Home
RPC-UserManual
Contents
1. Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual rae MEMRPCO00002 N Mode Select nvalid SINT MPFRPCOO N When in Acquisition Period nvalid SINT DEFAULT N When in Acquisition Period nvalid SINT MEMRPCO000002 N When in Acquisition Period nvalid SINT DEFAULT N Repetition Interval nvalid SINT N Repetition Interval nvalid SINT MEMRPC000002 N Repetition Interval nvalid SINT MPFRPCOO N 1 Bit On Off nvalid SVAL DEFAULT N 1 Bit On Off nvalid SVAL MEMRPC000002 N 1 Bit On Off nvalid SVAL DEFAULT N 1 Bit True False nvalid SVAL MPFRPCOO 1 Bit True False nvalid SVAL MEMRPC000002 N 1 Bit True False nvalid SVAL MEMRPC000002 N Connect Disconnect nvalid SVAL DEFAULT N Connect Disconnect nvalid SVAL Connect Disconnect nvalid SVAL DEFAULT N 1 Bit Enable Disable nvalid SVAL MEMRPC000002 N 1 Bit Enable Disable nvalid SVAL N 1 Bit Enable Disable nvalid SVAL MEMRPC000002 N 1 Bit No Error Error nvalid SVAL MPFRPCOO N 1 Bit No Error Error nvalid SVAL DEFAULT N 1 Bit
2. sssi o 5 38 300201 f 2 d 3 e l v LL3S68 dIW 01024 WNN 5 gon 4 91 29 ni DOS n x 86 60 87 406 200 3405530 TIHI SIONVTIOL u o S SNOILWAYISEO WINA NOLLVNDIS3Q L3 z 5 Y0 10 3 5 uoqipo euoquoo 30 SO 5 1 4109 ouogqubpo 0 40 4042109 uouonoq 060 c 60 E 1 4 LPP FN SI 80 0l L pc Luniurun p s9 y eu Sy c 9590 XY G c UG cor z9 HT V 6 S 6 jmd e o IN gt IN N x g N N NC H n O cd 1 n LH n a tc i 5 v 19 0167 pt GEOL g T ednoo Figure 2 1 10 Mechanical Interface Drawing 3154 9539 1 01 34050759 P ore eG
3. N RPC 84 9 Packet sequence counter 7 3 WORD URPRPCOO TMGS RPC 84 9 Packet length 7 2 16 167 WORD URPRPCOO TMGS N RPC 84 9 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS N RPC 84 9 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS N RPC 84 12 Packet sequence counter 7 3 12 161 WORD URPRPCOO TMGS RPC 84 12 Packet length 7 SRPRPCOO 2 16 161 WORD NONE URPRPCOO TMGS RPC 84 12 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS N RPC 84 12 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS RPC 85 1 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS RPC 85 1 Packet length 7 SRPRPCOO 2 16 16 WORD NONE URPRPCOO TMGS N RPC 85 1 Data field header time field 7 9 17 481 48 URPRPCOO TMGS RPC 85 1 Data field header PUS 7 3 14 321 32 TMGS N 85 4 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 85 4 Packet length 7 2 16 16 WORD URPRPCOO TMGS RPC 85 4 Data field header time field 7 SRPRPCOO 9
4. 00002 RO RPC UM Issue Draft Rev Date February 20 2002 Page 327 MPFRPCOO 5151 HV ElcMcp EN SVAL MPFRPCOO 5050 SVAL MPFRPCOO 4949 SVAL MPFRPCOO 4848 HV ADJ SVAL MPFRPCOO 1919 DataGenerEN SVAL 1717 DataAcqTable SVAL 1616 SVAL MPFRPCOO 11 SVAL DEFAULT 146 146 SEQ TRIG SVAL MPFRPCOO 54154 HvlonMcp ADJ SVAL MEMRPC000002 1 1 SVAL DEFAULT 00 INACTIVE SVAL MPFRPCOO 00 INACTIVE SVAL MPFRPCOO 11 SVAL MEMRPC000002 00 INACTIVE SVAL DEFAULT 1 1 SVAL DEFAULT 66 Group 6 SVAL MEMRPC000002 66 Group 6 SVAL DEFAULT 1010 Unused SVAL DEFAULT 919 Unused SVAL DEFAULT 77 Unused SVAL DEFAULT 55 Group 5 SVAL DEFAULT 44 Group 4 SVAL DEFAULT 33 Group 3 SVAL DEFAULT 22 Group 2 SVAL DEFAU LT 11 Group 1 SVAL DEFAU LT 00 Group 0 SVAL DEFAU LT 88 Unused SVAL 00 Group 0 SVAL 000002 919 Unused SVAL
5. SDT DMS SERIAL RBDRTUPL 198 GenericSDT RBDRTUPL 230 GenericSDT NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE LRP00001 DMS 5 RBDRTUPL 14 LRP00002 DMS 5 RBDRTUPL 142 LRP00003 DMS THERMIST RBDRTUPL 00 00 00 00 00 lt lt lt lt lt lt Z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z jz z z z z z zZ Z z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z z z z z z z z z z z z z z z z zZ zZ z Z Z Z Z Z Z Z Z Z NRPA0300 ajA Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 296
6. Issue Draft Rev 0 987 Date February 20 2002 Page 322 MPFRPCOO 48136 30 MPFRPCOO 48487 20 DEFAULT 51389 80 MPFRPCOO 49152 0 MPFRPCOO 50063 30 MEMRPCO00002 750 25 MPFRPCOO 50346 40 DEFAULT 45235 100 DEFAULT 48825 10 CPOI DEFAULT 48487 20 DEFAULT 48136 30 DEFAULT 47771 40 DEFAULT 47391 50 DEFAULT 46996 60 DEFAULT 46584 70 00002 0 50 DEFAULT 45704 90 DEFAULT 49769 20 MPFRPCOO 49152 0 00002 1000 50 MEMRPCO00002 750 25 00002 500 0 00002 250 25 00002 100 40 DEFAULT 46154 80 CPOI DEFAULT 51630 90 48825 10 MPFRPCOO 48487 20 MPFRPCOO 48136 30 47771 40 47391 50 MPFRPCOO 46584 70 MPFRPCOO 45704 90 DEFAULT 49152 0 DEFAULT 51863 100 DEFAULT 49466 10 DEFAULT 51389 80 DEFAULT 51141 70 DEFAULT 50884 60 DEFAULT 50620 50 DEFAULT 50346 40 DEFAULT 50063 30 RPCOO 46154 80 RPCOO 45235 100 RPCOO 49466 10
7. N N NRPAH214 3 NONE N N NRPAH214 4 N NRPAH214 8 NONE N N NRPAH214 16 NONE N N NRPAH244 24 NONE N N NRPAH241 0 1 0 16383 NRPAH241 2 NONE 5 N NRPAH243 0 N NRPAH243 32 NONE N N NRPAH244 0 N NRPAH244 3 NONE N N NRPAH244 4 N NRPAH244 8 NONE N N NRPAH244 16 NONE N N NRPAH274 24 NONE N N NRPAH271 0 1 0 16383 NRPAH271 2 NONE s N N NRPAH273 0 N NRPAH273 32 N N NRPAH274 0 N NRPAH274 3 NONE N N NRPAH274 4 NONE N N NRPAH274 8 NONE N N NRPAH274 16 NONE N N NRPAH294 24 NONE N N NRPAH291 0 1 0 16383 291 2 5 N NRPAH293 0 N NRPAH293 32 NONE N N NRPAH294 0 N NRPAH294 3 NONE N N NRPAH294 4 NONE N N NRPAH294 8 NONE N N NRPAH294 16 NONE N N NRPAH2C4 24 NONE N N NRPAH2C1 0 1 0 16383 NRPAH2C1 2 NONE s N N 2 0 N NRPAH2C3 32 N 2 4 0 N NRPAH2C4 3 NONE N N NRPAH2C4 4 NONE N N NRPAH2C4 8 NONE N N NRPAH2C4 16 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 305
8. 0 48 1 48 PRPG3028 0 48 1 48 PRPG3032 0 48 1 48 PRPG3036 0 48 1 48 PRPG3040 0 48 1 48 PRPG3044 0 48 1 48 PRPG3048 0 48 1 48 PRPG3052 0 48 1 48 PRPG3056 0 48 1 48 PRPG3060 0 48 1 48 PRPG3064 0 48 1 48 PRPG3068 0 48 1 48 PRPG3072 0 48 1 48 PRPG3076 0 48 1 48 PRPG3080 0 48 1 48 PRPG3084 0 48 1 48 PRPG3088 0 48 1 48 PRPG3092 0 48 1 48 PRPG3096 0 48 1 48 100 0 48 1 48 PRPG3104 0 48 1 48 108 0 48 1 48 112 0 48 1 48 116 0 48 1 48 120 0 48 1 48 PRPG3124 0 48 1 48 128 0 48 1 48 PRPG3132 0 48 1 48 136 0 48 1 48 140 0 48 1 48 PRPG3144 0 48 1 48 PRPG3148 0 48 1 48 152 0 48 1 48 156 0 48 1 48 160 0 48 1 48 PRPG3164 0 48 1 48 168 0 48 1 48 PRPG3172 0 48
9. ES HV DEF EN glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE ES HV ELC MCP EN glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE N ES HV ESA EN glb 7 0 166 16 URPRPCOO Y NONE N ES HV ION MCP EN glb 7 0 166 16 ES HV EN glb 7 0 16 16 URPRPCOO Y NONE ES INSTR CLR STATUS glb 7 SRPRPCOO 0 16 16 URPRPCOO N IES INSTR PROG MODE glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE N ES INSTR RESET glb 7 SRPRPCOO 0 16 16 URPRPCOO N IES STIM ELC ADJ 916 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE N ES STIM ELC EN glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE N IES STIM ION ADJ glb 7 0 16 16 URPRPCOO Y NONE N IES STIM ION EN glb 7 0 166 16 URPRPCOO Y NONE ES SEQ END glb 7 SRPRPCOO 0 16 16 ES SEQ END ALL glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE ES HV DEF ADJ 916 7 SRPRPCOO 0 32 32 URPRPCOO ES HV ELC MCP ADJ glb 7 SRPRPCOO 0 32 32 URPRPCOO ES HV ESA ADJ glb 7 SRPRPCOO 0 32 32 URPRPCOO
10. MPFRPCOO DEFAULT 22 Diag2 SVAL DEFAULT 00 DiagO SVAL DEFAULT 313 Diag3 SVAL MPFRPCOO 00 LVSCI SVAL MEMRPC000002 22 Mode2 SVAL MEMRPC000002 111 1 SVAL MEMRPC000002 00 ModeO SVAL MPFRPCOO 22 LVENG SVAL MPFRPCOO 33 PAUSE SVAL MPFRPCOO 44 RESUME SVAL DEFAULT 44 RESUME SVAL DEFAULT 33 PAUSE SVAL DEFAULT 22 LVENG SVAL DEFAULT 11 HVSCI SVAL DEFAULT 00 LVSCI SVAL MPFRPCOO 11 HVSCI SVAL MEMRPC000002 305419896 305419896 MagicWord SVAL DEFAULT 305419896 305419896 MagicWord SVAL DEFAULT 22 Inc Pattern SVAL DEFAULT 33 Dec Pattern SVAL MPFRPCOO 00 Zero Fi SVAL MPFRPCOO 11 OxFFFF Fill SVAL MPFRPCOO 22 Inc Pattern SVAL MPFRPCOO 33 Dec Pattern SVAL DEFAULT 111 OxFFFF Fill SVAL DEFAULT 00 Zero Fill SVAL MPFRPC00 33 33 Dp no of wds SVAL MPFRPCOO 33 Memory ID SVAL 44 of Blocks SVAL 55 No of LP Err SVAL MPFRPC00 6 6 Checksum SVAL MPFRPCOO 77 SVAL MPFRPCOO 88 Pg Bound SVAL RPCOO 99 No of Words SVAL RPCOO 1010 Not In LVENG SVAL 22 No of LPs SVAL RPCOO 1818 Ld wds LP Er SVAL LT 6464 SVAL C00 6464
11. Figure 2 1 14 MAG Sensor Busen Test Configuration Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 80 gt Datu Name late Name 2 X es iei 5 11 99 2 M FM FS F DIN7168T1 gt pm 2 E 7 m Be exc peer B E AY qm O 11 99 65 Name M D G 26 17 11 ame Figure 2 1 15 MAG Sensor Dimensions Interface Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 81 2 2 Electrical 2 2 1 Power Interface Requirements 2 2 1 4 General Interface Description The RPC low voltage DC DC converters are part of the PIU The converters are fully redundant the non operating converter being held in cold redundancy
12. Issue Draft Rev 0 987 Date February 20 2002 Page 265 2 144 16 1 16 NRPA151E O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 NRPA151F O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA1520 160 16 1 16 NRPA1521 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA1520 160 16 1 16 NRPA1521 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 NRPA1523 2 144 16 1 16 NRPA1522 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA1524 160 16 1 16 NRPA1525 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 1 PARAM 128 16 1 16 NRPA0500 2 PARAM 144 16 1 16 NRPA1528 O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 1529 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 1528 160 16 1 16 1529 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 1528 160 16 1 16 NRPA1529 1 PARAM 128 16 1 16 NRPA0500 O IBLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 NRPA1529 2 144 16 1 16 152
13. Issue Draft Rev 0 987 Date February 20 2002 Page 271 6 208 16 1 16 NRPAST11 5 192 16 1 16 NRPAST10 160 16 1 16 1 PARAM 128 16 1 16 1 0 128 1 128 WRP08701 PKBM 4 176 16 1 16 5 04 1 PARAM 128 16 1 16 NRPASTO01 6 208 16 1 16 NRPAST13 192 16 1 16 NRPAST12 4 176 16 1 16 NRPAST04 2 144 16 1 16 NRPASTO2 O BLOCK 0 128 1 128 WRP08701 PKBM 160 16 1 16 0 128 1 128 WRP08701 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 5 02 160 16 1 16 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST14 6 208 16 1 16 15 O BLOCK 0 128 1 128 WRP08701 PKBM 160 16 1 16 1 PARAM 128 16 1 16 NRPASTO01 4 176 16 1 16 NRPAST04 2 144 16 1 16 5 02 4 176 16 1 16 NRPAST04 O BLOCK 0 128 1 128 WRP08701 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 5 02 160 16 1 16 4 176 16 1 16 NRPAST04 160 16 1 16 2 144 16 1 16 5 02 O BLOCK 0 128 1 128 WRP08701 PKBM 5 192 16 1 16 NRPAST20 1 PARAM 128 16 1 16 NRPASTO01 2
14. N ES SAFETY AMB SET 7 21696 ES SAFETY THRESH ELC 7 21697 84 12 5 20 20 NONE 160 ES SAFETY THRESH ION 7 21698 84 12 5 20 20 NONE 160 N ES STIM ELC ADJ 7 21782 84 12 5 14 14 NONE 112 ES STIM ELC EN 7 21783 84 12 5 14 14 NONE 112 N ES STIM ION ADJ 7 217 4 84 12 5 14 14 112 ES STIM ION EN 7 21785 84 12 5 14 14 NONE 112 ES SEQ END 7 219 4 84 12 SPACE 14 14 NONE 112 ES SEQ END ALL 7 219 5 84 12 5 14 14 112 ES SEQ TRIGGER 7 219 6 84 12SPACE 16 16 128 MCP 28V Switch 7 22001 85 12 5 14 14 NONE BOTH N 112 N Opto 28V Switch 7 22002 85 12 5 14 14 NONE BOTH N 112 N Main 28 V switch 7 22003 85 12 5 14 14 NONE BOTH 112 Pacc HV switch 7 22004 85 12 5 14 14 NONE 112 Grid LV switch 7 22005 85 12 SPACE 14 14 NONE BOTH N 112 N Entr HV switch 7 22006 85 12 5 14 14 NONE 112 LV switch 7 22007 85 12 SPACE 14 14 NONE BOTH N 112 N Defl HV switch 7 22008 85 12 5 14 14 NONE 112 Direct cmd switch 7 22009 85 1
15. N N 14 24 NONE N N 11 0 1 0 16383 11 2 5 N NRPAH313 0 N NRPAH313 32 N N NRPAH314 0 N 14 3 NONE N N 14 4 N NRPAH314 8 NONE N N NRPAH314 16 NONE N N NRPAH344 24 NONE N N NRPAH341 0 1 0 16383 NRPAH341 2 NONE 5 N NRPAH343 0 N NRPAH343 32 NONE N N NRPAH344 0 N NRPAH344 3 NONE N N NRPAH344 4 NONE N N NRPAH344 8 NONE N N NRPAH344 16 NONE N N NRPAH374 24 N N NRPAH371 0 1 0 16383 NRPAH371 2 NONE s N N NRPAH373 0 N NRPAH373 32 NONE N N NRPAH374 0 N NRPAH374 3 NONE N N NRPAH374 4 NONE N N NRPAH374 8 NONE N N NRPAH374 16 NONE N N NRPAH394 24 NONE N N NRPAH391 0 1 0 16383 NRPAH391 2 NONE 5 N NRPAH393 0 N NRPAH393 32 NONE N N NRPAH394 0 N NRPAH394 3 NONE N N NRPAH394 4 NONE N N NRPAH394 8 NONE N N NRPAH394 16 NONE N N NRPAH3C4 24 NONE N N NRPAH3C1 0 1 0 16383 1 2 5 N NRPAH3C3 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 306 N N 32 NONE N
16. 02192 03 men KD mama 15 100 55 N d XU 1 3OVAS 3A MA 51 WIDL e ONIAVEG 335 S oar 7974 2141143195 40 01313 NOILISOd 1H9IS3HOH THOT LI NON ONIONDOHO INGRDHISNI MATA 3015 18914 MALA 1 093 1258 5052 CEO NNNVO LLT VIVO CNY 550 WD LIBIENI AH 107 SAL MUNU SSOLOSNNOO INGWINSdX3 uu 0309 1095 w 50 0 gt 559 AW kl INGAHOULIV euo ENLINTOR LINOJ TONI INON INNT 081 PURANI WHL TPSSO TIW 1900 NOISSANOO WOIWHO ONISDOH Send SINGLY IWAS UBL SS HIO 506 0052 996 AO TM WIINVLLL SRENGISUJ XSI 0 SWD SIG THICAGHZ ASH 0012818 TEN OFC ESO EAS INSNIEEGDGI 171 24 51 5 SOUJH3INI IOINVHOSA VET MATA 901 ICE AJILA 3015 1431 MAILA OSI Figure 2 1 3 IES Mechanical Interface Drawing
17. 101 epo xni Big BABM mm u m s s m ss m m m w w wm ws m s o i ba pS m mm mm wm um m ma wm m ma m mim m LL W Ses mm m X ul 101 Spon 758092 0643013 Figure 4 1 5 Mode Transition Diagram RO RPC UM Draft o c 12 0 987 Rev Issue Date February 20 2002 209 Page y pug awid Ayeanexuaine paynaaxe amp 10 180g EIN YH AL HH um um um um um um w Figure 4 1 6 MAG Mode Transition Diagram RO RPC UM Draft o c 12 0 987 Rev Issue Date February 20 2002 210
18. GOT E NENH 507 ENM GH 507 por ERN SET SERO 136552451 E 207 ER 29 WO ROUT VIVO LACE MUNU SOON INGNIEEGXS 2261 11534 UNLINTOA 129102 PYRIN TWNITGO 935190 ONISIOH INJAIVSI 3543575 OH 54154 AQTM WOININTIM 35760709 5 VIESIVA dw 20 0 21 10 0 AL 514 520 0 x JO OGL E MILA 051 Tere 281 WEF 0 99 X Y TTT TAT WOO JBL XSI 0 OBZE T SGOIPI ZOb OdM INTAN A 10 244 TN E E G V O OdH O Odd NAN IN NI WOINVHOSA AJLA 901 2 1 1 PIU 3015 15 051 Figure 2 1 2 0 PIU Mechanical Interface Drawing E A I z I r z r r I r r r z r o N a DN gt eos osgo o c 2 o 956 on LIAA Rosetta RPC UserManual 2 1 2 IES WOTU TRIS 799 09 JT WIIN imd 531 893 B VES i
19. Execution Failure Report N 192 N 160 Acceptance Failure Report Failure Code 1 Incomplete Packet within time out 224 Acceptance Failure Report Failure Code 2 Incorrect Checksum N 224 Acceptance Failure Report Failure Code 3 Incorrect APID N 192 Acceptance Failure Report Failure Code 4 Invalid Command Code 224 Acceptance Failure Report Failure Code 5 Command can not be executed at this time 192 Acceptance Failure Report Failure Code 6 Data Field Inconsistent N 208 N 160 AAcceptance Failure Report Failure Code 1 Incomplete Packet within time out N 224 Acceptance Failure Report Failure Code 2 Incorrect Checksum N 224 Acceptance Failure Report Failure Code 3 Incorrect APID N 192 Acceptance Failure Report Failure Code 4 Invalid Command Code 224 Acceptance Failure Report Failure Code 5 Command can not executed at this time 192 Acceptance Failure Report Failure Code 6 Data Field Inconsistent N 208 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 260 6 2 2 C TMPCK ELT PARAM 128 16 1 16 144 16 1 16 NRPA0300 PARAM 160 16 1 16 10 176 16 1 16 20
20. 2 7 2 16 16 URPRPCOO 0 PRPG3080 16 NONE 7 2 16 16 URPRPCOO 0 PRPG3080 32 NONE TCDP N Resampling Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h1A N PRPG3084 0 TCDP N Resampling param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3084 8 NONE TCDP N Resampling param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3084 16 NONE TCDP N Resampling param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3084 32 NONE Set Filter Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h1B N PRPG3088 0 N Set Filter param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3088 8 NONE N Set Filter param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3088 16 NONE N Set Filter param 3 7 2 16 16 URPRPCOO 0 PRPG3088 32 NONE TCDP N Mvg Avrg ADC 7 SRPRPCOO 2 8 8 URPRPCOO h1C N PRPG3092 0 TCDP N Set Mvg Avrg ADC Par 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3092 8 NONE TCDP N Set Mvg Avrg ADC Par 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3092 16 NONE N Set Mvg Avrg ADC Par 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3092 32 NONE Reset Actel 7 SRPRPCOO 2 8 8 URPRPCOO h1D N PRPG3096 0 N Reset Actel param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3096 8 NONE
21. degC 00 6 00 9 LRPDO310 10 0 LRPD0317 10 8 1 0320 NRPA0320 0 LRPDO0327 NRPA0320 8 NONE LRPD0330 NRPAO0330 0 1 0 65535 NRPA0330 8 NONE 60 0 60 2 60 3 NONE 60 4 LRPD0365 NRPAO0360 5 NONE 70 0 70 1 LRPD0372 70 2 80 3 NONE 80 4 80 5 80 6 80 7 80 8 80 9 80 10 NONE 80 11 NONE 80 12 NONE 80 13 80 14 80 15 NONE 0 8 z z iziziziziziziziziziziziziz iziziziziziz iziziziziziziziziziz iziziziz izixiz ziz iziziziz lt lt lt lt lt 1 lt 212 2 2 lt 12 z z z z z z z z z z z z Z z z z z lt lt 2 lt lt lt 2 2 2 212 2 2 2 2 NRPA1300 8 NONE NRPA1300 0 NRPA1300 12 NONE LRPD1104 NRPA1310 0 LRPD1104 NRPA1310 1 NONE LRPD1104 NRPA1310 2 NONE LRPD1104 NRPA1310 3 NONE LRPD1104 NRPA1310 4
22. o 32 1 EMI I gt At aa n M 1 Hth V Y n V T ni V Y enu aun a s tc uae ii m Tn y 101295 5 i Figure 3 2 7 MAG Accommodation showing alignment mirrors and stimuli within mu metal tube Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 194 3 2 1 1 3 3 Purging Requirements IES will require a purge of GN Because it is not hermetic a low rate purge of high purity dry nitrogen is required to keep the micro channel plate detectors clean at a very low flow rate except when stored in its shipping container or on the launch pad Aperture covers will be used as remove before flight red tag items Approx 1 liter hour of dry is suitable ICA will require purge of Approx 1 liter hour of dry is suitable See also EID B section 2 2 7 3 3 2 1 1 3 4 High Voltage Control IES and ICA will have dedicated high voltage inhibit connectors It is impossible to enable any of the high voltages for a sensor when a HV safety plug is inserted into the 5 inhibit connector It is anticipated that there will be a harness from the central HV inhibit station on the spacecraft to the IES and ICA HV inhibit connectors 3 2 1 1 3 5 Applicable Constraints IES a
23. TMDP N RPC 86 1 Coarse time 7 SRPRPCOO 3 14 32 T 32 NONE URPRPCOO TMDP N RPC 86 1Fine time 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMDP N PUS version number 7 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 URPRPCOO TMDP N RPC 86 1 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 86 1 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 2 8 8 URPRPCOO TMDP N Segmentation Flag 7 2 2 212 URPRPCOO N RPC 86 4 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP RPC 86 4 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP N 86 4Fine time 7 3 12 16 WORD URPRPCOO TMDP PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N Checksum flag 7 SRPRPCOO 2 1 1 URPRPCOO N Data field header spare parameter 7 2 4 414 URPRPCOO TMDP RPC 86 4 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 86 4 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP Segmentation Flag 7
24. 7 00610 85 5 AUTH 26 26 1 1130 ALL ICA Science 7 ETM02003SDRP 85 125 AUTH OTHER 634 4108 1 1 LAP HK SID 1 7 00325 86 4 SPACE NONE 30 30 1 11 ALL Memory Dump Report 7 ETMOO606MMDP 86 QISPACE AUTH 26 4112 1 1130 ALL Memory Check Report 7 00610 86 26 26 1 1130 ALL LAP Science 7 ETM02003SDRP 86 12 SPACE AUTH OTHER 208 3004 1 1 ALL _ HK SID 1 7 00325 87 4 AUTH OTHER NONE 32 32 1 111 ALL Science 7 ETM02003SDRP 87 125 J AUTH 34 1216 1 1 ALL MAG SID 1 7 00325 88 45 NONE 334 34 1 111 ALL 5 7 020035 88 12 SPACE OTHER 258 2530 1 1 ALL PIU AcceptSuccess 7 00101 5 83 1 AUTH NONE 1 1 ALL IncompletePacket 7 00102 83 1 OTHER 128 28 1 11 ALL PIU IncorrectChecksum 7 00102 83 1 AUTH OTHER NONE 28 28 1 12 ALL PIU Incorrect APID 7 00102 83 1 AU
25. 0 987 NAIA 3015 1 31 MATA LNOYS e LE Mi mE a ou s d 5 b i FEAL 5 SA WA EN T B o s 9 uN GAL 5 ODL NE DASS GS VIA 303400 INST RISNT z o c S 5250 9 D S WDVS NO A YZY 065 gt NE juu O gt 553015 1004 081 gt 32 3 6 OGL uw 1004 THL gal ENISDOH 081 HXNI J WNE 081 SUSHLO L 5 315 EHIS NIVIS 0189 521150 2809 CNY SLOLWY WOINIWT 35150728 SINOHIOd H S VIESLVA H ZUY 2560070 Z 20 85010 O 1 3514 8980070 TEN PAULIN JO HOSNL gr 00 99 nz XZ 0 SHAD 0202 551 969002 H A 1 TEV ORD ERE ERST EHS VOl Odd ONIMA 3OVJHSINT MSIA OST Rosetta RPC UserManual ICA 242 49
26. 18 18 1 145190 NONE N EC_InvalidSid unit 7 00502 83 18 18 1 1145191 EC_BadScncMode unit 7 00502 83 AUTH 18 18 1 1145192 NONE N MIP EC LinkRst unit 7 00502 83 7 AUTH 18 18 1 1145193 NONE N EC LinkRstsMdm unit 7 00502 83 7 AUTH 18 18 1 1145194 NONE N EC LinkRstsHgh unit 7 00502 83 7 AUTH 18 18 1 1145195 ALL NONE N EC HkPktNotValid unit 7 00502 83 7 AUTH 20 20 1 1145196 TcTxFailed 7 00502 83 7 AUTH 22 22 1 1145197 NONE N NormalMode 7 00501 83 AUTH 18 18 1 1145198 MAG EC Relnit unit 7 00502 83 18 18 1 145248 NONE N MAG NoNormalMode unit 7 0050 83 18 18 1 1145249 NONE N MAG EC RxTimeout unit 7 0050 83 75 AUTH 18 18 1 145250 MAG BadTcType unit 7 00502 83
27. 268 29 0 ve n 195 eur uns o eoueisip 1902 re et ey 72 2828 N o 9 86 29 262 vie eoueros Jo pegs 92 5119 90 98 8 uiu euruou i P ANC dieys 16 268 29 08 YE n 195 eur Aloe dreus jo eis ge ZIN LO 00 6 ONIS us 9 eoueros K z q J L8ZE SOL 268 29 0 u 1 105 jo 9821 9 28 2 290 vo 19 AJAROE 29 86 29 266 t e IOSNI pegs 02 25 zi po aseyd SZ UCISSIL Pay PSLES YL OOF 95 agep esioeid ny persenbei 455 er PO 10 6758 dss ewop y 85010 siejunooue UM 5 98 288 gt 9k pE 96 aq eseud siu jo
28. 77 7A A 22 5 gt Np Wa 2 Ou WO Z trek zz a 5 2 8 3 5 gt 55 VA ZA gt 5 gt gt gt VIN 8 2g 3s a s 2 9 a 1 z VA 8 WZ YAN 864 9 823 m 5 z 7 d md ro ror dro I Ii Spt ttt ttt ttt ttt tt ttt ttt ttt tt tlt ffs SAL tt htt ttt ttt tt ttt tlt tl ff fy VILL LL LL M ttt tt ttt ttt CLL K L_LLC M LIEB J LL lt lt 1 Command 4 TM Simulator High Power On Off Command Simulator High Frequency Clock amp Broadcast Pulse Simulator Temperature Acquisition SS Simulator Zr LAN PN A WN 4 aN A A a 2 2 Z Z Y ASS cx he Schad LLLA LLL LL ES LLL LL ALLS LS 2 SOO CIC ION 4 404 4 MQ MQ A MQ A NNNNNNNNNNNNNNNNNNNNNNNNNNN Experiment Level testing with the KFKI EGSE Figure 3 2 5 0 987 N a lt La a S 08 o c 595 on
29. 22 22 1 145313 NONE N ES HVPS OFF ION 7 00502 84 AUTH 22 22 1 1145314 NONE N ES HVPS OFF Missed AQP 7 00502 84 AUTH 22 22 1 145315 NONE N ES HVPS OFF Bad Monitor 7 00502 84 7 AUTH 22 22 1 1145316 ES OFF Plug Change 7 00502 84 7 AUTH 22 22 1 1145317 ALL NONE N ES HVPS OFF Bad ELCMCP 7 00502 84 7 AUTH 22 22 1 1145318 NONE N ES HVPS OFF Bad IONMCP 7 00502 84 7 AUTH 22 22 1 1145319 ES HVPS OFF Bad 7 00502 84 AUTH 22 22 1 11453200 NONE N ES Bad PROM 7 0050 84 22 22 1 1145328 NONE N ES Bad EEPROM Page C 7 0050 84 22 22 1 1453566 NONE N ES Bad EEPROM Page D 7 0050 84 JAUTH 22 22 1 145357 NONE N ES Bad EEPROM Page E 7 0050 84 7ISPACE AUTH 22 22 1 145358 5 7 0050 84 7 AUTH 22
30. 22 22 1 1145488 NONE N ES Dust Gia 7 00502 84 J AUTH 22 22 1 145505 NONE N ES Dust Prs 7 00502 84 22 22 1 1145506 NONE N ES Dust PrsGia 7 00502 84 22 22 1 145507 NONE N ES Dust Alrt 7 00502 84 7ISPACE AUTH 22 22 1 1145508 NONE N ES Dust AlrtGia 7 00502 84 7 AUTH 22 22 1 1145509 ES Dust AlrtPrs 7 00502 84 7 AUTH 22 22 1 1145510 ES Dust AlrtPrsGia 7 00502 84 7ISPACE AUTH 22 22 1 1145511 ALL ES Dust Thrst 7 00502 84 7 AUTH 22 22 1 1145512 NONE N ES Dust ThrstGia 7 00502 84 AUTH 22 22 1 1145513 NONE N ES Dust ThrstPrs 7 00502 84 22 22 1 145514 NONE N ES Dust ThrstPrsGia 7 00502 84 AUTH 22 22 1 145515 NONE N ES Dust ThrstAlrt 7 00502 84 7ISPACE AUTH 22 22 1 1145516 ALL NONE N ES Dust ThrstAlrtGia 7 00502 84 7 AUTH
31. Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 266 BLOCK 0 128 1 128WRP08307 PKBM 128 16 1 16 0500 160 16 1 16 NRPA1529 144 16 1 16 NRPA1528 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B BLOCK 0 128 1 128 08307 128 16 1 16 0500 BLOCK 0 128 1 128WRP08307 PKBM 128 16 1 16 0500 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B 128 16 1 16 0500 144 16 1 16 NRPA152A BLOCK 0 128 1 128WRP08307 PKBM 160 16 1 16 NRPA152B BLOCK 0 128 1 128WRP08307 PKBM 128 16 1 16 0500 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B 128 16 1 16 NRPAO0500 BLOCK 0 128 1 128WRP08307 PKBM 160 16 1 16 NRPA152B 144 16 1 16 NRPA152A BLOCK 0 128 1 128 08307 128 16 1 16 0500 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B 128 16 1 16 0500 144 16 1 16 NRPA152A BLOCK 0 128 1 128 08307 160 16 1 16 NRPA152B BLOCK 0 128 1
32. 18 18 1 1145131 ALL _ EC HkPktNotValid unit 7 00502 83 7 AUTH 20 20 1 1145132 NONE N LAP EC TcTxFailed 7 00502 83 7 AUTH 22 22 1 1145133 NONE N LAP EC NormalMode 7 00501 83 5 AUTH 18 18 1 1145134 EC Relnit unit 7 00502 83 7 AUTH 18 18 1 1145184 NONE N EC NoNormalMode unit 7 0050 83 18 18 1 145185 NONE N MIP EC RxTimeout unit 7 0050 83 AUTH 18 18 1 145186 NONE BadTcType unit 7 00502 83 18 18 1 1145187 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 252 N MIP EC PktTooLong unit 7 00502 7 1 1 EC PktTooShrt unit 7 00502 83 7 AUTH 18 18 1 1145189 NONE N MIP EC PktTrunc unit 7 00502 83
33. m m s m 1 pun 104 gieupeu aur 1 Mode Transition Diagram Figure 4 1 Reference RO RPC UM A Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 205 PS Science Mode a xr e a Power on MAG PIU MAIN Power on Maintenance Mode Processor NOMIMAL Figure 4 1 2 PIU Mode Transition Diagram RO RPC UM Draft o c 12 0 987 Rev Issue Date February 20 2002 206 Page apo YUe SEA AHN L LI i V i LI 1 Figure 4 1 3 ICA Mode Tranisition Diagram Rosetta Reference RO RPC UM Issue Draft Rev 0 987 February 20 2002 Date PC UserManual race 207 No Input from IES Figure 4 1 4 IES Mode Transition Diagram RO RPC UM Draft Reference Issue 0 987 Rev February 20 2002 208 Date Page XH dv XH 107 XH EUJON 1358 M 8 esc IGT
34. 5 WL wa YOUMS aie TA AVUA JeyeAuoo Yous alJ NL diu rm JeyieAuoo 13 HUS Y E ZH 01 ZH 01 ZH poop 2914 4944 20012 Vaden lt 1 eji a 9qrod C93 L 14 02 9 19029 ZHY OF ZHY OF nam 194 uno Odld DAV XZ Jexeelq 153 UReO nas 20 AG 80 1 pue sseJppy 2 di m 6 2 x 2 0 gt 2 2 5 v y AC 015 Q Jepooep 4 pue AG lt A SseJppy PPV uo o lt 5 S S 8 0201 1310V ES 1310V vodd Langmuir Probe LAP Block Diagram Figure 1 2 4 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 43 1 2 2 2 lon and Electron Sensor IES The IES for ROSETTA is an electrostatic analyzer ESA featuring electrostatic angular deflection to obtain a field of view of 90 x 360 The instrument objective is to obtain ion
35. N M End Macro 7 SRPRPCOO 0 48 48 w NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 248 M Resampling 7 SRPRPCOO 0 48 48 M Set Filter 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Set Moving Avrg amp ADC 7 0 48 48 URPRPCOO Y NONE N M Reset Actel 7 SRPRPCOO 0 48 48 N M Transmitter 7 SRPRPCOO 0 48 48 7 SRPRPCOO 0 48 48 URPRPCOO N M Goto 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Sample Hold 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Fillout Buffer 7 SRPRPCOO 0 48 48 URPRPCOO N M FullOut Buffer 7 SRPRPCOO 0 48 48 URPRPCOO N M A 20 Moving Avrg 7 SRPRPCOO 0 48 48 N M Set Start Header 7 0 48 48 URPRPCOO Y NONE N M Set Subheader 7 0 48 48 URPRPCOO N M Do FFT 7 SRPRPCOO
36. deg 1898 OONN sejai 410 es 2869062 s 05 Sy SE dew 992 we ect ve 4095 wor Josue EILI UI F E 12990 9 265 9L 08 GAL Jap uonisuen uogoiddy 8201 vec Bny 71 7098 199 9500 2 265 29 or Sv 1000024 P vot 965 oer et rece 195 jeu 9860922 268 29 S 5 WES zaq 62 2226 eseug H 9898 268 29 1 02 62 dear 2 06 das oe 2816 9616982 1995 eg sz 6172 480 eseud 20182 02 266 9L S 6002 62 uo v ost ie 6 22 LAY Snoazepusy gt 2157 48771 L 1995 9 ro jo pug 79 90 061 80 deg zz 6202 geseyd esini z JOYE cevazvz zee 001 azisv Aoki 1808 n 80 4 z uo
37. 0 Y PRPG3112 8 NONE N M Start Sampling Par 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3112 16 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 241 N M Start Sampling Par 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3112 32 NONE TCDP N M Stop Sampling Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h85 N 116 0 N M Stop Sampling param 1 7 2 8 8 URPRPCOO 0 PRPG3116 8 NONE N M Stop Sampling param 2 7 2 16 16 URPRPCOO 0 PRPG3116 16 NONE N M Stop Sampling param 3 7 2 16 16 URPRPCOO 0 PRPG3116 32 NONE 7 SRPRPCOO 2 8 8 URPRPCOO h86 N PRPG3120 0 N M Execute Macro param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3120 8 NONE TCDP N M Execute Macro param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3120 16 NONE N M Execute Macro param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3120 32 NONE TCDP N M Dog Prom Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h87 N PRPG3124 0 N M Dog Prom param 1 7 SRPRPCOO 2 8 8 0 PRPG3124 8 NONE N M D
38. DEFAULT 0165535 Time Period SINT MPFRPCOO 0165535 Time Period SINT MEMRPCO00002 0165535 Time Period SINT MPFRPCOO 0165535 Threshold SINT MEMRPCO00002 0165535 Threshold SINT DEFAULT 0165535 Threshold SINT DEFAULT 0165535 Mode SINT MPFRPCOO 0165535 Mode SINT 00002 0165535 SINT DEFAULT 0 65535 Time SINT MEMRPCO00002 0165535 Time SINT MPFRPCOO 0165535 Time SINT DEFAULT 0165535 Repetition SINT MEMRPCO00002 0165535 Repetition SINT MPFRPCOO 0165535 Repetition SINT MEMRPCO00002 11 SVAL MEMRPC000002 00 SVAL MPFRPCOO 11 SVAL MPFRPCOO 00 SVAL DEFAULT 111 SVAL DEFAULT 00 SVAL MPFRPCOO 111 TRUE SVAL MEMRPC000002 11 TRUE SVAL DEFAULT 00 FALSE SVAL DEFAULT 111 TRUE SVAL 000002 00 FALSE SVAL MPFRPC00 00 FALSE SVAL DEFAULT 11 Connect SVAL 00 Disconnect SVAL MPFRPC00 11 Connect SVAL RPC000002 11 Connect SVAL RPC000002 00 Disconnect SVAL LT 00 Disconnect SVAL RPC000002 00 Disable SVAL RPC000002 11 Enable SVAL LT 00 Disable SVAL LT 11 Enable SVAL C00 00 Disable SVAL C00 11 Enable SVAL C00 00 OK SVAL LT 11 Error SVAL 00 OK SVAL MEMRPC000002 11 Error SVAL 00002 00 OK SVAL 11 Error SVAL 57005 57005 Deactivate SVAL 47806 47806 All ON SVAL 57005 57005 All OFF SVAL 1535 1535 MAG ON SVAL 47806 47806 Activate SVAL 767 767 SVAL 255 255 PIU ON SVAL 00 PIU OFF SVAL 512512 ICA OFF SVAL 1280 1280 MAG OFF SVAL 5700
39. 144 MACRO Set Telemetry Rate 7 23000 86 12 5 18 18 NONE 144 MACRO Start Sampling 7 23002 86 12 5 18 18 144 MACRO Stop Sampling 7 23003 86 12 5 18 18 NONE BOTH N 144 N MACRO Execute Macro 7 23004 86 12 5 18 18 NONE BOTH N 144 N MACRO Dog Prom 7 23005 86 12 5 18 18 NONE BOTH N 144 N MACRO Set Macro 7 23006 86 12 5 18 18 NONE BOTH N 144 N MACRO Read Write Macro 7 23007 86 12 5 18 18 NONE BOTH N 144 N MACRO Set Relays amp Muxes 7 23008 86 12 5 18 18 NONE BOTH N 144 N MACRO ADC Control Register 7 23009 86 12 5 18 18 144 MACRO Denisty Sweep 7 ETC230E0 866 12 5 18 18 144 MACRO Denisty Fix Bias 7 230 1 86 12 5 18 18 144 MACRO E Fix Bias 7 230 2 86 12 5 18 18 NONE BOTH N 144 N MACRO IO Poke 7 230 86 12 5 18 18 NONE BOTH N 144 N MACRO LDL Mode 7 230 4 86 12 5 18 18 144 7 230 6 86 12 5 18 18 NONE 144 MACRO 7 230 7 86 12 5 18 18 NONE BOTH N 144 N MACRO Flash Peek 7 230 8 866 12 5 18 18 144 7 230
40. 2 2 212 URPRPCOO 86 7 Source sequence counter 7 3 10 141 14 TMDP N RPC 86 7 Coarse time 7 3 14 321 32 URPRPCOO TMDP N RPC 86 7Fine time 7 3 12 16 WORD URPRPCOO TMDP N PUS version number 7 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 TMDP RPC 86 7 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 86 7 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE URPRPCOO TMDP N Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO 86 9 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP RPC 86 9 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP N RPC 86 9 Fine time 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMDP PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 41 4 TMDP N RPC 86 9 Packet Type 7 2 8 8 U
41. 22 22 1 1145517 NONE N ES Dust ThrstAlrtPrs 7 00502 84 7 AUTH 22 22 1 1145518 NONE N ES Dust ThrstAlrtPrsGia 7 00502 84 7 AUTH 22 22 1 1145519 NONE N ES Pres Gia 7 00502 84 AUTH 22 22 1 1145521 ALL ES Pres 5 7 00502 84 22 22 1 1145522 ES Pres PrsGia 7 00502 84 22 22 1 1145523 ES Pres 7 00502 84 JAUTH 22 22 1 1145524 NONE ES Pres AlrtGia 7 00502 84 7ISPACE AUTH 22 22 1 1145525 NONE N ES Pres AlrtPrs 7 00502 84 7 AUTH 22 22 1 1145526 NONE ES Pres AlrtPrsGia 7 00502 84 7 AUTH 22 22 1 1145527 NONE N ES Pres Thrst 7 00502 84 7 AUTH 22 22 1 145528 ES Pres ThrstGia 7 00502 84 22 22 1 1145529 ES Pres ThrstPrs 7 00502 84 AUTH 22 22 1 145530 NONE N ES Pres ThrstPrsGia 7 00502
42. 2 1 1 DIG 0101 URPRPCOO TMDP N ION MCP Overvoltage 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP N ELC MCP Overvoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N Positive 12V Overvoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N Negative 12V Overvoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N Positive 5V Overvoltage 7 2 1 1 DIG 0101 URPRPCOO TMDP N Negative 5V Overvoltage 7T SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP N Org Connector 7 SRPRPCOO 2 2 212 DIG 1200 URPRPCOO TMDP N New Connector 7 SRPRPCOO 2 2 212 DIG 1200 URPRPCOO TMDP N 7 2 8 8 DIG 1320 URPRPCOO TMDP N Command Byte 1 7 2 8 8 URPRPCOO TMDP N Command Byte 2 7 2 8 8 URPRPCOO TMDP N Command Byte 3 7 2 8 8 URPRPCOO TMDP N Command State 7 SRPRPCOO 2 8 8 _ NONE URPRPCOO TMDP N Opcode 7 2 8 8 DIG 1320 URPRPCOO TMDP N Command Byte 1 7 2 8 8 URPRPCOO TMDP Command Byte 2 7 2 8 8 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 20
43. Printing Secenamo raya i Ime Boe mane gt dave mal aral ihr caren adl be apps wert thal peesence ot will be panne a request by bas been made fk a Pee arene of ise Solar Wind activity pbn REC chya fram closet approach Additional operator be pombe 21 paidia will ool be interactive beckon ell occur April Ts Preseason ESOS may be neocseay operation should be performed cree teat scia be allow cali mien of M AG DIL PIL linia pipri unie kund wil Moa 20805 Presenog Ex nacer p echeduled to be operational thud tis poro Roatinc perzi amp en should ha momiiar the mhar wind aperaiterm scheduled akheragh return may be traced in rakan for grcaler coverage during MarwE arth ingles Inizractrez checkout which sequisz prexencz to be operatio nal Routine operan whould he performed t amaka the mhar wind H xxl W T pers re
44. 01614 DHS 0 On G J9A02 3qnj Jeuu 9 dx Thermal Interface Control Drawing for MAG Figure 2 5 5 jueuiuedx3 oy Aq 58110558920 pun 6891086 onaubpui uou 1010996 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 144 2 5 3 Temperatures and Thermal Control Budget 2 5 3 1 Temperatures Ranges Ref to Table 2 5 8 and Table 2 5 9 temperatures are referred to the Experiment Operating Non operating Switch on Temperature Unit Temperature Temperature Temperature Table 2 5 8 TRP temperature range space environment Experiment Operating Non operating Switch on Temperature Unit Temperature Temperature Temperature Stability RPC 5 2 150 100 150 C 120 C 150 100 Table 2 5 9 TRP temperature range ground environment Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 145 2 5 8 2 Heater Power Requirements Experiment Unit Power W Table 2 5 10 RPC Heater Power Requirements 2 5 3 3 Heat Exchange Budget Phase 1 is at 0 9 AU Phase 2 is at 5 3 AU Mode 1 is ON 21 OFF Experiment Mission Phase 1 Mission Phase 2 Unit Heat Exchange W Heat Exchange W RPC 1 1 pas pos
45. ES DataFieldInconsistent 7 00102 84 1 OTHER 26 26 1 16 ALL ES ExeSuccess 7 00107 5 84 1 SPACE OTHER NONE 1 1 ALL ES ExeFailure 7 00108 84 1 AUTH OTHER NONE 24 24 1 11 ALL NONE AcceptSuccess 7 00101 5 85 1 AUTH OTHER NONE 1 1 ALL IncompletePacket 7 00102 85 1 AUTH OTHER NONE 28 28 1 11 ALL NONE IncorrectChecksum 7 00102 85 1 AUTH OTHER NONE 28 28 1 12 ALL NONE N CA Incorrect APID 7 00102 85 1 AUTH NONE 24 24 1 13 ALL InvalidCmdCode 7 00102 85 1 OTHER 28 28 1 14 ALL PbExecTime 7 00102 85 1 OTHER 24 24 1 15 ALL DataFieldInconsistent 7 00102 85 1 AUTH NONE 26 26 1 16 ALL NONE CA ExeSuccess 7 00107 5 85 1 AUTH NONE 1 1 ALL NONE ExeFailure 7 00108 85 1 OTHER NONE 24 24 11 ALL NONE AcceptSuccess 7 00101 5 86 1 AUTH OTHER NONE 1 1 ALL NONE IncompletePacket 7 00102 86 1 AUTH OTHER NONE 28 28 1 11 ALL NONE IncorrectChecksum 7
46. N PIU HK SID 1 7 00325 83 4 NONE 338 38 1 11 ALL PIU Memory Dump Report 7 ETMOO606MMDP 83 QISPACE JAUTH OTHER 26 4112 1 1130 PIU Memory Check Report 7 00610 83 AUTH 26 26 1 1130 ALL Connection Test Response 7 01702 5 83 5 AUTH 16 1 1 ALL N EC PiuAlive 7 00501 83 5 AUTH 24 24 1 1144544 NONE N EC Unexpectedirq 7 00502 83 7 AUTH 22 22 1 1144545 EC NrmFifoOvrFlw 7 00502 83 7 AUTH 18 18 1 1144608 NONE PrtyFifoOvrFlw 7 00502 83 7 AUTH 18 18 1 1144609 EC NrmlFifoReset 7 00502 83 AUTH 22 22 1 144610 NONE N EC PrtyFifoReset 7 00502 83 AUTH 22 22 1 1144611 ALL N EC SoftReboot 7 00501 83 18 18 1 1144672 NONE EC MipDogBarking 7 0050 83 7 AUTH 18 18 1 1144673 NONE N EC TcDiscarded 7 00502 83 7 AUTH 24 24 1
47. 3 12 16 WORD URPRPCOO TMGS N ICA HK Word 2 7 3 12 16 WORD URPRPCOO TMGS N ICA HK Word 3 7 3 12 16 WORD URPRPCOO TMGS N ICA HK Word 4 7 3 12 16 WORD URPRPCOO TMGS ICA HK Word 5 7 3 12 16 WORD URPRPCOO TMGS N ICA HK Word 6 7 3 12 16 WORD URPRPCOO TMGS ICA HK Word 7 7 3 12 16 WORD URPRPCOO TMGS ICA HK Word 8 7 3 12 1677 WORD URPRPCOO TMGS ICA HK Word 9 7 3 12 1677 WORD URPRPCOO TMGS N ICA HK Word 10 7 3 12 16 WORD URPRPCOO TMGS ICA HK Word 11 7 3 12 16 WORD URPRPCOO TMGS N ICA Event cmd Code 7 SRPRPCOO 3 12 16 URPRPCOO TMGS ICA Event cmd Err 2 nd word 7 3 12 16 WORD URPRPCOO TMGS N ICA Event patch prog OK 7 3 12 16 WORD URPRPCOO TMGS ICA Event patch prog OK info 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS ICA Event patch prog Err 7 3 12 16 WORD URPRPCOO TMGS ICA Event patch prog Err Info 7 3 12 1677 WORD URPRPCOO TMGS N ICA Event internal prog OK 7 3 12 16 WORD URPRPCOO TMGS ICA Event internal prog OK info 7
