Home
Lumina 38 - Lumina 38 Touch - F38
Contents
1. Influences are used to optimise the controls The computer will control the climate well even if these influences are not used Determine per influence if you want to use it or not The computer will not show the corresponding settings if a certain type of influence is not used The control computer always shows the calculated actual influence based on the settings made for the maximum and actually measured values See Optimising controls using influences page 50 Lumina 38 Advanced climate settings 7 5 Temperature settings Use the options in the Temperature screen to control the cooling and heating units and to set the temperature settings for ventilation Blocked 19 0 22 0 See Heating page 6 page 35 Ventilation page 33 and Cooling page 7 page 32 7 5 1 Cooling The installer has set the type of cooling Overview gt N gt ca gt tab page Set Setpoint cooling Evaporat cooling Status cooling Total ON time J limit Mem Fo Linked to Setting of which the setpoint cooling can be linked to the control value house e STV BW Start temperature ventilation bandwidth e EXTRA TEMP extra temperature e SETPOINT HOUSE Setpoint house e TUNNEL POS Tunnel position The setpoint will continue to follow the value of the linked settings Setpoint Readout of the target value used for calculating the Heat exchanger setpoint The control computer uses the target value set at Linked to Offset Readout of
2. OFF Increase time 00 10 00 06 00 13 00 High level 75 E 16 00 21 00 Decrease time 01 00 00 Low level 10 gt zZ Time 3 8 3 9 Lumina 38 Basic principles climate management Scheme 2 Curve day 12 ON OFF Increase time 00 00 00 06 00 21 30 High level 70 Decrease time 01 30 00 Low level 0 Light level Time According to these settings the light in the house will follow the pattern set at the normal light clock settings until day 6 From day 7 light scheme 1 will be applied From day 12 light scheme 2 will be applied Registration The control computer has a number of registration inputs to which a signal pulse or contact can be connected These can be used to register Registration page 63 amounts for example water consumption Climate based on curves The optimal house climate is a combination of the correct temperature ventilation and relative humidity e Temperature As animals grow their need for heat decreases e Ventilation As animals grow their need for ventilation increases Fancom uses the term minimum ventilation for this Extra ventilation is required on warm days e Relative humidity RH As animals grow the required relative humidity can also change There are two ways to control the section climate during the animals lifecycle e Manually Enter the control values manually This means the computer will use the same control values each day until they are c
3. Lumina 38 Registration 9 Registration The control computer has a number of registration inputs For example to register water consumption The use of the registration inputs has been set in the installation menu HOUSE SETUP Overview gt b gt Registration ooooonnnno D aa aA A A A A A A goooccoeococ0ca Daaa AA A A A A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lumina 38 Curves 10 Curves 10 1 Settings for temperature RH and weight Enter the data for each bending point of the curve You can use a weekly pattern for example by entering the data for day 1 8 15 etc The lifecycle of the animals is indicated by the weight per animal Enter in the curve the animal weight which is used as the basis for the ventilation curve The computer calculates the intermediate setpoints so that the change in climate is gradual The curve is only used if the day number is higher than 0 a Example Curve Bending Day no Temp C RH Weight kg Temperature poni 34 C J1 34 0 75 0 042 2 7 28 0 72 0 154 3 14 26 0 71 0 393 4 4 21 24 0 70 0 765 y 7 5 28 220 68 1 200 Toa EE oR 6 35 21 0 68 1 816 1 Day 56 7 42 20 0 68 2 386 Relative humidity 8 49 19 0 67 2 873 9 56 18 0 65 3 308 aoe 65 eccececesesese ES 1 Day 56 The bending points of the curves can be entered in the screen below Overview gt 4 gt E gt tab page Curve Curve Dayne House RH Animal Extra temp weight temp A
4. appears at the bottom of the screen The influence settings concerned are explained separately 36 Actual relative humidity in the house OR Actual outside relative humidity See Influence high RH on minimum ventilation High RH influence on minimum ventilation page 58 4 5 Outside conditions The control computer shows general information about the outside conditions in the overview screen 4 F38 Overview aye 19 5 Wed Lumina 38 Daily management 4 5 1 Outside conditions data This screen shows the measured values of the outside conditions of the house Overview gt cl Depending on the connected equipment the overview will show the outside temperature relative humidity RH and wind speed and direction Actual JInfluence M amp M OT M amp M RH Mad wnd al Actual outside temperature an Actual outside relative humidity Actual wind speed and wind direction W Overviews of this data can be requested on separate tab pages The control computer shows last week s data on the M amp M tab pages 4 6 Air inlets The control computer shows general information about the air inlets in the overview screen F38 Overview w21 0 lt 4 M PHASE 7 4 1500 m 2 M E 2 m Cd 2 ms Cod 2 Me CW 2 M3 CW 2 M40 2 100 190000000 yi m ae me Doo 28 3089 368 7 4 rhe 26 sure 20029 yp The control computer always shows latest data including all offsets and influences
5. Ka Select the required control value for the section climate based on your own judgement Ka A value with an offset is shown bold in the overview screens 7 2 Manual adjustment of the current values You may sometimes want to manually adjust the values calculated by the computer You simply have to adjust the control values in the settings The computer calculates the difference offset compared to the setpoint The following applies after the settings have been adjusted manually e The setpoint remains unchanged e The computer controls using the manually set values Setpoint offset e The difference is retained e A value with an offset is shown bold in the overview screen e The offset compared to the curve is shown in the section screen concerned as curve correction offset or between brackets e The difference can be reset to 0 0 in edit mode in the settings screen e If you use a curve the offset will be reset if you set the day number to 0 and when all the animals are delivered 7 3 Requesting Management amp Monitoring overviews The computer shows certain historical data on tab pages M amp M The control computer updates the overviews every day The most recent data appears at the top 7 4 Setting influences The climate controls can be optimised by taking into account the influence of the outside temperature humidity or wind on the indoor temperature The influences are usually on a separate tab page nfluences
6. Overview gt 1 gt A gt tab page Influence Influence high outside Setting to indicate if the influence will be used temp Influence factor Setting of the factor used by the control computer to calculate the influence Calc infl high outside Readout of the actual influence temp Settings to decrease the high outside temperature influence are described in Settings for outside climate page 50 8 1 3 Influence low outside temperature on bandwidth ventilation If it is cold outside the cooling effect of outside air is greater than if the outside air is warm To prevent draughts occurring in the house the bandwidth can be increased with very low outside temperatures The ventilation level will then increase slower than normally q Example Influence low outside temperature on bandwidth ventilation Start temp ventilation STV 20 Ventilation House temperature HT 23 Set Bandwidth BW 6 Outside temperature OT 10 Influence path low outside temperature Start 15 End 5 Influence factor 2 0 Temp End OT Start 5 10 15 The settings low outside temperature Start low outside temperature End and nfluence factor determine the bandwidth increase The control computer calculates a Bandwidth from these three settings The Bandwidth increase is as follows With an outside temperature of 5 or lower the influence is at maximum This means a Bandwidth of 2 0 x ose At an outside temperature of 15 or higher t
7. 10 2 Settings for minimum and MAXIMUM ventilation cccceeeeeeeeeeeeeeeeaeeesseeeeeeeeeeeeeeeeeeeeaaaaaeeeess 65 10 3 Settings for water feed ratio csccccceccecceccecceeaeeeesseeeeeeeeeeeeeeeeeseeseaeaaeseeeeeeeeeeeeeeeseeseaagaagseeess 67 10 4 Climate management at the start of the lifecycle cccceeeeeeeeeeeeeeeeeeeeeeeeeeaeeseeeeeeeessaaeeeeeeeeeees 67 1 Dee nee ne es en ete ee ne ver EEE nen ene Se ere ee nc OEE eee re ee eee eee eer eee enon an ene 68 11 1 BUN VU ME a IN sect tte cme Salers mete oerse eater etetreda selgnetaeet eeeane a aleeeecttaietacee ae tuadieeteaceinneecoeseamntean 68 11 2 Deactivating the alarm SYStOM ccccceesceeeeeeseeeeeceaaeeeeeeaaaeeeessaaaeeeeesaaaeeeessaaaeeeessaaeeeessaaeeeeeneaes 69 11 3 Testing the alarm SVS VS EN cts ors sects sesrsereiss de atec tonne asatini oan vaneat ve aweinnetss dos tisaneesuoccaeceotenseececeeseu een eseseesteaeaeace 69 11 4 Setting temperature AlArMS cccccseeeeceececeeeeeccaeeueesseeeeeeeeeeeeeeeeeeeeaaaaeaasdseeeeeeeeeeeseeeeeeaaaaagagseess 69 11 5 Setting pressure AA INS sec tesdececncenacctastnrsensdsinngeteiitehecsccusttiietardaunduieceeddontetqnacsisackteteveeecteencoesedetaeusts 70 11 6 Seto RE AAN S cece tec tc tessa sects E a EAEE E E E ROEE I ENNER ST 70 11 7 CO2 or NHS Aldi eeen e e EE Ea EEEE EIRO RSE E EEEE 70 11 8 4 2 6 21 alaimo arr eee ee eee 70 11 9 ARI VOGT FIA A ae steed eens ented EEE EE SEE dee deecseeoe
8. 10 minutes Off time dependent Setting the link of the off time to the entered clock If NO is selected enter the end time or duration of the cycle in tab page Times Time difference Setting of the time difference between this clock and the linked clock If the clock should start later enter a positive time duration e g 00 30 minutes 5 2 4 Setting light schemes iv Light schemes can only be used if this has been set in the system settings Overview gt gt gt Stab page Schedule Light clock 41 lt gt 100 Apply light scheme Apply light scheme Setting for light scheme application Press the key at ZOOM to enter the various light schemes Overview gt b gt gt gt tab page Schedule gt ZOOM Light scheme Lumina 38 Clocks Enter a light scheme as follows 1 Select tab page Times 2 Select the number of the light scheme to be entered using the index keys 20 light schemes maximum can be entered 3 Enter the Curve day The scheme will be applied from the entered curve day onwards If light schemes are set the ordinary clock setting as entered at Times of setting light clocks Setting lighting times page 24 applies until the first day on which a light scheme has been set 4 Enter the details of the light scheme in the tab page Times and tab page Dim Enter details in the same way as described at Times of setting light clocks Setting lighting times page 24 K Light scheme
9. PHASE a 4 1500 m 2 100 190000000 The control computer can show the temperature symbol as follows fai Heating and cooling are off 19 Heating is on E Cooling is on 4 2 1 Temperature graph The temperature graph shows the ventilation level with respect to the temperature Overview gt mi H Blocked 19 0 22 0 In the header the left value is the real measured temperature the one in the middle represents the HumiTemp en at the right the N E T experience temperature is shown This graph shows the following temperatures 4 Setpoint heating 19 0 C Setpoint house 21 0 C Gl Actual temperature 21 0 C HumiTemp 22 1 C N E T temperature 18 8 C Bandwidth 4 0 C Offset tunnel position 2 0 C Start temperature Mechanical ventilation tunnel 28 0 C The following two control values appear at the base of the screen 4 Control value heating 19 0 C ake Control value cooling 26 0 C Lumina 38 Daily management These are the control values of heating 1 and cooling 1 The status of the heating and cooling equipment is shown as follows S On a Modulating oo Off Changing data e Setpoint house The temperature graph is linked to the Setpoint house control value If this value is increased for example the control computer will also increase the linked value e Bandwidth The bandwidth is the set number of degrees from start temperature ventilation within which ventilation
10. The ventilation settings concern aK Fan positions gt The positions of air inlets and extra inlets The under pressure in the house 4 6 1 Ventilation graph The readout of the ventilation level and the air quantity is shown in the ventilation graph The control computer uses the ventilation level to determine the positions of fans air inlets and extra inlets based on the combi table If an under pressure control is also used the air inlet positions may be adjusted to achieve the required under pressure The ventilation level depends on the house temperature The control computer shows the ventilation level either as percentage 0 100 or tunnel phase T1 T2 etc Lumina 38 Daily management Overview gt 1 Ventilation gg 100 1S IoOOo Symbol Meaning T1 Minimum tunnel position T4 Maximum tunnel position Temperature and air inlet percentage Changing data The minimum and maximum ventilation level can be changed The actual ventilation level cannot be changed by the user but can be influenced using these settings e f for example there is not enough fresh air in the house the minimum ventilation level can be increased e If the maximum ventilation level is increased the ventilation can increase more with higher temperatures If the climate is controlled by the curve the actual minimum ventilation level can never be lower than the minimum norm in the curve 4 7 House management The
11. and maximum ventilation page 65 If the control computer controls based on the number of animals it will automatically adjust the minimum ventilation If the control computer controls using a fixed percentage the user must change this percentage if animals are removed with mortality or delivery If this is not done there may be excess ventilation This costs more energy and money Offset standard m3 h kg Readout of the difference between the calculated Minimum ventilation norm from the curve and the set Sfandard actual is shown here only if a curve is used Standard actual m3 h kg Readout of the actual minimum ventilation volume in m hour Setpoint minimum vent Readout of the calculated setpoint of the minimum ventilation position Offset minimum vent Readout of the offset between the Setpoint minimum vent and Actual min ventilation This value can only be reset Total influence Readout of the total correction by influences Actual min ventilation Setting of the calculated control value of the minimum ventilation level with correction by offset and influences Overview gt X gt aK gt tab page Maximum Ventilation Setpoint maximum vent 100 ao Limited by MONE Actual maximum vent 100 o JInfluence IM MT Part Influence Vortex Setpoint maximum vent Readout of the calculated setpoint of Maximum ventilation position without correction by influences Limited by Readout of the method used to limit
12. calculated by the control computer based on the curve between brackets All offsets remain valid until they are changed When all the animals have been delivered the control computer will set all offsets to 0 Overview gt z gt H gt tab page Actual 41 2 342kg 21 0 65 Yo 0 0 0 900 100 96 o Feed per animal 100 0 0 194 Water per animal 100 0 0 349 WORF ratio 1 80 Actual J Curve J Graph vent Graph d WF Day nr Readout of the actual day number The control computer increases the day number by 1 each night at 00 01hrs The control computer uses day number 0 to control based on empty settings A negative day number can be used to reach a certain house climate before a new group of animals is set up Animal weight Readout of animal weight If the curve is used the control computer determines the setpoint based on the animal weight Setpoint house Setting of the required house temperature This is always between the Control value heating and the Start temperature ventilation Setpoint RH Readout of the setpoint RH This value can be changed Extra temp Readout of the extra temperature This setpoint can be used to determine the control value per cooling or heating unit This depends on your settings Min vent m3 h kg Readout of the Minimum ventilation norm If the curve is not used set this value manually The control computer then calculates the Minimum ventilation position based on the manually
13. deactivate equipment Water and feed The supply of water and feed can be controlled based on time or amount The water or feed clock activates a valve in the supply pipe The water and feed supply can be controlled as follows e Based on time using the water and feed clock e Based on the supplied amount using a registration unit e Based on the set curve Measuring the amount of water is only possible if a water meter is used This must be indicated at Water registration in the system settings The registration of amounts is set at registration in the system settings How does the control computer control the watering process The supply to the drinking nipple or drinking cups can be opened or closed using a valve If you want to register amounts you require a water meter It is possible to use 11 water meters 1 central meter and 10 meters for each water line The measurements are only suitable for monitoring The watering process is controlled by the Lumina 38 as follows Lumina 38 Basic principles climate management 1 The water clock indicates that watering must start Y Cycle 1 Cycle 2 l 0 4 8 12 16 20 24 Time 2 The valve is opened The watering system must be completely filled first For this reason no maximum flow alarm will be given during a set wait time After this wait time a check can be made to see the water consumption is too low blockage or too high leakage This is done by repeatedly
