Home
        STM8L051F3 - STMicroelectronics
         Contents
1.                                                                              STM8L051F3 Memory and register map  Table 7  General hardware register map  continued    Address Block Register label Register name aaa   prs us Reserved area 104 bytes   0x00 5430 Reserved area  1 byte  0x00  0x00 5431 RI ICR1 RI Timer input capture routing register 1 0x00  0x00 5432 RI ICR2 RI Timer input capture routing register 2 0x00  0x00 5433 RI IOIR1 RI I O input register 1 OxXX  0x00 5434 RI IOIR2 RI I O input register 2 OxXX  0x00 5435 RI IOIR3 RI I O input register 3 OxXX  0x00 5436 RI IOCMR1 RI I O control mode register 1 0x00  0x00 5437 RI IOCMR2 RI I O control mode register 2 0x00  0x00 5438 D RI IOCMR3 RI I O control mode register 3 0x00  0x00 5439 RI IOSR1 RI UO switch register 1 0x00  0x00 543A RI IOSR2 RI I O switch register 2 0x00  0x00 543B RI IOSR3 RI I O switch register 3 0x00  0x00 543C RI IOGCR RI I O group control register OxFF  0x00 543D RI ASCR1 Analog switch register 1 0x00  0x00 543E RI ASCR2 RI Analog switch register 2 0x00  0x00 543F RI RCR RI Resistor control register 0x00  0x00 5440   to Reserved area  16 bytes    0x00 544F  0x00 5450 RI CR RI I O control register 0x00  0x00 5451 RI MASKR1 RI I O mask register 1 0x00  0x00 5452 RI MASKR2 RI I O mask register 2 0x00  0x00 5453 RI MASKR3 RI I O mask register 3 0x00  0x00 5454 P RI MASKR4 RI I O mask register 4 0x00  0x00 5455 RI IOIRA RI UO input register 4 OxXX  0x00 5456 RI IOCMR4 RI UO control mode register 4 0x00  0
2.              Address Block Register label Register name Reset  status  0x00 50C4 CLK_PCKENR2 CLK Peripheral clock gating register 2 0x00  0x00 50C5 CLK_CCOR CLK Configurable clock control register 0x00  0x00 50C6 CLK_ECKCR CLK External clock control register 0x00  0x00 50C7 CLK_SCSR CLK System clock status register 0x01  0x00 50C8 CLK_SWR CLK System clock switch register 0x01  0x00 50C9 CLK_SWCR CLK Clock switch control register 0xX0  0x00 50CA CLK CLK CSSR CLK Clock security system register 0x00  0x00 50CB CLK CBEEPR CLK Clock BEEP register 0x00  0x00 50CC CLK HSICALR CLK HSI calibration register OxXX  0x00 50CD CLK HSITRIMR CLK HSI clock calibration trimming register 0x00  0x00 50CE CLK HSIUNLCKR CLK HSI unlock register 0x00      Obxx11 1  0x00 50CF CLK REGCSR CLK Main regulator control status register 00X  0x00 50DO CLK PCKENR3 CLK Peripheral clock gating register 3 0x00  0x00 50D1  to Reserved area  2 bytes   0x00 50D2  0x00 50D3 WWDG CR WWDG control register Ox7F  WWDG  0x00 50D4 WWDG WR WWDR window register Ox7F  0x00 50D5  to Reserved area  11 bytes   00 50DF  0x00 50E0 IWDG KR IWDG key register 0x01  0x00 50E1 IWDG IWDG PR IWDG prescaler register 0x00  0x00 50E2 IWDG RLR IWDG reload register OxFF  0x00 50E3  to Reserved area  13 bytes   0x00 50EF  0x00 50FO BEEP CSR1 BEEP control status register 1 0x00  0x00 50F1  0x00 50F2 BEEP Reserved area  2 bytes   0x00 50F3 BEEP CSR2 BEEP control status register 2 Ox1F  0x00 50F4  to0x00 513F Reserved area  76 bytes   0x00 5140 
3.      Figure 15  Typical LSI frequency vs  Vpp       45  43       41  39          37                            eee     e    33  40  C             LSI frequency  kHz                          Voo  V     ai18219V2             2    64 93 DoclD023465 Rev 2       STM8L051F3 Electrical parameters       8 3 5 Memory characteristics    Ta    40 to 85   C unless otherwise specified     Table 32  RAM and hardware registers       Symbol Parameter Conditions Min Typ Max Unit                            VRM Data retention mode  1  Halt mode  or Reset    1 8 V       1  Minimum supply voltage without losing data stored in RAM  in Halt mode or under Reset  or in hardware  registers  only in Halt mode   Guaranteed by characterization  not tested in production     Flash memory    Table 33  Flash program and data EEPROM memory             Symbol Parameter Conditions Min   Typ jos Unit  Operating voltage    Von  all modes  read write erase  SEET ko Ga Y  Programming time for 1 or 64 bytes  block     6 ms  erase write cycles  on programmed byte   t  PS Programming time for 1 to 64 bytes  block  3 ms    write cycles  on erased byte        Ta  25   C  Vpp   3 0 V  lorog Programming  erasing consumption 0 7 mA  TA  25   C  Vpp   1 8 V             Data retention  program memory  after 100                      1    erase write cycles at Ta    40 to  85   C mep tee 29  tret  years   Data retention  data memory  after 100000 Tor    85   C 300    erase write cycles at TA    40 to  85   C RET   Erase write 
4.    10    RTC  window watchdog  independent watchdog   Others 16 MHz and 32 kHz internal RC   1  to 16 MHz and 32 kHz external oscillator   CPU frequency 16 MHz  Operating voltage 1 8 to 3 6 V  Operating temperature    40 to  85   C  Package TSSOP20       1  The number of GPIOs given in this table includes the NRST PA1 pin but the application can use the  NRST PA1 pin as general purpose output only  DAT      2    10 93 DoclD023465 Rev 2       STM8L051F3 Description       2 2    Note     2    Ultra low power continuum    The ultra low power value line STM8L05xxx and STM8L15xxx are fully pin to pin  software  and feature compatible  Besides the full compatibility within the STM8L family  the devices  are part of STMicroelectronics microcontrollers ultra low power strategy which also includes  STM8L101xx and STM32L 15xxx  The STM8L and STM32L families allow a continuum of  performance  peripherals  system architecture  and features     They are all based on STMicroelectronics 0 13 um ultra low leakage process     The STM8LO5xxx are pin to pin compatible with STM8L 101xx devices     The STM32L family is pin to pin compatible with the general purpose STM32F family   Please refer to STM32L 15x documentation for more information on these devices     Performance    All families incorporate highly energy efficient cores with both Harvard architecture and  pipelined execution  advanced STM8 core for STM8L families and ARM  32 bit Cortex  M3  core for STM32L family  In addition specific 
5.    WU neen i mode  using HSI  T i  Wakeup time from Halt mode   3  4   Ewu_LSI Halt  to Run mode  using LSI  180 ps                         Ta    40 to 85   C  no floating I O  unless otherwise specified   Tested in production   ULP 0 or ULP 1 and FWU 1 in the PWR_CSR2 register     Wakeup time until start of interrupt vector fetch   The first word of interrupt routine is fetched 4 CPU cycles after twy      gt  o  qwe    2    58 93 DoclD023465 Rev 2          STM8L051F3 Electrical parameters       Current consumption of on chip peripherals    Table 24  Peripheral current consumption                                              Typ  i  Symbol Parameter Vop   3 0 V Unit  Ipp riM2  TIM2 supply current  1  8  IDD TIM3  TIM3 supply current  1  8  Ipp riM4  TIM4 timer supply current  1  3  IDD USART1  USART1 supply current  2  6 HA MHZ  Ipp sPH  SPI1 supply current  2 3  IDD I201  12C1 supply current  2 5  IDD DMA1  DMA1 supply current  3  IbowwbG    WWDG supply current   2  IDD ALL  Peripherals ON   44 yA MHz  IDD ADC1  ADC1 supply current     1500  Power voltage detector and brownout Reset unit supply  IDD PVD BOR   5  2 6  current  IDD BOR  Brownout Reset unit supply current  9  24 UA  including LSI supply 0 45  current  IDD IDWDG  Independent watchdog supply current  excluding LSI  0 05  supply current                      1  Data based on a differential Ipp measurement between all peripherals OFF and a timer counter running at 16 MHz  The  CPU is in Wait mode in both cases  No I
6.    ai18227V2          Figure 22  Typ  Vo    Vpp   3 0 V  true open  drain ports     Figure 23  Typ  Vo    Vpp 7 1 8 V  true open  drain ports                    0 5   40  C  04     a   25C  85  C  0 3     3   gt   0 2  me E ee  A  i gem  0 1 g 3 4 5 6  T    lo   mA   ai18228V2    Figure 24  Typ  Vpp   Vou O Vpp   3 0 V  high  sink ports                 0 5  0 4   40  C           25 C  0 3 a  z 85  C   gt   0 2  0 1 a   gt  et       0 1 2 3 4 5 6 7    lo   mA     ai18229V2    Figure 25  Typ  Vpp   Von O Vpp   1 8 V  high  sink ports                    1 75   40  C  15    a   25 C  E 85  C   s 1 25     3   gt  i  8    075  0 5  0 25    p  on   0 2 4 6 8 10 12 14 16 18 20    lon  mA     ai12830V2                   0 5        40  C          25  C  0 4 85  C   gt  0 3  3   gt   B8 02  0 1  0  0 1 2 5 6 7    3  lou  mA        ai18231V2       2    DoclD023465 Rev 2    71 93       Electrical parameters STM8L051F3       NRST pin  Subject to general operating conditions for Vpp and Ta unless otherwise specified     Table 39  NRST pin characteristics                         Symbol Parameter Conditions Min Typ Max Unit  Vi NRST   NRST input low level voltage  1  Vss 0 8  VIH NRST   NRST input high level voltage UI 14 Vpp   loL  2 mA V  for 2 7 V Vpp 23 6 V  VoL NRST   NRST output low level voltage  1  0 4  lo  1 5 mA  for Vpp   27V  10 Vpp   Vuyst NRST input hysteresis   2  mV  RPU NRST  SCH pull up equivalent resistor 30 45 60 ko  Ve NRST   NRST input filtered pulse  9  50   ns  VNF NRS
7.    and register map       Table 5  Flash and RAM boundary addresses                                                                                                                                           Memory area Size Start address End address  RAM 1 Kbyte 0x00 0000 0x00 03FF  Flash program memory 8 Kbytes Ox00 8000 0x00 9FFF  5 2 Register map  Table 6  I O port hardware register map  Address Block Register label Register name buda  0x00 5000 PA ODR Port A data output latch register 0x00  0x00 5001 PA IDR Port A input pin value register OxXX  0x00 5002 Port A PA DDR Port A data direction register 0x00  0x00 5003 PA CR1 Port A control register 1 0x01  0x00 5004 PA CR2 Port A control register 2 0x00  0x00 5005 PB ODR Port B data output latch register 0x00  0x00 5006 PB IDR Port B input pin value register OxXX  0x00 5007 Port B PB DDR Port B data direction register 0x00  0x00 5008 PB CR1 Port B control register 1 0x00  0x00 5009 PB CR2 Port B control register 2 0x00  0x00 500A PC ODR Port C data output latch register 0x00  0x00 500B PB IDR Port C input pin value register OxXX  0x00 500C Port C PC DDR Port C data direction register 0x00  0x00 500D PC CR1 Port C control register 1 0x00  0x00 500E PC CR2 Port C control register 2 0x00  0x00 500F PD ODR Port D data output latch register 0x00  0x00 5010 PD IDR Port D input pin value register OxXX  0x00 5011 Port D PD DDR Port D data direction register 0x00  0x00 5012 PD CR1 Port D control register 1 0x00  0x00 5013 PD CR2 Port D
8.    fe SA life augmented    STM8L051F3       Value Line  8 bit ultralow power MCU  8 KB Flash   256 byte data EEPROM  RTC  timers  USART  I2C  SPI  ADC       Features    March 2014    Operating conditions       Operating power supply  1 8 V to 3 6 V  Temperature range   40  C to 85  C   Low power features       5low power modes  Wait  Low power run   5 1 uA   Low power wait  3 A   Active halt  with RTC  1 3 pA   Halt  350 nA        Ultra low leakage per 1 0  50 nA       Fast wakeup from Halt  5 us   Advanced STM8 core       Harvard architecture and 3 stage pipeline       Maxfreq  16 MHz  16 CISC MIPS peak       Up to 40 external interrupt sources   Reset and supply management       Low power  ultra safe BOR reset with 5  selectable thresholds        Ultra low power POR PDR      Programmable voltage detector  PVD     Clock management       32 kHz and 1 to 16 MHz crystal oscillators      Internal 16 MHz factory trimmed RC       Internal 38 kHz low consumption RC       Clock security system   Low power RTC       BCD calendar with alarm interrupt       Digital calibration with     0 5 ppm accuracy      LSE security system       Auto wakeup from Halt w  periodic interrupt  Memories        8 Kbytes of Flash program memory and  256 bytes of data EEPROM with ECC        Flexible write and read protection modes      1 Kbyte of RAM       Datasheet  production data    NS   NS    a    TSSOP20       DMA        4 channels supporting ADC  SPI  DC  USART  timers        1 channel for memory to 
9.   18  3 9 System configuration controller and routing interface                 19  SH   MES  a a eke ANA a m ee ek aa sale Ra Ra c 19  3 10 1 16 bit general purpose timers  TIM2  TIM3            o o o   o   o    19  3 10 2  8 bitbasictimer  TIMA            ers 19  3 11 Watchdog timers aken sandal aor Rr merce ax dee 19  3 11 1 Window watchdog timer           esses 20  3 11 2 Independent watchdog timer            oo 20  3 12  Beeper EN hae d NEEN ER EENS ke  RE Rc E E ax eos 20  3 13 Communication interfaces    20  E ILIO DPI  pr CCP EP 20  on D c PP 20  3 13 3  USART 43 03 34 dane bed ped mem EAT 21  3 14 Infrared  IR  interface A  NEE ENEE kk RR a 21    2 93 DocID023465 Rev 2 Ly        STM8L051F3 Contents       3 15 Development support           20 00 00 cee 21   4 Pin description casa rada nda radial 23  4 1 System configuration options      25   5 Memory and register map           2   00 e cece eee eee 26  5 1 Memory mapping   c uc ph ee d doe dos ERES  AKALA 26   5 2 R  gister Map Em 27   6 Interrupt vector mapping      40  7 Option DyteS   sonrisas dress 5 EE 42  8 Electrical parameters      45  8 1 Parameter conditions            ccc eee 45   8 1 1 Minimum and maximum values         22 eee 45   8 1 2 Typical Values a da a ANN yam e DR AC NEE ENN AR 45   8 1 3 Typical curves      45   8 1 4 Loading capacitor                arinak kaa a ren 45   8 1 5 Pin input voltage  voeem e REED EU MR ORRE RA 46   8 2 Absolute maximum ratings            oo  46   8 3 Operating conditi
10.   VDD  LSI clock source             aaae 55  Typ  IDD LPW  vs  VDD  LSI clock source            een 56  HSE oscillator circuit diagram              liliis ren 61  LSE oscillator circuit diagram             eh 62  Typical HSI frequency vs Ven    63  Typical LSI frequency vs  VDD     2    hr 64  Typical VIL and VIH vs VDD  high sink I Os           0  else 68  Typical VIL and VIH vs VDD  true open drain I Os            0 68  Typical pull up resistance Rp  vs Vpp with VIN VSS          0 0 00  eee eee 69  Typical pull up current Ip  vs Von with VIN    69  Typ  VOL   VDD   3 0 V  high sink porte   71  Typ  VOL   VDD   1 8 V  high sink porte   71  Typ  VOL   VDD   3 0 V  true open drain porte   71  Typ  VOL   VDD   1 8 V  true open drain porte   71  Typ  VDD   VOH   VDD   3 0 V  high sink porte   71  Typ  VDD   VOH   VDD   1 8 V  high sink ports             esee 71  Typical NRST pull up resistance Rp  VS VDD        B 72  Typical NRST pull up current  VDD seemed edam ia e erenn 73  Recommended NRST pin configuration             lille 73  SPI1 timing diagram   slave mode and CPHA 0       0 2200 75  SP11 timing diagram   slave mode and CPHA 1 aa et eege 75  SP11 timing diagram   master mode MAD 76  Typical application with DC bus and timing diagram 1   78  ADC1 accuracy characteristics          2    83  Typical connection diagram using the ADC             0000 c eee eee 83  Maximum dynamic current consumption on Mer  supply pin during ADC  sonic  T 84  Power supply and reference decoup
11.  0x00  0x00 525C TIM2 CNTRH TIM2 counter high 0x00  0x00 525D TIM2_CNTRL TIM2 counter low 0x00  0x00 525E TIM2_PSCR TIM2 prescaler register 0x00  0x00 525F TIM2_ARRH TIM2 auto reload register high OxFF   34 93 DoclD023465 Rev 2   er       STM8L051F3    Memory and register map       Table 7  General hardware register map  continued                                                                                                                                                                                                        Address Block Register label Register name ee  0x00 5260 TIM2 ARRL TIM2 auto reload register low OxFF  0x00 5261 TIM2 CCR1H TIM2 capture compare register 1 high 0x00  0x00 5262 TIM2 CCR1L TIM2 capture compare register 1 low 0x00  0x00 5263 TIM2 TIM2 CCR2H TIM2 capture compare register 2 high 0x00  0x00 5264 TIM2 CCR2L TIM2 capture compare register 2 low 0x00  0x00 5265 TIM2 BKR TIM2 break register 0x00  0x00 5266 TIM2 OISR TIM2 output idle state register 0x00   UE Reserved area  25 bytes    0x00 5280 TIM3 CR1 TIM3 control register 1 0x00  0x00 5281 TIM3 CR2 TIMS control register 2 0x00  0x00 5282 TIM3 SMCR TIM3 Slave mode control register 0x00  0x00 5283 TIM3 ETR TIMS external trigger register 0x00  0x00 5284 TIM3 DER TIM3 DMA1 request enable register 0x00  0x00 5285 TIMS3 IER TIM3 interrupt enable register 0x00  0x00 5286 TIM3 SR1 TIM3 status register 1 0x00  0x00 5287 TIM3 SR2 TIM3 status register 2 0x00  0x00 5288 TIM3 EGR TIM3 event generation regist
12.  2  Data output hold time Master mode  after enable 4  h MO  edge  ui  1  Parameters are given by selecting 10 MHz I O output frequency   2  Values based on design simulation and or characterization results  and not tested in production   3  Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data   4  Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi Z     74 93    DoclD023465 Rev 2    2       STM8L051F3 Electrical parameters       Figure 29  SPI1 timing diagram   slave mode and CPHA 0       CPHA 0    an WB S v  CPOL 0        SCK Input  OO    i  VT     o  a   7   O  A  FE    8   v SO   gt i   lg tr SCK t      5  gt  h SO  ME mur Mim dis SO     MISO  5 weer   r y  tsu  Sl   gt         w   T L    sn X  INPUT   MSB IN EA IN LSB IN             tS          ai14134             Figure 30  SPI1 timing diagram   slave mode and CPHA 1 m    NSS input A fi             ISU NSS He  La ic SCKj  gt    h NSS          9       CPHA 1 Ah XA  E    a    CPOL 0        i i               x   CPHA 1 Mee aaa       B    9   CPOL 1 ma    maa am    GE VSO   gt e Lue GER gt    Th so MS0   gt e th SO      Kee Seo  MISO     Cute  hour    wsBour     BIT6 OUT   Bou    OUT  tsu  V r    gt     hs   gt  gt     Liens MSB IN   BITI IN LSB IN  INPUT j       ai14135             1  Measurement points are done at CMOS levels  0 3Vpp and 0 7Vpp     2    DoclD023465 Rev 2 75 93       Electrical parame
