Home

Regulation 95

image

Contents

1. 3 2 4 If the H point or the actual torso angle does not satisfy the requirements of paragraph 3 2 2 above the H point and the actual torso angle shall be determined twice more three times in all If the results of two of these three operations satisfy the requirements the conditions of paragraph 3 2 3 above shall apply 3 2 5 If the results of at least two of the three operations described in paragraph 3 2 4 above do not satisfy the requirements of paragraph 3 2 2 above or if the verification cannot take place because the vehicle manufacturer has failed to supply information regarding the position of the R point or regarding the design torso angle the centroid of the three measured points or the average of the three measured angles shall be used and be regarded as applicable in all cases where the R point or the design torso angle is referred to in this Regulation 4 PROCEDURE FOR H POINT AND ACTUAL TORSO ANGLE DETERMINATION 4 1 The vehicle shall be preconditioned at the manufacturer s discretion at a temperature of 20 10 C to ensure that the seat material reached room temperature If the seat to be checked has never been sat upon a 70 to 80 kg person or device shall sit on the seat twice for one minute to flex the cushion and back At the manufacturer s request all seat assemblies shall remain unloaded for a minimum period of 30 min prior to installation of the 3 D H machine 4 2 The vehicle shall be at the measuri
2. 1 1 3 3 3 3 3 3 3 1 CEN w COM QM He E E ESA CE N Page 66 France Draft proposal ELSA 7 04 3 ASSEMBLY OF THE DUMMY 3 1 Head neck 3 1 1 The required torque on the half spherical screws for assembly of the neck is 10 Nm 3 1 2 The head upper neck load cell assembly is mounted to the head neck interface plate of the neck by four screws 3 1 3 The neck thorax interface plate of the neck is mounted to the neck bracket by four screws 3 2 Neck shoulder thorax 3 2 1 The neck bracket is mounted to the shoulder block by four screws 3 2 2 The shoulder block is mounted to the top surface of the thoracic spine box by three screws 3 3 Shoulder arm 3 3 1 The arms are mounted to the shoulder clavicles by means of a screw and an axial bearing The screw shall be tightened to obtain a 1 2 g holding force of the arm on its pivot 3 4 Thorax lumbar spine abdomen 3 4 1 The mounting direction of rib modules in the thorax shall be adapted to the required impact side 3 4 2 A lumbar spine adapter is mounted to the T12 load cell or load cell replacement at the lower part of the thoracic spine by two screws 3 4 3 The lumbar spine adapter is mounted to the top plate of the lumbar spine with four screws 3 4 4 The mounting flange of the central abdominal casting is clamped between the lumbar spine adapter and the lumbar spine top plate 3 4 5 The location of the abdominal force transduc
3. France Draft proposal ELSA 7 04 Page 83 France Draft proposal ELSA 7 04 Page 84 France Draft proposal ELSA 7 04 Page 85 France Draft proposal ELSA 7 04 Annex 7 INSTALLATION OF THE SIDE IMPACT DUMMY 1 GENERAL 1 1 he side impact dummy as described in annex 6 of this Regulation is to be used according the following installation procedure 2 INSTALLATION 2 1 Adjust the knee and ankle joints so that they just support the lower leg and the foot when extended horizontally 1 to 2 g adjustment 2 2 Check if the dummy is adapted to the desired impact direction 2 3 The dummy shall be clothed in a form fitting cotton stretch mid calf length pant and may be clothed in a form fitting cotton stretch shirt with short sleeves 2 4 Each foot shall be equipped with a shoe 2 5 Place the dummy in the outboard front seat on the impacted side as described in the side impact test procedure specification 2 6 Place the dummy in the outboard front seat on the impacted side as described in the side impact test procedure specification 2 7 The pelvis of the dummy shall be positioned such that a lateral line passing through the dummy H points is perpendicular to the longitudinal centre plane of the seat The line through the dummy H points shall be horizontal with a maximum inclination of 2 degrees 9 The correct position of the dummy pelvis can be checked relative to the H point of the H point Manikin by using the
4. 0 01 kg The total mass of the impactor with the arm rest face is 24 4 0 21 kg The rigid arm rest is 70 1 mm high 150 1 mm wide and should be allowed to penetrate at least 60 mm into the abdomen The centreline of the pendulum coincides with the centre of the arm rest 5 11 5 The impactor should freely swing onto the abdomen of the dummy with an impact velocity of 4 0 0 1 m s 5 11 6 The impact direction is perpendicular to the anterior posterior axis of the dummy and the axis of the impactor is aligned with the centre of the middle force transducer 5 11 7 The peak force of the impactor obtained from the impactor acceleration filtered using ISO 6487 2000 CFC 180 and multiplied by the impactor armrest mass should be between and including 4 0 and 4 8 kN and occur between and including 10 6 and 13 0 ms 5 11 8 The force time histories measured by the three abdominal force transducers must be summed and filtered using ISO 6487 2000 CFC 600 The peak force of this sum should be between and including 2 2 and 2 7 KN and occur between and including 10 0 and 12 3 ms 5 12 Pelvis 5 12 1 The dummy is seated on a flat horizontal rigid surface with no back support The thorax is positioned vertically while the arms and legs are positioned horizontally Page 77 France Draft proposal ELSA 7 04 5 12 2 The impactor is a pendulum with a mass of 23 4 0 2 kg and diameter of 152 4 0 25 mm with an edge radius of 12 7 mm 8 The im
5. No 7A A cover plate is mounted on top of the casting 2 8 4 The covering part No 7b is made of polyurethane PU foam A curved slab of rubber filled with lead pellets is integrated in the foam covering at both sides 2 8 5 Between the foam covering and the rigid casting at each side of the abdomen either three force transducers part No 7c or three non measuring replacement units can be mounted 2 9 Pelvis 2 9 1 The pelvis is shown as part No 8 in figure 1 of this annex 2 9 2 The pelvis consists of a sacrum block two iliac wings two hip joints assemblies and a flesh simulating foam covering Page 63 France Draft proposal ELSA 7 04 2 9 3 The sacrum part No 8a consists of a mass tuned metal block and a metal plate mounted on top of this block In the aft side of the block is a cavity to facilitate the application of instrumentation 2 9 4 The iliac wings part No 8b are made of polyurethane PU resin 2 9 5 The hip joints assemblies part No 8c are made of steel parts They consist of an upper femur bracket and a ball joint connected to an axle passing through the dummy s H point The upper femur bracket abduction and adduction capability is buffered by rubber stops at the ends of the range of motion 2 9 6 The flesh system part No 8d is made of a polyvinlychloride PVC skin filled with polyurethane PU foam At the H point location the skin is replaced by open cell polyurethane PU foam block
6. impact it shall be possible without the use of tools to 5 3 2 1 open a sufficient number of doors provided for normal entry and exit of passengers and if necessary tilt the seat backs or seats to allow evacuation of all occupants 5 3 2 2 release the dummy from the protective system 5 3 2 3 remove the dummy from the vehicle 5 3 3 no interior device or component shall become detached in such a way as noticeably to increase the risk of injury from sharp projections or jagged edges 5 3 4 ruptures resulting from permanent deformation are acceptable provided these do not increase the risk of injury 5 3 5 if there is continuous leakage of liquid from the fuel feed installation after the collision the rate of leakage shall not exceed 30 g min if the liquid from the fuel feed system mixes with liquids from the other systems and the various liquids cannot easily be separated and identified all the liquids collected shall be taken into account in evaluating the continuous leakage 5 4 This requirements are apply to the electric power train of electric vehicles hybrid vehicles and fuel cell vehicles and the high voltage components and systems which are galvanically connected to the high voltage bus of the electric power train following vehicle crash test s 5 4 1 Not more than 5 0 liters of electrolyte from propulsion batteries shall spill outside the passenger compartment and no visible trace of electrolyte shall spill into the p
7. level and repeat the procedure from paragraph 4 12 4 14 Take all measurements 4 14 1 The co ordinates of the H point are measured with respect to the three dimensional reference system 4 14 2 The actual torso angle is read at the back angle quadrant of the 3 D H machine with the probe in its fully rearward position 4 15 If a re run of the installation of the 3 D H machine is desired the seat assembly should remain unloaded for a minimum period of 30 min prior to the re run The 3 D H machine should not be left loaded on the seat assembly longer than the time required to perform the test 4 16 If the seats in the same row can be regarded as similar bench seat identical seats etc only one H point and one actual torso angle shall be determined for each row of seats the 3 D H machine described in appendix 1 to this annex being seated in a place regarded as representative for the row This place shall be 4 16 1 in the case of the front row the driver s seat 4 16 2 in the case of the rear row or rows an outer seat Page 21 France Draft proposal ELSA 7 04 Annex 3 Appendix 1 DESCRIPTION OF THE THREE DIMENSIONAL H POINT MACHINE 3 D H machine 1 Back and seat pans The back and seat pans are constructed of reinforced plastic and metal they simulate the human torso and thigh and are mechanically hinged at the H point A quadrant is fastened to the probe hinged at the H point to measure the actual
8. of gravity of the MDB and shall lie in a vertical longitudinal plane which is within 10 mm of the centre of gravity of the MDB 6 3 3 3 The side accelerometers shall be at the same height as each other 10 mm and at the same distance from the front surface of the MDB 20 mm 6 3 3 4 The instrumentation shall comply with ISO 6487 1987 with the following specifications CFC 1 000 Hz before integration CAC 50 g 6 4 General specifications of barrier 6 4 1 The individual characteristics of each barrier shall comply with paragraph 1 of this annex and shall be recorded 6 5 General specifications of the impactor 6 5 1 The suitability of an impactor as regards the dynamic test requirements shall be confirmed when the outputs from the six load cell plates each produce signals complying with the requirements indicated in this annex 6 5 2 Impactors shall carry consecutive serial numbers which are stamped etched or otherwise permanently attached from which the batches for the individual blocks and the date of manufacture can be established 6 6 Data processing procedure 6 6 1 Raw data At time T To all offsets should be removed from the data The method by which offsets are removed shall be recorded in the test report 6 6 2 Filtering Page 44 France Draft proposal ELSA 7 04 6 6 2 1 The raw data will be filtered prior to processing calculations 6 6 2 2 Accelerometer data for integration will be filtered to CFC 18
9. parts by a test probe such as a test finger IPXXB or a test wire IPXXD Exposed conductive part means conductive part which can be touched and which only becomes electrically energized under failure conditions Electrical circuit means an assembly of connected live parts which is designed to be electrically energized in normal operation Working voltage means he highest value of an electrical circuit voltage specified by the manufacturer which may occur between any conductive parts in open circuit conditions or under normal operating conditions Electrical chassis means a set made of conductive parts electrically linked together whose potential is taken as reference Solid insulator means insulating coating of wiring harnesses provided in order to cover and protect the live parts against direct contact from any direction of access covers for insulating the live parts of connectors and varnish or paint for the purpose of insulation Barrier means the part providing protection against direct contact to the live parts from any direction of access Page 5 France Draft proposal ELSA 7 04 2 30 Enclosure means the part enclosing the internal units and providing protection against direct contact from any direction of access 2 31 High Voltage means classification of an electric component or circuit if its maximum working voltage is gt 60 V and lt 1500 V d c or gt 30 V an
10. to the theoretical position of the point of torso thighs rotation H point for the lowest and most rearward normal driving position or position of use given by the Page 3 France Draft proposal ELSA 7 04 vehicle manufacturer for each seating position specified by him 2 5 H point is as established by annex 3 to this Regulation 2 6 Capacity of the fuel tank means the fuel tank capacity as specified by the manufacturer of the vehicle 2 7 Transverse plane means a vertical plane perpendicular to the median longitudinal vertical plane of the vehicle 2 8 Protective system means devices intended to restrain and or protect the occupants 2 9 Type of protective system means a category of protective devices which do not differ in such essential respects as their technology geometry constituent materials 2 10 Reference mass means the unladen mass of the vehicle increased by a mass of 100 kg that is the mass of the side impact dummy and its instrumentation 2 11 Unladen mass means the mass of the vehicle in running order without driver passengers or load but with the fuel tank filled to 90 per cent of its capacity and the usual set of tools and spare wheel on board where applicable 2 12 Mobile deformable barrier means the apparatus with which the test vehicle is impacted It consists of a trolley and an impactor 2 13 Impactor means a crushable section mounted on the front of mobile deformable b
