cable maintenance on PIN network B for example to allow switching out an amplifier on
50. st character must be an alpha e the remote system s description 20 characters e the local system s primary cable A B for output to the remote e the local system s primary NG by LCN address for output to the remote e the local system s alternate NG by LCN address for output to the remote e the remote system s primary server NG by PIN address and e the remote system s alternate server NG by PIN address You can use the form SW88 415 page 8 to record this data in advance of the configuration session at the US This form provides space for three remote systems thus for each local LCN you will need one copy of this form for every three remote systems A two LCN network would require 2 copies of this form one for each local LCN while a 32 LCN network would require 352 copies 11 for each local LCN It is recommended but not required that you enter the PIN addresses for the remote NGs during local LCN configuration If you do not provide this information the system will obtain it from each remote NG as communications are established If you do provide this information it will be used for verification that messages have originated from a configured server This checking protects the local LCN from the unacceptable event of two remote systems sharing the same Local System Number due to a configuration error IMPORTANT If you do specify remote NG PIN addresses then these are the only addresses that your responsible or al
51. systems on the same PIN Currently the remote systems must also be LCNs Data exchange with other types of systems that may exist on the PIN is a future possibility but is not presently supported The NG acts as a transparent conduit for data exchange requests between the local LCN and remote systems currently limited to other LCNs connected to the same PIN The NG contains no database except the NCF data required for communication routing therefore the NG does not checkpoint thus eliminating the need for node level redundancy of the NG Network Gateways provide communication robustness through the ability to route messages through an alternate NG This is in addition to the NG s ability to route messages through an optional alternate PIN cable Each system on the PIN can establish access restrictions limiting the types and directions of data transfers between itself and requesting remote systems The LCN database is not duplicated across the PIN There remains only one database Values from it can be copied to a remote system but are not synchronized with the actual database Because it is connected both to the PIN and to the LCN each NG has two unique addresses controlled by physical pinning its PIN address and its LCN address Each NG requires a modem to connect it to the PIN If the NG is to be connected to a redundant two cable PIN separate modems are used Functions that can be carried on between LCNs via NGs are e Param
52. ternate NG will talk to Therefore if you locally configure remote NG server PIN addresses that are not the same as the actual PIN addresses of the responsible and alternate NGs on the remote LCN you will not be able to communicate with that LCN at least not until the addresses do match Let s compare two examples Local Remote Resp Alt Resp Alt LCN LCN NG NG Server Server YOU 1 2 10 20 3 NG 30 4 NG 40 HIM 2 1 30 40 1 NG 10 2 NG 20 In this case when talking to LCN 2 LCN 1 is going to transmit through the NGs with PIN addresses 1 and 2 as expected by LCN 2 Likewise LCN 1 is expecting to hear from LCN 2 through PIN addresses 3 and 4 as LCN 2 is configured to do Thus communication is possible Local Remote Resp Alt Resp Alt LCN LCN NG NG Server Server YOU 1 2 10 20 5 NG 35 6 NG 45 HIM 2 1 30 40 1 NG 10 2 NG 20 In this second case communication is not possible because LCN 1 expects LCN 2 messages to come from PIN addresses 5 and 6 but LCN 2 will be transmitting to LCN 1 from PIN addresses 3 and 4 NG Implementation and Operation 3 2 12 96 3 2 Step 4 Establish the NG Security Database to control what access of the local LCN s data is allowed to each of the remote systems The first levels of file access restrictions are established through the NETWORK GATEWAY SECURITY DATABASE AUTHORIZATION display reached from the MAIN MENU via the SYSTEM WIDE VALUES menu At this display you spec
53. the PIN network B cable Cancel Only A allows outgoing communications from NGs on the local LCN to occur on either PIN network as configured Retry on the redundant network is permitted Only Use Net B forces all outgoing communications from all NGs on the local LCN to PIN network B Retry on PIN Network A is explicitly prohibited The message PIN Override Always B appears above the left hand column This function is provided to support cable maintenance on PIN network A for example to allow switching out an amplifier on the PIN network A cable Cancel Only B allows outgoing communications from NGs on the local LCN to occur on either PIN network as configured Retry on the redundant network is permitted NG Implementation and Operation 4 13 12 96 4 3 Figure 4 11 NG Remote System Communication Status Display 10 x 8 matrix The 10 by 8 matrix of boxes contains information about communication status between the local LCN and remote systems This information is contained in the boxes found at the intersections of a local NG identified in the top row of boxes and a remote system identified in the left hand column of boxes There can be two intersections between the local LCN and each remote system one for the responsible NG and one for the alternate NG The remaining boxes of the matrix are void of data The information contained in the upper half of each matrix box is controlled by current status of the Server Add
54. the long name form up to 16 characters will be honored The target LCN will use the short name padded with trailing spaces to long form length to attempt a match e A point data request from an LCN using the long name form sent to an LCN using the short name form will result in a Point Not Found response message if the tag name has more than eight nonblank characters e g ABCDEFGH is an acceptable tag name for this purpose but ABCDEFGHL is not 1 3 6 Software Configuration Choices Options In order to establish communication between two LCNs on a common PIN the NG or NGs on each LCN has have to be separately configured as LCN nodes Each LCN is individually configured as local to itself and as a remote system to all other LCNs on the PIN This could mean going through the software configuration steps up to 64 times for one network once for each LCN on the network To prepare a hypothetical 4 LCN network consisting of systems 1 2 3 and 4 you would individually configure the four LCNs Local system Remote systems 2 3 4 2 kd ed 3 AUN e NN WwW wOAA kd kd Thus when LCN 1 is being configured LCNs 2 3 and 4 are considered to be remote systems And when the other LCNs are being configured LCN 1 is considered to be a remote system to each of them NG Implementation and Operation 1 8 12 96 1 4 During software configuration you specify the characteristics of the local LCN system then describ
55. wish to establish exceptions for The number of copies of this form that you will need will vary depending on the number of remote systems that will be granted exceptions and the number of local files for which these exceptions are to be granted Page 2 of the Define Exceptions display is used to redefine remote system access to data obtained from or through specific AM CM HG and NM nodes on the local LCN The specific nodes are identified by node type and the hiway network number HGs and NMs or process unit ID AMs and CMs This access can be set for a single remote system or for all remote systems on the network You can use the form SW88 415 page 11 to record file exceptions data in advance of the configuration session at the US This form provides space for recording 10 local nodes for two different remote systems or for all LCNs that you wish to establish exceptions for The number of copies of this form that you will need will vary depending on the number of remote systems that will be granted exceptions and possibly the number of local LCN nodes for which these exceptions are to be granted NG Implementation and Operation 3 3 12 96 3 3 3 3 NETWORK GATEWAY MODEM DEFINITION BROADBAND PIN ONLY In broadband PINs the modem frequency definition must match the assigned frequency band of the PIN The frequency band information must be obtained from the PIN vendor The modem frequency selection is made on the NG Modem Definition

Download Pdf Manuals

image

Related Search

Related Contents

PortaBilling: User Manual  USB3.0 to Gigabit Ethernet Adapter  DuraVision FDS1701 Manuel d`utilisation  Druckmessumformer Typ A-10 Pressure transmitter model A  Azio KB505U  Cooper Lighting DRR-F User's Manual  Provider Portal User Guide - Early Learning Coalition of Broward  none 60202 Installation Guide  取扱説明書 活用ガイド  Ariete Portable bottle warmer  

Copyright © All rights reserved.
Failed to retrieve file