Home
Liebert NXr UPS - e
Contents
1. IEC62040 3 Operating To 1000 m above sea level without de rating 1 4 5 Immunity A Conduction IEC 62040 2 class A B Radiation IEC 62040 2 class A C Harmonic IEC 61000 3 4 D Immunity EN 61000 4 2 3 4 6 8 9 11 Level Ill EN 61000 4 5 Level IV 1 5 UPS DIMENSION The UPS dimension shall be housed in 600mm x 794mm x 1400mm w x h x d free standing enclosure for the UPS range of 30kVA 160kVA ENP 82 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 1 6 UPS DELIVERY SUBMITTALS The specified UPS shall be supplied with one 1 user manual to include details of A Functional description of the equipment with block diagrams B Detailed installation drawings including all terminal locations for power and control connections for both the UPS and battery system C Safety precautions D Step by step operating procedures E General maintenance guidelines The UPS shall be supplied with a record of pre shipment final factory test report 1 7 WARRANTY 1 7 1 UPS Warranty The UPS manufacturer shall warrant the unit against defects in workmanship and materials for 12 months after initial start up date or 15 months after ship date whichever comes first 1 7 2 Battery Warranty The battery manufacturer s standard warranty shall be passed through to the end user 1 8 QUALITY ASSURANCE 1 8 1 Manufacturer Qualifications A minimum of twenty years experience in the de
2. e users with basic UPS operating status plus automated shutdown of a computers Operating System in the event of an extended power outage e cost efficient centralized monitoring and event management of UPS Environmental and Power systems that can utilize an existing network infrastructure 2 3 9 LBS Load Bus Synchronizer The objective of the Load Bus Synchronizer LBS is to keep the output of two independent UPS systems either two independent single units OR two independent parallel systems each composed of up to four modules in both topologies with and without Main Static Switch in synchronization even when the two systems are operating on different modes bypass inverter or on batteries lt is usually used with Static Transfer Switches to achieve Dual Bus Power Supply configuration LBS shall be able to synchronize systems of same type and brand each system composed of same type and brand paralleled UPS s with TWO completely different sources of incoming power to UPS systems With optional LBS adapter it shall be possible to synchronize systems of different type and brand each system composed of same type and brand paralleled UPS s with TWO completely different sources of incoming power to UPS systems ENP 17 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 2 4 OPTIONS 2 4 1 Optional Communications A SNMP HTTP Network Interface Card The UPS shall have an optional internally
3. 0 05 in single module mode and 0 25 in parallel mode Frequency Slew Rate For single mode the slew rate shall be adjustable from 0 1Hz s to 3Hz s default setting shall be 0 1 Hz s For parallel mode the slew rate shall be fixed to a suitable value default setting shall be 1 Hz s Efficiency It is defined as output kW input kW e Up to 96 at full rated load nominal input no battery e Not less than 98 at full rated load when supplying the load through the static bypass G Phase Unbalance 1202 1 el for 100 balanced or unbalanced loads ENP 6 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System Voltage Transients 5 for 100 output load step up or step down Transient Recovery Time Return to within 5 of steady state output voltage within half a cycle Voltage Distortion at 400V 100 rated load with crest factor 3 1 e Less than 1 total harmonic distortion THD for linear loads e 4 THD for 100 balanced non linear loads 3 1 crest factor e 5 THD for 100 unbalanced non linear loads 3 1 crest factor Module Overload Capability at Rated Output Voltage e 150 of UPS rated output with a resistive load for one minute e 125 of UPS rated output with a resistive load for ten minutes The UPS will achieve the overload mentioned above lt 30 C operating temperature nominal input voltage and when the battery is in a full charged condition e 110 of UPS rated out