11. 0 ISO 6487 1987 6 6 2 3 Accelerometer data for impulse calculations will be filtered to CFC 60 ISO 6487 1987 6 6 2 4 Load cell data will be filtered to CFC 60 ISO 6487 1987 6 6 3 Calculation of MDB face deflection 6 6 3 1 Accelerometer data from all three accelerometers individually after filtering at CFC 180 will be integrated twice to obtain deflection of the barrier deformable element 6 6 3 2 The initial conditions for deflection are 6 6 3 2 1 velocity impact velocity from speed measuring device 6 6 3 2 2 deflection 0 6 6 3 3 The deflection at the left hand side mid line and right hand side of the mobile deformable barrier will be plotted with respect to time 6 6 3 4 The maximum deflection calculated from each of the three accelerometers should be within 10 mm If it is not the case then the outlier should be removed and difference between the deflection calculated from the remaining two accelerometers checked to ensure that it is within 10 mm 6 6 3 5 If the deflections as measured by the left hand side right hand side and mid line accelerometers are within 10 mm then the mean acceleration of the three accelerometers should be used to calculate the deflection of the barrier face 6 6 3 6 If the deflection from only two accelerometers meets the 10 mm requirement then the mean acceleration from these two accelerometers should be used to calculate the deflection for the barrier face 6 6 3 7 If the d
12. 10 x 297 mm 1 issued by Name of administration concerning 2 APPROVAL GRANTED Page 13 France Draft proposal ELSA 7 04 APPROVAL EXTENDED APPROVAL REFUSED APPROVAL WITHDRAWN PRODUCTION DEFINITELY DISCONTINUED of a vehicle type with regard to protection of occupants in the event of a lateral collision pursuant to Regulation No 95 Approval No Extension No 1 Trade name or mark of the power driven vehicle 0 0 0 ee eeeeesseceseeeeeeeenees 2 VOICI A has kaer ae Moet 3 Manufacturer s name and address siii siii diate 4 If applicable name and address of manufacturer s representative 00 0 0 5 Vehicle submitted for approval GMs scessvessesssastesustenegessanasedventesgutaccesttessoesiane nN Side impact dummy utilized ES 1 ES 2 2 Technical service responsible for conducting approval tests ceceeeseeeeeeee I D DA OF MESE TE DOTE RER RSR o e ec 9 Number Of test TEPOrt sanitaire aE 10 Approval granted refused extended withdrawn 2 11 Position of approval mark on the vehicle ooooconnccninociocononcconnnonancnoncnonacnoncnnnos 12 PACE nana anni ann nait Be LD ANC ds a id ce ee E cn sr SIERRA RER ef ce Grea ct vaca ees pac eg TR Re 15 The list of documents deposited with the Administrative Service which has granted approval is annexed to this communication and may be obtained on request Page 14 France Draft proposal ELSA 7 04 Annex 2 ARRANGEMENTS OF THE APPRO
13. 2 and 5 4 below are satisfied 5 2 Performance criteria 5 2 1 The performance criteria as determined for the collision test in accordance with the appendix to annex 4 to this Regulation shall meet the following conditions 5 2 1 1 the head performance criterion HPC shall be less than or equal to 1 000 when there is no head contact then the HPC shall not be measured or calculated but recorded as No Head Contact 5 2 1 2 the thorax performance criteria shall be a Rib Deflection Criterion RDC less than or equal to 42 mm b Soft Tissue Criterion VC less or equal to 1 0 m sec For a transitional period of two years after the date specified in paragraph 10 2 of this Regulation the V C value is not a pass fail criterion for the approval testing but this value has to be recorded in the test report and to be collected by the approval authorities After this transitional period the VC value of 1 0 m sec shall apply as a pass fail criterion unless the Contracting Parties applying this Regulation decide otherwise 5 2 1 3 the pelvis performance criterion shall be Pubic Symphysis Peak Force PSPF less than or equal to 6 KN Page 8 France Draft proposal ELSA 7 04 5 2 1 4 the abdomen performance criterion shall be Abdominal Peak Force APF less than or equal to 2 5 kN internal force equivalent to external force of 4 5 kN 5 3 Particular requirements 5 3 1 No door shall open during the test 5 3 2 After the
14. 4 5 10 Lumbar spine 5 10 1 T The lumbar spine is mounted to the special certification head form with a mass of 3 9 0 05 kg see Figure 6 with the help of a 12 mm thick interface plate with a mass of 0 205 0 05 kg 5 10 2 The headform and lumbar spine are mounted upside down to the bottom of a neck bending pendulum 5 allowing a lateral motion of the system 5 10 3 The neck pendulum is equipped with an uni axial accelerometer according to the neck pendulum specification see Figure 5 5 10 4 The neck pendulum should be allowed to fall freely from a height chosen to achieve an impact velocity of 6 05 0 1 m s measured at the pendulum accelerometer location 5 10 5 The neck pendulum is decelerated from impact velocity to zero by an appropriate device 6 as described in the neck pendulum specification see Figure 5 resulting in a velocity change time history inside the corridor specified in Figure 8 and Table 6 of this Annex All channels have to be recorded according to the ISO 6487 2000 or SAE J211 March 1995 data channel recording specification and filtered digitally using ISO 6487 2000 CFC 180 or SAE J211 1995 CFC 180 The pendulum deceleration has to be filtered using ISO 6487 2000 CFC 60 or SAE J211 1995 CFC 60 Table 6 Pendulum Velocity Change Time Corridor for Lumbar Spine Certification Test pper boundary elocity m s Lower boundary elocity m s ime s ime s poor OS 0 0037 0 2397 0 0027 0 425 0 27 S
15. A 7 04 Co D 0 14 The rib deflection velocity at time t is calculated from the filtered deflection as Vey 6 Dan Pen Peg Peery 1200 where D is the deflection at time t in metres and dt is the time interval in seconds between the measurements of deflection The maximum value of ot shall be 1 25 x10 seconds This calculation procedure is shown diagrammatically below Annex 5 MOBILE DEFORMABLE BARRIER Page 35 France Draft proposal ELSA 7 04 CHARACTERISTICS 1 CHARACTERISTICS OF THE MOBILE DEFORMABLE BARRIER 1 1 The mobile deformable barrier MDB includes both an impactor and a trolley 1 2 The total mass shall be 950 20 kg 1 3 The centre of gravity shall be situated in the longitudinal median vertical plane within 10 mm 1 000 30 mm behind the front axle and 500 30 mm above the ground 1 4 The distance between the front face of the impactor and the centre of gravity of the barrier shall be 2 000 30 mm 1 5 The ground clearance of the impactor shall be 300 5 mm measured in static conditions from the lower edge of the lower front plate before the impact 1 6 The front and rear track width of the trolley shall be 1 500 10 mm 1 7 The wheel base of the trolley shall be 3 000 10 mm 2 CHARACTERISTICS OF THE IMPACTOR The impactor consists of six single blocks of aluminium honeycomb which have been processed in order to give a progressively increasing level of force with increasing d
16. B oS po OOS 5 10 6 The maximum head form flexion angle relative to the pendulum Angle d88 A dO C in Figure 6 should be between and including 45 0 and 55 0 degrees and should occur between and including 39 0 and 53 0 ms Page 76 France Draft proposal ELSA 7 04 5 10 7 The maximum head form centre of gravity displacements measured in angle de A and de B see Figure 6 should be Fore pendulum base angle d A between and including 31 0 and 35 0 degrees occurring between and including 44 0 and 52 0 ms and aft pendulum base angled B between and including 0 8 angle de A 2 00 and 0 8 angle dO A 4 50 degrees occurring between and including 44 0 and 52 0 ms 5 10 8 The performance of the lumbar spine can be adjusted by changing tension in the spine cable 5 11 Abdomen 5 11 1 The dummy is seated on a flat horizontal rigid surface with no back support The thorax is positioned vertically while the arms and legs are positioned horizontally 5 11 2 The impactor is a pendulum with a mass of 23 4 0 2 kg and diameter of 152 4 0 25 mm with an edge radius of 12 7 mm 7 The impactor is suspended from rigid hinges by eight wires with the centre line of the impactor at least 3 5 m below the rigid hinges see Figure 4 5 11 3 The impactor is equipped with an accelerometer sensitive in the direction of impact and located on the impactor axis 5 11 4 The pendulum is equipped with a horizontal arm rest impactor face of 1 0
17. France Draft proposal ELSA 7 04 3 TEST SPEED The mobile deformable barrier speed at the moment of impact shall be 50 1 km h This speed shall be stabilised at least 0 5 m before impact Accuracy of measurement per cent However if the test was performed at a higher impact speed and the vehicle met the requirements the test shall be considered satisfactory 4 STATE OF THE VEHICLE 4 1 General specification The test vehicle shall be representative of the series production shall include all the equipment normally fitted and shall be in normal running order Some components may be omitted or replaced by equivalent masses where this omission or substitution clearly has no effect on the results of the test 4 2 Vehicle equipment specification The test vehicle shall have all the optional arrangements or fittings likely to influence the results of the test 4 3 Mass of the vehicle 4 3 1 The vehicle to be tested shall have the reference mass as defined in paragraph 2 10 of this Regulation The mass of the vehicle shall be adjusted to 1 per cent of the reference mass 4 3 2 The fuel tank shall be filled with water to a mass equal to 90 per cent of the mass of a full load of fuel as specified by the manufacturer 4 3 3 All the other systems brake cooling etc may be empty in this case the mass of the liquids shall be offset 4 3 4 If the mass of the measuring apparatus on board of the vehicle exceeds the 25 kg allowed i
18. France Draft proposal ELSA 7 04 REGULATION 95 CONCERNING THE APPROVAL OF VEHICLES WITH REGARD TO THE PROTECTION OF THE OCCUPANTS IN THE EVENT OF A LATERAL COLLISION Regulation 95 AGREEMENT CONCERNING THE ADOPTION OF UNIFORM TECHNICAL PRESCRIPTION FOR WHEELED VEHICLES EQUIPMENT AND PARTS WHICH CAN BE FITTED AND OR BE USED ON WHEELED VEHICLES AND THE CONDITIONS FOR RECIPROCAL RECOGNITION OF APPROVALS GRANTED ON THE BASIS OF THESE PRESCRIPTIONS Revision 2 including the amendments entered into force on 16 October 1995 Addendum 94 Regulation No 95 Date of entry into force 6 July 1995 Incorporating Correction Date of entry into force 10 March 1995 Amendment 1 01 series of amendments Date of entry into force 12 August 1998 Amendment 2 Supplement 1 to the 01 series of amendments Date of entry into force 14 November 1999 Corrigendum 1 Corrigendum 3 to the original version of the Regulation subject of Depositary Notification C N 786 2002 TREATIES 1 dated 1 August 2002 Amendment 3 02 series of amendments Date of entry into force 16 July 2003 Amendment 4 Supplement 1 to the 02 series of amendments Date of entry into force 12 August 2004 Corrigendum 1 to Supplement I to the 02 series of amendments subject of Depositary Notification C N 1167 2007 TREATIES 2 dated 18 January 2008 Page 1 France Draft proposal ELSA 7 04 UNIFORM PROVISIONS CONCERNING THE APPROVAL OF VEHICLES WITH REGARD TO THE PROTECTIO
19. LO if the 3 D H machine is located so far outboard that the seat edge will not permit levelling of the 3 D H machine 4 6 Attach the foot and lower leg assemblies to the seat pan assembly either individually or by using the T bar and lower leg assembly A line through the H point sight buttons shall be parallel to the ground and perpendicular to the longitudinal centreplane of the seat 4 7 Adjust the feet and leg positions of the 3 D H machine as follows 4 7 1 Designated seating position driver and outside front passenger 4 7 1 1 Both feet and leg assemblies shall be moved forward in such a way that the feet take up natural positions on the floor between the operating pedals if necessary Where possible the left foot shall be located approximately the same distance to the left of the centreplane of the 3 D H machine as the right foot is to the right The spirit level verifying the transverse orientation of the 3 D H machine is brought to the horizontal by readjustment of the seat pan if necessary or by adjusting the leg and foot assemblies towards the rear The line passing through the H point sight buttons shall be maintained perpendicular to the longitudinal centreplane of the seat 4 7 1 2 If the left leg cannot be kept parallel to the right leg and the left foot cannot be supported by the structure move the left foot until it is supported The alignment of the sight buttons shall be maintained 4 7 2 Designated seating positio
20. M3 holes in the H point back plates at each side of the ES 2 pelvis The M3 holes are indicated with Hm The Hm position should be in a circle with a radius of 10 mm round the H point of the H point Manikin 2 8 The upper torso shall be bent forward and then laid back firmly against the seat back see note 9 The shoulders of the dummy shall be set fully rearward Page 86 France Draft proposal ELSA 7 04 2 9 Irrespective of the seating position of the dummy the angle between the upper arm and the torso arm reference line on each side shall be 40 5 The torso arm reference line is defined as the intersection of the plane tangential to the front surface of the ribs and the longitudinal vertical plane of the dummy containing the arm 2 10 For the driver s seating position without inducing pelvis or torso movement place the right foot of the dummy on the under pressed accelerator pedal with the heel resting as far forward as possible on the floorpan Set the left foot perpendicular to the lower leg with the heel resting on the floorpan in the same lateral line as the right heel Set the knees of the dummy such that their outside surfaces are 150 10 mm from the plane of symmetry of the dummy If possible within these constraints place the thighs of the dummy in contact with the seat cushion 2 11 For other seating positions without inducing pelvis or torso movement place the heels of the dummy as far forward as possible on the floor
21. N OF THE OCCUPANTS IN THE EVENT OF A LATERAL COLLISION Regulation No 95 1 SCOPE This Regulation applies to the lateral collision behaviour of the structure of the passenger compartment of M and N categories of vehicles where the R point of the lowest seat is not more than 700 mm from ground level when the vehicle is in the condition corresponding to the reference mass defined in paragraph 2 10 of this Regulation 2 DEFINITIONS For the purposes of this Regulation 2 1 Approval of a vehicle means the approval of a vehicle type with regard to the behaviour of the structure of the passenger compartment in a lateral collision 2 2 Vehicle type means a category of power driven vehicles which do not differ in such essential respects as 2 2 1 the length width and ground clearance of the vehicle in so far as they have a Page 2 France Draft proposal ELSA 7 04 negative effect on the performance prescribed in this Regulation 2 2 2 the structure dimensions lines and materials of the side walls of the passenger compartment in so far as they have a negative effect on the performance prescribed in this Regulation 2 2 3 the lines and inside dimensions of the passenger compartment and the type of protective systems in so far as they have a negative effect on the performance prescribed in this Regulation 2 2 4 the siting of the engine front rear or centre 2 2 5 the unladen mass in so far as there is a negat