14. goes from the minimum to the maximum position e Offset tunnel position This offset prevents the control computer activating the tunnel ventilation if there is just a slight rise in the house temperature If the house temperature drops below the lowest tunnel ventilation position the Offset tunnel position applies Heating or cooling not linked to Setpoint house The values in the temperature graph are general values However the method of control can also be set per heating or cooling unit For example the floor heating can be controlled using a separate Exira temperature as the temperature sensor is placed in the water circuit The Exira temperature can be set separately in the curve 4 3 Ventilation The control computer shows general information about ventilation in the overview screen F38 Overview w21 0 lt 4 M PHASE 7 4 1500 m 2 100 1900000000 The control computer always shows latest data including all offsets and influences The ventilation settings concern aK Fan positions gt The positions of air inlets and extra inlets The pressure in the house 4 3 1 Ventilation graph The readout of the ventilation level and the air quantity is shown in the ventilation graph The control computer uses the ventilation level to determine the positions of the fans air inlets and extra inlets based on the combi table If an under pressure control is also used the air inlet positions may be adjusted to achieve
15. influence on minimum ventilation page 58 Overview gt Sea gt X gt tab page Heat Offset curve Setpoint RH Inf high RH on heating Maximum influence Setpoint RH Offset Start 5 End 20 3 Act infl on heating Curve value RH Readout of the setpoint RH if the curve is used Offset curve Readout of the offset between the curve value and the setpoint value Setpoint RH Setting of the control value RH If the curve is not used this is the setpoint for RH in the house If the curve is used you can adjust this value manually The Curve correction will then be the difference between the manually adjusted Setpoint and the Curve value Infl high RH on heating Setting to indicate if the influence will be used e NO e YES Control RH using heating e YES First try to control RH by increasing minimum ventilation If this has no effect the computer will use extra heating If the outside air is not dry enough the computer will use extra heating immediately Maximum influence Readout of the maximum influence Lumina 38 Advanced climate settings Setpoint RH Offset Readout of the RH path in which the setpoint heating can increase to the Maximum influence Start Setting of the starting point as an offset compared to the control value RH between brackets Followed by the readout of the RH from which the influence will start End Setting of the end point as an offset compared to the control value RH between brackets
16. is determined using the minimum and maximum ventilation settings the actual section temperature and the bandwidth The actual ventilation level cannot be set but it can be influenced by adjusting the minimum and maximum ventilation level e f for example there is not enough fresh air in the section the minimum ventilation level can be increased e fthe maximum ventilation level is increased the ventilation can increase more with higher temperatures The control computer always shows the latest data which incorporates all offsets and influences If the climate is controlled using the curve the actual minimum ventilation level can never be lower than the calculated setpoint Overview gt X Ventilation gf E 100 1 PBS IOOOO Lumina 38 Advanced climate settings 7 6 1 Exhaust Setting of the minimum and maximum ventilation level Overview gt X gt a gt tab page Minimum Setpoint minimum vent Offset minimum vent Total influence Actual min ventilation Minimum Maximum Influence IMjMT PartlInfluence vortex Standard m3 h kg Readout of the Minimum ventilation norm from the curve If the curve is not used set the Setpoint minimum ventilation manually The control computer then calculates the Setpoint minimum vent based on the manually entered Standard actual The control computer shows the norm as 3 h animal or as a percentage depending on the installation settings See Settings for minimum
17. maximum influence Readout of the calculation of the actual influence based on the measured RH Setting if CO may influence Setpoint minimum vent See Influences of CO2 or NH3 page 61 Readout of the calculation of the actual influence based on the measured COs Setting if a measured low outside temperature may influence Setpoint minimum vent Setting of the factor used by the control computer to calculate the maximum influence during natural ventilation Readout of the actual influence Setting if cooling may influence the Setpoint maximum ventilation Setting of the maximum ventilation position during cooling Setting of the maximum influence on ventilation during night correction If the light level gradually increases or decreases the influence will also be applied gradually Readout of the actual night correction influence Overview gt amp gt I gt tab page M MT Part Setpoint W MT part Offset W MT part Total influence Ventilation 100 a 0 a Setpoint MMT part Offset M MT part oe Phos 100 Yo tid Se Control value unlimited Contr value M MT part 100 3 E EA EE E Mee angie t M a Pin ger kar Minimum Maximum Influence MMT Part f Influence vortex Readout of the setpoint for the control part without influences and offsets Readout of the offset between the set control value and the setpoint Readout of the total correction by influences Lumina 38 Advanc
18. maximum ventilation It is possible to link the maximum ventilation to the presence of animals in the house Your installer can set this function Actual maximum vent Setting of the calculated control value of the maximum ventilation level Lumina 38 Advanced climate settings Overview gt X gt X gt tab page Influence Maximum Maximum factor on min vent Infl high RH on min vent Maximum influence Actual RH influence Infl high CO2 on min vent Actual CO2 influence Influence low outside temp Influence factor Actual influence Max vent limited by cool Max vent while cooling Max night influence Actual influence Ventilation Maximum factor on min vent Inf high RH on min vent Maximum influence Actual RH influence Inf high CO2 on min vent Maximum influence Actual CO influence Influence low outside temp Influence factor Actual Influence Maximum influence Actual RH influence Inf high CO on min went Maximum influence Actual CO influence Influence low outside temp Influence factor Actual Influence Max vent limited by cool Max vent limited by cool Max vent while cooling Max vent while cooling Max night influence y z ctual influenca Minimum Maximum Influence TREPA IMT Leann Influence Setting of the factor used to limit the total of all influences on minimum ventilation Setting if relative humidity may influence Setpoint minimum vent Readout of the
19. the offset between the set control value and the setpoint Control value cooling Readout of the calculated cooling control value Evaporat cooling Readout indicating if evaporative cooling is used This has been set in the installation menus Status cooling Readout of the actual cooling status on or off 2 Total ON time Readout of the total time that the control was on Lumina 38 Advanced climate settings Evaporative cooling can increase the RH in the house To ensure that the RH does not become too high enter a Max RH evaporative cooling f the RH in the house exceeds the set value the cooling deactivates Overview gt N gt gt tab page Limit Temperature RH limit with evaporat cool Mas RH evaporative cool RH limit evaporat cool Setting if the control computer must deactivate cooling if the house RH becomes too high Max RH evaporative Setting of the RH above which cooling must be deactivated cool The computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Overview gt N gt a gt tab page M amp M Temperature a 221 st Max at Cool temp time time FR TH f sat S Max temp Readout of the calculated maximum temperature At time Readout of the moment at which the maximum temperature was reached Cool time Readout of the on time of the cooling 7 5 2
20. the required under pressure The ventilation level depends on the house temperature The control computer shows the ventilation level either as percentage 0 100 or tunnel phase T1 T2 etc The control computer can activate tunnel ventilation if the house temperature is higher than the upper limit of the bandwidth increased with the offset bandwidth This is only possible if the maximum ventilation level is set to at least T1 If the maximum ventilation level is set to 100 or lower the control computer will not activate tunnel ventilation Lumina 38 Daily management Overview gt aK Ventilation gg 100 1 OO0000 Symbol Meaning Displayed value ya Position of the controllable fan 100 Minimum ventilation 40 Maximum ventilation 100 T1 Minimum tunnel position T4 Maximum tunnel position E Status of extra fans 8 extra fans two on six off Changing data The minimum and maximum ventilation level can be changed in the ventilation screen If the climate is controlled using the curve the actual minimum ventilation level may never be lower than the calculated setpoint The actual ventilation level cannot be changed by the user but can be influenced using these settings e f for example there is not enough fresh air in the house the minimum ventilation level can be increased e Increasing the maximum ventilation level allows the ventilation to increase further with higher temperatures Use the plus key t
21. the sensor measures a different temperature to the actual house temperature Other setpoints must be set in this case Lumina 38 Basic principles climate management 3 4 Cooling The control computer has one cooling control with separately assigned temperature sensors The control computer can activate the cooling at high temperatures The control computer automatically activates the cooling based on the control value cooling The user can enter the control value The control computer can use a hysteresis This prevents the cooling being activated deactivated because of slight temperature fluctuations e Cooling ON if the temperature in the house rises above the hysteresis e Cooling OFF if the temperature in the house drops below the setpoint cooling The control computer can control the following types of cooling e Dry cooling for example a heat exchanger or air conditioner The temperature of the air inlet is lowered The absolute humidity of the air will not increase As the temperature falls the Relative Humidity RH will be increased e Evaporative cooling for example using cooling pads in the inlets The temperature is lowered by the effect of the water evaporating Both absolute humidity and RH increase Water is sprayed at regular intervals The water supply is controlled modulating so the supply is on or off at regular intervals Depending on the house temperature the on off time is determined based on the bandwidth s
22. 5 3 Heating Overview gt N gt 6 gt tab page Settings Temperature SETPOINT HOS 2 0 0 a 20 18 0 Control value 18 0 6 Status D Total ON time MInfluence M amp M J Lumina 38 Advanced climate settings Linked to Setting to link heating control The following options are available e SETPOINT HOUSE This is normally used for the standard heating control The control value heating automatically follows the house temperature even if this is linked to the curve e EXTRA TEMP This setting is used to control heating on its own setpoint for example floor heating EXTRA TEMP can also be set using a curve e HEATING 1 This setting is only possible if there are several heating units The following heating units can be linked to the 1st heating unit Only set the control value for the 1st heating control This setting can be used for high low controls e NONE This setting is used to control an independent heating control Setpoint Readout of the setpoint used to calculate the Control value The control computer uses the setpoint set at Linked fo Heating 1 Readout of the Setpoint of heating 1 If you use several heating units these units can be linked to heating 1 Offset Readout of the offset of the setpoint heating This value can only be reset Setpoint Readout of the calculated setpoint heating Total influence Readout of the total correction by influences Control value Readout of the calculated c
23. E E E E E E eeraeaseds 24 5 3 E OOO ee E E E e 27 6 Animal Manageme aeaa aeaaea aeaea 28 6 1 Animal management data cccccccsssssseceeeeeeeeesseceeeeeseeesseeeeeeeesseeseeeeeeeeseeeaseeeeeeessaaageeeeseeensaaees 28 6 2 Seron OCK eee ene ee ener ee E ee ee eo eo eee eee ee 28 6 3 PUNE NO UU sce cpeatatcercametaentaes ia entiecetpareacetueatanct E E 29 6 4 PPT ISIN ANIMAIS creer dateb estan a entender eie a aacu satel davai EEA a araire 30 re Advanced CINTIALS SOTA S episood kiaia kaadaa kaiii 31 7 1 Requesting and setting control settings nnsneseeeetnrnneneerrrtterrtnstrrtttrtnsrtrtttrrnntrrtrrrnnnnn nte ereene 31 7 2 Manual adjustment of the current values ccccccccseeeeeeeeeeeeeeeeeeeeeeeeeeaaaaeeeeeeeeeeaaaueeeeeeeessaaaneeeees 31 7 3 Requesting Management amp Monitoring OVErViCWS ccccceeeeceeeeeeeeeeeeeeeeeeeeeaaaeeeeesaeeeeeesaaneeeeees 31 7 4 Setting IMMUN TSS rearen nra er aaa EE naueancae tee poaka EENE A IRATA rPI Er aan 31 7 5 Temperature SOMA srprosig ieron ea aae aa ea aeea aee edere reee aaea 32 7 6 Ventilation settings ste creeece cree ace ote ease eeaspcaric dare ucreniselldeaoanttieldeatcne rnnt tE AEAEE CEEE EE EAEAN EAEAN CEEE EEE ennn EEEn Enne 37 7 7 REFSER eteanscastn 45 7 8 COZ SEINO aese E T E T E T R 47 7 9 PEE U S ie E E 48 7 10 PCAN AA ae ts tinea EEEE EEE E tte aida el bron EEEE EEEF 49 8 Optimising controls using INTIUGNCCS ciiecnasedcieciastcceasccnscandaccansracsnaisadasi
24. Followed by the readout of the RH at which the influence will be at maximum Act infl on heating Readout of the actual influence See Influence high RH on heating page 59 The control computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Overview gt sA gt X gt tab page M amp M h at time Vent d Heat M amp M J Min Max RH Readout of the minimum and maximum RH At time Readout of the times the minimum and maximum were reached 7 8 CO2 settings The control computer can measure the concentrations of COs If the concentration of CO in the house is too high the control computer can increase minimum ventilation to disperse the excess This influence starts to apply when the CO concentration in the house is higher than the Setpoint CO2 Overview gt tal gt gt tab page CO2 Ventilation 3090 ppm Setpoint CO Setooint CO2 Setting of the concentration level above which ventilation must be activated The control computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Lumina 38 Advanced climate settings Overview gt al gt gt tab page CO2 M amp M Ventilation 3090 ppm at Max at time lo time Min Max CO2 Readou
25. LUMINA 38 LUMINA 38 TOUCH F38 VERSION D1 N B The original authentic version of this manual is the English version produced by Fancom B V or one of its daughter companies referred to further as Fancom Any modifications introduced to this manual by third parties have neither been checked nor approved by Fancom Modifications are taken by Fancom to include translations into languages other than English and the insertion and or deletion of text and or illustrations to from the original contents Fancom cannot be held liable for any damages injury guarantee claims and other claims relating to this type of modification in as far as these modifications result in a content that differs from the original English version of this manual produced by Fancom For the latest information about product installation and operation please contact the customer service dept and or the technical service dept of the Fancom company concerned In spite of the care taken when compiling this manual if you should discover any errors please inform Fancom B V in writing Fancom B V PO Box 7131 5980 AC Panningen the Netherlands Copyright 2013 Fancom B V Panningen the Netherlands All rights reserved Nothing from this manual may be copied distributed or translated into other languages partly or wholly without express prior written permission from Fancom Fancom reserves the right to modify this manual without notice Fancom can give no guarantee ne
26. Setting temperature difference alarms A difference alarm is an alarm that shadows the climate controller settings The control computer will give an alarm if the temperature differs too much from the Setpoint house temperature Set the difference alarm limits e Min The control computer gives a minimum temperature difference alarm if the house temperature is below Setpoint house Minimum difference e Max The control computer gives a maximum temperature difference alarm if the house temperature is above Start temperature ventilation Set Bandwidth Maximum difference The control computer automatically adjusts the alarm test if the Outside temperature is above Start temperature ventilation The control computer then gives a maximum temperature difference alarm if the house temperature is above Outside temperature Calculated Bandwidth Maximum difference Temperature sensor faulty Measurements from connected sensors except the outside sensor are reliable as long as measurements are between 99 9 C and 199 9 C Outside these limits the measurements are unreliable The control computer will give an alarm This can mean that the temperature sensor has not been correctly connected or is faulty The screen displays the value at the temperature readout Lumina 38 Alarm Total overview temperature alarms The figure below shows the relationship between the various temperature alarms Absolute minimum Setpoint house Abs
27. Ventilation These temperature settings determine the start and end of the bandwidth Overview gt N gt Ky gt tab page Set Temperature H Temperature Curve value house temp 32 5 Setpoint house temp 1 0 33 5 Curve correction 00 Offset start ventilation fF 0 1 1 0 Setpoint house temp 10 33 5 Start temp ventilation 34 7 Offset start ventilation 4 O 14 10 Set bandwidth 4 0 Start temp ventilation 34 7 Total influence Or Set bandwidth 40 Calculated bandwidth 4 7 Total infiuence 0 7 _ 30 4 Calculated bandwidth 4 7 Offset tunnel position j ES 39 4 Temp ist tunnel pos 41 4 Offset tunnel position 2 0 Lumina 38 Advanced climate settings Curve value house temp Readout of the house temperature based on the curve The house temperature is derived Curve correction Setpoint house temp Offset start ventilation Start temp ventilation Set bandwidth Total influence Calculated bandwidth Max vent temp Offset tunnel position Temp 1st tunnel pos from the day number Setting of the curve value correction This value can only be reset Setting of the required house temperature This is always between the Control value heating and the Start temperature ventilation Readout of the offset between Setpoint house temp and Start temp ventilation This value can only be reset Setting of the temperature above which ventilation must increase As long as the house tem
