Home

PC Oscilloscope PCSU1000

image

Contents

1. 10 A NON MCN anaa EEA AA TEA EEA 12 5 Speci DENSI y acr 14 M CRI ores IR 16 T Fei MONU c 16 Part Ill Data Transfer 16 1 Data acquisition to other applications ccccceesseeeenseeeeeeseeeeeesseeseenseeseenseeeeeeaseeeoenseesoenseeseonas 16 2 Data ACQUISITION to Microsoft Excel torneo iara rotta eure terne Do cnra ceo o na FE cu conan conu o ya enn n nnmnnn 20 Index 0 2005 Velleman Contents 2 1 Contents Operation Instructions for Velleman PC Oscilloscope PCSU1000 e DIGITAL STORAGE PC OSCILLOSCOPE e FFT SPECTRUM ANALYZER Safety Instructions 1GS s sampling mode Controls Connection Waveform Parameters Display Troubleshooting Adding comment text in the signal screen Menu Options Spectral Density marker Data acquisition to other applications Data acquisition to Microsoft Excel 1 1 Safety Instructions SAFETY and WARNINGS CEA Important safety information see user manual WARNINGS Instrument grounds are interconnected and connected to PC ground Max Voltage between probe tip and ground 30V AC DC at all times Before performing any measurement make sure that the circuit is galvanically separated from the AC power mains If necessary use a safety isolation transformer Before making measurements and for safety reasons it is importan
2. FFT Options Maximum Maximum value of each frequency is displayed in Run mode This option can be used for recording signal levels as a function of frequency Bode plot You can use spreadsheet to display the frequency response curve including the frequency labels On File menu click Save FFT Data to export the data to the spreadsheet RMS Average Use this averaging mode to reduce signal fluctuations RMS averaging provides an excellent estimate of the true signal and noise levels of the input signal Vector Average Use this averaging mode to reduce random or uncorrelated noise in the synchronous signal you want to display Vector averaging requires a trigger set Trigger ON The signal of interest must be both periodic and phase synchronous with the trigger Vector averaging reduces the noise floor for random signals since they are not phase coherent from time record to time record If not trigged the signal will not add in phase and instead will cancel randomly Hardware setup Select the LPT port where the hardware is connected Operation mode 1 Oscilloscope connected to USB port 2 Demo mode No hardware needed 2005 Velleman Menu Options 12 Select the LPT port address where the Function Generator PCG10 or K8016 is connected 378 278 or 3BC You ll find the address from Windows Device Manager 1 Click System icon in Control Panel and then the Device Manager tab 2 Click the plus
3. 2 Press and hold the left mouse button The markerline turns solid 3 Drag the marker to the appropriate position dB The term dB or decibel is a relative unit of measurement used to describe power or voltage difference Equation to calculate a dB value based on the ratio of two voltages V2 and V1 is dB 20 log dBV dBV The dB value is obtained with respect to 1 Volt The dBV is an absolute unit of voltage It expresses voltages as a ratio relative to 1 volt Equation to calculate a dBV value of a voltage V is dBV 20 log V Equation to calculate voltage V from dBV value is dev V 1070 2005 Velleman Menu Options 14 dBm A unit of measurement of signal level in an electrical circuit expressed in decibels referenced to 1 milliwatt In a circuit with an impedance of 600 ohms 0 dBm gives an equivalent voltage level of 0 775 Vrms The dBm value displayed on the screen 0 dBm 1 milliwatt at 600 ohms 0 775 Vrms 2 5 Spectral Density The Spectral Density marker may be used when measuring the density of random or noise signals since it properly takes into account the frequency bin width and the FFT window function used by the spectrum analyzer when measuring noise like signals The Spectral Density marker readout is automatically normalized to 1 Hz The displayed unit is dB viYHz Note The Spectral Density marker should not be used to measure discrete frequency components as
4. e g Volts and seconds for further analysis OA B HP t MEM 6o ee k Sample rate Hz 625000 625000 2 Full scale mV 12000 4000 3 GND level counts 178 7 Update 4 Data 158 12 5 Data 140 11 B Data2 121 ii 300 B Daia4 134 10 25 8 Data5 152 10 i 10 Data E 170 10 am 4 A H AA AN 1D bas e VAVAVAVAVAVAVA 12 Data amp 205 103 wo 13 Data 9 224 104 uU wy U p WV Soris 14 Data 10 243 104 in BEES joe N IB Data f 213s UTE USES ER ERLES RR RES E 15 Data 12 213 105 s 17 Data 13 1895 105 1B Data 14 177 13 E L Lj E E is d 13 Data 15 1538 13 nmm rem mmm 20 Data 16 141 12 1 10 19 28 3 4b 55 amp 73 82 81 100 108 21 Data 17 123 11 22 Data 18 115 11 2005 Velleman