22. VAL MARK Model A See paragraph 4 5 of this Regulation FOR The above approval mark affixed to a vehicle shows that the vehicle type concerned has with regard to the protection of the occupants in the event of a lateral collision been approved in the Netherlands E4 pursuant to Regulation No 95 The approval number indicates that the approval was granted in accordance with the requirements of Regulation No 95 as amended by the 01 series of amendments Model B See paragraph 4 6 of this Regulation The above approval mark affixed to a vehicle shows that the vehicle type concerned has been approved in the Netherlands E4 pursuant toRegulations Nos 95 and 24 In the case of the latter Regulation the additional symbol which follows the Regulation number indicates that the corrected absorption co efficient is 1 30 ml The first two approval numbers indicate that at the date when the respective approvals were granted Regulation 95 incorporated the 01 series of amendments and Regulation No 24 incorporated the 03 series of amendments Page 15 France Draft proposal ELSA 7 04 Annex 3 PROCEDURE FOR DETERMINING THE H POINT AND THE ACTUAL TORSO ANGLE FOR SEATING POSITIONS IN MOTOR VEHICLES 1 PURPOSE The procedure described in this annex is used to establish the H point location and the actual torso angle for one or several seating positions in a motor vehicle and to verify the relationship of measured data to design spec
23. achine with the probe in the fully rearward position 2 6 Actual torso angle means the angle measured between a vertical line through the H point and the torso line using the back angle quadrant on the 3 D H machine The actual torso angle corresponds theoretically to the design torso angle for tolerances see paragraph 3 2 2 below 2 7 Design torso angle means the angle measures between a vertical line through the R point and the torso line in a position which corresponds to the design position of the seat back established by the vehicle manufacturer 2 8 Centreplane of occupant C LO means the median plane of the 3 D H machine positioned in each designated seating position it is represented by the co ordinate of the H point on the Y axis For individual seats the centreplane of the seat coincides with the centreplane of the occupant For other seats the centreplane of the occupant is specified by the manufacturer 2 9 Three dimensional reference system means a system as described in appendix 2 to this annex 2 10 Fiducial marks are physical points holes surfaces marks or indentations on the vehicle body as defined by the manufacturer 2 11 Vehicle measuring attitude means the position of the vehicle as defined by the co ordinates of fiducial marks in the three dimensional reference system 3 REQUIREMENTS 3 1 Data presentation For each seating position where reference data are required in order
24. aft proposal ELSA 7 04 CAC 150 g 7 1 2 Measurements in the thorax of the dummy The three thorax rib deflection channels shall comply with ISO 6487 1987 CFC 1000 Hz CAC 60 mm 7 1 3 Measurements in the pelvis of the dummy The pelvis force channel shall comply with ISO 6487 1987 CFC 1000 Hz CAC 15 kN 7 1 4 Measurements in the abdomen of the dummy The abdomen force channels shall comply with ISO 6487 1987 CFC 1000 Hz CAC 5 kN Annex 4 Appendix 1 DETERMINATION OF PERFORMANCE DATA The required results of the tests are specified in paragraph 5 2 of this Regulation 1 HEAD PERFORMANCE CRITERION HPC When head contact takes place this performance criterion is calculated for the total duration between the initial contact and the last instant of the final contact HPC is the maximum value of the expression Page 33 France Draft proposal ELSA 7 04 where a is the resultant acceleration at the centre of gravity of the head in metres per second divided by 9 81 recorded versus time and filtered at channel frequency class 1000 Hz t and t are any two times between the initial contact and the last instant of the final contact 2 THORAX PERFORMANCE CRITERIA 2 1 Chest deflection the peak chest deflection is the maximum value of deflection on any rib as determined by the thorax displacement transducers filtered at channel frequency class 180 Hz 2 2 Viscous criterion the peak viscous response is the maximum valu
25. and upper leg and flesh as far as junction with upper femur each O A pm en 4 2 Principal dimensions 4 2 1 The principal dimensions of the side impact dummy based on figure 2 of this annex are given in table 3 of this annex The dimensions are measured without suit Page 68 France Draft proposal ELSA 7 04 Figure 2 Measurements for principal dummy dimensions see table 3 Page 69 France Draft proposal ELSA 7 04 Page 70 France Draft proposal ELSA 7 04 Table 3 Principal Dummy Dimensions No Parameter Dimension mm Pelvis lap width B66 7 2 3 4 15 Pack of buttocks to hip joint centre of bolt 155 5 5 CERTIFICATION OF THE DUMMY 5 1 Impact side 5 1 1 Depending on the vehicle side to be impacted dummy parts should be certified on the left hand side or right hand side 5 1 2 The configurations of the dummy with regards to the mounting direction of the rib modules and the location of the abdominal force transducers shall be adapted to the required impact side 5 2 Instrumentation 5 2 1 All instrumentation shall be calibrated in compliance with the requirements of the documentation specified in paragraph 1 3 5 2 2 All instrumentation channels shall comply with ISO 6487 1987 5 2 3 The minimum number of channels required to comply with this regulation is ten Page 71 France Draft proposal ELSA 7 04 head accelerations 3 Thorax rib displacements 3 Abdomen loads 3 a
26. arrier 2 14 Trolley means a wheeled frame free to travel along its longitudinal axis at the point of impact Its front supports the impactor 2 15 Electric power train means the electrical circuit which may include the RESS the energy conversion system the electronic converters the traction motors the associated wiring harness and Page 4 France Draft proposal ELSA 7 04 2 16 2 17 2 18 2 19 2 20 2 21 2 22 FPE 2 24 2 25 2 26 2 27 2 28 2 29 connectors and the coupling system for charging the RESS RESS means rechargeable energy storage system that provides the electric energy for propulsion Energy conversion system means system that generates and provides electric energy for propulsion Electronic_converter means a device capable of controlling or converting electric power Coupling system for charging the RESS means the electrical circuit used for charging the RESS from an external electric power supply AC or DC electric power supply outside of the vehicle including the vehicle inlet Direct contact means the contact of persons with live parts Live parts means conductive part s intended to be electrically energized in normal use Indirect contact means the contact of persons with exposed conductive parts Protection degree means Protection provided by a barrier enclosure related to the contact with live
27. assenger compartment within 30 minutes after a barrier impact test Compliance may be demonstrated by test or analysis 5 4 2 Battery modules located inside the passenger compartment must remain in the location in which they are installed No part of any battery system component that is located outside the passenger compartment shall enter the passenger compartment during the test procedures as determined by visual inspection Page 9 France Draft proposal ELSA 7 04 5 4 3 After the test at least one of the following criteria specified in paragraph 5 4 3 1 thorough paragraph 5 4 3 4 shall be met If the vehicle has an automatic disconnect function the criteria shall be applied to each divided portion individually 5 4 3 1 Isolation Resistance If the electrical circuit divided by the disconnect function includes AC circuit this part of the high voltage bus shall be considered as an AC high voltage bus If the electrical circuit divided by the disconnect function doesn t include AC circuit this part of the high voltage bus shall be considered as a DC high voltage bus For AC high voltage buses isolation resistance between the high voltage bus and the electrical chassis shall have minimum value of 500 ohms volt of working voltage If the protection degree IPXXB is satisfied for AC portion of the high voltage buses after crash isolation resistance between the high voltage bus and the electrical chassis shall have minimum value of 100 ohms vol
28. ate over its full length of 80 mm but shall not contact the hazardous parts even when its joints are bent at any optional angle up to 90 from its axis and are brought into any possible position The stop face 050 mm 120 mm shall not pass through the opening The test force shall be 10 N 1110 2 IPXXD Test wire diameter 1 0 100 long Dimensions in millimetres Key 1 handle insulating material stop face insulating material sphere WwW N rigid test wire metal edges free from burrs The rigid test wire diameter 1 0 mm 100 mm long may penetrate over its full length of 100 mm but shall be sufficiently distant from hazardous parts in any possible angular position The stop face sphere 035 mm shall not pass through the opening The test force shall be 1 N 1 10 Page 96
29. be recorded and the HPC calculated 2 2 Approval test 2 2 1 Using the new padding materials seat etc presented for the approval extension and mounted in a new lateral structure of the vehicle tests specified in paragraphs 2 1 1 1 and 2 1 1 2 shall be repeated the new results recorded and their HPC calculated 2 2 1 1 If the HPC calculated from the results of both approval tests are lower than the HPC obtained during the reference tests carried out using the original type approved padding materials or seats the extension shall be granted 2 2 1 2 If the new HPC are greater than the HPC obtained during the reference tests a new full scale test using the proposed padding seats etc shall be carried out 3 TEST EQUIPMENT 3 1 Head form impactor figure 2 3 1 1 This apparatus consists of a fully guided linear impactor rigid with a mass of 6 8 kg Its impact surface is hemispherical with a diameter of 165 mm 3 1 2 The head form shall be fitted with two accelerometers and a speed measuring device all capable of measuring values in the impact direction 3 2 Body block impactor figure 3 3 2 1 This apparatus consists of a fully guided linear impactor rigid with a mass of 30 kg Its dimensions and transversal section is presented in figure 3 3 2 2 The body block shall be fitted with two accelerometers and a speed measuring device all capable of measuring values in the impact direction Page 88 France Draf
30. before the Page 37 France Draft proposal ELSA 7 04 deformation of the impactor is equal to 150 mm 2 1 5 2 2 the deviation does not exceed 50 per cent of the nearest instantaneous prescribed limit of the corridor 2 1 5 2 3 each deflection corresponding to each deviation does not exceed 35 mm of deflection and the sum of these deflections does not exceed 70 mm see appendix 2 to this annex 2 1 5 2 4 the sum of energy derived from deviating outside the corridor does not exceed 5 per cent of the gross energy for that block 2 1 5 3 Blocks 1 and 3 are identical Their rigidity is such that their force deflection curves fall between corridors of figure 2a 2 1 5 4 Blocks 5 and 6 are identical Their rigidity is such that their force deflection curves fall between corridors of figure 2d 2 1 5 5 The rigidity of block 2 is such that its force deflection curves fall between corridors of figure 2b 2 1 5 6 The rigidity of block 4 is such that its force deflection curves fall between corridors of figure 2c 2 1 5 7 The force deflection of the impactor as a whole shall fall between corridors of figure 2e 2 1 5 8 The force deflection curves shall be verified by a test detailed in annex 5 paragraph 6 consisting of an impact of the barrier against a dynamometric wall at 35 0 5 km h 2 1 5 9 The dissipated energy 1 against blocks 1 and 3 during the test shall be equal to 9 5 2 kJ for these blocks 2 1 5 10 The di
31. cell plate such that it shall not degrade the transducer responses 6 1 2 4 The rigid wall shall be either anchored in the ground or placed on the ground with if necessary additional arresting devices to limit its deflection A rigid wall to which the load cells are attached having different characteristics but giving results that are at least equally conclusive may be used 6 2 Propulsion of the mobile deformable barrier At the moment of impact the mobile deformable barrier shall no longer be subject to the action of any additional steering or propelling device It shall reach the obstacle on a course perpendicular to the front surface of the dynamometric wall Impact alignment shall be accurate to within 10 mm 6 3 Measuring instruments 6 3 1 Speed The impact speed shall be 35 0 5 km h the instrument used to record the speed on impact shall be accurate to within 0 1 percent 6 3 2 Loads Measuring instruments shall meet the specifications set forth in ISO 6487 1987 CFC for all blocks 60 Hz Page 43 France Draft proposal ELSA 7 04 CAC for blocks 1 and 3 200 kN CAC for blocks 4 5 and 6 100 kN CAC for block 2 200 kN 6 3 3 Acceleration 6 3 3 1 The acceleration in the longitudinal direction shall be measured at three separate positions on the trolley one centrally and one at each side at places not subject to bending 6 3 3 2 The central accelerometer shall be located within 500 mm of the location of the centre