28. a complete overview of the current process status and of any equipment managed by the control computer The screen layout is related to the controls built into the control computer The image below is an example of the Overview This image may differ from your screen because the control computer only displays the installed components You can always call up the Overview screen by pressing a few times F28 Overview m CW 2 Ms Cd 2 ms Cod 2 Me CW 2 Mz 2 Co 2 M4 Co Mi me 40 Me Dd oee 3089 36 4 payni 26 ee 20029 ey Symbol Meaning Displayed value N Temperature settings HumiTemp House temperature me Night correction active Moon icon Pi N E T temperature Netto Effective Temperature The bird experience temperature including windchill aK Ventilation settings Ventilation position lt i Outside conditions Outside temperature Z Management data Day number time and date Temperature readouts Temperature sensors gt Ventilation settings Air inlet position pressure Di Relative humidity settings Relative humidity CO G Animal data Number of animals Lumina 38 Daily management 4 2 Heating and cooling The control computer displays the actual average house temperature in the overview screen Y This is the average temperature of the sensors placed in the house ASE The control computer also shows the actual outside temperature in the overview screen 4 F38 Overview w21 0 lt 4 M
29. aenseeet 70 11 10 System alarms ERROR nin ceccccccccsccseeseeeeceeeeeeeeeseeeeeesseeeeeseceeeesseeeeeeceeeeesseeaeeeeeeeesssaaaeeees 71 Lumina 38 General introduction 1 General introduction This manual has been compiled with the utmost care If however you should discover an error please inform Fancom B V 1 1 Documentation with the control computer The documentation consists of the following manuals e User s manual The user s manual is intended for the end user This manual supplies information about working with the control computer after installation e Installer s manual The installer s manual is intended for installers This manual supplies information about connecting and configuring the control computer Operation and safety instructions These subjects are covered in a separate manual This manual also applies to other control computers in the Fancom F2000 line Always read the safety instructions and warnings carefully before using the control computer Always keep this manual close to the control computer 1 2 How to use this manual The following symbols are used in this manual Tips and suggestions Note providing recommendations and additional information Warning indicating damage to the product if you do not follow procedures carefully Warning indicating danger to humans or animals Electrical shock hazard Danger to humans and animals Example of a practical application of the d
30. and the air inlets The working of this influence depends on the wind direction The control computer uses this to determine if the fans or inlets are on the wind or lee side The fans and air inlets can be increased and decreased This description applies to the controllable part air inlets and extra inlet but these can be set separately q Example Influence wind on air inlets Setpoint air inlet extra inlet 30 Influence path wind speed Start 3m s End 12m s Factor influence wind side 0 5 Factor influence lee side 1 3 If wind speed equals or is lower than 3m s the Air inlet Control value air extra inlet equals the Setpoint air extra inlet 30 If the wind speed increases to 12m s the control computer will decrease linearly the Control value air extra inlet for the defined wind side to 0 5 x30 15 15 1 _ Max influence With wind speeds higher than 12m s the Control Start End value air extra inlet is 15 3m s 12m s Wind speed With wind speeds between 3 and 12m s the control Air inlet computer will increase the Control value air extra inlet for the defined Lee side of the house to 1 3 x 39 Max influence 30 39 a With wind speeds higher than 12m s the Control value air extra inlet remains 39 30 No influence Start End 3m s 12m s Wind speed Lumina 38 Optimising controls using influences Caii Overview gt X gt 1 gt tab page nfluence Inlet W
31. ausandaisncniastaneanceinieniastasanndiesieriasiad 50 8 1 Influences outside temperature ccccccceccceeeessseceeeeeeeeesseeeeeeeeeaaaaeeeeeeesseeaeeeeeeesseaagseeeesessesegees 50 Lumina 38 Table of contents 8 2 Influence temperature difference on air INletS ccc eccecceeeeeeeceeeeeeeeceeaeeeeseeaaeeeeseeaaeeeeeseaaeeeeees 55 8 3 Influences WIN ANC StOrM cccccccssesececcseeeececcaeueececcaeseeeeeceeaeceeeseeaeeeeeseaaeeeeessaaeeeeesaaaesesessaaeeesees 56 8 4 WARES TNC SS FN lic oteactcs etecemece sede a And eusacaceenccctaceeheeeaionras a 58 8 5 Influence COOLING ON MAXIMUM ventilation cccccccceeeeeeeceeeeeeeeceeeeeeeecueeeeeesseseeeeesseeeeeesseneeeeees 60 8 6 Influence pressure ON air INICTS eee cccceeeeceeeeeeeeeeeeeeaaeeeeeeeaaaeeeeseaaaeeeeesaaseeesseaaaeeeessaaeeeseeaaeeeeees 60 8 7 Influences of CO2 or NIA Guracsicccece faeces cssrce dean sen sacttsocsdeundonidenasienceebacedest Upoencucb ined desasnecceehoesoatesceseues 61 8 8 Influences night correction vesnsnsncennsedcndssanverennandcadnscwncnes nanidndesnmeaseneaseanecesiictennunbdndensiennonaemiandecawecnnes 61 8 9 Total influence on air METS ca ceuetccceyaacemeonimcpenevadaueseadetendeticextdganmatederateaniencaeaadeuimsesieedecsodevagextacade ined 62 9 aa Ee e g E A E E NE E A E E E T 63 W N aE AEE A A E ia 64 10 1 Settings for temperature RH and WeIGNH ceeseeeceeeeeeeeseeeeeeeeeeeeeeeeeeeeeesaeaceeeeeeessaaaeeeeeeeeenes 64
32. ause such as a too high or too low RH low or high outside temperature etc If a certain condition arises you can see immediately which influences you can set in the control computer Influence of Wind Storm RH p Cooling ee CO N p 56 p 56 58 p 60 Heating Ventilation Cooling Temp aaa A lt Minimum vent Bandwidth Maximum vent M MT part Vortex damper Tunnel inlet 8 1 Influences outside temperature Exhaust On control lis Ey Tt oss Oss sis Saas ss es ae 8 1 1 Settings for outside climate Request an overview of the actual outside climate using Ch Overview gt Ci gt tab page nfluence Low outside temp RELATIVE Start Offset 5 0 16 0 End Offset 15 0 6 07 Switch windspeed 7 Ormijs Influence path wind speed Start amis 14 mis En Influence path storm pos 7 mis 14 mis Lumina 38 Optimising controls using influences Low outside temp Setting if the low outside temperature influence is to apply in relation to setpoint house RELATIVE or to a fixed temperature ABSOLUTE An absolute range is always the same It does not depend on Start temp Ventilation The relative range does depend on Start temp ventilation Start Offset Setting of the starting point as an offset compared to the Coniro value house between brackets Followed by the readout of the outside temperature from which the influence will start End Off
33. ave been installed You can always call up the Overview by pressing a couple of times F28 Overview 121 0 lt 4 M PHASE 4 1500 m3 100 190000000 2 2 1 Requesting and changing control data via the overview Data can only be shown in the Overview not changed The Overview is also a menu which can be used to call up screens with control data Data can be changed in these screens The control computer indicates menu options using gt next to the key For example Press the key next to X to request the Ventilation screen In this manual this option appears as follows Overview gt X After a selection has been made the Ventilation screen will appear The screen also displays the ventilation graph It also shows which fans are currently running The most important data in this screen can be changed in this case the minimum and maximum ventilation level Return to the Overview by pressing several times Lumina 38 Basic principles climate management 3 Basic principles climate management This chapter explains the basic principles and the terminology used for the Lumina 38 climate computer The control computer is suitable to control temperature relative humidity RH and fresh air in animal houses through ventilating heating and cooling As the control computer is suitable for use in a wide variety of climatic conditions many parts of this chapter may not be relevant for all users 3 1 Aims Climate managem
34. ble fans extra controllable fans can also be controlled All controllable fans are always controlled at the same percentage e Extra fans on off relay Extra fans can only be switched on or off They are usually used when the controllable fans are running at maximum or in combination with controllable fans to achieve a gradual increase in ventilation Ventilation control The control computer uses control values to control the climate management system It continually adjusts these control values because the control computer constantly monitors the climatic conditions in and around the house The user can change the control values The following applies for ventilation e The ventilation will never become lower than the set minimum ventilation This means the house is always ventilated enough to supply the animals with sufficient fresh air The control computer calculates the minimum ventilation using the curve Curves page 64 e If the house becomes too warm the control computer will increase the ventilation in order to lower the house temperature The control computer gradually increases the ventilation However ventilation will never exceed the set maximum ventilation Heating Neutral Ventilation zone zone zone l Saa Maximum ventilation l l l c o a e ee ee ee es e a te Ne SS ee g 1 Controllable levi nee eae rangs ventilation range c S a 20 Minimu
35. checking if too little water has flowed through the system A check is also made to see if too much water has been consumed during a period How does the control computer control the feed process The Lumina 38 uses a so called full system This means that after the feeding process has stopped the computer ensures the hoppers are always filled When feeding starts a large amount of feed can be supplied within a short time As the hoppers are completely filled again after the feeding cycle the control computer knows how much feed was used in each feeding cycle The hoppers are filled via the overflow principle Feed falls into the hoppers via a chute When the first hopper is full the feed overflows into the next one etc The feed line auger runs synchronously to the feed supply from the silo If the feed supply stops the feed line stops too The feed process is controlled by the Lumina 38 as follows 1 The feed clock indicates that feeding must start Y Cycle 1 Cycle 2 l 0 4 8 12 16 20 24 Time 2 The dosing out auger transports the feed to the hoppers When there is a feed demand feed sensor uncovered the dosing out auger will activate The feed is transported to the hoppers 3 The hoppers are filled successively according to the overflow principle When the last hopper is full detected by the demand sensor the control computer stops supplying feed 4 From the hoppers the feed line augers transport feed to th
36. ck 41 65 2 342 0 0 f OO g O FD ff 0000 hje Oo 3 3 x 7 34 0 30 0 26 0 24 0 22 0 20 0 20 0 1 2 a 4 5 6 Fi a coooc0coa D a a a A aa A AA Actual Curve J arah vert Graph wr _ Enter the bending points of the curve as follows 1 Enter the day and required data per bending point 2 Ifthe final lines are unused do not enter any data After the last bending point the control computer will use these values as reference Lumina 38 Curves A graphical presentation of the curves is shown in the screen below Overview gt 4 gt E gt tab page Graph Curve Actual Curve L Graph a vert L rah we _ 10 2 Settings for minimum and maximum ventilation Ventilation in m h animal Your installer sets whether minimum ventilation is based on m h animal or on a percentage The maximum ventilation position is always shown as a Selecting m h animal offers the following advantages e The minimum and maximum ventilation are related to animal weight This means that if the animal weight is adjusted the control computer will recalculate the minimum and maximum ventilation positions based on the curve e The minimum ventilation is automatically corrected by the number of animals present Q Example Ventilation in m h animal Bending Weight kg point _hk 0 042 0 154 0 393 0 765 1 200 1 816 2 386 2 873 3 308 oO ON OA F amp F OD Ventilation Min m3 h a
37. ck bala Program REGISTER Daily amount 6990 Caan lm J oo Tab page Quantity shows the required day amount which the control computer calculates from the curve This amount is equally divided over the cycles with status FREE SKIP or BLOCK If the program DOSE has been selected this division can be changed in the column Bio biorhythm Enter the difference in percent per cycle The sum of the entered biorhythm percentages must add up to zero 10000 animals x 0 212 2120 Cycle 1 in the morning 10 gt 636 Cycle 2 in the afternoon 0 gt 707 Cycle 3 in the evening 10 gt 777 Total 0 2120 Check the required daily amount and the amount that has already been given in the fields Daily amount required and Ready and in the table column Ready If the sum of the biorhythm percentages does not add up to 0 all the percentages will be set to 0 This situation can occur for example if a watering cycle is no longer active when a curve day is reached or if a watering cycle is blocked 5 1 4 Setting water alarm The control computer can give an alarm if the amount of water registered is outside certain limits Ka Alarms for the amount of water are only possible if a water meter is used This must be set in the system settings At the end of the watering cycle a check is run to see if the animals have received the right amounts of water Upper and lower limits can be set on tab page A arm If the water amounts
38. computer also tests a number of functions of the control computer itself WN Always warn the installer if a system alarm occurs
39. computer gives a silent alarm and completes the normal process 5 1 5 Setting water clock link Clock times can be linked to another clock This means that the times depend on the other clock Linking clocks is only possible if this has been entered in the system settings Overview gt HW gt gt gt tab page Link Water clock Wtrogi ae 1 Water clock o Type dependent Type dependent Times depend on wwe wWtr gi 9 46 Type dependent Times depend on On time dependent Off time dependent Type dependent Setting of the type of dependency e NONE The clock is not linked to another clock You must enter the clock times e DENTICAL The clock times are adopted from the clock to which this clock is linked e TIME The clock times are adopted from the clock to which this clock is linked However the times of the light clock will be shifted compared to the clock to which it is linked Times depend on Setting of the clock type and clock index using the and key from which the times must be adopted On time dependent Setting the link of the on time to the entered clock If NO is selected enter the end time or duration of the cycle in tab page Times Time difference Setting of the time difference between the clock times and the linked clock If the clock must start earlier enter a neg time duration e g 00 10 minutes Off time dependent Setting the link of the on time to the entered clock If NO is selected enter t
40. computer uses four fans for modulating ventilation The ventilation level is 70 This means that the fans are on for 70 of the time and off for the remaining time 11 7 a a S a S E 0 1 2 3 4 5 Time minutes At a ventilation level of 100 the fans run the entire time Lumina 38 Basic principles climate management 3 2 2 Transition zone minimum ventilation tunnel ventilation MT phase In this phase the control computer uses fans combined with air inlets and tunnel inlets In this phase the control computer uses the following fan types e Linear controllable or modulating fans like in the M phase e On off fans In this example the on off fans are mounted in the rear wall of the house On off fans are either on or off ata certain ventilation level there is no intermediate position 3 2 3 Mechanical ventilation With mechanical ventilation the control computer can control the house temperature using fans The control computer can control various numbers and types of fans Which of the fans will be used to achieve a certain ventilation demand has been set in the combi table With mechanical ventilation use is made of e Controllable fans The control computer can control the controllable fans at a certain percentage The control computer controls the fans from for example 30 to 100 This enables the control computer to increase ventilation precisely up to the required level As well as the standard controlla
41. control computer shows general information about management data in the overview screen kd The figure shows the day number and the current date and time F28 Overview 121 0 lt 4 M PHASE a 4 1500 m 2 M7 COCO 2 M of ME 29 ME T Ma 298 M4 24 100 100000000 M m aoe me Goo Fk 3089 36a 4 payni 26 Apr 20029 yp House management concerns registration curves clocks and consumption 4 7 1 House management data Overview gt z Management 15 Jan 2010 EHEC 41 Feed consumption today 0 0 Feed consumption fanimal 0 000 Total feed consumption 0 Water consumption today 0 0 Water consumption fanirmal 0 000 Total water consumption 0 Fooaooooof o Fo Keo Lumina 38 Daily management Symbol Meaning Displayed value Registration A Curve Clocks eZ Consume y Light clocks 8x Off g Feed clock Off Water clock Off KO Extra clock Off 4 8 Animal management The control computer shows the current number of animals in the house in the overview screen 21 F28 Overview mM Oo 2a me Co 2w M5 29 ME 2 M3 2 M4 2h LOGOS OO0 Imi ml a M Co y 3089 368 7 Daynr 28 Apr 2010 20029 G gt Animal management concerns the set up mortality and delivery of animals 4 8 1 Animal management data Overview gt A Animal data G 20029 Setup 20029 Mortality 0 Delivered Oo Present Mortality o Mortality Deliver Lumina 38 Clocks 5 Clocks Th