5. Excel and start a new workbook document 2 Select the View Toolbars Menu and Select Forms e he Forms toolbar appears 3 Create a Button e n the Forms toolbar click on the Button button the mouse pointer will become a small cross e On Excel worksheet use the mouse to draw a rectangle to mark where you want your button to appear e When you release the mouse after drawing the rectangle the Assign Macro dialog box will appear Matra name cancel Mei Record Maros In aui Open Workbooks Description 4 Type Macro name ReadAll and click New button e Microsoft Visual Basic edit window will open A subroutine called ReadA has been created 5 Substitute the default text Sub ReadAll End Sub with the following text in the edit window Use Copy and Paste Option Explicit Dim DataBufferl 0 To 5000 As Long Dim DataBuffer2 0 To 5000 As Long Private Declare Sub ReadChl Lib DSOLink dll Buffer As Long Private Declare Sub ReadCh2 Lib DSOLink dll Buffer As Long 2005 Velleman 21 PC Oscilloscope PCSU1000 Sub ReadAll Dim i As Long ReadChl DataBuffer1 0 ReadCh2 DataBuffer2 0 With ActiveSheet FOr i 0 To 99 eella iL f lp z2 yoellsqr 1 2 Next i End With End Sub DataBufferl 1 DataBuffer2 1 SDSO_Linkiwts Modulel Codey 5 xl iGeneral eagan Option Explicic Dim DataBufferiij0 To 5000 As Long Dim DbartaBuffersiD
6. e f CH1 is off the dBm value of CH2 is shown The dBm value displayed on the screen 0 dBm 1 milliwatt at 600 ohms 0 775 Vrms 2005 Velleman 13 PC Oscilloscope PCSU1000 Waveform Parameters Software automatically calculates various voltage and time parameters of a signal such as DC mean amplitude rise time etc These parameters are displayed in a separate window Use the check boxes in the window to select the parameters you which to be displayed Markers Displays Markers on the screen Bright Grid Brightens the signal grid on the screen Dot Join On The dots of the acquired waveform data are connected by lines Off Only the dots of the acquired waveform data are displayed Markers in ocilloscope mode e Two horizontal markers for measuring voltage The voltage difference and the absolute voltage values in parentheses are displayed e Two vertical markers for measuring time and frequency Note The voltage markers give preference to channel CH1 if both channels are being used Markers in spectrum analyzer mode e Marker function for absolute and relative voltage measurement is provided e The absolute voltage level in dBV or the voltage difference in decibels dB can be measured e Noise level can be measured using the Spectral Density 14 marker e One vertical marker is provided for the frequency measurement Moving the markers 1 Place the mouse pointer over a dashed marker line
7. it will provide misleading level readings The Spectral Density is simply the magnitude of the spectrum normalized to a 1 Hz bandwidth This measurement approximates what the spectrum would look like if each frequency component were really a 1 Hz wide piece of the spectrum at each frequency bin When measuring broadband signals such as noise with a spectrum analyzer the amplitude of the spectrum changes with the frequency span This is because the FFT bin width changes and the frequency bins have a different noise bandwidth The Spectral Density marker normalizes all measurements to a 1 Hz bandwidth and the noise spectrum becomes independent of the frequency span This allows measurements with different spans to be compared If the noise is Gaussian in nature then the amount of noise amplitude in other bandwidths may be approximated by scaling the Spectral Density measurement by the square root of the noise bandwidth Example This image shows a band limited noise signal on an oscilloscope screen Spectrum analyzer can be used to measure the spectral density of this noise signal In the spectrum analyzer select the following menu options e Options FFT Options RMS Average 2005 Velleman 15 PC Oscilloscope PCSU1000 e View Markers FFT f amp Spectral Density dBV sqrt Hz Vo D4 sbdBV sqi Hz F 6 05kH2 This image shows the spectrum of the band limited noise signal The analysis of noise i