32. clearly legible and shall be indelible 4 8 The approval mark shall be placed close to or on the vehicle data plate affixed by the manufacturer 4 9 Annex 2 to this Regulation gives examples of approval marks Page 7 France Draft proposal ELSA 7 04 5 SPECIFICATIONS AND TESTS 5 1 The vehicle shall undergo a test in accordance with annex 4 to this Regulation 5 1 1 The test will be carried out on the driver s side unless asymmetric side structures if any are so different as to affect the performance in a side impact In that case either of the alternatives in paragraph 5 1 1 1 or5 1 1 2 may be used by agreement between the manufacturer and test authority 5 1 1 1 The manufacturer will provide the authority responsible for approval with information regarding the compatibility of performances in comparison with the driver s side when the test is being carried out on that side 5 1 1 2 The approval authority if concerned as to the construction of the vehicle will decide to have the test performed on the side opposite the driver this being considered the least favourable 5 1 2 The Technical Service after consultation with the manufacturer may require the test to be carried out with the seat in a position other than the one indicated in paragraph 5 5 1 of annex 4 This position shall be indicated in the test report 2 5 1 3 The result of this test shall be considered satisfactory if the conditions set out in paragraphs 5
33. d lt 1000 V a c 2 32 High Voltage Bus means electrical circuit including the coupling system for charging the RESS that operates on high voltage 3 APPLICATION FOR APPROVAL 3 1 The application for approval of a vehicle type with regard to the protection of the occupants in the event of a lateral collision shall be submitted by the vehicle manufacturer or by his duly accredited representative 3 2 It shall be accompanied by the under mentioned documents in triplicate and the following particulars 3 2 1 a detailed description of the vehicle type with respect to its structure dimensions lines and constituent materials 3 2 2 photographs and or diagrams and drawings of the vehicle showing the vehicle type in front side and rear elevation and design details of the lateral part of the structure 3 2 3 particulars of the vehicle s mass as defined by paragraph 2 11 of this Regulation 3 2 4 the lines and inside dimensions of the passenger compartment 3 2 5 a description of the relevant side interior fittings and protective systems installed in the vehicle 3 3 The applicant for approval shall be entitled to present any data and results of tests carried out which make it possible to establish that compliance with the requirements can be achieved on prototype vehicles with a sufficient degree of accuracy 3 4 A vehicle which is representative of the type to be approved shall be submitted to the technical service resp
34. direct contact to the high voltage bus in use hereinafter referred to as the original physical protection Page 94 France Draft proposal ELSA 7 04 Any surrounding parts of the high voltage components that can be opened disassembled or removed without the use of tools after crash test shall be opened disassembled or removed Surrounding parts that cannot be opened disassembled or removed without the use of tools are considered as a part of the physical barrier The access probe is pushed against any openings of the physical barrier with the force If it partly or fully penetrates into the original physical protection it is placed in every possible position Starting from the straight position both joints of the test finger shall be successively bent through an angle of up to 90 degree with respect to the axis of the adjoining section of the finger and shall be placed in every possible position 3 5 2 Acceptance conditions The access probe shall not touch live parts A mirror or a fiberscope may be used in order to inspect whether the access probe touches the high voltage buses if necessary Page 95 France Draft proposal ELSA 7 04 Annex 9 appendix 1 Protection degrees 1 IPXXB Jointed test finger diameter 12 80 length Dimensions in millimetres 20 0 2 80 4 50 OF Key 1 stop face diameter 50 x 20 insulating material 2 jointed test finger metal The jointed test finger may penetr
35. e co ordinates of the R point and the H point are established in relation to the fiducial marks defined by the vehicle manufacturer Page 26 France Draft proposal ELSA 7 04 Annex 3 Appendix 3 REFERENCE DATA CONCERNING SEATING POSITIONS 1 Coding of reference data Reference data are listed consecutively for each seating position Seating positions are identified by a two digit code The first digit is an Arabic numeral and designates the row of seats counting from the front to the rear of the vehicle The second digit is a capital letter which designates the location of the seating position in a row as viewed in the direction of forward motion of the vehicle the following letters shall be used Page 27 France Draft proposal L left C centre R right R 2 Description of vehicle measuring attitude 2 1 Co ordinates of fiducial marks 3 List of reference data Sle SEAS Position e 3 1 1 Co ordinates of R point 3 1 2 Design Ml 3 1 3 Specifications for seat adjustment horizontal Lire A Rae ANSULATS t torso angle ici Note List reference data for further seating positions under 3 2 3 3 etc Page 28 ELSA 7 04 torso France Draft proposal ELSA 7 04 Annex 4 COLLISION TEST PROCEDURE 1 INSTALLATIONS 1 1 Testing ground The test area shall be large enough to accommodate the mobile deformable barrier propulsion system and to permit after impact displacement of the v
36. e of VC on any rib which is calculated from the instantaneous product of the relative thorax compression related to the half thorax and the velocity of compression derived by differentiation of the compression filtered at channel frequency class 180 Hz For the purposes of this calculation the standard width of the half thorax rib cage is 140 mm VC max D 0 14 e dD dt where D metres rib deflection The calculation algorithm to be used is set out in annex 4 appendix 2 3 ABDOMEN PROTECTION CRITERION The peak abdominal force is the maximum value of the sum of the three forces measured by transducers mounted 39 mm below the surface on the crash side CFC 600 Hz 4 PELVIS PERFORMANCE CRITERION The pubic symphysis peak force PSPF is the maximum force measured by a load cell at the pubic symphysis of the pelvis filtered at channel frequency class 600 Hz Annex 4 Appendix 2 THE PROCEDURE FOR CALCULATING THE VISCOUS CRITERION FOR EUROSID 1 The Viscous Criterion VC is calculated as the instantaneous product of the compression and the rate of deflection of the rib Both are derived from the measurement of rib deflection The rib deflection response is filtered once at Channel Frequency Class 180 The compression at time t is calculated as the deflection from this filtered signal expressed as the proportion of the half width of the EUROSID 1 chest measured at the metal ribs 0 14 metres Page 34 France Draft proposal ELS
37. e ventilated back plate material The honeycomb used should be representative of that in the impactor i e chemically etched to an equivalent degree as that near to the back plate in the barrier but without pre crushing 2 6 Traceability 2 6 1 Impactors shall carry consecutive serial numbers which are stamped etched or otherwise permanently attached from which the batches for the individual blocks and the date of manufacture can be established 2 7 Impactor attachment 2 7 1 The fitting on the trolley must be according to figure 8 The fitting will use six M8 bolts and nothing shall be larger than the dimensions of the barrier in front of the wheels of the trolley Appropriate spacers must be used between the lower back plate flange and the trolley face to avoid bowing of the back plate when the attachment bolts are tightened 3 VENTILATION SYSTEM 3 1 The interface between the trolley and the ventilation system should be solid rigid and flat The ventilation device is part of the trolley and not of the impactor as supplied by the manufacturer Geometrical characteristics of the ventilation device shall be according to figure 9 3 2 Ventilation device mounting procedure 3 2 1 Mount the ventilation device to the front plate of the trolley 3 2 2 Ensure that a 0 5 mm thick gauge cannot be inserted between the ventilation device and the trolley face at any point If there is a gap greater than 0 5 mm the ventilation frame will
38. earlier in the production until a sample that does comply is found Only the blocks between these samples should be considered to be approved 4 4 3 Once experience is gained with the consistency of production control it may be possible to combine both sampling approaches so that more than one groups of parallel production can be considered to be a batch provided samples from the first and last production groups comply 5 STATIC TESTS 5 1 One or more samples according to the batch method taken from each batch of processed honeycomb core shall be tested according to the following test procedure 5 2 The sample size of the aluminium honeycomb for static tests shall be the size of a normal block of the impactor that is to say 250 mm x 500 mm x 440 mm for top row and 250 mm x 500 mm x 500 mm for the bottom row 5 3 The samples should be compressed between two parallel loading plates which are at least 20 mm larger that the block cross section 5 4 The compression speed shall be 100 millimetres per minute with a tolerance of 5 per cent 5 5 The data acquisition for static compression shall be sampled at a minimum of 5 Hz 5 6 The static test shall be continued until the block compression is at least 300 mm for blocks 4 to 6 and 350 mm for blocks 1 to 3 6 DYNAMIC TESTS For every 100 barrier faces produced the manufacturer shall make one dynamic test against a dynamometric wall supported by a fixed rigid barrier according to
39. ecord the voltage Vb between the negative and the positive side of the high voltage bus see Figure 1 Measure and record the voltage V1 between the negative side of the high voltage bus and the electrical chassis see Figure 1 Measure and record the voltage V2 between the positive side of the high voltage bus and the electrical chassis see Figure 1 If V1 is greater than or equal to V2 insert a standard known resistance Ro between the negative side of the high voltage bus and the electrical chassis With Ro installed measure the voltage V1 between the negative side of the high voltage bus and the vehicle electrical chassis see Figure 2 Calculate the isolation resistance Ri according to the formula shown Divide this electrical isolation resistance value in ohms by the working voltage of the high voltage bus in volts Ri Ro Vb V1 Vb V1 or Ri Ro Vb 1 V1 1 V1 Electrical Chassis Energy Conversion System Assembly RESS Assembly High Voltage Bus Traction System Parriguire 2 Measurement of V1 France Draft proposal ELSA 7 04 If V2 is greater than V1 insert a standard known resistance Ro between the positive side of the high voltage bus and the electrical chassis With Ro installed measure the voltage V2 between the positive side of the high voltage bus and the electrical chassis See Figure 3 Calculate the isolation resistance Ri according to the formula shown Divide thi
40. eflection see paragraph 2 1 Front and rear aluminium plates are attached to the aluminium honeycomb blocks 2 1 Honeycomb blocks 2 1 1 Geometrical characteristics 2 1 1 1 The impactor consists of 6 joined zones whose forms and positioning are shown in figures 1 and 2 The zones are defined as 500 5 mm x 250 3 mm in figures 1 and 2 The 500 mm should be in the W direction and the 250 mm in the L direction of the aluminium honeycomb construction see figure 3 2 1 1 2 The impactor is divided into 2 rows The lower row shall be 250 3 mm high and 500 2 mm deep after pre crush see paragraph 2 1 2 and deeper than the upper row by 60 2 mm 2 1 1 3 The blocks must be centred on the six zones defined in figure 1 and each block including incomplete cells should cover completely the area defined for each zone 2 1 2 Pre crush Page 36 France Draft proposal ELSA 7 04 2 1 2 1 The pre crush shall be performed on the surface of the honeycomb to which the front sheets are attached 2 1 2 2 Blocks 1 2 and 3 should be crushed by 10 2 mm on the top surface prior to testing to give a depth of 500 2 mm figure 2 2 1 2 3 Blocks 4 5 and 6 should be crushed by 10 2 mm on the top surface prior to testing to give a depth of 440 2 mm 2 1 3 Material characteristics 2 1 3 1 The cell dimensions shall be 19 mm 10 per cent for each block see figure 4 2 1 3 2 The cells must be made of 3003 aluminium for the up
41. eflections calculated from all three accelerometers left hand side right hand side and mid line are NOT within the 10 mm requirement then the raw data should be reviewed to determine the causes of such large variation In this case the individual test house will determine which accelerometer data should be used to determine mobile deformable barrier deflection or whether none of the accelerometer readings can be used in which case the certification test must be repeated A full explanation should be given in the test report 6 6 3 8 The mean deflection time data will be combined with the load cell wall force time data to generate the force deflection result for each block Page 45 France Draft proposal ELSA 7 04 6 6 4 Calculation of energy The absorbed energy for each block and for the whole MDB face should be calculated up to the point of peak deflection of the barrier ES LE where ty is the time of first contact t is the time where the trolley comes to rest i e where u 0 sis the deflection of the trolley deformable element calculated according to paragraph 6 6 3 6 6 5 Verification of dynamic force data 6 6 5 1 Compare the total impulse I calculated from the integration of the total force over the period of contact with the momentum change over that period M V 6 6 5 2 Compare the total energy change to the change in kinetic energy of the MDB given by where V is the impact velocity and M the who
42. ehicle impacted and installation of the test equipment The part in which vehicle impact and displacement occur shall be horizontal flat and uncontaminated and representative of a normal dry uncontaminated road surface 2 TEST CONDITIONS 2 1 The vehicle to be tested shall be stationary 2 2 The mobile deformable barrier shall have the characteristics set out in annex 5 to this Regulation Requirements for the examination are given in the appendix to annex 5 The mobile deformable barrier shall be equipped with a suitable device to prevent a second impact on the struck vehicle 2 3 The trajectory of the mobile deformable barrier longitudinal median vertical plane shall be perpendicular to the longitudinal median vertical plane of the impacted vehicle 2 4 The longitudinal vertical median plane of the mobile deformable barrier shall be coincident within 25 mm with a transverse vertical plane passing through the R point of the front seat adjacent to the struck side of the tested vehicle The horizontal median plane limited by the external lateral vertical planes of the front face shall be at the moment of impact within two planes determined before the test and situated 25 mm above and below the previously defined plane 2 5 Instrumentation shall comply with ISO 6487 1987 unless otherwise specified in this Regulation 2 6 The stabilised temperature of the test dummy at the time of the side impact test shall be 222 4 C Page 29