48. Set MAG Link 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE Set SW Location 7 SRPRPCOO 2 16 16 URPRPCOO 0 N Patch Address 7 SRPRPCOO 3 14 32 URPRPCOO Y NONE Keyhole Address 7 SRPRPCOO 3 12 16 URPRPCOO h0002 N Time Delay 7 3 12 16 URPRPCOO 0 N Activate De Activate 7 3 12 16 DIG 105 URPRPCOO hDEAD Y NONE N Asleep Active 7 3 12 16016 106 URPRPCOO hDEAD Y NONE N Mode Select 7 SRPRPCOO 2 16 16 URPRPCOO h0201 N When Acq Period 7 SRPRPCOO 3 12 16 URPRPCOO h4E20 Y NONE N Repetition Interval 7 SRPRPCOO 3 12 16 URPRPCOO 17000 IES COMM RATE MODE glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE N IES DATA ACQ EN 9 7 0 16 16 IES DATA ACQ TABLE glb 7 0 16 16 Y NONE N IES DATA GENERATE EN glb 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 245
49. 160 16 1 16 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST14 6 PARAM 208 16 1 16 NRPAST15 4 176 16 1 16 NRPAST04 2 144 16 1 16 2 1 PARAM 128 16 1 16 NRPASTO01 OBLOCK 0 128 1 128WRPO08301 160 16 1 16 NRPASTOS 4 176 16 1 16 NRPAST04 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 NRPASTO2 160 16 1 16 OBLOCK 0 128 1 128 WWRP08301 PKBM 5 192 16 1 16 NRPAST20 4 176 16 1 16 NRPAST04 160 16 1 16 2 144 16 1 16 2 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 269 OBLOCK 0 128 1 128WRPO08301 PKBM 1 PARAM 128 16 1 16 NRPASTO1 2 144 16 1 16 2 1 PARAM 128 16 1 16 NRPASTO01 OBLOCK 0 128 1 128WRPO08301 PKBM OBLOCK 0 128 1 128WRPO08301 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 NRPASTOS 4 176 16 1 16 NRPAST04 OBLOCK 0 128 1 128WRP08401 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16
50. Issue Draft Rev 0 987 Date February 20 2002 Page 320 DEFAULT 0 0 MPFRPCOO 255 5 DEFAULT 255 5 CPO MPFRPCOO 0 0 255 5 MPFRPCOO 0 0 DEFAULT 255 5 CPO DEFAULT 0 0 MPFRPCOO 255 100 MPFRPCOO 0 0 DEFAULT 255 100 DEFAULT 0 0 MEMRPCO00002 7 5 MEMRPCO00002 0 0 MPFRPCOO 0 0 MPFRPCOO 255 5 DEFAULT 0 0 DEFAULT 255 5 DEFAULT 7 5 00002 0 0 00002 7 5 DEFAULT 0 0 DEFAULT 0 0 MPFRPCOO 0 0 MPFRPCOO 255 5 DEFAULT 255 5 255 60 DEFAULT 0 60 DEFAULT 255 60 00002 0 5 00002 4095 5 MPFRPCOO 0 60 MPFRPCOO 255 60 0 0 60 DEFAULT 255 60 CPO DEFAULT 0 60 000002 0 5 DEFAULT 4095 5 CPO 000002 4095 5 DEFAULT 0 5 DEFAULT 7 5 000002 7 5 DEFAULT 0 0 000002 0 0 LT 4095 5 000002 4095 5 LT 0 0 000002 0 0 RPC000002 0 0 LT 0 0 000002 4095 100 LT 4095 100 000002 4095 168 000002 0 273 LT 0 273 LT 4095 168 LT 0 5 C00 0 5 00 511 5 LT 511
51. 000002 8 8 Unused SVAL 000002 7 7 Unused SVAL MEMRPC000002 1010 Unused SVAL RPC000002 55 Group 5 SVAL RPC000002 33 Group 3 SVAL RPC000002 44 Group 4 SVAL RPC000002 1 1 Group 1 SVAL LT 1515 Unused SVAL LT 14114 Unused SVAL RPC000002 14114 Unused SVAL RPC000002 22 Group 2 SVAL RPC000002 1515 Unused SVAL LT 1313 Unused SVAL 000002 1313 Unused SVAL RPC000002 1212 Unused SVAL RPC000002 11111 Unused SVAL ET 11111 Unused SVAL LT 1212 Unused SVAL RPC000002 1 1 1 SVAL RPC000002 22 2 SVAL 22 2 SVAL RPCOO 11 Type1 SVAL RPCOO 00 0 SVAL ET 22 2 SVAL LT 11 1 SVAL ET 00 Typed SVAL 000002 00 Typed SVAL 00 22 2 SVAL LT 11 Type1 SVAL LT 22 2 SVAL 11 Type1 SVAL 00 00 TypeO SVAL LT 00 TypeO SVAL RPC000002 22 Type2 SVAL RPC000002 1 1 1 SVAL RPC000002 00 Typed SVAL LT 00 0 SVAL RPC000002 11 SubSys1 SVAL LT 11 SubSys1 SVAL RPC000002 00 SubSys0 SVAL LT 1 1 Diag1 SVAL 000002 55 Diag4 SVAL RPC000002 44 Diag4 SVAL RPC000002 33 Diag3 SVAL RPC000002 22 Diag2 SVAL RPC000002 1 1 Diag1 SVAL RPC000002 00 DiagO SVAL DEFAULT 55 Diag4 SVAL DEFAULT 44 Diag4 SVAL 0 987 Rosetta Reference Issue Date RPC UserManual Pas Draft 328 RO RPC UM Rev February 20 2002
52. 2201 URPRPCOO TBD 0 0 N Entrance level 7 2 16 16 ANA CRPP2202 URPRPCOO TBD 0 0 N SW start level 7 2 16 16 2203 URPRPCOO TBD 0 0 N GAS pressure low 7 SRPRPCOO 2 16 16 2204 URPRPCOO TBD 0 0 GAS pressure high 7 SRPRPCOO 2 16 16 2205 URPRPCOO TBD 0 0 N Mode 7 SRPRPCOO 2 16 16 2210 URPRPCOO TBD 0 0 Opto reference 7 2 16 16 ICRPP2301 URPRPCOO TBD 0 0 N reference 7 SRPRPCOO 2 16 16 ICRPP2302 URPRPCOO TBD 0 0 N Grid reference 7 2 16 16 ICRPP2303 URPRPCOO TBD 0 0 N Pacc low ref 7 SRPRPCOO 2 16 16 2304 URPRPCOO TBD 0 0 N Pacc high ref 7 2 16 16 ANA ICRPP2305 URPRPCOO TBD 0 0 Deflection LV ref 7 SRPRPCOO 2 16 16 ICRPP2306 URPRPCOO TBD 0 0 N Deflection HV ref 7 SRPRPCOO 2 16 16 ICRPP2307 URPRPCOO TBD 0 0 N Entrance ref 7 2 16 16 ICRPP2308 URPRPCOO TBD 0 0 N Noise reduction 7 SRPRPCOO 2 16 16 ICRPP2309 URPRPCOO TBD 0 0 N Fifo low mark 7 SRPRPCOO 2 16 16 ANA CRPP2310
53. 18 18 1 145058 NONE BadTcType unit 7 00502 83 7 AUTH 18 18 1 1145059 CA EC PktTooLong unit 7 00502 83 7ISPACE AUTH 18 18 1 1145060 NONE N EC PktTooShrt unit 7 00502 83 7ISPACE AUTH 18 18 1 1145061 ALL CA EC PktTrunc unit 7 00502 83 7 AUTH 18 18 1 145062 NONE N CA InvalidSid unit 7 00502 83 7 AUTH 18 18 1 1145063 NONE N CA EC BadScncMode unit 7 00502 83 18 18 1 1145064 NONE LinkRst unit 7 00502 83 18 18 1 145065 NONE N CA EC LinkRstsMdm unit 7 00502 83 18 18 1 1145066 NONE CA LinkRstsHgh unit 7 00502 83 7 AUTH 18 18 1 1145067 ALL NONE N CA EC HkPktNotValid unit 7 00502 83 7 AUTH 20 20 1 1145068 TcTxFailed 7 00502 83 7ISPACE AUTH 22 22 1 1145069 ALL NONE N CA NormalMode 7 00501 83 5 AUTH 18 18 1 14
54. Control 1355 LINES RPC MAG ADCs 1355 FPGA INTERFACE MAG NDATOA O FFRX OUT RESETI Notes 1 The CLKSYGI CLKSEL and MODE pins of the 1355 FPGA are on GND 2 The Grey filled signals are NOT USED by the MAG FPGA Figure 1 2 8 The MAG FPGA connections in the MAG Electronics Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 51 ROSETTA A1280A FPGA Pin Allocation PLCC ordered CQ PLCC Signal Function I O CQ PLCC Signal Function 172 84 172 84 161 6 GND PWR 107 64 VCC PWR 154 2 XTAL in 109 65 VCC PWR 1 12 MODE in 111 67 HD5 18 14 i o 23 22 PWR 112 66 17 11 12 23 PWR 116 68 HD2 15 6 i o 32 28 GND PWR 114 69 HD3 16 9 i o 36 29 SPAREO i o 118 70 GND PWR 38 30 SPARE1 i o 122 71 HD1 14 5 i o 39 31 SPARE2 i o 124 72 13 3 i o 41 32 RESET in 128 74 HIOW 8 167 out 45 33 XIN out 131 75 HIOR 9 170 out 43 34 out 126 76 HCS 11 172 out 49 35 CONV out 135 77 5 159 out 47 36 CAL out 133 78 HA2 7 163 out 53 37 51 out 139 79 RESETI 1 153 out 150 83 SCLK in 137 80 HAO
55. N Set Macro 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Read Write Macro 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Set Relays amp Muxes 7 SRPRPCOO 0 48 48 URPRPCOO N Control Register 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Denisty Sweep 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Denisty Fix Bias 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE E Fix Bias 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N IO Poke 7 0 48 48 N LDL Mode 7 0 48 48 URPRPCOO Y NONE N Peek 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Poke 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE Flash Peek 7 SRPRPCOO 0 48 48 URPRPCOO 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE EE Boot 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N End Macro 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Resampling 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Set Filter 7 0 48 48 URPRPCOO Y NONE N Set Moving Avrg amp ADC 7 0 48 48 Reset Actel 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Transmitter 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Dummy Command 7 SRPRPCOO 0
56. eredeid 29 00 spue eiojeg SPEJS dn ayem 4902 0 L 09 90 62 0201 lawa 6 sie WO 5 HvS8Z2 1995 59 e jo pug 1902 680 78 go deg gz 986 euo eseud esini 9002 92 9842 Ov 29 8 8 SHVN 9 ojeq SPEJS eseud dn 21902 690 202 90 ZIW O 84 SHVA 1995 9 Zu amid 1902 eco 289 geoidy 201 asinig L0LZ6 6 268 or yo euy uogoelu 29 02 66 uer 9 A Le zz UEP SL uedo young uoung 4602 0 50 uer 0 eseud young Bep wy 419 nv nv skep Iw abue Nous Beg nwo seyd uolss aseyd uolssiW uue3 ung empues LAW N Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 199 NOTE Mission phases used this table are based the ROSETTA Mission Phases 1 4 from December 17 2001 Detlef Koschny ESA ESTEC The specified mode
57. 2 OBLOCK 0 128 1 128WRPO08401 PKBM 5 192 16 1 16 NRPAST10 4 176 16 1 16 NRPAST04 160 16 1 16 1 PARAM 128 16 1 16 NRPASTO1 6 208 16 1 16 NRPAST11 2 144 16 1 16 NRPAST02 4 176 16 1 16 NRPAST04 6 PARAM 208 16 1 16 NRPAST13 5 192 16 1 16 NRPAST12 160 16 1 16 2 144 16 1 16 2 O BLOCK 0 128 1 128 WRP08401 PKBM 1 PARAM 128 16 1 16 NRPASTO01 OBLOCK 0 128 1 128WRP08401 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 4 176 16 1 16 NRPAST04 5 PARAM 192 16 1 16 NRPAST14 1 PARAM 128 16 1 16 NRPASTO1 6 208 16 1 16 NRPAST15 OBLOCK 0 128 1 128WRP08401 PKBM 2 144 16 1 16 2 4 176 16 1 16 NRPAST04 160 16 1 16 4 176 16 1 16 NRPAST04 O BLOCK 0 128 1 128 08401 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 4 176 16 1 16 NRPAST04 160 16 1 16 2 144 16 1 16 2 OBLOCK 0 128 1 128WRP08401 PKBM 5 192 16 1 16 NRPAST20 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 NRPAST02 OBLOCK 0 128 1 128WRPO08301 1 PARAM 128 16 1 16 NRPASTO01 OBLOCK 0
58. 2 8 8 URPRPCOO hbA N PRPG3244 0 NONE N M Set params param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 Y PRPG3244 8 NONE N M Set params param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3244 16 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 244 TCDP N M Set params param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3244 32 NONE TCDP N Load Config detail 1 7 2 16 16 URPRPCOO PRPG4001 0 Load Config detail 2 7 SRPRPCOO 2 16 16 URPRPCOO PRPG4001 16 NONE Load Config detail 3 7 SRPRPCOO 2 16 16 URPRPCOO Y PRPG4001 32 NONE N Test Mode SID Param 7 3 4 8 URPRPCOO 5001 0 N Test Mode Stage Param 7 SRPRPCOO 3 4 8 URPRPCOO Y 5001 8 TCDP N PAD 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG6100 0 NONE N Nmbr Commands 7 SRPRPCOO 3 4 8 URPRPCOO 1 Y PRPG6100 8 NONE N Route 7 SRPRPCOO 2 1 1 URPRPCOO bo PRPG6200 0 N PAD 7 SRPRPCOO 3 3 7 NONE URPRPCOO 0 PRPG6200 1 NONE Peripheral Address 7 3 1 5 URPRPCOO b01011 Y PRPG6200 8
59. 96 Reset SCAT TM Channel 7 19308 83 12 5 12 12 NONE 96 Reset and S W TM FIFO 7 ETC19401 83 12 5 12 12 NONE 96 Revert 7 19402 83 12 5 12 12 NONE 96 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 227 N Invert RAM Map 7 19403 Set Software Location 7 19404 83 12 5 14 14 112 Set to Maintenance Mode 7 19405 83 12 5 12 12 NONE 96 N Set to Normal Mode 7 19406 83 12 5 12 12 NONE 96 N Patch from EEPROM 7 19407 83 12 5 16 16 NONE BOTH N 128 N Set Keyhole Word Address 7 19408 83 12 5 16 16 N NONE N 128 N Report Last AQP Time 7 19409 83 12 5 12 12 NONE 96 Control Parameter Monitor 7 19410 83 12 5 14 14 112 Give Dog a Bone 7 19411 83 12 SPACE 14 14 112 Set IES Link 7 19501 83 12 5 14 14 112 Set ICA Link 7 19502 83 12 5
60. Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 54 1 2 2 4 2 The main functions of the MAG FPGA 1 2 2 4 2 1 The ADC Control Logic The main functional blocks of the ADC Contol Logic can be seen on A aee 1 2 8 The ADC DATA SHIFT IN REGISTER is 20 bit long 15 loaded into the Data Buffers at the end of the on Gycle Chip select time for the given ADC The 20 SCLK clock pulses are generated by the ADCs but the falling edge of the last pulse is not driven by them as the SCLK and SDATA output return to the high impedance state at that time The MAG FPGA does not use this edge because it might cause problems if the falling time would be too long and rising spikes could supersede on it To avoid this the Cs signals are deasserted at the middle of the last pulse and the Shift Register contents are loaded into the data buffers at that time The CONV generation counters uses SEU tolerant triple voting counter logic with 4MHz refresh frequencies but the other counters are simple asynchronous ones because of the insufficient resources available in the FPGA The ADC Control Logic issues a CONV Pulse in every 50 ms The CONV pulse is synchronized to the CLKSYG 32 sec pulse after Power on Reset and the Calibration Time The Calibration is initialized once a day by the One day Timer Counter During Calibration there is from ADCs After issuing simultaneously the CAL
61. URPRPCOO Y NONE N High Power Data Field 7 0 32 32 N En Dis HK Param Field 7 0 166 16 URPRPCOO Y NONE Mem Load Word 1 7 SRPRPCOO 16 16 URPRPCOO N Start Address 7 SRPRPCOO 3 14 32 URPRPCOO 0 N Block Length 7 SRPRPCOO 3 12 16 URPRPCOO 1 Y NONE N Memory Data 7 SRPRPCOO 3 12 16 URPRPCOO h7070 Y NONE N Time 7 SRPRPCOO 9 17 48 Switch SISRPRPCOO 3 12 16 for PRPG9992 3 SRPRPCOO 3 12 16 URPRPCOO URPRPCOO Y NONE Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 249 En Dis Science Param 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE RPC HPC RTU P L 7 3 12 16 URPRPCOO Y DMS RBDRTUPL 08 18 RBDRTUPL RBDRTUPL 2 RBDRTUPL Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 250 6 2 Telemetry Definitions 6 2 1 C TMPCK
62. puoddns 012 16 0 082 Figure 2 5 3 Thermal Interface Control Drawing for Reference RO RPC UM Date February 20 2002 Page 142 Issue Draft Rev 0 987 400 eamplifiers p J 400 ulating rings ins harnes 25 10 Occ di Figure 2 5 4 Thermal Interface Control Drawing for MIP 18 5 921 26 1190 gt o e us 990 91u PWY ZG S 2d m 105196 9 465079 41089 9 4 7113504 Suny umor Uonpdissip JeMod sang WM 911 2409 Juu 0 na ip ses Kodo RO RPC UM Rosetta RPC UserManual February 20 2002 v 777777 6 e M 0 6 gt ssauybnos eopuns 490 09 0 0132 85010 UDXe 199 08 X 15 S d SL AON B uoxe1 19h07 QU 990 101595 5500 co 29 aqng gp N woog 2 5 Aq S
63. 0 16 1 16 PRPG2040 0 16 1 16 PRPG2111 0 16 1 16 PRPG2112 0 16 1 16 PRPG2113 0 16 1 16 PRPG2114 O PARAM 0 16 1 16 PRPG2115 O PARAM 0 16 1 16 PRPG2201 O PARAM 0 16 1 16 PRPG2202 O PARAM 0 16 1 16 PRPG2203 O PARAM 0 16 1 16 PRPG2204 O PARAM 0 16 1 16 PRPG2205 0 16 1 16 PRPG2210 O BLOCK 0 32 1 32 2012 O BLOCK 0 32 1 32 2013 0 16 1 16 PRPG2301 0 16 1 16 PRPG2302 0 16 1 16 PRPG2303 0 16 1 16 PRPG2304 0 16 1 16 PRPG2305 0 16 1 16 PRPG2306 O PARAM 0 16 1 16 PRPG2307 0 16 1 16 PRPG2308 0 16 1 16 PRPG2309 0 16 1 16 PRPG2310 0 16 1 16 PRPG2311 0 16 1 16 PRPG2312 0 16 1 16 PRPG2313 0 16 1 16 PRPG2315 0 48 1 48 PRPG3000 0 48 1 48 PRPG3004 0 48 1 48 PRPG3008 0 48 1 48 PRPG3012 0 48 1 48 PRPG3016 0 48 1 48 PRPG3020 0 48 1 48 PRPG3024 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 234
64. 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1510 160 16 1 16 NRPA1511 2 144 16 1 16 1510 160 16 1 16 NRPA1511 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1510 160 16 1 16 NRPA1511 O BLOCK 0 128 1 128 WRP08307 PKBM O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA1512 160 16 1 16 1513 O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 NRPA1513 2 144 16 1 16 NRPA1512 1 PARAM 128 16 1 16 0500 0 128 1 128 08307 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA1512 160 16 1 16 1513 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 1512 160 16 1 16 1513 1 PARAM 128 16 1 16 NRPA0500 2 PARAM 144 16 1 16 NRPA1512 O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 1513 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 2 144 16 1 16 1512 160 16 1 16 NRPA1513 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 500 2 144 16 1 16 1512 160 16 1 16 1513 1 PARAM 128 16 1 16 0500 0 128 1 128
65. 22 Burst SVAL MEMRPC000002 11 Normal SVAL 000002 00 Minimal SVAL 22 Burst SVAL MEMRPC000002 3 3 504 SVAL MEMRPC000002 44 5105 SVAL RPCOO 33 504 SVAL RPCOO 00 Minimal SVAL RPCOO 44 505 SVAL RPC000002 3 3 ExcessOfData SVAL RPCOO 11 Some Data SVAL RPC000002 00 No Data SVAL RPC000002 111 SVAL RPCOO 00 No Data SVAL 00 33 ExcessOfData SVAL LT 33 ExcessOfData SVAL LT 11 SVAL LT 00 No Data SVAL 0 77 Proto SVAL LT 00 Flight SVAL LT 66 SVAL LT 11 Flight Spare SVAL 0 11 Flight Spare SVAL 00 00 Flight SVAL LT 77 Proto SVAL 00 66 SVAL 00002 00 Flight SVAL 00002 77 SVAL 00002 66 SVAL MEMRPCO00002 11 Flight Spare SVAL 00 TypeO SVAL 0 22 2 SVAL MEMRPC000002 22 Type2 SVAL MPFRPC00 11 1 SVAL MPFRPC00 00 TypeO SVAL LT 22 Type2 SVAL LT 11 1 SVAL LT 00 TypeO SVAL RPC000002 11 1 SVAL LT 313 EndArdCrryOK SVAL RPC000002 33 SVAL RPC000002 22 XOR ERR SVAL RPC000002 11 OK SVAL RPC000002 00 No Status SVAL LT 44 EndArdCryERR SVAL LT 22 XOR ERR SVAL LT 11 OK SVAL LT 00 No Status SVAL RPC000002 44 EndArdCryERR SVAL 0 98 98 SftyThrshlON SVAL LT 4949 HV DEF EN SVAL LT 11 CommRateMd SVAL LT 16116 DATA ACQ EN SVAL LT 1717 DataAcqTable SVAL 0 987 Refe
66. N Auto red switch 7 SRPRPCOO 2 16 _16 CRPP2017 URPRPCOO TBD 0 0 N Next cmd direct 7 2 16 16 URPRPCOO h0040 N Deflection step 7 2 16 16 URPRPCOO h0041 N Entrance step 7 SRPRPCOO 2 16 16 URPRPCOO h0042 N Release V cal format 7 SRPRPCOO 2 16 16 URPRPCOO h0043 Test WD reset 7 SRPRPCOO 2 16 16 URPRPCOO h004A N Empty Fifo 7 SRPRPCOO 2 16 16 URPRPCOO h004B N Flush Fifo 7 SRPRPCOO 2 16 16 URPRPCOO h004C N Boot PROM 7 SRPRPCOO 2 16 16 URPRPCOO h004D N Imager test 7 SRPRPCOO 2 16 16 URPRPCOO h004E Y NONE N Dummy cmd 7 SRPRPCOO 2 16 16 URPRPCOO h004F Y NONE N Boot EEP incl Context 7 SRPRPCOO 2 16 16 2111 URPRPCOO TBD 0 0 Test pattern 7 SRPRPCOO 2 16 16 CRPP2112 URPRPCOO TBD 0 0 Boot EEP excl Context 7 SRPRPCOO 2 16 16 2113 URPRPCOO 0 0 N RPC Internal SID nr 7 SRPRPCOO 2 16 16 CRPP2114 URPRPCOO TBD 0 0 N Default boot section 7 SRPRPCOO 2 16 _16 CRPP2115 URPRPCOO TBD 0 0 N Deflection level 7 2 16 16
67. N M Reset Actel param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 Y PRPG3200 8 NONE N M Reset Actel param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3200 16 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 243 N M Reset Actel param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3200 32 NONE 7 SRPRPCOO 2 8 8 URPRPCOO h9E N PRPG3204 0 N M Transmitter param 1 7 2 8 8 URPRPCOO 0 PRPG3204 8 NONE N M Transmitter param 2 7 5 2 16 16 URPRPCOO 0 PRPG3204 16 NONE N M Transmitter param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3204 32 NONE 7 SRPRPCOO 2 8 8 URPRPCOO hbO N PRPG3208 0 N M AQP Hold param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3208 8 NONE TCDP N M AQP Hold param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3208 16 NONE N M AQP Hold param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 M PRPG3208 32 NONE TCDP N M Goto Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb1 N 212 0 N
68. N Reset Actel param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3096 16 NONE N Reset Actel param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3096 32 NONE Transmitter Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h1E N PRPG3100 0 TCDP N Transmitter param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3100 8 NONE TCDP N Transmitter param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 100 16 NONE Transmitter param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3100 32 NONE TCDP N M Dummy Command Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h81 N PRPG3104 0 N M Dummy Command param 1 7 SRPRPCOO 2 8 8 0 PRPG3104 8 NONE N M Dummy Command param 2 7 2 16 16 URPRPCOO 0 PRPG3104 16 NONE N M Dummy Command param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3104 32 NONE TCDP N M Set TM Rate Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h82 N 108 0 N M Set TM Rate param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 108 8 N M Set TM Rate param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3108 16 NONE N M Set TM Rate param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3108 32 NONE N M Start Sampling Opcode 7 2 8 8 URPRPCOO h84 N PRPG3112 0 N M Start Sampling Par 1 7 2 8 8
69. UDMRTUPSM000 2 N NONE _ T SDMRTUPSMO00 3 4 8 UDMRTUPSMO000 130 N NONE IES COMM RATE MODE T SRPRPCOO 3 4 8 1 1010 0 NONE N ES COMM RATE MODE Rate T SRPRPCOO 2 8 8 DIG 1011 Y PRPG1010 8 NONE IES DATA ACQ EN T SRPRPCOO 3 4 8 URPRPCOO 16 1100 0 NONE N ES DATA ACQ EN Ctl T SRPRPCOO 2 8 8 DIG ICRPV0103 URPRPCOO Y PRPG1100 8 NONE IES DATA ACQ TABLE T SRPRPCOO 3 4 8 17 Y PRPG1120 0 IES DATA ACQ TABLE TabNo T SRPRPCOO 3 4 8 URPRPCOO Y PRPG1120 8 NONE IES DATA GENERATE EN T SRPRPCOO 3 4 8 URPRPCOO 19 Y PRPG1130 0 NONE ES DATA GENERATE EN Ctl T SRPRPCOO 2 8 8 DIG ICRPV0103 URPRPCOO Y PRPG1130 8 NONE IES HV DEF ADJ T SRPRPCOO 3 4 8 URPRPCOO 48 PRPG1B06 0 NONE ES HV DEF ADJ Type T SRPRPCOO 2 8 8 DIG ICRPV1301 URPRPCOO Y PRPG1B06 8 NONE ITCDP N IES HV DEF ADJ Value T SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B06 1 NONE IES HV DEF EN Opcode T SRPRPCOO 3 4 8 49 1310 0 ES HV DEF EN Ctl T SRPRPCOO 2 8 8 DIG ICRPV0103 URPRPCOO Y PRPG1310 8 NONE IES HV ELC MCP ADJ Op T SRPRPCOO 3 4 8 URPRPCOO 50 N PRPG1B07 0 NONE ES HV ELC MCP ADJ 7 SRPRPCOO
70. 1 in RO EST TN 1021 de lid Sensor dome lips DPU housing Z Sensor MLI vka 2mils DPU housing MLI vka 2mils im lid Sensor dome lips DPU housing Z Sensor MLI vka 2mils housing MLI vka 2mils Non Op Heater location Sensor dome lid 6062 Sensor dome lips Al 6062 Sensor housing 6062 Sensor electronics misc DPU electronics misc DPU housing Sensor MLI DPU MLI 30 50 Table 2 5 30 ICA TRP Design Temperature Ranges Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 153 EOL Node 5 50600 50601 50601 50602 50602 50605 50602 50606 50603 50602 50604 50605 50605 50607 Table 2 5 32 ICA Internal Conductive Couplings Nodei Node C Note Coupling between DPU housing 50605 and s c has to be calculated by the S c with the optical properties taken from Table 2 5 27 and Table 2 5 28 Table 2 5 33 ICA NN Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 154 Ac Node Conductive Node C C C Table 2 5 34 ICA Interface Contact Conductances Diam 130 Lenght 35 Diam 120 Lenght 182 150 NES NA Figure 2 5 8 ICA Main Dimensions 50606 MLI Y 50605 DPU Z baseplate 4 feet 50607 MLI except Z 50601 50602 Figure 2 5 9 ICA Ther
71. 2 4 414 URPRPCOD N RPC 85 4 Packet Subtype T SREREC00 5 5 ST N NONE N Data field header pad 2 8 Cia NONE 20 Segmentation Flag 7 SRPRPCOO 2 8 8 BYTE NONE URDRECOD 85 7 Source sequence counter T SEPEPC00 5 5 Ar NONE URBRPCOO MSN 807 seq 7 SRPRPCOO 3 10 141 14 NONE URPRPCOD TMDP 85 7 Coarse ti 7 SRPRPCOO 3 14 32 T 32 NONE URPRPCOD 85 7Fine time _ 7 SRPRPCOO 3 12 16 WORD NONE NDE IN EU 7 SRPRPCOO 2 3 URDRECOD N Data field header spare parameter T SEPRPC00 2 i i T NONE URPRPCTO HEE RPC B5 7 Packet Tono 7T SRPRPCOO 2 4 4 T NONE URPRECOO 85 7 Packet Subtype 2 5 5 ui NONE URBRECE Data field header pad 5 5 NONE NDE IN 7 2 8 8 URDRECOD N RPC 85 9 Source sequence counter T SEPEPC00 2 2 NONE URBRPCOO NDE IN 508 7 3 10 141 14 URPRPCOD PPC 85 9 Coarse ti 7 SRPRPCOO 3 14 _ 327 32 URPEPC00 TD PC 85 0 Fine ime 7 SRPRPCOO 3 12 16T WORD NONE URERPERG DE Checkean flag 7 SRPRPCOO 2 3 3 URERECOD N Data field header spare parameter T SRPREC00 5 i I Ti T NONE URBRPCOO Do RPC BSI Pack
72. 2 8 8 _ DIG CRPV132D URPRPCOO TMDP N Number of executed cmds 7 3 12 16 WORD URPRPCOO TMDP N Number of received cmds 7 SRPRPCOO 3 4 8 _ URPRPCOO TMDP Number of illegal cmds 7 3 4 8T BYTE NONE URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 280 P Number of rejected cmds 7 SRPRPCOO 3 4 8 T BYTE URPRPC00 TMDP N Number of invalid cmds 7 3 4 8T BYTE NONE URPRPCOO N Last sequence number 7 3 2 6 T 6 BIT NONE URPRPCOO TMDP N Sequence active flag 7 SRPRPCOO 2 1 4 T_1_BIT NONE URPRPCOO TMDP N Version number 7 SRPRPCOO 3 0 414 URPRPCOO TMDP N Revision number 7 SRPRPCOO 3 0 414 BIT URPRPCOO TMDP N Control Flag 7 SRPRPCOO 3 2 6 6 URPRPCOO TMDP Monitor 1 Upper 10 bits 7 SRPRPCOO 3 6 10 T 10 BIT NONE URPRPCOO TMDP Monitor 1 Lower 4 bits 7 SRPRPCOO 3 0 414 URPRPCOO TMDP N Monitor 2 Upper 12 bits 7 SRPRPCOO 3 8 12 T 12 BIT NONE URPRPCOO TMDP N Monitor 2 Lower 2 bits 7 2 2 212
73. CPO Lower entrance HV mon CPO N Processor Temp MEMRPCO000002 N Processor Temp DEFAULT N Processor Temp DEFAULT N Temperature 2 MEMRPCO000002 N Temperature 2 N Temperature 2 CPOI MEMRPCO000002 N MAG Temperature 1 N MAG Temperature 1 DEFAULT N MAG Temperature 1 N MAG Temperature 2 DEFAULT N MAG Temperature 2 MEMRPCO000002 N MAG Temperature 2 MPFRPCOO N B Fld X Component DEFAULT N B Fld X Component MEMRPCO00002 N B Fld X Component DEFAULT N B Fld Y Component MPFRPCOO N B Fld Y Component MEMRPCO00002 N B Fld Y Component MEMRPCO00002 N B Fld Z Component N B Fld Z Component DEFAULT N B Fld Z Component DEFAULT N Keyhole Address nvalid SINT N Keyhole Address nvalid SINT MEMRPCO000002 N Keyhole Address nvalid SINT Time Delay nvalid SINT DEFAULT N Time Delay nvalid SINT MEMRPCO00002 N Time Delay nvalid SINT DEFAULT N Time Period nvalid SINT MPFRPCOO Time Period nvalid SINT MEMRPCO00002 N Time Period nvalid SINT MEMRPCO00002 N FIFO Threshold nvalid SINT MPFRPCOO N FIFO Threshold nvalid SINT DEFAULT N FIFO Threshold nvalid SINT DEFAULT N Mode Select nvalid SINT Mode Select nvalid SINT
74. N Start Sampling param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3008 8 NONE N Start Sampling param 2 7 2 16 16 0 PRPG3008 16 NONE N Start Sampling param 3 7 2 16 16 0 Y PRPG3008 32 NONE TCDP N Stop Sampling Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h5 N PRPG3012 0 TCDP N Stop Sampling param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3012 8 NONE TCDP N Stop Sampling param 2 7 2 16 16 URPRPCOO 0 PRPG3012 16 NONE TCDP N Stop Sampling param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3012 32 NONE TCDP N Execute Macro Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h6 N PRPG3016 0 N Execute Macro param 1 7 2 8 8 URPRPCOO 0 PRPG3016 8 NONE N Execute Macro param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3016 16 NONE N Execute Macro param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3016 32 NONE Dog Prom Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h7 N PRPG3020 0 N Dog Prom param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3020 8 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3020 16 TCDP N Dog Prom param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3020 32 Set Macro Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8 N
75. URPRPCOO 0 Y PRPG3052 8 NONE N IO Poke param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3052 16 NONE N IO Poke param 3 7 2 16 16 URPRPCOO 0 Y PRPG3052 32 NONE TCDP N LDL Mode Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h10 N PRPG3056 0 N LDL Mode param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3056 8 NONE TCDP N LDL Mode param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3056 16 NONE TCDP N LDL Mode param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3056 32 NONE TCDP N Peek Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h12 N PRPG3060 0 N Peek param 1 7 2 8 8 0 PRPG3060 8 NONE TCDP N Peek param 2 7 2 16 16 URPRPCOO 0 PRPG3060 16 N Peek param 3 7 2 16 16 URPRPCOO 0 PRPG3060 32 NONE TCDP N Poke Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h13 N PRPG3064 0 N Poke param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3064 8 NONE N Poke param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3064 16 NONE N Poke param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3064 32 NONE N Flash Peek Opcode 7 2 8 8 URPRPCOO h14 N PRPG3068 0 N Flash Peek param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 Y PRPG3068 8 NONE N Flash Peek param 2 7 SRPRPCOO 2 16
76. 160 Enable Science 7 ETC02001SDEN 86 12 5 14 14 NONE 112 Disable Science 7 020028008 86 12 5 14 14 NONE 112 Enable HK 7 00305 87 12 5 14 14 112 Disable HK 7 ETCOO306HKDS 87 12 5 14 14 NONE 112 Enable Science 7 0200150 87 12 SPACE 14 14 112 Disable Science 7 2002 00 87 12 SPACE 14 14 112 Enable MAG 7 00305 88 12 5 14 14 112 Disable 7TIETCO0306HKDS 88 12 SPACE 14 14 112 Enable MAG Science 7 0200150 88 12 5 14 14 NONE 112 N Disable MAG Science 7 2002 00 88 12 5 14 14 NONE 112 N Enable ICA Science 7 20015 85 12 5 14 14 NONE 112 Disable ICA Science 7 020028008 85 12 5 14 14 NONE 112 RPC HPC RTU P L A 7 002010000 1 12 5 18 18 NONE 7 2000 144 RPC HPC RTU P L B 7 002010000 1 12 18 18 7 1000 t N 144 If HV enabled get authorisation from an experiment representative HPC 3 This TC is of fixed length Do not change the parameter in the first Block The structure is designed f
77. MEMRPCO00002 40000 0 00002 50000 25 00002 60000 50 000002 65000 100 1970 25 DEFAULT 14580 50 DEFAULT 1970 25 DEFAULT 7860 0 DEFAULT 13100 25 000002 0 150 RPCOO 14580 50 RPCOO 15730 100 LT 15800 150 LT 15150 100 13100 25 15730 100 50346 40 51630 90 49466 10 51389 80 51141 70 51863 100 50884 60 49769 20 48825 10 49152 0 48825 10 48487 20 48136 30 47771 40 47391 50 46996 60 46584 70 46154 80 45704 90 45235 100 50063 30 00002 250 25 51630 90 51863 100 45235 100 49769 20 45704 90 51141 70 46154 80 46584 70 46996 60 00002 1000 50 49466 10 00002 500 0 50620 50 00002 100 40 00002 0 50 50884 60 50620 50 47391 50 47771 40 Reference RO RPC UM
78. Rosetta RPC UserManual OAL 5001 SSVIN IVOINVHOIN z o PS LAP 2 Figure 2 1 5 LAP Mechanical Interface Drawing RO RPC UM Draft o o c wu 12 0 987 Rev Issue Date February 20 2002 74 00 96 06 97 121 2 T E _ 22186 e 984 5 9 550 LI 2024 5 0WOu MT 49032745409 Jl UP 3804 Ge 1003 12215 5521015 Ul 349 puo 5 25 52045 1989045 aas 53 109 20 gt 10 4034 uolusn j Figure 2 1 6 LAP Support Bracket Mechanical Interface Drawing Reference 2 RO RPC UM Draft Rev 0 987 February 20 2002 75 Figure 2 1 7 LAP Support Bracket Mechanical Interface Drawing 2 1 8 LAP Support Bracket Mechanical Interface Drawing 19 295 B 4 Constructor H Thomas 1 Angle Prog et Uta 981120 stoft Figure 2 1 9 LAP Support Bracket Mechanical Interface Drawing
79. SVAL 0 65 65 Cksum SVAL 00 66 66 EE Wri SVAL 0 1717 Ld of wds SVAL LT 99 No of Words SVAL LT 11 SVAL LT 22 No of LPs SVAL LT 33 Memory ID SVAL LT 44 of Blocks SVAL LT 55 No of LP Err SVAL LT 66 Checksum SVAL LT 66 66 EE Wri SVAL LT 88 Pg Bound SVAL C00 11 SVAL LT 10410 Not In LVENG SVAL LT 1717 Ld of wds SVAL LT 1818 Ld wds LP Er SVAL LT 33 33 Dp no of wds SVAL LT 65 65 Cksum SVAL LT 77 SVAL LT 6767 SVAL 0 6767 SVAL LT 22 Bad Checksum SVAL LT 33 Bad SVAL 0 11 Bad Seq SVAL 22 Bad Checksum SVAL 00 313 SVAL LT 11 Bad Seq SVAL LT 00 1 SVAL LT 33 4 SVAL 00002 313 4 SVAL 00002 00 1 SVAL MEMRPCO00002 22 MemArea3 SVAL LT 11 2 SVAL MEMRPC000002 11 2 SVAL LT 22 MemArea3 SVAL 00002 00 Low SVAL 00002 11 High SVAL MPFRPC00 111 High SVAL MPFRPC00 00 Low SVAL DEFAULT 11 SVAL 0 987 Rosetta Reference Issue Date RPC UserManual Pas 329 RO RPC UM Draft Rev February 20 2002 MP
80. signals are duplicated for redundant interface on same connector Rosetta RPC UserManual Pas Reference Issu Date RO RPC UM Draft Rev February 20 2002 90 0 987 Figure 2 2 2 SDBL Interface Circuits pour Loin H Y Door 2 NAZ cour in XA H RY Lan H RYN AQUT ENABLE 12 ENABLE HS26C31MS U m 4 77 ENABLE ENABLE 3 AOUT mo Ai 24 m 15 Bi R 3k 5 lt R Sk 22pF m lt AAA DIN 9 e R 3k Dine HS26C32MS Sk T 22 AA U R 3k 4 Wt ENABLE c Vv 12 ENABLE R 3k 22pF 2 LA AIN 3 gt ilL AOUT R 3k Ai AI PARN R 22pF 6 our H AAA Bi R 3k s rl gt R 3k 22pF 10 AAA DIN 9 LT OUT R 3k DIN S 526 2 8 R 22pF AA Rosetta Reference Issue Date RPC UserManual Pas RO RPC UM Draft Rev February
81. 0 16 1 16 0011 OBLOCK 0 48 1 48 003 PKBC OBLOCK 0 48 1 48 003 PKBC OBLOCK 0 48 1 48 003 PKBC OBBLOCK 0 48 1 48 003 PKBC OBLOCK 0 48 1 48 0 0 16 1 16 PRPG7100 0 16 1 16 PRPG7100 2 48 16 1 16 PRPG8300 64 16 114 16 PRPG8400 1 16 32 1 32 PRPG8200 0 16 1 16 PRPG8100 1 PARAM 16 32 1 32 PRPG8200 2 48 16 1 16 PRPG8300 0 16 1 16 PRPG8100 0 16 1 16 PRPG8100 1 16 32 1 32 PRPG8200 2 48 16 1 16 PRPG8300 0 16 1 16 PRPG1010 0 16 1 16 PRPG1100 0 16 1 16 PRPG1120 0 16 1 16 PRPG1130 OBLOCK 0 32 1 32 1301 0 16 1 16 PRPG1310 OBLOCK 0 32 1 32 JXRPC1321 PKBC 0 16 1 16 PRPG1330 OBLOCK 0 32 1 32 1341 0 16 1 16 PRPG1350 O BLOCK 0 32 1 32 1361 PKBC RO RPC UM Draft Rev February 20 2002 232 0 987 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 233 0 16 1 16 PRPG1
82. 192 16 1 16 NRPA0330 PARAM 208 16 1 16 NRPA0340 PARAM 224 16 1 16 NRPA0350 PARAM 240 16 1 16 NRPA0360 PARAM 256 16 1 16 NRPA0370 PARAM 272 16 1 16 NRPA0380 PARAM 288 16 1 16 NRPA0390 BLOCK 0 128 1 128 WRP08304 PKBM PARAM 128 16 1 16 NRPA8100 PARAM 192 16 1024 16 NRPA8400 PARAM 144 32 1 32 8200 BLOCK 0 128 1 128 WRP08309 PKBM PARAM 176 16 1 16 NRPA8300 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA8100 PARAM 144 32 1 32 8200 176 16 1 16 NRPA8300 PARAM 192 16 1 16 8500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 176 16 1 16 NRPA0514 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 144 16 1 16 NRPA0512 PARAM 160 16 1 16 NRPA0513 PARAM 128 16 1 16 0500 144 16 1 16 520 160 16 1 16 NRPA0521 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 144 16 1 16 NRPA0522 PARAM 160 16 1 16 0523 144 16 1 16 NRPA0522 PARAM 160 16 1 16 NRPA0523 PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 500 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 128 16 1 16 0500 176 16 1 16 524 144 16 1 16 NRPA0501 BLOCK 0 128 1 128 WRP08307 PKBM PARA
83. 3 10 141 14 TMDP N RPC 83 7 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP N RPC 83 7Fine time 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMDP N PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N Checksum flag 7 SRPRPCOO 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 URPRPCOO TMDP N RPC 83 7 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 83 7 Packet Subtype 7 2 8 8 URPRPCOO TMDP N Data field header pad 7 2 8 8 BYTE URPRPCOO TMDP N Segmentation Flag 7 2 2 212 URPRPCOO 83 9 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP N RPC 83 9 Coarse time 7 3 14 321 32 URPRPCOO TMDP N RPC 83 9 Fine time 7 3 12 16 WORD URPRPCOO TMDP N PUS version number 7T SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO N Data field header spare parameter 7 2 4 41 4 URPRPCOO TMDP N RPC 83 9 Packet Type 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N RPC 83 9 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TM
84. 4 0 Temp Limits NULL 4 1 Temp Limits NULL jTemp 1 NULL 2 NULL 5V Limits NULL Limits NULL 12 Limits NULL N 12V Limits NULL 28V Limits NULL N Priority FIFO Level NULL N Normal FIFO Level NULL Bit Set NULL Arm Connector NULL jSensor temperature NULL Temperature NULL Liveliness Test NULL Test NULL N 5 Supply NULL N 5 Supply NULL Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 309 6 3 3 C LIMITSET ELT 6 TRUE 3 3 TM 1 TRUE CAL 25 55 3 30 60 1 TRUE CAL 35 55 3 40 60 SINT TM 16 CAL 25 55 3 30 65 SINT TM 1 TRUE CAL 55 90 3 55 90 SINT TM 16 TRUE CAL 55 90 3 55 90 SINT TM 1 NRPD0305 SPV ON CAL 41 74 2 46 90 1 REAL TM 1 NRPD0305 SPV ON CAL 41 74 2 46 90 1 REAL TM 1 0350 gt 0 CAL 4 5 0 05 1 4 5 1 REAL TM 1 0350 gt 0 CAL 5 4 0 05 1 5 4 1 REAL TM 1 0350 gt 0 11 13 0 05 1 10 15 1 REAL TM 1 0350 gt 0 13 11 0 05 1 15 10 1 REAL TM 1 0350 gt 0 CAL 25 31 0 05 1 22 34 1 REAL TM 1 0350 gt 0 RAW 0 1800 1 0 2000 1 0350 gt 0 RAW 0 12000 1 0 15000 1 NRPD0300 SPV ON RAW
85. C For 2 brackets insulated by PEEK plates For 0 5 m equivalent cable length Table 2 5 47 MIP Interface Contact Conductances Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 160 2 5 4 2 6 MAG RPC 5 1 and RPC 5 2 ref RPC 5 amp 6 in RO EST TN 1021 Table 2 5 50 MAG Node Properties Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 161 Unit Node Op Non Op Op Stab CC CC 50704 80 80 150 120 5 MAG IB 50684 80 80 150 120 5 Table 2 5 51 TRP Design Temperature Ranges BOL EOL Unit Mode Node Op Ql Non Op QR Deployed 0 05 0 05 Stowed 0 0 Deployed 0 05 0 05 Stowed 0 0 Table 2 5 52 MAG Power Dissipations C C C WK MAG OB 50704 50705 7 037e 3 MAB IB 50684 50685 7 037e 3 Table 2 5 53 MAG Internal Conductive Couplings 2 50704 50705 1 608 3 MAB IB 50684 50685 1 608e 3 Assuming inner cube side 20 mm Table 2 5 54 MAG Internal Radiative Couplings 3 E 60700 bracket cable 16 Cu wires 60700 S C bracket 3 feet 3 M3 60680 S C bracket cable 16 Cu wires 60680 S C bracket Table 2 5 55 MAG Interface Contact Conductances 35 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 162 50705 50685 Note nodes 50705
86. ELC MCP Monitor 7 3 12 1677 WORD URPRPCOO TMGS ION MCP Monitor 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS HVMON Monitor 7 3 12 16 WORD URPRPCOO TMGS Expected Checksum 7T SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS N Calculated Checksum 7 3 12 16 WORD URPRPCOO TMGS RAM Test Fill Type 7 3 12 161 WORD DIG 1512 URPRPCOO TMGS N First Offending Address 7 SRPRPCOO 3 12 161 WORD NONE URPRPCOO TMGS Memory Service Err Type 7 SRPRPCOO 3 12 16 WORD DIG CRPV1514 URPRPCOO TMGS Memory Service Err Data 7 3 12 16 WORD URPRPCOO TMGS Memory Service Info 7 3 12 161 WORD DIG 1516 URPRPCOO TMGS Undervoltage Flags 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Org Safe Arm Plug State 7 3 12 16 WORD URPRPCOO TMGS N Negative 5V Monitor 7 3 12 161 WORD URPRPCOO TMGS Positive 5V Monitor 7 3 12 161 WORD URPRPCOO TMGS N Negative 12V Monitor 7 3 12 161 WORD URPRPCOO TMGS N Positive 12V Monitor 7 3 12 161 WORD URPRPCOO TMGS N Command Bytes 0 1 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Command Bytes 2 3 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Command State Byte 0 7 3 12 16 WORD