42. control computer will give a maximum RH alarm if the measured RH is higher than the set relative Maximum RH alarm This relative limit depends on the Control value RH RH sensor faulty The control computer will give an alarm if the RH sensor is incorrectly connected or faulty The screen displays a value of 101 at the RH readout 11 7 CO2 or NH3 Alarm If CO2 or NH3 measurement is used the control computer will give an alarm if the set minimum or maximum is exceeded 11 8 External alarms The control computer has received an alarm signal from external equipment or intelligent modules 11 9 Thermo differential An extreme rise in house temperature can be caused by fire In such a case it is important that an alarm is raised quickly The sensors in the zones can detect sudden rises in temperature A sensor issues an alarm if e t measures a temperature above 58 C e The maximum temperature increase is exceeded e g an increase of 5 C within 2 minutes The control computer monitors to that effect the current house temperature every 30 seconds and compares it with the values of the last 2 minutes In addition to the alarm relay the control computer has an extra relay to connect to the fire alarm installation FAI In case of a fire alarm this FAI relay then initiates additional actions such as closing fire doors turning on sprinklers or turning off ventilators Lumina 38 Alarm 11 10 System alarms ERROR nn The control
43. ctor vortex on vent part 2 0 Setpoint vortex damper 40 x 2 80 If the Setpoint controllable partis 50 the vortex damper will reach the maximum control value of 100 Inlets The control computer determines the inlet positions based on the combi table Air pressure and wind can influence these inlet positions The computer can also correct the temperature differences between the left and right side and front and rear of the house N Overview s 3 gt 1 gt tab page inlet Setpoint inlet Offset inlet Total influence Limited by Control value inlet Temperature inlet Wind direction Max inlet position Max position while cooling Inlets used Offset inlet Total influence Limited by Control value inlet Temperature inlet Wind direction Max inlet position Max while cooling M phase Inlets used 100 JInfluence Tunnel Influence Readout of the setpoint for the control part without influences and offsets Readout of the offset between the set control value and the setpoint Readout of the total correction by influences Readout of the method used to limit maximum ventilation It is possible to link the maximum ventilation to the presence of animals in the house Your installer can set this function Setting of the calculated control value after correction by influences offset and storm limit Readout of the actual average air inlet temperature Readout of the wind direction actually influe
44. d Windchill N E T ccccssssssssseeeeeeeeeeeeeeeeeeeeeeessseeeeeeeeeeeeeeeeeeaaaeaaaseseeeeeeeeeeseseneaaas 7 3 7 O E ee E E T cee teeeectenceasete 8 3 8 PROMS At OM EAEE E E E ante E A A E AIE AE O PE A ace E E A E EN 11 3 9 Climate based ON CUIVES sacscsavseverecessvedenvecnsdavinsawnctaweouadieatnnwedneits sasduuisnnoadebsauanndersucanaissnedeumosusadawsewexe 11 4 Daily management sssssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnmnnn nnmnnn nnmnnn nnmnnn nnnm 12 4 1 Overview SCICSIN note icsaunreninasdsanacansinivaunstmmnienuunittanddanncanaianainntbienustaiiaundtdadianaeenitensinstiaculawtietiniia sibiend tenes 12 4 2 PIC ANG and COOMO oserei eisene E E NE AERE EE EE E E RER EPEE 13 4 3 SON O ea E E E fetes teceses aueetectescoeosen ee eteaectaees 14 4 4 ReRe AUMIA eeen e E a e a ea a saat enesdcaceens 15 4 5 Outside conditions ssa carte teers oes ec eE a EEE cee ce Ea secs ERENT EEE HEO inaen 16 4 6 PUIG MN otc E A elec E ese ee E E EE EA A E E S A 17 4 7 House management eeceracacies sere scton sicher oe testa tigscictiaiesins dskeiotes Sct cnn ekia date Sec anise deta ae atic EAEE EE EEEE Ennn EnEn en Emnene 18 4 8 Animal MAN ACSI oaacasiuqscicnniecemeiansainns cen dansadaninencatninndcoamntaunadeniespemnencnn aden de deatnsancnnaddndedemuaancnna ncadnas 19 3 Doe Sa hiee psn eer pect cic meno AN bra a siete cn lee sagem veda o E E A AE AE mn non E OA AEA E 20 5 1 MPN OY CLO Gl PR E E E E E 20 5 2 EVO GVO GIG eee
45. day The period is determined by a light clock which has been set with the required times and linked to this function If necessary the transitional period from day to night and vice versa can also be set using the dim settings of the light clock Temperature 12 18 24 Time gt When night correction is active the control computer adjusts the setpoints of the house temperature and the minimum ventilation accordingly If the light level of the linked light clock gradually increases or decreases these setpoints are adjusted accordingly 8 8 1 Influence night correction on minimum ventilation qa Example Influence night correction on minimum ventilation Minimum ventilation 25 Ventilation Max night influence 5 At night the control computer adjusts the 100 minimum ventilation setpoint to 25 5 20 If the linked light clock gradually dims the ventilation will be adjusted at the same rate 25 Temp HT STV STV BW Overview gt aK 7 aK gt tab page nfluence Max night influence Setting of the maximum influence on ventilation during night correction If the light level gradually increases or decreases the influence will also be applied gradually Actual influence Readout of the actual night correction influence Lumina 38 Optimising controls using influences 8 8 2 Influence night correction on setpoint house temperature q Example Influence night correction on set point ho
46. e control Start End value Act infl on heating Readout of the actual influence 8 4 3 Influence high RH on cooling Evaporative cooling can increase the RH in the house To ensure that the RH does not become too high enter a Max RH evaporative cooling f the RH in the house exceeds the set value the cooling deactivates Overview gt AT gt 3 gt tab page Limit RH limit evaporat cool Setting to indicate if the influence will be used Max RH evaporative Setting of the RH above which cooling must be deactivated cool Lumina 38 Optimising controls using influences 8 5 Influence cooling on maximum ventilation If the temperature rises so much it cannot be controlled with maximum ventilation a cooling system can be activated If cooling is active it has no sense at all maintaining the maximum ventilation All this does is cool the outside air Example Influence cooling on maximum ventilation Maximum ventilation 100 Max vent Maximum ventilation while cooling 50 If cooling is active the control computer will decrease the maximum ventilation level to 50 100 Time Cooling Cooling ON OFF If cooling has been set as modulating cooling and is active maximum ventilation will equal maximum ventilation during cooling even if modulating means cooling is briefly not active Overview gt X gt aK gt tab page nfluence Maximum Max vent limited by cool Setting to indicate if the influence
47. e control computer shows the cycles already set per clock The current time is indicated by a vertical line so you can see which cycles are being run Overview gt I gt Clocks tra Feocaooo00 Be re Ko This screen displays an overview of all the clocks Each clock has its own graph displaying the on and off times The current status of the set clocks is shown at the bottom of the screen ON or OFF You can select more specific information about the clock concerned here For example start and stop times light level dosing or registering feed and water 5 1 Water clock The water clock functions in the same way as the feed clock In this chapter we refer to the water clock Please read feed for water The same applies to the screenshots these are taken from the water clock but also apply to the feed clock The cycles actual clock status and a graph of the set watering cycles are shown on tab page Times Overview gt 4 gt gt gt tab page Times Water clock ae Clock status FP FREE Clock output status Status clock ON 5 00 j FREE FREE FREE FREE 4 5 iz i Joay Am J im Jt Clock status Readout of the current clock status This status can be BLOCK FREE FP FREE or FP BLOCK The control computer can set the status to P BLOCK This means that the feed place is blocked because no animals have been set up You must set up animals first Clock output status Readout of the actual clock out
48. e feed pans The feed pans are also filled according to the overflow principle Lumina 38 Basic principles climate management Program There are two ways to control the process We refer to this as the program e REGISTRATION Ad libitum The amount is determined by the animals behavior The clock determines how long feed or water is supplied Within each cycle the animals can consume as much feed or water as they like The demand sensor in the final hopper indicates if dosing out is possible The curve has no influence on the amount of feed or water given The curve only indicates the theoretical amount required and is used as a reference If the amount given differs too greatly from the amount in the curve an alarm can be given e DOSING Limited The amount is determined based on the curve The computer calculates the required amount per day using the curve The day amount is divided over the number of cycles When the required amount in a cycle has been dosed out within the time the cycle lasts dosing out will stop If the animals consume less feed or water during the cycle than the calculated required amount the supplied amount will be registered The time of the cycle must be long enough to allow the required amount to be dosed out within the set time If the required amount is not dosed out within the cycle an alarm can be given If you want to adjust the amounts automatically then you have to enter this data beforehand in a cu
49. e infl Readout of the actual influence Lumina 38 Optimising controls using influences 8 7 Influences of CO2 or NH3 The control computer can measure the concentrations of CO or NH3 If the concentration of CO or NH in the house is too high the control computer can increase minimum ventilation to disperse the excess This influence starts to apply when the CO or NH concentration in the house is higher than Control value The control computer increases the minimum ventilation level by 1 and checks if the concentration of CO or NH3 has started to fall If this is not the case it increases the minimum ventilation again by 1 The control computer continues this process until the concentration in the house falls Overview gt X gt X gt tab page Influence Maximum Maximum factor for Setting of the factor used to limit the total of all influences on minimum ventilation min vent Inf high CO2 NH3 on Setting to indicate if the influence will be used min vent Maximum influence Setting of the maximum extra minimum ventilation by CO NHs3 influence 8 8 Influences night correction Animals usually rest at night and therefore produce less heat and gasses in this period To maintain a comfortable climate in the house the minimum ventilation and the setpoint house temperature can be automatically adjusted Night correction can influence the minimum ventilation level and the setpoint house temperature depending on the period of the
50. e set control value and the setpoint Total influence Readout of the total correction by influences Control value pressure Setting of the calculated control value for the pressure control after correction by influences and offsets Infl low outs temp on Setting if a low outside temperature may influence pressure control This influence can press only be used if a pressure control is used Maximum influence Readout of the maximum influence Act outside temp infl Readout of the actual influence Lumina 38 Advanced climate settings 7 7 RH settings A lower and upper limit for house RH can be set If the air is too dry the computer can activate extra humidification If the RH is too high the computer can lower RH using extra ventilation or heating 7 7 4 Humidification A too low RH can be raised using with extra humidity for example nozzles Overview gt A gt gt tab page Humidif Humidification 11 17 Setpoint humidification 35 b Status hurnidification Total ON time Setpoint humidification Setting of the RH below which humidification must be activated Status humidification Readout of the actual humidification status on or off 2 Total ON time Readout of the total time that the control was on The computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Overvi
51. e will be used Factor influence Setting of the factor used by the control computer to calculate the maximum influence during natural ventilation Actual temp diff intl Readout of the actual influence Temperature differences in the house can also be minimised using the air inlets of the natural ventilation See also Total influence on air inlets page 62 Lumina 38 Optimising controls using influences 8 3 Influences wind and storm Wind direction wind speed and storm can influence the Setpoint controllable part vortex damper and air inlets These influences can be limited by influence factors 8 3 1 Influence path wind and storm Use these settings to set when wind and storm influences apply These settings apply to all wind and storm influences Overview gt si gt tab page nfluence Influence path wind Setting of the lower limit Stari above which the wind influence applies speed Setting of the upper limit Ena above which the wind influence is maximum Influence path storm pos Setting of the lower limit Low above which the wind influence applies Setting of the upper limit High above which the wind influence is maximum is automatically determined by the control computer yy The lower limit Low will be increased with high outside temperatures higher than Setpoint house This 8 3 2 Influence wind Depending on the wind speed and direction the control computer can influence the controllable ventilation
52. ed climate settings Control value unlimited Readout of the control value after correction by influences and offset but without application of the Storm limit Storm limit Readout of the influence during a storm on the controllable part of the ventilation Contr value M MT part Setting of the calculated control value after correction by influences offset and storm limit Wind direction Readout of the wind direction actually influencing the control NONE LEE or WIND Overview gt X gt X gt tab page nfluence M MT Part wind storm inf miMT part Factor influence wind side Factor influence lee side Actual wind influence 0 29 w Max storm limit M MT part 100 o Actual storm limit 100 Minimum Maximum Influence IM MT PartlInfluence J Vortex Wind storm Setting if wind direction and wind speed may influence the ventilation position infl W MT part Factor influence wind Setting of the factor used to decrease the Control value control part on the wind side side Factor influence lee side Setting of the factor used to increase the Control value control part on the lee side Actual wind influence Setting of the calculation of the actual influence based on the wind Max storm limit Setting of the maximum Control value during a storm M MT part Actual storm limit Readout of the actual storm limit maximum control value Overview gt X gt X gt tab page Vortex Ventilation Setpoint vortex 100 Vo St
53. emperature rises When the house temperature drops the control computer will immediately start controlling on a lower ventilation percentage When the outside temperature drops below Start temperature ventilation the bandwidth will decrease back to its original value cou Example Influence high outside temperature on bandwidth ventilation Start temp ventilation STV 20 Outside temperature OT 21 House temperature HT 27 Set bandwidth BW 6 The control computer will increase the Ventilation bandwidth as long as the house temperature is too high higher than STV BW and the outside temperature is higher than Start temp ventilation When increased the ventilation always stays maximum As long as the outside temperature is too high the Calculated bandwidth will increase and finally reach point P1 Max Min STV OT STV BW HT 20 21 26 27 Lumina 38 Optimising controls using influences If the outside temperature falls greatly the Ventilation cold air will also cause the house temperature to drop The control computer ss gg p1 will control using a lower ventilation position Max after point P1 has been reached The example shows the ventilation position at a l l house temperature of 25 C l As soon as the Outside temperature drops l Increase below Start temp ventilation the control l AK computer will decrease the bandwidth again 7 em OT STV HT STV BW P 18 20 25
54. ence the inlet position This influence can only be used if a pressure control is used Setting of the factor used by the control computer to calculate the maximum influence during natural ventilation Readout of the measured pressure Lumina 38 Advanced climate settings Wind storm infl on air Setting if wind and or storm may influence the inlet position inlet Factor influence wind Setting of the factor used to decrease the Control value control part on the wind side side Factor influence lee side Setting of the factor used to increase the Control value control part on the lee side Actual wind influence Readout of the calculation of the actual influence based on the wind Maximum storm limit Setting of the maximum influence during a storm on the setpoint control part See Influence storm page 57 Actual storm limit Readout of the actual storm limit maximum control value 7 6 3 Pressure When controlling ventilation the control computer first controls the positions of air inlets and extra inlets Then it checks if the required pressure has been reached If not it can adjust the inlet positions Overview gt X gt Ventilation Setpoint pressure Offset pressure Total influence Setpoint pressure Inflow outs temp on press Maximum influence Act outside temp inl Setpoint pressure Readout of the setpoint for the control part without influences and offsets Offset pressure Readout of the offset between th