43. ers shall be adapted to the required impact side 3 5 Lumbar spine pelvis legs 3 5 1 The lumbar spine is mounted to the lumbar spine bottom plate by three screws In case of using the lower lumbar spine load cell four screws are used 3 5 2 The lumbar spine bottom plate is mounted to the sacrum block of the pelvis by Page 67 France Draft proposal ELSA 7 04 three screws 3 5 3 The legs are mounted to the upper femur bracket of the pelvis hip joint assembly by a screw 3 5 4 T The knee and ankle links in the legs can be adjusted to obtain a 2 g holding force 4 MAIN CHARACTERISTICS 4 1 Mass 4 1 1 The masses of the main dummy components are presented in table 2 of this annex Table 2 Dummy Component Masses body part kg Head 4 0 2 omplete head assembly including tri axial ef Pech and upper neck load cell or replacement Neck 10 0 05 f eck not including neck bracket horax 22 4 1 0 INeck bracket shoulder cap shoulders assembly arm attachment bolts spine box torso back plate rib modules rib deflection transducers torso back plate load cell or replacement T12 load cell or replacement abdomen central casting abdominal force transducers 2 3 of suit pper arm including arm positioning plate each lumbar spine Pelvis Sacrum block lumbar spine mounting plate hip ball joints upper femur brackets iliac wings pubic force transducer pelvis flesh covering 1 3 of suit Leg foe Foot lower
44. etween and including 53 0 and 63 0 ms and aft pendulum base angle d8 B between and including 0 81 angle de A 1 75 and 0 81 angle dO A 4 25 degrees occurring between and including 54 0 and 64 0 ms 5 6 8 The neck performance can be adjusted by replacing the eight circular section buffers with buffers of another shore hardness 5 7 Shoulder 5 7 1 The length of the elastic cord should be adjusted so that a force between 27 5 N and 32 5 N applied in a forward direction 4 1 mm from the outer edge of the clavicle in the same plane as the clavicle movement is required to move the clavicle forward 5 7 2 The dummy is seated on a flat horizontal rigid surface with no back support The thorax is positioned vertically and the arms should be set at an angle of 40 2 forward to the vertical The legs are positioned horizontally 5 7 3 The impactor is a pendulum with a mass of 23 4 0 2 kg and diameter of 152 4 0 25 mm with an edge radius of 12 7 mm 4 The impactor is suspended from rigid hinges by four wires with the centre line of the impactor at least 3 5 m below the rigid hinges Page 74 France Draft proposal ELSA 7 04 see Figure 4 5 7 4 The impactor is equipped with an accelerometer sensitive in the direction of impact and located on the impactor axis 5 7 5 The impactor should freely swing onto the shoulder of the dummy with an impact velocity of 4 3 0 1 m s 5 7 6 The impact direction is perpendicular to t
45. he anterior posterior axis of the dummy and the axis of the impactor coincides with the axis of the upper arm pivot 5 7 7 The peak acceleration of the impactor filtered using ISO 6487 2000 CFC 180 should be between 7 5 and 10 5 g 5 8 Arms 5 8 1 No dynamic certification procedure is defined for the arms 5 9 Thorax 5 9 1 Each rib module is certified separately 5 9 2 The rib module is positioned vertically in a drop test rig and the rib cylinder is clamped rigidly onto the rig 5 9 3 The impactor is a free fall mass of 7 78 0 01 kg with a flat face and a diameter of 150 2 mm 5 9 4 The centre line of the impactor should be aligned with the centre line of the rib s guide system 5 9 5 The impact severity is specified by the drop heights of 815 204 and 459 mm These drop heights result in velocities of approximately 4 2 and 3 m s respectively Impact drop heights should be applied with an accuracy of 1 per cent 5 9 6 The rib displacement should be measured for instance using the rib s own displacement transducer 5 9 7 The rib certification requirements are shown in table 5 of this annex 5 9 8 The performance of the rib module can be adjusted by replacing the tuning spring inside the cylinder with one of a different stiffness Table 5 Requirements for the full rib module Certification Test sequence Pisplacement mm Drop height po Minimum Maximum JAccuracy 1 Page 75 France Draft proposal ELSA 7 0
46. he disconnect function The voltmeter used in this test shall measure DC values and have an internal resistance of at least 10 mega ohms 3 2 Bus voltage The following instructions may be used if voltage is measured Prior to the vehicle crash test measure and record the high voltage bus voltage Vb see Figure 1 If Vb is high voltage conduct the specified vehicle crash test After the crash test determine the high voltage bus voltages Vb V1 V2 see Figure 1 If the RESS has exposed conductive parts measure the voltage V3 between any exposed conductive parts of it and the electrical chassis The measurement shall be made after 5 seconds Test difficult to perform of the vehicle coming to rest after each crash test Electrical Chassis Energy Conversion System Assembly V2 RESS Assembly High Voltage Bus Traction System Page 91 Figure 1 Measurement of Vb V1 V2 France Draft proposal ELSA 7 04 V3 is not used in the text To discuss the test during the meeting 33 Resistance isolation The following instructions may be used if isolation resistance is measured Before the vehicle crash test measure and record the high voltage bus voltage Vb see Figure 1 Vb must be equal to or greater than the nominal operating voltage as defined by the vehicle manufacturer It is acceptable for vehicle manufacturer to elect to calculate or simulate this value instead of measuring this after the crash Measure and r
47. his Regulation 9 PRODUCTION DEFINITELY DISCONTINUED If the holder of the approval completely ceases to manufacture a type of vehicle approved in accordance with this Regulation he shall so inform the authority which granted the approval Upon receiving the relevant communication that authority shall inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in annex to this Regulation 10 TRANSITIONAL PROVISIONS 10 1 As from the official date of entry into force of Supplement 1 to the 02 series of amendments no Contracting Party applying this Regulation shall refuse to grant ECE approval under this Regulation as amended by Supplement 1 to the 02 series of amendments 10 2 As from 12 months after the entry into force of the 02 series of amendments Contracting Parties applying this Regulation shall grant ECE approvals only to those types of vehicles which comply with the requirements of this Regulation as amended by the 02 series of amendments 10 3 As from 60 months after the entry into force of the 02 series of amendments Contracting Parties applying this Regulation may refuse first national registration first entry into service of vehicles which do not meet the requirements of this Regulation as amended by the 02 series of amendments 10 4 As from 36 months after the entry into force of Supplement 1 to the 02 series of amendments Contracting Parties a
48. ied should be kept in the test room for a period of at least four hours at a temperature between and including 18 and 22 degrees Celsius and a relative humidity between and including 10 and 70 per cent prior to a test 5 4 6 The time between two repeated certification tests should be at least 30 minutes 5 5 Head 5 5 1 The head sub assembly including the upper neck load cell replacement is certified in a drop test from 200 1 mm onto a flat rigid impact surface 5 5 2 The angle between the impact surface and the mid sagittal plane of the head is 35 1 degree allowing an impact to the upper part of the head side this can be realised with a sling harness or a head drop support bracket with a mass of 0 075 0 005 kg 5 5 3 The peak resultant head acceleration filtered using ISO 6487 2000 CFC 1000 should be between and including 100 g and 150 g 5 5 4 The head performance can be adjusted to meet the requirement by altering the friction characteristics of the skin skull interface e g by lubrication with talcum powder or polytetrafluoretheen PTFE spray 5 6 Neck 5 6 1 The head neck interface of the neck is mounted to a special certification head form with a mass of 3 9 0 05 kg see Figure 6 with the help of a 12 mm thick interface plate with a mass of 0 205 0 05 kg 5 6 2 The headform and neck are mounted upside down to the bottom of a neck bending pendulum 2 allowing a lateral motion of the system 5 6 3 The
49. ifications given by the vehicle manufacturer 1 2 DEFINITIONS For the purposes of this annex 2 1 Reference data means one or several of the following characteristics of a seating position 2 1 1 the H point and the R point and their relationship 2 1 2 the actual torso angle and the design torso angle and their relationship 2 2 Three dimensional H point machine 3 D H machine means the device used for the determination of H points and actual torso angles This device is described in appendix to this annex 2 3 H point means the pivot centre of the torso and the thigh of the 3 D H machine installed in the vehicle seat in accordance with paragraph 4 below The H point is located in the centre of the centreline of the device which is between the H point sight buttons on either side of the 3 D H machine The H point corresponds theoretically to the R point for tolerances see paragraph 3 2 2 below Once determined in accordance with the procedure described in paragraph 4 the H point is considered fixed in relation to the seat cushion structure and to move with it when the seat is adjusted 2 4 R point or seating reference point means a design point defined by the vehicle manufacturer for each seating position and established with respect to the three dimensional reference system Page 16 France Draft proposal ELSA 7 04 2 5 Torso line means the centreline of the probe of the 3 D H m
50. ign a series number to each communication form drawn up for such an extension 7 CONFORMITY OF PRODUCTION The conformity of production procedures shall comply with those set out in the Agreement Appendix 2 E ECE 324 E ECE TRANS 505 Rev 2 with the following requirements 7 1 Every vehicle approved under this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements set out in paragraph 5 above 7 2 The holder of the approval shall ensure that for each type of vehicle at least the tests concerning the taking of measurements are carried out 7 3 The authority which has granted type approval may at any time verify the conformity control methods applied in each production facility The normal frequency of these verifications shall be once every two years 8 PENALTIES FOR NON CONFORMITY OF PRODUCTION 8 1 The approval granted in respect of a vehicle type pursuant to this Regulation may Page 11 France Draft proposal ELSA 7 04 be withdrawn if the requirement laid down in paragraph 7 1 above is not complied with or if the vehicle or vehicles selected have failed to pass the checks prescribed in paragraph 7 2 above 8 2 If a Contracting Party to the Agreement applying this Regulation withdraws an approval it has previously granted it shall forthwith so notify the other Contracting Parties applying this Regulation by means of a communication form conforming to the model in annex to t
51. ine box part No 4a and the non sensitive side The guide system assembly is equipped with linear needle bearings Page 62 France Draft proposal ELSA 7 04 2 5 8 A tuning spring is located in the guide system assembly part No 4h 2 5 9 A rib displacement transducer part No 4i can be installed on the spine box mounted part of guide system part No 4e and connected to the outer end of the guide system at the sensitive side of the rib 2 6 Arms 2 6 1 The arms are shown as part No 5 in figure 1 of this annex 2 6 2 The arms have a plastic skeleton covered by a polyurethane PU flesh representation with a polyvinylchloride PVC skin The flesh representation consists of a high density polyurethane PU moulding upper part and a polyurethane PU foam lower part 2 6 3 The shoulder arm joint allows for discrete arm positions at 0 40 and 90 degree setting with respect to the torso axis 2 6 4 The shoulder arm joint allows for a flexion extension rotation only 2 7 Lumbar spine 2 7 1 The lumbar spine is shown as part No 6 in figure 1 of this annex 2 7 2 The lumbar spine consists of a solid rubber cylinder with two steel interface plates at each end and a steel cable inside the cylinder 2 8 Abdomen 2 8 1 The abdomen is shown as part No 7 in figure 1 of this annex 2 8 2 The abdomen consists of a metal casting and a polyurethane foam covering 2 8 3 The central part of the abdomen is a metal casting part
52. int of available travel however height adjustment shall be at the position corresponding to the fixed seat if the vehicle type is available with adjustable and fixed seats If locking positions are not available at the respective mid points of travel the positions immediately rearward down or outboard of the mid points shall be used For rotational adjustments tilt rearward will be the adjustment direction which moves the head of the dummy rearwards If the dummy protrudes outside the normal passenger volume e g head into roof lining then 1 cm clearance will be provided using secondary adjustments seat back angle or fore aft adjustment in that order Page 31 France Draft proposal ELSA 7 04 5 6 Unless otherwise specified by the manufacturer the other front seats shall if possible be adjusted to the same position as the seat containing the dummy 5 7 If the steering wheel is adjustable all adjustments are positioned to their mid travel locations 5 8 Tyres shall be inflated to the pressure specified by the vehicle manufacturer 5 9 The test vehicle shall be set horizontal about its roll axis and maintained by supports in that position until the side impact dummy is in place and after all preparatory work is complete 5 10 The vehicle shall be at its normal attitude corresponding to the conditions set out in paragraph 4 3 above Vehicles with suspension enabling their ground clearance to be adjusted shall be tested unde