4. Battery backup time remaining time e Battery temperature in degree centigrade e Parallel load e Apparent power of each output phase for parallel operation system e Active power of each output phase for parallel operation system e Inactive power Reactive power of each output phase for parallel operation system Input Output transformer when installed e Phase to Neutral L N voltage V e Phase to Phase L L voltage V ENP 15 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System C Power Flow Mimic Each UPS module shall be equipped with a mimic to indicate power flow to the critical load along with an indication of the availability of the rectifier charger battery automatic bypass inverter load The mimic shall provide a quick and easy indication of the load level displayed on LCD including for overload conditions displayed on LCD This power flow is also shown in the LCD menu D Alarms and Status Information Alarm and status conditions shall be reported at a single module UPS system or at a paralleled module UPS or both The display and control panel shall report the alarms and status information listed below Each alarm shall be visually displayed in text form and an audible alarm will sound for each alarm displayed see the following table INPUT MAINS Battery End of Discharge Manual Turn On Charger fault Battery Life End reserved Manual Turn Off Input Fu
5. Machine Interface MMI cccsssseceessececsseeeecseececesaececsensececseeaecsesaeeecsesaeeesenseeeneaeeeennas 14 2 35 COMMUNICAMON Ports ini nn e E R A e E E E A N A S R S S 17 2 3 9 Software Compatibilidades 17 2 3 9 LBS Load Bus Synchronizer conti eta Sra 17 2 4 OPTIONS und a daba s 18 2 4 1 OptronalCOMMUNICA ION isa 18 2 4 2 Battery tii it 18 2 4 4 Battery Cabina Bie saath sak endian sansa ade ato tenant eh eee 18 2 4 5 External battery temperature SeOSOT oooooccnonconnconnnononononncnnnconoconocn conocio nn nono nena nrnnnrnnnnnn cnn cnccn nes 18 ENP Di Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System GENERAL 1 1 SUMMARY These specifications describe requirements for a Parallelable Digital Uninterruptible Power System UPS consisting of one or more single module UPS units connected in parallel without the need for either an additional system controller or a centralised mains bypass static switch The UPS shall automatically maintain AC power within specified tolerances to the critical load without interruption for specified duration as per battery run time during failure or deterioration of the mains power supply The UPS shall be expandable by paralleling additional modules of the same rating to provide for module redundancy or load growth requirements The manufacturer shall design and furnish all materials and equipment to be fully compatible with electrical environme
6. either for redundancy or for capacity 2 4 4 Battery Cabinet Batteries shall be housed in a suitable cabinet matching in appearance height and depth of the UPS modules 2 4 5 External battery temperature sensor To ensure temperature compensated charging to protect battery life a battery temperature monitoring probe is necessary to monitor the battery enclosure temperature rise caused by the AC mains power loss and of the battery s internal resistance when operating The probe system includes one battery temperature sensor and one temperature transport ENP 18 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System ENP 19 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System
7. kW output B For redundant operation applicable not applicable the UPS system shall be sized to provide a minimum of kVA kW output with ___ module s out of service Load voltage and bypass line voltage will be __ VAC three phase and neutral Input voltage will be____ VAC three phase The battery system shall have a capacity of___kW foratleast_ minutes at 25 C The battery will be installed On open racks On cladded racks In battery cabinets 1 3 2 Modes of Operation The UPS shall be designed to operate as an on line double conversion reverse transfer system in the following modes A Normal UPS inverters continuously powers the critical AC load The rectifier chargers derives power from the mains AC power supply source converting this to DC power to supply the inverters while simultaneously float boost charging the battery system Power supplied by the UPS inverters is to within specified tolerances at rated voltage and frequency B Battery Upon failure of the mains AC power supply source the critical AC load is powered by the inverter which gets without interruption power from the battery system There shall be no interruption in power to the critical load upon failure or restoration of the mains AC power supply source Upon restoration of the mains AC power supply source power to the rectifier initially is restricted by a gradual power walk in Following the short power walk in period the rectifier pow