87. NONE URPRPCOO Rx IES HK SID 1 7 2 1 1 T 1 BIT DIG 101 URPRPCOO N Rx IES HK SID 2 7 2 1 1 DIG 101 URPRPCOO TMDP Rx ICA HK SID 1 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO N Rx ICA HK SID 2 7 SRPRPCOO 2 1 DIG 101 URPRPCOO Rx ICA HK SID 3 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP Rx ICA HK SID 4 7 2 1 1 DIG 101 510 1 7T SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP Rx LAP HK SID 2 7T SRPRPCOO 2 1 1 DIG 101 N LAP SID 3 7 2 1 1 DIG 101 URPRPCOO N Rx LAP HK SID 4 7T SRPRPCOO 2 1 1 DIG 101 URPRPCOO N Rx MIP HK SID 1 7 SRPRPCOO 2 1 DIG 101 URPRPCOO N Rx MIP HK SID 2 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO N Rx MAG HK SID 1 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP PAD 7 3 4 8T BYTE NONE URPRPCOO HK SID 7 SRPRPCOO 3 4 8 _ URPRPCOO Internal State 7 2 4 414 DIG 1303 URPRPCOO N Heartbeat 7 3 4 8T BYTE NONE URPRPCOO Communications Mod
88. URPRPCOO TMGS N Command Bytes 1 2 7 3 12 16 WORD URPRPCOO TMGS Link Error Status Flags 7 SRPRPCOO 3 12 1677 WORD URPRPCOO TMGS N Link Chip Status 7 3 12 16 WORD URPRPCOO TMGS Sequence Error Code 0 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Sequence Data Word 7 3 12 16 WORD URPRPCOO TMGS Current Giada Dust Flux 7 SRPRPCOO 3 12 1617 WORD NONE URPRPCOO TMGS N Giada Dust Threshold 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO Current Rosina Pressures 7 SRPRPCOO 3 12 161 WORD NONE URPRPCOO TMGS Ros Pressure Thresholds 7 3 12 161 WORD URPRPCOO TMGS Timestamp 7 3 14 32 T 32 URPRPCOO TMGS N Page Information 7 3 12 161 WORD URPRPCOO Rosetta Reference RO RPC UM Issue Draft Rev Date February 20 2002 274 RPC UserManual Pas 0 987 TMGS N 16 Bit Pad 7 31 12 16 WORD URPRPCOO TMGS N Overvoltage Flags 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS New Safe Arm Plug State 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS ICA HK Word 0 7 3 12 1677 WORD URPRPCOO TMGS ICA HK Word 1 7
89. 0 987 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 160 160 176 176 176 336 16576 208 128 336 16576 208 128 240 16576 208 128 256 128 272 128 160 ance Failure Report Failure Code 1 Incomplete Packet within time out 224 ance Failure Report Failure Code 2 Incorrect Checksum 224 ance Failure Report Failure Code 3 Incorrect APID 192 ance Failure Report Failure Code 4 Invalid Command Code 224 ance Failure Report Failure Code 5 Command can not be executed at this time 192 ance Failure Report Failure Code 6 Data Field Inconsistent 208 ion Completeion Success Report 160 ion Failure Report 192 160 ance Failure Report Failure Code 1 Incomplete Packet within time out 224 ance Failure Report Failure Code 2 Incorrect Checksum 224 ance Failure Report Failure Code 3 Incorrect APID 192 ance Failure Report Failure Code 4 Invalid Command Code 224 ance Failure Report Failure Code 5 Command can not be executed at this time 192 ance Failure Report Failure Code 6 Data Field Inconsistent 208
90. 08307 160 16 1 16 1513 2 144 16 1 16 1512 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 500 2 144 16 1 16 1514 160 16 1 16 1515 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1516 2 144 16 1 16 1518 160 16 1 16 1530 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1519 160 16 1 16 NRPA1531 O BLOCK 0 128 1 128 WRP08307 PKBM O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA151A 160 16 1 16 NRPA151B O IBLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 1510 2 144 16 1 16 151 1 PARAM 128 16 1 16 0500 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA151E 160 16 1 16 NRPA151F O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA151E 160 16 1 16 NRPA151F 1 PARAM 128 16 1 16 0500 Reference RO RPC UM
91. LRPD1104 NRPA1310 5 NONE NRPA1310 6 NONE NRPA1310 7 NONE NRPA1310 8 NONE NRPA1310 9 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 297 LRPD131A NRPA1310 10 NONE NRPA1310 12 NONE NRPA1310 14 NRPA1310 15 NONE LRPD1104 NRPA1320 0 LRPD1104 NRPA1320 1 NONE LRPD1104 NRPA1320 2 NONE LRPD1104 NRPA1320 3 NONE NRPA1320 4 6 8 NRPA1320 NONE LRPD1104 NRPA1320 NONE LRPD1104 NRPA1320 10 NONE LRPD1104 NRPA1320 12 LRPD1104 NRPA1320 14 NONE LRPD1104 NRPA1330 0 LRPD1104 NRPA1330 1 NONE LRPD1104 NRPA1330 2 NONE LRPD1104 NRPA1330 3 NONE NRPA1330 4 NRPA1330 7 NONE NRPA1330 8 NONE NRPA1330 9 NONE NRPA1330 10 NONE NRPA1330 11 NONE NRPA1330 12 LRPD1104 NRPA1330 13 NONE NRPA1330 14 NONE LRPD1104 NRPA1340 0 z z z z zZz z zZ zZ lt lt lt lt lt lt lt lt 2 lt 2 lt lt lt lt lt 2 2 lt z z z z z z z z 2 jz 2 z z 2 2 lt 2 22 2 lt lt lt lt lt 22 2 2 2 2 2 2 212 2 2 212 z z z z z z 2 2 2 2 212 2 2 212 2 2 21212 2 NRPA1340 1 NONE NRPA1340 2 NONE NRPA1340 3 NONE NRPA1340 4 NRPA1340 5 NONE LRPD1104 NRPA1340 6 NONE LRPD1104 NRPA
92. 2 144 16 1 16 2 OBLOCK 0 128 1 128 08501 1 PARAM 128 16 1 16 NRPASTO01 O BLOCK 0 128 1 128WRPO08501 1 PARAM 128 16 1 16 NRPASTO1 2 144 16 1 16 2 160 16 1 16 4 176 16 1 16 NRPAST04 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST20 2 144 16 1 16 2 OBLOCK 0 128 1 128WRPO08501 PKBM 160 16 1 16 NRPASTOS 1 PARAM 128 16 1 16 NRPASTO01 OBLOCK 0 128 1 128 WWRP08301 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 OBLOCK 0 128 1 128 08 01 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 NRPASTOS 4 176 16 1 16 NRPAST04 OBLOCK 0 128 1 128 08601 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 OBLOCK 0 128 1 128WRPO08601 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 NRPASTOS 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST10 6 PARAM 208 16 1 16 NRPAST11 6 PARAM 208 16 1 16 NRPAST13 5 192 16 1 16 NRPAST12 2 144 16 1 16 2 1 PARAM 128 16 1 16 NRPASTO1 OBLOCK 0 128 1 128WRPO08601 PKBM 4 176 16 1 16 NRPAST04 160 16 1 16 OBLOCK 0 128 1 128WRPO08601 PKBM 1 PARAM 128
93. 84 22 22 1 1 45531 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 254 N ES Pres ThrstAlrt 7 00502 7 1 1 Al N ES Pres ThrstAlrtGia 7 00502 84 7ISPACE AUTH 22 22 1 1145533 ES Pres ThrstAlrtPrs 7 00502 84 AUTH 22 22 1 1145534 NONE N ES Pres ThrstAlrtPrsGia 7 00502 84 AUTH 22 22 1 1145535 NONE N ES Info Time Marker 7 00501 84 JAUTH 22 22 1 145552 NONE N ES Info Page Info 7 00501 84 7 AUTH 22 22 1 145553 NONE N CA Command error 7 00502 85 7ISPACE AUTH 22 22 1 1145568 Patch reprog 7 00501 85 7 AUTH 22 22 1 145560 ALL NONE N CA Patch reprog Error 7 0050 85 7ISPACE AUTH 22 22 1 145570 NONE Internal reprog OK 7 00501 85 5 AUTH 22 22 1 1145571 ALL CA Internal reprog Er
94. For the procedure definition refer to the documents RO RPC TS 6006 SVT Test Script RO RPC MA 6002 RPC Operations Planning Document RO ESC PR 5130 System Validation Test Plan 5 4Contingency Recovery Procedures These procedures are described as well in RO RPC TS 6006 SVT Test Script RO RPC MA 6002 RPC Operations Planning Document 611 Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual Pae 226 6 0 Data Operations Handbook The tables below are based on the RSDB from February 6 2002 6 1RPC Telecommand Definitons N Power On PIU 7 002010000 83 12 5 18 1817 NONE 144 Enable PIU HK 7 00305 83 12 5 14 14 NONE 112 Disable PIU HK T ETC00306HKDS 83 12 5 14 14 NONE 112 PIU Memory Load 7 ETCOO602MMLD 83 12 5 22 248 NONE N 1984 N PIU Memory Dump Request 7 ETCOO605MMDP 83 12 5 20 2017 NONE 160 PIU Memory Check 7 ETCOO609MMCK 83 12 5 20 20 NONE 160 Time Update 7 00901 5 83 12 5 18 18 NONE 144 Request Connection test 7 01701 5 83 12 5 12 12 NONE 96 Enable IES HK 7 00305 84 12 5 14 14 NONE 112 D
95. N NRPAH543 0 N NRPAHS43 32 NONE N N 544 0 N 544 3 NONE N N 544 4 N NRPAH544 8 NONE N N NRPAH544 16 NONE N N NRPAH5C4 24 N N NRPAH5C1 0 1 0 16383 NRPAHSC1 2 NONE 5 N 5 0 N NRPAH5C3 32 NONE N N NRPAH5C4 0 N NRPAH5C4 3 NONE N N NRPAH5C4 4 NONE N N NRPAH5C4 8 NONE N N NRPAH5C4 16 NONE N NRPASTO1 5 NONE N N NRPASTO1 12 NONE N NRPASTO2 2 NONE N N NRPASTO2 5 NONE N N NRPAST04 0 NRPAST04 8 NONE N N NRPAST20 0 N NRPAST20 8 NONE Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 308 6 3 RPC Limits 6 3 1 LIMITS N PAY429 Rpc les Temp Limits LL N PAY430 Rpc Temp Limits NULL N PAY431 Rpc Temp Limits NULL N Temp 1 NULL N Temp 2 NULL N 5V Limits NULL N 5V Limits NULL N 12V Limits NULL N 12V Limits NULL N 28V Limits NULL N Priority FIFO Level NULL Normal FIFO Level NULL N Error Bit Set NULL Safe Arm Connector NULL N Sensor temperature NULL N DPU Temperature NULL N Liveliness Test NULL N Overheat Test NULL N 5V Supply NULL N 5V Supply NULL 429 les Temp Limits
96. PIU tick is defined as 2 seconds or 219 cycles of the HF clock and is used for the internal timing of PIU actions In order to maintain timing synchronisation throughout the RPC each experiment receives a simultaneous hardware pulse every 32 seconds This pulse is derived from the Timer Synchronisation Pulse divided by 4 Each pulse signifies the start of a new Acquisition Period to the experiment Each experiment will time stamp events in its data relative to the start of the Acquisition Period in which the data will be transmitted from the experiment and will send this relative time stamp to the PIU contained within the experiment s data The PIU will then transmit the experiment s data to the DMS and the time code of the packet will be the start of the Acquisition Period when the data was received Ground processing software will reconstitute the event time by adding the relative time stamp to the packet time Note An exception to this protocol is the MAG experiment as the processing of the MAG data is done with in the PIU science TM of the MAG experiment with the time of when the first vector was converted on the MAG board By using the coarse time register the current tick and the tick timer register the time stamp for these packets will be to a resolution to an accuracy of greater than 1 ms For all other packets including acknowledgements and events the time stamp will be generated by the coarse time registers and the current
97. PMAC 7 2 3 3IT 3 DIG CRPV3300 URPRPCOO TMDP N EMAC 7 2 3 3IT 3 DIG CRPV3303 URPRPCOO TMDP WATCHD 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP PROMEN 7 SRPRPCOO 2 1 4 T_1_BIT DIG CRPV3307 URPRPCOO TMDP N Spare 1 7 SRPRPCOO 3 4 8 URPRPCOO TMDP N LDLMODE 7 2 2 212 DIG 10 URPRPCOO TMDP Spare 2 7 3 1 5 NONE URPRPCOO Rosetta Reference RO RPC UM Issue Draft Rev Date February 20 2002 RPC UserManual Pas 283 0 987 TMDP TEMP 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP N CDRIV2 7 SRPRPCOO 2 1 1 T 1 DIG 18 URPRPCOO TMDP N CDRIV1 7 SRPRPCOO 2 1 1 T 1 DIG CRPV3319 URPRPCOO TMDP E2D216 7 SRPRPCOO 2 1 1 DIG CRPV331A URPRPCOO TMDP E1D116 7 SRPRPCOO 2 1 1 DIG CRPV331B URPRPCOO TMDP N E2D120 7 SRPRPCOO 2 1 1 DIG CRPV331C URPRPCOO TMDP N E1D120 7 SRPRPCOO 2 1 1 DIG CRPV331D URPRPCOO TMDP N CNTRE2 7 SRPRPCOO 2 1 1 DIG CRPV331E URPRPCOO TMDP N CNTRE1 7 SRPRPCOO 2 1 1 DIG CRPV331F UR
98. 0 987 Date February 20 2002 Page 116 2 3 3 2 3 4 LAP For the LAP TC parameter definition refer to the RPC LAP Instrument User Manual IRFU RPC LAPUM 2 3 3 2 3 5 MIP 2 3 3 2 3 6 MAG Housekeeping Channel Assignment The 16 analog HK channels are multiplexed according to the following table Multiplexer 1840 RH Pin Cannel Assignment Channel Address Function 2 MAG Temp Outboard Sensor FEAT 5V PU THK MIP TH HK FSVHK Table 2 3 7 Housekeeping Channel Assignment 5 v 2 3 wk i gt Of O O O O O O i in 22 lt lt m SE 24 MEE 17771 01 0 0 f O OF O 1 O O O O O O OF OF O O 1910 O O O 1 O 1 ol lt I A RENE 56 _ k MES EN Comment During the measurement of thermistors TH A and TH A1 the FPGA 1280 provides a TH SW Signal high at Pin 85 CQF 172 53 PLCC 84 This activates the power for the thermistors Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 117 Conversion of Analog Values for the Thermistors Outboard TOB and Inboard TIB te
99. 22 50 sector 6 x 10 cm sr 3600 sector 1 10 cm sr Table 1 2 5 Summary of expected ICA performance The instrument contains the following high voltages entrance deflection voltages for the upper and lower electrodes e electrostatic analyser deflection voltage postacceleration voltage e MCP bias voltage The HV supplies will be built providing MCP bias voltage and Main High voltage Entrance deflection voltages for the upper and lower electrodes electrostatic analyser deflection voltage and postacceleration voltage will be obtained by the Main HVPS and HV optocouplers RO RPC UM Draft c 0 987 Rev Issue Date February 20 2002 47 The characteristics of ICA are given in Table 1 2 5 JOJO2ULOO Igni AH Tono sug joo AH MN RN 220 7 nd pup e AST lt sod ze 4 T a 2 69 lt 0 Pd N sod E puo uogoadax 7 AH suas diuor AH JONHOD AH Ar ALE AIS AASTA AIST QNO ACTA 180 UW A
100. 301 N N 10 12 NONE N 10 13 NONE N NRPA3310 14 N N NRPA3310 15 NONE N NRPA3320 0 N NRPA3320 1 NONE N N NRPA3320 2 NONE N N NRPA3320 3 NONE N N NRPA3320 5 NONE N N NRPA3320 6 NONE N N NRPA3320 8 NONE N N NRPA3330 0 N NRPA3330 8 NONE N N NRPA3350 0 N NRPA3350 8 NONE N N NRPA4310 0 1 0 63 NRPA4310 2 NONE N Y 1 0 255 4 310 8 1 0 255 NRPA4320 0 N NRPA4320 8 NONE N N NRPA4330 0 N NRPA4330 8 NONE N N NRPA4340 0 N NRPA4340 8 NONE N N NRPA4350 0 N NRPA4350 8 NONE N N NRPA4360 0 N NRPA4360 8 NONE Y N NRPA5300 1 NONE N N NRPA5300 2 N NRPA5300 7 NONE N N NRPA5300 12 NONE N LRPD5340 NRPA5340 0 N LRPD5348 NRPA5340 8 NONE N N NRPA8100 0 N NRPA8100 8 NONE N N NRPAH014 24 NONE N N NRPAHO 1 1 0 1 0 16383 11 2 5 N NRPAHO013 0 N NRPAH013 32 NONE N N NRPAHO014 0 N NRPAH014 3 NONE N N NRPAH014 4 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 302 NRPAHO
101. RPCOO 46996 60 RPCOO 51630 90 RPCOO 51389 80 RPCOO 51141 70 RPCOO 50884 60 RPCOO 50620 50 RPCOO 50346 40 RPCOO 50063 30 RPCOO 49769 20 RPCOO 51863 100 DEFAULT 0 16000 000002 0 16000 00002 65536 16000 DEFAULT 65536 16000 RPCOO 0 16000 RPCOO 65536 16000 DEFAULT 0 16000 DEFAULT 65536 16000 RPCOO 0 16000 RPCOO 65536 16000 00002 0 16000 00002 65536 16000 00002 0 16000 00002 65536 16000 RPCOO 65536 16000 RPCOO 0 16000 DEFAULT 65536 16000 DEFAULT 0 16000 DEFAULT 0 65535 SINT RPCOO 0 65535 SINT 00002 0165535 SINT 0 16000 Delay SINT 00002 0 16000 Delay SINT DEFAULT 0 16000 Delay SINT Rosetta Reference Issue Date RPC UserManual Pas RO RPC UM Draft Rev February 20 2002 923 MPFRPCOO
102. Rosetta 7 RPC UserManual lt Temp Sensors To the PIU Optoisolators C ADC amp Multiplexer 95555 lt lt NS QQ SASS SSN SS NS SSN XX uS SS 22 A 9 a SSN e NS SN M SM Rasy SAS SN SS les 58 NS Sh sE NS SSN 5 E NN Be s NN SOON SS INN NN INN 8 SA x SS x Sak NN NN SS NN NN NN x NS SONS AX SONT ST SORT e NND Driv amp Rec aaa ka a a aka RRQ gt O SS SS RRQ LLI 32 kbyte DON NNN 55 c NE ON RR SS Rds o RY NN NN gt G 71 RA Rd NSS RM SN NS N NN SN e N SONS s BRAY N S Nya rN 9 LESS o 7 9 K lt Y 9 5 RY N s lt 5 2 N NY
103. URPRPCOO TMGS N Location 7 3 12 161 WORD URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 273 TMGS N Mask 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS Original Checksum 7 3 12 16 WORD URPRPCOO TMGS HK Type Word 0 7 3 12 16 WORD URPRPCOO TMGS N HK Type Word 1 7 3 12 16 WORD URPRPCOO TMGS N HK Type Word 2 7 3 12 1677 WORD URPRPCOO TMGS N HK Type Word 3 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS HK Type Word 4 7 3 12 16 WORD URPRPCOO TMGS HK Type Word 5 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS HK Type Word 6 7 3 12 16 WORD URPRPCOO HK Type Word 7 7 3 12 16 T WORD NONE URPRPCOO TMGS HK Type 111 Word 8 7 3 12 16 WORD URPRPCOO TMGS N HK Type IV Word 9 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS N HK Type IV Word 10 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS HK Type IV Word 11 7 3 12 16 WORD URPRPCOO TMGS
104. 0 866 12 5 18 18 144 MACRO EE Boot 7 230 1 866 12 5 18 18 144 MACRO End Macro 7 ETC230F3 86 12 5 18 18 NONE BOTH N 144 N MACRO Resampling 7 230 4 866 12 5 18 18 NONE BOTH N 144 N MACRO Set Filter 7 230 5 866 12 5 18 18 NONE BOTH N 144 N MACRO Set Moving Avrg amp ADC Params 7 230 6 86 12 5 18 18 NONE BOTH N 144 N MACRO Reset Actel 7 230 7 866 12 5 18 18 NONE BOTH N 144 N MACRO Transmitter 7 230 8 86 12 5 18 18 144 7 230 6 86 12 SPACE 18 18 144 7 230 7 86 12 5 18 18 144 MACRO Sample Hold 7 230 8 86 12 5 18 18 NONE BOTH N 144 N MACRO Fillout Buffer 7 230 9 86 12 5 18 18 NONE BOTH N 144 N MACRO FullOut Buffer 7 230 0 86 12 5 18 18 NONE BOTH N 144 N MACRO A 20 Moving amp Grooving Avrg 7 230 1 86 12 5 18 18 NONE BOTH N 144 N MACRO Set Start Header 7T ETC230J2 86 12 5 18 18 NONE 144 MACRO Set Subheader 7 230 3 86 12 5 18 18 144 7 230 4 86 12 5 18 18 144 MACRO Set Parameters 7 230 6 866 12 5
105. 0 9 to 5 2 AU non operating 1 to 4 1 AU operating A model has been done with the help of the ROSETTA Project and ESTEC SSD to define the temperature range at the MIP sensor location The adopted solution is to use electronics and mechanical components which support the wide range of temperatures MIP Operation Temperature Ranges Instrument Operating Non Operating Element 160 to 100 C 160 to 100 C Table 2 5 4 Temperature Ranges Reference RO RPC UM Rosetta Issue Rev 0 987 February 20 2002 Date PC UserManual race 131 MAG The MAG sensors will be exposed to a wide temperature range down to about 100 C and up to 100 Extreme temperatures of 150 C 120 C can be tolerated by specific sensor material Macor MAG Operation Temperature Ranges Instrument Operating Non Operating Element Sensor OB IB 150 to 100 C 150 to 120 C MAG PIU 20 to 50 C 50 to 80 C Electronics Table 2 5 5 MAG Temperature Ranges Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 132 PIU and Sensor Common Electronics 0 The main electronics box for the RPC package shall be located under spacecraft supplied blankets on the payload platform to which it shall be thermally conducting The box thermal control will therefore be dictated by the spacecraft environment 2 5 1 2 Thermal Design Description IES The therma
106. 00102 86 1 OTHER 28 28 1 12 ALL LAP Incorrect APID 7 00102 86 1 AUTH OTHER 24 24 1 13 ALL N InvalidCmdCode 7 00102 86 1 OTHER 28 28 1 14 ALL NONE PbExecTime 7 00102 86 1 AUTH OTHER NONE 24 24 1 15 ALL NONE DataFieldInconsistent 7 00102 86 1 AUTH OTHER NONE 26 26 1 16 ALL ICA ExeSuccess 7 00107 5 86 1 AUTH NONE 1 1 ALL ICA ExeFailure 7 00108 86 1 AUTH OTHER NONE 24 24 1 111 ALL NONE AcceptSuccess 7 00101 5 87 1 JAUTH OTHER NONE 1 1 ALL IncompletePacket 7 00102 87 1 SPACE AUTH OTHER 128 28 1 11 ALL NONE IncorrectChecksum 7 00102 87 1 OTHER 28 28 1 12 ALL Incorrect APID 7 00102 87 1 OTHER 24 24 1 13 ALL InvalidCmdCode 7 00102 87 1 NONE 28 28 1 14 ALL NONE PbExecTime 7 00102 87 1 AUTH OTHER NONE 24 24 1 15 ALL DataFieldInconsistent 7 00102 87 1JSPACE OTHER 126 26 1 16 ALL NONE MA
107. 055 Recai NA NA NA WA NA NA NA woaz NA INA NA NA NA NA RPC41 006 reb pos meo peo pss pos 2 o o po wos2 2 o z po Mission Phase 1 ICA in full sun and TRP at 50 C Mission Phase 2 ICA in shadow and TRP at 30 C Long term average operating heat exchange Peak dissipation of 7 3 W corresponds to highest power mode for RPC Table 2 5 11 Heat Exchange Reference RO RPC UM Rosetta Issue Draft Rev 0 987 February 20 2002 Date PC UserManual race 146 2 5 3 4 Temperature Monitoring Unit Thermistors Range ue o w ue o Ww we we o Table 2 5 12 Temperature Sensors s c powered thermistors Experiment Experiment Temperature Location Powered Thermistors A A 4801 100 5 1 150 to 150 RPC 5 1 180 150 C Table 2 5 13 Temperature Sensors RPC internal sensors Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 147 2 5 4 Mathematical Model 2 5 4 1 Thermal Mathematical Model in Design TMM in InterfaceTMM mos PU 8 RPC 3 2 LAP RPC 3 3 LAP Bracket RPC 4 1 MIP RPC 5 1 MAG Table 2 5 14 TMM Nodes 1 D 3 3 7 3 2542 Interface Thermal Mathematical Models 2 5 4 2 1 P
108. 128WRP08307 PKBM 128 16 1 16 0500 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B 160 16 1 16 NRPA152B BLOCK 0 128 1 128WRP08307 144 16 1 16 NRPA152A 128 16 1 16 0500 BLOCK 0 128 1 128WRP08307 PKBM 128 16 1 16 0500 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B 128 16 1 16 0500 144 16 1 16 NRPA152A BLOCK 0 128 1 128 08307 160 16 1 16 NRPA152B 160 16 1 16 NRPA152B BLOCK 0 128 1 128 08307 128 16 1 16 0500 144 16 1 16 152 160 16 1 16 NRPA152B 144 16 1 16 NRPA152A BLOCK 0 128 1 128 08307 128 16 1 16 0500 BLOCK 0 128 1 128 08307 128 16 1 16 0500 144 16 1 16 NRPA152A 160 16 1 16 NRPA152B BLOCK 0 128 1 128 08307 128 16 1 16 0500 144 16 1 16 152 160 16 1 16 NRPA152B 128 16 1 16 0500 BLOCK 0 128 1 128 08307 144 32 1 32 NRPA152C 128 16 1 16 0500 144 16 1 16 NRPA152bE 160 16 1 16 NRPA152F BLOCK 0 128 1 128 08307 BLOCK 0 128 1 128 WWRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 144 16 1 16 NRPA2500 PARAM 160 1
109. 14 14 112 Set Link 7 19503 83 12 5 14 14 NONE 112 7 19504 83 12 5 14 14 NONE 112 Set MAG Link 7 19505 83 12 5 14 14 NONE 112 5 7 19601 83 12 5 18 18 144 Tes 7 19602 83 12 5 18 18 144 Test 7 19603 83 12 5 18 18 144 7 19604 83 12 5 18 18 144 MAG Test 7 19605 83 12 5 18 18 144 Enable ICA HK 7 00305 85 12 5 14 14 112 Disable ICA HK 7 ETCO0306HKDS 85 __12 14 14 NONE 112 CA Memory Load 7 ETCO0602MMLD 85 12 SPACE 22 248Y NONE BOTH N 1984 N CA Memory Dump Request 7 ETCOO605MMDP 85 12 SPACE 20 20 NONE 160 7 00609 85 12 5 20 20 Y 160 ES COMM RATE MODE 7 21001 12 5 14 14 112 7 21116 84 12 5 14 14 NONE 112 ES DATA ACQ TABLE 7 21117 84 12SPACE 14 14 112 ES DATA GENERATE EN 7 21119 84 12SPACE 14 14 NONE 112 ES HV DEF ADJ 7 21348 84
110. 17 481 48 NONE URPRPCOO TMGS RPC 85 4 Data field header PUS 7 3 14 321 32 URPRPCOO TMGS N RPC 85 7 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 85 7 Packet length 7 2 16 16 WORD URPRPCOO TMGS N RPC 85 7 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS N RPC 85 7 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS N RPC 85 9 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS RPC 85 9 Packet length 7 2 16 1677 WORD URPRPCOO TMGS RPC 85 9 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS RPC 85 9 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS RPC 85 12 Packet sequence counter 7 3 12 161 WORD URPRPCOO TMGS RPC 85 12 Packet length 7 SRPRPCOO 2 16 16 WORD NONE URPRPCOO TMGS N RPC 85 12 Data field header time field 7 9 17 481 48 TMGS RPC 85 12 Data field header PUS 7 3 14 321 32 URPRPCOO TMGS RPC 86 1 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 86 1 Packet length 7 2 16 1677 WORD URPRPCOO TMGS N RPC 86 1 Data field header time field 7 9 17 481 48 U
111. 20 Bit OBY 01010101 2 8 8 Bit Header 4 Bit ID 20 Bit OBZ 4 Bit ID 20 Bit 8 Bit Trailer 2 Header 62H 4860 20BitOBZ 4BitID 0 20Bit IBX Trailer Byte 55H 01100010 0001 20 Bit OBZ 0000 20BitlBX 01010101 3 8 Byte packet 8 Bit Header 4 Bit ID 20 Bit IBY 4 Bit ID 20 Bit IBZ 8 Bit Trailer 3 Header 63H 4BitID 20Bit IBY 4Bit ID 0 20Bit IBZ Trailer Byte 55H 01100011 0010 20BitIBY 0000 20BitlBZ 01010101 4 8 Byte packet 8 Bit Header 4 Bit ID 20 Bit Housekeeping 16 Values 4 Bit XXXX Housekeeping ID 1 Bit 4 HK ID Flag 9 Bit zero 10 Bit Cycle Counter 8 BitTrailer 4 Header 20H 4BitID 20Bit HK 4Bit HKIF 1Bit HKF 9 Bit Zero 10 Bit Counter Byte 55H 00100000 0011 20BitHK xxxx F 9x0 10 Bit Counter 01010101 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 114 Description of the housekeeping HKF within the fourth data packet The voltages of all HK channels can differ very much Thus the voltage swing at the input of the ADC may be as big as the highest allowed difference between minimum and maximum input voltage which is 2 5 V and 2 5 V For proper operation the settling time needed will be greater than 50 ms the normal sampling time 20 vectors sec This is the reason
112. 32 1 32 PRPG8200 2 48 16 1 16 PRPG8300 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 235 0 16 1 16 PRPG8100 64 16 114 16 PRPG8400 0 16 1 16 PRPG8100 1 16 32 1 32 PRPG8200 2 48 16 1 16 PRPG8300 2 48 16 1 16 PRPG8300 0 16 1 16 PRPG8100 1 16 32 1 32 PRPG8200 oj 16 1 16 PRPGA100 0 16 1 16 PRPGA100 0 16 1 16 PRPG7100 0 16 1 16 PRPG7100 0 16 1 16 PRPGA100 0 16 1 16 PRPGA100 0 16 1 16 PRPG7100 0 16 1 16 PRPG7100 0 16 1 16 PRPGA100 0 16 1 16 PRPGA100 0 16 1 16 PRPGA100 0 16 1 16 PRPGA100 OBLOCK 0 40 1 40 XSBH1000 PKBC 1 40 8 1 8 FRPH1000 1 40 8 1 8 FRPH2000 0 40 1 40 5 1000 Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual Pae 236 6 1 3 C TCPARAM _ T SDMRTUPSMOO0 3 4 8
113. 33 3 SVAL 11 1 SVAL 00 0 SVAL 414 Macro 4 SVAL 55 Macro 5 SVAL 33 3 SVAL 77 Macro 7 SVAL 66 6 SVAL 33 3 SVAL 44 4 SVAL 00 0 SVAL 22 2 SVAL 11 1 SVAL 00 0 SVAL 77 7 SVAL 66 6 SVAL 414 Macro 4 SVAL 22 2 SVAL 11 1 SVAL 55 5 SVAL 00 ENABLED SVAL 11 DISABLED SVAL 00 ENABLED SVAL 111 DISABLED SVAL 11 Mix LDL 00 LDL SVAL 11 Mix LDL 22 Normal LDL SVAL 313 Mix LDL Ph1 00 LDL SVAL 22 Normal LDL SVAL 313 Mix LDL Ph1 00 5V SVAL 11 32V SVAL 11 32V SVAL 00 5V SVAL 11 32V SVAL 00 5V SVAL 11 32V SVAL 00 5V SVAL 11 E Field SVAL 00 Density SVAL 11 E Field SVAL 00 Density SVAL 0 987 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 332 MPFRPCOO 00 Density SVAL MPFRPCOO 11 E Field SVAL DEFAULT 00 Density SVAL DEFAULT 11 E Field SVAL DEFAULT 00 Density SVAL DEFAULT 11 E Field SVAL MPFRPCOO 00 Density SVAL MPFRPCOO 11 E Field SVAL MPFRPCOO 00 Density SVAL MPFRPCOO 11 E Field SVAL DEFAU 111 E Field SVAL DEFAU 00
114. 4 UJ Telemetry Packet Information Packet Name RPC IES Packet Function Science Report Generation Rules Every 32 seconds when enabled Header Information Process ID Service Type 2 Structure ID 1008 Data Field Information TBD Table 2 3 2 RPC IES TM Packet Definition Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 Page 107 2 3 3 2 2 2 ICA TM packet Definition Telemetry Packet Information Packet Name Minimum Science RPC ICA Packet Function Science Report Every 960 seconds average when enabled Header Information Process ID Packet Category Service Type Structure ID Data Field Information TBD Telemetry Packet Information Packet Name Normal Science RPC ICA Packet Function Science Report Generation Rules Every 192 seconds average when enabled Header Information Process ID Packet Category Service Type Service Subtype Structure ID Packet Length 2478 Data Field Information TBD Telemetry Packet Information Burst Science RPC ICA Science Report Every 32 seconds max when enabled Header Information Process ID Service Type Structure ID Data Field Information TBD Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 108 Telemetry Packet Information RPC ICA Every 32 seconds max when enabled Process ID Service Type 20 Service Subtype 2 Structure ID Packet Length 1074 Data Field Information Speci
115. 8 240 16 1 16 NRPA2360 O IBLOCK 0 128 1 128 WRP08509 PKBM 1 PARAM 128 16 1 16 NRPA8100 2 144 32 1 32 NRPA8200 176 16 1 16 NRPA8300 4 192 16 1024 16 8400 0 128 1 128 08507 4 192 16 1 16 8500 1 PARAM 128 16 1 16 NRPA8100 176 16 1 16 NRPA8300 2 144 32 1 32 NRPA8200 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 268 OBLOCK 0 128 1 128 WRP08512 PKBM O BLOCK 0 128 1 128 08604 1 PARAM 128 16 1 16 2 144 16 1 16 NRPA3300 160 16 1 16 NRPA3310 4 176 16 1 16 20 5 192 16 1 16 NRPA3330 6 208 16 1 16 NRPA3340 7 224 16 1 16 NRPA3350 1 PARAM 128 16 1 16 NRPA8100 4 192 16 1024 16 NRPA8400 2 144 32 1 32 NRPA8200 OBLOCK 0 128 1 128 08609 PKBM 176 16 1 16 NRPA8300 OBLOCK 0 128 1 128WRP08607 PKBM 1 PARAM 128 16 1 16 NRPA8100 2 144 32 1 32 NRPA8200 176 16 1 16 NRPA8300 4 192 16 1 16 NRPA8500 OBLO
116. BDR BDU BER BERENICE BFL BIT BL BMOS BOB BOL BPS BRU BSM C C CA CADU CAP CAPS CAV CC CCB CCCS CCD CCDB CCE CCITT CCN CCR CCS CCSDS CCU CDC CDMS CDMS CDMU CDR CDV CE CEPHAG SA CESR CEV CFRP CGSE CHAMPAGNE CHF CHL CHM CI Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 17 Bus Controller Broadcast Command Pulse 1 Pulse at 1 8 Hz on OBDH bus Battery Charge Unit Battery Discharge Regulator Batery Discharge Unit Bit Error Rate ORBITER PAYLOAD INSTRUMENT Back Focal Length Build In Test Block Length LAP Buckling Margin Of Safety Break Out Box Beginning of Life Bits per second Battery Regulator Unit Battery Recharge Unit Bus Support Module Collectively Controlled Contract Authorisation Channel Access Data Unit Comet Acquisition Point Cassini Plasma Spectrometer Command Acceptance Verification Cost Code Configuration Control Board Common Checkout amp Control System Charged Coupled Device Configuration Control Database Central Checkout Equipment Consultative Committee International Telegraph amp Telephone Change Contract Notice Configuration Control Request Central Check out System Consultative Committee for Space Data Systems Central Computing Unit Clock Drift Correction Central Data Management System Control and Data Management Subsystem Sub Assembly Central Data Management Unit Critic
117. ERS N NN NS S NS RRs SO CNC NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNY To Host Computer The Simulator Figure 3 2 6 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 189 3 2 1 1 2 MGSE Non flight covers shall be provided for the following sensors IES ICA LAP MIP LAP MGSE The LAP dedicated MGSE has three features used during different levels of integration and testing Providing stimulus to LAP sensors via a plasma simulator box or via the protective cover for testing of current and voltage mode Providing a pass for MIP stimulus from LAP stub to MIP receiver Checking the transmitter pulse to the sensor stubs The MGSE will be used for the comprehensive system level tests and for all RPC level testing It consists in three main items 1 2 3 A VXI rack containing all necessary instruments for stimuli an interface to the switch box and a LAN connection to RPC main GSE This unit is housed in a 19 inch B size rack system with TBD unit height The power required is not more than can be supplied by a standard power outlet and the weight is TBD less then 100kg A switch box size less then 200x250 mm containing interfaces to stimuli boxes and the VXI rack Two stimuli boxes to be mounted on each sensor containing passive components for stimulus The size is TBD and limited by the available space on a deployed boom The
118. February 20 2002 Page 174 Will test the Imager memory Valid in test mode only No parameter XW Tests ImgTst ZRP22040 Dummy cmd D This is a no action command used to test the command link only No parameter XW Tests Dummy Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 175 3 1 2 3 4 Class 1 type 221 ZRP22111 Boot EEP incl context D Will boot the code from an EEPROM section including the default context PRPG2111 section 0 15 XW Various BtEEPcx ZRP22112 Test pattern S Will write a test pattern into the Imager memory PRPG2112 pattern nr 0 15 XW Tests TstPtrn ZRP22113 Boot EEP excl context D Will boot the code from an EEPROM section excluding the default context PRPG2113 section 0 15 XW Various BootEEP ZRP22114 RPC internal SID nr D Sets the internal SID number PRPG2114 SID nr 0 5 HK Sid type NRPD2311 XW SidType SidMin SidNrm SidBst SidCal SidSpc SidTst Sidlma IMA only ZRP22115 Default boot section D Sets the default EEPROM boot section for the Start command PRPG2115 section 0 15 See ZRP22315 XW Settings EEPdfit 3 1 2 3 5 Class 2 type 222 ZRP22201 Deflection level S Sets the Deflection HV level to a fixed table index PRPG2201 index 0 95 XW HVrefs DflLev ZRP22202 Entrance level S Sets the Entrance HV level to a fixed index PRPG2202 index 0 15 XW HVrefs EntLev ZR
119. IES HV ION MCP ADJ glb 7 SRPRPCOO 0 32 32NNONE URPRPCOO Y NONE N IES INSTR WDOG CTL glb 7 0 32 32 URPRPCOO Y NONE N ES MEM COPY glb 1 7 0 48 48 URPRPCOO Y NONE N ES MEM COPY glb 2 7 SRPRPCOO 0 32 32 URPRPCOO Y NONE N IES MEM GO glb 7 SRPRPCOO 0 32 32 URPRPCOO Y NONE ES MEM WRITE glb 1 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE ES MEM WRITE 9 2 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE N ES SAFETY AMB SET glb 1 7 0 48 48 URPRPCOO N ES SAFETY AMB SET glb 2 7 0 16 16 URPRPCOO N ES SAFETY ELC glb 1 7 0 48 48 N ES SAFETY ELC glb 2 7 0 16 16 N ES SAFETY ION glb 1 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE ES SAFETY ION glb 2 7 SRPRPCOO 0 16 16 URPRPCOO Y NONE IES SEQ TRIGGER gib 7 SRPRPCOO 0 32 32 URPRPCOO N 28V switch 7 SRPRPCOO 2 16 _16 CRPP2001 URPRPCOO TBD 0 0 Opto 28V switch 7 SRPRPCOO 2 16 16 2002 URPRPCOO TBD 0 0 N Main 28V switch 7 SRPRPCOO 2 16 _16 2003 URPRPCOO TBD 0 0 N Pacc HV switch 7 2 16
120. Lower entrance HV IRPRPCOO Post acc HV monitor IRPRPCOO N Deflection HV monitor IRPRPCOO Deflection LV monitor IRPRPCOO N Sensor temperature IRPRPCOO N Upper entrance HV mon CPOI Y IRPRPCOO N Grid LV monitor IRPRPCOO temperature Y IRPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 334 Lower entrance HV mon IRPRPCOO Processor Temp CPOI Y IRPRPCOO Temperature 2 CPOI Y IRPRPCOO MAG Temperature 1 CPOI Y IRPRPCOO MAG Temperature 2 CPOI Y IRPRPC00 B Fld X Component IRPRPCOO B Fld Y Component IRPRPCOO B Fld Z Component IRPRPCOO Keyhole Address SINT N IRPRPCOO Time Delay SINT N IRPRPCOO Time Period SINT N IRPRPCOO FIFO Threshold SINT N IRPRPCOO Mode Select SINT N IRPRPCOO When in Acquisition Period SINT N IRPRPCOO Repetition Interval SINT N IRPRPCOO 1 Bit On Off SVAL Y IRPRPCOO 1 Bit True False SVAL Y RPRPC00 Connect Disconnect SVAL Y RPRPC00 1 Bit Enable Disable SVAL Y RPRPC00 1 Bit No Error Error SVAL Y RPRPC00 CP Mon Act Disact SVAL Y IRPRPC00 MI
121. N Mode 7 SRPRPCOO 2 6 6 URPRPCOO 8 Y PRPG2315 7 NONE N HV on bit 7 SRPRPCOO 2 1 1 URPRPCOO 1 PRPG2315 6 NONE 7 SRPRPCOO 2 1 1 URPRPCOO 0 PRPG2315 5 NONE N Include Context 7 2 1 1 URPRPCOO 0 PRPG2315 4 TCDP N Nibble 3 7 SRPRPCOO 2 4 4 NONE URPRPCOO 15 Y PRPG2315 0 Source section 7 SRPRPCOO 2 4 4 NONE URPRPCOO 0 PRPG2B13 12 NONE TCDP N Destination section 7 2 4 4 URPRPCOO 0 PRPG2B13 8 NONE TCDP N Nibble 3 2 7 SRPRPCOO 2 8 8 URPRPCOO 13 PRPG2B13 0 Dummy Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h1 N PRPG3000 0 N Dummy param 1 7 2 8 8 URPRPCOO 0 PRPG3000 8 NONE N Dummy param 2 7 2 16 16 URPRPCOO 0 PRPG3000 16 NONE N Dummy param 3 7 2 16 16 URPRPCOO 0 PRPG3000 32 NONE Set Rate Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h2 N PRPG3004 0 Set Rate param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3004 8 NONE N TM Rate param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3004 16 NONE N TM Rate param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3004 32 N Start Sampling Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h4 N PRPG3008 0
122. N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 291 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE N N NONE 0 0 N N NONE N N NONE 0 0 N N NONE N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 292 NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NON
123. N Postacc HV log switch 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP N Main 28V switch 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP Opto 28V switch 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP N 28 switch 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP N New command received 7 SRPRPCOO 2 1 1 URPRPCOO TMDP N Sid type 7 2 3 3IT 3 DIG 2380 URPRPCOO TMDP HV 28V enanble disable 7 SRPRPCOO 2 1 1 T 1 DIG 2182 URPRPCOO TMDP N Main 28V present 7 SRPRPCOO 2 1 1 DIG 2182 URPRPCOO TMDP N Opto 28 present 7 2 1 1 DIG 2182 URPRPCOO TMDP N 28 present 7 2 1 1 DIG 2182 URPRPCOO TMDP N Fifo filling F8 7 3 4 8 BYTE NONE URPRPCOO TMDP N Command return 7 3 12 16 WORD URPRPCOO TMDP N Opto HV monitor 7 3 4 8 BYTE 2530 URPRPCOO TMDP N HV monitor 7 3 4 8 BYTE CRPP2538 URPRPCOO TMDP Deflection HV monitor 7 3 4 8 BYTE 2540 URPRPCOO TMDP N Deflection LV monitor 7 3 4 8 BYTE 2548 URPRPCOO TMDP N Postacceleration HV monitor 7 SRPRPCOO 3 4 8 2550 URPRPCOO TMDP N LV monitor
124. RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 133 The MAG sensors are located the MAG LAP boom the anti comet direction lower boom For better thermal conductivity the baseplate is made of CFC to get rid of the inner 50 mW power consumption The calibrated temperature range is 150 to 100 The sensor assembly is made of MACOR with little mass of copper and sensor core magnetic material and a cover made of LEXAN The heat capacity can be determined by the mass of the sensor structure 12 9 and its specific heat of 1 47 J gK and the cover 10 g with a specific heat of 1 17 J gK The power dissipation in the sensor is 50 mW each with small variations The thermal design of the sensors is dominated by conductive heat loss through the 3 feet total area is 0 6 cm and a factor 20 higher heat loss through the harness consisting of 16 wires 1 2 total thermal conductivity 380 W mK copper and by the radiative and conductive heat loss to the mounting bracket An experiment powered thermistor PT 1000 is built into each sensor with a range from 180 to 120 DSS will provide the MLI the sensors RPC 5 1 amp RPC 5 2 The harness along the outer boom and the sensor feet bottom bracket should be covered by the S C provided boom MLI TBC assuming an a 0 41 and 0 5 The maximum and minimum solar radiation input onto the sensors can be estimated to be 2 W at 0 9 AU and only 0
125. RPCO000002 3 1 2 0 3 1 2 0 3 1 4 0 5 1 MPFRPCOO 4 0 0 987 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 317 DEFAULT 5 1 00002 5 1 MEMRPCO00002 4 0 DEFAULT 6 0 CPOI MPFRPCOO 7 1 DEFAULT 7 1 CPOI MPFRPCOO 6 0 00002 6 0 00002 7 1 8 0 9 1 DEFAULT 9 1 DEFAULT 8 0 00002 9 1 00002 8 0 DEFAULT 11 1 00002 11 1 DEFAULT 10 0 10 0 00002 10 0 11 1 00002 12 0 00002 13 1 DEFAULT 12 0 CPO DEFAULT 13 1 CPO MPFRPCOO 12 0 13 1 MPFRPCOO 15 1 14 0 DEFAULT 15 1 00002 14 0 DEFAULT 14 0 MEMRPCO00002 15 1 16 0 RPC000002 16 0 17 1