13.  36   0 39  KA OFF  code  f   1 MH  IDD RUN   ip Run a HSE external   PU S E  mode  y      clock fcpy   4 MHz 1 15   131   1 40  DD trom 4   fcpufuse  O  1 8 V to 3 6 V fcpu   8 MHz 217   2 33   244  fopy   16 MHz 40   446   4 52  LSI RC osc  fcpu   fi si 0 110  0 123  0 130  LSE ext  clock   32 768 fcpu   fLse 0 100   0 101  0 104  kHz   1  All peripherals OFF  Vpp from 1 8 V to 3 6 V  HSI internal RC osc    feru fsyscLk  2  CPU executing typical data processing  The run from RAM consumption can be approximated with the linear formula   Ipp run from RAM    Freq   90 pA MHz   380 pA  Ly  DoclD023465 Rev 2 51 93       Electrical parameters STM8L051F3       4  Oscillator bypassed  HSEBYP   1 in CLK ECKCR   When configured for external crystal  the HSE  consumption   Ibp Hse  must be added  Refer to Table 28     Tested in production     The run from Flash consumption can be approximated with the linear formula   Ipp run from Flash    Freq   195 pA MHz   440 yA    7  Oscillator bypassed  LSEBYP   1 in CLK ECKCR   When configured for extenal crystal  the LSE  consumption   Ipp tse  must be added  Refer to Table 29     Figure 8  Typ  Ipp RUN  VS  Vpp  fcPu   16 MHz  3 00             2 75    2 50                2 25    2 00    IDD RUN HSI  mA     1 75       1 50    1 8 2 1 2 6 3 1 3 6    Von  V  ai18213V2          1  Typical current consumption measured with code executed from RAM    2    52 93 DoclD023465 Rev 2       STM8L051F3    Electrical parameters       2    In the following t
14.  Low power run and  Low power wait modes     When entering Halt or Active halt modes  the system automatically switches from the MVR  to the LPVR in order to reduce current consumption     DoclD023465 Rev 2 15 93       Functional overview STM8L051F3       3 4    16 93    Clock management    The clock controller distributes the system clock  SYSCLK  coming from different oscillators  to the core and the peripherals  It also manages clock gating for low power modes and  ensures clock robustness     Features    e Clock prescaler  to get the best compromise between speed and current consumption  the clock frequency to the CPU and peripherals can be adjusted by a programmable  prescaler     e Safe clock switching  Clock sources can be changed safely on the fly in run mode  through a configuration register     e Clock management  To reduce power consumption  the clock controller can stop the  clock to the core  individual peripherals or memory     e System clock sources  four different clock sources can be used to drive the system  clock         1 16 MHz High speed external crystal  HSE        16 MHz High speed internal RC oscillator  HSI       32 768 Low speed external crystal  LSE        38 kHz Low speed internal RC  LSI    e RTC clock sources  the above four sources can be chosen to clock the RTC whatever  the system clock    e Startup clock  After reset  the microcontroller restarts by default with an internal  2 MHz clock  HSI 8   The prescaler ratio and clock source can be ch
15.  MHz 44  us  t Wakeup time from OFF 3    WKUP   state H    o 7  te  6    Time before a new Ta   25   C 10 s  IDLE conversion Ta    70   C 20   ms  t Internal reference refer to ms  VREFINT   voltage startup time Table 42                1  The current consumption through Vpep is composed of two parameters     one constant  max 300 yA       one variable  max 400 pA   only during sampling time   2 first conversion pulses                 So  peak consumption is 300 400   700 pA and average consumption is 300     4 sampling   2   16  x 400   450 pA at    1Msps    p   o gx decor m    2    Vrer  OF Vppa must be tied to ground     Guaranteed by design  not tested in production     Value obtained for continuous conversion on fast channel     The tjpj g maximum value is coon the    Z    revision code of the device     Minimum sampling and conversion time is reached for maximum Rext   0 5 kQ    DoclD023465 Rev 2    The time between 2 conversions  or between ADC ON and the first conversion must be lower than Ir    81 93       Electrical parameters    STM8L051F3       In the following three tables  data is guaranteed by characterization result  not tested in                                                                                                                production   Table 44  ADC1 accuracy with VppA   3 3 V to 2 5 V  Symbol Parameter Conditions Typ Max Unit  fapc   16 MHz 1 1 6  DNL Differential non linearity  fapc   8 MHz 1 1 6  fapc   4 MHz 1 1 5  fanc   16 MHz 1 2 2  INL 
16.  SSRH RTC Subsecond register high 0x00  0x00 5159 RTC WPR RTC Write protection register 0x00  0x00 5158 RTC SSRH RTC Subsecond register high 0x00  0x00 5159 RTC WPR RTC Write protection register 0x00  0x00 515A RTC SHIFTRH RTC Shift register high 0x00  0x00 515B RTC SHIFTRL RTC Shift register low 0x00  0x00 515C RTC ALRMAR1 RTC Alarm A register 1 0x00 1   0x00 515D RTC ALRMAR2 RTC Alarm A register 2 0x001   0x00 515E RTC_ALRMAR3 RTC Alarm A register 3 0x00 1   0x00 515F RTC ALRMAR4 RTC Alarm A register 4 0x001   EE Reserved area  4 bytes   0x00 5164 RTC ALRMASSRH RTC Alarm A subsecond register high 0x00 1   0x00 5165 RTC ALRMASSRL RTC Alarm A subsecond register low 0x00 1   32 93 DoclD023465 Rev 2   er       STM8L051F3    Memory and register map       Table 7  General hardware register map  continued                                                                                                                                                                                         Address Block Register label Register name ada  0x00 5166 RTC ALRMASSMSKR RTC Alarm A masking register 0x001   p B  Reserved area  3 bytes   0x00 516A RTC CALRH RTC Calibration register high 0x00 1   0x00 516B RTC CALRL RTC Calibration register low 0x001   0x00 516C is RTC TCR1 RTC Tamper control register 1 0x00 1   0x00 516D RTC TCR2 RTC Tamper control register 2 0x001   ee Kerg Reserved area  36 bytes   0x00 5190 CSSLSE CSR CSS on LSE control and status register 0x00 1   Kao bois Reserved area  11
17.  The low density STM8L05xxx devices contain an infrared interface which can be used with  an IR LED for remote control functions  Two timer output compare channels are used to  generate the infrared remote control signals     Development support    Development tools    Development tools for the STM8 microcontrollers include   e The STice emulation system offering tracing and code profiling    e The STVD high level language debugger including C compiler  assembler and  integrated development environment    e TheSTVP Flash programming software   The STM8 also comes with starter kits  evaluation boards and low cost in circuit  debugging programming tools    Single wire data interface  SWIM  and debug module    The debug module with its single wire data interface  SWIM  permits non intrusive real time  in circuit debugging and fast memory programming     The Single wire interface is used for direct access to the debugging module and memory  programming  The interface can be activated in all device operation modes     The non intrusive debugging module features a performance close to a full featured  emulator  Beside memory and peripherals  CPU operation can also be monitored in real   time by means of shadow registers     DoclD023465 Rev 2 21 93       Functional overview STM8L051F3       22 93    Bootloader    The low density value line STM8LO5xxx ultra low power devices feature a built in bootloader   see UM0560  STM8 bootloader user manual      The bootloader is used to downloa
18.  Vppa  lt  3 6 V   1 8 V sVppa  lt  2 4 V   2 4 V  lt  Vopa  lt  3 3 V   1 8 V lt Vopa  lt  2 4 V  4 0 25 Not allowed Not allowed 0 7 Not allowed  9 0 5625 0 8 Not allowed 2 0 1 0  16 1 2 0 0 8 4 0 3 0  24 1 5 3 0 1 8 6 0 4 5  48 3 6 8 4 0 15 0 10 0  96 6 15 0 10 0 30 0 20 0  192 12 32 0 25 0 50 0 40 0  384 24 50 0 50 0 50 0 50 0          Power supply decoupling should be performed as shown in Figure 36 or Figure 37   depending on whether Ver  is connected to Vppa or not  Good quality ceramic 10 nF  capacitors should be used  They should be placed as close as possible to the chip     DoclD023465 Rev 2    2       STM8L051F3    Electrical parameters       Figure 36  Power supply and reference decoupling  VRef  not connected to Vppa                 External  reference    1 uF    10 nF  Supply    1 pF    10 nF    ai17031b          Figure 37  Power supply and reference decoupling  VRef  connected to VppA           VREF  VDDA  Supply        1 uF    10 nF    Vrer Vssa    ai17032b          2    DoclD023465 Rev 2 85 93       Electrical parameters STM8L051F3       8 3 11    86 93    EMC characteristics    Susceptibility tests are performed on a sample basis during product characterization     Functional EMS  electromagnetic susceptibility     Based on a simple running application on the product  toggling 2 LEDs through UO ports     the product is stressed by two electromagnetic events until a failure occurs  indicated by the   LEDs     e ESD  Electrostatic discharge  positive and negat
19.  at 38 kHz  Ta   40  C to 25  C   54   57  with TIM2 active    T    55  C 6 0   6 3  one Supply current in Ta   85   C 7 2   7 8 ta   LPR    Low power run mode TA7 40 Ct025 C  525  5 6  all peripherals OFF   TA   55 C 5 67   6 1  LSE  9  external Ta   85  C 5 85   6 3  clock   M a   32 768 kHz  TA7 40 Ct025 C  5 59  6  with TIM2 active  2   T4   55 C 6 10  6 4  Ta   85   C 6 30  7  No floating I Os  2  Timer 2 clock enabled and counter running  Oscillator bypassed  LSEBYP   1 in CLK_ECKCR   When configured for extenal crystal  the LSE consumption   Ibp Lse  must be added  Refer to Table 29  Figure 10  Typ  Ipp LPR  VS  Vpp  LSI clock source   18  16  14    40   C     m    25  C  12  Tz 85  C    10     8  z 6  9 eene  A  2  0  18 2 1 2 6 3 1 3 6  Vpp V  ai18216V2  Ly  DoclD023465 Rev 2 55 93       Electrical parameters STM8L051F3       In the following table  data is based on characterization results  unless otherwise specified     Table 20  Total current consumption in Low power wait mode at Vpp 7 1 8 V to 3 6 V                                                       Symbol Parameter Conditions   Typ   Max   Unit  TA    40   C to 25   C 3   3 3  all peripherals OFF   TA   55   C 3 3   3 6  LSI RC osc  Ta   85   C 44  5   at 38 kHz  Ta    40   C to 25  C   3 4   3 7  with TIM2 active     TA   55  C 37  4  l de Geer Ta   85   C 48 54    DD LPW   Low power wai  aii mode Ta    40   C to 25  C  2 35  2 7  all peripherals OFF   T    55   C 2 42   2 82  pk ia Ta   85   C 3 10 3 71  cl
20.  control register 2 0x00  0x00 5014  to Reserved area  0 bytes   0x00 501D    er DoclD023465 Rev 2 27 93             Memory and register map STM8L051F3       Table 7  General hardware register map                                                                                                                Address Block Register label Register name Reset  status  0x00 502E  to Reserved area  44 bytes   0x00 5049  0x00 5050 FLASH CR1 Flash control register 1 0x00  0x00 5051 FLASH CR2 Flash control register 2 0x00  0x00 5052 Flash FLASH _PUKR Flash program memory unprotection key register   0x00  0x00 5053 FLASH  DUKR Data EEPROM unprotection key register 0x00  0x00 5054 FLASH IAPSR Flash in application programming status register 0x00  0x00 5055  to Reserved area  27 bytes   0x00 506F  0x00 5070 DMA1 GCSR DMA1 global configuration  amp  status register OxFC  0x00 5071 DMA1 GIR1 DMA1 global interrupt register 1 0x00  0x00 5072 to Reserved area  3  0x00 5074 bytes   0x00 5075 DMA1 COCR DMA1 channel O configuration register 0x00  0x00 5076 DMA1 COSPR DMA1 channel 0 status  amp  priority register 0x00  0x00 5077 DMA1 CONDTR DMA1 number of data to transfer register 0x00  a   channel 0    d DMA1 peripheral add high regist  0x00 5078 DMA1 COPARH ideo Tgn ee 0x52  E  channel 0   0x00 5079 DMA1 COPARL DMA1 peripheral address low register 0x00     channel 0   0x00 507A Reserved area  1 byte   0x00 507B DMA1  COMOARH DMA1 memory 0 address high register 0x00   channel 0   0x00 507C DMA1 C
21.  modifications or improvements  to this document  and the products and services described herein at any  time  without notice     All ST products are sold pursuant to ST s terms and conditions of sale     Purchasers are solely responsible for the choice  selection and use of the ST products and services described herein  and ST assumes no  liability whatsoever relating to the choice  selection or use of the ST products and services described herein     No license  express or implied  by estoppel or otherwise  to any intellectual property rights is granted under this document  If any part of this  document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  or services  or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  third party products or services or any intellectual property contained therein     UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  WARRANTY WITH RESPECT TO THE USE AND OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  WARRANTIES OF MERCHANTABILITY  FITNESS FOR A PARTICULAR PURPOSE  AND THEIR EQUIVALENTS UNDER THE LAWS  OF ANY JURISDICTION   OR INFRINGEMENT OF ANY PATENT  COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT     ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN   A  SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  SUPPORTING  ACTIVE IMP
22. 039       1  Values in inches are converted from mm and rounded to 4 decimal digits     2  Dimension  D  does not include mold flash  protrusions or gate burrs  Mold flash  protrusions or gate burrs shall not    exceed 0 15mm per side     3  Dimension    E1    does not include interlead flash or protrusions  Interlead flash or protrusions shall not exceed 0 25mm per    side     2    DoclD023465 Rev 2    89 93             Package characteristics STM8L051F3       9 3    90 93    Thermal characteristics    The maximum chip junction temperature  T max  must never exceed the values given in  Table 15  General operating conditions on page 48     The maximum chip junction temperature  T Jmax in degree Celsius  may be calculated using  the following equation     TJmax   Tamax    PDmax X Dal  Where   e   Tamax is the maximum ambient temperature in   C  e   Oya is the package junction to ambient thermal resistance in    C W     Ppmax is the sum of Pintmax and Pijomay  PDmax   PINTmax   Pomaxd    e   PinTmax S the product of Ipp and Vpp  expressed in Watts  This is the maximum chip  internal power    e  Promax represents the maximum power dissipation on output pins  Where     Pjjomax      Vor Jo    Z  Vpp Vou    og    taking into account the actual Volle and Vop lop of the I Os at low and high level in  the application     Table 53  Thermal characteristics       Symbol Parameter Value Unit       Thermal resistance junction ambient  CAN  TSSOP20      Thermal resistances are based on JEDE
23. 0x00 508F DMA1 C2MOARH DMA1 memory 0 address high register 0x00       channel 2   0x00 5090 DMA1  C2MOARL DMA1 memory O address low register 0x00   channel 2   0x00 5091  0x00 5092 Reserved area  2 bytes   0x00 5093 DMA1 C3CR DMA1 channel 3 configuration register 0x00  0x00 5094 DMA1 C3SPR DMA channel 3 status  amp  priority register 0x00  0x00 5095 DMA1 C3NDTR DMA1 number of data to transfer register 0x00       channel 3   DMA1 C3PARH   DMA1 peripheral address high register  0O 209e C3M1ARH  channel 3  SEN  DMA1 C3PARL   DMA1 peripheral address low register  0x00 3937 C3M1ARL  channel 3  SH  KYI DoclD023465 Rev 2 29 93                                                                                                                                                                                  Memory and register map STM8L051F3  Table 7  General hardware register map  continued   Address Block Register label Register name Reset  status  0x00 5098 DMA C3MOEAR DMA channel 3 memory 0 extended address 0x00      register  0x00 5099 DMA1 C3MOARH DMA1 memory 0 address high register 0x00   channel 3   DMA1 f  0x00 509A DMA1 C3MOARL DMA1 memory 0 address low register 0x00  m  channel 3   0x00 509B to  0x00 509C Reserved area  3 bytes   0x00 509D SYSCFG RMPCR3 Remapping register 3 0x00  0x00 509E SYSCFG SYSCFG RMPCR1 Remapping register 1 0x00  0x00 509F SYSCFG RMPCR2 Remapping register 2 0x00  0x00 50A0 EXTI CR1 External interrupt control register 1 0x00  0x00 50A1 EXTI CR2 External in
24. 0x00 7F77 ITC SPR8 Interrupt Software priority register 8 OxFF  0x00 7F78  to Reserved area  2 bytes    0x00 7F79   0x00 7F80 SWIM SWIM CSR SWIM control status register 0x00  0x00 7F81   to Reserved area  15 bytes    0x00 7F8F   0x00 7F90 DM BK1RE DM breakpoint 1 register extended byte OxFF  0x00 7F91 DM BK1RH DM breakpoint 1 register high byte OxFF  0x00 7F92 DM BK1RL DM breakpoint 1 register low byte OxFF  0x00 7F93 DM DM BK2RE DM breakpoint 2 register extended byte OxFF  0x00 7F94 DM BK2RH DM breakpoint 2 register high byte OxFF  0x00 7F95 DM BK2RL DM breakpoint 2 register low byte OxFF  0x00 7F96 DM CR1 DM Debug module control register 1 0x00   38 93 DoclD023465 Rev 2   er       STM8L051F3    Memory and register map       Table 8  CPU SWIM debug module interrupt controller registers  continued                                                     Address Block Register label Register name mesel  status   0x00 7F97 DM_CR2 DM Debug module control register 2 0x00   0x00 7F98 Ba DM CSR1 DM Debug module control status register 1 0x10   0x00 7F99 DM CSR2 DM Debug module control status register 2 0x00   0x00 7F9A DM ENFCTR DM enable function register OxFF   0x00 7F9B   to Reserved area  5 bytes   0x00 7F9F  1  Accessible by debug module only  Ky  DoclD023465 Rev 2 39 93                                                                                        Interrupt vector mapping STM8L051F3  6 Interrupt vector mapping  Table 9  Interrupt mapping  Wakeup Wakeup Wakeup  IRQ  Source 