8. than one module shall operate simultaneously in a parallel configuration with the load shared equally between the connected modules With the exception of a single module configuration the system shall be redundant or non redundant as stated elsewhere in this specification A Non redundant system all the modules making up the UPS system shall supply the full rated load If a module should malfunction the load has to be transferred automatically and uninterrupted to the bypass line by the use of the static mains bypass switch B Redundant system the UPS system shall have one or more module s than required to supply the full rated load The malfunction of one of the modules shall cause that module to be disconnected from the critical load and the remaining module s shall continue to carry the load Upon repair of the module it shall be reconnected to the critical load to resume redundant operation Any module shall also be capable of being taken off the critical load manually for maintenance without disturbing the critical load bus Module redundancy level shall be a predefined number of modules that are required to supply the full rated load With the number of connected modules equal to this value a malfunction of another module shall cause the load to be transferred automatically and uninterrupted to the bypass line by the use of the static mains bypass switch 2 2 3 System Protection The UPS shall have built in protection against su
9. B Input Current Total Harmonic Distortion Less than 3 at full rated UPS output load and 100 balance non linear load with input voltage THD lt 2 Power factor correction The rectifier also performs a PFC function input power factor shall be a minimum 0 99 AC Input Current Limiting The maximum Input current limit can be reduced at 100 for generator operation Input Power Walk in The rectifier charger shall provide a feature that limits the total initial power requirements the power of rectifier will increase gradually and power walk in time can be set from 5 seconds to 30 seconds default shall be 10 seconds Mains AC Input phase sequence reverse protection Before soft starting of the rectifier if the phase sequence of the main AC input is reversed the rectifier will not start and an alarm displayed on the LCD Input Over Current Protection Each AC phase is individually fused so that loss of any semiconductor shall not cause cascading failures ENP 212 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 2 3 2 Battery converter Batteries can be VRLA Maintenance Free Ni Cd or Wet Cell type Constant current boost charging constant voltage boost charging float charging float charging compensation and EOD protection are available for different kinds of batteries A Charging In addition to supplying power to the load the battery converter shall be capable of produci
10. Dimension L x H 160x109 mm This shall automatically provide all information relating to the current status of the UPS as well as being capable of displaying metered values The display shall be menu driven permitting the user to easily navigate through operator screens B Metered Values An MCU or DSP shall control the display functions of the monitoring system All three phase parameters shall be displayed simultaneously All voltage and current parameters shall be monitored using true RMS measurements for accurate 41 representation of non sinusoidal waveforms typical of computers and other sensitive loads The following parameters shall be displayed ENP 14 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System e Main input e Three phase main input line to neutral voltage e Three phase main input line to line voltage e Three phase main input current e Main input frequency e Three phase input power factor e Bypass e Each phase bypass input line to neutral voltage e Bypass input line to line voltage e Bypass input frequency e UPS output e Each phase output voltage of UPS e Each phase output current of UPS e Output line to line voltage of UPS e Power factor of each phase e UPS output frequency e Local load e Load of each phase of total load e Active power apparent and reactive power of each phase output e Load crest factor e Battery e Battery bus voltage e Battery current e Forecasted
11. EMERSON Liebert NXr UPS GUIDE SPECIFICATIONS For a 30 to 160 kVA kW 50 or 60Hz Parallelable Digital Uninterruptible Power Supply UPS System V 1 0 8 September 2009 ENP ls Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System Contents Ted SUMMARY O NS 3 1 2 STANDARDS cotilla tae 3 13 SYSTEM DESCRIPTION citrato ria tilde be veneetabeedd 4 AIESEC AAA O stan sageesen ters 4 13 2 Modes OF Operation raices 4 1 3 3 Performance Requirement si se2 3 05ss2ies sees rras rase ee steve cose Es ooon EO ESEE a ona IEEE SSPE Sieesssebsseseds assy 6 1 3 3 1 UPS Module AC pU eraa Te raar tess Terrora etoso te ds apar E eas EEE p Eroe SETE E ESETE KEA dijese 6 1 3 3 2 UPS Module AC Ointput 55 5 2 ssiscesees feceskcesssescesd stack a apar Ea TE EEEo Ero isdavesosecvsbesdeupeesees ests 6 1 3 3 3 Bypass Static S Witchy sce sse 20 5cssecesces ra ieser repeto teo ines dnde rial otitis 7 1 4 ENVIRONMENTAL CONDITIONS oooooncccccccccconinononcnnnocccnncnono conan nc nn cc rancia crac 8 1 4 1 Operating Ambient Temperature is sees fs cescsckscessestsdgesistonsosteienesgeuscescessgeeasgpbepnsteoeseusscebseeseevases 8 1 4 2 Storage Transport Ambient Temperature oooooccnoncnnnnonnnonononcnnnconoconoconocnnocnno nn nono nonn crac rnn conc cnn ncn anna neo 8 1 4 3 Relative Humidi Ycua nori d iia ti idad 8 1 44 A Mate necio added 8 14 5 MUY cesaron alt tad 8 TS UPS DIMENSION A n aa an a aarne anri ado