126. Raw Data Medium Rendezvous Maneuvre Radiation Emission Radio Frequency Radio Frequency Subsystem TT amp C S S Request For Change Radio Frequency Self Compatibility Request for Deviation Radio Frequency Distribution Unit Radio Frequency Interface Radio Frequency Mock Up Request For Waiver Radiation Hardened Review Item Discrepancy Remote Imaging System Reduced Instruction Set Computer RL RLA RLG RLGS RM RMCS RMOC RNCTRS ROIRD ROLIS ROM ROMAP ROSINA ROSIS RP RPC RPE RPM RSDB RS RSI RSOC RSS RT RT RTC RTM RTMM RTOF RTU RWA RWL RX S A S HM S S S W SA SAA SADM SAM Sun SAP SAP SAS SASW SBDC SCET SCL SCOE SCP Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 28 Register Load Register Load Address Ring Laser Gyro Rosetta Lander Ground Segment Reconfiguration Module Rosetta Mission Control System Rosetta Mission Operations Centre Rosetta Network Control amp Telemetry Receiver System ROSETTA Operations Interface Requirements Document LANDER PAYLOAD INSTRUMENT Read Only Memory Rosetta Magnetic Field and Plasma experiment Lander Payload Rosetta Orbiter Spectrometer for lon and Neutral Analysis Orbiter Payload ROSETTA Spacecraft Interface Simulator Rundown Phase Rosetta Plasma Consortium Orbiter Payload Relative Pointing Error Remote Processing Module Rate Reduction Phase ROSETTA Common Packetized Prot
127. Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 97 _ 142 4 TM pJHouekeeping 1sid 121 12 TM 11 12 TC 8 1 7 ____________ Housekeeping 1 sid x Z Tu Science TM _ 1 __ mars Table 2 3 1 E Identifier 2 3 1 5 2 Science Data Delivery Concept For each of the experiments which is powered and operating in normal rate telemetry RPC shall generate one science telemetry packet per 32 second Acquisition Period The Acquisition Period is a common data gathering interval for the experiments and PIU the start of each period is signalled to each of the experiments by a hardware pulse which is generated from the Timer Synchronisation Pulse divided by four Each packet shall carry the Process ID of the generating unit The packet category science will be used for all science packets Each experiment will operate in one of six modes independently of any other experiment The following three modes are supported by all experiments e Minimum e Normal e Burst The other three modes may be implemented as required by each instrument Since the data volume generated by some of the experiments in minimum mode is very small transmission every 32 seconds is inefficient due to the packet header overhead therefore the data will be buffered and transmitted at a multiple
128. SVAL 55 SVAL 55 SVAL 11 SVAL 44 SVAL 00002 00 Min SVAL 00 Min SVAL 00002 44 Msis SVAL MEMRPC000002 00 Idle SVAL 11 SVAL MEMRPC000002 22 SVAL MEMRPC000002 33 SVAL 00002 55 SVAL RPCOO 3535 Fake SVAL RPCOO 3434 SVAL RPCOO 3333 SVAL RPCOO 3232 SVAL RPCOO 3131 Void SVAL RPCOO 30 30 Void SVAL RPC000002 66 Void SVAL 2828 Exm4 SVAL RPC000002 1919 Har3 SVAL RPCOO 2727 Exm3 SVAL RPCOO 2626 2 SVAL RPCOO 2929 5 SVAL RPC000002 2121 Har5 SVAL RPC000002 35 35 Fake SVAL RPC000002 3434 SVAL RPC000002 3333 SVAL RPC000002 3232 SVAL RPC000002 3131 Void SVAL RPC000002 30 30 Void SVAL RPC000002 2929 5 SVAL 0 987 Rosetta Reference Issue Date RPC UserManual Pas RO RPC UM Draft Rev February 20 2002 330 DEFAULT MEMRPCO00002 2828 Exm4 SVAL MEMRPC000002 2727 Exm3 SVAL MEMRPC000002 26 26 Exm2 SVAL MEMRPC000002 2525 Exm1 SVAL MEMRPC000002 2424 SVAL MEMRPC000002 1717 SVAL MEMRP
129. TMDP N RPC 87 1 Coarse time 7 3 14 321 32 URPRPCOO TMDP N RPC 87 1Fine time 7 3 12 16 WORD URPRPCOO TMDP N PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 SRPRPCOO 2 1 1 URPRPCOO N Data field header spare parameter 7 2 4 414 URPRPCOO TMDP N RPC 87 1 Packet Type 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP RPC 87 1 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO 87 4 Source sequence counter 7 3 10 141 14 TMDP N RPC 87 4 Coarse time 7 SRPRPCOO 3 14 32 32 NONE URPRPCOO TMDP N RPC 87 4Fine time 7 3 12 16 WORD URPRPCOO TMDP N PUS version number 7 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 TMDP N RPC 87 4 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 87 4 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 URPRPCOO TMDP N Segmentation Fl
130. The LAP probes can also be used for the following measurements 4 Density fluctuations measurement Study of turbulence in the plasma neutral gas flow of the inner coma and study of low frequency plasma waves Measurements of spacecraft potential The probe is biased with a current voltage mode important for low energy electron and ion measurements possible reference for the other particle sensors Detection of AC electric fields with one or two LAPs in voltage mode Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 219 T Active propagation experiment Propagation of artificial ion acoustic pulses to determine the ion flow velocity and measurement of transfer impedance to determine the electron density 8 Measurements of solar UV integrated ionizing flux Measurements of photoelectron saturation current parameter of interest to understand the ionisation of cometary gases especially if the innermost coma is optically thick 9 Measurements of micrometeroid and dust impacts 4 2 2 4 LDL MODE Together with the MIP instrument LAP will enter a common mode the Long Debye Length mode LDL Mode In this mode the MIP instrument will have full access to one of the LAP probes Two variants of the LDL mode are defined the LDL Normal see Section 4 2 2 4 2 1 and LDL Mixed see Section 4 2 2 4 2 2 422421 LOL Normal Mode In the LDL Normal mode simply lends one probe t
131. URPRPCOO TMGS N RPC 83 9 Data field header time field 7T SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS RPC 83 9 Data field header PUS 7T SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS RPC 84 1 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS N RPC 84 1 Packet length 7 00 2 16 16 WORD URPRPCOO TMGS RPC 84 1 Data field header time field 7 9 17 481 48 URPRPCOO TMGS RPC 84 1 Data field header PUS 7 3 14 32 32 URPRPCOO TMGS RPC 84 4 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS N RPC 84 4 Packet length 7 2 16 16 WORD URPRPCOO TMGS N RPC 84 4 Data field header time field 7 9 17 481 48 URPRPCOO TMGS N RPC 84 4 Data field header PUS 7 3 14 321 32 URPRPCOO TMGS N RPC 84 7 Packet sequence counter 7 3 12 16 T WORD URPRPCOO TMGS RPC 84 7 Packet length 7 SRPRPCOO 2 16 1677 WORD NONE URPRPCOO TMGS RPC 84 7 Data field header time field 7 SRPRPCOO 9 17 48 T_48 BIT NONE URPRPCOO TMGS RPC 84 7 Data field header PUS 7 3 14 321 32 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 276
132. e Provision of the power management system to switch on ground command the sensor units through power switches which also provide over current protection against failures in the sensor units e Control by command of the sensors function integration and packetisation of the data from the sensors Provision of a data i f to the s c which implements at least the minimum set of packet services required On board data processing for the MAG sensor unit which has no processor incorporated in its own electronics No single point failure should disable PIU and any single point failure should disable no more than one experiment unit and should not affect the performance of any other This requirement establishes that PIU must be designed to be tolerant of any single point failure and should allow for graceful degradation in the event of multiple failures The RPC is therefore provided with two independent connections to the spacecraft power service signal and data systems These connections are managed by PIU to provide a single set of connections to each sub experiment The PIU provides in a redundant configuration data handling and power conversion Each secondary voltage to each sub experiment is individually switched and current limited A block diagram of the PIU Figure 1 2 15 shows the dual redundant processor and power 1 The processor interface units provide th g interface between the spacecraft and the experiment
133. y LIL TN avos s EL HD gt 19706740 a E LB asta Lor gt amp HEU m xui E m 1 Ge o S N JN Td 2 Arw oe nn or En 1 GEO dh 4957 i LE TNILNNOW NAINA 95292 DHS JW is SNINFHO YAN IN Figure 2 1 11 Mechanical Interface Drawing Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page T8 2 1 6 MAG The following drawings show the MAG Inboard and Outboard sensors as wekll as the Mumetal Stimuli configuration and mirror location for possible alignment measurements this is no flight item ate Seri Figure 2 1 12 MAG Sensor Dimensions Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 79 MARTIN PFEIL 199 252 Figure 2 1 13 MAG Sensor cen Stimuli Fixture g 2 Alignment Mirror
134. 0 N M A 20 Avrg param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 Y PRPG3228 8 NONE N 20 Avrg param 2 7 2 16 16 URPRPCOO 0 PRPG3228 16 NONE N 20 Avrg param 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3228 32 NONE TCDP N M Set Start Hdr Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb6 N PRPG3232 0 TCDP N M Set Start Hdr param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3232 8 NONE M Set Start param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 kj PRPG3232 16 NONE TCDP N M Set Start Hdr param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3232 32 NONE TCDP N M Set Subheader Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb7 N PRPG3236 0 N M Set Subheader param 1 7 2 8 8 URPRPCOO 0 PRPG3236 8 NONE N M Set Subheader param 2 7 2 16 16 URPRPCOO 0 PRPG3236 16 N M Set Subheader param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3236 32 NONE TCDP N M Do FFT Opcode 7 SRPRPCOO 2 8 8 NONE URPRPCOO hb8 N PRPG3240 0 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3240 8 NONE 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3240 16 TCDP N M Do FFT param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3240 32 NONE N M Set params Opcode 7
135. 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 294 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 RPC UserManual Rosetta Reference RO RPC UM Issue Draft Rev Date February 20 2002 Page 295 NONE 0 987
136. 06 W at 5 2 AU each The heat capacity for each sensor is 29 3 J K The total protruding surface without bottom of each sensor is 61cm MLI RPC 0 The RPC Main Electronics Box being conductively and radiatively coupled to the spacecraft structure is collectively controlled Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 134 2 5 1 3 Thermal Control Category RPC 3 2 LAP Individually Controlled RPC 3 3 LAP Bracket Individually Controlled RPC 3 4 LAP Bracket Individually Controlled RPC 4 1 MIP Individually Controlled RPC 5 1 MAG Individually Controlled RPC 5 2 MAG Individually Controlled Table 2 5 6 Thermal Control Category Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 135 2 5 2 Thermal Interfaces 2521 Conductive Interface 5 IES will have a thermally conductive interface to the S C through the mounting feet The conductive interface of the harness is TBD wires of TBD cross section ICA ICA will have a thermally conductive interface to the S C through the mounting feet 4 feet sized 22 mm 18 mm with a 5 3 2 mounting hole The conductive interface of the harness is 18 wires of 8 6 mm cross section including shielding LAP Each LAP sensor will have a thermally conducting interface to the top of the boom through the sensor mounting feet The conductive interface of the harness is 1 Triax cable of 1 1
137. 08cLHM uonoepd o8c TH P H3IOTOZXLDI lon and Electron Sensor IES Block Diagram Figure 1 2 5 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 46 1 2 2 3 lon Composition Analyser ICA The ion composition analyser uses the same type elevation analyser as the IES Particles enter the analyser through an outer grounded grid Behind the grid is a deflection system whose purpose is to deflect particles coming from angles between 45 and 135 with respect to the vertical axis into the electrostatic analyser lons within a swept energy pass band will pass the electrostatic analyser The ions are then deflected in a cylindrical magnetic field set up by permanent magnets the field deflects lighter ions more than heavy ions into the centre of the analyser The ions finally hit an MCP and are detected by an anode system lons are analysed in both direction and mass per charge simultaneously The magnet assembly can be biased with respect to the electrostatic analyser to post accelerate ions this post acceleration enables a selection of both mass range and mass resolution Quantity Energy Range 1 eV to 40 KeV Resolution 0 07 Mode dependent normally 64 Range FOV 90 x 360 2 8 rr sr Resolution 50 x 22 5 16 elevation steps x 16 sectors Temporal 2D distribution 4s resolution 3D distribution 64 5 Geometric factor
138. 1 48 PRPG3176 0 48 1 48 180 0 48 1 48 PRPG3184 0 48 1 48 188 0 48 1 48 192 0 48 1 48 PRPG3196 0 48 1 48 200 0 48 1 48 PRPG3204 0 48 1 48 208 0 48 1 48 212 0 48 1 48 216 0 48 1 48 220 0 48 1 48 PRPG3224 0 48 1 48 228 0 48 1 48 PRPG3232 0 48 1 48 236 0 48 1 48 PRPG3240 0 48 1 48 PRPG3244 1 16 48 1 48 PRPG4001 0 16 1 16 PRPG4000 0 16 1 16 PRPG4000 0 16 1 16 PRPG4002 0 16 1 16 4003 0 16 1 16 PRPG4004 0 16 1 16 4005 0 16 1 16 PRPG4006 0 16 1 16 4007 0 16 1 16 PRPG4008 0 16 1 16 PRPG4009 0 16 1 16 PRPG4010 0 16 1 16 PRPG4011 0 16 1 16 PRPG4012 0 16 1 16 4013 0 16 1 16 PRPG4014 0 16 1 16 PRPG4015 0 16 1 16 PRPG4016 0 16 1 16 PRPG4017 0 16 1 16 PRPG5001 0 16 1 16 PRPG7100 0 16 1 16 PRPG7100 1 PARAM 16
139. 1 1 INT 1 NRPD0300 SPV ON RAW 2 2 INT 1 NRPDO0301 SPV ON CAL 30 35 3 35 40 SINT TM 1 NRPD0301 SPV ON CAL 30 35 3 35 40 SINT TM 1 NRPD0303 RV 1 RAW 0 0 2 1 303 1 CAL 300 80 1 300 110 1 1 NRPD0305 SPV ON CAL 4 5 1 4 6 1 REAL TM 1 NRPD0305 SPV ON CAL 4 5 1 4 6 1 REAL Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 310 6 4RPC Calibration Parameters 6 4 1 P CALVAR FAULT N Calib V to OC YSI 44907 Therm FAULT N PSU Temperature FRPCOO N PSU Temperature 00002 PSU Temperature FAULT N A D 5V Level CPO FRPCOO N A D 5V Level MRPC000002 N A D 5V Level FRPCOO N A D 5V Level FAULT N A D 5V Level CPO MRPC000002 N A D 5V Level FAULT N A D 12V Level CPO MRPC000002 N A D 12V Level FRPCOO N A D 12V Level MRPC000002 N A D 12V Level A D 12V Level FAULT N A D 12V Level CPO MRPC000002 N A D 28V Level FAULT N A D 28V Level CPO FRPCOO N A D 28V Level N ELC MCP Voltage FAULT N ELC MCP Voltage
140. 100 URPRPCOO MAG Switch 7 2 1 1 DIG 100 URPRPCOO PSUTemperatureRange 7 2 3 3IT 3 500 URPRPCOO N PSUTemperatureValue 7 3 3 717 URPRPCOO 5 Level 7 4 4 8 _ 501 URPRPCOO N 5V Level 7 4 4 8 _ 502 URPRPCOO 12V Level 7 4 4 8 _ 503 URPRPCOO TMDP N 12V Level 7 4 4 8 _ 504 28V Level 7 4 4 8 _ 505 TC Count 7 3 4 8T BYTE NONE URPRPCOO System ID 7 SRPRPCOO 2 2 212 BIT DIG 200 URPRPCOO Main Red Flag 7T SRPRPCOO 2 1 1 DIG 110 URPRPCOO Normal Maint Flag 7T SRPRPCOO 2 1 1 DIG 111 URPRPCOO N RAM Map Flag 7 2 1 1 DIG 112 URPRPCOO N Priority FIFO Level 7 3 f 11 T 11 NONE URPRPCOO TMDP PROM Off Flag 7 2 1 1 DIG CRPV0113 URPRPCOO TMDP Mntr On Off Flag 7 2 1 1 DIG 114 URPRPCOO Normal FIFO Level 7 SRPRPCOO 3 10 141 14
141. 1144674 NONE N EC LasyAqpTime 7 00501 83 7ISPACE AUTH 24 24 1 1144675 NONE N EC AutoShutDown 7 0050 83 7 AUTH 20 20 1 1144676 NONE EC ChkSmFail 7 0050 83 7 AUTH 20 20 1 1144736 NONE N EC BadLdlSync 7 00504 83 AUTH 120 20 1 1144737 NONE N EC ChkSmPass 7 00501 83 18 18 1 1144738 NONE N EC ParamMntrWrning 7 00502 83 AUTH 26 26 1 1144739 NONE N EC ParamMntrDanger 7 00504 83 7ISPACE AUTH 26 26 1 1144740 NONE N EC BadMemCmdStruct 7 00502 83 7ISPACE AUTH 24 24 1 1144800 NONE N EC BadMemID 7 00502 83 7 AUTH 24 24 1 1144801 ALL EC BadMemAddr 7 00502 83 7ISPACE AUTH 24 24 1 1144802 NONE N EC E2promWriteFail 7 00502 83 TISPACE AUTH 26 26 1 1144803 EC BadEpromChkSum 7 00502 83 AUTH 26 26 1 11448044 NONE EC MemDmpNotSprtd 7 00502 83 AUTH 120 20 1 1144805 NONE EC RamTe
142. 12 5 16 16 NONE 128 ES HV DEF EN 7 21349 84 12 5 14 14 112 ES HV ELC MCP ADJ 7 21350 84 12 5 16 16 NONE 128 ES HV ELC MCP EN 7 21351 84 12 5 14 14 112 ES HV ESA ADJ 7 21352 84 12 5 16 16 NONE 128 ES HV ESA EN 7 21353 84 12 5 14 14 112 ES HV ION MCP ADJ 7 21354 84 12 5 16 16 Y NONE N 128 N ES HV ION MCP EN 7 21355 84 12 5 14 14 112 ES HV EN 7 21356 84 12 5 14 14 112 ES INSTR CLEAR STATUS 7 21465 84 12SPACE 14 14 112 ES INSTR PROG MODE 7 21467 84 12 5 14 14 112 ES INSTR RESET 7 21468 12SPACE 14 14 112 ES INSTR WATCHDOG CTL 7 21469 84 12 5 16 16 128 5 7 21581 84 12 5 24 24 176 ES MEM GO 7 21582 84 12SPACE 16 16 N NONE N 128 N ES MEM WRITE 7 21583 84 12 5 20 20 NONE 160 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 228
143. 128 1 128WRPO08301 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 NRPAST02 160 16 1 16 NRPASTOS 4 176 16 1 16 NRPAST04 OBLOCK 0 128 1 128 08501 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 NRPASTO2 OBLOCK 0 128 1 128 08501 6 PARAM 208 16 1 16 NRPAST11 5 192 16 1 16 NRPAST10 160 16 1 16 NRPASTOS 1 PARAM 128 16 1 16 NRPASTO01 4 176 16 1 16 NRPAST04 2 144 16 1 16 2 5 192 16 1 16 NRPAST12 6 208 16 1 16 NRPAST13 4 176 16 1 16 NRPAST04 160 16 1 16 2 144 16 1 16 NRPASTO2 1 PARAM 128 16 1 16 NRPASTO1 OBLOCK 0 128 1 128 08501 4 176 16 1 16 NRPAST04 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 270 OBLOCK 0 128 1 128 08501 4 176 16 1 16 NRPAST04 6 PARAM 208 16 1 16 NRPAST15 5 192 16 1 16 NRPAST14 160 16 1 16
144. 144 16 1 16 0502 OBLOCK 0 128 1 128WRP08307 PKBM 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128WRP08307 PKBM 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128WRP08307 PKBM 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128WRP08307 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA150A OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA150C OBLOCK 0 128 1 128WRP08307 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA150E OBLOCK 0 128 1 128 08307 160 16 1 16 NRPA1511 2 144 16 1 16 NRPA1510 1 PARAM 128 16 1 16 0500 O BLOCK 0 128 1 128WRP08307 PKBM Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 264 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1510 160 16 1 16 1511 0 128 1 128 08307
145. 16 URPRPCOO 0 Y PRPG3068 16 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 240 TCDP N Flash Peek param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3068 32 NONE TCDP N Prog Peek Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h16 N PRPG3072 0 N Prog Peek param 1 7 2 8 8 0 PRPG3072 8 NONE N Prog Peek param 2 7 2 16 16 0 PRPG3072 16 NONE N Prog Peek param 3 7 2 16 16 URPRPCOO 0 PRPG3072 32 NONE EE Boot 7 SRPRPCOO 2 8 8 URPRPCOO h17 N PRPG3076 0 N EE Boot param 1 7 2 8 8 URPRPCOO 0 PRPG3076 8 EE Boot param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3076 16 NONE EE Boot param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3076 32 NONE 7 SRPRPCOO 2 8 8 URPRPCOO h19 N PRPG3080 0 N End Macro param 1 7 SRPRPCOO 2 8 8 0 Y PRPG3080 8 NONE
146. 2 5 Mutual Impedance Probe The MIP sensor ref Figure 1 2 14 measures the electrical coupling of a transmitting 22 antenna and identifies the plasma density temp gt ift velocity from the features of the frequency response No direct contact between the sensor and the plasma is required because the coupling is capacitive only So MIP performance is independent of the chemical composition and photoemissive properties of the probe is also immune to contamination by dust and ice deposits Extremely low energetic plasmas can then be explored an important advantage in a medium where temperatures as low as a few tens of K have been predicted In its passive mode this instrument has also the capability of a plasma wave analyser It is therefore proposed to detect the electric fields of electrostatic and electromagnetic waves associated with the interaction of the solar wind with the charged dust and ionized outgassing products of the nucleus as well as the impulsive signals generated by individual dust particles impacting the spacecraft surface The characteristics of the MIP sensor are listed in Table 1 2 13 Quantity Range Electron density 2 1 5 10 accuracy 5 2 280 cm for Long Debye Length Mode Temperature 30 10 K accuracy 10 Drift velocity 100 1000 m s accuracy about 100 m s Frequency domain 7 kHz 3 5 MHz Wave sensitivity 1 0 mV m Hz at 100 kHz dynamic range 60 dB D
147. 2 8 8 DIG ICRPV1321 PRPG1B07 8 IES HV ELC MCP ADJ Value T SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B07 1 IES HV ELC MCP EN T SRPRPCOO 3 4 8 NONE URPRPCOO 51 Y PRPG1330 0 NONE N ES HV ELC MCP EN Ctl T SRPRPCOO 2 8 8 DIG ICRPV0103 URPRPCOO Y PRPG1330 8 NONE ES HV ESA ADJ T SRPRPCOO 3 4 8 52 Y PRPG1B08 0 N ES HV ESA ADJ Type T SRPRPCOO 2 8 8 DIG ICRPV1341 URPRPCOO Y PRPG1B08 8 NONE ES HV ESA ADJ Value T SRPRPCOO 3 12 16 Y PRPG1B08 1 NONE ITCDP N ES HV ESA EN Op T SRPRPCOO 3 4 8 53 Y PRPG1350 0 ES HV ESA EN T SRPRPCOO 2 8 8 DIG CRPV0103 URPRPCOO Y PRPG1350 8 NONE IES HV ION MCP ADJ Op T SRPRPCOO 3 4 8 54 Y PRPG1B09 0 NONE ES HV ION MCP ADJ T SRPRPCOO 2 8 8 DIG ICRPV1361 URPRPCOO Y PRPG1B09 8 NONE IES HV ION MCP ADJ Value T SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B09 1 NONE IES HV ION MCP EN T SRPRPCOO 3 4 8 URPRPCOO 55 Y PRPG1370 0 ES HV ION MCP EN T SRPRPCOO 2 8 8 DIG ICRPV0103 URPRPCOO Y PRPG1370 8 NONE ES HV EN Opcode T SRPRPCOO 3 4 8 56 Y PRPG1380 0 ES HV EN Ctl T SRPRPCOO 2 8 8 DIG 0103 URPRPCOO Y PRPG1380 8 NONE IES INSTR CL
148. 22 1 1145359 NONE N ES Bad RAM Page 0 7 0050 84 7 AUTH 22 22 1 1145360 ALL NONE N ES Bad RAM Page 1 7 0050 84 7 AUTH 22 22 1 1145361 ALL ES 2 7 0050 84 22 22 1 145362 NONE N ES Bad RAM Page 3 7 0050 84 AUTH 22 22 1 145363 NONE N ES Bad RAM Page 4 7 0050 84 22 22 1 1145364 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 253 N ES Bad RAM Page 5 7 0050 7 1 1 Al N ES Bad RAM Page 6 7 0050 84 7ISPACE AUTH 22 22 1 145366 NONE N ES Bad RAM Page 7 7 0050 84 AUTH 22 22 1 145367 ALL NONE N ES Memory Service Error 7 0050 84 22 22 1 145376 NONE N ES Memory Service Info 7 00501 84 AUTH 22 22 1 1145392 ES SysErr Bad M
149. 3 155 out 57 39 SDATA in 143 81 OUT 69 13 in 54 40 RDY in 145 82 2 154 in 61 4i 52 out 151 84 VCC PWR 59 42 CS3 out 7 GND PWR 66 43 PWR 17 GND PWR 63 44 54 out 22 GND PWR 69 45 CS5 out 24 PWR 67 4 56 out 27 PWR 73 47 A2 MUX out 37 GND PWR 71 48 CS7 out 50 PWR 75 49 GND PWR 55 GND PWR 81 51 A0 out 65 GND PWR 78 52 Al MUX out 80 PWR 85 53 THSW out 98 GND PWR 88 54 NDATAO 35 45 in 103 GND PWR 83 55 MUX out 108 GND PWR 92 56 NM 32 41 in 110 PWR 90 57 SELECTO in 113 PWR 96 58 CLKSIG 27 30 in 123 GND PWR 94 59 CONV1 in 136 VCC PWR 100 60 SYSCLKI 25 26 out 141 GND PWR 102 20 13 i o 152 GND PWR 104 62 HD6 19 16 i o 166 VCC PWR 106 63 GND PWR Digits or numbers in brackets pin numbers of the corresponding transceiver FPGA A1280A delivered by Imperial College London for PLCC84 package for CQ172 package Table 1 2 7 The Actel 1280A Pin Assignment 1 2 2 4 1 1 Reference RO RPC UM Rosetta Issue Draft Rev Date February 20 2002 RPC UserManual 52 The MAG FPGA Signals 0 987 The Tables below functionally summarize and describe the signals used and generated by the MAG FPGA NAME DESCRIPTION XTAL AG Oscillator signal to the 4 194304
150. 4 0 N NRPAH3C4 3 NONE N N NRPAH3C4 4 NONE N N NRPAH3C4 8 NONE N N NRPAHS3CA 16 NONE N N NRPAH414 24 NONE N N NRPAH411 0 1 0 16383 4 11 2 5 N NRPAH413 0 N NRPAH413 32 NONE N N NRPAH414 0 N NRPAH414 3 NONE N N NRPAH414 4 N NRPAH414 8 NONE N N NRPAH414 16 NONE N N NRPAH444 24 NONE N N NRPAH441 0 1 0 16383 NRPAH441 2 NONE 5 N NRPAH443 0 N NRPAH443 32 NONE N N NRPAH444 0 N NRPAH444 3 NONE N N NRPAH444 4 N NRPAH444 8 NONE N N NRPAH444 16 NONE N N NRPAH4C4 24 NONE N N NRPAH4C1 0 1 0 16383 NRPAHAC1 2 NONE 5 N NRPAH4C3 0 N NRPAH4C3 32 NONE N N NRPAH4C4 0 N NRPAH4C4 3 NONE N N NRPAH4C4 4 NONE N N NRPAH4C4 8 NONE N N NRPAH4C4 16 NONE N N 514 24 NONE N N 511 0 1 0 16383 511 2 5 N NRPAH513 0 N NRPAH513 32 NONE N N 514 0 N NRPAH514 3 NONE N N NRPAH514 4 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 307 N N 514 8 N NRPAH514 16 NONE N N NRPAH544 24 NONE N N 541 0 1 0 16383 541 2 5
151. 5 47 See Table 2 5 48 to Table 2 5 55 The RPC 0 box will be black anodised Aluminium with an area of 2200 See Table 2 5 15 to Table 2 5 19 2 5 2 3 Heaters IES 0 5 W Spacecraft powered non operational heater ICA 22 Spacecraft powered non operational heater MIP LAP and MAG No heaters Reference RO RPC UM Rosetta Issue Draft Rev 0 987 February 20 2002 Date PC UserManual race 137 2 5 2 4 Coatings and Finishes IES The housing exterior surface finish will be a chemical conversion coat alodine over aluminium This is a low emissivity finish In addition multilayer insulation blankets will cover all exposed surfaces of IES exclusive of aperture clear field of view ICA Bottom of the 0 023 electronics box facing the S C platform Aperture opening 0 018 Iridite TBC x oylinder end 0 011 Scotch Tape No 425 other ICA surfaces Electrically conducting MLI Table 2 5 7 ICA Coating LAP The LAP spheres and stubs will have a TiN surface with a small exposed area of Vespel for electrical insulation The foot bracket for sensor interface to boom will be made of Al with allodine coating The equilibrium temperature at Earth orbit is expected to be below 129 C MAG Lexan housing with thermal blankets RPC 0 The 0 surface finish will be Black Anodised Aluminium Reference RO RPC UM I
152. 7ISPACE AUTH 18 18 1 1145251 ALL MAG PktTooLong unit 7 00502 83 7ISPACE AUTH 18 18 1 145252 NONE N MAG EC PktTooShrt unit 7 00502 83 7 AUTH 18 18 1 1145253 NONE N MAG EC PktTrunc unit 7 00502 83 7 AUTH 18 18 1 145254 MAG EC_InvalidSid unit 7 00502 83 18 18 1 1145255 MAG BadScncMode unit 7 00502 83 18 18 1 1145256 MAG EC LinkRst unit 7 00502 83 AUTH 18 18 1 1145257 NONE N MAG EC LinkRstsMdm unit 7 00502 83 7 AUTH 18 18 1 1145258 MAG EC LinkRstsHgh unit 7 00502 83 7 AUTH 18 18 1 1145259 NONE N MAG EC HkPktNotValid unit 7 00502 83 7ISPACE AUTH 20 20 1 1145260 NONE MAG NormalMode 7 00501 83 5 AUTH 18 18 1 1145262 NONE TcTxFailed 7 00502 83 7ISPACE AUTH 22 22 1 1145261 ALL ES HVPS OFF ELC 7 00502 84 AUTH
153. 8 URPRPCOO 0 Y PRPG3156 8 NONE N M IO Poke param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3156 16 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 242 TCDP N M IO Poke param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3156 32 NONE TCDP N M LDL Mode Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h90 N PRPG3160 0 N M LDL Mode param 1 7 2 8 8 URPRPCOO 0 PRPG3160 8 NONE N M LDL Mode param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3160 16 NONE M LDL Mode param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3160 32 NONE TCDP N M Peek Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h92 N PRPG3164 0 N M Peek param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3164 8 NONE N M Peek param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3164 16 NONE TCDP N M Peek param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3164 32 NONE TCDP N M Poke Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h93 N 168 0 N M Poke param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3168
154. 8 8 URPRPCOO TMDP N CONFIG Byte 3 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N CONFIG Byte 4 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N CONFIG Byte 5 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Sensor ID 7 2 1 1 DIG 5100 URPRPCOO TMDP Stage 1 Filter ID 7 SRPRPCOO 3 1 5 NONE URPRPCOO TMDP N Stage 2 Filter ID 7 SRPRPCOO 3 1 5 NONE URPRPCOO TMDP N Anlg Ref MS Nibble 7 SRPRPCOO 3 0 414 URPRPCOO TMDP N 5V Supply 7 SRPRPCOO 3 4 8 _ TMDP N 5V Supply 7 SRPRPCOO 3 4 8 BYTE NONE URPRPCOO TMDP Memory ID 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Number of Blocks 7 SRPRPCOO 3 4 8 BYTE NONE URPRPCOO TMDP N Data field header pad 7 2 8 8 URPRPCOO TMDP N Segmentation Flag 7 2 2 212 URPRPCOO 83 1 Source sequence counter 7 3 10 141 14 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 284 P RPC 83 1 Coarse time 7T SRPRPCOO 3 T 32 BIT TMDP N RPC 83 1
155. FAULT N ION MCP Voltage FRPCOO N ION MCP Voltage FAULT N HVMON Voltage FRPCOO N HVMON Voltage FRPCOO N Negative 5V Voltage FAULT N Negative 5V Voltage FRPCOO N Positive 5V Voltage FAULT N Positive 5V Voltage FAULT Negative 12V Voltage CPOI FRPCOO N Negative 12V Voltage FAULT N Positive 12V Voltage FRPCOO N Positive 12V Voltage CPOI 00002 N Mop 28V switch FAULT N 28V switch FRPCOO N Mop 28V switch FRPCOO N Opto 28V switch MRPC000002 N Opto 28V switch FAULT N Opto 28V switch MRPC000002 N Main 28V switch FAULT N Main 28V switch CPO FRPCOO N Main 28V switch MRPC000002 N Pacc Hv switch FAULT N Pacc Hv switch CPO FRPCOO N Pacc Hv switch CPO 00002 N Grid LV switch FAULT N Grid LV switch FRPCOO N Grid LV switch FRPCOO N Entr HV switch FAULT N Entr HV switch CPO MRPC000002 N Entr HV switch MRPC000002 N Defl LV switch FRPCOO N Defl LV switch FAULT N Defl LV switch CPO FAULT N Defl HV switch CPO FRPCOO N Defl HV switch MRPC000002 N Defl HV switch FAULT N Direct cmd sw CPO FRPCOO N Direct cmd sw MRPC000002 N Direct cmd sw FAULT WD enabel sw FRPCOO WD enabel sw 00002 N WD enabel sw CPO N GAS enable disable FAULT N GAS e
156. Fifo clear mark DEFAULT N Opto HV monitor MPFRPCOO N Opto HV monitor DEFAULT N Mcp HV monitor CPOI monitor DEFAULT N Deflection HV monitor MPFRPCOO Deflection HV monitor MEMRPCO00002 N Opto HV monitor DEFAULT N Deflection LV monitor MPFRPCOO Deflection LV monitor DEFAULT N Pacc HV monitor CPOI HV monitor DEFAULT N Mcp HV monitor CPOI MEMRPCO00002 N HV monitor N Grid LV monitor DEFAULT N Grid LV monitor DEFAULT N Sensor temperature CPOI N Sensor temperature CPOI MEMRPCO000002 N Upper entrance HV mon DEFAULT N DPU temperature CPO MPFRPCOO DPU temperature DEFAULT Lower entrance HV CPO MEMRPC000002 Lower entrance HV mon CPO MEMRPCO000002 N Post acc HV monitor DEFAULT N Post acc HV monitor CPO DEFAULT N Deflection HV monitor MEMRPC000002 Deflection HV monitor 000002 Deflection LV monitor DEFAULT N Deflection LV monitor MEMRPCO000002 N Sensor temperature DEFAULT N Sensor temperature CPOI DEFAULT N Upper entrance HV mon N Upper entrance HV mon CPOI MEMRPCO00002 N Grid LV monitor DEFAULT N Grid LV monitor MEMRPC000002 N DPU temperature DEFAULT N DPU temperature CPO DEFAULT Lower entrance HV
157. I 2 1 3 901 Figure 2 1 4 ICA Mechanical Drawing m 7 CF 00 96 05 9 121 to Z Z J 1 J wuaguiny 7 29 o 186 eyopdn 159197 50 36 leq Momm c SoWOu H SOISAHd 3294 5 EE TE 0dN 8025 40 3InLLISNI HSIC3AS 291 244 0119500 ee zoo gt 3 gt 1900 519199 SWALI LHOTTA VIN 4 LNCEINCRLLSNI 5 o SSOLOSINNOO 259 d unu 0 sseuje j yoeyy WU 5 100 1 91 ssouysnos 202016 T p 1001 0911 DNIINDOIININBIIdXA pue woog TDIVAGIVH OVE On VNSIIVILL GOV ARIAS 5 d y yuoddns ads 044 N INNY 3420 N _ x ii STVTHRLVIN Qu BY T E Z N Qu By 91 A x d gt CIOD 1 S VEDTINI 10 YOSNAL E unu 0 nz G46 gp Q nX Woo
158. ICA Main Dimensions 1 igure 2 5 9 ICA Thermal Nodes Y side igure 2 5 10 ICA Thermal Nodes Y side igure 2 5 and LAP ermal Sketc igure 3 1 1 Post Launch Support Organisation 66 igure 3 2 1 Overview the igure 3 2 2 Autonomous lest of the PIU 96 igure 3 2 3 System Level Test of the Rosetta Plasma Package 96 igure 3 2 4 Logical Interfaces of the 8 igure 3 2 5 RPC Experiment Level testing wi 8 igure 3 2 0 he KFKI RTU simulator 58 igure 3 2 MAG Accommodation showing alignment mirrors and stimuli within mu metal tube 5 Figure T T RPC Mode Transition Diagram ______________ 204 igure 4 1 2 PIU Mode Transition Diagram igure 4 1 3 ICA Mode Diagram 06 igure 4 1 4 Transition Diagram igure 4 1 5 LAP Mode Transition Diagram 08 igure 4 1 6 Mode Transition Diagram 09 igure 4 1 7 MIP Mode Transition Diagram Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual List of Tables Table 1 2 1 Instrument Accommodation 35 able 1 2 2 Experiment Assignmen able 1 2 3 Summary of expected LAP performance 4 able 1 2 4 Summary of expected performance 44 able 1 2 5 Summary of expected ICA performance 46 able 1 2 6 Summary of expected MAG performances 48 able 2 7 The Actel 1280A Pin Assignmen signals able 1 2 9 The MAG FPGA and ADC circuit connections able
159. Inboard Outboard nvalid SVAL FAULT N THERMISTOR 16 Bit EM 0 1 1 N THERMISTOR 16 Bit 10 1 MRP002 N THERMISTOR 16 Bit 10 1 FAULT N THERMISTOR 16 Bit 10 1 6 4 2 CALVAR ELT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 2 o o o 2 2 2 m m o o nm o co co co o 3 gt O OJOJOJOJOJOJ O O MPFRPCOO 750 25 DEFAULT 1000 50 MPFRPCOO 0 50 100 40 MPFRPCOO 1000 50 500 0 RO RPC UM Issue Draft Rev Date February 20 2002 Page 316 DEFAULT 750 25 00002 100 40 00002 0 50 MPFR
160. Last executed opcode nvalid SVAL MEMRPC000002 N IES Last executed opcode nvalid SVAL MPFRPC00 N 1 Bit INACTIVE ACTIVE nvalid SVAL DEFAULT N 1 Bit INACTIVE ACTIVE nvalid SVAL MEMRPC000002 N 1 Bit INACTIVE ACTIVE nvalid SVAL DEFAULT N Mux Control Flag nvalid SVAL MEMRPC000002 N Mux Control Flag nvalid SVAL MEMRPC000002 N SetType 3 nvalid SVAL MPFRPC00 N SetType 3 nvalid SVAL DEFAULT N SetType 3 nvalid SVAL DEFAULT N SetType 4 nvalid SVAL MPFRPC00 N SetType 4 nvalid SVAL MEMRPC000002 N SetType 4 nvalid SVAL MEMRPC000002 N Subsystem nvalid SVAL DEFAULT N Subsystem nvalid SVAL DEFAULT N DiagType nvalid SVAL MEMRPC000002 N DiagType nvalid SVAL MEMRPC000002 N IES Mode Cal nvalid SVAL MPFRPC00 N IES Mode Cal nvalid SVAL DEFAULT N IES Mode Cal nvalid SVAL MEMRPC000002 N MagicWord nvalid SVAL DEFAULT N MagicWord nvalid SVAL MPFRPC00 N RAM Fill Type nvalid SVAL DEFAULT N RAM Fill Type nvalid SVAL DEFAULT N Mem Service Error Type nvalid SVAL MPFRPC00 N Mem Service Error Type nvalid SVAL DEFAULT N Mem Service Info nvalid SVAL MPFRPC00 N Mem Service Info nvalid SVAL DEFAULT N Sequence Error Code nvalid SVAL MPFRPC00 N Sequence Error Code nvalid SVAL MEMRPC000002 N MemArea nvalid SVAL DEFAULT N MemArea nvalid SVAL MEMRPC000002 N Binary level nvalid SVAL DEFAULT N Binary level nvalid SVAL MPFRPC00 N Binary level nvalid SVAL MEMRPC000002 N Yes No types nvalid SVAL DEFAULT N Yes No types nvalid SVAL MPFRPC00 N Yes No types nvalid SVAL MEMRPC000002 N HV ty
161. MHz MAG DRV MAG drive frequency 49 93219 kHz SYSCLKI Device Clock for the 1355 transceiver FPGA 419 4394 kHz XIN The Clock signal for the ADCs 32 768 kHz CLKSYG The Start Pulse of the Acquisition Period from the 1355 FPGA Used only to increment the One Day 32 sec 10 counter to issue a Calibration Cycle and CONVERSION sstart pulse synchronization once a day ms Table 1 2 8 The CLOCK signals generated and used by the MAG FPGA NAME DESCRIPTION Notes A 3 0 Address bits to select the source for the HK See also the ADC TH SW CAL Controls the CALIBRATION inputs of the Issued once a ADCs Hay CONV Starts simultaneously all ADC CONVERSION In every 50 ms Cycle CC CS Ox Oz Selects one of the ADCs to collect the B Outboard sensor data CS 12 Selects one of the ADCs to collect the m Inboard sensor data CS Hk Selects the HK ADC to collect the data of B the A 3 0 selected sensor SDATA Serial Data from the ADCs SCLK Serial Clock from the ADCs 7x20 imp in each CC TH SW Threshold Switch control signal to the HK 1 amp A2 8 T ADC circuit SELECTO Selects the A 3 0 MPX address altering JUMPER frequency between 4 and 8 CC Table 1 2 9 The MAG FPGA and the ADC circuit connections Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 53 NAME DESCRIPTION Notes HA 2 Addr
162. MIP off ICA LAP PIU and MAG on Power requirement 9634 mW nominal primary Tele requirement 285 7 bit s normal Mode 35 IES and LAP off ICA MIP MAG and PIU on Reference RO RPC UM Rosetta Issue Draft Rev 0 987 February 20 2002 Date PC UserManual race 213 Power requirement 8477 mW nominal primary Tele requirement 276 7 bit s normal Mode 36 LAP MIP ICA IES off MAG and PIU on Power requirement 2800 mW nominal primary Tele requirement 120 0 bit s normal Mode 37 IES ICA MAG and PIU on Power requirement 8343 mW nominal primary Tele requirement 236 0 bit s normal 4 2 1 1 5 Burst modes OMM 4 All RPC sensors can be operated in very high time resolution modes that means all sensors can be operated in a burst mode The telemetry requirements are within the normal telemetry rates provided sufficient S C memory is available The detailed commanding and memory operation is TBD and strongly depends on the scientific questions to be studied Burst mode telemetry and power requirements are sensor specific The power requirements and the maximum PIU telemetry are summarised in 4 2 1 SENSOR POWER mW MAXIMUM DATA RATE BIT S Primary _ BURSTMODE 5310 IES IES ICA 2800 1175 RPC Total 16339 Table 4 2 1 Power Requirements and maximum telemetry rate Remark It should be noted that these figures are not additive but include the individual sub experi