25. 1 bytes   0x00 5200 SPI1 CR1 SPI1 control register 1 0x00  0x00 5201 SPI1 CR2 SPI1 control register 2 0x00  0x00 5202 SPI1 ICH SPI interrupt control register 0x00  0x00 5203 SPI SR SPI status register 0x02  0x00 5204 bak SPI1 DR SPI1 data register 0x00  0x00 5205 SPI1 CRCPR SPI1 CRC polynomial register 0x07  0x00 5206 SPI1 RXCRCR SPI1 Rx CRC register 0x00  0x00 5207 SPI1 TXCRCR SPI1 Tx CRC register 0x00  0x00 5208  to Reserved area  8 bytes   0x00 520F  0x00 5210 I2C1 CR1 I2C1 control register 1 0x00  0x00 5211 I2C1 CR2 I2C1 control register 2 0x00  0x00 5212 I2C1 FREQR I2C1 frequency register 0x00  0x00 5213 I2C1 OARL I2C1 own address register low 0x00  0x00 5214 DC  OARH I2C1 own address register high 0x00  0x00 5215 I2C1 OAR2 I2C1 own address register for dual mode 0x00  0x00 5216 1201 I2C1 DR I2C1 data register 0x00  0x00 5217 I2C1 SR1 I2C1 status register 1 0x00  0x00 5218 DC  SR2 I2C1 status register 2 0x00  0x00 5219 I2C1 SR3 I2C1 status register 3 0x0X  0x00 521A I2C1 ITR I2C1 interrupt control register 0x00  0x00 521B I2C1 CCRL I2C1 clock control register low 0x00  0x00 521C I2C1 CCRH I2C1 clock control register high 0x00    er DoclD023465 Rev 2 33 93                                                                                                                                                                                                                Memory and register map STM8L051F3  Table 7  General hardware register map  continued    Address Block Register la
26. 58   Reserved  0x00 5FFF  0x00 6000 Boot ROM  0x00 67FF  2 Kbytes   0x00 6800   Reserved  0x00 7EFF  0x00 7F00   CPU SWIM Debug ITC   Registers  0x00 7FFF  0x00 8000  0x00 80FF  0x00 8100    Low density  Flash program memory    8 Kbytes  0x00 9FFF   uc        0x00 5000  0x00 501E    0x00 5050    0x00 5055  0x00 5070  0x00 509D  0x00 50A0  0x00 50A6  0x00 50AA  0x00 50A9  0x00 50B0  0x00 50B2  0x00 50B4  0x00 50CO  0x00 50D1  0x00 50D3  0x00 50D5  0x00 50E0  0x00 50E3  0x00 50F0  0x00 50F4  0x00 5040  0x00 5191  0x00 5200  0x00 5208  0x00 5210  0x00 521F  0x00 5230  0x00 523B  0x00 5250  0x00 5267  0x00 5280  0x00 5297  0x00 52E0  0x00 52EA  0x00 52FF  0x00 5317  0x00 5340  0x00 53C8  0x00 5430  0x00 5440  0x00 5450  0x00 5457       GPIO ports  Reserved  Flash  Reserved  DMA1  SYSCFG    ITC EXT1    E  m    ITC EXT1    Reserved    pu  N    T    zu     2    Reserved    C    2       Reserved  WWDG  Reserved  IWDG  Reserved    BEEP    Reserved  RTC  Reserved  SPI1  Reserved  DCH  Reserved  USART1  Reserved  TIM2  Reserved  TIM3  Reserved  TIM4  Reserved  IRTIM  Reserved  ADC1    Reserved    Reserved    MS18274V3           Table 5 lists the boundary addresses for each memory size  The top of the stack is at the RAM end    address     Refer to Table 7 for an overview of hardware register mapping  to Table 6 for details on I O port hardware  registers  and to Table 8 for information on CPU SWIM debug module controller registers     DoclD023465 Rev 2    Ly        STM8L051F3    Memory 
27. 7  Typical Vj  and Vu vs Vpp  true open drain I Os                                1 8 2 1 2 6 3 1 3 6  Voo  V   ai18221V2          2    DoclD023465 Rev 2       STM8L051F3    Electrical parameters       Figure 18  Typical pull up resistance Rpy vs Vpp With Viy Vss       Pull Up resistance  kQ     60       55             50       45       40    35       1 8 2 2 2 24 2 6 2 8 3 3 2 3 4 3 6    Vpp  V   ai18222V2       Figure 19  Typical pull up current ly  vs Vpp With Vin Vss          Pull Up current  uA     120       100                80       60    40       20          0    1 8 1 95 2 1 225 24 2 55 27 2 85 3 3 15 33 345 3 6       ai18223V2       2    DoclD023465 Rev 2 69 93       Electrical parameters    STM8L051F3       70 93    Output driving current    Subject to general operating conditions for Vpp and Ta unless otherwise specified     Table 36  Output driving current  high sink ports           NO Symbol Parameter Conditions Min Max   Unit  Type  Jeje SATIN 045   V  Vpp  3 0V    Vio  Output lowievervetagetoraniiapin   OP ES 045   V  OL utput low level voltage for an pin Vpp   1 8 V i  x lio    10 mA  0 7 V  5 Vpp  3 0V    c  D lio   2 mA   Vpp 0 45    Vppz30v  V220 y  lio    1 mA   2  P    IO   j  VoH Output high level voltage for an UO pin Vop   1 8 V Vpp 0 45 V  lio   10 mA  V 0 7 V  Vpp   3 0 V Bie                                              The lig current sunk must always respect the absolute maximum rating specified in Table 13 and the sum  of lio  I O ports and cont
28. BOR TH 2 0  001  Rising edge 1 96 2 04 2 07  V Brown out reset threshold 2    Falling edge 2 22 2 3 2 35 V  BOR   BOR TH 2 0  010  Rising edge 2 31 241 2 44  V Brown out reset threshold 3   Falling edge 2 45 2 55 2 60  BOR   BOR TH 2 0  011  Rising edge 2 54 2 66 27  V Brown out reset threshold 4   Falling edge 2 68 2 80 2 85  BORA  y   BOR TH 2 0  100  Rising edge 2 78 2 90 2 95  Falling edge 1 80 1 84 1 88  Vpypo PVD threshold 0  Rising edge 1 88 1 94 1 99  Falling edge 1 98 2 04 2 09  Vpyp1 PVD threshold 1  Rising edge 2 08 2 14 2 18  Falling edge 2 2 2 24 2 28  Vpyp2  PVD threshold 2  Rising edge 2 28 2 34 2 38  Falling edge 2 39 2 44 2 48  Vpyp3 PVD threshold 3 V  Rising edge 2 47 2 54 2 58  Falling edge 2 57 2 64 2 69  Vpyp4    PVD threshold 4  Rising edge 2 68 2 74 2 79  Falling edge 2 77 2 83 2 88  Vpyps  PVD threshold 5  Rising edge 2 87 2 94 2 99  Falling edge 2 97 3 05 3 09  VpvD6 PVD threshold 6  Rising edge 3 08 3 15 3 20  1  Data guaranteed by design  not tested in production   2  Data based on characterization results  not tested in production   Zar DoclD023465 Rev 2 49 93       Electrical parameters STM8L051F3       8 3 3    50 93    Figure 7  POR BOR thresholds          Vdd Vdd  3 6V i  Operating power supply  1 8 V BOR threshold     vBoRo  12   8 i  E FE    VPDR  de Et  10 o   ro KR  ix D    o 1  9 1  Internal NRST  with without  BOR BOR  BOR always active BOR activated by user for Time  at power up power down detection                   Supply current chara
29. C JESD51 2 with 4 layer PCB in a natural convection  environment     2    DoclD023465 Rev 2       STM8L051F3    Device ordering information       10 Device ordering information    2    Example     Product class  STMB8 microcontroller    Family type  L   Low power    Sub family type  051   Ultra low power    Pin count  F   20 pins    Program memory size  3   8 Kbytes    Package  P   TSSOP    Temperature range  6    40 to 85   C    STM8    a    L       051          F          3          DoclD023465 Rev 2    P       Figure 40  Low density value line STM8L051F3 ordering information scheme    6       For a list of available options  e g  memory size  package  and orderable part numbers or for  further information on any aspect of this device  please contact the ST sales office nearest to you     91 93       Revision history    STM8L051F3       11    92 93    Revision history    Table 54  Document revision history             Date Revision Changes  01 Aug 2012 1 Initial release   Updated TSSOP20 package information  Updated pin name related to pin1 and 2 inside Table 4  Low density  26 Mar 2014 2 value line STM8LO5xxx pin description  Updated inside Table 10  Option byte addresses OPT5 default factory  of BOR to 0x00                DoclD023465 Rev 2    2       STM8L051F3       Please Read Carefully     Information in this document is provided solely in connection with ST products  STMicroelectronics NV and its subsidiaries     ST     reserve the  right to make changes  corrections 
30. C OC programmed  no UO pins toggling  Not tested in production     2  Data based on a differential Ipp measurement between the on chip peripheral in reset configuration and not clocked and  the on chip peripheral when clocked and not kept under reset  The CPU is in Wait mode in both cases  No I O pins toggling   Not tested in production     3  Peripherals listed above the Ipp A   parameter ON  TIM1  TIM2  TIM3  TIM4  USART1  SPI1  I2C1  DMA1  WWDG     Data based on a differential Ipp measurement between ADC in reset configuration and continuous ADC conversion     gn  s    Including supply current of internal reference voltage     Table 25  Current consumption under external reset                Symbol Parameter Conditions Typ Unit  Vop  1 8V 48  Supply current under All pins are externally  l   Vop 3V 76 A  DD RST    external reset  1  tied to Vpp BB n  Vop 3 6V 91                            1  All pins except PAO  PBO and PB4 are floating under reset  PAO  PBO and PB4 are configured with pull up under reset     Ly  DocID023465 Rev 2 59 93       Electrical parameters STM8L051F3       8 3 4 Clock and timing characteristics    HSE external clock  HSEBYP   1 in CLK ECKCR     Subject to general operating conditions for Vpp and T      Table 26  HSE external clock characteristics       Symbol Parameter Conditions Min Typ Max  External clock source  frequency      OSC_IN input pin high level  voltage    fuse ext       VHSEH    Unit    MHz          OSC_IN input pin low level    V  SE
31. Description ie from from Wait   from Wait Vector  No  block P Active halt  WFI  WFE address  mode  1   mode mode  mode   RESET   Reset Yes Yes Yes Yes 0x00 8000  TRAP Software interrupt         0x00 8004  0 TLI   External Top level Interrupt         0x00 8008  FLASH end of programing   1 FLASH write attempted to     Yes Yes 0x00 800C  protected page interrupt  DMA1 channels 0 1 half  2 DMA1 0 1  transaction transaction     Yes Yes 0x00 8010  complete interrupt  DMA1 channels 2 3 half  3 DMA1 2 3  transaction transaction     Yes Yes 0x00 8014  complete interrupt  4 me ETE ae Yes Yes Yes Yes   0x00 8018  tamper 1 tamper 2 tamper 3  5 PVD PVD interrupt Yes Yes Yes Yes 0x00 801C  6 EXTIB External interrupt port B Yes Yes Yes Yes 0x00 8020  7 EXTID External interrupt port D Yes Yes Yes Yes 0x00 8024  8 EXTIO External interrupt 0 Yes Yes Yes Yes 0x00 8028  9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C  10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030  11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034  12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038  13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C  14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040  15 EXTI7 External interrupt 7 Yes Yes Yes Yes Ox00 8044  16 Reserved Ox00 8048  CLK system clock  17 CLK switch CSS interrupt     Yes Yes 0x00 804C  ACD1 end of conversion   18 ADC1 analog watchdog  Yes Yes Yes Yes 0x00 8050  overrun interrupt  TIM2 update  19 TIM2 loverflow trigger break     Ye
32. E voltage       OSC IN input    2 6  capacitance      Cin HSE     pF       OSC_IN input leakage    Veo  lt  Vin  lt  V    current SS IN ED mi    ILEAK_HSE                      HA          1  Data guaranteed by Design  not tested in production   LSE external clock  LSEBYP 1 in CLK ECKCR   Subject to general operating conditions for Vpp and T      Table 27  LSE external clock characteristics       Symbol Parameter Min Typ Max    fLSE_ext External clock source frequency   32 768    Unit    kHz       Vi seu  OSC32 IN input pin high level voltage 0 7 x Vpp Vpp       Vise    OSC32_IN input pin low level voltage Vss 0 3 x Vpp       Cin LSE  OSC32 IN input capacitance   0 6    pF       liEAK LSE OSC32 IN input leakage current  1                      pA       1  Data guaranteed by Design  not tested in production     2  Data based on characterization results  not tested in production     60 93 DoclD023465 Rev 2    2             STM8L051F3    Electrical parameters       HSE crystal ceramic resonator oscillator    The HSE clock can be supplied with a 1 to 16 MHz crystal ceramic resonator oscillator  All  the information given in this paragraph is based on characterization results with specified  typical external components  In the application  the resonator and the load capacitors have  to be placed as close as possible to the oscillator pins in order to minimize output distortion  and startup stabilization time  Refer to the crystal resonator manufacturer for more details   frequency  
33. FT  pins  PA7 and 5 2 V    V i  2   IH Input high level voltage PEO  with Vpp  lt  2 V                                                    Input voltage on five volt  TOXV  tolerant  FT  pins  PA7 and POX Yon 5 5  PEO  with Vpp 2 2 V  Input voltage on 3 6 V tolerant 3 6   TT  pins i  Input voltage on any other pin 0 70 x Vpp Vpp 0 3  Schmitt trigger voltage l Os 200  Vhys h ta  3  q mV  ysteresis True open drain I Os 200  VssVinVpp     50  5   High sink I Os  Vss lt VinsVpp     2005   likg Input leakage current  4  True open drain I Os nA  VsssVinsVpp  PAO with high sink LED driver     200     capability  Weak pull up equivalent  Rpu   ye 3 Vin Vss 30 45 60 kQ  resistor  Cio I O pin capacitance 5 pF                   Vpp   3 0 V  Ta    40 to 85   C unless otherwise specified    Data based on characterization results  not tested in production    Hysteresis voltage between Schmitt trigger switching levels  Based on characterization results  not tested   The max  value may be exceeded if negative current is injected on adjacent pins     Not tested in production     oa ONS    Rpy pull up equivalent resistor based on a resistive transistor corresponding Ipy current characteristics described in  Figure 19      Ly  DocID023465 Rev 2 67 93       Electrical parameters    STM8L051F3       68 93    Figure 16  Typical Vj  and Vu vs Vpp  high sink I Os           Vi and Vis  V     3                               1 8 2 1 2 6 3 1 3 6  Vbo  V  ai18220V2             Vi and Vu  V        Figure 1
34. Integral non linearity fapc   8 MHz 1 2 1 8 LSB  fapc   4 MHz 1 2 1 7  fapc   16 MHz 2 2 3 0  TUE Total unadjusted error  fapc   8 MHz 1 8 2 5  fapc   4 MHz 1 8 2 3  fanc   16 MHz 1 5 2  Offset Offset error fapc   8 MHz 1 1 5  fapc   4 MHz 0 7 1 2 T  fapc   16 MHz  Gain Gain error fapc   8 MHz 1 1 5  fapc   4 MHz  Table 45  ADC1 accuracy with VppA   2 4 V to 3 6 V  Symbol Parameter Typ Max Unit  DNL Differential non linearity 1 2 LSB  INL Integral non linearity 1 7 3 LSB  TUE Total unadjusted error 2 4 LSB  Offset Offset error 1 2 LSB  Gain Gain error 1 5 3 LSB  Table 46  ADC1 accuracy with VppA   Vrer    1 8 V to 2 4 V  Symbol Parameter Typ Max Unit  DNL Differential non linearity 1 2 LSB  INL Integral non linearity 2 3 LSB  TUE Total unadjusted error 3 5 LSB  Offset Offset error 2 3 LSB  Gain Gain error 2 3 LSB       82 93       DoclD023465 Rev 2             2                               STM8L051F3 Electrical parameters  Figure 33  ADC1 accuracy characteristics  MLSBipeaL Zoe   or Yopa depending on package    4096 4096  EE Xx de  1  Example of an actual transfer curve  7 I  2  The ideal transfer curve  4094 ze 1  3  End point correlation line  4093 PE Pa   Gi a       2       is mil      rJ    E       N O fF a DN    e  7  P      EL   gt     M   1  tag    L2      Ep                         44         1 LSBineaL       Er Total Unadjusted Error  maximum deviation  between the actual and the ideal transfer curves   Eg  Offset Error  deviation between the first actual  transiti
35. Japan    Malaysia   Malta   Morocco   Philippines   Singapore   Spain   Sweden   Switzerland   United Kingdom   United States of America    www st com    Ly  DocID023465 Rev 2 93 93       
36. LANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS   B   AERONAUTIC APPLICATIONS   C  AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS  AND OR  D  AEROSPACE APPLICATIONS  OR ENVIRONMENTS  WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE  THE PURCHASER SHALL USE PRODUCTS AT  PURCHASER S SOLE RISK  EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE  UNLESS A PRODUCT IS  EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR  AUTOMOTIVE  AUTOMOTIVE SAFETY OR MEDICAL  INDUSTRY  DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS  PRODUCTS FORMALLY ESCC  QML OR JAN QUALIFIED ARE  DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY     Resale of ST products with provisions different from the statements and or technical features set forth in this document shall immediately void  any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever  any  liability of ST     ST and the ST logo are trademarks or registered trademarks of ST in various countries   Information in this document supersedes and replaces all information previously supplied   The ST logo is a registered trademark of STMicroelectronics  All other names are the property of their respective owners       2014 STMicroelectronics   All rights reserved    STMicroelectronics group of companies    Australia   Belgium   Brazil   Canada   China   Czech Republic   Finland   France   Germany   Hong Kong   India   Israel   Italy   
37. M8L051F3       3 2    3 2 1    3 2 2    14 93    Central processing unit STM8    Advanced STM8 Core    The 8 bit STM8 core is designed for code efficiency and performance with an Harvard  architecture and a 3 stage pipeline     It contains 6 internal registers which are directly addressable in each execution context  20  addressing modes including indexed indirect and relative addressing  and 80 instructions     Architecture and registers    e Harvard architecture  e  3 stage pipeline  e 32 bit wide program memory bus   single cycle fetching most instructions    e Xand Y 16 bit index registers   enabling indexed addressing modes with or without  offset and read modify write type data manipulations    e  8 bit accumulator   e 24 bit program counter   16 Mbyte linear memory space   e 16 bit stack pointer   access to a 64 Kbyte level stack   e  8 bit condition code register   7 condition flags for the result of the last instruction    Addressing    e 20 addressing modes    e Indexed indirect addressing mode for lookup tables located anywhere in the address  space  e Stack pointer relative addressing mode for local variables and parameter passing    Instruction set    e 80 instructions with 2 byte average instruction size   e Standard data movement and logic arithmetic functions   e  8 bit by 8 bit multiplication   e 16 bit by 8 bit and 16 bit by 16 bit division   e Bit manipulation   e Data transfer between stack and accumulator  push pop  with direct stack access  e Data transf