12. Output Frequency The inverter shall track the bypass mains supply continuously providing the bypass source remains within the limits for the rated frequency of either 50 or 60Hz The inverter will change its frequency at 0 1Hz per second to maintain synchronous operation with the bypass This shall allow make before break transfers of the load between the inverter and the bypass mains supply If the bypass mains supply frequency falls outside of these limits the inverter shall revert to an internal digital oscillator that maintains the inverter output frequency to within 0 05 of nominal frequency in single module mode and 0 25 in parallel mode C Phase to Phase Balance System logic shall provide individual phase voltage compensation to obtain phase balance of 1 under all conditions including up to 100 unbalanced non linear load D Fault Sensing and Isolation Fault sensing shall be provided to isolate a malfunctioning inverter from the critical load bus to prevent disturbance of the critical load voltage beyond the specified limits The inverter output static switch shall be switched off to isolate a malfunctioning module from the critical load E Battery Protection The inverter shall be provided with monitoring and control circuits to protect the battery system from damage due to excessive discharge Shutdown of the inverter shall be initiated when the battery has reached the end of ENP 13 Guide Specifications 30 150kVA kW Parallela
13. Requirements The UPS is VFI classified according to IEC 62040 3 producing an output waveform that is independent of both the input supply frequency and voltage 1 3 3 1 UPS Module AC Input A B Cc Voltage Range 305 to 477V Frequency Range 40 70Hz Power Walk In maximum 30 seconds to full rated input current Field selectable from 5 to 30 seconds adjustable with 5 second increments D Power Factor Shall be gt 0 99 without any option at full rated UPS output load Generator Adaptability UPS input current limit can be adjusted to suit the generator power rating Wide input frequency range is permissible Current Distortion Less than 3 at full rated UPS output load and 100 balanced non linear load with input voltage THD lt 2 1 3 3 2 UPS Module AC Output Three phase 4 wire plus ground Load Rating 100 continuous load rating at 30 C for any combination of linear and non linear loads UPS will have output rating of 90 for up to 35 C and 80 for up to 40 C Voltage Stability 1 steady state for balanced loads 2 for 100 unbalanced loads Bypass Line Sync Range Field selectable 0 5 to 3 0 Hz at 1 0 Hz increments Default shall be 2 0 Hz Frequency Stability Frequency regulation whilst free running on battery shall be 0 05 Hz If the bypass is available and within limits even if the UPS is on battery operation in this case the output will sync to the bypass Nominal frequency shall be
14. ble UPS gh September 2009 Version 1 0 System discharge EOD voltage The battery EOD voltage shall be calculated and automatically adjusted increased for reduced load conditions to allow for extended autonomy periods without damage to the battery 2 3 4 Static Bypass For time when maintenance is required or when the inverter cannot maintain voltage to the load due to sustained overload current limiting or malfunction a bypass circuit shall be provided for each single module that forms part of the UPS system The modular bypass circuit s shall provide for isolation of the inverter s and provide a path for power directly from an alternate AC bypass source The UPS control shall constantly monitor the availability of the inverter bypass circuit to perform a transfer The inverter bypass of each module shall consist of a static transfer switch operating in conjunction with the inverter output static switch The static switches shall denote the solid state devices that operating simultaneously can instantaneously connect the load to the alternate AC source A Manual Load Transfers A manual load transfer between the inverter output and the alternate AC source shall be initiated from the control panel B Automatic Load Transfers An automatic load transfer between the inverter output and the alternate AC source shall be initiated if an overload or short circuit condition is sustained for a period in excess of the inverter output capability