163. Model DMA Direct Memory Access DML Declared Materials List DML Delayed Memory Load command DMPL Declared Mechanical Parts List DMS Data Management System DMSS Distributed Mission Support System DoD Depth of Discharge DOF Degree Of Freedom DOP Division Operating Procedures DOR Direct Operation Request DPL Declared Process List DPSS Data Packet Switching System DPU Data Processing Unit DQE Detector Quantum Efficiency DRAM Dynamic Random Access Memory DRB Delivery Review Board DS Digital Serial Aquisition DSN Deep Space Network DSP Digital Signal Processor DSS Dornier Space Systems DST Deep Space Transponder DTMM Detailed Thermal Mathematical Model DWG Drawing DWT Discrete Wavelet Transform ECDR Experiment Critical Design Review ECF Expedited Command File ECP Executable Control Procedures ECR Expedite Command Request ECR Engineering Change Request EDAC Error Detection And Correction EDC Error Detection Correction E DSF Expedite Detailed Schedule File EE External Entity SCOE EEPROM Electrically Erasable Programmable Read Only Memory EFDR Experiment Final Design Review EFOR Experiment Flight Operations Review EGSE Electrical Ground Support Equipment EID Experiment Interface Document EID Event Identification EIDR EIRP EM EMC EMI EOC EOL EOP EPC EPS ESARAD ESATAN ESD ESDS ESM ESOC ESS ESTEC ESTRACK ETS EUT EUV F D FAR FAU FAT FCL F
164. N PAD 7 2 3 URPRPCOO 0 PRPG6200 13 NONE N PAD 7 2 4 4 URPRPCOO 0 PRPG6200 16 NONE TCDP N 7 SRPRPCOO 2 4 4 NONE URPRPCOO 50010 PRPG6200 20 TCDP N Channel Address 7 SRPRPCOO 3 4 8 URPRPCOO h2 M PRPG6200 24 NONE N PAD 7 SRPRPCOO 3 4 8 URPRPCOO 0 PRPG7100 0 TCDP N SID 7 SRPRPCOO 3 4 8 URPRPCOO 1 M PRPG7100 8 NONE TCDP N Memory ID 7 SRPRPCOO 2 8 8 URPRPCOO h82 PRPG8100 0 N Number of Blocks 7 SRPRPCOO 3 4 8 URPRPCOO 1 PRPG8100 8 NONE N PAD 7 3 5 9 0 PRPGA100 0 NONE N PID 7 2 7 7 URPRPCOO 83 PRPGA100 9 NONE Set IES Power 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE Set ICA Power 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE Set LAP Power 7 2 16 16 URPRPCOO Y NONE Set Power 7 SRPRPCOO 2 16 16 URPRPCOO kd NONE N Set MAG Power 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE N Set IES Link 7 2 16 16 N Set ICA Link 7 SRPRPCOO 2 16 16 Y NONE N Set LAP Link 7 SRPRPCOO 2 16 16 Set Link 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE
165. Oy SELECTOR HDI7 0 for Packets To 1355 and 12 DATA and Bytes Load Read 3 CYCCNT O 0 HEADERS H 55 Trailer I SEL DS SEL Byte SELECT DATA SELEC Byte SOURCE for to transfer Packet building Logic Figure 1 2 11 The Buffers for the ADC s Data and the Byte selector Logic Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 58 mE B B Bi EOAR _4 LOAD 3 p ir 2 LOAD 1 LOAD 2 LOAD_3 LOAD 4 Note LOAD X WRITE X READ X Figure 1 2 12 Writing and reading the FIFO type Data Buffers RESET XTAL SEL DS DATA CONV SEL Byte source From CONV INTERFACE CS 7 1 CONTROL LOGIC To From for 2 0 1355 7 254 1355 FPGA _ 1355 FPGA Byte transfer 5 50 2 COUNTER BYTE PACKET MES COUNTER COUNTER Figure 1 2 13 The signals of the 1355 Interface Control Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 59 1 2 2 4 2 3 Data Packets to the 1355 The stored Data from FIFOs are transferred in four packets to the 1355 FPGA as can be seen in Table 1 2 12 The first packet is the 61 header byte packet The 52 5 is controlled deferred by the NM NDATAO an ontrol signals from the 1355
166. PAIS Jaye aredaid 04 n 8215 292 268 29 00 2 spu pue aiojaq suejs dn 1902 66 06 6261 Velsv ploaisy 2157 AQAY esvzv v 1995 jo 1902 ero 1249 20 290 82 018 Suo S esini c 7 7002 82 Jaye spus n Kah A 266 29 00 pue HLHY3 eiojeq uluou SPEIS dn eyem 1902 09 40 PO 08 1 5 AOA L 189 21909 91 1995 e yuumop jo pug 1902 re Sip 90 5 60 eseud esini 268 29 OOF afi 2190 681 09 90 9281 157 1509 EJEMEIO N 9002 INP uo ETewelO eye eredeud 2969 219 266 9L 00 2 spue pue 49 14 eiojeq sujuoui suls dn ayem 1902 570 90 994 60 EZLL ViLSV 5 5 826919 1995 Jo 1902 160 ev 90290 82 080 euo esini N S00Z 22 Jaye
167. PIU tick These packets will therefore be marked to the accuracy of 2 s The ability of the RPC to maintain synchronisation with spacecraft elapsed time is dependent on the accuracy of the Timer Synchronisation Pulse interval Given the stated jitter on the TSY is 2 us RPC time should be synchronised with the spacecraft to within 100 ms over a period exceeding 100 hours however in practice a time update should be scheduled every 24 hours The accuracy of the TSY interval needs to be further clarified in the EID A section 2 7 3 3 2 3 2 Instrument Operating Modes The RPC package is set of five individual sensors each measuring different parameters of the cometary plasma Each sensor can be operated in a variety of different modes To make the operation of the package easier and to inhibit a too large number of individual modes operational macro modes OMM are defined which allow to handle available power and telemetry resource requirements Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 102 The following OMMs are distinguished OMM 0 Hibernation mode OMM 1 Maintenance mode OMM 2 Calibration mode OMM 3 Normal mode OMM 4 Burst mode OMM 5 Flyby mode These OMMs are described in section 4 2 1 1 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 103 2 3 3 Packet Definitions 2 3 3 1 Packet Services Compliance The table
168. PRPG3024 0 N Set Macro param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3024 8 NONE N Set Macro param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3024 16 NONE Rosetta Reference Issue Date RPC UserManual Pas 239 RO RPC UM Draft Rev February 20 2002 0 987 TCDP N Set Macro param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3024 32 NONE Read Write Macro 7 SRPRPCOO 2 8 8 URPRPCOO h9 N PRPG3028 0 N Read Write Macro Par 1 7 2 8 8 URPRPCOO 0 PRPG3028 8 NONE N Read Write Macro Par 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3028 16 NONE TCDP N Read Write Macro Par 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3028 32 NONE N Set Relays amp Mux Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hA N PRPG3032 0 Set Relays amp Mux Par 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3032 8 NONE N Set Relays amp Mux Par 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3032 16 NONE TCDP N Set Relays amp Mux Par 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3032 32 NONE TCDP N Control Reg Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hB N PRPG3036 0 N ADC Control Reg 1 7 SRPRPCOO 2 8 8 URP
169. PRPG3140 8 NONE N M ADC Control Reg Par 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3140 16 NONE N M ADC Control Reg Par 3 7 2 16 16 URPRPCOO 0 Y PRPG3140 32 NONE TCDP N M Denisty Sweep Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8C N PRPG3144 0 TCDP N M Denisty Sweep param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3144 8 NONE TCDP N M Denisty Sweep param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3144 16 NONE TCDP N M Denisty Sweep param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3144 32 NONE TCDP N M Dnsty Fix Bias Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8D N 148 0 N M Dnsty Fix Bias param 1 7 2 8 8 URPRPCOO 0 PRPG3148 8 NONE N M Dnsty Fix Bias param 2 7 2 16 16 URPRPCOO 0 PRPG3148 16 NONE N M Dnsty Fix Bias param 3 7 2 16 16 URPRPCOO 0 PRPG3148 32 NONE TCDP N M E Fix Bias Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8E N PRPG3152 0 TCDP N M E Fix Bias param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3152 8 NONE N M E Fix Bias param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3152 16 NONE N M E Fix Bias param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3152 32 NONE N M IO Poke Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8F N PRPG3156 0 N M IO Poke param 1 7 2 8
170. Page f 1 L i i i 1 4 XA XH XH diii 107 XH BUOY 707 UR SOULE LL HJ ECHTE mea epis Of CHINE ms m mH Figure 4 1 7 Mode Transition Diagram Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 211 4 2 Detailed Mode Description 4 2 1 RPC 4 2 1 1 Instrument Operating Modes RPC will be operated in the following modes OMM O0 Hibernation mode OMM 1 Maintenance mode OMM 2 Calibration mode OMM 3 Normal mode OMM 4 Burst mode OMM 5 Flyby mode These OMMs are described in detail in the following subsections Internally other sub modes are defined corresponding power and telemetry requirements or mission phases External and internal modes are distinguished by status information transmitted in the housekeeping telemetry 4 2 1 1 1 Hibernation mode OMM 0 In this Mode 0 all sensors of the RPC as well as the PIU are switched off No data are taken Power requirements None Required heater power s c ICA 2 2 W IES 0 5W Telemetry requirements None 4 2 1 1 2 Maintenance mode OMM 1 In this mode none of the sensors is taking scientific data The PIU and MAG are in operation and deliver housekeeping data to the telemetry This mode is to monitor the PIU and RPC status during
171. Switches the 28 line to the Mcp high voltage supply ON or OFF PRPG2001 1 or 0 HK Mcp 28V switch SW NRPD230F The 28 V line present status HW NRPD231 7 XW HVswitch McpOn McpOff ZRP22002 Opto 28 V switch D Switches the 28 line to the Opto high voltage supply ON or OFF PRPG2002 1 or 0 HK Opto 28 switch SW NRPD230E The 28 V present status HW NRPD2316 XW HVswitch OptoOn OptoOff ZRP22003 28 V switch D Switches the 28V line to the Mcp and the Opto switches ON or OFF PRPG2003 1 0 HK 28 switch SW NRPD230D The 28 V present status HW NRPD2315 XW HVswitch MainOn MainOff ZRP22004 Pacc HV switch D Sets the Post Acceleration HV reference to zero OFF or to its default value ON PRPG2004 1 0 HK Postacc HV log switch NRPD230C XW HVswitch PaccOn PaccOff ZRP22005 Grid LV switch D Sets the Grid LV reference to zero OFF or to its default value ON PRPG2005 1 or 0 HK Grid LV log switch NRPD230B XW HVswitch GridOn GridOff ZRP22006 Entr HV switch D Sets the Entrance HV reference to zero OFF or to its default value ON PRPG2006 1 or 0 HK Entrance HV log switch NRPD230A XW HVswitch EntOn EntOff ZRP22007 Defl LV switch D Sets the Deflection LV reference to zero OFF or to its default value ON PRPG2007 1 or 0 HK Deflection LV log switch NRPD2309 XW HVswitch DfLvOn DfLvOff ZRP2
172. The Electrical Ground Support Equipment EGSE is the collective name given to the tools required for electrical testing of all the RPC instruments The general concept follows the design baseline given in the EID A section 5 2 1 in which the EGSE can be used in 3 phases Phase 1 RPC Experiment Level Testing The EGSE is used to control and monitor RPC instruments an I F to the project specified interface simulator ROSIS Also the central unit of the EGSE directly controls the stimulator for the LAP experiment For this place there is also an additional EGSE supplied by KFKI Budapest This EGSE directly uses its own RTU simulator and therefore does not require the ROSIS to interface to RPC This system is for much more portable than the ROSIS and will be used for tests away from IC See Figure 3 2 4 to Figure 3 2 6 Phase 2 S C Sydtem Levei Testing The EGSE is used to monitor TM sent from the CCS Commanding is controlled by the CCS using inputs from the RSDB The LAP stimuli can be controlled by the EGSE or by the CCS Phase 3 Flight OPS The EGSE will be used to monitor TM from S C using the same I F as previously used with the CCS 3 2 1 1 1 2 Hardware Description The EGSE system consists of a RPC EGSE 6 experiment EGSE PCs and the LAP stimulator controler PC They are connected via a local network 10 base 2 thin Ethernet coax cable with each PC using BNC connectors A second network card i
173. The non synchronised PIU low voltage converters will operate at a frequency of 65 5 kHz 596 RPC will not use the keep alive power interface provided by the spacecraft The interface to the spacecraft is designed to prevent any single point failure which could lead to a short circuit To further protect the spacecraft and the RPC the converter includes a current limiting trip out and slow turn on circuit at the input Number of Number of LCL Class Main Lines Redundant place holder Required Lines Required only to be assigned by Project 28 V MAIN BUS RPC Experiment Supply Switched and Current 44 11 6 limited trip off limit 28 V MAIN BUS Non op Heater Power For IES 11W 04A Switched and Current trip off limit limited Converter Synchronisation Signal no longer baselined Keep Alive Supply Table 2 2 1 Power Supply Interface Requirements Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 82 2 21 2 Power Distribution Block Diagram and Redundancy The RPC Power Supply Unit consists of two identical pairs of DC DC Converters in cold redundancy Each PSU is capable of supplying the total power required for the functioning of the complete RPC instrument Each PSU consists of two DC DC converters one to provide 4 secondary voltages 28 V 12 V and 5 V the other 5 V all voltages nominal The two PSUs receive raw 28 V nominal input voltages from the Prime an
174. WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 0500 144 16 1 16 NRPA0510 PARAM 160 16 1 16 0515 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 144 16 1 16 NRPA0502 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 263 OBLOCK 0 128 1 128WRP08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 O BLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 1 PARAM 128 16 1
175. actions For fault conditions where the response time via the DMS is too long the PIU may take autonomous actions to ensure that no damage occurs to the experiment The action will typically be to power the experiment off For example in the event that the MIP watchdog detects a processor latch up the watchdog will send a signal to the PIU which will immediately power off the MIP experiment Any such autonomous actions will be immediately signalled to the DMS by a PIU event packet identifying unit In the case of the MIP example the action taken by the spacecraft will then be to initiate the MIP power on sequence 2 3 1 2 1 MIP All the elementary modes Survey Sweep Passive and LDL are independent They are arranged into pre programmed sequences The selection of the type of sequence type of mode combination is done through the configuration table The first sequence run when MIP is turned on is a special Control one It contains all the necessary information to make a rapid diagnosis of the health of the experiment memory test transmitter receiver checking input output verification command return After a table reception new command MIP runs a Table sequence which has the same goal and the same output information as a Control one except the memory test information The LDL mode is common to MIP and LAP It has to be managed and synchronized by PIU Special functions MIP has an internal watchdog In case of alarm the al
176. and CONV pulses the first DAQ may start in 250 ms if the RDY ready signal is OK As the First ADC gives only RDY signal to the Control Logic there is a risk of missing all ADC s Data if the first ADC went wrong Because of that there is a RDY signal evaluation logic which gives a simulated RDY if the ADC does not give it NOTE There is also an erroneous condition if the ADCs do not generate the SCLK clock as the ADC Logic uses it To avoid the locking of the ADC Logic in this case there is a Watchdog Timer which step forward the Logic if one of the ADC circuits does not give the 20 SCLK clocks The signal timing for one conversion cycle can be seen on 1 2 10 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 55 SHIFT REGISTER SDATA DATA IN ADC SHR 19 0 to DATA FIFO s SCLK CLOCK IN from ADCs XTAL CLKSYG 32 sec CAL i i ADC CALibration one day CONTROL CSI 1 TIMER LOGIC to ADCs CONVersion CALibration and ReaDY logic RESET Watchdog Timer CONVersion cycle 9 0 COUNTER Part of the HK Packet 9 0 ADDRESS 2 A 3 0 GENERATION Source Selection for HK ADC SELECTO JUMPER Figure 1 2 9 The main functions of the ADC Control Logic 50 5 gt 63 8 cow de Reference RO RPC UM Iss
177. and electron distribution functions over the energy range extending from 1 eV e up to 30 keV e with a basic time resolution of 3 s The angular resolution for electrons is 5 x 22 5 9 azimuthal and 16 polar angle sectors For ions the angular resolution is 5 x 45 9 azimuthal and 8 polar angle sectors with additional segmentation to 5 x 5 in the 45 polar angle sector most likely to contain the solar wind giving a total of 16 polar angle sectors for ions Table 1 2 4 lists the complete set of IES performance parameters and 2 requirements The back to back top hat geometry of the static analyzer allows it to analyze both electrons and positive ions with a single entrance aperture The IES top hat analyzers have toroidal geometry with a smaller radius of curvature in the deflection plane than in the orthogonal plane This toroidal feature results in a flat deflection plate geometry at the poles of the analyzers and has the advantage that the focal point is located outside the analyzers rather than within them as is the case with spherical top hat analyzers In addition the IES entrance aperture contains electrostatic deflection electrodes which expand its azimuthal angle field of view to 45 With the typical top hat polar angle field of view of 3607 the IES acquires a total solid angle of 2 8 rr steradians lons and electrons approaching the IES first encounter a toroidal shaped grounded grid encircling the instrument Once inside the gr
178. as can be seen from the operation flow diagram One of the 16 Housekeeping Data sources is selected with the A 3 0 MPX Address which is changed incremented after four or eight Conversion Cycles depending on the SELECTO Jumper value The actual MPX Address can be seen in the first four bit of the second half of the fourth packet Last data word The Last one of this MPX Address is flagged by the next L bit of the last word The last 10 bit shows the Conversion Cycle Number from a 10 bit Cycle Counter Each Packet is closed with an EOP1 Control Command transfer writing to the address 6 8 Byte Link Packet ByteO Byte1 Byte2 Byte3 Byte4 Byte5 Byte7 Header Trailer lt gt lt gt 61 0 20 bit OBX Data 0 20 bit OBY Data 55 51 Cs2 hex 62 1 20 bit OBZ Data 0 20 bit IBX Data 55 Cs3 Cs4 63 2 20 bit IBY Data 0 20 bit IBZ Data 55 Cs5 Cs6 20 3 Housekeeping Data A I 9 bit 10 bit CC 55 Cs7 zero Number Table 1 2 12 The MAGFPGA assembled four Link Packets to the 1355 A The current four bit MPX Address A 3 0 to select the housekeeping source L 1 bit Flag to signify the last one of the current MPX address CC Conversion Cycle EOP1 Control Command issued at the end of each packet transmission EOP1 EOP2 EOP3 4 Reference RO R
179. below gives all the packet services mandatory and optional with which RPC will be compliant Service Requests TC Service Reports TM type Service 1 TC Acknowledge lt Acceptance Success Acceptance Failure Execution Success Execution Failure Service 3 Housekeeping Reporting Enable HK Report for SID Disable HK Report for SID HK Report for SID Service 5 Event Reporting Normal Progress Report Anomaly Report Warning Anomaly Report Ground action Anomaly Report Onboard action Service 6 Memory Management PATCH ABS DUMP ABS DUMP ABS Report CHECK ABS Report CHECK ABS Service 9 Time Management 1 ______ AcceptTimeUpdate Service 13 Large Data Transfer Service a Connection Test Report gt 0 il Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 104 Sub Service Requests TC Sub Service Reports TM type Type Service 19 Information Distribution 10 ROSINA Pressure Info ROSINA Pressure Alert oL GIADA Dust Info Service 20 Science Data Transfer Enable Science Report U i S Disable Science Report 3 Science Report Table 2 3 3 Packet Services 2 3 3 2 Instrument Packet Definitions 2 3 3 21 Telecommand Description There are two basic types of TCs that may be sent to RPC The first is the High Power On Of
180. commands N B The ICA can by a single 16 bit combination command be switched to any telemetry data reduction mode combination switch high voltages ON and reboot from with or without default context Refer to Figure 4 1 3 4 1 2 4 LAP Refer tol Figure 4 1 5 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 203 41 25 definition See Onboard Data Handling RPC MIP RP 13 980317 LPCE Ed 3 4 20 9 00 Refer to Figure 4 1 7 4 1 2 6 There is only one fixed mode of operation for MAG which is 20 vectors per second for both sensors MAG wakes up in this mode just after power MAG on No other command no range switching Only depending on bit rate capabilities the PIU can reduce the MAG bit rate just by decimating and filtering down these 20 vectors per second ref Section 4 2 2 6 for the detailed mode description Refer to Figure 41 RO RPC UM Draft c 12 0 987 Rev Issue February 20 2002 204 Date Page I i I I I amp asas mm wm mm m s am mmo am E a EH AN EZ I 631 Pa apd LLL c cn dag u
181. ion Completeion Success Report 160 ion Failure Report 192 160 ance Failure Report Failure Code 1 Incomplete Packet within time out 224 ance Failure Report Failure Code 2 Incorrect Checksum 224 ance Failure Report Failure Code 3 Incorrect APID 192 ance Failure Report Failure Code 4 Invalid Command Code 224 ance Failure Report Failure Code 5 Command can not be executed at this time 192 ance Failure Report Failure Code 6 Data Field Inconsistent 208 ion Completeion Success Report 160 ion Failure Report 192 160 ance Failure Report Failure Code 1 Incomplete Packet within time out 224 ance Failure Report Failure Code 2 Incorrect Checksum 224 ance Failure Report Failure Code 3 Incorrect APID 192 ance Failure Report Failure Code 4 Invalid Command Code 224 ance Failure Report Failure Code 5 Command can not be executed at this time 192 ance Failure Report Failure Code 6 Data Field Inconsistent 208 ion Completeion Success Report zZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 160 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 259
182. mm probe and 10 stub cross section MIP The conductive interface of the MIP RPC 4 1 sensor will be 7 wires of 0 14 cross section each The bracket is thermally and electrically isolated from the boom MAG The conductive interface of each MAG sensor will be 16 wires of cross section 1 2 mm each sensor The interface to the boom is highly conductive via the CFC base plate 0 conductive interface of the 0 box is as follows Five mounting feet total area 21 6 cm The foot thickness is 4mm 52 wires interfacing to the spacecraft AWG 28 TBD wires interfacing to the RPC sensor units Conduction through the box feet shall be less than 0 5 Wcm The mating faces of the feet shall not be anodised Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 136 2 5 2 2 Radiative Interface 5 See Table 2 5 20 to Table 2 5 26 TE The bottom face of the ICA box will face the spacecraft platform This face of the box will be surface treated with iridite chemical conversion coating The ICA aperture will not directly face any S C platform surfaces The remainder of the ICA instrument will be covered by MLI to reduce radiative coupling The top lid of the cylinder ICA x axis is taped with Scotch Tape No 425 to reduce radiative coupling to space LAP See Table 2 5 35 to Table 2 5 40 mpl I See Table 2 5 41 to Table 2
183. of the Acquisition Period Thus the packet generation period for IES ICA and MAG minimum mode data is 1024 seconds and for MIP it is 256 seconds Conversely burst rate data for LAP amp MAG will be fitted into 3 packets and 2 packets per AQP respectively This is due the large volume of data which is unable to fir into a single TM packet All normal rate data is transmitted at a 32 second period Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 98 2 3 1 5 2 1 MIP has three science rates minimum with a 18 byte packet per 32s sequence normal with a 198 byte packet per 32s sequence burst with a 1200 byte packet per 32s sequence MIP transmits to PIU one science packet every acquisition period 32 seconds Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 99 2 3 1 5 3 Housekeeping Data Delivery Concept For each RPC unit i e 5 experiments plus the PIU the PIU shall collect HK data and store it in an internal HK data base At the start of the RPC Acquisition period the PIU shall generate a single HK packet for each unit identified by the unit s housekeeping The HK packet shall contain the latest data received from the experiments The generation of the units housekeeping packets may be controlled using the standard service 3 TCc 2 3 1 5 3 1 MIP The HK data transmitted to PIU every acquisition pe
184. on gomet PIU and Exp Patches 0 2 Patches Other TBD CBD TBD Phases Observation Extended Monitoring Ext Mission Usage Telemetry Reports Memory Dumps typically 30 Science Modes 3 amp 4 7 Telemetry Context Context Context s At RPC Power on Other __ TBD p Phases Usag e Telemetry Reports Memory Dumps Science Modes 3 amp 4 5 6 At RPC Power on Software PIU and Exp Patches 0 2 Patches Other 180 Other 2 3 Data Volume in Different Misison Phases Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 124 2 3 4 2 On Board Control Procedures The principal mode of operation of the RPC shall be by the execution of on board control procedures initiated from the mission timeline The following summary table shows all the functions required Instrument RPC OBCPName Function PL OBCP 5 RP2 PIU Power Off Power Off of RPC PL OBCP 5 RPC Mode Control reconfiguration of generated PL OBCP 5 RP 5 Parameter Monitor Danger value When Danger event is generated Table 2 3 12 RPC OBCPs These functions will be called with 5 parameters modePiuMag modeles modelca modeLap modeMip to provide the needed flexibility for controlling the five instruments Each parameter may take one of the following enumerate values NoChange Do n
185. serves as a security lock The command word is divided into 4 nibbles as The commands are divided into 4 groups defined as Class 3 N3 0 N2 N1 N0 12 bit parameter Class 2 N3 0 2 0 N1 NO 8 bit parameter Class 1 2 0 1 0 30 4 bit parameter Reference RO RPC UM lt Rosetta Issue Draft Rev 0 987 42 20 2002 Date RPC UserManual Pas 168 Class 0 N3 N2 N1 0 Part of NO may be allocated for a lt 4 bit parameter The switch commands requiring a 1 bit parameter only are a combination of class 0 and 1 and referred to as class 0 They are laid out as On Off Switch nr bit where nibble 1 N1 may be 0 1 or 2 That gives a capacity of 23 switches Note that switch nr 0 is not used in order to avoid zeros command few other 1 bit commands also use this form Other commands deviating from the single parameter concept are described under the header of the command in concern The commands are of basically two types referred to as Direct or Synchronized The Direct commands are acted upon immediately on arrival at the experiment while the Synchronized ones are buffered and processed at the end of the ongoing data acquisition cycle An example is the Mcp HV reference If changed in the middle of an acquisition cycle the data in that set will be acquired during different conditions and may not represent true scientific effects Comm
186. the MAGFPGA There are four main phases in the op Sequences 1 The Power On Reset starts the Initialization Sequence and 2 Calibration Sequence to establish the Normal Operation State The expiration of the One Day Timer starts also the Calibration 3 If no Initialization and Calibration then the Normal Operation State exists and during this the Data Acquisition and the 4 Packet Transfer are completed in each Conversion Cycle For Initialization and other details see also the PIU Interface Document Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 61 Power On RESET Issue RESET gt Initialize Int Logic Counters gt Clear CONV Counter gt Clear Normal ACQ State One Day Counter has been expired Start Calibration End of Calibration Normal ACQ State established START PULSE arrived Establish Normal ACQ State Next Conversion Cycle Issue CONV imp Start Conversion Timing Issue Cs1 Collect and Store ADC1 data Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 62 Issue Cs2 Collect and Store ADC2 data Issue Cs7 Collect and Store HK data Set byte Tx index b 0 Packet Tx index 0 The values of p and b select the appropriate bytes to be transferred for ex 0 b 0 select the 61 header byte b 7 se
187. the cruise phase Power requirements 2800 mW primary Telemetry requirements 54 0 bit s Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 212 4 2 1 1 3 Calibration mode 2 In this mode each of the different sensors is switched on individually for check out and in flight calibration purposes As housekeeping data are handled via the MAG sensor telemetry MAG is taking data continuously during this mode An automatic calibration sequence for each RPC experiment shall be initialized Power requirements 6284 mW primary maximum power with MAG PIU and ICA on Telemetry requirements 3651 bits s maximum with MAG PIU and LAP on 4 2 1 1 4 Normal mode OMM 3 In this mode normal science operation during the comet drift approach mapping lander delivery and escort phase is performed All sensors and the PIU are preferred to be operational in this mode However to accommodate the limited power and telemetry resources several sub modes are defined Following modes are planned Mode 31 All sensors and the PIU are operational Power requirement 16339 mW nominal primary Tele requirements 392 7 bit s normal Mode 32 ICA all other sensors and PIU operational Power requirement 12855 mW nominal primary Tele requirement 289 5 bit s normal Mode 33 LAP and MIP off IES MAG ICA PIU on Power requirement 10796 mW nominal primary Tele requirement 276 7 bit s normal Mode 34 IES and
188. vary during the short sweep and the sweep is treated as a set of instantaneous and simultaneous samples acquired at different bias 3 Spectral data The LAP onboard software can also calculate frequency spectra from the time series data Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 40 Within the fundamental restrictions of low power and mass figures LAP must be able to perform among others the following tasks Perform plasma diagnostics by Langmuir probe sweeps for a wide range of plasma parameters This implies the possibility to vary the probe bias voltage with the number size and duration of the sweep steps optimised for the expected plasma parameters e Determine plasma flow velocities up to 10 km s by a dual probe time of flight technique With a probe separation of 3 m this amounts to the possibility to observe time shifts down to 0 3 ms To do so a sampling frequency of at least 10 ksamples s is needed on two probes simultaneously Estimate electric fields and spacecraft potentials as well as plasma density variations This calls for the possibility to operate the probes in a fixed bias current mode as well as in the fixed bias voltage mode Observe plasma wave fields up to 8 kHz necessitating sampling at least 20 ksamples s e Implement an active mode for investigation of the propagation of low frequency up to a few kHz waves This implies the possibility to transmit a
189. when the Debye length is greater than 20 cm The Langmuir probe LAP2 is used as a long distance transmitter and MIP antenna is used for reception Combination of modes LDL and Passive are run Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 221 The Control sequence is a special sequence used to check the working state of the experiment when MIP is set on It is automatically run once before the science sequences Its tasks are the reception and decoding of the commands coming from the PIU configuration table and a check out of the experiment The Table sequence is defined to decode the commands which arrive during a science MIP or LDL sequence This case occurs for example when MIP is set first in MIP modes and then in LDL mode This sequence is like a Control sequence without experiment check out Each LDL mode has to be preceded by MIP science mode MIP has only two operating modes MIP mode LDL mode common with LAP Each operating mode can be set with one of the 3 telemetry rates MIP has no special test or calibration mode The total telemetry data HK science transmitted to the S C CCSDS formatted are in minimum rate 66 bytes every 32 s rate of 16 5 b s in normal rate 246 bytes every 32 s rate of 61 5 b s in burst rate 1248 bytes every 32 s rate of 312 b s The nominal power consumption secondary is in minimum rate 1190 mW in n
190. why we introduced a special housekeeping multiplexer sample counter within the MAGADCIO FPGA This counter controls the switching of the mux address after a certain amount of samples The number of samples per channel can externally be set to 2 4 16 by programming the MPXO and 1 inputs at the FPGA accordingly To indicate the last sample per channel independently of the number of samples set the housekeeping flag was introduced The Housekeeping flag HKF is bit 37 in the fourth data packet of the RPC 5 0 MAG data transmission After any change of the housekeeping channel change of multiplexers address this flag is cleared O It is set 1 when the last sample of the actual channel is taken Example multiplexer sample counter is set to 4 1 MPX1 0 actual multiplexer address is 0001 b Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 115 HEADER BYTES Science Packet 1 0 1 1 0 0 0 0 1 Science Packet 2 0 1 1 0 0 0 1 0 Science Packet 3 0 1 1 0 0 0 1 1 Housekeeping Packet 0 0 1 0 0 0 0 0 Trailer Byte 0 1 0 1 0 1 0 1 2 3 3 2 3 TC Parameter Definitions 2 3 3 2 3 1 PIU 2 3 3 2 3 2 IES 2 3 3 2 3 3 ICA Reference RO RPC UM Issue Draft Rev
191. 0 48 48 URPRPCOO M Set Parameters 7 SRPRPCOO 0 48 48 URPRPCOO M NONE Time Delay ms 7 SRPRPCOO 3 12 16 URPRPCOO M NONE Cfg Table 7 SRPRPCOO 0 48 48 URPRPCOO N Set 1 7 SRPRPCOO 2 16 16 URPRPCOO hd NONE N Set 2 7 2 16 16 URPRPCOO Y NONE N Set Fq3 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE N Set Lvl 7 2 16 16 URPRPCOO Y NONE N Set Oswp 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE Set Eswp 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE N Set Thr 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE Set SwpB 7 SRPRPCOO 2 16 16 URPRPCOO M NONE Set SurB 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE N Set Pres 7 SRPRPCOO 2 16 16 N Set AuLp 7 2 16 16 URPRPCOO N Set Wd 7 SRPRPCOO 2 16 16 Set SqNb 7 SRPRPCOO 2 16 16NONE URPRPCOO Y NONE N Set LDLT 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE N Set Mode 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE N Set TmRt 7 SRPRPCOO 2 16 16 URPRPCOO Y NONE SID 6 Param 7 SRPRPCOO 3 12 16 URPRPCOO Y NONE N High Power word 1 7 SRPRPCOO 0 16 16
192. 014 8 NONE NRPAHO014 16 NONE 44 24 NONE NRPAHO041 0 1 0 16383 41 2 5 NRPAHO043 0 4 32 NONE 44 0 44 3 NONE NRPAH044 4 44 8 44 16 NONE NRPAHO74 24 NONE NRPAHO071 0 1 0 16383 1 2 073 0 073 32 74 0 NRPAHO74 3 NONE NRPAHO74 4 NRPAHO74 8 NONE 74 16 NONE 94 24 NONE jz z z z z z z z z z z z z z z jz z z z z z z z z z z z z Z z jz z z z z z zZ Z Z z zZ zZ Z Z Z Z Z Z lt Z Z Z Z Z Z Z z z lt z z z z z z z z z lt z z z z z zZz Z z Z lt Z Z Z Z NRPAH091 0 1 0 16383 NRPAHO091 2 NONE s NRPAHO093 0 NRPAHO093 32 NONE NRPAHO094 0 NRPAHO94 3 NONE NRPAHO94 4 NRPAHO94 8 NONE NRPAHO94 16 NONE NRPAH114 24 NONE NRPAH111 0 1 0 16383 NRPAH111 2 NONE 5 NRPAH113 0 NRPAH113 32 NONE NRPAH114 0 NRPAH114 3 NONE NRPAH114 4 NRPAH114 8 NONE NRPAH114 16 NONE NRPAH144 24 NONE NRPAH141 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 3
193. 02 RPC UserManual 281 P NonDiscrete Exp Discrete 7 00 2 1 1 DIG 101 URPRPCOO N Bit Set 7 2 1 1 DIG 101 URPRPCOO FIFO Incomplete 7 SRPRPCOO 2 1 1 DIG 101 FFRX Clear 7 2 1 1 DIG 101 URPRPCOO isr ndO NDOA 7 2 1 1 T 1 DIG 101 N ies main 7 2 1 1 T 1 DIG 101 URPRPCOO N ies main NDO 7 2 1 1 T 1 DIG 101 URPRPCOO ies main not NM 7 SRPRPCOO 2 1 1 T 1 DIG 101 URPRPCOO N isr eop 7 2 1 1 DIG 101 URPRPCOO N not NM 7 2 1 1 T 1 DIG 101 URPRPCOO TMDP ies main Reset 7 2 1 1 DIG 101 URPRPCOO TMDP ndO Reset 7T SRPRPCOO 2 1 1 DIG 101 N isr 7 2 1 1 DIG 101 URPRPCOO Init not NM 7 SRPRP
194. 02 28671 4095 DEFAULT 24576 0 000002 24576 0 RPC000002 28672 0 32767 4095 28672 0 000002 32767 4095 28672 0 32767 4095 000002 32768 0 32768 0 36863 4095 000002 36863 4095 00 36863 4095 LT 32768 0 000002 40959 4095 00 40959 4095 000002 36864 0 C00 36864 0 LT 40959 4095 LT 36864 0 CPOI C00 40960 0 LT 40960 0 CPOI ET 45055 4095 000002 45055 4095 000002 40960 0 C00 45055 4095 LT 49151 4095 000002 49151 4095 45056 0 45056 0 49151 4095 000002 45056 0 49152 0 RPC000002 49152 0 RPCOO 53247 4095 RPCOO 49152 0 53247 4095 000002 53247 4095 RPCOO 53248 0 RPCOO 57343 4095 57343 4095 53248 0 000002 53248 0 000002 57343 4095 0 0 255 5 0 0 255 5 0 987 Reference RO RPC UM
195. 03 N Y 1 0 16383 41 2 5 N NRPAH143 0 N NRPAH143 32 NONE N N NRPAH144 0 N NRPAH144 3 NONE N N NRPAH144 4 NONE N N NRPAH144 8 NONE N N NRPAH144 16 NONE N N NRPAH174 24 NONE N N NRPAH171 0 1 0 16383 NRPAH171 2 NONE s N N NRPAH173 0 N NRPAH173 32 NONE N N NRPAH174 0 N NRPAH174 3 NONE N N NRPAH174 4 NONE N N NRPAH174 8 NONE N N NRPAH174 16 NONE N N NRPAH194 24 NONE N N NRPAH191 0 1 0 16383 NRPAH191 2 NONE s N N NRPAH193 0 N NRPAH193 32 NONE N N NRPAH194 0 N NRPAH194 3 NONE N N NRPAH194 4 N NRPAH194 8 NONE N N NRPAH194 16 NONE N N NRPAH1C4 24 NONE N N NRPAH1C1 0 1 0 16383 NRPAH1C1 2 NONE s N N NRPAH1C3 0 N NRPAH1C3 32 NONE N N NRPAH1C4 0 N NRPAH1C4 3 NONE N N NRPAH1C4 4 NONE N N NRPAH1C4 8 NONE N N NRPAH1C4 16 NONE N N NRPAH214 24 NONE N N 211 0 1 0 16383 211 2 5 N NRPAH213 0 N NRPAH213 32 NONE N N NRPAH214 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 304