55. ent temp Influence factor Setting of the factor used by the control computer to calculate the maximum influence during natural ventilation Actual influence Readout of the actual influence 8 2 Influence temperature difference on air inlets If more than one air inlet is used and there is a temperature difference in the house the temperature difference influence can be used This influence ensures that the control computer adjusts the air inlets independently in order to minimise the temperature differences The average position of the air inlets remains the same Q Example Influence temperature difference on air inlet Setpoint air inlet 30 Temperature air inlet 1 24 C Temperature air inlet 2 26 C Factor influence 0 2 The average air inlet temperature is 25 The difference between the average air temperature and the temperature of air inlet 1and air inlet 2 is 1 C The control computer calculates the following influence Factor influence x Temperature difference x Setpoint air inlet 0 2 x 1 x 30 6 Temperature air inlet 1 is too low too cold The control computer will try to correct this by decreasing the actual output of the air inlet 1 by 6 Temperature air inlet 2 is too high too warm The control computer will try to correct this by increasing the actual output of air inlet 2 by 6 a Overview gt ox gt 1 gt tab page nfluence Inlet Temp diff intl on air inlet Setting to indicate if the influenc
56. ent has one central aim controlling the temperature relative humidity and the CO or NH concentrations during the animals lifecycle This leads to the following aims e The lifecycle of the animals is leading for climate management Young growing animals need for example more heat and less fresh air than older animals For this reason the ambient temperature during the animal s lifecycle should gradually decrease while ventilation should increase e Even temperature and air distribution in the house e Continuous monitoring of the house climate e Taking outside influences into account such as outside temperature wind and relative humidity Influences can be used to optimise climate management Even if this option is not used the control computer will control the climate satisfactorily 3 2 M MIT ventilation The Lumina 38 is extremely suitable for climate control in an MTT house The abbreviation MTT stands for Minimum Transitional Tunnel Using this concept the control computer gradually increases the ventilation from minimum ventilation to tunnel ventilation Tunnel ventilation is virtually self evident in warm climates such as the Middle East and Asia However tunnel ventilation can also be used in temperate or cold climates to prevent mortality during hot weather With Fancom s MTT concept the transition from minimum ventilation to tunnel ventilation is gradual The extra costs of tunnel ventilation Compared to other system
57. entered Norm actual The control computer shows the norm as m3 h animalor as a percentage irrespective of the number of animals depending on the installation settings Max vent Readout of the maximum percentage ventilation Imago Readout of the percentage of ventilation with Imago Feed per animal Setting of the required feed amount per animal Based on the entered value the control computer will calculate the difference from the feed curve as a percentage This difference will be used for all the following days The current difference in percentages is shown between brackets Water per animal Setting of the required water amount per animal Based on the entered value the control computer will calculate the difference from the water curve as a percentage This difference will be used for all the following days The current difference in percentages is shown between brackets W F ratio Readout of the required water feed ratio Lumina 38 Optimising controls using influences 8 Optimising controls using influences Influences can be used to optimise climate management Even without these influences the control computer will control the climate well Determine per influence if it applies or not If an influence is active extra codes will usually appear These are used to indicate how an influence is used The relevant codes appear at the end of the section explaining the influence The influences are classified according to the c
58. escribed functionality Calculation example Describes the key combinations for arriving at a particular screen GBeobeC es Decimals The control computer and this manual use a decimal point in values For example a weight is shown as 1 5 kg not as 1 5 kg 1 3 Fancom helpdesk For any questions and support please contact the local Fancom Sales amp Service Center 1 4 F Central FarmManager Virtually all Fancom equipment can be controlled and managed from a central location This requires the F Central FarmManager software package and a communication module The screens in the control computers are also used in F Central FarmManager This means you can start working immediately Lumina 38 Lumina 38 climate computer 2 Lumina 38 climate computer The Lumina 38 climate computer is a climate controller for poultry houses The control computer is versatile and suitable for a wide range of climatic conditions The Lumina 38 can be used worldwide in e Laying hen houses e Rearing houses e Rearing laying hen houses e Broiler houses e Turkey houses Characteristics of the control computer e Completely computerized climate control based on the animals lifecycle e Animal management Registration of set up delivery and animal mortality e Control of external equipment using time clocks Consumption registration e g gas or electricity based on feedback information Extensive and partially adjustable alarm
59. et by the user the maximum on time and the period within which cooling may be active When the house temperature drops below the setpoint cooling temperature the cooling turns off Linking cooling control to ventilation With a standard cooling control in a house with basic ventilation the cooling control is often linked to STV BW Start temp ventilation bandwidth The control computer activates the cooling as soon as the ventilation is at maximum Start temperature ventilation depends on Setpoint section temperature even if this is linked to the curve Separate setpoint for cooling The cooling can also be given a separate setpoint the so called extra temperature The extra temperature must be entered in the curve The extra temperature is used if the control value of the cooling differs greatly from the setpoint house temperature 3 5 Relative humidity The control computer can influence the relative humidity RH in the house The maximum RH can be entered in the curve The control computer determines the RH control value based on the curve The control computer can control the humidity as follows e RH is too low The control computer can activate extra humidity For example water nozzles e RH is too high The control computer can activate extra heating or ventilation Warmer air can absorb more moisture Extra ventilation can be used to extract more moisture from the air 3 6 Humilemp and Windchill N E T For the best re
60. ew gt A gt gt tab page M amp M PH A S 36 a ae e Humidif M amp M Min RH Readout of the minimum measured RH At time Readout of the time the minimum was reached Humid time Readout of the total on time of the humidifier Lumina 38 Advanced climate settings 7 7 2 Dehumidification A too high RH can be lowered using extra ventilation or heating Overview gt Sel gt X gt tab page Vent Yentilation 11 20 63 Vo 0 68 F Abs humidity inside 5 8g Kkg 46s humidity outside 79gikg Influence on min vent YES Maximum influence 10 Actual infl on min vent 0 fe Curve value RH Readout of the setpoint RH if the curve is used Offset curve Readout of the offset between the curve value and the setpoint value Control value RH Setting of the control value RH If the curve is not used this is the setpoint for RH in the house If the curve is used you can adjust this value manually The Curve correction will then be the difference between the manually adjusted Setpoint and the Curve value Abs humidity inside Readout of the measured absolute humidity inside g kg Abs humidity outside Readout of the measured absolute humidity outside g kg Influence on min vent Setting if relative humidity may influence the minimum ventilation level Maximum influence Readout of the maximum influence Actual infl on min vent Readout of the actual influence See Influence high RH on minimum ventilation High RH
61. fall outside the entered limits the control computer will initiate the action indicated at Action Overview gt MW gt gt gt tab page Alarm Water clock ee Amount alarm Action Minimum limit 6 Maximum limit per 0 per Delay max flow Permitted leak max ae _ Times Quantity Amount alarm Setting of the upper and lower limit of the amount in percentages At the end of a cycle the control computer checks if the right amount has been supplied If the amount falls outside the entered limits the control computer will initiate the action indicated Flow alarm Setting of the minimum and maximum amounts per time unit During the supply the control computer checks the flow speed If the flow falls outside the entered limits the control computer will initiate the action indicated Lumina 38 Clocks Delay max flow Setting of the time within which at the start of the cycle the flow may exceed the entered maximum This prevents an unnecessary alarm if the supply is started in an empty system Permitted leak max Setting of the amount that may be registered when the clock is inactive This is the absolute amount that may be lost as leakage during the time the clock is off Action Setting of how the alarm is dealt with e NONE The control computer will not send an alarm report and continues with the normal process LOUD The control computer stops the process and gives a loud alarm SILENT The control
62. flock Set up the animals as soon as they enter the house If control is based on the curve the control computer will use the settings from the curve If not enter these settings manually If there are no animals present the control computer will set this number to 0 The control and registration data will not be saved Note this data if you still need it Overview gt e gt Set up Animal data G 20029 SET UP Curve day Nbr of animals Date Lumina 38 Animal management Curve day Setting of the curve day number e Day number 0 do not control with the curve All control data must be entered manually The day number stays 0 during the lifecycle of the animals e Day number 1 or higher control with the curve The control computer increases this number by 1 every day at midnight At set up you usually start with day 1 If a higher day number is chosen control will start further along in the curve Nbr of animals Setting of the number of animals that have been set up Date Setting of the date The control computer only uses the Date for data registration The control computer starts control immediately after the animals have been set up even if a past or future date has been entered 6 3 Animal mortality The term mortality refers to sick or dead animals that have been removed from the house As mortality decreases the number of animals the controls must also be adjusted This can be done as follows e If contr
63. ge will appear on the screen Alarms can be set to LOUD or SILENT if required For nearly all the alarms the user decides the limits outside which alarms must be given Alarm statuses An alarm can have the following statuses e ALARM Active loud alarm e WARNING Active warning silent alarm e OFF FOR The user has noticed the alarm the alarm situation is still present e RECOVERED The control computer has automatically recovered the alarm the alarm situation is no longer present Alarm history As soon as the control computer gives an alarm the alarm is included in the alarm history The last 20 alarms with corresponding dates and times can be readout on tab page History 11 1 Dealing with alarms 11 1 1 Dealing with a LOUD alarm If the alarm system is active and a LOUD alarm occurs the siren will activate and the LED near the alarm key will flash red 1 Press once on the alarm key to display the alarm message on the screen The siren will fall silent at the same time 2 Then press within one minute once more on the alarm key to change the alarm status from ALARM to OFF for 00 15 This means the alarm has been noticed but the alarm situation is still present For the next 15 minutes the computer will not give an alarm again for this situation A new alarm will only be given if the alarm is briefly within then outside the alarm limits in this 15 minute period This time can be adjusted for alarms that require m
64. hanged This approach can be used with constant climatic conditions e Automatically based on the curve The animals grow which means the climate has to be regularly adjusted The changing temperature ventilation and RH can be set in a table adjusted to suit the weight and needs of the animals during their life cycle This table is called the curve See Curve Curves page 64 Examples of curves with the changing temperature RH and ventilation during the animals lifecycle Temperature Relative humidity Minimum ventilation 26 C DAG E items pia eatetnide M h animal 21 C 0 042 1 Day 700 1 Day 700 0 042 Weight 3308 Lumina 38 Daily management 4 Daily management This chapter contains information about general management The house management can be assessed quickly using the screen Overview Use the menu options to request data about the controls and make any changes to important control values This chapter only describes the most important control data Settings relating to control and influences will be explained in following chapters Only data important to you will appear on your control computer This has been set in the installation menus HOUSE SETUP This chapter explains all the management screens which may include screens that are irrelevant in your situation Skip any sections not of importance to you 4 1 Overview screen The control computer displays the Overview screen by default This screen is
65. he end time or duration of the cycle in tab page Times Time difference Setting of the time difference between this clock and the linked clock If the clock should start later enter a positive time duration e g 00 30 minutes Lumina 38 Clocks 5 2 Light clock The cycles actual clock status and a graph of the set times are shown on tab page Times Overview gt gt gt gt tab page Times Light clock 41 lt gt 100 Clock output skatus Status clack Clock output status Readout of the actual clock output status on or off Status clock Readout of the clock status ON or OFF The cycles are run in the same sequence as the table Cycle 2 will always be run after cycle 1 cycle 3 after cycle 2 etc The day change must always be before the first cycle and after the last cycle This is checked when the times are entered 5 2 1 Setting lighting times There are several light clocks They can be selected using the index keys D v The name of the clock set in the system settings will appear at the upper right of the screen Overview gt gt gt gt tab page Times Clock output status Status clack On Setting of the time the light must switch on Off duration Setting of the off time or the duration after which the light must switch off This depends on the system settings K If intermittent light has been selected in the system settings set the relevant times here With i
66. here is no influence This means a Bandwidth of 1 0 x 6 6 In this example the outside temperature is 10 This temperature is halfway between low outside temperature Start and low outside temperature End Lumina 38 Optimising controls using influences The control computer calculates a bandwidth of 1 5 Ventilation x 6 9 For a house temperature of 23 the control genns computer now calculates a ventilation percentage of V2 This ventilation percentage is lower than the V1 i original ventilation percentage V1 V2 Increase l Min lt lt _ _P Temp OT SIV HT STV BW 10 20 23 29 Overview gt 41 gt A gt tab page Influence Influence low outside Setting to indicate if the influence will be used temp Influence factor Setting of the factor used by the control computer to calculate the influence Calc infl low outside Readout of the actual influence temp Settings for the path this influence applies to are described in Settings for outside climate page 50 8 1 4 Influence low outside temperature on pressure or inlet position Prevent a cold drop by increasing the air speed through the air inlet Use one of the following influences e Low outside temperature influence on setpoint pressure The pressure influence applies when pressure measurement is used and the required pressure has been set to a value higher than 0 Pa e Low outside temperature influence on setpoint air inlets If there is n
67. ind storm infl on air Setting to indicate if the influence will be used inlet Actual wind influence Readout of the actual influence Overview gt aK gt gt tab page nfluence Tunnel Pressure infl on air inlet Setting to indicate if the influence will be used Wind storm infl on air Setting to indicate if the influence will be used inlet A wind influence can also apply to the controllable part in the same way Use this influence as follows e If the fans are on the lee side of the house the Control value M MT part will decrease The Factor influence wind side must be less than 1 e If the fans are on the wind side of the house the Control value M MT part will increase The Factor influence wind side must be higher than 1 Overview gt JS gt X gt tab page Influence M MT Part Wind storm Setting to indicate if the influence will be used infl M MT part Factor influence wind Setting of the factor used to decrease the Control value control part on the wind side side Factor influence lee side Setting of the factor used to increase the Control value control part on the lee side Actual wind influence Readout of the actual influence 8 3 3 Influence storm For extremely high winds a maximum control value can be entered As the wind blows harder the maximum control value will decrease until it reaches the Maximum storm limit This description applies to the controllable part vortex damper air inlets and ext