53. ive effect on the performance prescribed in this Regulation 2 2 6 the optional arrangements or interior fittings in so far as they have a negative effect on the performance prescribed in this Regulation 2 2 7 the type of front seat s and position of the R point in so far as they have a negative effect on the performance prescribed in this Regulation 2 2 8 The place of the RESS 2 3 Compartment means bounded zone in vehicle 2 3 1 Passenger compartment means the space for occupant accommodation bounded by the roof floor side walls doors outside glazing and front bulkhead and the plane of the rear compartment bulkhead or the plane of the rear seat back support or rear gate as well as by the barriers and enclosures provided for protecting the power train from direct contact with live parts 2 3 2 Luggage compartment means the space in the vehicle for luggage accommodation bounded by the roof hood floor side walls as well as by the barrier and enclosure For electric vehicles hybrid vehicles and fuel cell vehicles the barrier and enclosure are provided for protecting the power train from direct contact with live parts being separated from the passenger compartment by the front bulkhead or the rear bulk head 2 4 R point or seating reference point means the reference point specified by the vehicle manufacturer which 2 4 1 has co ordinates determined in relation to the vehicle structure 2 4 2 corresponds
54. l of a vehicle type pursuant to this Regulation shall be communicated by the Parties to the Agreement applying this Regulation by means of a form conforming to the model in annex 1 to this Regulation and photographs and or diagrams and drawings supplied by the applicant for approval in a format not exceeding A4 210 x 297 mm or folded to that format and on an appropriate scale 4 5 There shall be affixed to every vehicle conforming to a vehicle type approved under this Regulation conspicuously and in a readily accessible place specified on the approval form an international approval mark consisting of 4 5 1 a circle surrounding the letter E followed by the distinguishing number of the country which has granted approval 1 4 5 2 the number of this Regulation followed by the letter R a dash and the approval number to the right of the circle prescribed in paragraph 4 5 1 4 6 If the vehicle conforms to a vehicle type approved under one or more other Regulations annexed to the Agreement in the country which has granted approval under this Regulation the symbol prescribed in paragraph 4 5 1 need not be repeated in this case the Regulation and approval numbers and the additional symbols of all the Regulations under which approval has been granted in the country which has granted approval under this Regulation shall be placed in vertical columns to the right of the symbol prescribed in paragraph 4 5 1 4 7 The approval mark shall be
55. le mass of the MDB If the momentum change M V is not equal to the total impulse 1 5 per cent or if the total energy absorbed E is not equal to the kinetic energy Ex 5 per cent then the test data must be examined to determine the cause of this error DESIGN OF IMPACTOR 2 Page 46 France Draft proposal ELSA 7 04 Figure 1 Figure 2 Page 47 France Draft proposal ELSA 7 04 Figure 3 Aluminium Honeycomb Orientation Figure 4 Dimension of Aluminium Honeycomb Cells DESIGN OF THE BACK PLATE Page 48 France Draft proposal ELSA 7 04 Figure 5 Front View Page 49 France Draft proposal ELSA 7 04 Figure 6 Attachment of backplate to ventillation device and trolley face plate Page 50 France Draft proposal ELSA 7 04 Figure 7 Staggered pitch for the back plate ventilation holes Top and bottom back plate flanges Note The attachment holes in the bottom flange may be opened to slots as shown below for ease of attachment provided sufficient grip can be developed to avoid detachment during the whole impact test Page 51 France Draft proposal ELSA 7 04 VENTILATION FRAME The ventilation device is a structure made of a plate that is 5 mm thick and 20 mm wide Only the vertical plates are perforated with nine 8 mm holes in order to let air circulate horizontally Page 52 France Draft proposal ELSA 7 04 Figure 9 Page 53 France Draft proposal ELSA 7 04 Annex 5 Ap
56. lowed to remain in that attitude for the moment Carefully return the back pan to the seat back and check the two spirits levels for zero Page 20 France Draft proposal ELSA 7 04 position If any movement of the feet has occurred during the rocking operation of the 3 D H machine they must be repositioned as follows Alternately lift each foot off the floor the minimum necessary amount until no additional foot movement is obtained During this lifting the feet are to be free to rotate and no forward or lateral loads are to be applied When each foot is placed back in the down position the heel is to be in contact with the structure designed for this Check the lateral spirit level for zero position if necessary apply a lateral load to the top of the back pan sufficient to level the 3 D H machine s seat pan on the seat 4 13 Holding the T bar to prevent the 3 D H machine from sliding forward on the seat cushion proceed as follows a return the back pan to the seat back b alternately apply and release a horizontal rearward load not to exceed 25 N to the back angle bar at a height approximately at the centre of the torso weights until the hip angle quadrant indicates that a stable position has been reached after load release Care shall be exercised to ensure that no exterior downward or lateral loads are applied to the 3 D H machine If another level adjustment of the 3 D H machine is necessary rotate the back pan forward re
57. ment is built in This part can be replaced with an upper neck load cell 2 3 Neck 2 3 1 The neck is shown as part No 2 in figure 1 of this annex 2 3 2 The neck consists of a head neck interface piece a neck thorax interface piece and a central section that links the two interfaces to one another 2 3 3 The head neck interface piece part No 2a and the neck thorax interface piece part No 2c both consist of two aluminium disks linked together by means of a half spherical screw and eight rubber buffers 2 3 4 The cylindrical central section part No 2b is made of rubber At both sides an aluminium disk of the interface pieces is moulded in the rubber part Page 61 France Draft proposal ELSA 7 04 2 3 5 The neck is mounted on the neck bracket shown as part No 2d in Figure 1 of this annex This bracket can optionally be replaced with a lower neck load cell 2 3 6 The angle between the two faces of the neck bracket is 25 degrees Because the shoulder block is inclined 5 degrees backwards the resulting angle between the neck and torso is 20 degrees 2 4 Shoulder 2 4 1 The shoulder is shown as part No 3 in figure 1 of this annex 2 4 2 The shoulder consists of a shoulder block two clavicles and a shoulder cap 2 4 3 The shoulder box part No 3a consists of an aluminium spacer block an aluminium plate on top and an aluminium plate on the bottom of the spacer block Both plates are covered with a polytetrafluore
58. n outboard rear For rear seats or auxiliary seats the legs are located as specified by the manufacturer If the feet then rest on parts of the floor which are at different levels the foot which first comes into contact with the front seat shall serve as a reference and the other foot shall be so arranged that the spirit level giving the transverse orientation of the seat of the device indicates the horizontal Page 19 France Draft proposal ELSA 7 04 4 7 3 Other designated seating positions The general procedure indicated in paragraph 4 7 1 above shall be followed except that the feet shall be placed as specified by the vehicle manufacturer 4 8 Apply lower leg and thigh weights and level the 3 D H machine 4 9 Tilt the back pan forward against the forward stop and draw the 3 D H machine away from the seat back using the T bar Reposition the 3 D H machine on the seat by one of the following methods 4 9 1 If the 3 D H machine tends to slide rearward use the following procedure Allow the 3 D H machine to slide rearward until a forward horizontal restraining load on the T bar is no longer required i e until the seat pan contacts the seat back If necessary reposition the lower leg 4 9 2 If the 3 D H machine does not tend to slide rearward use the following procedure Slide the 3 D H machine rearwards by applying a horizontal rearward load to the T bar until the seat pan contacts the seat back see figure 2 of appendix to
59. nd Pubic symphysis load 1 5 2 4 Additionally a number of optional instrumentation channels 38 are available Upper neck loads 6 Lower neck loads 6 Clavicle loads 3 Torso back plate loads 4 T1 accelerations 3 T12 accelerations 3 Rib accelerations 6 two on each rib T12 spine loads 4 Lower lumbar loads 3 Pelvis accelerations 3 and Femur loads 6 Additional four position indicator channels are optionally available Thorax rotations 2 and Pelvis rotations 2 5 3 Visual check 5 3 1 All dummy parts should be visually checked for damage and if necessary be replaced before the certification test 5 4 General test set up 5 4 1 Figure 3 of this annex shows the test set up for all certification tests on the side impact dummy Page 72 France Draft proposal ELSA 7 04 5 4 2 The certification test set up arrangements and testing procedures shall be in accordance with the specification and requirements of the documentation specified in paragraph 1 3 5 4 3 The tests on the head neck thorax and lumbar spine are carried out on sub assemblies of the dummy 5 4 4 The tests on the shoulder abdomen and pelvis are performed with the complete dummy without suit shoes and underwear In these tests the dummy is seated on a flat surface with two sheets of less than or equal to 2 mm thick polytetrafluoretheen PTFE placed between the dummy and the surface 5 4 5 All parts to be certif
60. neck pendulum is equipped with a uniaxial accelerometer according to the neck pendulum specification see Figure 5 5 6 4 The neck pendulum should be allowed to fall freely from a height chosen to achieve an impact velocity of 3 4 0 1 m s measured at the accelerometer location Page 73 France Draft proposal ELSA 7 04 5 6 5 The neck pendulum is decelerated from impact velocity to zero by an appropriate device 3 as described in the neck pendulum specification see Figure 5 resulting in a velocity change time history inside the corridor specified in Figure 7 and Table 4 of this Annex All channels have to be recorded according to the ISO 6487 2000 or SAE J211 March 1995 data channel recording specification and filtered digitally using ISO 6487 2000 CFC 180 or SAE J211 1995 CFC 180 The pendulum deceleration has to be filtered using ISO 6487 2000 CFC 60 or SAE J211 1995 CFC 60 Table 4 Pendulum Velocity Change Time Corridor for Neck Certification Test Upper Boundary Lower Boundary poor OS 0 0135 po TT 5 6 6 The maximum head form flexion angle relative to the pendulum Angle de A dO C in Figure 6 should be between and including 49 0 and 59 0 degrees and should occur between and including 54 0 and 66 0 ms 5 6 7 The maximum head form centre of gravity displacements measured in angle de A and de B see Figure 6 should be Fore pendulum base angle d A between and including 32 0 and 37 0 degrees occurring b
61. need to be replaced or adjusted to fit without a gap of gt 0 5 mm Page 40 France Draft proposal ELSA 7 04 3 2 3 Dismount the ventilation device from the front of the trolley 3 2 4 Fix a 1 0 mm thick layer of cork to the front face of the trolley 3 2 5 Re mount the ventilation device to the front of the trolley and tighten to exclude air gaps 4 CONFORMITY OF PRODUCTION The conformity of production procedures shall comply with those set out in the Agreement Appendix 2 E ECE 324 E ECE TRANS S505 Rev 2 with the following requirements 4 1 The manufacturer shall be responsible for the conformity of production procedures and for that purpose must in particular 4 1 1 Ensure the existence of effective procedures so that the quality of the products can be inspected 4 1 2 Have access to the testing equipment needed to inspect the conformity of each product 4 1 3 Ensure that the test results are recorded and that the documents remain available for a time period of 10 years after the tests 4 1 4 Demonstrate that the samples tested are a reliable measure of the performance of the batch examples of sampling methods according to batch production are given below 4 1 5 Analyse results of tests in order to verify and ensure the stability of the barrier characteristics making allowance for variations of an industrial production such as temperature raw materials quality time of immersion in chemical chemical concentra
62. ng attitude defined in paragraph 2 11 above 4 3 The seat if it is adjustable shall be adjusted first to the rearmost normal driving or riding position as indicated by the vehicle manufacturer taking into consideration only the longitudinal adjustment of the seat excluding seat travel used for purposes other than normal driving or riding positions Where other modes of seat adjustment exist vertical Page 18 France Draft proposal ELSA 7 04 angular seat back etc these will then be adjusted to the position specified by the vehicle manufacturer For suspension seats the vertical position shall be rigidly fixed corresponding to a normal driving position as specified by the manufacturer 4 4 The area of the seating position contacted by the 3 D H machine shall be covered by a muslin cotton of sufficient size and appropriate texture described as a plain cotton fabric having 18 9 threads per em and weighing 0 228 kg m or knitted or non woven fabric having equivalent characteristics If the test is run on a seat outside the vehicle the floor on which the seat is placed shall have the same essential characteristics 2 as the floor of the vehicle in which the seat is intended to be used 4 5 Place the seat and back assembly of the 3 D H machine so that the centreplane of the occupant C LO coincides with the centreplane of the 3 D H machine At the manufacturer s request the 3 D H machine may be moved inboard with respect to the C
63. onsible for conducting the approval tests 3 4 1 A vehicle not comprising all the components proper to the type may be accepted for tests provided that it can be shown that the absence of the components omitted has no detrimental effect on the performance prescribed in the requirements of this Regulation 3 4 2 It shall be the responsibility of the applicant for approval to show that the application of paragraph 3 4 1 is in compliance with the requirements of this Regulation Page 6 France Draft proposal ELSA 7 04 4 APPROVAL 4 1 If the vehicle type submitted for approval pursuant to this Regulation meets the requirements of paragraph 5 below approval of that vehicle type shall be granted 4 2 In case of doubt account shall be taken when verifying the conformity of the vehicle to the requirements of this Regulation of any data or test results provided by the manufacturer which can be taken into consideration in validating the approval test carried out by the technical service 4 3 An approval number shall be assigned to each type approved Its first two digits at present 01 corresponding to the O1 series of amendments shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval The same Contracting Party may not assign the same approval number to another vehicle type 4 4 Notice of approval or of extension or of refusal of approva