8. parameters are displayed in a separate window Use the check boxes in the window to select the parameters you which to be displayed You may select the parameters to display for frozen waveform as well You may even re open saved waveform data file to perform these measurements Please Note Do not change the scope settings when the re opened waveform parameters are to be read The green labeled parameters High Low Amplitude Rise time and Fall time are mainly intended for pulse shaped waveform measurements only For proper waveform measurement the signal levels must be appropriate Signal levels too small will result in noisy and inaccurate measurements Signal levels too large will result in clipping and yield incorrect results 2 Indicates that clipping has occurred 22 Indicates that there are too few or too many wave cycles in the waveform data or the signal amplitude is too low Also too noisy signal and variable frequency signal causes this indication 2005 Velleman PC Oscilloscope PCSU1000 Voltage parameters Max High High reference 22 Middle reference Low reference 1056 IERI pen Ll EE td a Min DC Mean The arithmetic mean of the entire waveform data Max The signal s positive peak voltage Difference between zero and highest value Min The signal s negative peak voltage Difference between zero and lowest value Peak to Peak The signal s peak to peak voltage
9. signal or data and on the type of information to be extracted from its spectrum In general a good FFT window has a narrow main spectral lobe to prevent local spreading of the spectrum and low sidelobe levels to reduce distant spectral leakage In some cases it may be best to leave the data alone in effect to use a rectangular window For example if a signal has close spaced components of roughly the same amplitude the rectangular window will probably offer the best chance of resolving them Conversely 2005 Velleman 11 PC Oscilloscope PCSU1000 if the amplitudes are very different a window with low sidelobes will reduce leakage around the large component and should make the small one easier to detect Comparison of the window functions Window type Window characteristics Applications Rectangular Narrow mainlobe Broadband random white noise Slow rolloff rate Closely spaced sine wave signals Bartlett Narrow mainlobe Fast rolloff rate Hamming Good spectral resolution Closely spaced sine wave signals Narrow mainlobe Hanning High maximum sidelobe level Narrowband random signals Good frequency resolution Sine wave or combination Reduced leakage of sine wave signals Fast rolloff rate Blackman Wide mainlobe Fast rolloff rate Flat top Good amplitude accuracy Sine wave with need Wide mainlobe for amplitude accuracy Poor frequency resolution More spectral leakage
10. DSO USERMANUAL PCSU1000 Oscilloscope Sel File Edit Options View Math Help aE 50ms PE to 3 10us O 5us EY Cac Em D wo a d io 5 e Ds 5 1 dt 80 81kHz Yims 0 66 1 4dBm dt 12 36us aj Single On off Source Ex Edge x Level Stopped OO Trigger Spectrum Analyzer File Edit Options View Math Help Oscilloscope pe nalyze Transient Recorder Function Generator Circuit Analyzer V 22 61dBV sqrt Hz f 2 92kHz Aul Or Off T a Edge Stopped 00 Trigger l PC Oscilloscope PCSU1000 Table of Contents Foreword 0 Part Contents 2 1T Salely TVS UEC UO INS EU T 2 2 1G9 S Ove rsampling MOE OL 3 i i iA 3 A SGOMMCCUON mc 5 5 TROUBIGS OO TINO PEE E ODE 6 6 Waveform Parameters DISDIAY ssssscincdssctiecessescecceacewccesverccsdnseueccunweccucudesuvexneunseestcastvsweneserswesesrveueee 6 7 Add comment text in the signal screen cccccsssssseeeseeesseeeeeeeesseeeeseeesseeeeeeoenseeeseeoenseeeseonenseees 9 Part II Menu Options 9 T Ple MODU X xsxssnisscendibRieuusk cd E 9 ECE NEN e eee 10 o OPHONS MENU et
11. Difference between highest and lowest value High The statistical maximum level recorded for all the cycles in the signal Low The statistical minimum level recorded for all the cycles in the signal Amplitude The voltage difference between the High and Low of the signal AC RMS The true RMS value of the AC component of the signal is calculated and converted to voltage AC dBV The measured signal AC only is converted to dBV OdB 1V AC dBm The measured signal AC only is converted to dBm OdB 0 775V AC DC RMS The true RMS value of the wave AC DC is calculated and converted to voltage AC DC dBV The measured signal AC DC is converted to dBV OdB 1V AC DC dBm The measured signal AC DC is converted to dBm OdB 0 775V 2005 Velleman Contents 8 Time parameters Period High reference 20 Middle reference 20 Low reference 12 Rise time Fall time Duty Cycle The ratio expressed as a percentage of the average positive pulse width to the average period of the signal The time intervals are determined at middle reference level Duty Cycle Positive Pulse Width Period x 10096 Positive Width Average positive pulse width in the waveform The time intervals are determined at middle reference level The middle reference is the middle point between the high and low levels Negative Width Average negative pulse width in the waveform The time intervals are dete