15. ers the inverter and simultaneously recharges the battery through the battery converter This shall be an automatic function and shall cause no interruption to the critical load C Off Battery or Frequency Converter When the battery system is taken out of service for maintenance or the UPS is used as a frequency converter it is disconnected from the battery converter and inverter by means of an external disconnect breaker s The UPS shall continue to function and meet all of the specified steady state performance criteria except for the power outage back up time capability D Bypass If the inverter fails or the inverter overload capacity is exceeded or the inverter is manually turned off by user and at this time the inverter is synchronous with the bypass the static transfer switch shall perform a transfer of the load from the inverter to the bypass source with no interruption in power to the critical AC load If the inverter is asynchronous with the bypass the static switch will perform a transfer of the load from the inverter to the bypass with interruption in power to critical AC ENP AS Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System load This interruption must be less than 15ms in 50Hz or less than 13 33ms in 60Hz The static bypass shall be able to support continuously 135 of rated UPS capacity Maintenance Each UPS has an internal maintenance bypass external maintenance by
16. fitted network interface card that will provide real time status information over an 10 100 base T Ethernet to for users The network interface card will support SNMP v1 v2c and be MIB II compatible for integration into an ENP monitoring solution or a Network Management System The card supports SNMP traps for up to 20 destinations and supports LGP and RFC1628 MIB definitions UPS information will also be available over the network via a web browser via an HTTP page The card supports static as well as DHCP and BootP boot modes of operation for plug and play network installations The card is also configurable via the network using the HTTP web page Telnet session or serial interface Configuration properties include device naming and specific service enable disable and control enable disable The card provides configuration and control security through a user name and password The cards firmware can also be update such that future releases can be downloaded to enjoy card enhancements B RS 485 Interface Card The UPS shall have an optional internally fitted RS 485 interface card that will provide real time status information over a 2 or 4 wire RS 485 connection The RS 485 Interface Card will support ModBus RTU and JBus 2 4 2 Battery Start The UPS shall be able to start up and run on battery without any incoming mains available The above functionality shall be achieved also when more UPSs up to four units are connected in parallel
17. ng a battery charging current sufficient to replace 95 of the battery discharge power within ten 10 times the discharge time Ripple voltage at the battery terminal RMS should be less than 1 and ripple current must not exceed 5 of C 10 Ah rating nominal discharging current Number of battery is 30 40 blocks nominal voltage is 12V per block B Discharging The battery converter will supply power to the inverter when the rectifier is shut down or in joint mode and also the rectifier is current limiting 2 3 3 Inverter The term inverter shall denote the equipment and controls to convert DC from the rectifier or battery converter to provide AC power to the load The inverter shall be solid state capable of providing the rated output power The inverter shall be of Vector Controlled design and utilize insulated gate bipolar transistors IGBTs switching at high frequency in order to minimize output voltage distortion A Overload Capability e 150 of UPS rated output with a resistive load for one minute e 125 of UPS rated output with a resistive load for ten minutes The UPS will achieve the overload mentioned above lt 40 C operating temperature nominal input voltage and when the battery is in a full charged condition e 110 of UPS rated output with a resistive load for one hour The UPS will achieve the overload mentioned above with 380 400 415V nominal input and output voltage and when the battery is fully charged B