64. pactor is suspended from rigid hinges by eight wires with the centre line of the impactor at least 3 5 m below the rigid hinges see Figure 4 5 12 3 The impactor is equipped with an accelerometer sensitive in the direction of impact and located on the impactor axis 5 12 4 The impactor should freely swing onto the pelvis of the dummy with an impact velocity of 4 3 0 1 m s 5 12 5 The impact direction is perpendicular to the anterior posterior axis of the dummy and the axis of the impactor is aligned with the centre of the H point back plate 5 12 6 The peak force of the impactor obtained from the impactor acceleration filtered using ISO 6487 2000 CFC 180 and multiplied by the impactor mass should be between and including 4 4 and 5 4 kN and occur between and including 10 3 and 15 5 ms 5 12 7 The pubic symphysis force filtered using ISO 6487 2000 CFC 600 should be between and including 1 04 and 1 64 kN and occur between and including 9 9 and 15 9 ms 5 13 Legs 5 13 1 No dynamic certification procedure is defined for the legs Figure 3 OVERVIEW OF THE SIDE IMPACT DUMMY CERTIFICATION TEST SET UP Page 78 France Draft proposal ELSA 7 04 Figure 4 23 4 kg Pendulum impactor suspension left four wires suspension cross wires removed right eight wires suspension Page 79 France Draft proposal ELSA 7 04 Page 80 France Draft proposal ELSA 7 04 Page 81 France Draft proposal ELSA 7 04 Page 82
65. pan without compressing the seat cushion more than the compression due to the weight of the leg Set the knees of the dummy such that their outside surfaces are 150 10 mm from the plane of symmetry of the dummy Annex 8 PARTIAL TEST 1 PURPOSE The purpose of these tests is to verify whether the modified vehicle presents at least the same or better energy absorption characteristics than the vehicle type approved under this Regulation 2 PROCEDURES AND INSTALLATIONS 2 1 Reference tests 2 1 1 Using the initial padding materials tested during the approval of the vehicle mounted in a new lateral structure of the vehicle to be approved two dynamic tests utilising two different impactors shall be carried out figure 1 2 1 1 1 The head form impactor defined in paragraph 3 1 1 shall hit at 24 1 km h in the area impacted for the EUROSID head during the approval of the vehicle Test result shall be recorded and the HPC calculated However this test shall not be carried out when during the tests described in annex 4 of this Regulation Page 87 France Draft proposal ELSA 7 04 where there has been no head contact or when the head contacted the window glazing only provided that the window glazing is not laminated glass 2 1 1 2 The body block impactor defined in paragraph 3 2 1 shall hit at 24 1 km h in the lateral area impacted by the EUROSID shoulder arm and thorax during the approval of the vehicle Test result shall
66. part No 8e backed up with a steel plate fixed on the iliac wing by an axle support going through the ball joint 2 9 7 The iliac wings are attached to the sacrum block at the aft side and linked together at the pubic symphysis location by a force transducer part No 8f or a replacement transducer 2 10 Legs 2 10 1 The legs are shown as part No 9 in figure 1 of this annex 2 10 2 The legs consist of a metal skeleton covered by flesh stimulating polyurethane PU foam with a polyvinlychloride PVC skin 2 10 3 A high density polyurethane PU moulding with a polyvinlychloride PVC skin represents the thigh flesh of the upper legs 2 10 4 The knee and ankle joint allow for a flexion extension rotation only 2 11 Suit 2 11 1 The suit is not shown in figure of this annex 2 11 2 The suit is made of rubber and covers the shoulders thorax upper part of the arms the abdomen and lumbar spine the upper part of the pelvis Figure 1 CONSTRUCTION OF SIDE IMPACT DUMMY Page 64 France Draft proposal ELSA 7 04 Page 65 France Draft proposal ELSA 7 04 Table 1 Side Impact Dummy Components see Figure 1 PartNo Description Numberper dummy E esa OE oo ee A Penis OA D A O Te A Y a A a A te BE TS A MIN TICS horax 1 4 AAA CN odon ooo MN O AAN AA MN CT Sd CON ETT A A JN DI A MINI LS E o gs O Be Bint sey oe SSCS Be Poin Toa oe Br ET oreepicement DS 2000 IN D IN A TI AN
67. pendix 1 FORCE DEFLECTION CURVES FOR STATIC TESTS Blocks 1 amp 3 Figure la Page 54 France Draft proposal ELSA 7 04 Block 2 Figure 1b Page 55 France Draft proposal ELSA 7 04 Block 4 Figure 1c Page 56 France Draft proposal ELSA 7 04 Blocks 5 amp 6 Figure 1d Annex 5 Appendix 2 FORCE DEFLECTION CURVES FOR DYNAMIC TESTS Page 57 France Draft proposal ELSA 7 04 Page 58 France Draft proposal ELSA 7 04 Page 59 France Draft proposal ELSA 7 04 Page 60 France Draft proposal ELSA 7 04 Annex 6 TECHNICAL DESCRIPTION OF THE SIDE IMPACT DUMMY 1 GENERAL 1 1 The side impact dummy prescribed in this Regulation including the instrumentation and calibration is described in technical drawings and a user s manual 1 1 2 The dimensions and masses of the side impact dummy represent a 50th percentile adult male without lower arms 1 3 The side impact dummy consists of a metal and plastic skeleton covered by flesh simulating rubber plastic and foam 2 CONSTRUCTION 2 1 For an overview of the side impact dummy see Figure for a scheme and the parts breakdown in Table 1 of this annex 2 2 Head 2 2 1 The head is shown as part No 1 in figure 1 of this annex 2 2 2 The head consists of an aluminium shell covered by a pliable vinyl skin The interior of the shell is a cavity accommodating triaxial accelerometers and ballast 2 2 3 At the head neck interface a load cell replace
68. per row 2 1 3 3 The cells must be made of 5052 aluminium for the lower row 2 1 3 4 The aluminium honeycomb blocks should be processed such that the force deflection curve when statically crushed according to the procedure defined in paragraph 2 1 4 is within the corridors defined for each of the six blocks in appendix 1 to this annex Moreover the processed honeycomb material used in the honeycomb blocks to be used for constructing the barrier should be cleaned in order to remove any residue that may have been produced during the processing of the raw honeycomb material 2 1 3 5 The mass of the blocks in each batch shall not differ by more than 5 per cent of the mean block mass for that batch 2 1 4 Static tests 2 1 4 1 A sample taken from each batch of processed honeycomb core shall be tested according to the static test procedure described in paragraph 5 2 1 4 2 The force compression for each block tested shall lie within the force deflection corridors defined in appendix 1 Static force deflection corridors are defined for each block of the barrier 2 1 5 Dynamic test 2 1 5 1 The dynamic deformation characteristics when impacted according to the protocol described in paragraph 6 2 1 5 2 Deviation from the limits of the force deflection corridors characterising the rigidity of the impactor as defined in appendix 2 may be allowed provided that 2 1 5 2 1 the deviation occurs after the beginning of the impact and
69. pplying this Regulation shall grant ECE approvals only to those types of vehicles which comply with the requirements of this Regulation as amended by Supplement to the 02 series of amendments 10 5 As from 84 months after the entry into force of Supplement 1 to the 02 series of amendments Contracting Parties applying this Regulation may refuse first national registration first entry into service of vehicles which do not meet the requirements of this regulation as amended by Supplement 1 to the 02 series of amendments Page 12 France Draft proposal ELSA 7 04 11 TRANSITIONAL PROVISIONS 11 1 As from the official date of entry into force of the 02 series of amendments no Contracting Party applying this Regulation shall refuse to grant ECE approval under this Regulation as amended by the 02 series of amendments 11 2 As from 12 months after the entry into force of the 02 series of amendments Contracting Parties applying this Regulation shall grant ECE approvals only to those types of vehicles which comply with the requirements of this Regulation as amended by the 02 series of amendments 11 3 As from 60 months after the entry into service of the 02 series of amendments Contracting Parties applying this Regulation may refuse first national registration first entry into service of vehicles which do not meet the requirements of this Regulation as amended by the 02 series of amendments Annex 1 COMMUNICATION maximum format A4 2
70. r the normal conditions of use at 50 km h as defined by the vehicle manufacturer This shall be assured by means of additional supports if necessary but such supports shall have no influence on the crash behaviour of the test vehicle during the impact 6 SIDE IMPACT DUMMY AND ITS INSTALLATION 6 1 The side impact dummy shall comply with the specifications given in annex 6 and be installed in the front seat on the impact side according to the procedure given in annex 7 to this Regulation 6 2 The safety belts or other restraint systems which are specified for the vehicle shall be used Belts should be of an approved type conforming to Regulation No 16 or to other equivalent requirements and mounted on anchorages conforming to Regulation No 14 or to other equivalent requirements 6 3 The safety belt or restraint system shall be adjusted to fit the dummy in accordance with the manufacturer s instructions if there are no manufacturer s instructions the height adjustment shall be set at middle position if this position is not available the position immediately below shall be used 7 MEASUREMENTS TO BE MADE ON THE SIDE IMPACT DUMMY 7 1 The readings of the following measuring devices are to be recorded 7 1 1 Measurements in the head of the dummy The resultant triaxial acceleration referring to the head centre of gravity The head channel instrumentation shall comply with ISO 6487 1987 with CFC 1000 Hz and Page 32 France Dr
71. s electrical isolation value in ohms by the working voltage of the high voltage bus in volts Ri Ro Vb V2 Vb V2 or Ri Ro Vb 1 V2 1 V2 Electrical Chassis Energy Conversion System Assembly vz RO High Voltage Bus Traction System RESS Assembly Figure 3 Measurement of V2 Page 93 France Draft proposal ELSA 7 04 NOTE 1 The standard known resistance Ro in ohms should be approximately 500 times the working voltage of the vehicle in volts Ro is not required to be precisely this value since the equations are valid for any Ro however an Ro value in this range should provide good resolution for the voltage measurements 3 4 Electrical Energy The following procedure may be used if energy is measured After the vehicle crash determine the high voltage bus energy see Figure 4 Install switch S1 and known resistance Re Close switch S1 and measure and record voltage Vb and current le Integrate the product of these two measurements with respect to time as shown below to obtain total energy ti ty 22 fv x1 dt t to Energy Conversion RESS Assembly High Voltage Bus Traction System System Figure 4 Measurement of high voltage bus energy 3 5 Physical Barrier The following procedure may be used if physical protection is tested 3 5 1 Test conditions The manufacturer shall define the barrier enclosure and solid insulator that protect the human from the
72. ssipated energy against blocks 5 and 6 during the test shall be equal to 3 5 1 kJ for these blocks 2 1 5 11 The dissipated energy against block 4 shall be equal to 4 1 kJ 2 1 5 12 The dissipated energy against block 2 shall be equal to 15 2 kJ 2 1 5 13 The dissipated total energy during the impact shall be equal to 45 3 kJ 2 1 5 14 The maximum impactor deformation from the point of first contact calculated from integration of the accelerometers according to paragraph 6 6 3 shall be equal to 330 20 mm Page 38 France Draft proposal ELSA 7 04 2 1 5 15 The final residual static impactor deformation measured after the dynamic test at level B figure 2 shall be equal to 310 20 mm 2 2 Front plates 2 2 1 Geometrical characteristics 2 2 1 1 The front plates are 1 500 1 mm wide and 250 1 mm high The thickness is 0 5 0 06 mm 2 2 1 2 When assembled the overall dimensions of the impactor defined in figure 2 shall be 1 500 2 5 mm wide and 500 2 5 mm high 2 2 1 3 The upper edge of the lower front plate and the lower edge of the upper front plate should be aligned within 4 mm 2 2 2 Material characteristics 2 2 2 1 The front plates are manufactured from aluminium of series AlMg to AlMg with elongation gt 12 per cent and a UTS gt 175 N mm The material of the impactor must be an aluminium honeycomb Other materials can be used if equal results as described in paragraph 2 3 have been pro
73. t may be offset by reductions which have no noticeable effect on the results of the test 4 3 5 The mass of the measuring apparatus shall not change each axle reference load by more than 5 per cent each variation not exceeding 20 kg Page 30 France Draft proposal ELSA 7 04 5 PREPARATION OF THE VEHICLE 5 1 The side windows at least on the struck side shall be closed 5 2 The doors shall be closed but not locked 5 3 The transmission shall be placed in neutral and the parking brake disengaged 5 4 The comfort adjustments of the seats if any shall be adjusted to the position specified by the vehicle manufacturer 5 5 The seat containing the dummy and its elements if adjustable shall be adjusted as follows 5 5 1 The longitudinal adjustment device shall be placed with the locking device engaged in the position that is nearest to midway between the foremost and rearmost positions if this position is between two notches the rearmost notch shall be used 5 5 2 The head restraint shall be adjusted such that its top surface is level with the centre of gravity of the dummy s head if this is not possible the head restraint shall be in the uppermost position 5 5 3 Unless otherwise specified by the manufacturer the seat back shall be set such that the torso reference line of the three dimensional H point machine is set at an angle of 25 1 towards the rear 5 5 4 All other seat adjustments shall be at the mid po