12. Link_Demo EXE program and its source code You may copy the files to any folder and use Visual Basic to examine edit and compile the files Example in Visual Basic 2005 Velleman Data Transfer 18 Option Explicit Dim DataBuffer 0 To 5000 As Long Private Declare Sub ReadChl Lib DSOLink dll Buffer As Long This reads the settingsd and 4096 bytes of data from CH1 to the data buffer The first 21 values are displayed Private Sub Read CH1 Click Index As Integer Dim i As Long Listl Clear ReadChl DataBuffer 0 Listl AddItem Sample rate Hz Chr 9 Str DataBuffer 0 Listl AddItem Full scale mV Chr 9 Str DataBuffer 1 Listl AddItem GND level counts Chr 9 Str DataBuffer 2 Listl AddItem For i 0 To 20 Listl AddItem Data Str i Chr 9 Chr 9 Str DataBuftfer i 3 Next End Sub Running the DSOLink in Borland C Builder The following files are available in the PC Lab2000 tools PCSU1000 PCS500 PCS100 K8031 Data transfer DSOLink_DLL DSOLink_Demo_BCB folder on the VELSOFT CD for development with Borland C Builder DSOLink dll the dynamically linked library DSOLink h the C C header file for function prototypes DSOLink lib the import library DSOLink demo cpp demo source 1 Create a new project in Borland C Builder 2 Add the import library to your project using Project Add to Project menu option 3 Adda include stateme
13. To 5000 s Long Private Declare Zub Readchl Lib DSOLink dli Butter As Leng Private Declare Zub ReadcChz Lib D5oLink dli Buffer s Long SUK Bead Aliir Dim i s Long Readthi Datapuf ferili ReadcChz Derasurr erz2mr With Acrzivesnhest For i 0 To 99 Cella i 1 2 DataBufferlii sCells i t 1 3 7 DataBuffersli West i End With End Sib 6 Press Alt F11 to return to Excel 7 Type following texts to column A Sample rate Hz Full scale mV GND level counts Data 0 Data 1 Data 2 8 Start oscilloscope program for PCSU1000 PCS500 PCS100 or K8031 and click Run or Single button 9 Click the button on the Excel worksheet The created macro will execute and the data described in column A will appear to the worksheet columns B and C e Rows 4 4099 contain the acquired data in A D converter counts 0 255 for PCSU1000 and PCS500 e Rows 4 4083 contain the acquired data in A D converter counts 0 255 for PCS100 and K8031 e The triggering point of PCSU1000 and PCS500 is on row 1030 and of PCS100 and K8031 on row 4 2005 Velleman Data Transfer 22 The three first rows contain the scope settings and the rest of the rows contain the raw oscilloscope data in A D converter counts 0 255 Using the Sample rate Full scale and GND level values it is possible to reconstruct the waveform data into engineering units
14. aveform display area 3 4098 The acquired data in A D converter counts 0 255 from PCSU1000 The triggering point of the PCSU1000 is at the data location 1027 Running the DSOLink in Delphi Check the PC Lab2000 tools PCSU1000 PCS500 PCS100 K8031 Data transfer DSOLink_DLL DSOLink_Demo_VB folder on the Velleman CD to locate the demo files This folder contains a ready to run DSOLink Demo EXE program and its source code You may copy the files to any folder and use Delphi to examine edit and compile the files Example in Delphi var data array 0 5000 of longint procedure ReadChl Buffer Pointer stdcall external DSOLink dll procedure TForml ButtonlClick Sender TObject var i longint p pointer begin p data 0 ReadChl1 p memol clear memol lines add Sample rate Hz chr 9 inttostr data 0 memol lines add Full scale mV chr 9 inttostr data 1 memol lines add GND level counts chr 9 inttostr data 2 memol lines add begin for i 0 to 20 do memol lines add Data inttostr i chr 9 chr 9 inttostr data it 3 end end Running the DSOLink in Visual Basic Make sure that the file DSOLink DLL is copied to Windows SYSTEM32 folder Check the PC Lab2000 tools PCSU1000 PCS500 PCS100 K8031 Data transfer DSOLink_DLL DSOLink_Demo_VB folder on the VELSOFT CD to locate the demo files This folder contains a ready to run DSO