18. ntal and space conditions at the site It shall include all equipment to properly interface the AC power source to the intended load and be designed for unattended operation 1 2 STANDARDS The UPS and all associated equipment and components shall be manufactured in accordance with the following applicable standards e Safety Requirements IEC 62040 1 1 EN 50091 1 1 EMC IEC 62040 2 Class A EN 50091 2 Class A Performance IEC 62040 3 VFI SS 111 EN50091 3 The above mentioned product standards incorporate relevant compliance clauses with generic IEC and EN standards for safety 60950 electromagnetic emission and immunity 61000 series and construction 60146 series and 60529 For more details see below IEC 61000 3 4 IEC 61000 4 2 4 5 6 8 11 EN60950 EN60529 e IEC 60146 1 1 The UPS is CE marked in accordance with EEC directives 73 23 low voltage and 89 336 electromagnetic compatibility The Quality System for the engineering and manufacturing facility certificated to conform to Quality System Standard ISO 9001 for the design and manufacture of power protection systems for computers and other sensitive electronics ENP 23 5 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 1 3 SYSTEM DESCRIPTION 1 3 1 Design Requirements A For non redundant operation applicable not applicable the UPS system shall be sized to provide a minimum of kVA
19. or due to a malfunction that would affect the output voltage Transfers caused by overloads shall initiate an automatic retransfer of the load back to the inverter only after the load has returned to a level within the rating of the inverter source C Back feed Protection Using another optional customer supplied contactor located upstream of the UPS Bypass input and whose trip coil control voltage comes from the input bypass line voltage the UPS shall provide a normally closed contact to be used for isolating the bypass source to protect the operator against back feed of energy resulting from a short circuit of the bypass line SCRs That is in the event that the UPS works on Battery mode and no main input Rectifier and Bypass is available the contactor cannot be closed So if the bypass line SCRs are short circuited the UPS will be still disconnected from the Bypass supply 2 3 5 Internal Maintenance Bypass A fully rated bypass circuit shall be fitted on all single module UPS systems to provide an alternative path for power flow from the alternate AC supply to the critical load for the purpose of maintaining the UPS when it is completely powered down A Maintenance Bypass protection shall be provided it will be activated when the Maintenance Bypass Switch is closed before the inverter shutdown 2 3 6 Man Machine Interface MMI A UPS Display and Control Panel Each UPS module shall be equipped with a 320 x 240 dot graphic LCD display
20. pass is an external maintenance bypass which can be installed in the Maintenance Bypass Cabinet MCB If the UPS needs to be maintained or repaired after the inverter is turned off and the load is transferred to bypass the internal maintenance bypass or external maintenance bypass can be turned on and the UPS can be shut down and the battery can be disconnected for maintenance purposes Parallel For higher capacity or higher reliability the UPS outputs 3ph 4w can be directly paralleled together parallel controllers in every UPS automatically share the load The largest parallel capacity is up to four times the nominal load of each unit composing the system Regen Mode The UPS system shall have the ability to perform self test for full rated capacity without using any external load banks In this mode UPS rectifier inverter and static bypass shall be tested up to full load capacity without any failure Power consumption in this mode shall only be full load losses of UPS Source Share mode A part of the critical AC load is supplied by the mains AC input and the remainder of the critical AC load is supplied by battery The ratio of the input and the remainder of the critical AC load is supplied by battery The ratio of the power This mode is mostly used in generator mode when a smaller generator than needed is employed ENP Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 1 3 3 Performance
21. put with a resistive load for one hour The UPS will achieve the overload mentioned above with 380 400 415V nominal input and output voltage and when the battery is fully charged Module Current Limit lpeak is equal to 3 4xIn for up to 200ms 1 3 3 3 Bypass Static Switch A Voltage Range B C D Upper limit 10 15 or 20 default shall be 15 Lower limit 10 20 30 or 40 default shall be 20 Frequency Range 2 5 5 10 20 Field Selectable Overload Capability specified without fuses Below 135 rated output current long term operation no time limitation From 135 to 170 rated output current 10 minutes 2 1000 full UPS rated output current 100 milliseconds Neutral Conductor Sizing 1 7 times rated current 1 3 3 4 EarthingThe AC output neutral shall be electrically isolated from the UPS chassis The UPS chassis shall have an equipment earth terminal Provisions for local bonding are to be provided ENP ce Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 1 4 ENVIRONMENTAL CONDITIONS 1 4 1 Operating Ambient Temperature UPS 0 C to 30 C without de rating 35 C 0 9 pf 40 C 0 8 pf Battery 25 C 5 C for optimum battery performance 1 4 2 Storage Transport Ambient Temperature UPS 20 C to 70 C Battery 20 C to 30 C 20 C for optimum battery storage 1 4 3 Relative Humidity 0 to 95 non condensing 1 4 4 Altitude