38. MHZ gta neei ke naga an me KAL e at eee ee EE 84  DoclD023465 Rev 2 5 93       List of tables STM8L051F3       Table 48   Table 49   Table 50   Table 51   Table 52   Table 53   Table 54     6 93    EMS data   s  6o cc a Giga REENEN A TG NG reu se 86  EMI datas  uc  87  ESD absolute maximum ratings            eh 87  Electrical sensitivities      87  TSSOP20 20 lead thin shrink small package  mechanical data                      89  Thermal characteristics       90  Document revision history      92    2    DoclD023465 Rev 2       STM8L051F3 List of figures       List of figures    Figure 1   Figure 2   Figure 3   Figure 4   Figure 5   Figure 6   Figure 7   Figure 8   Figure 9     Figure 10   Figure 11   Figure 12   Figure 13   Figure 14   Figure 15   Figure 16   Figure 17   Figure 18   Figure 19   Figure 20   Figure 21   Figure 22   Figure 23   Figure 24   Figure 25   Figure 26   Figure 27   Figure 28   Figure 29   Figure 30   Figure 31   Figure 32   Figure 33   Figure 34   Figure 35     Figure 36   Figure 37   Figure 38   Figure 39   Figure 40     2    Low density value line STM8LO5xxx device block diagram          oooooocoocoooooo  12  Low density value line STM8LO5xxx clock tree diagram      17  STM8L051F3 20 pin TSSOP20 package pinout             0c eee 23  Memory  MAD  E 26  Pin loading conditions    45  Pin input Voltage m er 46  POR BOR thresholds      50  Typ  IDD RUN  vs  VDD  fCPU   16Mn   rne 52  Typ  IDD Wait  vs  VDD  fCPU   16 MHZ1          e 54  Typ  IDD LPR  vs
39. N  2 channels  8 Kbyte  2 channels LI   16 bit Timer 3   Z Pogram memdsy  Hi 8 bit Timer 4  OT 8 256 byte  5 Data EEPROM  a  bd  IR  TIM    ko   E  S  SCL  SDA  5 PA 7 0   SPI1  MOSI  SPI  MISO  5 PB 7 0   SPI1_SCK  SPI1 NSS ka  2 PC 7 0   i  5 PD 7 0  USART1 RX  USART1 TX  o  7 0   USART1_CK  lt   Vopa     ssa  ADC1_INx  V   DDREF BEER  VSSREF  ALARM  CALIB   TAMP1 2 3  VREFINT out  MS30321V1  1  Legend     12 93    ADC  Analog to digital converter   BOR  Brownout reset   DMA  Direct memory access   IC  Inter integrated circuit multimaster interface  IWDG  Independent watchdog   POR PDR  Power on reset   power down reset  RTC  Real time clock   SPI  Serial peripheral interface   SWIM  Single wire interface module   USART  Universal synchronous asynchronous receiver transmitter  WWDG  Window watchdog    2    DoclD023465 Rev 2       STM8L051F3    Functional overview       3 1    2    Low power modes    The low density value line STM8L05xxx devices support five low power modes to achieve  the best compromise between low power consumption  short startup time and available  wakeup sources     Wait mode  The CPU clock is stopped  but selected peripherals keep running  An  internal or external interrupt or a Reset can be used to exit the microcontroller from  Wait mode  WFE or WFI mode      Low power run mode  The CPU and the selected peripherals are running  Execution  is done from RAM with a low speed oscillator  LSI or LSE   Flash memory and data  EEPROM are stopped and the volt
40. OMOARL DMA1 memory 0 address low register 0x00     channel 0   28 93 DoclD023465 Rev 2 Zar       STM8L051F3    Memory and register map       Table 7  General hardware register map  continued                                                                                                                                                              Address Block Register label Register name Reset  status  0x00 507D to  0x00 507E Reserved area  2 bytes   0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00  0x00 5080 DMA1_C1SPR DMA1 channel 1 status  amp  priority register 0x00  0x00 5081 DMA1 CINDTR DMA1 number of data to transfer register 0x00       channel 1   0x00 5082 DMA1 CIPARH DMA1 peripheral address high register 0x52  hz  channel 1   0x00 5083 DMA1 CIPARL DMA1 peripheral address low register 0x00     channel 1   0x00 5084 Reserved area  1 byte   0x00 5085 DMA1 C1MOARH DMA1 memory 0 address high register 0x00       channel 1   0x00 5086 DMA1 C1MOARL DMA1 memory 0 address low register 0x00     channel 1   0x00 5087  0x00 5088 Reserved area  2 bytes   0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00  0x00 508A DMA1_C2SPR DMA1 channel 2 status  amp  priority register 0x00  0x00 508B DMA1 DMA1_C2NDTR DMA1 number of data to transfer register 0x00   channel 2   0x00 508C DMA1 C2PARH DMA1 peripheral address high register 0x52  B  channel 2   0x00 508D DMA1 C2PARL DMA1 peripheral address low register 0x00     channel 2   0x00 508E Reserved area  1 byte   
41. R   0x00 480A  BOR   3 0  Reserved BOR TH ON 0x00  0x00 480B Bootloader 0x00  option bytes pla OPTBL 15 0   0x00 480C     OPTBL   15 0  0x00          2    42 93 DoclD023465 Rev 2          STM8L051F3 Option bytes       Table 11  Option byte description       Option  byte  No     OPTO    Option description    ROP 7 0  Memory readout protection  ROP   OxAA  Disable readout protection  write access via SWIM protocol     Refer to Readout protection section in the STM8L05x 15x and STM8L 16x reference manual   RM0031         OPT1    UBC 7 0  Size of the user boot code area  0x00  UBC is not protected   0x01  Page O is write protected   0x02  Page 0 and 1 reserved for the UBC and write protected  It covers only the interrupt vectors   0x03  Page O to 2 reserved for UBC and write protected   Ox7F to OxFF   All 128 pages reserved for UBC and write protected   The protection of the memory area not protected by the UBC is enabled through the MASS keys   Refer to User boot code section in the STM8L05x 15x and STM8L 16x reference manual  RM0031         OPT2    Reserved       OPT3    IWDG HW  Independent watchdog  0  Independent watchdog activated by software  1  Independent watchdog activated by hardware       IWDG HALT  Independent window watchdog off on Halt Active halt  0  Independent watchdog continues running in Halt Active halt mode  1  Independent watchdog stopped in Halt Active halt mode       WWDG HW  Window watchdog  0  Window watchdog activated by software  1  Window watchdog ac
42. RTC TR1 RTC Time register 1 0x00  0x00 5141 RTC RTC TR2 RTC Time register 2 0x00  0x00 5142 RTC TR3 RTC Time register 3 0x00  KYI DoclD023465 Rev 2 31 93                                                                                                                                                                                                                Memory and register map STM8L051F3  Table 7  General hardware register map  continued   Address Block Register label Register name pada  0x00 5143 Reserved area  1 byte   0x00 5144 RTC DR1 RTC Date register 1 0x01  0x00 5145 RTC DR2 RTC Date register 2 0x21  0x00 5146 RTC DR3 RTC Date register 3 0x00  0x00 5147 Reserved area  1 byte   0x00 5148 RTC CR1 RTC Control register 1 0x001   0x00 5149 RTC_CR2 RTC Control register 2 0x001   0x00 514A RTC_CR3 RTC Control register 3 0x00 1   0x00 514B Reserved area  1 byte   0x00 514C RTC ISR1 RTC Initialization and status register 1 0x01  0x00 514D RTC ISR2 RTC Initialization and Status register 2 0x00  Ge Ge Reserved area  2 bytes   0x00 5150 RTC SPRERH RTC Synchronous prescaler register high 0x00 1   0x00 5151 RTC SPRERL RTC Synchronous prescaler register low OxFF     0x00 5152 RTC APRER RTC Asynchronous prescaler register 0x7F 1   0x00 5153 Reserved area  1 byte   0x00 5154 RTC RTC_WUTRH RTC Wakeup timer register high Vidal  0x00 5155 RTC WUTRL RTC Wakeup timer register low OxFF D  0x00 5156 Reserved area  1 byte   0x00 5157 RTC SSRL RTC Subsecond register low 0x00  0x00 5158 RTC
43. T   NRST input not filtered pulse  9  300                               1  Data based on characterization results  not tested in production   2  200 mV min     3  Data guaranteed by design  not tested in production     Figure 26  Typical NRST pull up resistance Rpy vs Vpp  60    55          50                45       40       Pull up resistance  ko        35       30    1 8 2 22 24 26 28 3 32 34 36  Vop  V     ai18224V2             2    72 93 DoclD023465 Rev 2       STM8L051F3 Electrical parameters       Figure 27  Typical NRST pull up current lj  vs Vpp       120    100    80    60    Pull Up current  JA     40    20          0  1 8 1 95 21 225 24 255 27 2 85 3 3 15 3 3 345 3 6  Voo  V        ai18225V2          The reset network shown in Figure 28 protects the device against parasitic resets  The user  must ensure that the level on the NRST pin can go below the Vj   wrst  max  level specified  in Table 39  Otherwise the reset is not taken into account internally     For power consumption sensitive applications  the external reset capacitor value can be  reduced to limit the charge discharge current  If the NRST signal is used to reset the  external circuitry  attention must be paid to the charge discharge time of the external  capacitor to fulfill the external devices reset timing conditions  The minimum recommended  capacity is 10 nF     Figure 28  Recommended NRST pin configuration                                           EXTERNAL NRST Filt INTERNAL RESET  RESET e LJ ilte
44. Table 28   Table 29   Table 30   Table 31   Table 32   Table 33   Table 34   Table 35   Table 36   Table 37   Table 38   Table 39   Table 40   Table 41   Table 42   Table 43   Table 44   Table 45   Table 46   Table 47     Ly     Low density value line STM8LO5xxx low power device features and peripheral counts      10    Timer feature comparison            llis rh 19  Legend abbreviation for Table 4          liliis n 23  Low density value line STM8LO5xxx pin description      24  Flash and RAM boundary addresses                4 esse 27  I O port hardware register map              ren 27  General hardware register map              ree 28  CPU SWIM debug module interrupt controller registers           lille less  38  Interrupt mapping   clum a NEE ENEE ee ay Ro REOR A NEE d EUR ees 40  Option byte addresses                 ete 42  Option byte description            eae 43  Voltage characteristics              nn 46  Current characteristics    0    2 00 00 ccc tae 47  Thermal characteristics       47  General operating conditions              00 ccc tae 48  Embedded reset and power control block characteristics                           49  Total current consumption in Run mode    51  Total current consumption in Wait mode            e 53  Total current consumption and timing in Low power run mode at VDD   1 8 V to  SON anna bu MIL EC E M RARE DINEM mgawa 55  Total current consumption in Low power wait mode at VDD   1 8 V to 3 6V            56  Total current consumption and timin
45. X C5 master slave select     USART  transmit  Timer 2  channel 1       24 93    DoclD023465 Rev 2    Ly           STM8L051F3 Pin description       Table 4  Low density value line STM8L05xxx pin description  continued                             a Input Output  So    o   D  o     amp  5 HE  EM Pin name Ei 2 o 2313 ou Default alternate function  Se HO 5 aa 2 ola s    o Sas S    20 5G  o 2    9 z  H     c  w   gt   I  PC6 OSC32  OUT  SPI SCkJ  Port LSE oscillator output    SPI clock     2 ES  T 1 0 X X XHS X   X  USART receive      USART RX  TIM2 CH2 C6    Timer 2  channel 2  PDO TIM3 CH2  ADC1 TRIG   Port   Timer 3   channel 2   3 YADC1 IN22 baa   A BS LA DO  ADC1 Trigger    ADC1 IN22  Digital supply voltage    8 Ion   Vopa  Vngr   S ADC1 positive voltage reference  7 Man  V IN Ground voltage   ADC1 negative voltage  no  EHEH     ooh reference   Analog ground voltage   5   2   USART1 synchronous clock       3 EE e HA 1 0 XXX Ha XX GE SWIM input and output      Beep output   Infrared Timer output                                              1  Atpower up  the PA1 NRST pin is a reset input pin with pull up  To be used as a general purpose pin  PA1   it can be  configured only as output open drain or push pull  not as a general purpose input  Refer to Section Configuring NRST PA1  pin as general purpose output in the STM8L15xxx and STM8L16xxx reference manual  RM0031      2    Alternate function remapping option  if the same alternate function is shown twice  it indicates an exclu
46. able  data is based on characterization results  unless otherwise specified     Table 18  Total current consumption in Wait mode                                                                               Max  Symbol   Parameter Conditions Typ Unit  55  C   85  C  fcpu   125 kHz   0 33   0 39   0 41  feru   1 MHz 0 35 0 41 0 44  HSI fcpu   4 MHz 0 42   0 51   0 52  f   8 MH  CPU not CPU Zz 0 52   0 57   0 58  clocked  fopy   16 MHz   0 68   0 76   0 79  all peripherals  OFF  fcpu   125 kHz   0 032   0 056   0 068  Supply code executed  Ipp wait   currentin  rom RAM HSE external fcpu   1 MHz   0 078   0 121   0 144   mA  Wait mode   with Flash in clock fopy  4 MHz  0 218   0 26   0 30  Ippa mode         t o fi sg  9  E  Vpop from fcpu   8 MHz 0 40   0 52   0 57  1 8 V to 3 6 V fopy   16 MHz   0 760  1 01   1 05  LSI feru   fisi 0 035   0 044   0 046  LSE     external clock   fcpu   fLse 0 032   0 036   0 038   32 768 kHz   fopy   125 kHz   0 38   0 48   0 49  Luss  MHz   0 41   0 49   0 51  HSI fcpu   4 MHz 0 50   0 57   0 58  fcpy  8MHz   0 60   0 66   0 68  CPU not fopy   16 MHz   0 79   0 84   0 86  clocked     Supply all peripherals fcpu   125 kHz   0 06   0 08   0 09  currentin   OFF   3           HSE f   1 MHz 0 10   0 17   0 18  open Wall code executed external clock Si s  mode IE  fopy HSE  fcpu   4 MHz 0 24   0 36   0 39  pp from z  1 8 V to 3 6 V feru   8 MHz 0 50   0 58   0 61  fcpy   16 MHz   1 00   1 08   1 14  LSI feru   fis  0 055   0 058   0 065  LSE   extern
47. age regulator is configured in ultra low power mode   The microcontroller enters Low power run mode by software and can exit from this  mode by software or by a reset    All interrupts must be masked  They cannot be used to exit the microcontroller from this  mode     Low power wait mode  This mode is entered when executing a Wait for event in Low  power run mode  It is similar to Low power run mode except that the CPU clock is  stopped  The wakeup from this mode is triggered by a Reset or by an internal or  external event  peripheral event generated by the timers  serial interfaces  DMA  controller  DMA1  and I O ports   When the wakeup is triggered by an event  the  system goes back to Low power run mode    All interrupts must be masked  They cannot be used to exit the microcontroller from this  mode     Active halt mode  CPU and peripheral clocks are stopped  except RTC  The wakeup  can be triggered by RTC interrupts  external interrupts or reset     Halt mode  CPU and peripheral clocks are stopped  the device remains powered on   The RAM content is preserved  The wakeup is triggered by an external interrupt or  reset  A few peripherals have also a wakeup from Halt capability  Switching off the  internal reference voltage reduces power consumption  Through software configuration  itis also possible to wake up the device without waiting for the internal reference  voltage wakeup time to have a fast wakeup time of 5 us     DoclD023465 Rev 2 13 93       Functional overview ST
48. al clock   fcpu   fLse 0 051   0 056   0 060   32 768 kHz                                   consumption    lbp Hse  Must be added  Refer to Table 28     DoclD023465 Rev 2    All peripherals OFF  Vpp from 1 8 V to 3 6 V  HSI internal RC osc    fepy   fsyscLk  Flash is configured in Ippo mode in Wait mode by setting the EPM or WAITM bit in the Flash CR1 register   Oscillator bypassed  HSEBYP   1 in CLK ECKCR   When configured for external crystal  the HSE    53 93       Electrical parameters    STM8L051F3       54 93    4  Oscillator bypassed  LSEBYP   1 in CLK ECKCR   When configured for extenal crystal  the LSE    onsumption    lbp Hse  must be added  Refer to Table 29     Figure 9  Typ  Ipp wait  VS  Von   fcpu   16 MHz 1           1000  950    IDD WAIT HSI  UA                                               2 1 2 6  Voo  V        3 1    3 6    ai18214V2          1     Typical current consumption measured with code executed from Flash memory     DoclD023465 Rev 2    d       STM8L051F3    Electrical parameters       In the following table  data is based on characterization results  unless otherwise specified     Table 19  Total current consumption and timing in Low power run mode at Vpp   1 8 V                                                                                                                      to  3 6 V  Symbol Parameter Conditions   Typ   Max   Unit  Ta    40   C to 25  C   5 1   5 4  all peripherals OFF  T    55   C 5 7   6  LSI RC osc  Ta   85   C 6 8   7 5  
49. anged by the  application program as soon as the code execution starts    e Clock security system  CSS   This feature can be enabled by software  If a HSE  clock failure occurs  it is automatically switched to HSI     e Configurable main clock output  CCO   This outputs an external clock for use by the  application     2    DoclD023465 Rev 2       STM8L051F3    Functional overview       2    Figure 2  Low density value line STM8L05xxx clock tree diagram       OSC32 OUT       SWIM 3 0         SYSCLK to core and    OSC OUT r3 SYSCLK memory    prescaler   1 2 4 8 16 32 64       Peripheral    Clock  enable  13 bits            PCLK to  peripherals         to  BEEP    BEEPCLK             LKBEEPSEL  1 0     to    IWDGCLK IWDG       to  RTC    RTC  LSE OSC prescaler  32 768 kHz  1 2 4 8 16 32 64 RTCCLK              OSC32 IN       Configurable  clock output         cco L3  prescaler LSE   1 2 4 8 16 32 64  PUER MS18281V1       The HSE clock source can be either an external crystal ceramic resonator or an external source  HSE  bypass   Refer to Section HSE clock in the STM8L 15x and STM8L16x reference manual  RM0031      The LSE clock source can be either an external crystal ceramic resonator or a external source  LSE  bypass   Refer to Section LSE clock in the STM8L15x and STM8L 16x reference manual  RM0031      DoclD023465 Rev 2 17 93       Functional overview STM8L051F3       3 5    3 6    3 7    3 8    Note     18 93    Low power real time clock    The real time clock  RTC  is an i