68. ither implicit nor explicit for this manual All risks are for the user This manual has been compiled with the utmost care If however you should discover an error please inform Fancom B V Art Nr 5911532 GB130715 Lumina 38 Table of contents Table of contents 1 General FEUER OND sereni aR EPEE O EE 1 1 1 Documentation with the control COMPUTEL ccceceeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeaeaeeeeeeaeaeeeeesaaaeeeeeeaaes 1 1 2 How to use this MU Gal ore cecat netics ceric vsacesesiccacaesvepcabuacies coon axeqeesoacaaeinnaventatneciaeannassetantectestainseeesasmanee cae 1 1 3 PANG OM NS OCS SIG cde const ote carseat ies riety Sentai aah EA E deaibra E A 1 1 4 CST FarmManage M eenean r a E a 1 2 LUMINA SO CHING COMPUTE sar sattti cece rtcenereneces ees ai aa 2 2 1 Symbols used in the control COMPUTEL ccccccccseeeeeeeeeeeeeeeeeeeeeeeeeaaeaeeeeeeeeeseaneeeeeeeessaaneeeeeeeeeas 2 2 2 Working with the control computer wiics scnsdventsncensedeamavensadeotinesckwote Scadletinudaswetinadesslotny dabaientoudeunedasnaeedace 3 3 Basic principles climate management s ssssnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnm 4 3 1 PMNS OEE A OIE T ENA AEA EAE A S E E E PENE O E E E E E T 4 3 2 MMT SEWN ATION seeren eene AEE EE AA E E NEE ANERER 4 3 3 PSG AE E EPE E P E T EI I P E TE E E P A AT 6 3 4 SOG aeaa E A E E E E 7 3 9 Relative NUMIQID s csscartessoneossde toesien eaa ee aSa ao aea eeina 7 3 6 HumiTemp an
69. l computer will run the following cycle to supply an extra amount Then the status of this cycle will be set to BLOCK The control computer will set the status to READY as soon as it has finished running the cycle on this day The cycles are run in the same sequence as the table Cycle 2 will always be run after cycle 1 cycle 3 after cycle 2 etc The day change must always be before the first cycle and after the last cycle This is checked when the times are entered 5 1 2 Setting water clock program The method of watering is called a water program E Overview gt z gt gt gt tab page Quantity Water clock art Program REGISTER Daily amount 6990 24 Program Setting the type of program e REGISTER Unlimited supply of feed and water as long as the clock is on e DOSE Limited the system stops supplying feed or water if the required amount has been given within the clock time If the required amount is not dosed out within the cycle an alarm can be given Req Readout of required amounts per cycle The daily amount is divided over the number of cycles Dos T Readout of dosing time how long the system requires to supply the required amount in the cycle This readout is only active with the program DOSE Lumina 38 Clocks 5 1 3 Dividing required water amounts in the watering cycles The amount of water supplied in a cycle is always registered Overview gt z gt gt gt tab page Quantity Water clo
70. livery Lumina 38 Advanced climate settings 7 Advanced climate settings This chapter covers the advanced settings in the control computer 7 1 Requesting and setting control settings After a menu option for specific data the control computer displays a number of tab pages with codes Certain tab pages concern a control others an influence This section explains what comprises a control It s better to read a screen concerning a control from top to bottom This shows you exactly how the computer has calculated the actual control value The computer usually shows the following data e Norm value or setpoint The setpoint is the value usually calculated by the computer based on the curve or setting in the combi table e Offset or Curve correction The offset is the difference between the setpoint and the required control value If the control value is changed the computer will automatically determine the offset The control computer adds the offset to the setpoint An offset is retained You can reset the offset to zero in edit mode If a curve is used the offset will be reset if the day number is set to 0 e Total of all influences See also Requesting Management amp Monitoring overviews page 31 For example temperature RH wind and pressure influences This total is also added to the setpoint or subtracted e Current value or control value The computer uses the control value to control the climate management system
71. m storm limit Setting of the maximum Control value during a storm vortex 8 4 Influences RH 8 4 1 High RH influence on minimum ventilation If house relative humidity is too high the control computer can increase minimum ventilation to disperse the excess moisture This extra minimum ventilation is only possible if the outside air is dry enough For this reason the control computer determines the absolute humidity content of the inside and outside air This influence starts to apply when house RH is higher than the Control value RH The control computer increases the minimum ventilation level by 1 and checks if the RH decreases If this is not the case it increases the minimum ventilation again by 1 This process continues until the house RH starts to drop Q Example High RH influence on minimum ventilation Setpoint minimum ventilation 10 Minimum Maximum influence 5 ventilation Minimum veniilation actual control value can increase to maximum 15 15 10 Set RH RH Relative humidity Overview gt al gt X gt tab page Vent Influence on min vent Setting to indicate if the influence will be used Maximum influence Readout of the maximum influence Overview gt 3 gt X gt tab page Influence Maximum Maximum factor on Setting of the factor used to limit the total of all influences on minimum ventilation min vent Lumina 38 Optimising controls using influences 8 4 2 I
72. m ventilation l Bandwidth _ gt Setpoint house Start temperature Temperature _ gt temperature ventilation Figure 1 Ventilation graph Lumina 38 Basic principles climate management The ventilation graph has the following zones e Heating zone The heating is on and there is minimum ventilation e Neutral zone The heating is off and there is minimum ventilation This neutral zone avoids the heating or additional ventilation activating due to slight temperature fluctuations This saves energy The Control value heating Setpoint house temperature and Start temperature ventilation are user settings These can be used to set the neutral zone e Ventilation zone The control computer gradually increases ventilation from minimum for example 20 to maximum for example 100 In the controllable ventilation range the controllable fans are used In the extra ventilation range the extra fans are used Combi table The control computer determines how the fans and air inlets are used based on the combi table The combi table has been set by your installer for your house 3 3 Heating The setpoint house temperature is the foundation for both heating and extra ventilation There is a margin above and below the setpoint house temperature the neutral zone In the neutral zone there is minimum ventilation and no heating Setting the neutral zone correctly saves on energy costs Heating Neutral Ventilation zo
73. mit If the setpoint air inlet exceeds the value of this setting the control computer determines the combi position corresponding to this air inlet position The entire ventilation control will be limited by this value This enables for example a Fancom air inlet to be limited to 70 in the winter to prevent it from tipping Maximum position air inlet Abs minimum factor air inlet 46s maximum factor air inlet Temp diff infl on air inlet Factor influence Actual temp diff infl Pressure inf on air inlet Factor influencel Factor influencel Actual pressure infl Windsstorm infon air inlet Factor influence wind side Factor influence lee side Setting of the factor used to calculate the lower limit of the total influence The sum of calculated influences for wind outside temperature temperature difference and pressure may not drop below the calculated lower limit Setting of the factor used to calculate the upper limit of the total influence The sum of the calculated influences for wind temperature difference and pressure may not exceed the calculated upper limit Setting if the measured temperature difference may correct the mutual positions of air inlets See Influence temperature difference on air inlets page 55 and Total influence on air inlets page 62 Setting of the factor used by the control computer to calculate the maximum influence during natural ventilation Readout of the calculated influence on Setpoint ai
74. ncing the control NONE LEE or WIND Setting of the maximum air inlet position Setting of the maximum ventilation level while cooling Setting indicating the number of air inlets to be used The total number of inlets installed is shown in brackets If the number of inlets used is less than the number of inlets installed the control computer corrects the opening For example if only 40 inlets of the total of 100 are in use and the calculated opening is 2 then the 40 inlets will open 100 40 x 2 5 Lumina 38 Advanced climate settings Caii Overview S S 1 gt tab page influence Inlet Maximum position air inlet Abs minimum factor air inlet Abs maximum factor air inlet Temp diff infl on air inlet Factor influence Actual temp diff infl Pressure infl on air inlet Factor influence Actual pressure infl Wind storm infl on air inlet Factor influence wind side Factor influence lee side Actual wind influence Maximum storm limit Actual storm limit Ventilation Ventilation 46s maximum factor air inlet Temp difinfl on air inlet Factor influence Actual temp diff inl Pressure inf on air inlet Factor influencel Factor influencel Actual pressure infl Windstorm infon air inlet Factor influence wind side Factor influence lee side Actual wind influence Maximum storm limit Actual storm limit Inet Influence Tunnel Influence Setting of the air inlet position li
75. ne zone zone D oN Ventilation p Hysteresis 20 19 20 21 22 26 30 Temperature gt gt Figure 2 Ventilation graph Setpoint house is 21 TC the control value heating is 20 5 TC The control computer uses a hysteresis when controlling the heating This prevents the heating being activated deactivated with slight temperature fluctuations The hysteresis in the figure is 1 C The control computer activates deactivates the heating as follows e Heating ON if the house temperature falls below the hysteresis in the example 19 5 C e Heating OFF if the house temperature rises above the control value heating in the example 20 5 C Several heating units The house or section can be divided into zones which can be heated separately Per zone temperature sensors can be linked to the heating for that particular zone Heaters can also be linked together The linked heater then shadows possibly using a certain offset the heating values of the first heater The feature can also be used for low high control The control computer will activate the heaters one by one Separate setpoint heating The previous example assumed one setpoint house temperature for ventilation and heating The heating can also be given a separate setpoint the so called extra temperature The extra temperature can be entered in the curve This may be necessary to control floor heating In this case
76. nfluence high RH on heating When humidity in the house increases the control computer can increase the Control value heating The increase of Control value heating will take place within a certain period of time This period is determined by the settings Start and End During this period the heating temperature increases linearly So the higher the RH the higher the increase of Setpoint heating Example High RH influence on heating Setpoint heating 20 0 C Heating Actual RH 70 Start 65 22 0 C H End 80 Maximum influence 2 0 C 20 7 C 20 0 C l Relative Start RH End humidity 65 70 80 The measured relative humidity in the house is 70 This is 1 3 of the way between Start End The control computer calculates an influence of 2 0 3 0 7 C Control value heating will be 20 0 0 7 20 7 C The control value can never become higher than 20 0 2 0 22 0 Overview gt Sc gt aK gt tab page Heat Infl high RH on heating Setting to indicate if the influence will be used e NO e YES Control RH using heating e YES First try to control RH by increasing minimum ventilation If this has no effect the computer will use extra heating If the outside air is not dry enough the computer will use extra heating immediately Maximum influence Readout of the maximum influence Setpoint RH offset RH path within which heating may increase This is the offset compared to th
77. nimal 1 00 0 96 0 93 0 89 0 85 0 81 0 78 0 74 0 70 Max 50 80 100 100 T1 T2 T3 T4 T4 M h animal Maximum ventilation 456789 0 042 Weight 3 308 Lumina 38 Curves Ventilation in percentages With settings based on percentages the minimum and maximum ventilation are entered as a compared to the maximum installed capacity 100 Minimum and maximum ventilation are entered per day number in the curve In this situation ventilation is not based on animal weight but on age Q Example Curve in Bending Weight kg Ventilation point Min Max Minimum ventilation 1 0 042 3 30 G0 ev ceccceeeceeeeseeeeeeeeeeeeee sy 9 2 0 154 7 40 7 3 0 393 15 50 ME 7 1 4 0 765 20 60 3 5 1 200 25 70 6 1 816 32 se 1 Day number 56 7 2 386 40 100 Maximum ventilation 8 2 8 3 49 100 zj 789 9 3 308 60 100 1 Day number 56 The bending points of the minimum and maximum ventilation curves can be entered in the screen below Overview gt 4 gt B gt tab page Vent Curve G 2 342kg weight mafhikg Yo Ya ai Oa PaT o o00 ble odoo ylit Went J Graph d WF A graphical presentation of the curves is shown in the screen below Oveview gt 4 gt E gt tab page Graph Vent 0 900 m3 hikg G 2 342kg 100 Lumina 38 Curves 10 3 Settings for water feed ratio The bending points of the curve for the water feed ratio can be entered in the screen below Overview g
78. nimum ventilation House temperature HT 23 C Ventilation Setpoint minimum ventilation 30 No Outside temperature OT 10 C influence ae Influence path low outside temperature Max 0 8 Start 15 C End 5 C Influence factor 0 8 Temp End OT Start 5 10 15 Lumina 38 Optimising controls using influences The settings low outside temperature Start low outside temperature End and nfluence factor determine the minimum ventilation setpoint decrease The control computer calculates a new Setpoint minimum ventilation from these settings The new setpoint is calculated as follows e With an outside temperature of 5 C or lower the influence is maximum This means a new setpoint of 0 8 x 30 24 e Atan outside temperature of 15 C or higher there is no influence This means a Setpoint minimum ventilation of 1 0 x 30 30 In this example the outside temperature is 10 C This temperature is halfway between low outside temperature Start and low outside temperature End The control computer calculates a Setpoint Ventilation minimum ventilation of 0 9 x 30 27 For a House temperature of 23 C the control computer now calculates a ventilation percentage of V2 This ventilation percentage is lower than the original ventilation percentage V1 OT STV HT STV BW Overview gt aK gt a gt tab page nfluence Influence low outside Setting if a measured low outside temperature may influence Setpoint minimum v
79. ntermittent light the lights can be activated for 15 minutes for example at the beginning of each hour and then deactivated for the other 45 minutes On is the time that intermittent light starts Duration is the time the light is on within the repeat time RepeatT is the repeat time after which light activation will be repeated Times is the number of times within a 24 hour period that the light will be activated 5 2 2 Setting light control Lights can be gradually activated and deactivated on tab page Dim Using light measurement with a light sensor If a light sensor has been installed in the house the light level can be set to light intensity Lux instead of to a percentage This is particularly important if natural daylight can enter the house The intensity of the lights can be adapted to suit the natural light levels Lumina 38 Clocks Overview gt MW gt gt gt tab page Dim i Lghtoo1 Light clock E 41 X 100 Increase time estes High level 100 o Decrease time satsi Low level D wo Increase time Setting of the time in which the light goes from low level Off to high level On High level Setting of the maximum light intensity This can be entered in percentages with light measurement Lux based control is also possible Decrease time Setting of the time in which the light goes from high level On to low level Off Low level Setting of the minimum light intensity This can be entered in percen
80. o change the percentage into a maximum tunnel phase T1 T2 etc If the climate is controlled using the curve the actual minimum ventilation level can never be lower than the minimum norm in the curve 4 4 Relative humidity The control computer shows the relative humidity RH in the overview screen A F38 Overview lt 1 21 0 M PHASE 4 1500 m3 m CO 2 mMm COC 2 ms CO 2 Mme CH 2 100 100000000 Mi 4 M2 C oe 19 5 3089 36 4 aame 28 Apr ey 20029 ST gt The control computer always shows the latest data including all offsets and influences The humidity settings apply to Humidification Ventilation Carbon dioxide CO2 OREA Lumina 38 Daily management 4 4 1 Relative humidity graph This graph shows the relative humidity level with respect to the temperature and ventilation measurements Overview gt So Sq Control value humidity 85 The control computer activates a humidifier if the actual RH drops below the Control value humidity Enter the Control value humidity manually The control computer does not determine this based on the curve Curves page 64 Control value RH 68 The Control value RH is the maximum permitted RH If control A is based on the curve the control computer determines the setpoint based on the curve 4 aK The control computer can lower a too high RH noe extra heating or ventilation The actual influence on ventilation 6 and heating lt gt
81. o pressure measurement a low outside temperature influence can be set to squeeze the inlets during cold weather Low outside temperature influence on setpoint pressure The computer increases Contro value pressure with a too low outside temperature cou Example Low outside temperature influence on setpoint pressure Setpoint pressure 15 Pa Pressure Influence path low outside temperature Start 15 C End 5 C Maximum influence 4 Pa Actual outside temperature OT 10 C The maximum influence on Setpoint pressure is 4 Pa This means the under pressure can rise to 19 Pa The actual Outside outside temperature is 10 C precisely End OT Start temp midway in the influence path The Contro 5 10 15 value pressure is 15 Pa 2 Pa 17 Pa Overview gt oS gt Infl low outs temp on Setting to indicate if the influence will be used press Maximum influence Readout of the maximum influence Act outside temp infl Readout of the actual influence See also Total influence on air inlets page 62 See for the path to which this influence applies Settings for outside climate page 50 Lumina 38 Optimising controls using influences Low outside temperature influence on setpoint air inlets The control computer lowers the Control value air inlets with a low outside temperature This description applies to both the inlet and the extra inlet ou Example Influence low outside temperature on air extra inlet Se