15. i nk dlr P DSOLink DLL demo Ini x Sample rate Hz 125000 Full scale m 40 GND level counts 127 This demonstration program reads the settings and the data fram the PC oscilloscopes PLST00 PL S50LU or ES Data LI 131 Data 1 132 Data 2 130 Data 3 123 Data 4 134 Data 5 127 Data 5 130 Data 7 132 Data 8 123 Data 3 123 Data 10 123 Data 11 123 Data 12 132 Data 13 131 Data 14 12 Data 15 131 Data 16 128 Data 17 128 Data 18 12 Data 15 129 134 Oscilloscope software must be running and Hun or single button pressed and trace displayed on the screen DSOLink DLL acts as a link between the scope software and this demonstration software DSOLink DLL must be located in the same folder as this program or in Windows SYSTEM3Z2 folder 2005 Velleman Data Transfer 20 3 2 Data acquisition to Microsoft Excel Pc Lab2000 software package includes a DLL Dynamic Link Library DSOLink DLL installed to Windows SYSTEMS2 folder This DLL allows you to write custom applications in Excel Visual Basic Delphi or any other 32 bit Windows application development tool that supports calls to a DLL Transferring Waveform Data to an Excel Spreadsheet The example Excel macro shows you how to collect data directly into the spreadsheet from the Velleman PC oscilloscopes without the need for other software 1 Open Microsoft
16. ion should be used when the new oscilloscope has been on for about 1h This option performs following operations 1 The fine adjustment of the trace Y position offset on different Volt Div and Time Div scales 2 Sets the trace labels on the left side of the screen to correspond the trace GND level 3 Sets the triggering level mark to correspond the triggering level 2 2 Edit Menu Copy Copies the image to the Windows clipboard Paste Pastes the image residing in Windows clipboard to the screen 2 3 Options Menu FFT Window Set the window function used to taper the original signal before calculating the FFT Spectrum analyzer supports six different FFT windows Rectangular Bartlett Hamming Hanning Blackman Flat top DPED s The Hamming window is set as default at the startup Background information It is common practice to taper the original signal before calculating the FFT Fast Fourier Transformation This reduces any discontinuities at the edges of the signal This is done by multiplying the signal with a suitable window function By choosing a tapered window it is possible to achieve a good compromise between main lobe width and sidelobe levels of a spectral line The undesirable spectral leakage can be reduced using a tapered window at the expense of some broadening around individual spectral lines Many different windows have been designed for this purpose The choice of a suitable one depends on the nature of the
17. loscope mode VOLTS DIV Selected value indicates the peak to peak voltage required to produce a peak to peak deflection of one major division on the screen Big Screen Displays large waveform screen with separate button bar Use Normal Screen button to return normal mode Note Big screen is available only in Oscilloscope and Spectrum Analyzer modes Coupling AC the input signal is capacitive coupled to the input amplifier attenuator Only the AC components are measured GND the input signal is broken and the input amplifier attenuator is connected to earth Use this position for selecting a reference point on the display DC the input signal is directly connected to the input amplifier attenuator Both AC and DC voltage are measured Probe x1 x10 Use these buttons to adapt the readouts according to the x1 x10 probe setting CH1 On CH2 On Buttons turn the display of the trace ON or OFF To get the cursor measurements of CH2 voltage values switch CH1 off 2005 Velleman Contents 4 Autoset Automatic setup for the Volts div Time div and Trigger level to produce a stable waveform of usable size The trigger will be set on if the wave aplitude on the screen is more then 0 5 divisions The signal should be repetitive for proper autoset function Amplitude 5mV to 100V frequency above 50Hz duty cycle greater than 10 Persist When this button is down the scope captures many acquisitions of a signal to