196. 1 2 10 Ihe MAG FPGA the __ FPGA Interface signals able T 2 TT The Test Signals to see some internal status by OP able 2 2 The assembled four Link Packets to the able 1 2 13 Summary of expected pertormance able 2 2 1 Power Supply Interface Requirements 8 able 2 2 2 Power Requirements 84 able 2 3 1 Telemetry Identifier 9 able 2 3 2 Subtype 3 and Subtype 4 Event Lis DO able 2 3 3 RPC Packet Services 04 able 2 3 5 RPC MIP Packet Detinition able 2 3 6 M Packet Detinition able 2 3 7 Housekeeping annel Assignmen 2 3 8 Thermistor Resistance to Voltage Conversion able 2 3 9 Housekeeping Channel Assignmen 9 able 2 3 10 Data Display Forma Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 12 Table 2 3 11 Data Volume in Different Misison Phases 123 able 2 3 13 Monitoring Requirements able 2 4 1 MIP data rates able 2 5 T emperature Ranges able 2 5 2 ICA Temperature Ranges 6 able 2 5 3 Temperature Ranges able 2 5 4 MIP Temperature Ranges able 2 5 5 MA emperature Ranges able 2 5 6 Thermal Control Category 4 able 2 5 Coating able 2 5 8 TRP temperature range space environmen 4 able 2 5 9 TRP temperature range ground environmen 44 able 2 5 10 RPC Heater Power Requirements 4 able 2 5 11 Heat Exchange able 2 5 12 Temperature Sensors 46 able
197. 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 500 0 128 1 128 08307 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 1 PARAM 128 16 1 16 0500 0 128 1 128 08307 0 128 1 128 08307 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA0510 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA0502 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 262 160 16 1 16 NRPA0515 PARAM 128 16 1 16 500 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NR
198. 1340 7 NONE NRPA1340 8 NONE 1 0 65535 NRPA1350 0 1 0 256 NRPA1360 0 1 0 256 NRPA1360 8 NONE 1 0 256 NRPA1370 0 1 0 256 NRPA1370 8 NONE NRPA1380 0 NRPA1380 6 NONE NRPA1380 8 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 208 NRPA1380 12 NRPA1390 0 NRPA1390 6 NONE NRPA13A0 0 NRPA13A0 4 NONE NRPA13B0 0 NRPA13B0 2 NONE NRPA1518 5 NONE NRPA1518 6 NONE NRPA1518 7 NONE NRPA1518 8 NONE NRPA1518 9 NONE NRPA1518 10 NONE NRPA1518 11 NONE NRPA1518 12 NONE NRPA1518 13 NONE NRPA1518 14 NONE NRPA1518 15 NONE NRPA1530 5 NONE NRPA1530 6 NONE NRPA1530 7 NRPA1530 8 NONE NRPA1530 9 NONE NRPA1530 10 NONE NRPA1530 11 NONE NRPA1530 12 NRPA1530 13 NRPA1530 14 NONE NRPA1530 15 NONE NRPA1519 14 NONE NRPA1531 14 NONE NRPA151E 0 z ziziziziziziziziz iziziz iziz iziziziz ziziz ziz z ziziz zizizizizizi ziziz ziz ziziz z z z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z NRPA151E 8 NONE NRPA151F 0 NRPA151F 8 NONE NRPA1520 0 NRPA1520 8 NONE NRPA1521 0 NRPA1521 8 NONE NRPA1522 0 NRPA152
199. 14 NONE 112 Internal SID nr 7 22114 85 12 SPACE 14 14 NONE BOTH N 112 N Default boot sectio 7 22115 85 12 SPACE 14 14 NONE BOTH N 112 N Deflection level 7 22201 85 12 5 14 14 NONE BOTH N 112 N Entrance level 7 22202 85 12 5 14 14 NONE BOTH N 112 N SW start level 7 22203 85 12 5 14 14 112 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 229 N GAS pressure low 7 22204 85 12 5 14 14 NONE BOTH N 112 N GAS pressure high 7 22205 85 12 5 14 14 NONE 112 7 22210 85 12 5 14 14 NONE BOTH N 112 N Reprog all EEP sections 7 22212 85 12 5 16 16 NONE BOTH N 128 N Reprog EEP section 7 22213 85 12 5 16 16 N NONE BOTH N 128 N Opto reference 7 22301 85 12 5 14 14 NONE BOTH N 112 N reference 7 22302 85 12 5 14 14 NONE BOTH N 112 N Grid reference 7 22303 85 12 5 14 14 NONE BOTH N 112 N Pacc low ref 7 22304 85 12 5 14 14 NONE BOTH N 112 N Pacc high ref 7 22305 85 12 5 14 14 NONE BOTH N 112 N Deflection LV re
200. 144 16 1 16 5 02 O BLOCK 0 128 1 128 08801 1 PARAM 128 16 1 16 NRPASTO01 O BLOCK 0 128 1 128 WRP08801 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 5 02 160 16 1 16 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST10 6 208 16 1 16 NRPAST11 6 208 16 1 16 NRPAST13 5 IPARAM 192 16 1 16 NRPAST12 2 144 16 1 16 1 PARAM 128 16 1 16 NRPASTO01 O IBLOCK 0 128 1 128 WRP08801 PKBM 4 176 16 1 16 NRPAST04 160 16 1 16 O BLOCK 0 128 1 128 WRP08801 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 5 02 160 16 1 16 4 176 16 1 16 NRPAST04 4 176 16 1 16 NRPAST04 5 PARAM 192 16 1 16 NRPAST14 2 144 16 1 16 5 02 1 PARAM 128 16 1 16 NRPASTO01 O BLOCK 0 128 1 128 WRP08801 PKBM 6 208 16 1 16 NRPAST15 160 16 1 16 160 16 1 16 4 176 16 1 16 5 04 2 144 16 1 16 5 02 1 PARAM 128 16 1 16 NRPASTO01 O BLOCK 0 128 1 128 WRP08801 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 5 02 160 16 1 16 4 176 16 1 16 NRPAST04 5 IPARAM 192 16 1 16 NRPAST20 O BLOCK 0 128 1 128 WRP08801 PKBM Re
201. 16 2004 URPRPCOO TBD 0 0 N Grid LV switch 7 2 16 _16 2005 URPRPCOO TBD 0 0 N Entr HV switch 7 2 16 16 2006 URPRPCOO TBD 0 0 N Defl LV switch 7 SRPRPCOO 2 16 _16 CRPP2007 URPRPCOO TBD 0 0 N Defl HV switch 7 SRPRPCOO 2 16 16 2008 URPRPCOO TBD 0 0 N Direct cmd switch 7 SRPRPCOO 2 16 16 2009 URPRPCOO TBD 0 0 N WD enable disable 7 SRPRPCOO 2 16 16 2010 URPRPCOO TBD 0 0 N GAS enable disable 7 SRPRPCOO 2 16 16 2011 URPRPCOO TBD 0 0 N Thruster enable disable 7 2 16 16 ANA 2012 URPRPCOO TBD 0 0 N Compression switch 7 SRPRPCOO 2 16 16 ANA 2014 URPRPCOO 0 0 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 246 Alt pacc switch 7 SRPRPCOO 2 16 16 2015 URPRPCOO TBD 0 0 Level 7 SRPRPCOO 2 16 16 CRPP2016 URPRPCOO TBD 0 0
202. 16 0500 OBLOCK 0 128 1 128WRP08307 PKBM OBLOCK 0 128 1 128WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 510 160 16 1 16 NRPA0515 2 144 16 1 16 NRPA0502 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128WRP08307 PKBM 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128WRP08307 PKBM OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 O BLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 OBLOCK 0 128 1 128WRP08307 PKBM 1 PARAM 128 16 1 16 0500 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 0 128 1 _128 WRP08307 1 PARAM 128 16 1 16 0500 1 PARAM 128 16 1 16 0500 O BLOCK 0 128 1 128 08307 2 144 16 1 16 510 OBLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 2
203. 16 0 17 1 RPC000002 17 1 RPC000002 19 1 RPC000002 18 0 18 0 19 1 18 0 19 1 20 0 MEMRPCO00002 21 1 21 1 21 1 00002 20 0 20 0 22 0 23 1 23 1 22 0 25 1 24 0 24 0 25 1 29 1 28 0 29 1 28 0 00002 28 0 00002 29 1 31 1 00002 30 0 00002 31 1 30 0 31 1 30 0 32 0 33 1 00002 33 1 00002 32 0 33 1 32 0 00002 35 1 35 1 DEFAULT Reference RO RPC UM Issue Draft Rev Date February 20 2002 Page 318 MPFRPCOO 34 0 MPFRPCOO 35 1 DEFAULT 34 0 CPOI 00002 34 0 00002 176 0 MPFRPCOO 191 15 00002 1
204. 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 4 176 16 1 16 NRPAST04 OBLOCK 0 128 1 128 08601 6 208 16 1 16 NRPAST15 5 192 16 1 16 NRPAST14 4 176 16 1 16 NRPAST04 160 16 1 16 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 4 176 16 1 16 NRPAST04 OBLOCK 0 128 1 128WRPO08601 PKBM 160 16 1 16 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 OBLOCK 0 128 1 128 08601 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 NRPASTOS 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST20 OBLOCK 0 128 1 128WRP08301 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 4 176 16 1 16 NRPAST04 OBLOCK 0 128 1 128 WWRP08301 PKBM 1 PARAM 128 16 1 16 NRPASTO1 160 16 1 16 2 144 16 1 16 2 OBLOCK 0 128 1 128WRPO08701 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 2 144 16 1 16 2 Reference RO RPC UM
205. 16 NRPA0500 160 16 1 16 NRPA0515 4 176 16 1 16 NRPA0517 2 144 16 1 16 NRPA0502 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA0502 160 16 1 16 NRPA0515 4 176 16 1 16 NRPA0516 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA0502 160 16 1 16 0515 4 176 32 1 32 518 O BLOCK 0 128 1 128 WRP08307 PKBM 5 IPARAM 192 16 1 16 NRPA0519 4 176 16 1 16 0529 160 16 1 16 NRPA0515 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA0502 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 0525 5 PARAM 192 16 1 16 NRPA0509 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA0506 160 16 1 16 NRPA0507 4 176 16 1 16 0508 O BLOCK 0 128 1 128 08307 1 PARAM 128 16 1 16 0500 0 128 1 128 08307 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 500 O IBLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O IBLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 1 PARAM
206. 18 18 NONE 144 Ld 7 24001 87 12 5 20 20 NONE 160 Ld CCfg 7 24002 87 12 5 14 14 NONE N 112 N Set 1 7 24101 87 12 5 14 14 NONE 112 Set 2 7 24102 87 12 5 14 14 NONE 112 Set Fq3 7 24103 87 12 5 14 14 NONE 112 Set Lvl 7 24201 87 12 5 14 14 NONE 112 Set Oswp 7 24202 87 12 5 14 14 NONE 112 Rosetta Reference Issue Date RPC UserManual Pas 231 RO RPC UM Draft February 20 2002 Rev 0 987 Set Eswp 7 24203 87 12 5 14 14 112 Set Thr 7 24204 87 12 5 14 14 112 Set SwpB 7 24301 87 12 5 14 14 N NONE N 112 N Set SurB 7 24302 87 12 5 14 14 NONE 112 N Set Pres 7 24303 87 12 5 14 14 NONE 112 Set AuLp 7 24304 87 12 5 14 14 112 Set Wd 7 24401 87 12 5 14 14 112 Set SqNb 7 24402 87 12 5 1
207. 184 8 N M End Macro param 2 7 2 16 16 URPRPCOO 0 184 16 NONE N M End Macro param 3 7 2 16 16 URPRPCOO 0 184 32 NONE TCDP N M Resampling Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h9A N 188 0 M Resampling param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3188 8 NONE TCDP N M Resampling param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 188 16 NONE TCDP N M Resampling param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 188 32 NONE N M Set Filter Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h9B N 192 0 N M Set Filter param 1 7 2 8 8 URPRPCOO 0 192 8 N M Set Filter param 2 7 2 16 16 URPRPCOO 0 192 16 NONE N M Set Filter param 3 7 2 16 16 URPRPCOO 0 PRPG3192 32 NONE N M Set Mvg Avrg ADC Opcd 7 SRPRPCOO 2 8 8 URPRPCOO h9C N PRPG3196 0 TCDP N M Set Mvg Avrg ADC par1 7 SRPRPCOO 2 8 8 URPRPCOO 0 196 8 N M Set Mvg Avrg ADC par2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3196 16 NONE TCDP N M Set Mvg Avrg ADC par3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3196 32 NONE N M Reset Actel Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h9D N 200 0
208. 2 38 Date Page Electron Analyser lon Analyser Processor Power amp Data Interface Boom Mounted Sensors Processor Elevation Analyser Analyser Interface MIP Antenna MAG1 MAG2 Controller o 5 o 12 58 80 lt gt Redundant Power Supplies RPC 0 Common Electronics Box Dual Redundant Spacecraft Telemetry Interface lt Interface Interface Interface Power amp Data Interface Power amp Data Interface Interface Power 28 V Main amp Redundant Spacecraft Data Main amp Redundant 3 RPC Overall Block Diagram Figure 1 2 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 39 1 2 2 Sensor Descriptions 1 2 21 Langmuir Probe The LAP sensors are two spherical Langmuir probes one probe at the tip of each of the two solid booms The probes are identified as RPC 3 1 and RPC 3 2 though the abbreviations P1 and P2 are often used The probes can be independently operated in any of to bias modes 1 A bias voltage can be applied to the probe in which case the basic measured quantity is the current flowing from the probe to the plasma 2 A bias current including zero corresponding to floating probes can be applied to the probe In t
209. 2 1 NONE NRPA1522 2 NONE NRPA1522 3 NONE NRPA1522 4 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 299 NRPA1522 5 NONE NRPA1522 6 NONE NRPA1522 7 NONE NRPA1522 8 NONE NRPA1522 9 NONE NRPA1522 10 NONE NRPA1522 11 NONE NRPA1522 12 NRPA1522 13 NONE NRPA1522 14 NONE NRPA1522 15 NONE NRPA1523 8 NONE NRPA1523 9 NONE NRPA1523 10 NONE NRPA1523 11 NONE NRPA1523 12 NONE NRPA1523 13 NONE NRPA1523 14 NONE NRPA1523 15 NONE NRPA1524 0 NRPA1524 8 NONE NRPA152A 0 NRPA152A 8 NONE NONE NONE NRPA152bE 4 NRPA152bE 8 NONE NRPA152bE 12 NRPA150A 2 NONE NRPA150C 2 NONE NRPA150E 2 NONE NRPA151A 2 NONE NRPA151B 2 NONE NRPA151C 2 NONE V NRPA151D 2 NONE NRPA2300 0 NRPA2300 6 NONE NRPA2300 8 NONE NRPA2300 9 NONE NRPA2300 10 NONE NRPA2300 11 NONE NRPA2300 12 NRPA2300 13 NONE NRPA2300 14 z z iziziziziziziziziziziziziz iziziziziziz iziziziziziziziziziz iziziziziziziziziziz iziziz lt lt lt 4 lt 2 2 2 2 21 21 21 21212 21 2 2 2 2 2 2 2 2 21 2 212 2 2 2 2 2 2 2 2 gt Reference RO RPC UM Ro
210. 2 22 PFM FM SVAL DEFAULT 00 SVAL MEMRPC000002 313 SVAL DEFAULT 22 PFM FM SVAL DEFAULT 313 504 SVAL MPFRPCOO 44 505 SVAL MPFRPCOO 33 504 SVAL MPFRPCOO 22 Burst SVAL MPFRPCOO 11 Normal SVAL DEFAULT 44 5105 SVAL DEFAULT 22 Burst SVAL DEFAULT 11 Normal SVAL DEFAULT 00 Minimal SVAL 0 00 Minimal SVAL MEMRPC000002 44 505 SVAL 000002 00 Minimal SVAL 11 Normal SVAL MEMRPC000002 22 Burst SVAL RPC000002 33 504 SVAL LT 00 DataTypeO SVAL LT 11 DataType1 SVAL LT 22 DataType2 SVAL RPC000002 00 DataTypeO SVAL RPC000002 11 DataType1 SVAL RPC000002 22 DataType2 SVAL LT 111 Done SVAL C00 11 Done SVAL C00 00 Inactive SVAL LT 00 Inactive SVAL RPC000002 ojo Inactive SVAL RPC000002 11 Done SVAL 00 NotAccessibl SVAL 00 11 SVAL LT 11 SVAL LT 00 NotAccessibl SVAL 00 NotAccessibl SVAL 00002 11 SVAL 11 Divided SVAL C00 313 Unused SVAL C00 11 Divided SVAL C00 00 SVAL 00 SVAL 22 Armed SVAL 22 Armed SVAL 000002 00 SVAL MEMRPC000002 11 Divided SVAL MEMRPC000002 22 Armed SVAL MEMRPC000002 313 Unused SVAL 33 Unused SVAL MPFRPC00 22 OscFreq 8 SVAL 00 OscFreq 2 SVAL 33 OscFreq 16 SVAL 11 OscFreq 4 SVAL 22 OscFreq 8 SVAL 33 OscFreq 16 SVAL MPFRPC00 00 OscFreq 2 SVAL 00002 313 OscFreq 16 SVAL MPFRPC00 11 OscFreq 4 SVAL MEMRPC000002 11 OscFreq 4 SVAL 22 Os
211. 2 5 14 14 NONE BOTH N 112 N WD enable disable 7 22010 85 12 5 14 14 N NONE BOTH N 112 N GAS enable disable 7 22011 85 12 SPACE 14 14 NONE BOTH N 112 N Thruster enable disable 7 22012 85 12 5 14 14 NONE BOTH N 112 N Compression switch 7 22014 85 12 SPACE 14 14 NONE BOTH N 112 N Alt pacc switch 7 22015 85 12 SPACE 14 14 NONE BOTH N 112 N Pacc Level 7 22016 85 12 5 14 14 NONE BOTH N 112 N Auto red switch 7 22017 85 12 5 14 14 NONE BOTH N 112 N Next cmd direct 7 22025 85 12 5 14 14 NONE BOTH N 112 N Deflection step 7 22026 85 12 5 14 14 NONE BOTH N 112 N Entrance step 7 22027 85 12 5 14 14 NONE BOTH N 112 N Release V cal format 7 22028 85 12 SPACE 14 14 NONE BOTH N 112 N WD reset 7 22035 85 12 5 14 14 NONE BOTH N 112 N Empty Fifo 7 22036 85 12 5 14 14 NONE 112 Flush Fifo 7 22037 85 12 SPACE 14 14 NONE BOTH N 112 N Boot PROM 7 22038 85 12 5 14 14 112 mager test 7 22039 85 12 5 14 14 N NONE BOTH N 112 N Dummy cmd 7 22040 85 12 5 14 14 NONE BOTH N 112 N Boot EEP incl context 7 22111 85 12 5 14 14 NONE 112 Test pattern 7 22112 85 12 SPACE 14 14 NONE BOTH N 112 N Boot EEP excl context 7 22113 85 12 SPACE 14
212. 2 7 3 12 16 WORD 5502 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 275 TMGS HK Word 4 7 3 12 16 WORD URPRPCOO TMGS N X Component 7 SRPRPCOO 3 12 16 WORD 5503 URPRPCOO TMGS Y Component 7 SRPRPCOO 3 12 16 WORD 5504 TMGS 2 7 3 12 16 WORD 5505 URPRPCOO TMGS Rx MAG TC SubType 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS N Rx MAG Sample Counter 7 3 12 16 WORD URPRPCOO TMGS N PIU Pred Cyc Count 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS N NumAddedDummyRawSamples 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS N RawSamplesReglInPacket 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS N NumConvSglsForCurPacket 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS NumSamplesForCurPacket 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Memory Dump Word 1 7 3 12 1677 WORD URPRPCOO TMGS Start Address 7T SRPRPCOO 3 14 32 32 NONE URPRPCOO TMGS N Block L
213. 20 2002 91 High Power On Off Main lt 3 D1 D1N4148 R1 High Power On Off Main 2k21 High Power On Off Command Main 0 J01 Note Circuit is duplicated for redundant command on same connector 0 987 5v PIU 12 VIN 1801 Q2N2907A R4 3C91 4N49 from power supply 56k 7 5V IN Re 4 FRL130 Q2 hpc cl 10k K R5 100k Q2N2222A 12 22k 5V_PIUBH R6 iv 100k RET PIU HH M current limit c Figure 2 2 3 High Power Command Interface Circuit gt RET_PIU Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 92 2 3 Software 2 3 1 Software Concept and Functional Requirements 2 3 1 1 Software Overview The PIU unit provides the interface between the five RPC experiments and the spacecraft for telecommanding and telemetry data The RPC experiments IES ICA LAP and contain micro processors or micro controllers and operate semi independently of the PIU the MAG experiment contains no micro processor it delivers digital samples to the PIU which is responsible for the processing and filtering of the data All the functionality of the packet services is the responsibility of the PIU The PIU shall contain real time code written in the C and assem
214. 2008 Defl HV switch D Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 172 Sets the Deflection HV reference to zero OFF or to its default value ON PRPG2008 1 or 0 HK Deflection HV log switch NRPD2308 XW HVswitch DfHvOn DfHvOff ZRP22009 Direct command switch D Enables or disables the default synchronized commands to direct See 2 0 PRPG2009 1 or 0 HK Direct command switch NRPD2370 XW Various DircOn DircOff ZRP22010 W D enable disable D Enables or disables the Watch Dog circuitry PRPG2010 1 0 XW Various WdogOn WdogOff ZRP22011 Gas enable disable D Enables or disables the ROSINA gas pressure automatic action PRPG2011 1 or 0 XW Various GaspOn GaspOff ZRP22012 Thruster enable disable D Enables or disables the Thruster warning automatic action PRPG2012 1 or 0 XW Keyboard only ZRP22014 Compression switch S Enables or disables the data Compression PRPG2014 1 or 0 XW Various CmprOn CmprOff ZRP22015 Alt Pacc switch S Enables or disables the automatic Alternating Post acceleration PRPG2015 1 or 0 XW Various AltpOn AltpOff ZRP22016 Pacc level S Sets the Post acceleration level High or Low PRPG2016 1 or 0 HK Pacc Level NRPD2390 XW Various PacHigh PacLow ZRP22017 Auto red switch S Enables or disables the Automatic data reduction scheme changes PRPG2017 1 or 0 XW Various AutoOn AutoOff
215. 2301 Opto reference S Sets the Opto HV default reference PRPG2301 reference 0 7 HK Opto HV default reference NRPD23A0 XW HVrefs OptoRef ZRP22302 Mcp reference S Sets the Mcp HV default reference PRPG2302 reference 0 15 HK Opto HV default reference NRPD23A0 XW HVrefs McpHef ZRP22303 Grid reference S Sets the Grid LV reference PRPG2303 reference 0 7 HK Grid LV reference NRPD2391 XW HVrefs GridRef ZRP22304 Pacc low ref S Sets the Post acceleration low level HV reference PRPG2305 reference 0 7 HK Pacc Low level reference NRPD2371 XW HVrefs PacLow ZRP22305 Pacc high ref S Sets Post acceleration high level reference PRPG2306 reference 0 7 HK Low level reference NRPD2381 XW HVrefs PacHigh ZRP22306 Deflection LV reference S Sets the Deflection LV reference fixed PRPG2306 reference 0 4095 HK Deflection LV reference NRPD2384 XW HVrefs Vrf ZRP22307 Deflection HV reference S Sets the Deflection HV reference fixed PRPG2307 reference 0 4095 HK Deflection HV reference NRPD2374 XW HVrefs DfHVrf ZRP22308 Entrance ref S Sets the Entrance HV reference fixed PRPG2308 reference 0 4095 HK Entrance HV reference NRPD2394 XW HVrefs EntRef Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 178 ZRP22309 Noise reduction S Sets the count threshold for integrations PRPG
216. 2309 threshold 0 4095 XW Settings NoiseR ZRP22310 Fifo low mark S Sets the TM fifo low watermark for auto reduction changes PRPG2310 watermark 0 4095 XW Settings Fmin ZRP22311 Fifo high mark S Sets the TM fifo high watermark for auto reduction changes PRPG2311 watermark 0 4095 XW Settings Fmax ZRP22312 Fifo force mark S Sets the TM fifo force watermark for auto reduction changes PRPG2312 watermark 0 4095 XW Settings Fforce ZRP22313 Fifo clear mark S Sets the TM fifo clear watermark for auto reduction changes PRPG2313 watermark 0 4095 XW Settings Fclear ZRP22315 Start cmd D This is a combination command that can configure the experiment in one go The 12 bit parameter is divided into four as gt Include context PRPD2501 SID nr 0 5 PRPD2502 Mode 0 39 PRPD2503 HV on bit PRPD2504 Boot EEP default section bit See ZRP22115 PRPD2505 Boot EEP including default context bit XW Keyboard only Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 179 3 1 2 4 LAP 3 1 2 4 1 General Operation LAP s measurement philosophy differs from the usual way to operate this kind of instrument Instead of having a lot of small single effect commands to change the instrument operation we use single commands that change between already predefined settings in the instrument These predefined settings are organized in lists or measurem
217. 3 12 16 WORD NONE URPRPCOO TMGS N ICA Event internal prog Err 7 3 12 16 WORD URPRPCOO ICA Event internal prog Err Info 7 SRPRPCOO 3 12 161 WORD NONE URPRPCOO TMGS N HK Word 1 7 00 3 12 16 WORD NONE URPRPCOO TMGS HK Word 2 7 3 12 16 WORD URPRPCOO TMGS HK Word 3 7 3 12 16 WORD URPRPCOO TMGS HK Word 4 7 3 12 16 WORD URPRPCOO TMGS N HK Word 5 7 3 12 16 WORD URPRPCOO TMGS HK Word 6 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS LAP Event Param1 7 SRPRPCOO 3 12 167 WORD NONE URPRPCOO TMGS N LAP Event Param2 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS MIP HK word 0 7 SRPRPCOO 3 12 167 WORD NONE URPRPCOO TMGS N MIP HK word 1 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS MIP HK word 2 7 3 12 16 WORD URPRPCOO TMGS MIP HK word 3 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS N MIP HK word 4 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS N MIP HK word 5 7 SRPRPCOO 2 16 16 WORD NONE URPRPCOO TMGS N MIP HK word 6 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS N HK Word 0 7 3 12 16 WORD URPRPCOO TMGS Anlg Ref LS Word 7 SRPRPCOO 3 12 1677 WORD URPRPCOO TMGS Temperature 1 7T SRPRPCOO 3 12 16 WORD 5501 URPRPCOO TMGS Temperature
218. 3 15 000002 3328 0 3343 15 3328 0 000002 4103 7 000002 4096 0 DEFAULT 4103 7 0 987 DEFAULT Reference RO RPC UM Issue Draft Rev Date February 20 2002 Page 319 MPFRPCOO 4096 0 MPFRPCOO 4103 7 DEFAULT 4096 0 CPOI 00002 8192 0 00002 8199 7 DEFAULT 8192 0 CPOI DEFAULT 8199 7 8192 0 MPFRPCOO 8199 7 MPFRPCOO 12295 7 00002 12288 0 MEMRPCO00002 12295 7 DEFAULT 12288 0 MPFRPCOO 12288 0 DEFAULT 12295 7 MPFRPCOO 16384 0 MEMRPCO00002 16391 7 MEMRPCO00002 16384 0 DEFAULT 16391 7 MPFRPCOO 16391 7 DEFAULT 16384 0 CPO MPFRPCOO 20487 7 20480 0 DEFAULT 20487 T DEFAULT 20480 0 CPO 00002 20480 0 00002 20487 7 MPFRPCOO 28671 4095 28671 4095 24576 0 000
219. 31F URPRPCOO TMDP N EEPROM Write Done 7 2 1 1 DIG CRPV1126 URPRPCOO N SysStatReg lO RST EN 7 2 1 1 DIG 0103 URPRPCOO TMDP SysStatReg CNT EN 7 2 1 1 DIG CRPV0103 URPRPCOO TMDP SysStatReg HV EN 7 SRPRPCOO 2 1 1 DIG CRPV0103 URPRPCOO TMDP SysStatReg EEPROM EN 7 SRPRPCOO 2 1 1 DIG CRPV0103 URPRPCOO N SysStatReg EEPROM RDY 7 2 1 1 DIG 1127 URPRPCOO N SysStatReg CPU ERR 7 SRPRPCOO 2 1 1 DIG 104 URPRPCOO N SysStatReg CLK SEL 7 SRPRPCOO 2 2 212 DIG 1227 URPRPCOO N Watchdog timer error 7T SRPRPCOO 2 1 1 DIG 104 URPRPCOO N Acquisition Enable 7T SRPRPCOO 2 1 1 DIG 0103 URPRPCOO TMDP Thrust Warning 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO Pressure Exceeded 7 SRPRPCOO 2 1 1 DIG 101 Pressure Grad Exceeded 7T SRPRPCOO 2 1 1 DIG 101 URPRPCOO N Giada Dust Exceeded 7 00 2 1 1 DIG 101 URPRPCOO Bad command detected 7 2 1 1 DIG 0104 URPRPCOO TMDP N Bad opcode detected 7 SRPRPCOO 2 1 1 DIG 104 URPRPCOO N IES Last executed opcode 7
220. 370 O PARAM 0 16 1 16 PRPG1380 O PARAM 0 16 1 16 PRPG1410 0 16 1 16 PRPG1430 0 16 1 16 PRPG1440 O BLOCK 0 32 1 32 1451 O BLOCK 0 80 1 80 XRPC1511 PKBC O BLOCK 0 32 1 32 1521 O BLOCK 0 64 1 64 XRPC1531 PKBC O BLOCK 0 64 1 64 XRPC1601 PKBC O BLOCK 0 64 1 64 XRPC1611 PKBC O BLOCK 0 64 1 64 XRPC1621 PKBC 0 16 1 16 PRPG1700 0 16 1 16 PRPG1710 0 16 1 16 PRPG1720 0 16 1 16 PRPG1730 0 16 1 16 PRPG1900 0 16 1 16 PRPG1910 O BLOCK 0 32 1 32 1921 0 16 1 16 PRPG2001 0 16 1 16 PRPG2002 0 16 1 16 PRPG2003 0 16 1 16 PRPG2004 0 16 1 16 PRPG2005 0 16 1 16 PRPG2006 0 16 1 16 PRPG2007 0 16 1 16 PRPG2008 0 16 1 16 PRPG2009 0 16 1 16 PRPG2010 0 16 1 16 PRPG2011 0 16 1 16 PRPG2012 0 16 1 16 PRPG2014 O PARAM 0 16 1 16 PRPG2015 O PARAM 0 16 1 16 PRPG2016 0 16 1 16 PRPG2017 0 16 1 16 PRPG2025 0 16 1 16 PRPG2026 O PARAM 0 16 1 16 PRPG2027 0 16 1 16 PRPG2028 0 16 1 16 PRPG2035 0 16 1 16 PRPG2036 0 16 1 16 PRPG2037 0 16 1 16 PRPG2038 0 16 1 16 PRPG2039
221. 4 TM Packet Definition Telemetry Packet Information Generation Rules Every 32 seconds when enabled Process ID Service Type Structure ID MIP science data packet in minimum telemetry rate Normal Science RPC MIP Science Report Every 32 seconds when enabled Header Information Process ID Service Type Structure ID Data Field Information MIP science data packet in normal telemetry rate Telemetry Packet Information Process ID Service Type Structure ID MIP science data packet in burst telemetry rate Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 111 Telemetry Packet Information Process ID 87 jPacketCatgogy 4 Service Type 3 Service Subtype 25 Data Field Information TC Verification RPC MIP Telecommand Verification Report Every telecommand sent Header Information Process ID Service Type Structure ID Data Field Information TC Verification Table 2 3 5 RPC MIP TM Packet Definition MIP Note The cell Packet Length is filled up with the effective value of the packet data field length i e the experiment data length 10 bytes of the data field header length without the 6 bytes of the packet header 2 3 3 2 2 5 MAG TM Packet Definition Telemetry Packet Information Packet Name Minimum Science RPC MAG Packet Function Science Report Generation Rules Every 256 seconds when enabled Header Information Process ID Packet Category Servic
222. 4 Denisty Fix Bias 7 23013 86 12 SPACE 18 18 NONE 144 E Fix Bias 7 23014 86 12 5 18 18 NONE BOTH N 144 N O Poke 7 23015 86 12 5 18 18 NONE 144 LDL Mode 7 23016 86 12 5 18 18 NONE 144 7 23018 86 12 5 18 18 144 7 23019 86 12 5 18 18 NONE BOTH N 144 N Flash Peek 7 23020 86 12 5 18 18 144 7 23022 86 12 5 18 18 144 Boot 7 23023 86 12 5 18 18 144 7 23025 86 12 5 18 18 NONE BOTH N 144 N Resampling 7 23026 86 12 5 18 18 NONE BOTH N 144 N Set Filter 7 23027 86 12 5 18 18 NONE BOTH N 144 N Set Moving Avrg amp ADC Params 7 23028 86 12 5 18 18 NONE BOTH N 144 N Reset Actel 7 23029 86 12 5 18 18 144 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 230 N Transmitter 7 23030 MACRO Dummy Command 7 230 9 86 12 5 18 18
223. 4 14 112 Set LDLT 7 24403 87 12 5 14 14 112 Set Mode 7 24404 87 12 5 14 14 112 Set TmRt 7 24405 87 12 5 14 14 NONE 112 Select Outboard 7 25001 88 12 5 12 12 NONE 96 Select Inboard 7 25002 88 12 5 12 12 NONE 96 Select Internal SID 1 7 25101 88 12 5 12 12 96 Select Internal SID 2 7 25102 88 12 5 12 12 NONE 96 Select Internal SID 3 7 25103 88 12 5 12 12 NONE 96 Select Internal SID 4 7 25104 88 12 5 12 12 NONE 96 Select Internal SID 5 7 25105 88 12 5 12 12 96 Select Internal SID 6 7 25106 88 12 5 14 14 NONE 112 Reset TM Output Buffer 7 25501 83 12 5 12 12 NONE 96 Enable LAP HK 7 00305 86 12 5 14 14 NONE 112 Disable LAP 7 ETCO0306HKDS 86 12 5 14 14 NONE 112 Memory Load 7 ETCO0602MMLD 86 12 SPACE 22 248Y NONE BOTH N 1984 N LAP Memory Dump Request 7 06 866 12 SPACE 20 20 NONE 160 Memory Check 7 00609 86 12 5 20 2017 NONE
224. 44 144 144 144 144 144 144 144 144 144 160 176 144 144 z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 144 Issue Date Page RO RPC UM Draft Rev February 20 2002 257 0 987 144 144 144 144 144 144 144 144 144 144 160 176 144 144 144 144 144 144 144 144 144 144 144 144 144 160 144 160 144 144 144 144 144 160 160 160 176 176 176 176 176 176 176 176 176 176 176 176 176 176 160 176 176 176 176 176 176 176 176 176 176 144 176 144 176 176 176 176 176 176 176 176 176 176 176 176 176 176 z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 176 Rosetta RPC UserManual Pas Reference Issue Date RO RPC UM Draft Rev February 20 2002 258
225. 48 48 URPRPCOO N M Set Telemetry Rate 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Start Sampling 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Stop Sampling 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Execute Macro 7 0 48 48 N M Dog Prom 7 0 48 48 N M Set Macro 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE M Read Write Macro 7 SRPRPCOO 0 48 48 URPRPCOO M Set Relays amp Muxes 7 SRPRPCOO 0 48 48 URPRPCOO M ADC Control Register 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Denisty Sweep 7 SRPRPCOO 0 48 48 URPRPCOO N M Denisty Fix Bias 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M E Fix Bias 7 0 48 48 URPRPCOO Y NONE N M IO Poke 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M LDL Mode 7 0 48 48 URPRPCOO 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Poke 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N M Flash Peek 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE 7 0 48 48 Y NONE N M EE Boot 7 0 48 48 URPRPCOO
226. 5 LT 0 0 LT 4095 12 MEMRPCO00002 0 0 MEMRPCO00002 4095 12 LT 4095 181 00002 0 273 DEFAULT 0 273 00002 4095 181 RPCOO 511 5 DEFAULT 0 5 RPCOO 0 5 DEFAULT 511 5 CPO RPCOO 191 48 DEFAULT 191 48 DEFAULT 255 63 RPCOO 0 64 RPCOO 32 48 RPCOO 64 32 DEFAULT 159 32 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 321 MPFRPCOO 159 32 MPFRPCOO 127 0 DEFAULT 127 0 DEFAULT 64 32 CPOI DEFAULT 32 48 255 63 00002 191 48 00002 159 32 00002 127 0 00002 64 32 MEMRPCO00002 32 48 MEMRPCO00002 0 64 MEMRPCO00002 255 63 DEFAULT 0 64 MEMRPCO00002 10000 50 MPFRPCOO 13100 50 MPFRPCOO 15150 100 MPFRPCOO 15800 150 MPFRPCOO 7860 0 00002 1000 100 DEFAULT 13100 50 CPOI 00002 20000 25
227. 5 Each vector consisting of three components XOB YOB ZOB or XIB YIB ZIB is sampled by a 20 bit A D converter 4 bits identification per vector are added to get 8 bytes per vector 64 bits Reference Issue Date Page 5 0 Operational Procedures 5 1 Ground Test Sequences SVT 511 5111 UFT RO RPC UM Draft Rev 0 987 February 20 2002 223 The procedure is defined in the Alenia Document RO ALS PR 4051 RPC I amp T UFT Procedure for EM EQM 5 1 1 2 IST The procedure is defined in the Alenia Document RO ALS PR 4037 RPC IST Procedure 5 1 1 3 SVT For the procedure definitions refer to the following documents RO ESC PR 5130 System Validation Test Plan RO RPC MA 6002 RPC Operations Planning Document RO RPC TS 6006 SVT Test Script 5 1 2 Experiments 5 1 2 1 PIU 5 1 2 2 IES 5 1 2 3 ICA 5 1 2 4 LAP 5 1 2 5 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 224 MIP The ground test sequences are described in MIP PIU Data Handling Interface RPC MIP RP 126 990253 LPCE Ed 3 Rev 2 18 9 00 The SFT is performed to check the experiment during RPC tests The main working modes are run with the normal telemetry rate The Bench Test BT will be performed to verify the experiment during RPC integration All the working modes and all the telemetry rates are run 5 1 2 6 MAG There is the same procedure for the Bench Test the UFT and
228. 5 Minimum Telemetry Cycle time 960 seconds Mode Mass Azimuth Energies Polar bins angles angles 0 16 96 16 NRM 1 6 16 96 8 NRM 2 6 16 96 4 NRM 3 6 16 96 2 NRM 4 6 8 96 2 NRM 5 6 4 96 2 NRM 6 3 4 96 2 NRM 7 3 4 96 1 Table 4 2 6 Normal Telemetry Cycle time 192 seconds Mode Mass Azimuth Energies Polar bins angles angles HAR 0 16 16 96 16 HAR 1 16 16 96 8 HAR 2 16 16 96 4 HAR 3 8 16 96 4 HAR 4 4 16 96 4 HAR 5 2 16 96 4 HAR 6 2 8 96 4 HAR 7 2 8 96 2 Table 4 2 7 Burst Telemetry High angular resolution Cycle time 192 seconds Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 217 Mode Mass Azimuth Energies Polar bins angles angles EXM 0 32 16 96 16 EXM 1 32 16 96 8 EXM 2 32 16 96 4 EXM 3 32 16 96 2 EXM 4 32 8 96 2 EXM 5 32 4 96 2 EXM 6 32 2 96 2 7 32 2 96 1 Table 4 2 8 Burst Telemetry Energy Mass matrix Cycle time 192 seconds Special modes The special modes do not allow any TM FIFO backlog as do the other modes They all have a cycle time of 32 seconds The Test mode delivers hardware close information and is tailored for ground testing and in orbit commissioning When running in TM test mode it will be synchronized with the TM packets The Calibration 1 mode delivers one uncompressed ima
229. 5 20 IES BOL EOL Surface Properties Oooooooooooo aa Deflector Noryl Aperture Al 6061 Optics Al 6061 MLI Kapton Node Op Non Op Op Stab 50620 30 50 40 60 Table 2 5 22 IES TRP Design Temperature Ranges Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 150 EOL ra piu Op GI Non Op GR W W Science a 1 61 0 5 max 50623 0 23 0 5 max 50620 S C Q Table 2 5 23 IES Power Dissipations Node i Node j GL W K 50620 50621 0 0990 50620 50622 3 1530 50621 50623 0 0990 50622 50623 3 1530 Table 2 5 24 IES Internal Conductive Couplings 50620 50624 0 0005 50623 50624 0 0010 Table 2 5 25 IES Internal Radiative Couplings Type Number Ac Node Conductive Node C C C Table 2 5 26 IES Interface Contact Conductances Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 151 18 000461 Ng 132 Dimensions in m Note 50624 does not cover 50620 Ring bottom and 50623 Ring top hence 50620 50623 MLI rings are external surfaces nodes Figure 2 5 7 IES Thermal Sketch Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 152 2 5 4 2 3 ICA 2 1 ref
230. 5 57005 Asleep SVAL 47806 47806 Active SVAL 00 SVAL MEMRPC000002 00 SVAL 11 SVAL 111 SVAL MEMRPC000002 111 SVAL 00 SVAL 00 SVAL 00 SVAL 111 Maint SVAL MEMRPC000002 11 Maint SVAL 11 Maint SVAL 00002 00 SVAL 00 SVAL 11 Inverted SVAL 00 SVAL 00002 11 Inverted SVAL 11 Inverted SVAL 00002 00 SVAL 111 SVAL 00 PROM off SVAL 00 PROM off SVAL 11 PROM SVAL 0 987 Rosetta Reference Issue Date RPC UserManual Pas 324 RO RPC UM Draft Rev February 20 2002 MEMRPCO00002 MPFRPCOO 00002 DEFAULT 11 Mntr on SVAL MPFRPCOO 000 Mntr off SVAL MPFRPCOO 11 Mntr on SVAL DEFAULT 00 Mntr off SVAL MPFRPCOO 00 SVAL DEFAULT 11 SVAL DEFAULT 313 FS SVAL MPFRPCOO 11 SVAL MPFRPCOO 22 PFM FM SVAL MPFRPCOO 3 3 FS SVAL MEMRPC000002 00 SVAL MEMRPC000002 11 SVAL MEMRPC00000
231. 50685 belong to the MAG outboard sensor Whilst 50701 50681 belong to the MAG IB inboard sensor Figure 2 5 12 MAG OB and MAG IB Thermal Sketch Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 163 3 0 Experiment Operations 3 1 Operating Principles 3 1 4 RPC The Rosetta mission presents a number of new challenges with regard to payload operations Due to the complex on board data handling systems required to realise the mission objectives the cost constraints requiring a large degree of on board autonomy and the physical difficulties of operating such a mission in deep space the on board operations allow much flexibility to maximise the data return The particular capability which affects payload planning is that the Rosetta spacecraft does not operate in a deterministic and fully pre planned manner rather the data gathering and transmission can be commanded at a late stage or even dynamically in real time on board the spacecraft This is necessary due to the uncertain nature of the comet observation possibilities and the limited bandwidth for telemetry downlink The central resource which is available to the experiments is the Solid State Mass Memory SSMM which contains all payload data stored on board for later downlink In order to maximise use of this resource the project will allocate space in the SSMM to each payload per mission phase It is up to the payload team to decide how
232. 5070 Relnit unit 7 00502 83 7 AUTH 18 18 1 1145120 NONE N EC NoNormalMode unit 7 0050 83 AUTH 18 18 1 1145121 EC RxTimeout unit 7 0050 83 AUTH 18 18 1 1145122 NONE N BadTcType unit 7 00502 83 AUTH 18 18 1 1145123 NONE N LAP EC PktTooLong unit 7 00502 83 7 AUTH 18 18 1 1145124 NONE EC PktTooShrt unit 7 00502 83 7ISPACE AUTH 18 18 1 1145125 NONE N EC PktTrunc unit 7 00502 83 7 AUTH 18 18 1 1145126 NONE N EC_InvalidSid unit 7 00502 83 AUTH 18 18 1 1145127 EC_BadScncMode unit 7 00502 83 7 AUTH 18 18 1 1145128 EC LinkRst unit 7 00502 83 18 18 1 1145129 NONE N LAP EC LinkRstsMdm unit 7 00502 83 18 18 1 1145130 NONE LinkRstsHgh unit 7 00502 83
233. 6 1 16 NRPA2501 BLOCK 0 128 1 128WRP08307 PKBM 128 16 1 16 0500 144 16 1 16 2510 160 16 1 16 NRPA2511 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 267 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA2520 O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 NRPA2521 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA2530 160 16 1 16 NRPA2531 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA3501 160 16 1 16 NRPA3502 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 0500 2 144 16 1 16 NRPA5501 1 PARAM 128 16 1 16 0500 0 128 1 128 08307 2 144 16 1 16 NRPA5501 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA5502 160 16 1 16 NRPA5503 O IBLOCK 0 128 1 128 WRP08307 PKBM O IBLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 PARAM 144 16 1 16 NRPA5504 160 16 1 16 NRPA5505 O BLOCK 0 128 1 128 WRP08307 PKBM 1