82. ol is manual day number 0 enter the new settings manually e f control is based on the curve day number 1 or higher the control computer will automatically adjust the settings Overview gt A gt Mortality Animal data G 20029 MORTALITY Mbr of animals oO 12 cay Date i Nbr of animals Setting of the number of removed animals The number of present animals will appear between brackets Date Readout of the current date Lumina 38 Animal management 6 4 Delivering animals When animals are delivered they leave the house These animals are booked out of the control computer Animals can also be delivered at intervals When all the animals are delivered the control computer sets the day number to 0 and switches to control based on the empty settings page 67 All offsets are set to 0 Overview gt SI gt Deliver Animal data G 20029 DELIVER Deliver all animals feed place Cancel oe Peer ne Enter delivery data as follows 1 Select the menu Animal data 2 Press the key at Deliver 3 Select one of the two options Deliver all animals To deliver all the animals in a house at the same time 1 Press the key at YES 2 Press the key at Ready to confirm the delivery Deliver a group of animals To deliver a group of animals in a house 1 Press the key at NO 2 Enter the number of animals to be delivered and then press the Enter key 3 Press the key at Ready to confirm the de
83. olute maximum temperature alarm temperature temperature alarm Sensor faulty Minimum temperature Start Maximum temperature Sensor faulty 99 9 difference alarm temperature ventilation d fference alarm 199 9 i lt gt lt gt lt gt T i Minimum Bandwidth Maximum EMPER difference difference 11 5 Setting pressure alarms Setting alarm limits For a pressure alarm set the relative alarm limits in relation to the Contro value pressure These limits must not be exceeded under any circumstance Set the pressure alarm limits e Min The control computer will give a minimum pressure alarm if the measured under pressure is lower than the set Minimum pressure alarm This only applies if the Control value pressure has been set to a value above 0 Pa e Max The control computer will give a maximum pressure alarm if the measured under pressure is higher than the set Maximum pressure alarm This only applies if the Contro value pressure has been set to a value above 0 Pa Pressure sensor faulty The control computer will give an alarm if the pressure sensor is incorrectly connected or faulty The display shows the pressure concerned 11 6 Setting RH alarms Setting alarm limits The RH alarm limits must not be exceeded under any circumstance Set the RH alarm limits e Min The control computer will give a minimum RH alarm if the measured RH is lower than the set absolute Minimum RH alarm e Max The
84. ontrol value setpoint heating with correction by the influence Analog control Depending on the settings made by the installer Actual control Readout of the actual percentage on which heating is currently being controlled Minimum setting Setting of the minimum air inlet position Relay control Depending on the settings made by the installer Status Readout of the actual heating status on or off Total ON time Readout of the total time that the control was on Overview gt N gt 6 gt tab page nfluence High RH influence Maximum influence Calculated influence High RH Influence Setting if the RH may influence the Setpoint Influences RH page 58 Maximum influence Readout of the maximum influence Calculated influence Readout of the calculated influence of the setpoint heating Lumina 38 Advanced climate settings The computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Overview gt N gt 6 gt tab page M amp M Temperature J p 22 1 Min at Heat temp time time 0 00 0 00 0 00 0 00 5st Influence Mem J Min temp Readout of the calculated minimum temperature At time Readout of the moment at which the maximum temperature was reached Heat time Readout of the on time of the heating 7 6 Ventilation settings The actual ventilation position
85. ore time to be remedied If you do not press the alarm key again within 1 minute the alarm will reactivate In this case start again at step 1 to switch off the alarm 11 1 2 Dealing with a SILENT alarm If the alarm system is active and a SILENT alarm occurs the LED near the alarm key will flash green When the alarm key has been pressed 1x the alarm screen will appear with the warning Press alarm key 2x to remove the warning from the screen 11 1 3 An alarm recovers With LOUD alarms the alarm situation can be recovered after a while by the user or the control computer In the event of a LOUD alarm the siren will activate first A arm status ALARM If the value responsible for causing the alarm comes within the alarm limits again the situation is considered recovered and the alarm is over The siren automatically deactivates and the alarm status changes into RECOVERED This message remains visible so the user can see what caused the alarm Press alarm key 2x to remove the message from the screen Lumina 38 Alarm 11 2 Deactivating the alarm system The controller alarm can be fully deactivated Do this e g when the house is empty The controller will give a warning to indicate that the entire alarm system has been deactivated If the alarm system is deactivated the control computer will not generate any alarm messages except system alarms Never switch the alarm system off during regular operation Deactivate the alarm sy
86. orm limit 100 o Control value vortex 100 Factor vortex on vent part 2 0 Min Vortex 0 So Maximum storm limit vortex 100 o Minimum Maximum Influence IMiMT Partl Influence Vortex Setpoint vortex Readout of the Setpoint vortex without wind influence correction The control value of the vortex damper is linked to the control value of the controllable part If the control value controllable part value increases for example the vortex damper position will increase accordingly Use Factor vortex on vent part to increase the control value of the vortex damper quicker or slower than the control value of the controllable part If the control value vortex increases quicker it will be fully open before the controllable part has reached its maximum control value Storm limit Readout of the influence during a storm on the controllable part of the ventilation Control value vortex Readout of the control value vortex damper after correction by influences offset and storm limit Lumina 38 Advanced climate settings 7 6 2 Factor vortex on vent part Setting of the factor used by the control computer to calculate the Setpoint vortex based Min Vortex Maximum storm limit vortex on the Setpoint cont part Setpoint vortex Setpoint cont part x Fact vortex Setting of the minimum air inlet position Setting of the maximum Control value during a storm Example Control value vortex Setpoint controllable part 40 Fa
87. perature is lower than this setting the calculated ventilation will equal Minimum ventilation If the temperature rises above the set Start temp ventilation ventilation will increase Ventilation can increase until the set Maximum ventilation actual Readout of the difference between Start temp ventilation and the temperature above which ventilation is at maximum This value is without any influences applying Readout of the total correction by influences Setting of the bandwidth after influences applying Readout of the temperature above which ventilation is at maximum This value is based on the Start temp Ventilation and the Calculated bandwidth Readout of the offset between the set control value and the setpoint Setting of the temperature from which tunnel position 1 applies if the temperature rises Overview gt 1 gt A gt tab page Influence Influence factor Maximum bandwidth Influence low outside temp Calc infl low outside temp Influence high outside temp Calc infl high outside temp Tot infl on bandwidth Max night influence Actual influence Influence factor Maximum bandwidth Influence low outside temp Calc inflow outside temp Influence high outside temp Calc inf high outside temp Tot infl on bandwidth Max night influence Actual influence Set__Linfluence M amp M sensors O Setting of the factor used by the control computer to calculate the maximum influence during nat
88. put status on or off Status clock Readout of the clock status ON or OFF Manual interruption Select the required option per feeding cycle in the Status column e BLOCK The cycle is blocked this cycle will not be activated The amount of intended to be given during this cycle will not be supplied e FREE Normal situation The clock may activate this cycle The control computer places the status to READY if the cycle is run within the current day The control computer can set the status to P BLOCK This means that the feed place is blocked because no animals have been set up You must set up animals first The status will then change to FP FREE Lumina 38 Clocks 5 1 1 Setting watering times E Overview gt A gt gt gt tab page Times Water clock a e Clock status FP FREE Clock output status Status clock ON 5 00 i FREE FREE FREE FREE 4 E iz i J Quantity Alarm Link Jo On Setting of the time the water valve must open Off Duration Setting of the off time or the duration after which the water valve must close This depends on the system settings Status Setting of the status per cycle e FREE The control computer can run the cycle e BLOCKED The control computer will skip the cycle e SKIP The control computer will skip the following cycle and then set the status of this cycle to FREE The amount intended to be given during this cycle will not be supplied e ONCE The contro
89. r inlet Setting if the measured pressure may influence the inlet position This influence can only be used if a pressure control is used Setting of the factor used by the control computer to calculate the maximum influence during natural ventilation Readout of the measured pressure Setting if wind and or storm may influence the inlet position Setting of the factor used to decrease the Control value control part on the wind side Setting of the factor used to increase the Control value control part on the lee side Readout of the calculation of the actual influence based on the wind Setting of the maximum influence during a storm on the setpoint control part See Influence storm page 57 Readout of the actual storm limit maximum control value Lumina 38 Advanced climate settings Caii Overview gt aK gt gt tab page Tunnel Setpoint inlet Offset inlet Total influence Limited by Control value inlet Wind direction Max inlet position Max position while cooling Ventilation 14 o 0 Yo Setpoint inlet Offset inlet NONE 14 S Bees ae Control value inlet Max inlet position Max awhile cooling M phase Inlet Influence influence o Readout of the setpoint for the control part without influences and offsets Readout of the offset between the set control value and the setpoint Readout of the total correction by influences Readout of the method used to limit maximum ven
90. ra inlets but these can be set separately Ez The actual wind direction is not important with the storm influence q Example Influence storm on air inlets Influence path storm pos 7m s Low 14m s High 60 Maximum storm limit If wind speed equals or is lower than 7m s the Control Air inlet value air extra inlet equals the Setpoint air extra inlet If wind speed increases to 14 m s the control computer Max will decrease linearly the Control value air extra inlet to 60 With wind speeds higher than 14m s the Control value air extra inlet remains 60 If the actual air extra inlet position is smaller than the set 60 saa E Maximum storm limit this influence will not apply Low High 7m s 14m s Wind speed Lumina 38 Optimising controls using influences Caii Overview gt X gt 1 gt tab page nfluence Inlet Wind storm infl on air Setting to indicate if the influence will be used inlet Overview gt JS gt 2 gt tab page Influence M MT Pari Wind storm Setting to indicate if the influence will be used infl M MT part Max storm limit Setting of the maximum Control value during a storm M MT part Actual storm limit Readout of the actual storm limit maximum control value The Setpoint vortex damper is linked to the Control value M MT part Any wind influence on the controllable part is calculated to the vortex damper control via a factor Overview gt X gt aK gt tab page Vortex Maximu
91. rol computer sets the status to READY when it has finished running the cycle on this day Lumina 38 Animal management 6 Animal management Animal management covers all actions which result in a different number of animals Setup animals The control computer will control the climate based on the curve if a curve is used At set up enter from which curve day the climate must be controlled e Registering mortality The controls that depend on the number of animals will be adjusted e Delivering animals When some of the animals leave the house the controls will be adjusted If all the animals are delivered the control computer switches to control based on the empty settings 6 1 Animal management data The overview screen shows the number of animals present in the house More data is displayed in the screen below Overview gt a Animal data G 20029 20029 a 0 Mortality Vo Mortality Deliver The Animal data screen displays the total numbers set up mortality and delivered The date of the last change is shown behind each piece of information The control computer calculates the data shown as follows E Number of animals present Set up Delivered Mortality Mortality percentage Total mortality rate Number of animals set up x 100 When animals have been delivered the control computer shows the data of the delivered animals This old data is saved until new animals are set up 6 2 Set up
92. rve If you assign the right curve the control computer will automatically control how feed or water is given These settings can be differed from if for example more or less feed or water must be given 3 7 2 Light Several light clocks are available per house These clocks can be switched inter dependently and independently Lighting can be activated and deactivated and controllable lighting can also be controlled Controllable lighting can be controlled in percentages This allows natural light patterns to be imitated The lighting in the house can also be made dependent on the measured light intensity using a light sensor This allows the light intensity to take the incidence of natural day light into account Light schemes The switching pattern for the light clocks including the high and low level can be set in a curve A light scheme is basically the same as a fixed setting for the time clock with on and off times and a light intensity Several light schemes can be set These schemes can be assigned to certain days in the animals lifecycle From that day the light scheme will be applied The light scheme can be adjusted here per day number The example below uses three light schemes q Example light schemes Normal light clock setting ON OFF Increase time 00 10 00 _ 06 00 12 00 High level 90 S 16 00 20 00 Decrease time 00 30 00 Low level 20 2 Time Two schemes are defined Scheme 1 Curve day 7 ON
93. s are slight thanks to efficient use of the equipment Ventilation according to the MT T concept features the following ventilation phases e Minimum ventilation M phase e Transition M T phase e Tunnel ventilation T phase In each ventilation phase your ventilation system is used in a certain way This is explained in the sections below If only minimum or only tunnel ventilation is used certain of the sections below can be ignored The ventilation systems shown are some examples of the possibilities 3 2 1 Minimum ventilation M phase In this phase the control computer uses fans combined with air inlets The tunnel inlets are closed In places without air inlets the natural curtain together with the tunnel inlets can provide minimum ventilation Ridge ventilation is used in this example The air inlets distribute the fresh air well through the house Thanks to the minimum exhaust no energy is wasted One of the fan types below can be used e Linear controllable fans The control computer controls ventilation using a percentage for example from 30 to 100 The control computer can increase ventilation precisely up to the required level e Modulating fans and on off fans The other fans are on off fans The control computer can use these as modulating fans The control computer activates deactivates the fans using a fixed pattern This supplies fresh air in short repeated periods Example Modulating ventilation Q The control
94. s can also be accessed via Overview gt A gt Q gt amp 5 3 Extra clock The extra switch clock can be also used to activate a different process than the feed clock water clock and light clocks The cycles actual clock status and a graph of the set cycles are shown in the screen below Overview gt 4 gt gt KO ClockO01 Switch clock w Clock status FP FREE Clock output status Status clock ON 10 00 11 00 FREE 15 30 16 30 FREE x00 6 00 20 00 25 00 FREE T Clock status Readout of the current clock status This status can be BLOCK FREE FP FREE or FP BLOCK The control computer can set the status to FP BLOCK This means that the feed place is blocked because no animals have been set up You must set up animals first Clock output status Readout of the actual clock output status on or off Status clock Readout of the clock status O V or OFF On Setting of the required on time Off Duration Setting of the off time or the duration This depends on the system settings Status Setting of the status per cycle e FREE The control computer can run the cycle e BLOCKED The control computer will skip the cycle e ONCE The time period will be run once on the next occasion that the on time of the time period is reached Afterwards the control computer sets the status to BLOCK e SKIP The time period will be skipped next time Afterwards the control computer sets the status to FREE The cont