18. me color as the vertical time frequency markers Menu Options File Menu Edit Menu Options Menu View Menu Math Menu Help Menu File Menu Note Default subdirectory folder DATA for image and data files is created when the program is run the first time Open Image Opens an image file and displays it on the screen Open DSO Data Opens and displays the waveform data saved in text format using the Save DSO Data option Save Image Saves the image to a file in Windows Bitmap BMP format Save DSO Data Saves the waveform data in text format All captured data 4096 points channel is saved Save FFT Data Saves the FFT data in text format Only the portion of the data displayed on the screen is saved 250 points Save Settings Saves the Oscilloscope Spectrum Analyzer and Transient Recorder settings to a file Also Function Generator settings frequency amplitude offset and duty cycle are stored to the file Recall Settings Loads a previously stored settings file to the oscilloscope 2005 Velleman Menu Options 10 Print Prints the image in color You can edit the image caption Print Setup Selects a printer and sets printer options before printing The available options depend on the printer you select Exit Terminates the program Calibrate amp Exit Makes the oscilloscope calibration saves the calibration values to the WinDSO INI file and terminates the program This opt
19. n the frequency domain shows the distribution of the noise amplitude as a function of frequency Using the Spectral Density marker and the Frequency marker the voltage spectral density VSqpBv and the noise bandwidth BN can be read from the spectrum analyzer display Youp 54 86 dBV Hz By 6kHz First convert the voltage spectral density to Hz This can be accomplished using the following calculation V 710 20 0018 V Hz This is the magnitude of the spectrum normalized to a 1 Hz bandwidth You may calculate the noise voltage over any bandwidth by multiplying this value by the square root of the bandwidth Assuming a 6 kHz bandwidth the total output noise voltage is V rms s Vo yBy Ving 0 0018 VAHZ J6000Hz 0 139 V See the Vrms value of the oscilloscope waveform image of this noise signal 2005 Velleman Menu Options 16 2 6 Math Menu The result of mathematical operation of channel 1 and 2 Is displayed One of the following functions can be selected e Ch1 Ch2 e Ch1 Ch2 e XY Plot e Invert Ch2 XY Plot Ch1 data is displayed on Y axis Ch2 data is displayed on X axis A button is provided to toggle between Math mode and Normal mode 2 Help Menu Contents Displays this help file Installing Windows NT4 driver Gives instructions for the Windows NT4 Windows 2000 and Windows XP users About Displays information of the program version 3 Data Transfer Data acquisitio
20. n to other applications Data acquisition to Microsoft Excel 3 1 Data acquisition to other applications Pc Lab2000 software package includes a DLL Dynamic Link Library DSOLink DLL installed to Windows SYSTEMS2 folder This DLL allows you to write custom applications in Excel Visual Basic Delphi or any other 32 bit Windows application development tool that supports calls to a DLL The DLL gives you direct access to real time data and settings information from the oscilloscope The complete example programs are located on the VELSOFT CD Those may be used as a starting point how to construct your customized application programs Note Before running the following example programs The oscilloscope software must be running and Run or Single button pressed and trace displayed on the oscilloscope screen 2005 Velleman 17 PC Oscilloscope PCSU1000 Description of the procedures of the DSOLink DLL ReadCh1 ReadCh2 Syntax PROCEDURE ReadCh1 Buffer Pointer PROCEDURE ReadCh2 Buffer Pointer Parameter Buffer A pointer to the data array of 5000 long integers where the data will be read Description Read all the data and the settings of channel 1 or channel 2 of the PCSU1000 As a return the following data is put to the buffer 0 Sample rate in Hz 1 Full scale voltage in mV 2 Ground level in A D converter counts The value may be beyond the 0 255 range if GND level is adjusted beyond the w
21. nt in the main unit that includes DSOLink H 4 Finally add code that calls the DLL functions DSOLink h J DSOLiNk h ifdef _ cplusplus extern C Assume C declarations for C endif define FUNCTION declspec dllimport FUNCTION _ stdcall ReadChl int ptr FUNCTION _ stdcall ReadCnh2 int ptr ifdef _ cplusplus endif DSOLink demo cpp include lt vel h gt fpragma hdrstop include DSOLink h include DSOLink demo h pragma package smart init pragma resource dfm IBRorml Forml _ fastcall TForml TForml TComponent Owner TForm Owner void fastcall TForml ButtonlClick TObject Sender 2005 Velleman 19 PC Oscilloscope PCSU1000 int data 5000 ReadCh1 data Memol Clear Memol Lines Add Sample rate Hz FIntrlIoStr datsea 0 Memol Lines Add Full scale mV IntToStr data 1 Memol Lines Add GND level counts IntToStr data 2 Memol Lines Add for int i 0 i lt 20 itt Memol Lines Add Data IntToStr i char 9 IntToStr data i 3 Note If the import library is not compatible to your Borland C version you can create an import library by running IMPLIB on the DLL IMPLIB works like this IMPLIB destination lib name source dll For example IMPISLB DSObtuk lr r5 DoOL