50. arges  a positive then a negative pulse separated by 1 second  are  applied to the pins of each sample according to each pin combination  The sample size  depends on the number of supply pins in the device  3 parts  n  1  supply pin   Two models  can be simulated  human body model and charge device model  This test conforms to the  JESD22 A114A A115A standard     Table 50  ESD absolute maximum ratings                  2 Maximum    Symbol Ratings Conditions value  1  Unit  Electrostatic discharge voltage   V   ESD HBM   human body model  2000   Ta    25   C V   V Electrostatic discharge voltage 500   ESD CDM   charge device model                          1  Data based on characterization results  not tested in production     Static latch up    e LU  3 complementary static tests are required on 6 parts to assess the latch up  performance  A supply overvoltage  applied to each power supply pin  and a current  injection  applied to each input  output and configurable I O pin  are performed on each  sample  This test conforms to the EIA JESD 78 IC latch up standard  For more details   refer to the application note AN1181     Table 51  Electrical sensitivities                         Symbol Parameter Class  LU Static latch up class ll  DoclD023465 Rev 2 87 93       Package characteristics STM8L051F3       9    9 1    88 93    Package characteristics    ECOPACK    In order to meet environmental requirements  ST offers these devices in different grades of  ECOPACKO packages  dependin
51. ata is guaranteed by design  not tested in production   Table 43  ADC1 characteristics  Symbol Parameter Conditions Min Typ Max Unit  Vopa  fAnalog supply voltage 1 8 3 6 V  Veer    Reference supply 24 V Nppas 3 6 V 24 VDDA V  x E E  voltage 1 8 V Vppas 2 4 V Vp V  Ver  Lower reference voltage Vssa V  Current on the VDDA  l  VDDA input pin 1000 1450 HA  700  NU He  Current on the VREF   peak   lvREF     400  input pin 450  A   average   v  Conversion voltage  V   2  V  AIN range 0 REF   TA Temperature range  40 85   C  j on PFO fast channel  RAN External resistance on 50 3  ko  VAIN on all other channels  on PFO fast channel  Dos Internal sample and hold 16 pF  capacitor on all other channels  Pe DEA ON 0 320 16 MHz  Bee ADC sampling clock without zooming  frequency  ED Tw 0 320 8 MHz  with zooming  Vain on PFO fast 406  MHz  channel  fcoNv 12 bit conversion rate  Vain on all other  4  5   channels 760 kitz  External trigger  TRIG frequency tconv l fApc  ti AT External trigger latency 3 5 l fsyscLk  80 93 DoclD023465 Rev 2 Ly                                                     STM8L051F3 Electrical parameters  Table 43  ADC1 characteristics  continued   Symbol Parameter Conditions Min Typ Max Unit  Vain on PFO fast  channel 0 4309  us  Vopa  lt  24 V  Vain on PFO fast  o channel 0 2206  us  ts Sampling time 24V Nppas 3 6 V  Vain on slow channels  4  5   Vppa  lt  2 4 V 0 86 m  Vain on slow channels  4 5   24V spp E36 V   94 ps  12   ts 1 fapc  teonv 12 bit conversion time  16
52. ating UO  unless otherwise specified     2  Oscillator bypassed  LSEBYP   1 in CLK ECKCR   When configured for extenal crystal  the LSE consumption     Ipp Lse  must be added  Refer to Table 29     3  Wakeup time until start of interrupt vector fetch   The first word of interrupt routine is fetched 4 CPU cycles after twy     4  ULP 0 or ULP 1 and FWU 1 in the PWR CSR2 register     Table 22  Typical current consumption in Active halt mode  RTC clocked by LSE  external crystal                                              Symbol Parameter Condition   Typ Unit  LSE 1 15  Vpp   1 8 V  LsE 320    1 05  Supply current in Active halt LSE 1 30  ona    SE Vpp   3V 3 HA  LSE 32 1 20  y RT LSE 1 45  DD    9   LSE 32 3  1 35  1  No floating I O  unless otherwise specified   2  Based on measurements on bench with 32 768 kHz external crystal oscillator   3  RTC clock is LSE divided by 32   Ly  DoclD023465 Rev 2 57 93       Electrical parameters STM8L051F3       In the following table  data is based on characterization results  unless otherwise specified     Table 23  Total current consumption and timing in Halt mode at Vpp 7 1 8 to 3 6 V                      Symbol Parameter Condition   Typ Max Unit  TA    40   C to 25   C 350  2   Supply current in Halt mode A Lot  Ipp Halt   Ultra low power ULP bit 21 in  Ta   55 C 580 2000 nA  the PWR CSR2 register   Ta   85  C 1160 28002   Supply current during wakeup  Ipp wUHalt  time from Halt mode  using 2 4 mA  HSI   3y4 Wakeup time from Halt to Run
53. bel Register name ege  0x00 521D I2C1 TRISER I2C1 TRISE register 0x02  0x00 521E SS I2C1 PECH I2C1 packet error checking register 0x00  0x00 521F   to Reserved area  17 bytes   0x00 522F   0x00 5230 USART1 SR USART1 status register OxCO  0x00 5231 USART1 DR USART1 data register OxXX  0x00 5232 USART1 BRR1 USART1 baud rate register 1 0x00  0x00 5233 USART1 BRR2 USART1 baud rate register 2 0x00  0x00 5234 USART1 CR1 USART1 control register 1 0x00  0x00 5235 USART1 USART1 CR2 USART1 control register 2 0x00  0x00 5236 USART1_CR3 USART1 control register 3 0x00  0x00 5237 USART1_CR4 USART1 control register 4 0x00  0x00 5238 USART1_CR5 USART1 control register 5 0x00  0x00 5239 USART1_GTR USART guard time register 0x00  0x00 523A USART1_PSCR USART 1 prescaler register 0x00  0x00 523B   to Reserved area  21 bytes    0x00 524F   0x00 5250 TIM2 CR1 TIM2 control register 1 0x00  0x00 5251 TIM2 CR2 TIM2 control register 2 0x00  0x00 5252 TIM2 SMCR TIM2 Slave mode control register 0x00  0x00 5253 TIM2 ETR TIM2 external trigger register 0x00  0x00 5254 TIM2 DER TIM2 DMA1 request enable register 0x00  0x00 5255 TIM2 IER TIM2 interrupt enable register 0x00  0x00 5256 TIM2 SR1 TIM2 status register 1 0x00  0x00 5257 TIM2 SR2 TIM2 status register 2 0x00  0x00 5258 S TIM2 EGR TIM2 event generation register Ox00  0x00 5259 TIM2 CCMR1 TIM2 capture compare mode register 1 0x00  0x00 525A TIM2 CCMR2 TIM2 capture compare mode register 2 0x00  0x00 525B TIM2 CCER1 TIM2 capture compare enable register 1
54. care for the design architecture has been taken  to optimize the mA DMIPS and mA MHz ratios     This allows the ultra low power performance to range from 5 up to 33 3 DMIPs     Shared peripherals   STM8L05xx  STM8L15xx and STM32L 15xx share identical peripherals which ensure a very  easy migration from one family to another    e Analog peripheral  ADC1   e Digital peripherals  RTC and some communication interfaces    Common system strategy   To offer flexibility and optimize performance  the STM8L and STM32L devices use a  common architecture    e Same power supply range from 1 8 to 3 6 V    e Architecture optimized to reach ultra low consumption both in low power modes and  Run mode    e Fast startup strategy from low power modes  e Flexible system clock    e  Ultra safe reset  same reset strategy for both STM8L and STM32L including power on  reset  power down reset  brownout reset and programmable voltage detector     Features    ST ultra low power continuum also lies in feature compatibility   e More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm  e Memory density ranging from 4 to 128 Kbytes    DoclD023465 Rev 2 11 93       Functional overview STM8L051F3       3 Functional overview    Figure 1  Low density value line STM8L05xxx device block diagram                   OSC IN   OSC OUT Power Vop 1 E y i  Clock v to 3   OSC32 IN  controller VOLT  REG  SS  OSC32 OUT and CSS Clocks  7 to core and  peripherals NRST  SWIM Debug module   SWIM   PVD_I
55. cified the minimum and maximum values are guaranteed in the worst  conditions of ambient temperature  supply voltage and frequencies by tests in production on  100  of the devices with an ambient temperature at Taz 25   C and Ta   Ta max  given by  the selected temperature range      Data based on characterization results  design simulation and or technology characteristics  is indicated in the table footnotes and are not tested in production  Based on  characterization  the minimum and maximum values refer to sample tests and represent the  mean value plus or minus three times the standard deviation  mean 32      Typical values    Unless otherwise specified  typical data is based on Ta   25   C  Vpp   3 V  It is given only as  design guidelines and is not tested     Typical ADC accuracy values are determined by characterization of a batch of samples from  a standard diffusion lot over the full temperature range  where 95  of the devices have an  error less than or equal to the value indicated  mean 22      Typical curves    Unless otherwise specified  all typical curves are given only as design guidelines and are  not tested     Loading capacitor    The loading conditions used for pin parameter measurement are shown in Figure 5     Figure 5  Pin loading conditions          CT STM8L PIN             50pF                       DoclD023465 Rev 2 45 93       Electrical parameters    STM8L051F3       8 1 5 Pin input voltage    The input voltage measurement on a pin of the device i
56. cteristics    Total current consumption    The MCU is placed under the following conditions   e A UO pins in input mode with a static value at Vpp or Vss  no load     e All peripherals are disabled except if explicitly mentioned   In the following table  data is based on characterization results  unless otherwise specified     Subject to general operating conditions for Vpp and Ta     2    DoclD023465 Rev 2                                                                                                             STM8L051F3 Electrical parameters  Table 17  Total current consumption in Run mode  Para 4 Max    Symbol   neter Conditions   Typ Unit  55  C  85  C  fcpu   125 kHz 0 39   0 47 0 49  feru   1 MHz 0 48 0 56 0 58  HSIRC    Na  lfcpu   4 MHz 0 75   0 84   0 86   16 MHz   fcpu   8 MHz 1 10 1 20 1 25  Aj Luz 16 MHz   1 85   1 93   2 126   peripherals feru  125 kHz   0 05   0 06   0 09  Supply  OFF  eru        current  code fcpu   1 MHz 0 18   0 19 0 20  IDD RUN  lin nun   lexecuted HSE external mA  mode   from RAM  clock fcpu   4 MHz 0 55   0 62 0 64  f  f   4   Vpp from  fcpu fuse  fopy   8 MHz 099  120  121  1 8 V to 3 6 V  Lous 16 MHz   1 90   222   2 236   LSI RC osc   f  f   typ  38 kHz  CPU   fs  0 040   0 045   0 046  LSE external  clock fopy   fise 0 035   0 040   0 048    32 768 kHz   fcpu   125 kHz 0 43   0 55 0 56  fcpu   1 MHz 0 60   0 77 0 80  HSI RC   6  fopy   4 MHz 1 11   1 34 1 37  OSC   fcpu   8 MHz 1 90   2 20   223  peripherals fopy   125 kHz   0 30   0
57. cycles  program memory  1001  cycles  Naw 9  Ta   40 to  85   C  1    Erase write cycles  data memory  S tea kcycles                               1  Data based on characterization results  not tested in production   Conforming to JEDEC JESD22a117    The physical granularity of the memory is 4 bytes  so cycling is performed on 4 bytes even when a write erase operation  addresses a single byte     4  Data based on characterization performed on the whole data memory     8 3 6 UO current injection characteristics    As a general rule  current injection to the I O pins  due to external voltage below Vss or  above Vpp  for standard pins  should be avoided during normal product operation   However  in order to give an indication of the robustness of the microcontroller in cases  when abnormal injection accidentally happens  susceptibility tests are performed on a  sample basis during device characterization     2    DoclD023465 Rev 2 65 93       Electrical parameters STM8L051F3       8 3 7    66 93    Functional susceptibilty to I O current injection    While a simple application is executed on the device  the device is stressed by injecting  current into the l O pins programmed in floating input mode  While current is injected into  the I O pin  one at a time  the device is checked for functional failures     The failure is indicated by an out of range parameter  ADC error  out of spec current  injection on adjacent pins or other functional failure  for example reset  oscillator f
58. d application software into the device memories   including RAM  program and data memory  using standard serial interfaces  It is a  complementary solution to programming via the SWIM debugging interface     2    DoclD023465 Rev 2       STM8L051F3    Pin description       4    2    Pin description    Figure 3  STM8L051F3 20 pin TSSOP20 package pinout                                                                            PC5 g1 20h PC4   PC6 q2 195 PC1   PAO g3 18H PCO   NRST   PA1 g4 175 PB7   PA2 d5 165 PB6   PA3 do 155 PB5  Vss VSSA VREF  47 14h PB4  VpD VDDA VREF  de 13h PB3  PDO de 12b PB2   PBO 10 11 PB1          MS18280V1       Table 3  Legend abbreviation for Table 4                   Type l  input  O   output  S   power supply  Output HS   high sink source  20 mA   Level  Input FT   five volt tolerant  Port and control _   nput float   floating  wpu   weak pull up  configuration Output T   true open drain  OD   open drain  PP   push pull          Reset state          Bold X  pin state after reset release      Unless otherwise specified  the pin state is the same during the reset phase     i e     under reset     and after internal reset release  i e  at reset state            DoclD023465 Rev 2    23 93       Pin description    STM8L051F3       Table 4  Low density value line STM8L05xxx pin description                                                                                        pa Input Output  So    o 5 0  o wl 9 o o  o 2 5  Pin name Ei 2 o S 3 5    Defa
59. d line  sink  80  Output current sunk by IR TIM pin  with high sink LED driver 80  capability   lio Output current sunk by any other I O and control pin 25  Output current sourced by any I Os and control pin  25  Injected current on true open drain pins  PCO and PC1     5   0  Injected current on five volt tolerant  FT  pins  PA7 and PEO   Y    5   0 mA  INPN ooN  Injected current on 3 6 V tolerant  TT  pins  1   5  0  Injected current on any other pin  2   5  5  EliNJ PIN  Total injected current  sum of all UO and control pins   3   25             1  Positive injection is not possible on these I Os  A negative injection is induced by Vin lt Vgs  Iing pin  Must  never be exceeded  Refer to Table 12  for maximum allowed input voltage values     2  A positive injection is induced by V  y gt Vpp while a negative injection is induced by Viy lt Vgs  li  piu  Must  never be exceeded  Refer to Table 12  for maximum allowed input voltage values     3  When several inputs are submitted to a current injection  the maximum Z1 ny pin  is the absolute sum of the  positive and negative injected currents  instantaneous values      Table 14  Thermal characteristics                      Symbol Ratings Value Unit  TsrG Storage temperature range  65 to  150 pa  Ty Maximum junction temperature 150             DoclD023465 Rev 2    47 93       Electrical parameters STM8L051F3       8 3 Operating conditions    Subject to general operating conditions for Vpp and T                        8 3 1 Genera
60. en TIM2 overflow interrupt  and TIM4 overflow interrupts     The device is woken up from Halt or Active halt mode only when the address received matches the interface address     41 93          Option bytes STM8L051F3       7 Option bytes    Option bytes contain configurations for device hardware features as well as the memory  protection of the device  They are stored in a dedicated memory block     All option bytes can be modified in ICP mode  with SWIM  by accessing the EEPROM  address  See Table 10 for details on option byte addresses     The option bytes can also be modified  on the fly  by the application in IAP mode  except for  the ROP and UBC values which can only be taken into account when they are modified in  ICP mode  with the SWIM      Refer to the STM8L05x 15x Flash programming manual  PM0054  and STM8 SWIM and  Debug Manual  UM0470  for information on SWIM programming procedures     Table 10  Option byte addresses                                                          Option Option bits Factory  Addr  Option name byte default  No  7 6 5 4 3 2 1 0 setting  Read out  0x00 4800 protection OPTO ROP 7 0  OxAA   ROP   0x00 4802    UBC  User   opty UBC 7 0  0x00  Boot code size   0x00 4807 Reserved 0x00  Independent  OPT3 WWDG  WWDG   IWDG   IWDG  0x00 4808 watchdog  3 0  Reserved  HALT   HW   HALT  Hw 0x00  option  Number of  stabilization  0x00 4809   clock cycles for   OPT4 Reserved LSECNT 1 0  HSECNT 1 0  Ox00  HSE and LSE  oscillators  Brownout reset   OPT5 BO
61. er 0x00  0x00 5289 TIM3 CCMR1 TIM3 Capture Compare mode register 1 0x00  0x00 528A TIM3 CCMR2 TIM3 Capture Compare mode register 2 0x00  0x00 528B TIM3 TIM3 CCER1 TIM3 Capture Compare enable register 1 0x00  0x00 528C TIM3 CNTRH TIM3 counter high 0x00  0x00 528D TIM3_CNTRL TIM3 counter low 0x00  0x00 528E TIM3_PSCR TIM3 prescaler register 0x00  0x00 528F TIM3_ARRH TIM3 Auto reload register high OxFF  0x00 5290 TIM3 ARRL TIM3 Auto reload register low OxFF  0x00 5291 TIM3 CCR1H TIM3 Capture Compare register 1 high 0x00  0x00 5292 TIM3 CCR1L TIM3 Capture Compare register 1 low 0x00  0x00 5293 TIM3 CCR2H TIM3 Capture Compare register 2 high 0x00  0x00 5294 TIM3 CCR2L TIM3 Capture Compare register 2 low 0x00  0x00 5295 TIM3 BKR TIM3 break register 0x00  0x00 5296 TIM3 OISR TIMS output idle state register 0x00  E Reserved area  72 bytes      er DoclD023465 Rev 2 35 93                                                                                                                                                                                                             Memory and register map STM8L051F3  Table 7  General hardware register map  continued    Address Block Register label Register name ege  0x00 52E0 TIM4 CR1 TIM4 control register 1 0x00  0x00 52E1 TIM4 CR2 TIM4 control register 2 0x00  0x00 52E2 TIM4 SMCR TIM4 Slave mode control register 0x00  0x00 52E3 TIM4 DER TIM4 DMA1 request enable register 0x00  0x00 52bE4 TIM4 IER TIM4 Interrupt enable register 0x00  0x00 52bE5 