95. set Setting of the end point as an offset compared to the Contro value house between brackets Followed by the readout of the outside temperature at which the influence will be at maximum Decr high OT infl Setting if the high outside temperature influence should decrease within a certain amount of time DURATION or if the decrease should be completed at a certain defined time ENDTIME lf the outside temperature is lower than the start temperature ventilation a high outside temperature will no longer influence the bandwidth after the set time Switch windspeed Readout of the switch wind speed If the wind speed exceeds this value a relay if assigned will be activated Influence path wind Setting of the lower limit Siar above which the wind influence applies speed Setting of the upper limit End above which the wind influence is maximum Influence path storm pos Setting of the lower limit Low above which the wind influence applies Setting of the upper limit High above which the wind influence is maximum 8 1 2 Influence high outside temperature on bandwidth ventilation On a warm summer day ventilation is at maximum At night or after a thunder storm the outside air often cools down rapidly This can result in too much cold air entering the house causing the house temperature to drop Avoid this kind of situations using the nfluence high outside temp By setting this influence the bandwidth will become larger as the t
96. stem as follows 1 Press the alarm key 2 Change the Alarm system status to OFF The screen shows that the alarm system has been deactivated A corresponding alarm message will also appear in the Alarm overview The LED near the alarm key will flash green Reactivate the alarm system by changing the Alarm system to ACTIVE The alarm message stating that the system has been deactivated will be cleared from the Alarm overview 11 3 Testing the alarm system Test the alarm system as follows 1 Press the alarm key 2 Change the Alarm system status to TEST The control computer prepares an alarm message This appears in the alarm overview and can be cleared by pressing the alarm key The status of the alarm system will immediately revert to ACTIVE Fancom advises testing the alarm system weekly for correct functioning During the test the control computer will give a loud alarm 11 4 Setting temperature alarms Certain settings for temperature alarms must be set at gt tab page Settings Setting absolute temperature alarms The absolute temperature alarm limits must not be exceeded under any circumstance Set the absolute temperature alarm limits e Min lf the house temperature is lower than the set absolute minimum temperature the control computer will give a minimum temperature alarm e Max If the house temperature is higher than the set absolute maximum temperature the control computer will give a maximum temperature alarm
97. sults animals have to stay in their comfort zone This comfort zone depends on a number of factors including temperature relative humidity and airspeed HumilTemp can correct the temperature based on the actual relative humidity in combination with the actual temperature The effect of the HumiTemp can be controlled by the following factors e Age e Minimum correction e Maximum correction 3 7 3 7 1 Lumina 38 Basic principles climate management When HumiTemp is activated the control works on the HumiTemp instead of the average house temperature Setpoint RH Temperature Ayupiuny eajejey House temperature 14 00 Time 20 00 Figure 3 Example Humi Temp Setpoint RH Setpoint RH RH Measured RH House temperature Measured house temperature HumiTemp Measured house temperature after HumiTemp corrections On the left side of the graph the RH is below the setpoint RH Therefore HumiTemp is significantly under the measured house temperature On the right side of the graph the RH is measured the setpoint RH Therefore HumiTemp is significantly above the measured house temperature Windchill N E T The Net Effective Temperature also called windchill is the temperature that the animals experience Itis a combination of temperature humidity and airspeed in the house N E T appears on the screen as an additional icon little chicken thermometer Sh Clock The control computer has a number of clocks used to activate
98. system enabling immediate intervention if a process does not proceed as expected 2 1 Symbols used in the control computer Curve day number On Modulating Off House temperature Setpoint house temperature Night correction Ventilation RAD ceed Fan status na Ventilation M MT part analog amp Ventilation M MT part relay XI Ventilation temperature ol Cooling Pressure 4 Heating VO Temperature overview with minimum and maximum measured temperatures Temperature overview heating is active Temperature overview cooling is active S 5 Inlets se Humidification R RH house oR RH outside lt i Outside conditions S Tunnel inlet ve Management G Animal data Graph Lumina 38 Lumina 38 climate computer h Weather vane sep N E T temperature 2 2 Working with the control computer As standard the control computer displays the screen Lumina 38 Overview This screen shows a total overview of the actual process status and of all the equipment controlled by the control computer The overview relates to the controls built into the control computer The Overview is also a menu which can be used to request more control data This is explained in the following section Ro The screen Lumina 38 Overview will be referred to as Overview in the rest of this manual The illustration below shows an example of the Overview This may differ from your screen as the control computer only shows parts that h
99. t Mi gt i gt tab page W F House 1 A 4 Curve Daynr Feed Water WF animal fanirnal Ack 41 0 194 0 349 1 80 f 100 0 E 100 0 4 5 5 ots a 5 ats 5 te 1 Fi oO O ao a e p p j j j j Actual curve Graph vent J Graph wir 10 4 Climate management at the start of the lifecycle 10 4 1 Empty settings The empty settings are the settings that apply on day number 0 On day number 0 the control computer only uses manual settings and not the curve When the house is empty you probably only use minimum climate settings for example only the heating When all the animals have been delivered the control computer sets the day number to 0 and controls according to the empty settings The control computer also sets all offsets to 0 Entering empty settings 1 Overview gt z 2 Change the Day nrinto 0 The control computer automatically starts controlling according to the old empty settings These values are saved in the control computer 3 Return to Overview and check the settings Change as necessary See also Set up animals Set up flock page 28 10 4 2 The correct climate before setting up animals As soon as the animals have been set up the climate can be controlled based on the curve Curves page 64 The climate can also be set manually Control is not yet curve based This process can also be started earlier for example if you want the house to reach a certain tempera
100. t of the minimum or maximum measured concentration At time Readout of the times the minimum and maximum were reached 7 9 NH3 settings The control computer can measure the concentrations of NH3 If the concentration of NH in the house is too high the control computer can increase minimum ventilation to disperse the excess This influence starts to apply when the NH concentration in the house is higher than the Setpoint NH3 Overview gt gt gt tab page NH3 Ventilation Setpoint NWH3 Setpoint NH3 Setting of the concentration level above which ventilation must be activated The control computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Overview gt gt 8 gt tab page NH3 M amp M Ventilation 3 68 ppm Max at HHS time CRAG m OOOO Min Max NH3 Readout of the minimum or maximum measured concentration At time Readout of the times the minimum and maximum were reached Lumina 38 Advanced climate settings 7 10 Actual data The tab page Actual contains the actual setpoints originating from the curve These values can be changed If the curve is not used enter these values manually If the curve is used the control computer shows two columns with figures The column on the right shows actual setpoints The column on the left shows the offsets on the setpoints
101. tages with light measurement Lux based control is also possible 5 2 3 Linking lighting times Clock times can be linked to another clock This means that the times depend on another clock Linking clocks is only possible if this has been set in the system settings The settings on tab page Link differ per setting of the type of link Overview gt HW gt gt gt tab page Link Light clock qt Light clock 41 gt 100 41 lt gt 100 Type dependent Type dependent IDENTICAL Times depend on Type dependent Times depend on On time dependent Off time dependent Lumina 38 Clocks Type dependent Setting of the type of dependency e NONE The clock is not linked to another clock You must enter the clock times e IDENTICAL The clock times are adopted from the clock to which this clock is linked e TIME The clock times are adopted from the clock to which this clock is linked However the times of the light clock will be shifted compared to the clock to which it is linked Times depend on Setting of the clock type and clock index using the and key from which the times must be adopted On time dependent Setting the link of the on time to the entered clock If NO is selected enter the end time or duration of the cycle in tab page Times Time difference Setting of the time difference between the clock times and the linked clock If the clock must start earlier enter a neg time duration e g 00
102. tilation Setting of the calculated control value after correction by influences offset and storm limit Readout of the wind direction actually influencing the control NONE LEE or WIND It is possible to link the maximum ventilation to the presence of animals in the house Your installer can set this function Setting of the maximum air inlet position Setting of the maximum ventilation level while cooling Overview gt X gt gt tab page influence Tunnel Abs minimum factor air inlet Abs maximum factor air inlet Pressure infl on air inlet Factor influence Actual pressure infl Ventilation Abs minimum factor air inlet 46s maximum factor air inlet Pressure inf on air inlet Factor influencet Factor influencel Actual pressure infl Windstorm infon air inlet Factor influence wind side Factor influence lee side Actual wind influence Maximum storm limit Actual storm limit Inlet Influence Tunnel Influence Setting of the factor used to calculate the lower limit of the total influence The sum of calculated influences for wind outside temperature temperature difference and pressure may not drop below the calculated lower limit Setting of the factor used to calculate the upper limit of the total influence The sum of the calculated influences for wind temperature difference and pressure may not exceed the calculated upper limit Setting if the measured pressure may influ
103. tpoint air inlet extra inlet 50 Inlet Influence path low outside temperature Start 15 C 0 RERA End 5 C l 45 Factor influence 0 8 2 i Actual outside temperature OT 10 C 40 i l l Outside End OT Start temp 5 10 15 The factor influence is 0 8 The Control value air extra inlet can therefore be lowered to 0 8 x 50 40 The actual outside temperature is 10 C precisely midway in the influence path The contro value airextra inlet is then 45 N N Overview gt gt gt tab page Influence Inlet Temp diff infl on air inlet Setting if the measured temperature difference may correct the mutual positions of air inlets See Influence temperature difference on air inlets page 55 and Total influence on air inlets page 62 Actual temp diff infl Readout of the actual influence Pressure infl on air inlet Setting if the measured pressure may influence the inlet position This influence can only be used if a pressure control is used Wind storm infl on air Setting if wind and or storm may influence the inlet position inlet See also Total influence on air inlets page 62 Settings for the path this influence applies to are described in Settings for outside climate page 50 8 1 5 Influence low outside temperature on minimum ventilation This influence prevents a cold drop by lowering the minimum ventilation when the outside temperature is low cou Example Influence low outside temperature on mi
104. ture before the animals arrive Do this by e Changing the empty settings Use day number 0 and adjust the climate settings manually e Activate climate management according to the curve earlier Enter a negative day number The control computer will continue to control the climate based on the empty settings The control computer increases the day number by 1 each day and skips day number 0 After a few days the control computer reaches day number 1 and will start controlling the climate based on the curve Example Start using curve at midnight On Thursday enter Day number 4 The control computer increases this number by 1 every day at midnight Th Fr Sa Su Mo 4 3 On Monday at 00 01 the day number has value 1 and the control computer will start controlling the climate based on the curve Lumina 38 Alarm 11 Alarm Request the alarm overview using the alarm key There are three tab pages under the alarm key 1 Overview to readout the status 2 Settings to change the alarm settings 3 History to readout the last 20 alarm messages Types of alarm There are two types of alarm 1 LOUD A loud alarm means a report is shown on the screen and a siren is sounded if connected Take action immediately 2 SILENT With a silent alarm warning a report will appear on the screen This type of alarm is usually less serious An active process can be stopped if required With both types an alarm messa
105. ural ventilation Readout of the maximum possible bandwidth This is the bandwidth if the influence outside temperature is maximum Setting if a low outside temperature may influence the bandwidth Readout of the influences above Setting if a high outside temperature may influence the bandwidth start temperature ventilation or section temperature Readout of the influences above Readout of the total correction by influences Setting of the maximum influence on temperature during night correction If the light level gradually increases or decreases the influence will also be applied gradually Readout of the actual night correction influence Lumina 38 Advanced climate settings The computer shows certain historical data on tab pages M amp M Management amp Monitoring The control computer updates the overviews every day The most recent data appears at the top Overview gt N gt Ky gt tab page M amp M Temperature TI 221 Min at Max at temp time temp time fe 0 01 22 1 0 01 22 1 f O 01 aay 0 01 256 7 1630 _ 5et Influence M amp M J sensors Jo Min Max temp Readout of the measured minimum and maximum temperature At time Readout of the times the minimum and maximum were reached Overview gt N gt Ky gt tab page Sensors Temperature Ty 221 megi 22 1 i Sensor 1 Set influence mem Sensors Readout of the current temperature of the individual sensors 7
106. use temperature Setpoint house Ventilation temperature HT 19 Max night influence 1 Os a er a ea eee oe At night the control computer adjusts the house temperature setpoint to 19 1 20 If the linked light clock gradually dims the temperature will be adjusted at the same rate Min Temp HT STV STV BW HT STV STV BW Overview gt N gt X gt tab page nfluence Max night influence Setting of the maximum influence on temperature during night correction If the light level gradually increases or decreases the influence will also be applied gradually Actual influence Readout of the actual night correction influence 8 9 Total influence on air inlets Total influence ts the sum of all influences The control computer can limit this total influence with a Minimum factor and a Maximum factor oo Example Total influence on air inlet Setpoint air inlet 30 Abs minimum factor air inlet 0 5 Abs maximum factor air inlet 1 5 The control computer calculates a minimum limit of 0 5 x 30 15 and a maximum limit of 1 5 x 30 45 The control computer calculates the following influences e Influence temperature difference 5 e Influence pressure 5 e Influence wind 7 The total influence is 17 The Control value air inlet will then be 30 Setpoint air inlet 17 Total influence 47 However the control computer will m i the actual Control value air inlet to 45
107. will be used Max vent while cooling Setting of the maximum ventilation level while cooling 8 6 Influence pressure on air inlets If pressure the house in the house is too low the control computer will close the air extra inlet further to raise the pressure in However if pressure becomes too high the control computer will open the air extra inlet further to lower the pressure in the house To prevent the inlet opening or closing too far a limit can be set using two influence factors Factor influence and Factor influence Example Influence pressure on air inlet Measured pressure 5Pa Setpoint air inlet extra inlet 30 Factor influence 0 8 Factor influence 1 3 The control computer calculates a Control value air inlet of 0 8 x 30 24 With too little under pressure the Control value will not be lower than 24 The control computer calculates a limit Control value air inlet of 1 3 x 30 39 With too high under pressure the Setpoint will not be higher than 39 Ss Overview gt X gt 11 gt tab page nfluence Inlet Pressure infl on air inlet Setting if the measured pressure may influence the inlet position This influence can only be used if a pressure control is used Factor influence Setting of the factor used to calculate the lowest possible inlet position Factor influence Setting of the factor used to calculate the highest possible inlet position Actual pressur
Download Pdf Manuals
Related Search
Related Contents
Mode d`emploi de la base de données en ligne de la Petsafe Dog Kennel User's Manual GE Globe Control Valves masoneilan 10000 series Technical Specifications MELPROTM Biostar NF520-A2 TE motherboard Measuring Unit - Pdfstream.manualsonline.com Samsung 2243QW User Manual - Foscam.us Copyright © All rights reserved.
Failed to retrieve file