22. oll wheel to fine adjust the triggering level and traces y position Connection Connect the oscilloscope unit to the USB port For Circuit Analyzer Bode Plotter option connect function generator PCG10 or K8016 to LPT1 LPT2 or LPTS To select the LPT port address for the function generator click Hardware Setup on Options menu or select it from Pc Lab2000 startup screen 2005 Velleman Contents 6 1 5 Troubleshooting Spectrum analyzer doesn t work e No arithmetic coprocessor in the computer No signal on the oscilloscope display e No communication with the computer check that the cable is connected to the USB port e f USB cable is connected close the program Disconnect and reconnect the USB cable and run the Pc Lab2000 program again RUN button is not ON The channel concerned is OFF TIME DIV switch is in the wrong setting TRIGGER is ON set TRIGGER OFF The unit input selection is at GND Y position is wrongly adjusted Input amplitude is too large adjust VOLTS DIV setting If the above tips have no effect then test on a different computer or different USB port Note Close the program before disconnecting the USB cable 1 6 Waveform Parameters Display Waveform Parameters Display When the menu option Waveform Parameters of the View menu is selected the software automatically calculates various voltage and time parameters of a signal such as DC mean amplitude rise time etc These
23. rmined at middle reference level Rise Time Time for a signal s rising edge to go from the low reference level to the high reference level The low reference level is 1096 and high reference level is 9096 of the pulse amplitude Fall Time Time for a signal s falling edge to go from the high reference level to the low reference level The low reference level is 1096 and high reference level is 9096 of the pulse amplitude Period The time interval between two consecutive crossings on the same slope of the signal at the middle reference level Frequency The inverse of the Period of the signal Phase Phase angle in degrees between CH1 and CH2 For phase measurement the frequency of CH1 must be equal to the frequency of CH2 Phase measurement is time consuming process In slow PCs this reduces the display update rate 2005 Velleman PC Oscilloscope PCSU1000 1 7 2 1 Add comment text in the signal screen For explanation and documentation each measurement can be supplied with a comment text This text will be saved together with the waveform data to the disk file To enter the text Right mouse click into the screen Text box will open to write your comment Click Add Text on Screen or Remove to remove previously inserted text Right click on the screen to position your text Click Close grs ale s To make the text transparent with the background check Transparent text The text will have the sa
24. rosses trigger level in a positive going direction Arrow down Trigger occurs when triggering signal crosses trigger level in a negative going direction gt lt Resets the triggering x position reference point Triggering reference mark is displayed with the vertical line on the bottom of the screen RUN Selects recurrent display update mode RUN Pressing the button again freezes the display SINGLE When button is depressed and the trigger level is reached refreshment of the display takes place only once X POSITION SCROLLBAR Below the waveform display Positions the trace horizontally on the screen Triggering reference point is displayed with the vertical line on the bottom of the screen S L Button selects linear L or sine x x S interpolation Linear interpolation connects the data points with straight lines Sine x x interpolation uses curves to connect the data points This smoothed interpolation gives better waveform display at highest sine frequencies Linear interpolation is better for step signals The S L selection effects only at TIME DIV settings 0 2 and 0 1us Note Sine interpolation can result in incorrect top top signal displaying at frequencies above 5MHz 1GS s This 1GS s sampling rate is in use on 0 2us div 0 1us div 0 05us div and 0 02us div ranges CH1 CH2 CH1 CH2 XY Plot INV CH2 This button appears only in math mode Toggles between math mode and normal mode Tip Use Wheel Mouse s scr