22. rada a an ra raa da raaior Aaaa a a baaa Paara dada id aida 8 1 6 UPS DELIVERY SUBMITTALS ooooocccinococonccononanononcnnnccconnnnnno nn nano cnn cn narran rre nnn canas 9 TP WARRANTY a o chs test techs 9 1 72 URS Warranty 2503 tess tries tel tee a ea eee en ee ee ee A 9 1 7 2 Battery Warranty ic eon riepen oe RA E 9 18 QUALITY ASSURANCE uta atra 9 1 8 1 Manufacturer Qualifications cccccccessescecsessececsssceceesseeecsesaececseececssaeeecsesaececseeeeesssneeeeseaeeseneaaees 9 137 2 Factory Testing ass eve test sede ce ise sey ee a a ee hates Hoe eS ee eee 9 2 TAB IG ACTION nd et fog 10 De Vd Materials ces 68 s8 eed stock ete igh chad pa tee SO eas tn es 10 BALDIO ced ase beet ME eed ete ai A eden aie ee see eee ee 10 2 133 CONSTITUCION teo 10 LA Cooler iii lead 10 2 2EQUIPMEN Tiida A dt 11 2 2 1 SN A RN 11 2 2 2 COMM ULATIONS cohorte diia lo tebe ies 11 2 2 3 System Protect OM sonin enedes ie Ses bee die ad cede erates 11 2 3 STANDARD COMPONENTS 0 c ccceecceeeeeeeeeeeeeeeeeeaeeeeaaeeseaaeseaeeecaaeeesaaesseaeeseaeeesaeeesaeeseeeessaees 12 DBM RN 12 2 32 Battery COMVELICE iii dde hash eee nes is ds 13 2 3 3 A E Se S STS Hat ie Saas abd SANs GEES Eea le ee eb BAS PTO SANE co chaps cub BGs Coben 13 2 3 4 Static Bypass iii id BA PTGS Take co chan cube hia Lose ds 14 2 3 5 Internal Maintenance Bypass ooconcccoccnonoconcconcconocononnnonnconnnonnnnnnnnnn conc nono ne conc on nc nono nono nn nr nnnrnnnnnnnnnnnns 14 2 3 6 Man
23. rges sags and over current from the AC rectifier input source over voltage and voltage surges from output terminals of paralleled sources and load switching and circuit breaker operation in the distribution system The UPS shall be protected against sudden changes in output load and short circuits at the output terminals The UPS shall have built in protection against permanent damage to itself and the connected load for all predictable types of malfunctions Fast acting current limiting devices shall be used to protect against cascading failure of solid state devices Internal UPS malfunctions shall cause the module to trip off line with minimum damage to the module and provide maximum information to maintenance personnel regarding the reason for tripping off line The load shall be automatically transferred to the bypass line uninterrupted should the connected critical load exceed the capacity of the available on line modules The status of protective devices shall be indicated on a graphic display screen on the front of the unit ENP 11 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 2 3 STANDARD COMPONENTS 2 3 1 Rectifier The term rectifier shall denote the solid state equipment and controls necessary to convert AC to regulated DC for input to the inverter The rectifier shall be of DSP Digital Signal Processor controlled design and utilize insulated gate bipolar transistors IGBTs A
24. se Fail Battery Converter Fault Unit Over load Timeout Control Power 1 Fail Battery Converter Over current Operation Invalid Mains Phase Reversed Battery Converter Over temp Output Fuse Fail Mains Voltage Abnormal Battery Capacity Testing Control Power 2 Fail Mains Under voltage Battery Maintenance Testing Unit Over load Mains Frequency Abnormal Battery Contactor Open UPS Shutdown Generator Connected Battery Contactor Closed Output Disabled RECTIFIER INPUT INDUCTOR Battery Reverse Transfer Confirm Input Inductor Over temperature Battery Unavailable Transfer cancel Rectifier Fault Battery Float Charging Unit Risk Off Confirm Rectifier Over current Battery Boost Charging Beste RI La ese a Soft Start Fail Battery Discharging Fault Reset Rectifier Comm Fail Battery Period Testing Alarm Silence Rectifier in setting Auto start DSP Software Fault Rectifier Over temperature BCB closed Communication Fail DC BUS BOOSTER BALANCER BCB open Turn On Fail DC Bus Abnormal Battery ground fault Output Over Voltage Reserved DC Bus Over voltage Battery Room Alarm Audible Alarm Reset Balancer Fault BYPASS Load Impact Transfer Balancer Over current Bypass Unable to Trace Transfer Time out Balancer Over temperature Bypass Abnormal Load Sharing Fault INVERTER Maintenance Disconnect Open EPO Inverter Over current Maintenance Disconnect Closed Setting Save Error Inverter Asynchronous Bypass Abnormal Shutdown Mains neutral lost Inverter Fail Bypass Phase Reversed UPS sy