62. er adjustable to fixed power of 2 ratios  1   128   e 2 individually configurable capture compare channels  e PWM mode  e Interrupt capability on various events  capture  compare  overflow  break  trigger   e  Synchronization with other timers or external signals  external clock  reset  trigger and  enable   3 10 2 8 bit basic timer  TIM4   The 8 bit timer consists of an 8 bit up auto reload counter driven by a programmable  prescaler  It can be used for timebase generation with interrupt generation on timer  overflow   3 11 Watchdog timers    2    The watchdog system is based on two independent timers providing maximum security to  the applications     DoclD023465 Rev 2 19 93       Functional overview STM8L051F3       3 11 1    3 11 2    3 12    3 13    3 13 1    Note     3 13 2    Note     20 93    Window watchdog timer    The window watchdog  WWDG  is used to detect the occurrence of a software fault  usually  generated by external interferences or by unexpected logical conditions  which cause the  application program to abandon its normal sequence     Independent watchdog timer    The independent watchdog peripheral  IWDG  can be used to resolve processor  malfunctions due to hardware or software failures     It is clocked by the internal LSI RC clock source  and thus stays active even in case of a  CPU clock failure     Beeper    The beeper function outputs a signal on the BEEP pin for sound generation  The signal is in  the range of 1  2 or 4 kHz     Communication inter
63. er using the X and Y registers or direct memory to memory transfers    Interrupt controller    The low density value line STM8L05xxx features a nested vectored interrupt controller   e Nested interrupts with 3 software priority levels   e 32 interrupt vectors with hardware priority   e Up to 17 external interrupt sources on 11 vectors   e Trap and reset interrupts    2    DoclD023465 Rev 2       STM8L051F3 Functional overview       3 3    3 3 1    3 3 2    3 3 3    2    Reset and supply management    Power supply scheme    The device requires a 1 8 V to 3 6 V operating supply voltage  Vpp   The external power  supply pins must be connected as follows     e Vss1  Vpp1   1 8 to 3 6 V  external power supply for I Os and for the internal regulator   Provided externally through Vpp4 pins  the corresponding ground pin is Vas     e     Vssap  Vppa   1 8 to 3 6 V  external power supplies for analog peripherals  Vppa and  Vssa must be connected to Vpp4 and Vss4  respectively     e Vss2  Vpp2   1 8 to 3 6 V  external power supplies for I Os  Vpp2 and Vas  must be  connected to Vpp4 and Vgg   respectively     e  VreF  Vrer   for ADC1   external reference voltage for ADC1  Must be provided  externally through Vggr  and Vggr  pin     Power supply supervisor    The device has an integrated ZEROPOWER power on reset  POR  power down reset   PDR   coupled with a brownout reset  BOR  circuitry  When the microcontroller operates  between 1 8 and 3 6 V  BOR is always active and ensures proper op
64. eration starting from  1 8 V  After the 1 8 V BOR threshold is reached  the option byte loading process starts   either to confirm or modify default thresholds  or to disable BOR permanently     Five BOR thresholds are available through option bytes  starting from 1 8 V to 3 V  To  reduce the power consumption in Halt mode  it is possible to automatically switch off the  internal reference voltage  and consequently the BOR  in Halt mode  The device remains in  reset state when Vpp is below a specified threshold  Vpor ppr or Vgog  without the need for  any external reset circuit     The device features an embedded programmable voltage detector  PVD  that monitors the  Vpp Vppa power supply and compares it to the Vpyp threshold  This PVD offers 7 different  levels between 1 85 V and 3 05 V  chosen by software  with a step around 200 mV  An  interrupt can be generated when Vpp Vppa drops below the Vpyp threshold and or when  Vpp VppaA is higher than the Vpyp threshold  The interrupt service routine can then generate  a warning message and or put the MCU into a safe state  The PVD is enabled by software     Voltage regulator    The low density value line STM8L05xxx embeds an internal voltage regulator for generating  the 1 8 V power supply for the core and peripherals   This regulator has two different modes     e Main voltage regulator mode  MVR  for Run  Wait for interrupt  WEI  and Wait for event   WFE  modes     e Low power voltage regulator mode  LPVR  for Halt  Active halt 
65. faces    SPI    The serial peripheral interfaces  SPI1  provide half  full duplex synchronous serial  communication with external devices     e Maximum speed  8 Mbit s  fsysci K 2  both for master and slave   e Full duplex synchronous transfers   e Simplex synchronous transfers on 2 lines with a possible bidirectional data line  e Master or slave operation   selectable by hardware or software   e Hardware CRC calculation   e Slave master selection input pin    SPI1 can be served by the DMA1 Controller     PC   The 12C bus interface  I2C1  provides multi master capability  and controls all PC bus   specific sequencing  protocol  arbitration and timing    e Master  slave and multi master capability   e Standard mode up to 100 kHz and fast speed modes up to 400 kHz   e  T bit and 10 bit addressing modes   e SMBus 2 0 and PMBus support   e Hardware CRC calculation    12C1 can be served by the DMA1 Controller     2    DoclD023465 Rev 2       STM8L051F3 Functional overview       3 13 3    Note     3 14    3 15    2    USART    The USART interface  USART1  allows full duplex  asynchronous communications with  external devices requiring an industry standard NRZ asynchronous serial data format  It  offers a very wide range of baud rates     e 1 Mbit s full duplex SCI   e  SPI1 emulation   e High precision baud rate generator  e Smartcard emulation   e IrDA SIR encoder decoder   e Single wire half duplex mode    USART1 can be served by the DMA1 Controller     Infrared  IR  interface   
66. g in Active halt mode at VDD   1 8 V to 3 6 V        57  Typical current consumption in Active halt mode  RTC clocked by LSE external crystal    57  Total current consumption and timing in Halt mode at VDD   1 8 to 3 6 V              58  Peripheral current consumption           nn 59  Current consumption under external reset         llle eee eee 59  HSE external clock characteristics         lille 60  LSE external clock characteristics              ern 60  HSE oscillator characteristics            liiis 61  LSE oscillator characteristics            0  ccc eh 62  HSI oscillator characteristics           lille 63  LSI oscillator characteristics    ren 64  RAM and hardware registers             rn 65  Flash program and data EEPROM memory   sees 65  I O current injection susceptibility            llli RR 66  I O static characteristics           liliis rh 67  Output driving current  high sink ports               eh 70  Output driving current  true open drain ports              0 0 cece ee 70  Output driving current  PAO with high sink LED driver capability                      70  NRST pin characteristics    72  SPI1 characteristics    Lomas LEE ere REY ara ve aed crue x 74  12C characteristics           uuene rn 77  Reference voltage characteristics     79  ADC1 characteristics            tees 80  ADC1 accuracy with VDDA    32Vio2bV ee 82  ADC1 accuracy with VDDA 2 2 4 V t6 3 6V         2 82  ADC1 accuracy with VDDA   VREF  2 1 8 V to2 4V       lees ees 82  Rain max fortapo   10 
67. g on their level of environmental compliance  ECOPACK   specifications  grade definitions and product status are available at  www st com   ECOPACK   is an ST trademark     2    DoclD023465 Rev 2       STM8L051F3    Package characteristics       9 2 Package mechanical data    9 2 1    20 lead thin shrink small package  TSSOP20        Figure 38  TSSOP20 20 lead thin shrink small package  outline    Figure 39  TSSOP20 recommended    footprint             AARRARARAR                                    Q   aaa CP Al                                                                   r4  LJ   gt     r   zl e                             lt b  gt  e       YA ME                                                                                                                                                             anos       1  Drawing is not to scale  2  Dimensions are in millimeters    Table 52  TSSOP20 20 lead thin shrink small package  mechanical data                                                                      Dim  mm inches    Typ Min Max Typ Min Max  A     1 200     0 0472  A1 z 0 050 0 150   0 0020 0 0059  A2 1 0 800 0 050 0 0394 0 0315 0 0413  b   0 190 0 300   0 0075 0 0118  c   0 090 0 200   0 0035 0 0079  D2  6 500 6 400 6 600 0 2559 0 2520 0 2598  E 6 400 6 200 6 600 0 252 0 2441 0 2598  E10  4 400 4 300 4 500 0 1732 0 1693 0 1772  e 0 650     0 0256    L 0 600 0 450 0 750 0 0236 0 0177 0 0295  L1 1 000     0 0394      k   0 0  8 0    0 0  8 0   aaa     0 1     0 0
68. ive  is applied on all pins of the device  until a functional disturbance occurs  This test conforms with the IEC 61000 standard     e FTB  A burst of fast transient voltage  positive and negative  is applied to Vpp and Vss  through a 100 pF capacitor  until a functional disturbance occurs  This test conforms  with the IEC 61000 standard     A device reset allows normal operations to be resumed  The test results are given in the  table below based on the EMS levels and classes defined in application note AN1709     Designing hardened software to avoid noise problems    EMC characterization and optimization are performed at component level with a typical  application environment and simplified MCU software  It should be noted that good EMC  performance is highly dependent on the user application and the software in particular     Therefore it is recommended that the user applies EMC software optimization and  prequalification tests in relation with the EMC level requested for his application     Prequalification trials    Most of the common failures  unexpected reset and program counter corruption  can be  reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  second     To complete these trials  ESD stress can be applied directly on the device  over the range of  specification values  When unexpected behavior is detected  the software can be hardened  to prevent unrecoverable errors occurring  see application note AN1015      Table 48  EMS da
69. l operating conditions  Table 15  General operating conditions  Symbol Parameter Conditions Min  Max  Unit  System clock  fsvscuk   Has 1 8 V  lt Vpp lt  3 6 V 0 16 MHz  Standard operatin  Von   voltage panang 1 8 3 6 V  Analog operating Must be at the same  Von voltage potential as Vpp 18 36 KM   2  Power dissipation at  Pp Ta  85   C TSSOP20 181 mw  TA Temperature range 1 8 V XVpp  lt  3 6 V  40 85   C  T  id Pene  40   C  lt TA lt  85  C  40 1056    C                         1  fsyscik   fcpu    2  To calculate Ppmax Ta   use the formula Pomax  Tymax   TA  Oj with T Aen in this table and Oj  in    Thermal characteristics     table     3  T max   S given by the test limit  Above this value  the product behavior is not guaranteed     2    48 93 DoclD023465 Rev 2                                                                                                                   STM8L051F3 Electrical parameters  8 3 2 Embedded reset and power control block characteristics  Table 16  Embedded reset and power control block characteristics  Symbol Parameter Conditions Min Typ Max Unit  t tal BOR detector   1  ao Ml   Vpp rise time rate enabled 0    mp us  Vpp fall time rate auo a 20  oo  1   trEMP Reset release delay Vpp rising 3 ms  Vpepg   Power down reset threshold   Falling edge 1 300 1 50 1 65 V  V Brown out reset threshold 0   Falling edge 1 67 1 70 1 74  BORO    BOR TH 2 0  000  Rising edge 1 69 1 75 1 80  V Brown out reset threshold 1   Falling edge 1 87 1 93 1 97  BOR1     
70. ling  rer  not connected to Vppa                85  Power supply and reference decoupling  VREF  connected to VDDA                 85  TSSOP20 20 lead thin shrink small package outline             oococcoccocoo o   89  TSSOP20 recommended footprint            esee 89  Low density value line STM8L051F3 ordering information scheme                    91  DoclD023465 Rev 2 7 93       Introduction STM8L051F3       8 93    Introduction    This document describes the features  pinout  mechanical data and ordering information for  the low density value line STM8L051F3 microcontroller with 8 Kbyte Flash memory density     For further details on the whole STMicroelectronics low density family please refer to  Section 2 2  Ultra low power continuum     For detailed information on device operation and registers  refer to the reference manual   RM0031      For information on to the Flash program memory and data EEPROM  refer to the  programming manual  PM0054      For information on the debug module and SWIM  single wire interface module   refer to the  STM8 SWIM communication protocol and debug module user manual  UM0470      For information on the STM8 core  refer to the STM8 CPU programming manual  PM0044      Low density value line devices provide the following benefits   e Integrated system    8 Kbytes of low density embedded Flash program memory      256 bytes of data EEPROM      1 Kbyte of RAM      Internal high speed and low power low speed RC      Embedded reset  e Ultra low powe
71. memory  12 bit ADC up to 1 Msps 28 channels      Internal reference voltage   Timers        Two 16 bit timers with 2 channels  used as  IC  OC  PWM   quadrature encoder        One 8 bit timer with 7 bit prescaler       2 watchdogs  1 Window  1 Independent       Beeper timer with 1  2 or 4 kHz frequencies  Communication interfaces       Synchronous serial interface  SPI      Fast  C 400 kHz SMBus and PMBus       USART    Up to 18 I Os  all mappable on interrupt vectors    Development support        Faston chip programming and non   intrusive debugging with SWIM        Bootloader using USART    DoclD023465 Rev 2 1 93       This is information on a product in full production     www st com    Contents STM8L051F3       Contents  1 Introduction wa fhe Stee is boss NAKA RENE Se Seka ERR ENSE 8  2 Description rosse sw KG E Peeters AA 9  2 1 Device overview           ns 10  2 2 Ultra low power continuum o    11  3 Functional overview      12  3 1 Low power modes    13  3 2 Central processing unit STM8             ees 14  3 2 1 Advanced STM8 Core      2 2 2 2 ees 14  3 2 2 Interrupt controller          eh 14  3 3 Reset and supply management              selle 15  3 3 1 Power supply scheme    15  3 3 2 Power supply supervisor           000 cece eee eens 15  3 3 3 Voltage regulator    15  3 4 Clock management a   nawa amak Rte dca A EROR dob wonton KAG eee 16  3 5 Low power real time clock            cee eee eee 18  3 6 Memories      18  3 7 DMA EET 18  3 8 Analog to digital converter  
72. ndependent binary coded decimal  BCD  timer counter     Six byte locations contain the second  minute  hour  12 24 hour   week day  date  month   year  in BCD  binary coded decimal  format  Correction for 28  29  leap year   30  and 31  day months are made automatically     It provides a programmable alarm and programmable periodic interrupts with wakeup from  Halt capability     e Periodic wakeup time using the 32 768 kHz LSE with the lowest resolution  of 61 us  is  from min  122 us to max  3 9 s  With a different resolution  the wakeup time can reach    36 hours   e Periodic alarms based on the calendar can also be generated from every second to  every year   Memories    The low density value line STM8LO5xxx devices have the following main features   e Upto 1 Kbyte of RAM  e The non volatile memory is divided into three arrays       8 Kbytes of low density embedded Flash program memory      256 bytes of Data EEPROM      Option bytes  The EEPROM embeds the error correction code  ECC  feature     The option byte protects part of the Flash program memory from write and readout piracy     DMA    A 4 channel direct memory access controller  DMA1  offers a memory to memory and  peripherals from to memory transfer capability  The 4 channels are shared between the  following IPs with DMA capability  ADC1  I2C1  SPI1  USART1  and the three timers     Analog to digital converter    e 12 bit analog to digital converter  ADC1  with 10 channels  including 1 fast channel   and internal 
73. nit  Internal reference voltage  IREFINT consumption la HA  eme    ADC sampling time when reading  Ts VREFINT the internal reference voltage P n Hs   2  Internal reference voltage buffer  ou consumption  used for ADC  139 25 pA  VREFINT out   Reference voltage output 1 20200   1 224   1 2429 V   2  Internal reference voltage low  ILPBUF power buffer consumption 130 1209 na  IREFOUT A Buffer output current   1 pA  CREFOUT Reference voltage output load 50 pF  Internal reference voltage startu  tVREFINT time x    2 3 ms  2 Internal reference voltage buffer  t  2  1 10 us  RUFEN startup time once enabled  1   Accuracy of Vrerint stored in the  ACCVREFINT VREFINT_Factory_CONV byte 9  zu id  mp NUT a  Stability of VREFINT over 40 C  lt Ta  lt 85 20 50 ppm  C  STAB temperature C  VREFINT  m  Stability of Vrer  nT over 0 C   TA  lt 50   C 20 ppm  C  temperature  Stability of V after 1000  STABVREFINT   Hours 4  EBENE TBD ppm                               Defined when ADC output reaches its final value  1 2LSB  Data guaranteed by Design  Not tested in production   Tested in production at Vpp   3 V   10 mV    To guaranty less than 1  Vpepour deviation     gv ZS o   m      Measured at Vpp   3 V 210 mV  This value takes into account Vpp accuracy and ADC conversion accuracy     2    DoclD023465 Rev 2 79 93                                                                                           Electrical parameters STM8L051F3  8 3 10 12 bit ADC1 characteristics  In the following table  d