25. sign next to the Ports 3 Double click Printer Port LPTx 4 Click the Resources tab to see the Input Output address Select the LPT port communication speed for the Function Generator Normal This can be used in most cases Slow Select this option if the waveform of the function generator is corrupte Colors Select the display colors Select the color for various items on the waveform display To change the color of an item click the corresponding button This will open a dialog in which you can select the new color Full color selection is possible only if True Color 24 bit palette is used There are restrictions in the color combinations with other palettes Click Bright Screen or Black Screen button to resets all colors to the Default settings Trigger Options Noise Reject Select this option to get stable triggering on noisy signals This option works only in the Run mode and only in the Real time Sampling mode 2 4 View Menu RMS value Displays AC RMS value of the signal When this option is selected the true RMS AC value of the signal is displayed on the screen e f CH1 is on the RMS value of CH1 is shown e f CH1 is off the RMS value of CH2 is shown dBm Value Displays AC dBm value of the signal Sample Rate Displays the sampling rate on the top of the screen When this option is selected the dBm value of the signal s AC component is displayed on the screen e f CH1 is on the dBm value of CH1 is shown
26. t to know some information about the measured unit Safe devices are e Battery operated equipment e Equipment supplied via a transformer or adapter Do not measure e Equipment directly connected to mains e Equipment that contains components that are directly connected to mains dimmers e f necessary to measure above mentioned equipment use an isolation transformer Please remember that the grounds of both channels are interconnected and connected to the PC ground 2005 Velleman PC Oscilloscope PCSU1000 1 2 1 3 1GS s oversampling mode 15 s o 05us p 02us e The 1GS s sampling rate is in use on blue 0 2us div 0 1us div 0 05us div and 0 02us div ranges e Triggering must be ON to get stable waveform images e his mode is useable only for repetitive signals e his operation mode is called Random Interleaved Sampling RIS method sometimes also called Equivalwent Time Sampling ET mode or Random Repetitive Sampling In this sampling mode the oscilloscope uses successive triggering occurrences to gather the data to construct a picture of a repetitive signal Controls Spectrum analyzer mode FREQ RANGE Sets the frequency range of the display It is necessary to slide the screen using X POSITION in order to see the full range LOG LIN To display the frequency on a linear or logarithmic scale ZOOM x1 x2 x4 x8 In order to expand the screen X1 X2 X4 or X8 Oscil
27. the screen Record points accumulate until you release the button When this button is down the scope captures many acquisitions of a signal to the screen Record points accumulate until you release the button Using Persistence option you can easily analyze worst case signal variations such as jitter or noise The Persist option can also be used to locate errors in digital signals Using this option you can capture erroneous events even if they only occur once Persist option makes it easy to compare known and unknown circuits Click Single button to capture multiple waveforms on the same screen on ALIS I dt 8 7 0ue T dt 123 45kHz Persist option lets you see the range over which a signal varies T 1v 1ms bo Use the Persist option to get solid XY patterns in the XY Plot mode 2005 Velleman PC Oscilloscope PCSU1000 1 4 TIME DIV Selects the time setting for the beam to sweep one major division on the screen By selecting different TIME DIV settings it is possible to zoom the frozen waveform on the screen TRIGGER On Off Selects free run mode or trigged mode TRIGGER Level Selects the signal level at which the sweep is triggered Triggering reference mark is displayed with the horizontal line on the left side of the screen TRIGGER Channel Selects the trigger source signal Ch1 Ch2 or Ext TRIGGER Edge Selects the triggering slope Arrow up Trigger occurs when triggering signal c

Download Pdf Manuals

image

Related Search

Related Contents

LAGAN Geschirrspüler integr.    ADM−670PCI - マイクロサイエンス    SCORE 2013 User Guide - Drake Lane Associates  Panasonic SC-BTT270 home cinema system  Uniden DECT4096 Owner's Manual  Philips HR1830  Handbuch - Elko Vertriebs  C onstrucción  

Copyright © All rights reserved.
Failed to retrieve file