74. t of working voltage For DC high voltage buses isolation resistance between any high voltage bus and the electrical chassis shall have minimum value of 100 ohms volt of working voltage 5 4 3 2 Voltage For AC high voltage buses voltage of the bus shall be equal to or less than 30 VAC For DC high voltage buses voltage of the bus shall be equal to or less than 60 VDC 5 4 3 3 Energy Energy on the high voltage bus shall be less than 0 2 Joules 5 4 3 4 Physical Protection For protection of live parts the protection degree IPXXB shall be provided For protection against indirect contact with live parts all exposed conductive parts electro shall be securely connected to the electrical chassis such that no dangerous potentials are produced The resistance between the electrical chassis and all conductive parts shall be less than 0 1 ohm which is measured when there is a current flow of at least 0 2 amps The said resistance shall be regarded as lower than 0 1 ohm when it is clearly evident that the DC electrical connection has been established adequately and securely by welding 6 MODIFICATION OF THE VEHICLE TYPE 6 1 Any modification affecting the structure the number and type of seats the interior trim or fittings or the position of the vehicle controls or of mechanical parts which might affect the energy absorption capacity of the side of the vehicle shall be brought to the notice of the administrative department granting appro
75. t proposal ELSA 7 04 Page 89 France Draft proposal ELSA 7 04 Annex 9 ELECTRIC SAFETY TEST PROCEDURES This section describes test procedures Alternative test and analysis methods may also be used For example megohmmeter measurements are an appropriate alternative to the procedure described below for measuring isolation resistance Well established calculation methods also exist to determine electrical energy on high voltage buses 1 RESS state of charge The RESS is at the level specified in the following paragraph a b or e as ile operators manual or ou Jal thts permanent affixed tthe vehicle than 95 percent ofthe maximum capacity of the RES or N FERREE E AA Ee ORES RAN te ere COME Se Propel peer OCA eaei oret h AS Move on section 4 4 and renumber the following paragraphs according to amended Annex 11 R 95 Page 90 France Draft proposal ELSA 7 04 3 Test procedures 3 1 Test setup and equipment If a high voltage disconnect function is used measurements are taken from both sides of the device performing the disconnect function However if the high voltage disconnect is integral to the RESS or the energy conversion system and the high voltage bus of the RESS or the energy conversion system is fully enclosed within a physical barrier or enclosure that maintains protection class IPXXB after crash test measurements may be taken only downstream of the device performing t
76. the method described below 6 1 Installation 6 1 1 Testing ground Page 42 France Draft proposal ELSA 7 04 6 1 1 1 The test area shall be large enough to accommodate the run up track of the mobile deformable barrier the rigid barrier and the technical equipment necessary for the test The last part of the track for at least 5 metres before the rigid barrier shall be horizontal flat and smooth 6 1 2 Fixed rigid barrier and dynamometric wall 6 1 2 1 The rigid wall shall consist of a block of reinforced concrete not less than 3 metres wide and not less than 1 5 metres high The thickness of the rigid wall shall be such that it weighs at least 70 tonnes 6 1 2 2 The front face shall be vertical perpendicular to the axis of the run up tack and equipped with six load cell plates each capable of measuring the total load on the appropriate block of the mobile deformable barrier impactor at the moment of impact The load cell impact plate area centres shall align with those of the six impact zones of the mobile deformable barrier face Their edges shall clear adjacent areas by 20 mm such that within the tolerance of impact alignment of the MDB the impact zones will not contact the adjacent impact plate areas Cell mounting and plate surfaces shall be in accordance with the requirements set out in the annex to standard ISO 6487 1987 6 1 2 3 Surface protection comprising a plywood face thickness 12 1 mm is added to each load
77. theen PTFE coating 2 4 4 The clavicles part No 3b made of cast polyurethane PU resin are designed to evolve over the spacer block The clavicles are held back in their neutral position by two elastic cords part No 3c which are clamped to the rear of the shoulder box The outer edge of both clavicles accommodates a design allowing for standard arm positions 2 4 5 The shoulder cap part No 3d is made of low density polyurethane foam and is attached to the shoulder block 2 5 Thorax 2 5 1 The thorax is shown as part No 4 in figure 1 of this annex 2 5 2 The thorax consists of a rigid thoracic spine box and three identical rib modules 2 5 3 The thoracic spine box part No 4a is made of steel On the rear surface a steel spacer and curved polyurethane PU resin back plate is mounted part No 4b 2 5 4 The top surface of the thoracic spine box is inclined 5 degrees backwards 2 5 5 At the lower side of the spine box a T12 load cell or load cell replacement part No 4j is mounted 2 5 6 A rib module part No 4c consists of a steel rib bow covered by a flesh simulating open cell polyurethane PU foam part No 4d a linear guide system assembly part No 4e linking the rib and spine box together a hydraulic damper part No 4f and a stiff damper spring part No 4g 2 5 7 The linear guide system part No 4e allows the sensitive rib side of the rib bow part No 4d to deflect with respect to the sp
78. this annex 4 10 Apply a 100 10 N load to the back and pan assembly of the 3 D H machine at the intersection of the hip angle quadrant and the T bar housing The direction of load application shall be maintained along a line passing by the above intersection to a point just above the thigh bar housing see figure 2 of appendix 1 to this annex Then carefully return the back pan to the seat back Care must be exercised throughout the remainder of the procedure to prevent the 3 D H machine from sliding forward 4 11 Install the right and left buttock weights and then alternately the eight torso weights Maintain the 3 D H machine level 4 12 Tilt the back pan forward to release the tension on the seat back Rock the 3 D H machine from side to side through a 10 arc 5 to each side of the vertical centreplane for three complete cycles to release any accumulated friction between the 3 D H machine and the seat During the rocking action the T bar of the 3 D H machine may tend to diverge from the specified horizontal and vertical alignment The T bar must therefore be restrained by applying an appropriate lateral load during the rocking motions Care shall be exercised in holding the T bar and rocking the 3 D H machine to ensure that no inadvertent exterior loads are applied in a vertical or fore and aft direction The feet of the 3 D H machine are not to be restrained or held during this step If the feet change position they should be al
79. tion neutralisation etc and the control of the processed material in order to remove any residue from the processing 4 1 6 Ensure that any set of samples or test pieces giving evidence of non conformity gives rise to a further sampling and test All the necessary steps must be taken to restore conformity of the corresponding production 4 2 The manufacturer s level of certification must be at least ISO 9002 standard 4 3 Minimum conditions for the control of production the holder of an agreement will ensure the control of conformity following the methods hereunder described 4 4 Examples of sampling according to batch 4 4 1 If several examples of one block type are constructed from one original block of aluminium honeycomb and are all treated in the same treatment bath parallel production one of these examples could be chosen as the sample provided care is taken to ensure Page 41 France Draft proposal ELSA 7 04 that the treatment is evenly applied to all blocks If not it may be necessary to select more than one sample 4 4 2 If a limited number of similar blocks say three to twenty are treated in the same bath serial production then the first and last block treated in a batch all of which are constructed from the same original block of aluminium honeycomb should be taken as representative samples If the first sample complies with the requirements but the last does not it may be necessary to take further samples from
80. to demonstrate compliance with the provisions of the present Regulation all or an appropriate selection of the following data shall be presented in the form indicated in appendix 3 to this annex 3 1 1 the co ordinates of the R point relative to the three dimensional reference system 3 1 2 the design torso angle 3 1 3 all indications necessary to adjust the seat 1f 1t is adjustable to the measuring position set out in paragraph 4 3 below Page 17 France Draft proposal ELSA 7 04 3 2 Relationship between measured data and design specifications 3 2 1 The co ordinates of the H point and the value of the actual torso angle obtained by the procedure set out in paragraph 4 below shall be compared respectively with the co ordinates of the R point and the value of the design torso angle indicated by the vehicle manufacturer 3 2 2 The relative positions of the R point and the H point and the relationship between the design torso angle and the actual torso angle shall be considered satisfactory for the seating position in question if the H point as defined by its co ordinates lies within a square of 50 mm side length with horizontal and vertical sides whose diagonals intersect at the R point and if the actual torso angle is within 5 of the design torso angle 3 2 3 If these conditions are met the R point and the design torso angle shall be used to demonstrate compliance with the provisions of this Regulation
81. torso angle An adjustable thigh bar attached to the seat pan establishes the thigh centreline and serves as a baseline for the hip angle quadrant 2 Body and leg elements Lower leg segments are connected to the seat pan assembly at the T bar joining the knees which is a lateral extension of the adjustable thigh bar Quadrants are incorporated in the lower leg segments to measure knee angles Shoe and foot assemblies are calibrated to measure the foot angle Two spirit levels orient the device in space Body element weights are placed at the corresponding centres of gravity to provide seat penetration equivalent to a 76 kg male All joints of the 3 D H machine should be checked for free movement without encountering noticeable friction Page 22 France Draft proposal ELSA 7 04 Page 23 France Draft proposal ELSA 7 04 Page 24 France Draft proposal ELSA 7 04 Page 25 France Draft proposal ELSA 7 04 Figure 1 3 D H machine elements designation Figure 2 Dimensions of the 3 D H machine elements and load distribution Annex 3 Appendix 2 THREE DIMENSIONAL REFERENCE SYSTEM 1 The three dimensional reference system is defined by three orthogonal planes established by the vehicle manufacturer see figure 2 The vehicle measuring attitude is established by positioning the vehicle on the supporting surface such that the co ordinates of the fiducial marks correspond to the values indicated by the manufacturer 3 Th
82. val The department may then either Page 10 France Draft proposal ELSA 7 04 6 1 1 consider that the modifications made are unlikely to have an appreciable adverse effect and that in any case the vehicle still complies with the requirements or 6 1 2 require a further test report from the technical service responsible for conducting the tests 6 1 2 1 Any modification of the vehicle affecting the general form of the structure of the vehicle or any variation in the reference mass greater than 8 per cent which in the judgement of the authority would have a marked influence on the results of the test shall require a repetition of the test as described in annex 4 6 1 2 2 If the technical service after consultation with the vehicle manufacturer considers that modifications to a vehicle type are insufficient to warrant a complete retest then a partial test may be used This would be the case if the reference mass is not more than 8 per cent different from the original vehicle or the number of front seats is unchanged Variations of seat type or interior fittings need not automatically entail a full retest An example of the approach to this problem is given in annex 8 6 2 Confirmation or refusal of approval specifying the alteration shall be communicated by the procedure specified in paragraph 4 4 above to the Parties to the Agreement which apply this Regulation 6 3 The competent authority issuing an extension of approval shall ass
83. ved to the satisfaction of the Technical Service In any case the type of impactor must be indicated in the test report 2 3 Back plate 2 3 1 Geometric characteristics 2 3 1 1 The geometric characteristics shall be according to figures 5 and 6 2 3 2 Material characteristics 2 3 2 1 The back plate shall consist of a 3 mm aluminium sheet The back plate shall be manufactured from aluminium of series AlMg to AIMg with a hardness between 50 and 65 HBS This plate shall be perforated with holes for ventilation the location the diameter and pitch are shown in figures 5 and 7 2 4 Location of the honeycomb blocks 2 4 1 The honeycomb blocks shall be centred on the perforated zone of the back plate figure 5 2 5 Bonding Page 39 France Draft proposal ELSA 7 04 2 5 1 For both the front and the back plates a maximum of 0 5 kg m shall be applied evenly directly over the surface of the front plate giving a maximum film thickness of 0 5 mm The adhesive to be used throughout should be a two part polyurethane such as Ciba Geigy XB5090 1 resin with XB5304 hardener or equivalent 2 5 2 For the back plate the minimum bonding strength shall be 0 6 MPa 87 psi tested according to paragraph 2 4 3 2 5 3 Bonding strength tests 2 5 3 1 Flatwise tensile testing is used to measure bond strength of adhesives according to ASTM C297 61 2 5 3 2 The test piece should be 100 mm x 100 mm and 15 mm deep bonded to a sample of th

Download Pdf Manuals

image

Related Search

Related Contents

to the Qolsys IQ User Manual  取扱説明書 - 吉忠マネキン株式会社  Mode d`emploi de la liseuse Kobo Aura  FT BT HINO 300 730L 7m3.cdr  VP200 user manual  N. modello WV-SFV631L/WV-SFV611L - psn  

Copyright © All rights reserved.
Failed to retrieve file