74. ock S S   32 768 kHz  Ta 7 40 Cto25 C  2 46 2 75  with TIM2 active      TA   55   C 2 50   2 81  Ta   85   C 3 16   3 82             No floating I Os   Timer 2 clock enabled and counter is running     Oscillator bypassed  LSEBYP   1 in CLK_ECKCR   When configured for extenal crystal  the LSE consumption   Ibp tse  must be added  Refer to Table 29     Figure 11  Typ  IDD LPW  vs  Vpp  LSI clock source        16 00 TT  14 00   40 C   E 25  C  85  C    6 00      4 00                 12 00         10 00                8 00          Joo Pw isi  HA                 Von  V  ai18217V2       56 93 DoclD023465 Rev 2       2       STM8L051F3    Electrical parameters       In the following table  data is based on characterization results  unless otherwise specified     Table 21  Total current consumption and timing in Active halt mode at Vpp 7 1 8 V to 3 6 V                                                 Symbol Parameter Conditions  1  Typ   Max   Unit  TA    40   C to 25   C 0 9   2 1  LSI RC  at 38 kHz  Ty   55   C 1 2 3    Supply current in Ta  85  C 1 5   3 4 UA  PP AH     Active halt mode Ta 40 Cto25 C   05   12  LSE external clock  32 768 Ce  kHz  Ta   55   C 0 62   1 4  Ta   85  C 0 88   2 1  Supply current during  wakeup time from  l  DD WUFAH    Active halt mode 2 4 mA   using HSI   Wakeup time from  twu asian A   Active halt mode to 47   7 us  i Run mode  using HSI   t  3    Wakeup time from  WU  LSI AH  Active halt mode to 150 us   4  Run mode  using LSI              1  No flo
75. on and the first ideal one    Eg Gain Error  deviation between the last ideal  transition and the last actual one    Ep Differential Linearity Error  maximum deviation  between actual steps and the ideal one   E  Integral Linearity Error  maximum deviation  between any actual transition and the end point  correlation line      gt        Vssa    LJ I G   LIL          T T  6 7 4093 4094 4095 4096    DDA    ai14395b          Figure 34  Typical connection diagram using the ADC             Refer to Table 43 for the values of Ray and Cape     STM8LO5xxx    Sample and hold ADC  converter    RADC    12 bit  converter    ai17090e       Cparasitic represents the capacitance of the PCB  dependent on soldering and PCB layout quality  plus the  pad capacitance  roughly 7 pF   A high Cparasitic value will downgrade conversion accuracy  To remedy  this  fapc should be reduced     DoclD023465 Rev 2    83 93       Electrical parameters    STM8L051F3       Figure 35  Maximum dynamic current consumption on VRef  supply pin during ADC  conversion       l  ADC clock      l    300pA      Conversion  12 cycles        i Sampling  n cycles     4                                                                                                                                  Table 47  Ram max for fapc   16 MHz                                 1  Guaranteed by design  not tested in production     84 93             General PCB design guidelines       Ram max  kohm   m e Slow channels Fast channels  24V  lt
76. ons vues 405402900080 coe ANY DINA pp qp 48   8 3 1 General operating conditions      48   8 3 2 Embedded reset and power control block characteristics             49   8 3 3 Supply current characteristics              ooo    50   8 3 4 Clock and timing characteristics             oooocoooooooooo    60   8 3 5 Memory characteristics            o 65   8 3 6 I O current injection characteristics    65   8 3 7 I O port pin characteristics    66   8 3 8 Communication interfaces            o 74   8 3 9 Embedded reference voltage              ee 79   8 3 10 12 bit ADC1 characteristics             sees 80   8 3 11 EMC characteristics              es 86   9 Package characteristics              c cece eee eee eee 88  9 1 EGOPAGK iaa yr Eg Naka eee aS dake whe do atin ah eats ath ans 88   9 2 Package mechanical data    89   Ky  DoclD023465 Rev 2 3 93       Contents STM8L051F3       9 2 1 20 lead thin shrink small package  TSSOP20                      89   9 3 Thermal characteristics              eens 90   10 Device ordering information      eee eee 91  11 Revision history   vg ee ee ERRARE EGG EN e be Ber EE cede 92  4 93 DoclD023465 Rev 2 Ly        STM8L051F3 List of tables       List of tables    Table 1   Table 2   Table 3   Table 4   Table 5   Table 6   Table 7   Table 8   Table 9     Table 10   Table 11   Table 12   Table 13   Table 14   Table 15   Table 16   Table 17   Table 18   Table 19     Table 20   Table 21   Table 22   Table 23   Table 24   Table 25   Table 26   Table 27   
77. package  accuracy         Table 28  HSE oscillator characteristics                                                 Symbol Parameter Conditions Min Typ Max Unit  fuse High speed external oscillator 4 16 MHz  frequency  Rr Feedback resistor 200 kQ  C   Recommended load capacitance  2  20 pF  C   20 pF  2 5  startup   fosc   16 MHz 0 7  stabilized      lbo Hse    HSE oscillator power consumption mA  C   10 pF  2 5  startup   fosc 216 MHz 0 46  stabilized   9m Oscillator transconductance 3 50  mA V  tsutusE  Startup time Vpp is stabilized 1 ms  1  C C    C   is approximately equivalent to 2 x crystal Cj gap   2  The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R   value   Refer to crystal manufacturer for more details  Data guaranteed by Design  Not tested in production   4  tsuHse  is the startup time measured from the moment it is enabled  by software  to a stabilized 16 MHz oscillation  This    value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer     Figure 12  HSE oscillator circuit diagram                                                                                        Rum de diis es 3 fuse to core    a   HSE    R    Co      j  l Em l m  i   C  e  L   OSC IN    os  eism e I  Consumption  A JL Control  Resonator     l STM8       OSC_OUT   Cio             2    HSE oscillator critical gm formula    2  9merit    2X MX fyse   x Rm 2C0   C     Rm  Motional 
78. r     CIRCUIT      04 pF SENG     Optional                             2    DoclD023465 Rev 2 73 93       Electrical parameters    STM8L051F3                                                                                  8 3 8 Communication interfaces  SPM   Serial peripheral interface  Unless otherwise specified  the parameters given in Table 40 are derived from tests  performed under ambient temperature  fsysc_   frequency and Vpp supply voltage  conditions summarized in Section 8 3 1  Refer to I O port characteristics for more details on  the input output alternate function characteristics  NSS  SCK  MOSI  MISO    Table 40  SPI1 characteristics  Symbol Parameter Conditions   Min Max Unit  Master mode 0 8  fsck SP11 clock frequency MHz  tsek  Slave mode 0 8  Weck AR CIOCK rise and fal Capacitive load  C   30 pF   30 ns  t  sck  time  Lues  NSS setup time Slave mode 4 X l fsvscik E  timss      NSS hold time Slave mode 80    twscKH  2     Master mode   SCK high and low time 105 145  tw SCKL  9 fuaster   8 MHz  fsck  4 MHz  t  2  Master mode 30    su Mi    Data input setup time  tsusi  Slave mode 3    t  2  Master mode 15    AMI  2    Data input hold time  tsi Slave mode 0    taso  90 Data output access time Slave mode   3x l fsvscik  tuis so    Data output disable time   Slave mode 30    tso   2  Data output valid time Slave mode  after enable edge    60  2 E Master mode  after enable  tymo     Data output valid time edge    20  tnso  Slave mode  after enable edge  15    t 
79. r consumption       1yAin Active halt mode      Clock gated system and optimized power management        Capability to execute from RAM for Low power wait mode and Low power run  mode    e Advanced features       Upto 16 MIPS at 16 MHz CPU clock frequency        Direct memory access  DMA  for memory to memory or peripheral to memory  access    e Short development cycles        A Application scalability across a common family product architecture with  compatible pinout  memory map and modular peripherals        Wide choice of development tools    These features make the value line STM8LO5xxx ultra low power microcontroller family  suitable for a wide range of consumer and mass market applications     Refer to Table 1  Low density value line STM8LO5xxx low power device features and  peripheral counts and Section 3  Functional overview for an overview of the complete range  of peripherals proposed in this family     Figure 1 shows the block diagram of the low density value line STM8L05xxx family     2    DoclD023465 Rev 2       STM8L051F3 Description       2    2    Description    The low density value line STM8L05xxx devices are members of the STM8L ultra low power  8 bit family     The value line STM8LO5xxx ultra low power family features an enhanced STM8 CPU core  providing increased processing power  up to 16 MIPS at 16 MHz  while maintaining the  advantages of a CISC architecture with improved code density  a 24 bit linear addressing  space and an optimized architecture fo
80. r low power operations     The family includes an integrated debug module with a hardware interface  SWIM  which  allows non intrusive In Application debugging and ultra fast Flash programming     Low density value line STM8L05xxx microcontrollers feature embedded data EEPROM and  low power  low voltage  single supply program Flash memory     The devices incorporate an extensive range of enhanced l Os and peripherals  a 12 bit  ADC  a real time clock  two 16 bit timers  one 8 bit timer  as well as standard  communication interfaces such as an SPI  an Ic interface  and one USART     The modular design of the peripheral set allows the same peripherals to be found in  different ST microcontroller families including 32 bit families  This makes any transition to a  different family very easy  and simplified even more by the use of a common set of  development tools     All value line STM8L ultra low power products are based on the same architecture with the  same memory mapping and a coherent pinout     DoclD023465 Rev 2 9 93       Description STM8L051F3       2 1 Device overview    Table 1  Low density value line STM8L05xxx low power device features and  peripheral counts                                                             Features STM8L051F3   Flash  Kbytes  8  Data EEPROM  Bytes  256  RAM  Kbytes  1   Basic 1    8 bit    Timers   General 2   purpose  16 bit    SPI 1  Communicati 120 1  on interfaces   USART 1  GPIOs 18  1   12 bit synchronized ADC 1   number of channels
81. reference voltage    e Conversion time down to 1 us with fgysc x  16 MHz   e Programmable resolution   e Programmable sampling time   e Single and continuous mode of conversion   e Scan capability  automatic conversion performed on a selected group of analog inputs  e Analog watchdog   e Triggered by timer    ADC7 can be served by DMAf     2    DoclD023465 Rev 2       STM8L051F3 Functional overview                                        3 9 System configuration controller and routing interface  The system configuration controller provides the capability to remap some alternate  functions on different I O ports  TIM4 and ADC1 DMA channels can also be remapped   The highly flexible routing interface controls the routing of internal analog signals to ADC1  and the internal reference voltage VREFINT   3 10 Timers  Low density value line STM8L05xxx devices contain two 16 bit general purpose timers   TIM2 and TIM3  and one 8 bit basic timer  TIM4    All the timers can be served by DMA1   Table 2 compares the features of the advanced control  general purpose and basic timers   Table 2  Timer feature comparison  Counter   Counter DMAT Capture compare   Complementar  Timer   Prescaler factor request pru P p y  resolution   type   channels outputs  generation  TIM2  16 bit     up down Any Beer oe 2  TIM3 from 1 to 128  Yes None  F Any power of 2  PM debi    R from 1 to 32768 a  3 10 1 16 bit general purpose timers  TIM2  TIM3   e 16 bit autoreload  AR  up down counter  e  T bit prescal
82. requency  deviation  LCD levels  etc       The test results are given in the following table     Table 34  I O current injection susceptibility                                     Functional susceptibility  Symbol Description Negative Positive Unit  injection injection  Injected current on true open drain pins  PCO and   5  0  PC1   lii Injected current on all five volt tolerant  FT  pins  5  0 mA  Injected current on all 3 6 V tolerant  TT  pins  5  0  Injected current on any other pin  5  5       UO port pin characteristics    General characteristics    Subject to general operating conditions for Vpp and T4 unless otherwise specified  All  unused pins must be kept at a fixed voltage  using the output mode of the l O for example or  an external pull up or pull down resistor     d    DoclD023465 Rev 2       STM8L051F3 Electrical parameters       Table 35  I O static characteristics       Symbol Parameter Conditions   Min Typ Max Unit       Input voltage on true open drain Ves 0 3 0 3x V  pins  PCO and PC1  es ore       Input voltage on five volt                   tolerant  FT  pins  PA7 and Vss 0 3 0 3 x Vpp  Vi Input low level voltage 2  PEO  V   Input voltage on 3 6 V tolerant Vec 0 0 3 x V    TT  pins sel  2x VDD   Input voltage on any other pin Vss 0 3 0 3 x Vpp   Input voltage on true open drain   pins  PCO and PC1  5 2   with Vop  lt 2V   0 70 x Vpp   Input voltage on true open drain   pins  PCO and PC1  5 5   with Vpp  gt 2V       Input voltage on five volt  tolerant  
83. resistance  see crystal specification   Lm  Motional inductance  see crystal specification    Cm  Motional capacitance  see crystal specification   Co  Shunt capacitance  see crystal specification    C  472C  52C  Grounded external capacitance    9m  gt  gt  Omerit    DoclD023465 Rev 2    61 93       Electrical parameters    STM8L051F3       LSE crystal ceramic resonator oscillator    The LSE clock can be supplied with a 32 768 kHz crystal ceramic resonator oscillator  All  the information given in this paragraph is based on characterization results with specified  typical external components  In the application  the resonator and the load capacitors have  to be placed as close as possible to the oscillator pins in order to minimize output distortion  and startup stabilization time  Refer to the crystal resonator manufacturer for more details     frequency  package  accuracy         Table 29  LSE oscillator characteristics                                              Symbol Parameter Conditions Min Typ Max Unit  fs PR external oscillator 32 768 kHz  Rr Feedback resistor AV   200 mV 1 2 MO  c  Recommended load capacitance  2  8 pF  1 49  UA  Vop  1 8 V 450  Joo sp   LSE oscillator power consumption Von 3 V Sg S    Vpp   3 6 V 750  Om Oscillator transconductance 3  pA  tsuLse A Startup time Vpp is stabilized 1 s             C C  4C  is approximately equivalent to 2 x crystal Cj gap     2  The oscillator selection can be optimized in terms of supply current using a high quality 
84. resonator with a small Rm value   Refer to crystal manufacturer for more details     Data guaranteed by Design  Not tested in production   4  tsu Lse  is the startup time measured from the moment it is enabled  by software  to a stabilized 32 768 kHz oscillation     This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer     Figure 13  LSE oscillator circuit diagram                  Bm    Co  l Lm  l    Cm      Resonator                                                                 STM8                     Lse     gt     Rr    M    C    OSC_IN      e 9m  Consumption    o control  Resonator   FE       OSC_OUT   Ci               62 93    DoclD023465 Rev 2    2          STM8L051F3    Electrical parameters       Internal clock sources    Subject to general operating conditions for Vpp  and Ta     High speed internal RC oscillator  HSI     In the following table  data is based on characterization results  not tested in production   unless otherwise specified     Table 30  HSI oscillator characteristics                            Symbol Parameter Conditions   Min Typ Max   Unit  fusi Frequency Vpp   3 0 V 16 MHz  Accuracy of HSI Vpp   3 0 V  Ta   25   C 40 10  Vo  ACChs    oscillator  factory 1 8 V Vpp  lt 3 6 V  a  calibrated   40   C  lt T   lt 85   C  5 5    SEIT HSI user trimming Trimming code   multiple of 16 0 4 0 7 Yo  step   Trimming code   multiple of 16   15      HSI oscillator setup  4    suHS       time  wake
85. rol pins  must not exceed lyss     The le current sourced must always respect the absolute maximum rating specified in Table 13 and the  sum Of lio  I O ports and control pins  must not exceed lypp     Table 37  Output driving current  true open drain ports        Eid Symbol Parameter Conditions Min Max   Unit  ype  lo    3 MA   c IO     D Von  3 0V 0 43   2   Va    Output low level voltage for an UO pin V   2 lio   1 mA  0 45   o Vpp   1 8 V                                     The lig current sunk must always respect the absolute maximum rating specified in Table 13 and the sum  of lio  I O ports and control pins  must not exceed lyss     Table 38  Output driving current  PAO with high sink LED driver capability                             din Symbol Parameter Conditions Min Max   Unit  Type  4   lio    20 mA   x Vo        Output low level voltage for an UO pin Van   2 0 V 0 45 V  DD    4        The lig current sunk must always respect the absolute maximum rating specified in Table 13 and the sum  of ljo do ports and control pins  must not exceed lyss     d    DoclD023465 Rev 2          STM8L051F3    Electrical parameters          Figure 20  Typ  Vo    Vpp   3 0 V  high sink    Figure 21  Typ  Vo    Vpp   1 8 V  high sink                   ports  ports   1  07  Se  40  C 0 6  40  C            25  C    a   25 C    0 5  85  C 85  C       os SEH   gt  3   gt  0 3  0 25 0 2  a 0 1  0      0 2 4 6 8 10 12 14 16 18 20 os  lo   mA  0 1 2 3 4 5 6 7 8  ai18226V2 lo   mA              