234. 6 NONE N IES MEM COPY DstPage 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B23 32 NONE N IES MEM COPY DstAddrO 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B23 40 N IES MEM COPY DstAddr1 7 SRPRPCOO 3 4 8 URPRPCOO PRPG1B24 0 N IES MEM COPY NumWords 7 3 12 16 URPRPCOO Y PRPG1B24 8 NONE N IES MEM COPY Pad 7 3 4 8 PRPG1B24 24 NONE TCDP N IES MEM GO Opcode 7 SRPRPCOO 3 4 8 URPRPCOO 82 PRPG1B25 0 N IES MEM GO Page 7 SRPRPCOO 3 4 8 URPRPCOO PRPG1B25 8 NONE TCDP N IES MEM GO Address 7 SRPRPCOO 3 12 16 URPRPCOO PRPG1B25 16 NONE TCDP N IES MEM WRITE Op 7 SRPRPCOO 3 4 8 URPRPCOO 83 PRPG1B26 0 NONE TCDP N IES MEM WRITE Page 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B26 8 NONE N IES MEM WRITE Addr 7 3 12 16 PRPG1B26 16 NONE N IES MEM WRITE Mask 7 SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B26 32 NONE N IES MEM WRITE Data 7 3 12 16 URPRPCOO Y PRPG1B27 0 NONE N ES SAFETY AMB Op 7 3 4 8 URPRPCOO 96 Y PRPG1B28 0 N ES SAFETY AMB Press 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B28 8 NONE TCDP N ES SAFETY AMB PressGrad 7 3 4 8 URPRPCOO PRPG1B28 16 NONE TCDP N ES SAFETY AMB GiadaDust 7 SR
235. 60 16 1 16 NRPA5507 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 5 506 8 240 16 1 16 1360 320 16 1 16 NRPA13BO 12 304 16 1 16 NRPA13A0 1 PARAM 128 16 1 16 11 288 16 1 16 1390 10 272 16 1 16 1380 256 16 1 16 NRPA1370 T PARAM 224 16 1 16 NRPA1350 6 208 16 1 16 1340 5 IPARAM 192 16 1 16 NRPA1330 4 176 16 1 16 NRPA1320 2 144 16 1 16 1300 O BLOCK 0 128 1 128 WRP08404 PKBM 160 16 1 16 1310 4 192 16 1024 16 8400 176 16 1 16 NRPA8300 O BLOCK 0 128 1 128 WRP08409 PKBM 1 PARAM 128 16 1 16 NRPA8100 2 144 32 1 32 NRPA8200 O BLOCK 0 128 1 128 WRP08407 PKBM 1 PARAM 128 16 1 16 NRPA8100 2 144 32 1 32 NRPA8200 176 16 1 16 NRPA8300 4 192 16 1 16 8500 0 128 1 128 08412 6 208 16 1 16 2340 320 16 1 16 2 12 304 16 1 16 NRPA23A0 11 288 16 1 16 NRPA2390 10 272 16 1 16 2380 256 16 1 16 NRPA2370 7 224 16 1 16 NRPA2350 5 192 16 1 16 NRPA2330 4 176 16 1 16 NRPA2320 160 16 1 16 NRPA2310 2 144 16 1 16 NRPA2300 1 PARAM 128 16 1 16 0 128 1 128 WRP08504 PKBM
236. 7 SRPRPCOO 3 4 8 BYTE 2558 URPRPCOO TMDP N Sensor Temperature 7 SRPRPCOO 3 4 8T BYTE 2560 URPRPCOO TMDP DPU Temperature 7 SRPRPCOO 3 4 8 BYTE 2568 URPRPCOO TMDP Direct command switch 7 SRPRPCOO 2 1 1 T 1 DIG 100 URPRPCOO Low level reference 7 2 3 3 T 3 BIT NONE URPRPCOO TMDP N Deflection HV reference 7 SRPRPCOO 3 8 12 T 12 BIT NONE URPRPCOO TMDP N TM fifo overflow 7 SRPRPCOO 2 1 1 DIG 2182 URPRPCOO TMDP N Pacc High level reference 7 2 3 3IT 3 NONE URPRPCOO TMDP N Deflection LV reference 7 3 8 12 T 12 BIT NONE URPRPCOO TMDP N Pacc Level 7 SRPRPCOO 2 1 1 DIG 2181 URPRPCOO TMDP N Grid LV reference 7T SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N Entrance HV reference 7 3 8 12 T 12 NONE URPRPCOO TMDP N Opto HV default reference 7 2 3 3IT 3 NONE URPRPCOO TMDP N HV default reference 7 SRPRPCOO 3 0 4 URPRPCOO TMDP N Upper entrance HV monitor 7 SRPRPCOO 3 5 9T 9 CRPP25A7 URPRPCOO N Opto HV current reference 7 2 3 3 BIT NONE URPRPCOO N Mcp HV current reference 7 3 0 414 TMDP Lower entrance HV monitor 7 SRPRPCOO 3 5 9T 9 25 7 URPRPCOO TMDP
237. 8 0 128 1 128 08307 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 160 16 1 16 NRPA1529 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 160 16 1 16 NRPA1529 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 0 128 1 128 08307 160 16 1 16 1529 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 160 16 1 16 1529 0 128 1 128 08307 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 160 16 1 16 1529 1 PARAM 128 16 1 16 0500 O BLOCK 0 128 1 128 08307 160 16 1 16 NRPA1529 2 144 16 1 16 1528 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 500 2 144 16 1 16 1528 160 16 1 16 NRPA1529 O IBLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 160 16 1 16 1529 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA1528 O BLOCK 0 128 1 128 WRP08307 PKBM 160 16 1 16 NRPA1529 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 1528 160 16 1 16 NRPA1529
238. 8 The MAG FPGA connections in the MA 5 9 e main functions e ADC Control Logic igure 1 2 10 timing O igure 1 2 11 e Buffers the ADC s Data and the selector Logic igure 1 2 15 e Signals or the nterrace Contro O igure 2 T 3 Mechanical Interface Drawing igure 2 1 4 A Mechanica Drawing igure 2 1 0 support Bracket Mechanical Interface Drawing igure 2 1 7 LAP Support Bracket Mechanical Interface Drawing igure 2 1 8 LAP Support Bracket Mechanical Interface Drawing igure 2 1 9 LAP Support Bracket Mechanical Interface Drawing igure 2 1 10 Mechanical Interrace Drawing igure 2 1 11 Mechanical Interface Drawing igure 2 1 12 ensor Dimensions igure 2 1 13 ensor boom Interface igure 2 1 14 ensor Integrated System Test Configuration 9 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 10 igure 2 2 2 ODBL Interface Circuits JU igure 2 2 3 High Power Command Interface Circui 9 igure 2 5 Thermal Interface Control Drawing for 9 igure 2 9 2 Thermal Interface Control Drawing for ICA 40 igure 2 5 3 Thermal Interface Contror Drawing for Igure 2 5 4 ermal Interface Control Drawing for igure 2 5 5 Thermal Interface Control Drawing for 4 igure 2 9 0 PIU Electronic sketc 46 igure 2 5 ermal Sketc igure 2 5 8
239. 8 NONE N M Poke param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3168 16 NONE N M Poke param 3 7 2 16 16 URPRPCOO 0 PRPG3168 32 NONE TCDP N M Flash Peek Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h94 N PRPG3172 0 TCDP N M Flash Peek param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3172 8 NONE TCDP N M Flash Peek param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3172 16 NONE N M Flash Peek param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3172 32 NONE TCDP N M Prog Peek Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h96 N PRPG3176 0 N M Prog Peek param 1 7 2 8 8 URPRPCOO 0 PRPG3176 8 NONE Peek param 2 7 2 16 16 URPRPCOO 0 PRPG3176 16 NONE N M Prog Peek param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3176 32 NONE Boot Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h97 N PRPG3180 0 N M EE Boot param 1 7 2 8 8 URPRPCOO 0 PRPG3180 8 NONE TCDP N M EE Boot param 2 7 2 16 16 URPRPCOO 0 PRPG3180 16 NONE N M EE Boot param 3 7 2 16 16 URPRPCOO 0 PRPG3180 32 NONE M End Macro 7 SRPRPCOO 2 8 8 URPRPCOO h99 N PRPG3184 0 N M End Macro param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0
240. 81 Run OBCP __ ____ ee oou e y O Table 2 3 13 RPC Monitoring Requirements 2 3 4 4 Information Distribution Requirements The RPC has a requirement to receive the following information from the DMS Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 Page 126 Attitude Data These data shall provide the position 3 coordinates of the 5 a convenient celestial coordinate system as well as the orientation of the s c 2 angles This information is needed with temporal resolution of 1 s e Thruster Warnings e Environmental Pressure Attitude data shall be required only while the experiment is powered on Environment Pressure may be delivered to RPC as either a periodic parameter approx once per minute or as an event when the pressure exceeds a pre defined value Thruster warnings shall be event based 2 3 4 5 DMS TM Packetisation Requirements RPC has no discrete telemetry and no specific requirements on DMS packetisation 2 4Budgets 2 4 1 RPC 2 4 2 Experiments 2421 PIU 2 4 2 2 IES 2 4 2 3 ICA Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 127 2424 LAP 2425 2 4 2 5 1 The EM mass RPC 4 0 electronic card 377 g RPC 4 1 sensor 265g harness H09 2334 2 4 2 5 2 During each 32 s sequence acquisition period works two re
241. 91 15 DEFAULT 191 15 CPO MPFRPCOO 176 0 DEFAULT 176 0 CPO MPFRPCOO 207 15 MEMRPCO00002 207 15 DEFAULT 192 0 DEFAULT 207 15 MPFRPCOO 192 0 MEMRPCO00002 192 0 MEMRPCO00002 208 0 MPFRPCOO 208 0 DEFAULT 208 0 CPO MPFRPCOO 223 15 00002 223 15 DEFAULT 223 15 CPO 00002 224 0 MPFRPCOO 229 5 MPFRPCOO 224 0 DEFAULT 224 0 00002 229 5 DEFAULT 229 5 240 0 DEFAULT 255 15 RPCOO 255 15 RPCOO 240 0 000002 351 95 256 0 RPCOO 351 95 RPCOO 256 0 351 95 000002 256 0 RPCOO 512 0 RPCOO 527 15 527 15 512 0 000002 512 0 000002 527 15 832 64 000002 832 64 000002 768 0 768 0 832 64 768 0 1279 255 1024 0 1024 0 00002 1024 0 00002 1279 255 1279 255 1280 0 1535 255 1255 255 FRPCOO 1280 0 000002 2599 39 FRPCOO 2560 0 FRPCOO 2599 39 2560 0 2599 39 000002 2560 0 3088 16 3072 0 000002 3088 16 000002 3072 0 3088 16 3072 0 RPC000002 334
242. 99900040000 659555995994 256906060 904946604606 6060520606660 955002404 5685408 4802 JuDI UON 52 m 518 NOLLVINSNI 8 for ICA ing Thermal Interface Control Drawi Figure 2 5 2 0 987 2c gt S e o c 2 o 525 c gt RPC UserManual lt Bulmoug X em paru 6 6 ayopdp 159401 515096 e C TE 9dd 52 0 451 SouOu 20120445409 C 00 9E OF 131 viwSddn 16 GCG S ojosdap S3ISAHd 32 45 30 HSIT3AS 0419504 NOILVdISSIC YAM Od 10 sseujepr oue d yoeyy WU 0 0 Ssoujerr 1004 9 ssauysnol soejing 1 5 p 3004 uru 091 peuo INSIATIHdXH puo woog HAY AKCIVH HOVTHHINI TVINGTHHLL NEL nme ANSINTIV3R OVALS edsoA 90 SS nuony SMA 08D L ALIOVdVO LVH DNIM VAC HOVTIHINI IVIN3HHI 970 N
243. AL 00 Idle SVAL 11 SVAL 22 SVAL 99 Nrm1 SVAL 44 Msis SVAL 55 SVAL 0 987 DEFAULT Rosetta RPC UserManual Pas Reference Issue Date RO RPC UM Draft Rev February 20 2002 331 MPFRPCOO 66 Void SVAL MPFRPCOO 77 SVAL MPFRPCOO 88 NrmO SVAL DEFAULT 00 DISABLED SVAL DEFAULT 11 ENABLED SVAL MPFRPCOO 11 ENABLED SVAL MEMRPC000002 11 ENABLED SVAL MPFRPCOO 00 DISABLED SVAL MEMRPC000002 ojo DISABLED SVAL DEFAULT 11 ALIVE SVAL DEFAULT 00 SVAL MEMRPC000002 00 SVAL MPFRPCOO 11 ALIVE SVAL 00 SVAL MEMRPC000002 111 ALIVE SVAL MEMRPC000002 11 2 SVAL DEFAULT 111 2 SVAL MEMRPC000002 00 1 SVAL DEFAULT 00 1 SVAL DEFAULT 00 SVAL DEFAULT 11 MIXED SVAL MEMRPC000002 00 NORMAL SVAL MEMRPC000002 11 MIXED SVAL MPFRPCOO 11 Macro 1 SVAL MPFRPCOO 22 Macro 2 SVAL 0 313 3 SVAL MPFRPC00 44 4 SVAL MPFRPCOO 66 6 SVAL 22 2 SVAL MPFRPC00 55 5 SVAL RPCOO 00 0 SVAL LT 77 Macro 7 SVAL 66 6 SVAL 55 5 SVAL 77 7 SVAL
244. C VDU VHDL VHF VHSIC VIS VIMS VIRTIS VIS VSWR VT VTP VTR W S WAC Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 31 Tone Ranging Test Review Board Test Report Temperature Reference Point Test Readiness Review Test Readiness Review Board Test Support Equipment Test Specification Timer Synchronisation Pulse Tracking Telemetry amp Commanding Telemetry Telecommand and Communication Subsystem RF S S Tracking Telemetry amp Commanding Technical University of Budapest Technical University Braunschweig Technical University Braunschweig Thermal Vacuum Travellling Wave Tube Assembly Two Way Travelling Lighttime Transmitter Upper Atmospheric Research satellite User Defined User Manual Ultimate Margin Of Safety Unit Functional Test Up Link Universidad Politecnica de Madrid User Requirements Document Unit Reference Frame Ultra Stable Oscillator Universal Time Coordinated Universal Time Code Ultra Violet Under Voltage Detector Ultra Violet Spectrometer Component Verification amp Validation Virtual Channel Virtual Channel Assembler Virtual Channel Multiplexer Voltage Direct Current Video Display Unit VHSIC Hardware Description Language Very High Frequency Very High Speed Integrated Circuit Verical Integration Stand Visual Infrared Mapping Spectrometer ORBITER PAYLOAD INSTRUMENT Visual Voltage Standing Wave Ratio Validation Test Validation Test Pl
245. C000002 2222 Void SVAL MEMRPC000002 77 Void SVAL MEMRPC000002 2020 Har4 SVAL MPFRPCOO 1616 SVAL MEMRPC000002 1818 2 SVAL MPFRPCOO 2525 Exm1 SVAL MEMRPC000002 1616 SVAL MEMRPC000002 15 15 Void SVAL MEMRPC000002 1414 Void SVAL MEMRPC000002 1313 Nrm5 SVAL MEMRPC000002 1212 Nrm4 SVAL MEMRPC000002 11111 Nrm3 SVAL MEMRPC000002 1010 Nrm2 SVAL MEMRPC000002 99 Nrm1 SVAL MEMRPC000002 818 NrmO SVAL MEMRPC000002 2323 Void SVAL DEFAULT 2424 SVAL DEFAULT 1717 SVAL DEFAULT 1818 Har2 SVAL DEFAULT 1919 Har3 SVAL DEFAULT 2020 Har4 SVAL DEFAULT 21 21 5 SVAL 31131 Void SVAL DEFAULT 23 23 SVAL DEFAULT 1414 Void SVAL LT 2525 Exm1 SVAL LT 26 26 Exm2 SVAL LT 2727 Exm3 SVAL LT 28 28 Exm4 SVAL LT 2929 5 SVAL C00 1818 Har2 SVAL LT 2222 Void SVAL LT 88 NrmO SVAL LT 00 Idle SVAL LT 11 SVAL LT 22 Mspo SVAL LT 33 Mmsp SVAL ET 44 Msis SVAL LT 55 SVAL LT 1616 SVAL LT 77 SVAL LT 1515 SVAL LT 99 Nrm1 SVAL LT 1010 Nrm2 SVAL LT 11111 Nrm3 SVAL LT 1212 Nrm4 SVAL 13 13 Nrm5 SVAL 32 32 Test SVAL 66 Void SVAL 1212 Nrm4 SVAL 2323 Void SVAL 2222 SVAL 2121 5 SVAL 2020 Har4 SVAL 1919 Har3 SVAL 1717 SVAL 1515 SVAL 1414 Void SVAL 30 30 SVAL 1313 Nrm5 SVAL 2424 SVAL 11111 Nrm3 SVAL 1010 Nrm2 SVAL 33 Mmsp SVAL 33 33 Cal1 SVAL 34 34 SVAL 35 35 Fake SV
246. CK 0 128 1 128WRP08612 PKBM 8 PARAM 240 16 1 16 NRPA4370 7 224 16 1 16 NRPA4360 4 176 16 1 16 NRPA4330 5 192 16 1 16 NRPA4340 2 144 16 1 16 NRPA4310 1 PARAM 128 16 1 16 OBLOCK 0 128 1 128WRP08704 PKBM 160 16 1 16 NRPA4320 6 PARAM 208 16 1 16 NRPA4350 OBLOCK 0 128 1 128WRP08712 PKBM 2 144 16 1 16 NRPA5300 8 240 16 1 16 NRPA5360 TIPARAM 224 16 1 16 NRPA5350 6 PARAM 208 16 1 16 NRPA5340 5 192 16 1 16 NRPA5330 160 16 1 16 NRPA5310 256 16 1 16 NRPA5370 1 PARAM 128 16 1 16 OBLOCK 0 128 1 128WRP08804 PKBM 4 176 16 1 16 5 320 O BLOCK 0 128 1 128 WWRP08812 PKBM 1 PARAM 128 16 1 16 NRPASTO1 2 144 16 1 16 2 OBLOCK 0 128 1 128WRP08301 PKBM OBLOCK 0 128 1 128WRPO08301 PKBM 1 PARAM 128 16 1 16 NRPASTO01 2 144 16 1 16 2 160 16 1 16 4 176 16 1 16 NRPAST04 5 192 16 1 16 NRPAST10 6 PARAM 208 16 1 16 NRPAST11 6 PARAM 208 16 1 16 NRPAST13 5 192 16 1 16 NRPAST12 2 144 16 1 16 2 1 PARAM 128 16 1 16 NRPASTO01 OBLOCK 0 128 1 128WRP08301 PKBM 4 176 16 1 16 NRPAST04 160 16 1 16 OBLOCK 0 128 1 128WRPO08301 1 PARAM 128 16 1 16 NRPASTO1 2 144 16 1 16 2
247. COO TMDP N RPC 84 9 Fine time 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMDP N PUS version number 7 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 TMDP N RPC 84 9 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 84 9 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO N RPC 84 12 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP N RPC 84 12 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP N RPC 84 12Fine time 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMDP PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N Checksum flag 7 SRPRPCOO 2 1 1 URPRPCOO Data field header spare parameter 7 SRPRPCOO 2 4 414 TMDP N RPC 84 12 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 84 12 Packet Subtype 7 2 8 8 TMDP Data field header pad 7 2 8 8 URPRPCOO Reference RO RPC UM etta Issue Draft Rev 0 987 Date Februa
248. COO 2 1 1 DIG 101 URPRPCOO Reset 7T SRPRPCOO 2 1 1 DIG 101 URPRPCOO N No EOP 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO N Ndata0A 7T SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP N 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO DATAV 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP RESETM 7 SRPRPCOO 2 1 4 T_1_BIT DIG 101 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO N EOP rcvd 7 2 1 1 DIG 101 URPRPCOO N 7 2 1 1 DIG 101 URPRPCOO TMDP NM 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO N Sequence Error Code 7 2 8 8 _ DIG CRPV1538 URPRPCOO TMDP Sequence Data Byte 7 SRPRPCOO 2 8 8 _ URPRPCOO TMDP Pressure 7T SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP Pressure Gradient 7 2 8 8 _ URPRPCOO TMGS Pressure Threshold 7T SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMGS N Pressure Grad Threshold 7T SRPRPCOO 2 8 8 BYTE NONE URPRPCOO N Scratch Page 7T SRPRPCOO 2 4 AIT 4 NONE URPRPCOO N Code 7T SRPRPCOO 2 4 4 URPRPCOO N Data Page 7T SRPRPCOO 2 4 47 4 UR
249. COO N Deflection LV ref MEMRPCO00002 N Deflection LV ref DEFAULT N Deflection LV ref MEMRPCO00002 N Deflection HV ref CPOI MPFRPCOO N Deflection HV ref DEFAULT N Deflection HV ref Entrance ref DEFAULT N Entrance ref 00002 N Entrance ref DEFAULT N Noise reduction MPFRPCOO N Noise reduction 00002 Noise reduction MEMRPCO00002 N Fifo low mark DEFAULT N Fifo low mark MPFRPCOO N Fifo low mark MEMRPCO00002 N Fifo high mark DEFAULT N Fifo high mark MPFRPCOO N Fifo high mark Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 3 2 MEMRPCO00002 N Fifo force mark MPFRPCOO Fifo force mark DEFAULT N Fifo force mark N Fifo clear mark DEFAULT N Fifo clear mark MEMRPCO00002 N
250. CP FCS FCT FCV FD FD FDIR FDR FDR FDR FDS FE FEC FEE FE LAN FEM FF FID FIFO FITO FM Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 20 Experiment Intermediate Design Review Equivalent Isotropic Radiated Power Engineering Model ElectroMagnetic Compatibility ElectroMagnetic Interference End of Cycle End of Life End of Packet Electrical Power Conditioner Electrical Power Subsyste Electrical Qualification Model Event Reporting Function European Space Agency Electrostatic Analyzer European Space Agency s communications Network ESA RADiation ESA Thermal Analyser Electrostatic Discharge Electrostatic Discharge Sensitive Earth Strobing Mode European Space Operations Centre Electrical Support System European Space Research and Technology Centre European Space Tracking Network EMC Test Station Equipment under Test Extreme Ultra Violet Flight Dynamics Flight Acceptance Review File Assembly Unit Factory Acceptance Test Fold Back Current Limiter Flight Control Procedure Flight Control System Flight Control Team Flow Control Valve Flight Dynamics Frequency Domain Failure Detection Isolation and Recovery Flight Dynamics Control Room Functional Design Review Flight Dynamics Request Flight Dynamics System Front End Front End Controller Front End Equipment Front End Local Area Network Finite Element Model Full Frame Function Identifier First I
251. DP Segmentation Flag 7 SRPRPCOO 2 2 2T 2 NONE URPRPCOO 84 1 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP N RPC 84 1 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP N RPC 84 1Fine time 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMDP N PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 285 P N Data field header spare parameter 7 2 4 414 TMDP N RPC 84 1 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 84 1 Packet Subtype 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8T BYTE NONE URPRPCOO TMDP N Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO 84 4 Source sequence counter 7 3 10 141 14 TMDP RPC 84 4 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP RPC 84 4Fine time 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMDP PUS version number 7 SRPRPCOO 2 3 3I
252. Density SVAL DEFAU 11 E Field SVAL MPFRPCOO 00 Density SVAL MPFRPCOO 11 E Field SVAL DEFAU 00 Density SVAL MPFRPCOO 00 Density SVAL DEFAU 00 Density SVAL DEFAU 11 E Field SVAL MPFRPCOO 11 E Field SVAL MPFRPCOO 11 SVAL MPFRPCOO 00 SVAL DEFAU 11 SVAL DEFAU 00 SVAL MPFRPCOO 111 SVAL DEFAU 11 SVAL MPFRPC00 00 SVAL DEFAU 00 OFF SVAL 11 Transmitter SVAL MPFRPCOO 00 input SVAL g inp DEFAU 00 Analog input SVAL DEFAU 11 Transmitter SVAL RPCOO 00 E strat Bias SVAL 33 Den gain 1 SVAL C00 33 Den gain 1 SVAL C00 22 Den gain 05 SVAL 22 Den gain 05 SVAL 111 E strat Fl SVAL 00 E strat Bias SVAL C00 11 E strat Fl SVAL 00 Analog input SVAL 11 Transmitter SVAL 11 Transmitter SVAL C00 00 Analog input SVAL 00 E strat Bias SVAL C00 33 Den gain 1 SVAL 0 22 Den gain 05 SVAL 00 111 E strat Fl SVAL C00 00 E strat Bias SVAL 33 1 SVAL 11 E strat Fl SVAL 22 05 SVAL 00 seq SVAL 11 LDLmx MIPseq SVAL 22 LDLnor LDLsq SVAL 313 LDLmx LDLseq SVAL RPC00 00 seq SVAL RPCOO 11 LDLmx MIPseq SVAL RPCOO 22 LDLnor LDLsq SVAL MEMRPC000002 313 LDLmx LDLseq SVAL MEMRPC000002 22 LDLnor LDLsq SVAL MEMRPC000002 00 seq SVAL RPCOO 33 LDLmx LDLseq SVAL MEMRPC000002 11 LDLmx MIPseq SVAL 00002 11 SVAL 00002 00 Outboard SVAL 11 Inboard SVAL RPCOO 00 Outboard SVAL RPCOO 11 SVA
253. E NONE NONE NONE NONE NONE NONE LRPAS320 NONE LRPAS330 NONE NONE NONE NONE NONE NONE z ziziziziziziziziz iziziz iziz iziziziz ziziz ziz iz ziziz ziziziziz iz ziziz ziz ziziz z z z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 293 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE
254. FRPCOO 00002 00002 DEFAULT Low SVAL MEMRPC000002 Yes SVAL MEMRPCO00002 00 SVAL MPFRPCOO SVAL DEFAULT 11 Yes SVAL DEFAULT 00 SVAL MPFRPC00 11 Yes SVAL MEMRPC000002 Stepping SVAL MEMRPC000002 11 SVAL MPFRPCOO Stepping SVAL DEFAULT 11 Fixed SVAL DEFAULT Stepping SVAL MPFRPCOO 11 Fixed SVAL MEMRPC000002 11 Alternating SVAL DEFAULT Fixed SVAL DEFAULT 11 Alternating SVAL MEMRPC000002 Fixed SVAL MPFRPCOO 14 Enable SVAL MEMRPC000002 Inhibit SVAL MPFRPCOO 00 Inhibit SVAL DEFAULT 00 Inhibit SVAL MEMRPC000002 11 Enable SVAL DEFAULT 11 Enable SVAL MEMRPC000002 00 SVAL MEMRPC000002 11 Invalid SVAL 00002 33 Erroneous SVAL MPFRPC00 33 Erroneous SVAL MPFRPCOO 22 Out of range SVAL 11 Invalid SVAL MPFRPC00 SVAL DEFAULT 33 Erroneous SVAL DEFAULT 22 Out of range SVAL DEFAULT 11 Invalid SVAL 00 SVAL 00002 22 Out of range SVAL MPFRPC00 33 SVAL 11 SVAL MEMRPC000002 22 Burst SVAL 00002 33 SVAL 44 SVAL MEMRPC000002 55 SVAL 22 Burst SVAL Min SVAL 11 SVAL 22 Burst SVAL 33 SVAL 44
255. Fine time 7 3 12 16 WORD URPRPCOO TMDP N PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO N Data field header spare parameter 7 2 4 414 TMDP N RPC 83 1 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 83 1 Packet Subtype 7 SRPRPCOO 2 8 8 BYTE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Segmentation Flag 7 SRPRPCOO 2 2 2T 2 NONE URPRPCOO 83 4 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP N RPC 83 4 Coarse time 7 3 14 321 32 URPRPCOO TMDP N RPC 83 4Fine time 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMDP N PUS version number 7 2 3 3IT 3 NONE URPRPCOO TMDP N flag 7 2 1 1 URPRPCOO N Data field header spare parameter 7 2 4 414 TMDP N RPC 83 4 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 83 4 Packet Subtype 7 2 8 8 URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO N RPC 83 7 Source sequence counter 7
256. G AcceptSuccess 7 00101 5 88 1 AUTH OTHER NONE 1 1 ALL NONE MAG IncompletePacket 7 00102 88 1 OTHER NONE 28 28 1 41 ALL NONE N MAG IncorrectChecksum 7 00102 88 1 OTHER 28 28 1 12 ALL N MAG Incorrect APID 7 00102 88 1 AUTH OTHER 24 24 1 13 ALL NONE N MAG InvalidCmdCode 7 00102 88 1 OTHER 28 28 1 14 ALL NONE MAG PbExecTime 7 00102 88 1 OTHER NONE 24 24 1 15 ALL NONE DataFieldInconsistent 7 00102 88 1 SPACE AUTH OTHER NONE 26 26 1 16 ALL Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 256 304 16576 208 128 192 176 144 144 176 176 144 144 192 192 160 160 160 144 208 208 192 192 192 208 208 160 208 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 160 176 144 144 144 144 144 144 144 144 144 144 144 144 144 160 176 144 144 144 1
257. IU RPC 0 ref 8 in RO EST TN 1021 d 5 5 Material Thermal Finish 2 2 Pr C 5 50740 Al alloy 6061 ban colinal 3100 SEED Table 2 5 15 PIU BOL EOL Surface Properties e Name Material A MCp m J K Heater location a Alaley 606 Table 2 5 16 PIU Node Properties Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 148 Table 2 5 17 PIU TRP Design Temperature Ranges Eia iiw Op GI Non Op n W W ee 2 319 4 S C 50740 S C Q Typically 7 3 W Table 2 5 18 PIU Power Dissipations Type Number Ac Node Conductive Node gt C C C Table 2 5 19 PIU Interface Contact Conductances 50740 all faces TRP URF Figure 2 5 6 PIU Electronic Thermal Sketch Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 149 2 5 4 2 2 IES RPC 1 1 ref _ 2 in RO EST TN 1021 ME electron A 1 6061 alo 1 MLI ring bottom 6061 mis buffed Deflectors Noryl mis ebanol C black Aperture 6061 mis ebanol C black MLI ring top mis buffed Optics lon alo 1 Top cover alo 1 MLI base vka 2 MLI DPU vka 2 MLI optics vka 2 MLI top vka 2 1 MIL C 5541 Class 1A 2 2 mils VDA kapton ITO Table 2
258. Identifier ORBITER PAYLOAD INSTRUMENT Monitoring Interval Mission Implementation Plan Mutual Impedance Probe RPC Mandatory Inspection Points Mission Implementation Requirements Document Microwave Instrument for the Rosetta Orbiter Orbiter Payload Memory Load Medium Level Memory Load Command Multi Layer Insulation Mass Memory Memory Management Mass Memory Board Mimic Display Mono Methyl Hydrazine MMH LTO Man Machine Interface Matra Marconi Space Matra Marconi Space Bristol Matra Marconi Space Stevenage Matra Marconi Space Toulouse Memory Management Unit Mission Operations Centre Mission Operations Department LANDER PAYLOAD INSTRUMENT Moment Of Inertia Mission Operations Phase Margin Of Safety Memorandum Of Understanding Mission Planning Area Max Planck Institut f r Aeronomie Max Planck Institut Max Planck Institut f r Kernphysik Multiple Phase Pinning Maximum Power Point Tracking Memory Patch Request Mission Planning System Multi Purpose Tracking System Material Review Board Mission Readiness Test Vost Significant Bit Mission System Design Review Master Science Plan Mechanical Support and Separation system Mission Simulation Test Mission Specific Software MTL MTTR MUPUS MUSC MUX N A NAC NACK NASA NASAPSCN NASTRAN NAVCAM NB NC NCM NCR NCTRS NDIU NDM NF NM NOCC NRT NRZ L NTO OA OAP OB OB OBC OBC OBCP OBDH OBEM OBS OBSM OBSW OBT OC OC OCC OC
259. L 00 Outboard SVAL Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 333 6 4 3 P CALIBRATION N Calib V to OC YSI 44907 Therm CPOI Y IRPRPCOO N PSU Temperature CPOI Y IRPRPCOO N A D 5V Level IRPRPCOO N A D 5V Level IRPRPCOO N A D 12V Level IRPRPCOO N A D 12V Level IRPRPCOO N A D 28V Level IRPRPCOO N ELC MCP Voltage IRPRPCOO N ION MCP Voltage IRPRPCOO N HVMON Voltage IRPRPCOO N Negative 5V Voltage Y IRPRPCOO N Positive 5V Voltage IRPRPCOO N Negative 12V Voltage Y IRPRPCOO N Positive 12V Voltage IRPRPCOO N Mop 28V switch IRPRPCOO N Opto 28V switch IRPRPCOO N Main 28V switch IRPRPCOO N Pacc Hv switch IRPRPCOO N Grid LV switch IRPRPCOO N Entr HV switch IRPRPCOO N Defl LV switch IRPRPCOO N Defl HV switch IRPRPCOO N Direct cmd sw CPOI Y IRPRPC00 N WD enabel sw CPOI IRPRPCOO N GAS enable disable IRPRPCOO Thruster enable disabl IRPRPCOO N Compr switch Y IRPRPCOO N Alt Pacc switch IRPRPC
260. M OCXO OD OHP OIOR OIP OM OMM OOL OPI OPS ORATOS Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 25 Mission Timeline Mean Time To Repair Multi Purpose Sensor experiment Lander Payload Microgravity User Support Centre Multiplexer Not Applicable Narrow Angle Camera Not Acknowledge National Aeronautics and Space Administration NASA Private System Communication Network NASA Structural Analysis Tool Navigation Camera Narrow Band Non Conformity Near Comet Mode Non Conformance Report Network Control and Telemetry Receiver System Network Data Interface Unit Neutral Dynamics Monitor Normal Frequency Normal Mode Network Operations Control Centre JPL Near Real Time Never Return to Zero Level Nitrogen Tetroxide Operational Archive Off Axis Paraboloid Onboard Outboard On Board Computer On Board Clock On Board Control Procedure On Board Data Handling On Board Event Monitoring On Board Software On Board Software Maintenance On Board Software On Board Time Output Code Open Centre Operations Control Centre Orbit Control Mode Oven Controlled Crystal Oscillator Operations Director Observatoire d Haute Provence Orbiter Instrument Operational Request Orbit Injection Point Operations Manager Operational Macro Mode Out Of Limits Orbiter Payload Instrument Operations Orbit Attitude Operations System Reference RO RPC UM Rosetta Issue Draft
261. M 160 16 1 16 NRPA0502 PARAM 144 48 1 48 NRPA0503 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 144 16 1 16 0525 128 16 1 16 0500 128 16 1 16 NRPA0500 PARAM 144 16 1 16 505 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128 08307 128 16 1 16 500 144 16 1 16 NRPA0511 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 192 16 1 16 NRPA0528 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 144 16 1 16 NRPA0525 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 261 160 16 1 16 NRPA0526 4 176 16 1 16 NRPA0527 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 0525 160 16 1 16 NRPA0526 4 176 16 1 16 0527 192 16 1 16 NRPA0528 O BLOCK 0 128 1 128 WRP08307 PKBM O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1 16 NRPA0500 2 144 16 1 16 NRPA0502 160 16 1 16 515 4 176 16 1 16 NRPA0516 O BLOCK 0 128 1 128 WRP08307 PKBM 1 PARAM 128 16 1
262. M Goto param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3212 8 NONE N M Goto param 2 7 2 16 16 URPRPCOO 0 PRPG3212 16 NONE N M Goto param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3212 32 NONE TCDP N M Sample Hold Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb2 N 216 0 TCDP N M Sample Hold param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3216 8 NONE TCDP N M Sample Hold param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3216 16 NONE TCDP N M Sample Hold param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3216 32 NONE M Fillout Buffer Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb3 N PRPG3220 0 M Fillout Buffer param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3220 8 NONE N M Fillout Buffer param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 220 16 NONE M Fillout Buffer param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3220 32 NONE M FullOut Buffer Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb4 N PRPG3224 0 N M FullOut Buffer param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3224 8 NONE N M FullOut Buffer param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3224 16 NONE N M FullOut Buffer param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3224 32 20 Avrg Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hb5 N 228
263. No Error Error nvalid SVAL MPFRPCOO N CP Mon Act Disact nvalid SVAL DEFAULT N CP Mon Act Disact nvalid SVAL DEFAULT N MIP Dog Aslp Actv nvalid SVAL N MIP Dog Aslp Actv nvalid SVAL N 1 Bit Main Red nvalid SVAL DEFAULT N 1 Bit Main Red nvalid SVAL MEMRPC000002 N 1 Bit Main Red nvalid SVAL N 1 Bit Norm Maint nvalid SVAL MEMRPC000002 N 1 Bit Norm Maint nvalid SVAL DEFAULT N 1 Bit Norm Maint nvalid SVAL DEFAULT N RAM Map Flag nvalid SVAL MPFRPCOO N RAM Map Flag nvalid SVAL MEMRPC000002 N RAM Map Flag nvalid SVAL DEFAULT N PROM nvalid SVAL nvalid SVAL MPFRPCOO N Monitor On Off nvalid SVAL DEFAULT N Monitor On Off nvalid SVAL N System ID nvalid SVAL MEMRPC000002 N System ID nvalid SVAL DEFAULT N System ID nvalid SVAL MEMRPC000002 N CommRate nvalid SVAL DEFAULT N CommRate nvalid SVAL CommRate nvalid SVAL MEMRPC000002 N DataType nvalid SVAL DEFAULT N DataType nvalid SVAL DEFAULT N EEPROM Write Flag nvalid SVAL MPFRPCOO N EEPROM Write Flag nvalid SVAL MEMRPC000002 N EEPROM Write Flag nvalid SVAL N EEPROM Ready nvalid SVAL DEFAULT N EEPROM Ready nvalid SVAL MEMRPC000002 N EEPROM Ready nvalid SVAL MPFRPCOO N Safe Arm State nvalid SVAL MEMRPC000002 N Safe Arm State nvalid SVAL DEFAULT N Safe Arm State nvalid SVAL DEFAULT N Clock Selection nvalid SVAL MPFRPCOO Clock Selection nval
264. O ELC DEF HVPS Status 7 2 1 1 T 1 DIG 0104 URPRPCOO ON DEF HVPS Status 7 SRPRPCOO 2 1 1 DIG 0104 URPRPCOO ELC ESA HVPS Status 7 SRPRPCOO 2 1 1 DIG 0104 URPRPCOO ON ESA HVPS Status 7 2 1 1 DIG 104 URPRPCOO ELC MCP HVPS Status 7 SRPRPCOO 2 1 1 DIG 104 TMDP N ON MCP HVPS Status 7 2 1 1 DIG 104 URPRPCOO N Electron Counters State 7T SRPRPCOO 2 2 21 2 DIG CRPV1315 URPRPCOO N lon Counters State 7T SRPRPCOO 2 2 21 2 DIG CRPV1315 URPRPCOO N POS 12V PS Status 7 2 2 212 DIG 104 URPRPCOO N NEG 12V PS Status 7 SRPRPCOO 2 2 21 2 DIG 104 URPRPCOO N POS 5 PS Status 7 2 2 212 DIG 104 URPRPCOO TMDP NEG 5 PS Status 7 SRPRPCOO 2 2 21 2 DIG CRPV0104 URPRPCOO TMDP SysStatReg V8 PLUG 7 2 1 1 DIG 0103 URPRPCOO TMDP SysStatReg HV V8 7 SRPRPCOO 2 1 1 DIG CRPV0103 URPRPCOO TMDP SysStatReg SAFE PLUG 7 2 1 1 DIG 0103 URPRPCOO SysStatReg HVPS ON 7 SRPRPCOO 2 1 1 DIG 0103 URPRPCOO TMDP N Unit Identifier 7 2 3 3IT 3 DIG CRPV1
265. OO N Pacc level IRPRPCOO N Auto red sw IRPRPCOO N Boot EEP incl Context IRPRPCOO N Test pattern Y IRPRPCOO N Boot EEP excl Context Y IRPRPCOO N RPC Internal SID nr CPOI Y IRPRPCOO Default boot section IRPRPCOO Deflection level IRPRPCOO IRPRPCOO N SW start level IRPRPCOO N GAS pressure low CPOI IRPRPCOO N GAS pressure high CPOI IRPRPCOO N Mode cmd IRPRPCOO N Reprog all EEP sections Y IRPRPCOO N Reprog EEP section Y IRPRPCOO N Opto reference IRPRPCOO N reference CPOI Y IRPRPCOO Grid reference IRPRPCOO Pacc low ref IRPRPCOO N Pacc high ref IRPRPCOO N Deflection LV ref IRPRPCOO N Deflection HV ref IRPRPCOO Entrance ref IRPRPCOO Noise reduction IRPRPCOO N Fifo low mark IRPRPCOO N Fifo high mark IRPRPCOO force mark Fifo clear mark IRPRPCOO N Opto HV monitor IRPRPCOO N HV monitor IRPRPCOO Deflection HV monitor Y IRPRPCOO Deflection LV monitor Y IRPRPCOO N Pacc HV monitor Y IRPRPCOO N HV monitor IRPRPCOO N Grid LV monitor IRPRPCOO N Sensor temperature IRPRPCOO N DPU temperature CPOI Y IRPRPCOO
266. OO TMGS Failure Word A1 7 SRPRPCOO 3 12 16 T WORD NONE URPRPCOO TMGS Failure Word BO 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Failure Word B1 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS HK Type Sent 7 2 16 16 WORD URPRPCOO TMGS N LapMip Sync Bits 7 3 12 16 WORD URPRPCOO TMGS N Code Build No 7 3 12 16 WORD URPRPCOO TMGS N Maj Vers ID 7 3 12 16 WORD URPRPCOO TMGS N Min Vers ID 7 3 12 16 WORD URPRPCOO TMGS N Seq Number 7 3 12 16 WORD URPRPCOO TMGS Bad Block Index 7 3 12 16 WORD URPRPCOO TMGS BadMemCurrentld 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS E2prom Failure Addr 7T SRPRPCOO 3 14 32 T 32 NONE URPRPCOO TMGS N Bad Eprom Chksum 7 3 12 16 WORD URPRPCOO TMGS PC at Faulty IRQ 7 3 12 16 WORD URPRPCOO TMGS N Faulty Register 7 3 12 16 T WORD URPRPCOO TMGS Level Before Reset 7 3 12 16 WORD URPRPCOO TMGS Level After Reset 7 3 12 16 T WORD URPRPCOO TMGS Seq Count 7 SRPRPCOO 3 12 1677 WORD URPRPCOO TMGS Unit ID 7 3 12 16 WORD URPRPCOO TMGS N Par Mntr Value 7 3 12 16 WORD
267. P Dog Aslp Actv SVAL Y RPRPC00 1 Bit Main Red SVAL Y IRPRPC00 1 Bit Norm Maint SVAL Y RPRPC00 RAM Map Flag SVAL Y IRPRPC00 PROM On Off SVAL Y RPRPC00 Monitor On Off SVAL Y IRPRPC00 System ID SVAL SVAL Y CommRate SVAL Y IRPRPCOO DataType SVAL Y IRPRPC00 EEPROM Write Flag SVAL SVAL Y RPRPCOO Safe Arm State SVAL Y RPRPCOO Clock Selection SVAL IRPRPCOO SetType 1 SVAL RPRPCOO Internal State SVAL RPRPCOO Communications Mode SVAL RPRPCOO Counter State SVAL RPRPCOO Unit ID SVAL IRPRPCOO Set Type2 SVAL Y RPRPCOO Checksum Status SVAL Y IRPRPCOO IES Last executed opcode SVAL Y 1 Bit INACTIVE ACTIVE SVAL Y RPRPC00 Mux Control Flag SVAL N IRPRPC00 SetType 3 SVAL Y RPRPC00 SetType 4 SVAL Y RPRPC00 Subsystem SVAL Y IRPRPC00 DiagType SVAL N IRPRPC00 IES Mode Cal SVAL RPRPCOO MagicWord SVAL IRPRPCOO RAM Fill Type SVAL Y RPRPCOO Mem Service Error Type SVAL Mem Service Info SVAL RPRPCOO Sequence Error Code SVAL SVAL IRPRPCOO Binary level SVAL Y IRPRPCOO Yes No types SVAL Y IRPRPCOO HV type SVAL Y IRPRPCOO Pacc type SVAL Y High Voltage SVAL Y RPRPCOO Cmd status SVAL Y IRPRPCOO RPC Internal Sid type SVAL IRPRPCOO Mode SVAL N IRPRPCOO 1 Bit Enabled Disabled SVAL Y RPRPCOO 1 Bit Alive Dead SVAL RPRPCOO LDL Syncronisation SVAL IRPRPCOO LDL mix
268. P22203 SW start level S Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 176 Sets the Deflection HV table start index for solar wind modes PRPG2203 index 0 64 XW Settings SWlevel ZRP22204 Gas pressure low S Sets the ROSINA gas pressure low limit for automatic action PRPG2204 pressure on the same form as delivered by ROSINA 0xme XW Settings GasLow ZRP22204 Gas pressure high S Sets the ROSINA gas pressure high limit for automatic action PRPG2204 pressure on the same form as delivered by ROSINA XW Settings GasHigh ZRP22210 Mode S Sets the operational mode PRPG2210 mode 0 39 HK Mode NRPD2300 XW Modes Test Cal2 Fake Idle Mspo Msis Mexm Nrm0 7 Har0 7 Exm0 7 ZRP22212 Reprog all EEP sections D Will reprogram all EEPROM sections from a given source 0 15 EEP section 16 PROM Valid in test and Idle modes only PRPG2212 source XW Keyboard only ZRP22213 Reprog EEP sections D Will reprogram an EEPROM section from a given source The 8 bit parameter is split in 2 as 7 Petton PRPD2513 source section 0 15 PRPD2514 destination section 0 15 If the source is equal to the destination the PROM memory is used as source Valid in test and Idle modes only XW Keyboard only Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 177 3 1 2 3 6 Class 3 type 223 ZRP2
269. PA0500 PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 0500 144 16 1 16 510 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 144 16 1 16 NRPA0502 PARAM 160 16 1 16 NRPA0515 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM PARAM 128 16 1 16 NRPA0500 BLOCK 0 128 1 128 WRP08307 PKBM BLOCK 0 128 1 128
270. PC UM Issue Draft Rev 0 987 Date February 20 2002 Page 60 1 2 2 4 2 4 The Interface Control of both MAG FPGAs Figure 1 2 13 shows the main logic elements and signals used by the 1 of the Interface Control Logic Generate the Buffer loading signals after each ADC LOAD 4 1 3 1 Supply the appropriate Data Source and Byte Select signals SEL DS SEL Byte for Byte Selector Logic Fig 4 during the Data transfer to 1355 Generate the required address chip select and write pulse for 1355 HA 2 0 HCS HIOW Three counter are used by the Logic Byte Counter in Packets Packet Counter Internal Timer Counter INTIM The role of the counters can be seen from the Flow Diagram The Byte and Packet Counters are also used by the Packet building circuits to select the appropriate byte header or trailer for the transfer The aim of the INTIM counter timer is to prohibit the byte write double into the 1355 input buffer if the 1355 does not react enough fast to the write transfer i e it does not defer the next byte write with the ndataO signal in time In other words if the 1355 always allows the transfer then the INTIM timer will define the byte write frequency The Flow control signals are NM NDATAO NDATOA The Flow Diagram below also shows how they influence defer the Byte transfer to the 1355 1 2 2 4 3 The Operation Flow of the MAG FPGA The Flow Diagram summaries the operation of