25. shall be 1 4 meters for all UPS range 2 1 4 Cooling Adequate ventilation shall be provided to ensure that all components are operated well within temperature ratings Provision shall be there within the UPS cabinet to house 100 redundant fans Temperature sensors shall be provided to monitor UPS internal temperature Upon detection of temperatures in excess of manufacturers recommendations the sensors shall cause audible and visual alarms to be sounded at the UPS control panel A separate room ambient temperature sensor shall be provided to allow control of the battery charging voltage with change of temperature The air should flow into the cabinet from the front and ventilate from the rear No clearance is required at the rear of the UPS for the purpose of ventilation or maintenance ENP 10 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System 2 2 EQUIPMENT 2 2 1 UPS System The UPS system shall consist of an appropriate number of single module units to meet capacity and redundancy requirements Each UPS module shall consist of a rectifier battery converter three phase inverter mains bypass static protective devices and accessories as specified Each UPS module shall also include a battery disconnect and battery system 2 2 2 Configurations The UPS system shall consist of either a single module unit or two or more up to a maximum of four units of the same kVA rating Systems greater
26. sign manufacture and testing of solid state UPS systems is required The manufacturer shall be certified to ISO 9001 1 7 2 Factory Testing Before shipment the system shall be fully and completely tested to ensure compliance with the specification ENP 9 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System PRODUCT 2 1 FABRICATION 2 1 1 Materials All materials of the UPS shall be new of current manufacture high grade and shall not have been in prior service except as required during factory testing All active electronic devices shall be solid state Control logic and fuses shall be physically isolated from power train components to ensure operator safety and protection from heat All electronic components shall be accessible from the front 2 1 2 Wiring Wiring practices materials and coding shall be in accordance with the requirements of IEC All electrical power connections shall be torqued to the required value and marked with a visual indicator English tag Provision shall be made in the cabinets to permit installation of input output and external control cabling Provision shall be made for bottom access allowing for adequate cable bend radius to the input and output connections 2 1 3 Construction The UPS shall be housed in an IP20 enclosure designed for floor mounting The UPS shall be structurally adequate and have provisions for forklift handling Maximum cabinet height
27. stem testing Inv Inductor Over temperature Bypass Over current Protocol version clash Inverter Over temperature Bypass STS Fail Source Share Mode Inverter Comm Fail TRANSFORMER Rectifier Online Upgrading Inverter Relay Fail MBP T cabinet fan fault Inverter Online Upgrading Inverter in setting Ext Input TX Overtemp Monitor Online Upgrading DUAL BUS SYSTEM Ext Output TX Overtemp LBS active MODULE S COMMON PARALLELING LBS abnormal Normal Mode Parallel Board Fault BATTERY Battery Mode System Transfer Battery Over temperature Bypass Mode Parallel Comm Fail ENP 16 Guide Specifications 30 150kVA kW Parallelable UPS gh September 2009 Version 1 0 System E Inverter ON OFF Each UPS module shall be equipped with an inverter ON OFF buttons which will transfer the load from all UPS modules to the bypass mains supply if it is available The inverter ON OFF control shall be protected under menu confirm protect if the bypass mains is not available 2 3 7 Communication Ports The UPS shall have input and output volta free contactsa to provide the following interfaces EPO Environment parameter input interface User communication interface Intellislot intelligent card interface Temperature detection interface See Section 2 4 for a description of the required optional equipment 2 3 8 Software Compatibility The UPS shall have optional software available for monitoring control and event management The available solutions shall provide
Download Pdf Manuals
Related Search
Related Contents
SVA 15B User's Manual Kelvinator KL72TT Washer/Dryer User Manual ADC-68M/96F 取扱説明書 Sondes radio Contact de porte / fenêtre FTK PRESTIGE II 750 - Napoleon Products BX150 Centralina Gas FPGA implementation of a hybrid on-line process monitoring énumération description mode d`emploi Installation Manual and Operating Instructions Bio Bidet Canada Copyright © All rights reserved.
Failed to retrieve file