86. s Yes 0x00 8054  interrupt  40 93 DoclD023465 Rev 2 ky          STM8L051F3    Interrupt vector mapping       Table 9  Interrupt mapping  continued                                      Wakeu Wakeup Wakeup Wakeup  IRQ  Source Description from SCH from from Wait   from Wait Vector  No  block P Active halt  WFI  WFE address  mode  1   mode mode  mode   s0  ima RENE   e Yes Yes     0x00 8058  interrupt  TIM3 Update  21 TIM3  Overflow Trigger Break     Yes Yes 0x00 805C  interrupt  ex   Tig A Capture Compare   e Yes Yes     0x00 8060  interrupt  23 RI RI trigger interrupt     Yes   0x00 8064  24 Reserved 0x00 8068  TIM4 updat rfl  2 2 ma AN  e    gt  Yes Yes   0x00 806C  trigger interrupt  SPI1 TX buffer empty   26 SPI RX buffer not empty  Yes Yes Yes Yes 0x00 8070  error wakeup interrupt  USART1 transmit data  27   UsART 1  register empty      Yes Yes   0x00 8074  transmission complete  interrupt  USART1 received data  28   eneen  Yemen e Yes Yes   0x00 8078  idle line detected parity  error global error interrupt  29 12C1 12C1 interrupt  Yes Yes Yes Yes 0x00 807C                         1  The Low power wait mode is entered when executing a WFE instruction in Low power run mode  In WFE mode  the  interrupt is served if it has been previously enabled  After processing the interrupt  the processor goes back to WFE mode     When the interrupt is configured as a wakeup event  the CPU wakes up and resumes processing     2    DoclD023465 Rev 2    The TLI interrupt is the logic OR betwe
87. s described in Figure 6     Figure 6  Pin input voltage                      cn          STM8L PIN          8 2 Absolute maximum ratings    Stresses above those listed as    absolute maximum ratings    may cause permanent damage  to the device  This is a stress rating only and functional operation of the device under these  conditions is not implied  Exposure to maximum rating conditions for extended periods may  affect device reliability     Table 12  Voltage characteristics                               Symbol Ratings Min Max Unit  External supply voltage  including Vppa  Vpp  Vss and Vpp2    0 3 4 0 V  Input voltage on true open drain pins   PCO and PC1  Vss  0 3 Voo   4 0  Input voltage on five volt tolerant  FT     VIN  pins  PA7 and PEO  Vss  0 3 Vas 4 0 V  Input voltage on 3 6 V tolerant  TT  pins Vss  0 3 4 0  Input voltage on any other pin Vss  0 3 4 0  see Absolute maximum  Vesp Electrostatic discharge voltage ratings  electrical sensitivity   on page 87             1  All power  Vpp1  Vpp2  VppA  and ground Masi  Vss2  Vssa  pins must always be connected to the    external power supply     2  Vij maximum must always be respected  Refer to Table 13  for maximum allowed injected current values     46 93    DoclD023465 Rev 2    2       STM8L051F3    Electrical parameters       2    Table 13  Current characteristics                                           Symbol Ratings Max  Unit  kapp Total current into Vpp power line  source  80  lyss Total current out of Vss groun
88. sive choice not a  duplication of the function      3  A pull up is applied to PBO and PB4 during the reset phase  These two pins are input floating after reset release     4  In the open drain output column     T    defines a true open drain UO  P buffer and protection diode to Vpp are not  implemented      The PAO pin is in input pull up during the reset phase and after reset release   High Sink LED driver capability available on PAO     opm    Note  The slope control of all GPIO pins  except true open drain pins  can be programmed  By  default  the slope control is limited to 2 MHz     4 1 System configuration options    As shown in Table 4  Low density value line STM8LO5xxx pin description  some alternate  functions can be remapped on different UO ports by programming one of the two remapping  registers described in the  Routing interface  RI  and system configuration controller   section in the STM8L 15xx and STM8L16xx reference manual  RM0031      2    DoclD023465 Rev 2 25 93       Memory and register map    STM8L051F3       5    5 1    26 93       Memory and register map    Memory mapping    The memory map is shown in Figure 4     Figure 4  Memory map    0x00 0000    RAM  Up to 1 Kbyte   including  Stack  512 bytes     0x00 03FF  0x00 0400  0x00 1FFF BEE  0x00 1000  Data EEPROM    256 Bytes   0x00 10FF  0x00 1100   Reserved  0x00 47FF  0x00 4800   ti t  0x00 487 F Option bytes  0x00 4880  0x00 4FFF Reserved  0x00 5000  GPIO and peripheral registers   0x00 5457  0x00 54
89. ta          Symbol Parameter Conditions riu  Voltage limits to be applied on Vpp   3 3 V  Ta    25   C    Vresp   any I O pin to induce a functional  fepy  16 MHz  3B  disturbance conforms to IEC 61000  Fast transient voltage burst limits o   Vop 3 3 V  Tas    V to be applied through 100 pF on f BB SC ME ai Using HSI JA  EFTB  Vpp and Vss pins to induce a CPU   Es   functional disturbance conforms to IEC 61000  Using HSE 2B                      Electromagnetic interference  EMI     Based on a simple application running on the product  toggling 2 LEDs through the I O  ports   the product is monitored in terms of emission  This emission test is in line with the  norm IEC61967 2 which specifies the board and the loading of each pin     DocID023465 Rev 2 Ly           STM8L051F3 Electrical parameters       2    Table 49  EMI data  1                       Monitored MAX Ve   Symbol Parameter Conditions Unit  frequency band 16 MHz  Vpp   3 6 V  0 1 MHz to 30 MHz  3  TA   25   C  30 MHz to 130 MHz 9 dBuv  SEMI Peak level LQFP32  conforming to 130 MHz to 1 GHz 4  1EC61967 2 SAE EMI Level 2                              1  Not tested in production     Absolute maximum ratings  electrical sensitivity     Based on two different tests  ESD and LU  using specific measurement methods  the  product is stressed in order to determine its performance in terms of electrical sensitivity   For more details  refer to the application note AN1181     Electrostatic discharge  ESD     Electrostatic disch
90. terrupt control register 2 0x00  0x00 50A2 EXTI CR3 External interrupt control register 3 0x00  ITC   EXTI  0x00 50A3 EXTI SR1 External interrupt status register 1 0x00  0x00 50A4 EXTI SR2 External interrupt status register 2 0x00  0x00 50A5 EXTI CONF1 External interrupt port select register 1 0x00  0x00 50A6 WFE CR1 WFE control register 1 0x00  0x00 50A7 WEE WFE CR2 WEE control register 2 0x00  0x00 50A8 WFE CR3 WFE control register 3 0x00  0x00 50A9 WEE CR4 WEE control register A 0x00  0x00 50AA EXTI CR4 External interrupt control register 4 0x00  ITC   EXTI  0x00 50AB EXTI CONF2 External interrupt port select register 2 0x00  0x00 50A9  to Reserved area  7 bytes   0x00 50AF  0x00 50B0 Bi RST CR Reset control register 0x00  0x00 50B1 RST SR Reset status register 0x01  0x00 50B2 PWR_CSR1 Power control and status register 1 0x00  PWR  0x00 50B3 PWR CSR2 Power control and status register 2 0x00  0x00 50B4  to Reserved area  12 bytes   0x00 50BF  0x00 50CO CLK CKDIVR CLK Clock master divider register 0x03  0x00 50C1 CLK CRTCR CLK Clock RTC register 0x001   tuma CLK  0x00 50C2 CLK ICKCR CLK Internal clock control register 0x11  Ox00 50C3 CLK PCKENR1 CLK Peripheral clock gating register 1 0x00  30 93 DoclD023465 Rev 2 KYI       STM8L051F3    Memory and register map       Table 7  General hardware register map  continued                                                                                                                                                                   
91. ters STM8L051F3       Figure 31  SPI1 timing diagram   master model         High  NSS input    SCK output    SCK output       i   T TEE  SCK  WER   MSBIN   BIT6 IN   LSB IN     lt     th C rry    Ml M    wspout     OUT BIT1 OUT       isor   OUT  OUTUT      les  h MO  DING 1    ai14136             1  Measurement points are done at CMOS levels  0 3Vpp and 0 7Vpp     2    76 93 DoclD023465 Rev 2       STM8L051F3    Electrical parameters       12C   Inter IC control interface    Subject to general operating conditions for Vpp  fasc      and Ta unless otherwise specified     The STMBL IC interface  12C1  meets the requirements of the Standard I C communication    protocol described in the following table with the restriction mentioned below     Refer to I O port characteristics for more details on the input output alternate function    characteristics  SDA and SCL      Table 41  I2C characteristics                                                                   Standard mode 2   Ge Fast mode CT  Symbol Parameter Unit  Min   Max     Min     Max  2   twsciL   SCL clock low time 4 7 1 3  us  twsciH   SCL clock high time 4 0 0 6  tsuspa    SDA setup time 250 100  thispa   SDA data hold time 0 0 900  t   SDA    SDA and SCL rise time 1000 300 ns  tuscL   t   SDA    SDA and SCL fall time 300 300  t  scL   tista    START condition hold time 4 0 0 6  Repeated START condition setu us  tsu STA  E P 4 7 0 6  tsusto    STOP condition setup time 4 0 0 6 us  STOP to START condition time  bus  
92. tivated by hardware       WWDG HALT  Window window watchdog reset on Halt Active halt  0  Window watchdog stopped in Halt mode  1  Window watchdog generates a reset when MCU enters Halt mode       OPT4    HSECNT  Number of HSE oscillator stabilization clock cycles  0x00   1 clock cycle  0x01   16 clock cycles  0x10   512 clock cycles  0x11   4096 clock cycles          LSECNT  Number of LSE oscillator stabilization clock cycles  0x00   1 clock cycle  0x01   16 clock cycles  0x10   512 clock cycles  0x11   4096 clock cycles  Refer to Table 29  LSE oscillator characteristics on page 62           2    DoclD023465 Rev 2 43 93       Option bytes STM8L051F3       Table 11  Option byte description  continued                    Option  byte Option description  No   BOR ON   0  Brownout reset off  OPT5 1  Brownout reset on  BOR TH 3 1   Brownout reset thresholds  Refer to Table 20 for details on the thresholds according to  the value of BOR TH bits   OPTBL 15 0    This option is checked by the boot ROM code after reset  Depending on  OPTBL  content of addresses 00 480B  00 480C and 0x8000  reset vector  the  CPU jumps to the bootloader or to the reset vector   Refer to the UM0560 bootloader user manual for more details              44 93    2    DoclD023465 Rev 2       STM8L051F3 Electrical parameters       8    8 1    2    Electrical parameters    Parameter conditions    Unless otherwise specified  all voltages are referred to Vss     Minimum and maximum values    Unless otherwise spe
93. tw STO STA  free    4 7 1 3 us  Cp Capacitive load for each bus line 400 400 pF  1  fsyscix must be at least equal to 8 MHz to achieve max fast   C speed  400 kHz    2  Data based on standard I C protocol requirement  not tested in production   Note  For speeds around 200 kHz  the achieved speed can have at 5  tolerance  For other speed ranges  the achieved speed can have at 2  tolerance  The above variations depend on the accuracy of the external components used   Ly  DoclD023465 Rev 2 77 93       Electrical parameters STM8L051F3       78 93    Figure 32  Typical application with 12C bus and timing diagram            Von Von      4 7kQ 2 mog 1000 SDR  e  Wi    PC BUS 1000 SCL  STM8L                                     REPEATED START                                                       1   su SDA    th SDA       1               pe  START     tsu STA  1     iw STO STA     START  PAM Ng  soa NJ L   X  X ua  pa HI i i   i  bn NG   i i  t  gt e E Sereaiy 1 i       SDA     SDA  um     STOP  i  i         gt  lt     thsta  twScLH  twScLL  ec   Web tsu sTO             Measurement points are done at CMOS levels  0 3 x Vpp and 0 7 x Vpp    DoclD023465 Rev 2    2       STM8L051F3 Electrical parameters       8 3 9 Embedded reference voltage    In the following table  data is based on characterization results  not tested in production   unless otherwise specified     Table 42  Reference voltage characteristics                                     Symbol Parameter Conditions Min Typ Max  U
94. ult alternate function  5   9  5  a  s     alal s    D S   E      O  e  ss  0      9 z  E mm   c  ul    I  4  NRST PA1   1 O D HS X Reset  PA1  PA2 OSC IN  USART  TX Oy Port HSE oscillator input    USART  5  SPI MISO    ue X  bei S E aaa transmit     SPI master in  slave out   2     6 Daer OUTI USART  RXf 1 0 xixixius x x Port HSE oscillator output    USART    SPI MOSI  A3 receive    SPI master out slave inj   10  PBOO  TIM2 CH1 ADC1 IN18  I O X X X HS  X   X a Timer 2   channel 1   ADC1 IN18  11  PB1 TIM3 CH1 ADC1 IN17 1 0 X X X HS  X   X E Timer 3   channel 1   ADC1 IN17  12  PB2  TIM2 CH2  ADC1 IN16  I O X X X HS  X   X dnd Timer 2   channel 2 ADC1 IN16  PB3 TIM2 ETR  Port Timer 2   external trigger    13 ADC1_IN15 RTC_ALARM us XTX S pss A B3 ADC1 IN15  RTC ALARM   3  Port SPI master slave select    14  IPBAS SPI1 NSS ADC1 IN14  I O X X X HS  X X B4 ADC1 IN14  PB5 SPI SCK  Port  15  ADC1 IN13 1 0 X X X HS  X   X B5  SPI clock    ADC1 IN13  PB6 SPI1_MOSI  Port SPI master out   16 ADC1 IN12 is Apes Kas Laba kl B6 slave in   ADC1 IN12  Port SPI1 master in  slave out   17  PB7 SPI1 MISO ADC1 IN11 1 0 X X X HS  X   X B7 ADC1_IN11   4  Port  18  PCO I2C SDA lO FT X X T CO I2C data   3  Port  19  PC1 I2C SCL lO FT X X T C1 I2C clock  USART synchronous clock    PCA USART CK   Port  20 1 0 X X X HS  X   X I2C1 SMB   Configurable clock  I2C SMB CCO ADC1 IN4 C4 output   ADC1  IN4  LSE oscillator input    SPI  PC5 OSC32 IN   SPI1  NSSI Y Port  1  USART  TXJITIM2 CH1 1 0 X X X  HS  X  
95. up time  Ge S e  lone HSI oscillator power 100 440 UA       consumption                         1  Vpp   3 0 V  T4    40 to 85   C unless otherwise specified     Tested in production     The trimming step differs depending on the trimming code  It is usually negative on the codes which are multiples of 16     0x00  0x10  0x20  0x30   0xE0   Refer to the AN3101    STM8L 15x internal RC oscillator calibration    application note for  more details     2    Guaranteed by design  not tested in production     Figure 14  Typical HSI frequency vs Vpp       HSI frequency  MHz        18 0  17 5  17 0  16 5  16 0  15 57  15 0  14 5  14 0  13 5  13 0                                     1 8 1 95 2 1    2 25 24 2 55 2 7 2 85    Voo  V        3 3 15 33 345 3 6          ai18218V2          DoclD023465 Rev 2    63 93       Electrical parameters STM8L051F3       Low speed internal RC oscillator  LSI     In the following table  data is based on characterization results  not tested in production     Table 31  LSI oscillator characteristics             Symbol Parameter  1  Conditions   Min Typ Max   Unit  fLsi Frequency 26 38 56 kHz  tu si   LSI oscillator wakeup time 2002 us       LSI oscillator frequenc 7    pps    ara  SM 0   C   TA   85   C  12 11                                 1  Vpp   1 8 V to 3 6 V  Ta    40 to 85   C unless otherwise specified   2  Guaranteed by design  not tested in production     3  This is a deviation for an individual part  once the initial frequency has been measured
96. us TIM4 SR1 TIM4 status register 1 0x00  0x00 52E6 TIM4 EGR TIM4 Event generation register Ox00  0x00 52E7 TIM4 CNTR TIM4 counter 0x00  0x00 52E8 TIM4 PSCR TIM4 prescaler register 0x00  0x00 52E9 TIM4 ARR TIM4 Auto reload register 0x00  0x00 52EA   to Reserved area  21 bytes   0x00 52FE  0x00 52FF IRTIM IR CR Infrared control register 0x00  0x00 5317  to Reserved area  41 bytes   0x00 533F   0x00 5340 ADC1 CR1 ADC1 configuration register 1 0x00  0x00 5341 ADC1 CR2 ADC1 configuration register 2 0x00  0x00 5342 ADC1 CR3 ADC1 configuration register 3 Ox1F  0x00 5343 ADC1 SR ADC1 status register 0x00  0x00 5344 ADC1 DRH ADC1 data register high 0x00  0x00 5345 ADC1 DRL ADC1 data register low 0x00  0x00 5346 ADC1 HTRH ADC1 high threshold register high OxOF  0x00 5347 ADC1 HTRL ADC1 high threshold register low OxFF  0x00 5348 ADC1 LTRH ADC1 low threshold register high 0x00  0x00 5349 SZ ADC1 LTRL ADC1 low threshold register low 0x00  0x00 534A ADC1 SQR1 ADC1 channel sequence 1 register 0x00  0x00 534B ADC1 SQR2 ADC1 channel sequence 2 register 0x00  0x00 534C ADC1 SQR3 ADC1 channel sequence 3 register 0x00  0x00 534D ADC1 SQR4 ADC1 channel sequence 4 register 0x00  0x00 534E ADC1 TRIGR1 ADC1 trigger disable 1 0x00  0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00  0x00 5350 ADC1_TRIGR3 ADC 1 trigger disable 3 0x00  0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00   36 93 DoclD023465 Rev 2   er                                                                                         
97. x00 5457 RI IOSRA RI I O switch register 4 0x00   1  These registers are not impacted by a system reset  They are reset at power on      er DoclD023465 Rev 2 37 93                                                                                                                                                                                                          Memory and register map STM8L051F3  Table 8  CPU SWIM debug module interrupt controller registers  Address Block Register label Register name deba  0x00 7F00 A Accumulator 0x00  0x00 7F01 PCE Program counter extended 0x00  0x00 7F02 PCH Program counter high 0x00  0x00 7F03 PCL Program counter low 0x00  0x00 7F04 XH X index register high 0x00  0x00 7F05 cpu   XL X index register low 0x00  0x00 7F06 YH Y index register high 0x00  0x00 7F07 YL Y index register low 0x00  0x00 7F08 SPH Stack pointer high 0x03  0x00 7F09 SPL Stack pointer low OxFF  0x00 7FOA CCR Condition code register 0x28  ped p mr Reserved area  85 bytes   0x00 7F60 CFG GCR Global configuration register 0x00  0x00 7F70 ITC SPR1 Interrupt Software priority register 1 OxFF  0x00 7F71 ITC SPR2 Interrupt Software priority register 2 OxFF  0x00 7F72 ITC SPR3 Interrupt Software priority register 3 OxFF  0x00 7F73 ITC SPR4 Interrupt Software priority register 4 OxFF  0x00 7F74 nens ITC SPR5 Interrupt Software priority register 5 OxFF  0x00 7F75 ITC SPR6 Interrupt Software priority register 6 OxFF  0x00 7F76 ITC SPR7 Interrupt Software priority register 7 OxFF  
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
wash filter register your dyson 2 year guarantee today  RCGF Engines OPERATING INSTRUCTIONS  Téléchargez le plan  Manuale dell`utente Controllori GuardLogix 5570  NEURODYN AUSSIE SPORT  Honda 08L96-SZA-1A00-81 User's Manual  取扱説明書 (3.9MB)  Benq BL2420PT  Whirlpool CEM2793BQ Use and Care Manual  Design: Claire Bataille & Paul ibens    Copyright © All rights reserved. 
   Failed to retrieve file