271. PCOO 2 8 8 DIG CRPV0103 URPRPC00 Y PRPG1710 8 NONE N IES STIM ION ADJ Op 7 SRPRPCOO 3 4 8 URPRPCOO 114 PRPG1720 0 N IES STIM ION ADJ StRate 7 3 4 8 URPRPCOO PRPG1720 8 NONE N IES STIM ION EN Op 7 SRPRPCOO 3 4 8 URPRPCOO 115 Y PRPG1730 0 Rosetta Reference Issue Date RPC UserManual Pas 238 RO RPC UM Draft Rev February 20 2002 0 987 TCDP N IES STIM ION EN Ctl 7 SRPRPCOO 2 8 81016 103 URPRPCOO PRPG1730 8 NONE TCDP N IES SEQ END Op 7 SRPRPCOO 3 4 8 URPRPCOO 144 PRPG1900 0 N IES SEQ END SeqNum 7 3 4 8 URPRPCOO Y PRPG1900 8 NONE N IES SEQ END ALL Op 7 SRPRPCOO 3 4 8 URPRPCOO 145 PRPG1910 0 N IES SEQ END ALL Pad 7 3 4 8 PRPG1910 8 NONE TCDP N IES SEQ TRIGGER Op 7 SRPRPCOO 3 4 8 URPRPCOO 146 PRPG1B34 0 N IES SEQ TRIGGER SeqNum 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B34 8 NONE IES SEQ TRIGGER Cksum 7 SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B34 16 NONE N Sid nr 7 SRPRPCOO 2 3 URPRPCOO 1 Y PRPG2315 13 NONE
272. PCOO 250 25 DEFAULT 250 25 CPO DEFAULT 0 50 00002 250 25 00002 500 0 00002 750 25 00002 1000 50 DEFAULT 500 0 DEFAULT 100 40 MEMRPCO00002 128 4 MEMRPCO00002 127 5 MPFRPCOO 127 5 MPFRPCOO 128 4 DEFAULT 127 5 DEFAULT 128 4 00002 128 5 DEFAULT 128 5 00002 127 4 DEFAULT 127 4 MPFRPCOO 127 4 MPFRPCOO 128 5 DEFAULT 127 14 128 9 127 14 DEFAULT 128 9 000002 128 9 00002 127 14 00002 127 9 RPCOO 127 9 RPCOO 128 14 127 9 128 14 000002 128 14 RPCOO 128 23 000002 128 23 RPCOO 127 32 127 32 128 23 000002 127 32 0 0 8191 5000 8191 5000 0 0 0 0 8191 5000 8191 5000 0 0 6827 8500 0 0 6827 8500 0 0 0 0 4545 5 4545 5 0 0 4545 5 0 0 4545 5 0 0 3246 12 3246 12 0 0 0 0 3246 12 0 0 3246 12 0 0 MEMRPCO00002 2 0
273. PRPCOO N ELC MCP Voltage 7T SRPRPCOO 4 10 141 14 CRPP150A URPRPCOO TMDP ION MCP Voltage 7 SRPRPCOO 4 10 141 14 150 URPRPCOO HVMON Voltage 7 4 10 141 14 150 Negative 5V 7 4 10 141 14 CRPP151A URPRPCOO N Positive 5V 7 4 10 141 14 151 URPRPCOO Negative 12V 7 4 10 141 14 151 URPRPCOO Positive 12V 7 4 10 141 14 CRPP151D URPRPCOO N Mode 7 2 6 6 6 DIG 2381 URPRPCOO TMDP Command status 7 SRPRPCOO 2 2 212 DIG CRPV2280 URPRPCOO TMDP Deflection HV log switch 7 SRPRPCOO 2 1 1 DIG 100 N Deflection LV log switch 7 SRPRPCOO 2 1 1 DIG 100 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 282 P Entrance log switch 7 2 1 1 DIG 100 RI TMDP N Grid LV log switch 7 2 1 1 DIG 100 URPRPCOO TMDP
274. PRPCOO TMDP N MIPLAP 7 2 1 1 DIG 20 URPRPCOO TMDP N BTSTRP 7 2 1 1 DIG 21 URPRPCOO TMDP N F2122 7 2 1 1 DIG CRPV3322 URPRPCOO TMDP N F22EDDEDC 7 2 2 212 DIG CRPV3323 URPRPCOO TMDP N F1121 7T SRPRPCOO 2 1 1 DIG CRPV3325 URPRPCOO TMDP N F11EDDEDC 7 SRPRPCOO 2 2 2T 2 DIG CRPV3326 URPRPCOO TMDP N Spare 3 7 3 4 8 BYTE NONE URPRPCOO TMDP N Calibration A 7 3 4 8 BYTE NONE URPRPCOO TMDP N Calibration B 7 SRPRPCOO 3 4 8T BYTE NONE URPRPCOO TMDP N Spare 4 7 SRPRPCOO 3 4 8 TMDP N SWVersion 7 SRPRPCOO 3 4 8 URPRPCOO TMDP N LDL synchro 7 SRPRPCOO 2 2 212 DIG 4200 URPRPCOO TMDP N seq counter 7 2 6 6 6 URPRPCOO TMDP N LDL seq counter 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N MIP seq counter 7 2 8 8 URPRPCOO TMDP Info Passive 7 SRPRPCOO 3 4 8 BYTE NONE URPRPCOO TMDP N Info Amp Active 7 SRPRPCOO 3 4 8 BYTE NONE URPRPCOO TMDP N Info Freq Active 7 SRPRPCOO 3 4 8 URPRPCOO TMDP N CONFIG Byte 0 7 2 8 8 URPRPCOO TMDP N CONFIG Byte 1 7 2 8 8 URPRPCOO TMDP N CONFIG Byte 2 7 2
275. PRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS N ReceivedChecksum 7 3 12 16 WORD URPRPCOO TMGS N ComputedChecksum 7 3 12 16 WORD URPRPCOO TMGS 4 Par3 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS N FC4 Par4 7 3 12 16 WORD TMGS InconsistentPar 7 SRPRPCOO 3 12 1617 WORD NONE URPRPCOO TMGA PAY429 Rpc les Temp 7 00 3 12 16 T WORD ANA 01 ICDAY2206 URPRPCOO UDMRTUPSM000 TMGA PAY430 Rpc Temp 7 SRPIESOO 3 12 161 WORD ANA 001 ICDAY2206 URPRPCOO UDMRTUPSM000 TMGA PAY431 Rpc Temp 7 SRPIESOO 3 12 16 T WORD 01 2005 URPRPCOO UDMRTUPSM000 TMDP IES Switch 7 SRPRPCOO 2 1 DIG 100 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 278 N ICA Switch 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO N LAP HV Switch 7 SRPRPCOO 2 1 1 DIG 100 URPRPCOO TMDP LAP Switch 7 2 1 1 DIG 100 Switch 7 2 1 1 DIG
276. PRPCOO 3 12 16 URPRPCOO PRPG1B28 24 NONE ES SAFETY AMB Pad1 7 SRPRPCOO 3 4 8 URPRPCOO PRPG1B28 40 ES SAFETY AMB 2 7 SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B29 0 N ES SAFETY ELC Op 7 3 4 8 97 PRPG1B30 0 N ES SAFETY ELC Threshold 7 3 14 32 URPRPCOO Y PRPG1B30 8 NONE TCDP N ES SAFETY ELC SampleSz 7 3 4 8 URPRPCOO Y PRPG1B30 40 TCDP N ES SAFETY ELC Exceeds 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B31 0 N ES SAFETY ELC Pad 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B31 8 NONE TCDP N IES SAFETY ION Op 7 SRPRPCOO 3 4 8 URPRPCOO 98 Y PRPG1B32 0 N IES SAFETY ION Threshold 7 SRPRPCOO 3 14 32 URPRPCOO PRPG1B32 8 NONE N IES SAFETY ION SampleSz 7 3 4 8 URPRPCOO Y PRPG1B32 40 NONE N IES SAFETY ION Exceeds 7 3 4 8 URPRPCOO Y PRPG1B33 0 N IES SAFETY ION Pad 7 3 4 8 URPRPCOO Y PRPG1B33 8 NONE IES STIM ELC ADJ 7 SRPRPCOO 3 4 8 URPRPCOO 112 PRPG1700 0 N IES STIM ELC ADJ StRate 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1700 8 NONE TCDP N IES STIM ELC EN Op 7 SRPRPCOO 3 4 8 URPRPCOO 113 PRPG1710 0 IES STIM ELC EN 7 SRPR
277. Pd ONU SON E es NO j 06 2 sus E a Se ee i Rosetta RPC UserManual T Figure 2 5 1 Thermal Interface Control Drawing for IES a 7 0 98 Rev February 20 2002 RO RPC UM 140 Draft Reference Issue Date Page Rosetta RPC UserManual o PS 0 1 sopfug 80006 jo aynynsul MISKSOWAY 803 L3ITITISNI LDE Hn 6 824 243 0 EZOCALDVdVJ 9NISTOH d lt 90690000 999242 lt lt lt 29 00 5 250 55 55 5 IX Q 99 i lt lt RRR 2 gt 25 50 T 25 555505605059 CAR RR NR 5 50 te NOLLVTISN 1109 30343 34 1 Z0 DN1d003 IALINONOD 19101 WW Z LHOIGH SWIHS 7 255556506 595555525555 905028690600 550
278. R STATUS T SRPRPCOO 3 4 8 URPRPCOO 65 Y PRPG1410 0 IES INSTR CLR STATUS Pad T SRPRPCOO 3 4 8 Y PRPG1410 8 NONE IES INSTR PROG MODE T SRPRPCOO 3 4 8 URPRPCOO 67 1430 0 N ES INSTR PROG MODE Mode T SRPRPCOO 2 8 8 DIG 1431 URPRPCOO Y PRPG1430 8 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 237 TCDP N IES INSTR RESET Op 7 SRPRPCOO 3 4 8 URPRPCOO 68 PRPG1440 0 TCDP N IES INSTR RESET Pad 7 SRPRPCOO 3 4 8 URPRPCOO PRPG1440 8 NONE N IES INSTR WDOG CTL Op 7 SRPRPCOO 3 4 8 URPRPCOO 69 PRPG1B16 0 N IES INSTR WDOG CTL Cnter 7 SRPRPCOO 3 12 16 PRPG1B16 8 NONE N IES INSTR WDOG CTL Pad 7 SRPRPCOO 3 4 8 URPRPCOO PRPG1B16 24 NONE TCDP N IES MEM COPY Op 7 SRPRPCOO 3 4 8 URPRPCOO 81 Y PRPG1B23 0 N IES MEM COPY SrcPage 7 SRPRPCOO 3 4 8 URPRPCOO Y PRPG1B23 8 NONE IES MEM COPY SrcAddr 7 SRPRPCOO 3 12 16 URPRPCOO Y PRPG1B23 1
279. ROSETTA PLASMA CONSORTI UM USERS MANUAL V 0 987 Compiled by Raymond Hoofs ESTEC Noordwijk Michael Ludlam Dr Chris Lee IC London Dr Ingo Richter IGM TU BS February 2002 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 Page 2 Table of Contents TABLE OF CONTENTS 2 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 3 2 1 4 73 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 4 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 5 2 5 3 Temperatures and Thermal Control Budget 144 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 February 20 2002 Date PC UserManual race 6 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 7 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 February 20 2002 Date RPC UserManual 8 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 9 List of Figures Figure 1 2 1 RPC Sensors Layout stowed 36 Figure 1 2 2 RP ensors Layout deployed igure 1 2 3 Overall Block Diagram O igure 1 2 5 and Electron Sensor Block Diagram 2 igure 1 2 6 Composition Analyser ICA Block Diagram 2 igure 1 2 Fluxgate Magnetometer Block Diagram 49 igure 1 2
280. RPCOO 0 PRPG3036 8 NONE N Control Reg Par 2 7 2 16 16 URPRPCOO 0 PRPG3036 16 NONE N Control Reg Par 7 2 16 16 URPRPCOO 0 Y PRPG3036 32 NONE TCDP N Denisty Sweep Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hC N PRPG3040 0 N Denisty Sweep param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3040 8 NONE Denisty Sweep param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3040 16 NONE TCDP N Denisty Sweep param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3040 32 NONE TCDP N Denisty Fix Bias Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hD N PRPG3044 0 N Denisty Fix Bias param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3044 8 NONE N Denisty Fix Bias param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3044 16 NONE N Denisty Fix Bias param 3 7 2 16 16 URPRPCOO 0 PRPG3044 32 NONE E Fix Bias 7 SRPRPCOO 2 8 8 URPRPCOO hE N PRPG3048 0 N E Fix Bias param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3048 8 NONE N E Fix Bias param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3048 16 NONE N E Fix Bias param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3048 32 NONE IO Opcode 7 SRPRPCOO 2 8 8 URPRPCOO hF N PRPG3052 0 N IO Poke param 1 7 SRPRPCOO 2 8 8
281. RPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 288 P RPC 86 9 Packet Subtype 7 2 8 8 URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO N RPC 86 12 Source sequence counter 7 3 10 141 14 TMDP N RPC 86 12 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP RPC 86 12Fine time 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMDP N PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N Checksum flag 7 SRPRPCOO 2 1 1 URPRPCOO Data field header spare parameter 7T SRPRPCOO 2 4 414 URPRPCOO TMDP N RPC 86 12 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 86 12 Packet Subtype 7 2 8 8 TMDP N Data field header pad 7 2 8 8 URPRPCOO TMDP N Segmentation Flag 7 2 2 212 URPRPCOO 87 1 Source sequence counter 7 3 10 141 14 URPRPCOO
282. RPRPCOO TMGS N RPC 86 1 Data field header PUS 7T SRPRPCOO 3 14 32 T 32 NONE URPRPCOO TMGS N RPC 86 4 Packet sequence counter 7 3 12 1677 WORD URPRPCOO TMGS RPC 86 4 Packet length 7 SRPRPCOO 2 16 1677 WORD NONE URPRPCOO TMGS N RPC 86 4 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS N RPC 86 4 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS RPC 86 7 Packet sequence counter 7 3 12 161 WORD URPRPCOO TMGS RPC 86 7 Packet length 7 2 16 1677 WORD URPRPCOO TMGS RPC 86 7 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS RPC 86 7 Data field header PUS 7 SRPRPCOO 3 14 321 32 URPRPCOO TMGS RPC 86 9 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS N RPC 86 9 Packet length 7 2 16 16 WORD URPRPCOO TMGS N RPC 86 9 Data field header time field 7 SRPRPCOO 9 17 481 48 URPRPCOO TMGS N RPC 86 9 Data field header PUS 7 3 14 321 32 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual Pae 277 N RPC 86 12 Packe
283. Readiness Review GW Gravitational Waves HDBK Handbook HDR Hardware Design Review HF High Frequency HFC High Frequency Clock HGA High Gain Antenna HGAPM Pointing Mechanism HIB Hibernation HIPPS Highly Integrated Pluto Payload System HK Housekeeping HL High Limit Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 22 HM Hibernation Mode HMC Halley Multicolour Camera HOOD Hierarchical Object Oriented Design HPA High Power Amplifier HPC Hight Power Command HPCM HPC Module HPD High Performance Demodulator HRM Holddown amp Release Mechnism HSD High Speed Data HTCB Handling Transport Clamp Band HV High Voltage HVPS High Voltage Power Supply Individually Controlled Interface Input Output I amp T Integration amp Testing 1 Instituto de Astrofisica de Andalucia IAS Institute d Astrophysipue Spatiale IAS CNR Istituto di Astrofisica Spaziale Consiglio Nazionale delle Richerche IB Inboard I BOB Intelligent Break Out Box ICA lon Composition Analyser RPC IC Imperial College London ICD Interface Control Document ID Identifier IDA Institut f r Datenverarbeitungsanlagen IDR Instrument Design Review IEEE Institute of Electric and Electronics Engineers IES lon and Electron Sensor RPC IF Intermediate Frequency IFEM Interface Finite Element Model IFOV Intrinsic Field Of View IMMM Interface Mechan
284. Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 173 ZRP22018 Shadow enable disable S Not yet implemented in PIU and RSDB Enables or disables the zero out of imager sectors in shadow PRPG2018 1 or 0 XW Keyboard only ZRP22025 Next cmd direct D Flags that the next command should be direct even if of type synchronized No parameter XW SyncDir ZRP22026 Deflection step S Sets the Deflection HV to step mode if fixed No parameter Also see ZRP22201 ZRP22306 and ZRP22307 XW HVrefs DflStp ZRP22027 Entrance step S Sets the Entrance HV to step mode if fixed No parameter Also see ZRP22202 and ZRP22308 XW HVrefs EntStp ZRP22028 Release V cal format D Will release the HV calibration format into the TM data stream No parameter XW Modes Vcal ZRP22035 Test WD reset D Will test the Watch Dog circuitry will cause reboot No parameter XW Tests WDrset ZRP22036 Empty Fifo S Will empty the TM Fifo No parameter XW Various Efifo ZRP22037 Flush Fifo D Will flush the TM Fifo if it contains less words than the size of the current SID block size This is performed by padding with zeros No parameter XW Various Ffifo ZRP22038 Boot PROM D Will reboot with the code held in PROM That is as on power on No parameter XW Various BootPRM ZRP22039 Imager test D Reference RO RPC UM Issue Draft Rev 0 987 Date
285. Rev 0 987 Date February 20 2002 RPC UserManual 26 ORS Operation Request Structure OSI Open System Interconnection OSIRIS Optical Spectroscopic and Infrared Remote Imaging System Orbiter OU Open University P B Play Back data from Solid State Recorder P L Payload PA Product Assurance PAD Padding to a good block length modulo packet length integer packets only LAP PAIP Product Assurance Implementation Plan PALASIM Parallel Access Large Silicon Memory PC Project Control PCA Pressure Controlled Assembly PCB Printed Board Circuit PCE Power Controller Electronics PCM Pulse Code Modulation PCM Power Converter Module PCS Packet Check Sequence PCU Power Control Unit PDF Product Definition File PDL Pseudo Design Language PDR Preliminary Design Review PDS Planetary Data System PDU Power Distribution Unit PEM Project Element Manager PEM Plasma Environment Monitor PES Performance Evaluation System PFC Parameter Format Code PFM Proto Flight Model PHD Project History Documents Pl Principal Investigator PID Parameter Identifier PID Process Identifier PIR Post Integration Review PISA Principal Investigators Support Area PIU Plasma Interface Unit RPC Packet PLM Payload Module PM Project Manager PM Processing Module PMD Propellant Management Device PMIS Project Management Information System PMP Part Material and Process PMU Processor Module Unit POR Payload Operation Reques
286. SEH ANART Figure 1 2 6 lon Composition Analyser ICA Block Diagram Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 48 1 2 2 4 Fluxgate Magnetometer To measure the magnetic field a system of two ultra light triaxial fluxgate magnetometers about 36 g each is proposed with the outboard OB sensor mounted close to the tip of the about 1 5 m long spacecraft boom pointing away from the comet nucleus and with the inboard IB sensor on the same boom about 15 cm closer to the spacecraft body Two magnetometer sensors are required to minimise the influence of the rather complex spacecraft field on the actual measurements and for redundancy purposes In order to meet the scientific requirements as discussed above the spacecraft magnetic DC field requirement is about 25 nT at the outboard MAG sensor To achieve this goal a magnetic cleanliness programme 1 planned conducted by the team supported by the ROSETTA project To further eliminate spacecraft fields and zero offsets the so called multi magnetometer technique will be applied in conjunction with statistical in flight techniques To increase time resolution 6 A D converters one for each of the six sensor channels will be used synchronously The A D converters have a resolution of 20 bits each MAG will be operated with a high temporal resolution of about 20 vectors sec outboard and inboard Transmi
287. T 3 NONE URPRPCOO TMDP N Checksum flag 7 SRPRPCOO 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 TMDP N RPC 84 4 Packet Type 7 2 8 8 URPRPCOO TMDP N RPC 84 4 Packet Subtype 7 2 8 8T BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 URPRPCOO TMDP N Segmentation Flag 7 2 2 212 URPRPCOO 84 7 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP N RPC 84 7 Coarse time 7 SRPRPCOO 3 14 32 32 NONE URPRPCOO TMDP N RPC 84 7Fine time 7 3 12 16 WORD URPRPCOO TMDP PUS version number 7 SRPRPCOO 2 3 3IT 3 BIT NONE URPRPCOO TMDP N flag 7 SRPRPCOO 2 1 1 URPRPCOO N Data field header spare parameter 7 2 4 414 URPRPCOO TMDP RPC 84 7 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP RPC 84 7 Packet Subtype 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Segmentation Flag 7 SRPRPCOO 2 2 2T 2 NONE URPRPCOO 84 9 Source sequence counter 7 3 10 141 14 URPRPCOO TMDP N RPC 84 9 Coarse time 7 3 14 321 32 URPRP
288. TH NONE 24 24 1 13 ALL PIU InvalidCmdCode 7 00102 83 1 NONE 28 28 1 14 ALL PIU PbExecTime 7 00102 83 1 NONE 24 24 1 15 ALL PIU DataFieldInconsistent 7 00102 83 1 NONE 26 26 1 16 ALL PIU ExeSuccess 7 00107 5 83 1 AUTH NONE 1 1 ALL PIU ExeFailure 7 00108 83 1 AUTH OTHER NONE 24 24 1 11 ALL 5 AcceptSuccess 7 00101 5 84 AUTH NONE 1 1 ALL 5 IncompletePacket 7 00102 84 1 AUTH NONE 28 28 1 11 ALL Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 255 N ES IncorrectChecksum 7 00102 1 1 1 2 ES Incorrect APID 7 00102 84 1 OTHER NONE 24 24 1 13 ALL N ES InvalidCmdCode 7 00102 84 1 NONE 28 28 1 14 ALL NONE ES PbExecTime 7 00102 84 124 24 1 15 ALL
289. URPRPCOO 0 0 N Fifo high mark 7 SRPRPCOO 2 16 16 ANA 2 11 URPRPCOO TBD 0 0 N Fifo force mark 7 2 16 16 ANA 2312 URPRPCOO TBD 0 0 N Fifo clear mark 7 2 16 16 CRPP2313 URPRPCOO TBD 0 0 N Start cmd 7 SRPRPCOO 0 16 16 URPRPCOO hFO000 N Reprog all EEP sections 7 SRPRPCOO 2 16 16 ANA 2212 URPRPCOO TBD 0 0 N Reprog EEP section 7 SRPRPCOO 2 16 16 URPRPCOO hODOO N Security lock 7 SRPRPCOO 2 16 16 URPRPCOO hFEED Y NONE N Dummy Command 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE N Set Telemetry Rate 7 0 48 48 N Start Sampling 7 SRPRPCOO 0 48 48 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 247 Stop Sampling 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE 7 SRPRPCOO 0 48 48 URPRPCOO Y NONE Dog Prom 7 0 48 48 URPRPCOO
290. URPRPCOO TMDP N Monitor 3 7 3 10 141 14 URPRPCOO TMDP N ION DEF Undervoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N ELC DEF Undervoltage 7 2 1 1 DIG 0101 URPRPCOO TMDP N ION ESA Undervoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N ELC ESA Undervoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N HVMON Undervoltage 7 2 1 1 DIG 101 URPRPCOO TMDP N ION MCP Undervoltage 7 SRPRPCOO 2 1 TT 1 DIG 0101 URPRPCOO TMDP N ELC MCP Undervoltage 7 2 1 1 DIG 0101 URPRPCOO TMDP N Positive 12V Undervoltage 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP N Negative 12V Undervoltage 7 SRPRPCOO 2 1 1 DIG 101 URPRPCOO TMDP N Positive 5V Undervoltage 7 SRPRPCOO 2 1 1 T 1 DIG 0101 URPRPCOO TMDP Negative 5V Undervoltage 7 SRPRPCOO 2 1 1 T 1 DIG 101 URPRPCOO TMDP N ION DEF Overvoltage 7 2 1 1 T 1 DIG 0101 URPRPCOO TMDP N ELC DEF Overvoltage 7 2 1 1 T 1 DIG 0101 URPRPCOO N ION ESA Overvoltage 7 SRPRPCOO 2 1 1 T 1 DIG 0101 URPRPCOO TMDP N ELC ESA Overvoltage 7 2 1 1 DIG 0101 URPRPCOO TMDP N HVMON Overvoltage 7
291. URPRPCOO TMGS RPC 88 1 Packet length 7 2 16 16 WORD URPRPCOO TMGS N RPC 88 1 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS RPC 88 1 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS RPC 88 4 Packet sequence counter 7 SRPRPCOO 3 12 161 WORD NONE URPRPCOO TMGS RPC 88 4 Packet length 7 00 2 16 1677 WORD URPRPCOO TMGS RPC 88 4 Data field header time field 7 SRPRPCOO 9 17 481 48 BIT NONE URPRPCOO TMGS RPC 88 4 Data field header PUS 7 SRPRPCOO 3 14 321 32 URPRPCOO TMGS RPC 88 12 Packet sequence counter 7 3 12 161 WORD URPRPCOO TMGS N RPC 88 12 Packet length 7 SRPRPCOO 2 16 16 WORD NONE URPRPCOO TMGS N RPC 88 12 Data field header time field 7 9 17 481 48 TMGS RPC 88 12 Data field header PUS 7 3 14 321 32 URPRPCOO TMGA MIRO SDT SAMP NMRASDTB 7 SMRMIROO 3 12 1677 WORD NONE UMRMIROO UMRMIROO TMGS Global PID 7 3 12 16 WORD URPRPCOO TMGS N Sequence Control 7 3 12 16 WORD URPRPCOO TMGS N FailureCode 7 3 12 1677 WORD TMGS N Packet Service Info 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS Length in TC header 7T SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS Nb of received bytes 7 SR
292. Z 5 T3 Temperature Sensors internal sensors AG able 2 5 14 Nodes 4 able 2 5 19 PIU Interface Contact Conductances 48 able 2 5 27 Node Properties 19 able 2 5 22 RP Design Temperature Ranges 49 able 2 5 23 Power Dissipations able 2 5 24 nternal Conductive Couplings able 2 5 25 nternal Radiative Couplings able 2 5 26 nterface Contact Conductances able 2 5 2 ICA BOL Surface Properties able 2 5 28 ICA EOL Surface Properties Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Table 2 5 29 ICA Node Properties 152 able 2 5 30 ICA TRP Design Temperature Ranges able 2 5 31 ICA Power Dissipations able 2 5 32 ICA Internal Conductive Couplings able 2 5 33 ICA Internal Radiative Couplings able 2 5 34 ICA Interface Contact Conductances 54 able Z 5 35 OL Surface Properties able 2 5 36 LAP Node Properties able 2 5 37 TRP Design Temperature Ranges able 2 5 38 LAP Power Dissipations able 2 5 39 Internal Conductive Couplings able 2 5 40 Tnterface Contact Conductances 6 able 2 5 42 MIP Node Properties able 2 5 43 TRP Design Temperature Ranges able 2 5 44 MIP Power Dissipations 59 able 2 5 45 MIP Internal Conductive Couplings 9 able 2 5 46 MIP Internal Radiative Couplings able 2 5 47 Interface Contact Conductances 9 able 2 5 49 OL Surface Properties 60 able 2 5 50 MAG Node Properties 60 abl
293. acecraft mandatory packet services such as Telecommand reception reports Phases _ RPO _ Phases Approach Relay Usage Telemetry Reports Memory Dumps typically 1096 wesss Boo Science Modes 3 amp 4 Telemetry Context Context 04 At RPC Power on PIU and Exp Patches 0 2 Patches Other TBD TBD Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 122 e emm mL Phases Usage Housekeeping Event Active time Telemetry Reports Memory Dumps typically 196 Science Modes 1 amp 2 0 17 Telemetry Context Contet At RPC Power on fe 4 Patches Other 1 2 12 Phases Comet Drift Usage Telemetry Reports Memory Dumps typically 5 Science Mode 5 1 08 At RPC Power on Software PIU and Exp Patches 0 2 Patches Other 1 j TBD 1 TBD P Ene 6 Phases Encounters Usage Telemetry Reports Memory Dumps Science Modes 5 23 3 Telemetry Context ________ 01 At RPC Power on gomet PIU and Exp Patches 0 2 Patches Other TBD CTBT TBD Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 123 RPO Phases Mapping Usage Housekeeping Event Active time Telemetry Reports Memory Dumps typically 50 Science Modes 3 amp 7 11 6 Telemetry Context Context 101 At RPC Power
294. ag 7 2 2 212 URPRPCOO 87 12 Source sequence counter 7 3 10 141 14 TMDP N RPC 87 12 Coarse time 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMDP N RPC 87 12Fine time 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMDP PUS version number 7 SRPRPCOO 2 3 3IT 3 NONE URPRPCOO TMDP N Checksum flag 7 SRPRPCOO 2 1 1 URPRPCOO Data field header spare parameter 7 2 4 414 URPRPCOO TMDP N RPC 87 12 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 87 12 Packet Subtype 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Data field header pad 7 2 8 8 URPRPCOO TMDP N Segmentation Flag 7 2 2 212 URPRPCOO 88 1 Source sequence counter 7 3 10 141 14 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 289 P 88 1 Coarse time 75 88 1Fine time 7 3 12 T WORD PUS version number 7 SRPRPCOO 2 3 s TENE URPRPC00 TMDP N Checksum flag 7 SRPRPCOO 2 1 ER T NONE URDRPCOO N Data fiel
295. al Design Review Command Dispatch Verification Conducted Emission Centre d Etude des Phenomenes Aleatoires et Geophysiques Service d Aeronomie CNES Centre d Etude Spatiale des Rayonnements Command Execution Verification Carbon Fibre Reinforced Plastic Cryocooling Ground Support Equipment LANDER PAYLOAD INSTRUMENT Critical History File Command History Log Critical Housekeeping Unit Configuration Item Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 18 Communication Interface Adapter CIDL Configuration Item Data List CISAS Centro Interdipartimentale di Studi e Attivit Spaziali CIVA Comet nucleus Infrared and Visibility Analyser Lander Payload CLCW Command Link Control Word CLTU Command Link Transmission Unit CM Configuration Management CMD Command CMF Configuration Management Facility CMO Configuration Management Officer CMP Configuration Management Plan CNES Centre Nationale d Etude Spatiale COG Centre Of Gravity 1 Co Investigator COM Centre Of Mass CONSERT ORBITER amp LANDER PAYLOAD INSTRUMENTS COP Command Operations Procedure COSAC LANDER PAYLOAD INSTRUMENT COSIMA ORBITER PAYLOAD INSTRUMENT COTS Commercial Off The Shelf CPDU Command Pulse Distribution Unit CPU Central Processing Unit CR Compression Ratio CRAF Comet Rendezvous and Asteroid Fly by mission CRB CCD Readout Board CRC Cyclic Redundancy Code CRF Command Reque
296. al Science RPC ICA Science Report Every 32 seconds max when enabled Header Information Process ID Service Type Structure ID Data Field Information TBD Telemetry Packet Information Test Science Science Report Every 32 seconds max when enabled Header Information Process ID Service Type Structure ID 6 600 Data Field Information TBD Table 2 3 3 RPC ICA TM Packet Definition 2 3 3 2 2 3 LAP TM Packet Definition For more details on the LAP commands refer to the RPC LAP Instrument User Manual IRFU RPC LAPUM Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 109 Telemetry Packet Information ProcessID 86 Private Service Type 20 Service Subtype 2 1 Structure ID 1 Packet Length 176 Data Field Information Normal Science RPC LAP Science Report Every 32 seconds when enabled Header Information Packet Category Process ID 36 Service Type Service Subtype Structure ID Packet Length Data Field Information TBD Telemetry Packet Information Packet Name Burst Science RPC LAP Packet Function Science Report Every 10 66 seconds on average when enabled Header Information Process ID Service Type Structure ID Data Field Information TBD Table 2 3 4 RPC LAP TM Packet Definition Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 110 2 3 3 2 2
297. an Validation Test Report Work Station Wide Angle Camera Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 32 WAOSS Wide Angle Optoelectric Stereo Scanner WBS Work Breakdown Structure WBS Workpackage Breakdown Structure WCA Worst Case Analysis WD Watch Dog WDE Wheel Drive Electronics WDW Window WIU Wave Guide Interface Unit WP Work Package WPD Work Package Description WRT With Respect To WTC Wavelet Transform Coding WVR Water Vapor Radiometer WWW World Wide Web YMOS Yield Margin Of Safety ZOM Zero Order Monitor 1 0 General Description RPC s scientific objectives are far reaching and related to the overall scientific aims of the mission RPC will perform a detailed examination of the aeronomic processes in the coupled dust neutral gas plasma environment of the inner coma map the structure of the inner coma and investigate the thermodynamics and boundaries the development of cometary activity the structure of the solar wind interaction region the formation and development of the cometary tail In order to realize these investigations extensive in situ monitoring of the plasma electrons and ions their composition distribution temperature density flow velocity and the magnetic field is necessary These anticipated measurements will improve the understanding of the coupling processes of cometary dust gas and plasma as well as its interaction with the solar wind The plas
298. ands always direct is marked by D and the default synchronized ones with S below The command names refer to the RSDB Also given is the parameter name if applicable Principle command decoding Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 169 Yes Process class 3 Yes N Process class 2 Yes Process d class 0 1 No Yes Process gt class 1 Process class Failing commands will generate an event message 5 Included in the House Keeping HK is a return of the last received 16 bit command word NRPD2320 This implies that if more than one command is received during the time of a HK delivery for RPC 32 seconds only the last command seen will be returned To detect that a new command return is transmitted the parameter NRPD2310 1 bit will toggle When so parameter NRPD2306 will give the command status 0 1 Parameter out of range 2 Invalid 3 Erroneous Also if a command not dependent on HK delivery is not Ok a command failure event will be transmitted Apart from this many commands can be directly verified by the returned HK parameters Commands not directly verifiable in HK can be verified in the science data stream As a guideline the HK is primarily devoted to experiment healthy checks Commands that can not be directly verified in HK are harmless from safety point of view They may however impact on the expecte
299. ange nvalid SVAL DEFAULT N Probe 1 Density bias range nvalid SVAL MPFRPC00 N Probe 2 ADC 16 nvalid SVAL Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual Prae 15 FAULT N Probe 2 ADC 16 nvalid SVAL FRPCOO N Probe 1 ADC 16 nvalid SVAL FAULT N Probe 1 ADC 16 nvalid SVAL FRPCOO N Probe 2 ADC 20 nvalid SVAL FAULT N Probe 2 ADC 20 nvalid SVAL FRPCOO N Probe 1 ADC 20 nvalid SVAL FAULT N Probe 1 ADC 20 nvalid SVAL FAULT N Probe 2 feed back mode nvalid SVAL FRPCOO Probe 2 feed back mode nvalid SVAL FRPCOO N Probe 1 feed back mode nvalid SVAL FAULT N Probe 1 feed back mode nvalid SVAL FAULT N MIP LAP relay nvalid SVAL FRPC00 N MIP LAP relay nvalid SVAL FAULT N Internal Boot Strap nvalid SVAL FRPCOO N Internal Boot Strap nvalid SVAL FAULT N Probe 2 connected to nvalid SVAL FRPCOO Probe 2 connected to nvalid SVAL FRPCOO N Probe 2 nvalid SVAL FAULT N Probe 2 nvalid SVAL FRPCOO N Probe 1 connected to nvalid SVAL FAULT N Probe 1 connected to nvalid SVAL FAULT N Probe 1 nvalid SVAL FRPCOO N Probe 1 nvalid SVAL FAULT N LDL synchro nvalid SVAL FRPCOO N LDL synchro nvalid SVAL MRPC000002 N LDL synchro nvalid SVAL FAULT N 1 Bit Inboard Outboard nvalid SVAL FRPCOO 1 Bit Inboard Outboard nvalid SVAL MRPC000002 N 1 Bit
300. annels FCh HKiF Function Calculation Description _______ Of 0000 THA OBTempy voltage Outboard Sensor Temp _ Magnetic Field Outboard Y component 7000 TH HK Voltage PIU Temperature 9 TH HK voltage Temperature Table 2 3 9 Housekeeping Channel Assignment Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 120 Display Format Housekeeping Value Table 2 3 10 Data Display Format Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 121 2 3 4 DMS Resource Requirements 2 341 SSMM Utilisation The tables below give for each mission phase with different SSMM requirements the estimated average amount of data which will be generated in a 7 day period Note that some of the mission phases given last less than 7 days therefore the total data taken will be less than the figures given The data space required for context storage is constant over all mission phases The space required for patches is estimated and will also be constant assuming that the patches will be held constantly in the SSMM for the largest part of the mission Non Science Telemetry includes the following RPC specific data types Housekeeping Data e Event Report Data Memory Dumps But does not include data provided under the sp
301. arm signal is transmitted to PIU to immediately switch off MIP Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 95 2 3 1 3 Software Maintenance Approach The PIU and the experiments LAP IES and ICA shall have a software patching capability This shall be handled via the Memory Management service In the case of the PIU a contiguous block of the processor s SRAM or EEPROM may be loaded dumped or checked by a checksum by the action of a single telecommand packet For the LAP IES and the ICA this capability shall be available via the PIU and the PIU shall provide the Memory Management service to the DMS for these experiments The destination unit either PIU LAP IES or ICA for a load dump or check telecommand shall be given by the packet s process ID The response packet shall also be identified by the unit s Process ID MIP has no software maintenance possibility no dump no patch 2314 Software Storage RPC proposes to use the spacecraft mass memory for storing software It is intended that sufficient software will be held in ROM within the instrument to support the basic operations However it is expected that some additional routines will be up linked during flight For this reason two uses for the mass memory are foreseen firstly as a temporary store for code up linked while the payload is off secondly as a store for code transferred out of the instrument prior to a payload swi
302. ated in Figure 1 2 1 and Figure 1 2 2 om each mounted at of an about 1 5 m boom separated gt 1 m in the direction towards the nucleus IES body mounted at the nucleus facing edge of the instrument platform ICA body mounted at the nucleus facing edge of the instrument platform MAG two sensors mounted at a distance of about 1 4 m and 1 55 m from the s c and close to the tip of the x boom i e the boom pointing away from nucleus MIP boom mounted the four electrodes that make up the sensor are mounted at a minimal distance of 1 m from the spacecraft structure sensor pointing towards the comet direction within 45 PIU The PIU is contained within the RPC common electronic box which also houses the MAG MIP and LAP electronics A block diagram of the package is given in Figure 1 2 3 F Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 36 Figure 1 2 1 Sensors Layout stowed Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 37 Figure 1 2 2 Sensors Layout deployed Experiment Experiment Process Service Type wo mE ES 0 200209 209 RPC 210 219 RPO3 s 23028 Table 1 2 2 Experiment Assignment RO RPC UM Draft o o c wu 12 0 987 Rev Issue February 20 200
303. bler language of approximately 32 kWords in length The software is dedicated to serving the interfaces to the spacecraft and the experiments as it s highest priority Data transmitted to the spacecraft is double buffered to provide a seamless flow to the spacecraft at the highest possible rate whilst still taking telemetry from the experiments Commands received from the spacecraft are also buffered such that they may be received from the spacecraft at the fastest rate allowed on the OBDH bus The PIU software functions may be summarised as follows Heceive and buffer commands from the spacecraft remove packet formatting and forward command data to experiments Heceive and buffer science data from the experiments packetise data and transmit to the spacecraft Manage the packet services interface with the spacecraft Control the status of the power switches which distribute secondary power within the RPC Process and filter the MAG experiment data Maintain a pool of experiments housekeeping parameters packetise and transmit these to the spacecraft Monitor the status of the experiments and perform any autonomous functions necessary to ensure health and safety Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 93 has variety of operating modes and not all the experiments are necessarily powered on at the same time Furthermore the experiments may switch between th
304. by the PIU to decide whether any instrument is behaving in a manner which requires it to be shut down In the event of an instrument being shut down by the PIU or the whole of the RPC instrument group being shut down by the spacecraft the Commissioning Procedure will be used as the basis for a step by step switch on to locate and isolate any defective hardware element 3 3 2 PIU 3 3 3 IES 3 3 4 ICA ICA has a number off failure detection mechanisms 1 A watchdog counter that is periodically reset Failure to do so will raise a hardware reset Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 201 2 The RAM memory has an error detection and correction mechanism If it fails to correct a signal will be raised with a subsequent watchdog reset 3 The code memory part is protected by low and high address limits Any attempt to write into that area by an unprivileged software module will raise an exception with a subsequent watchdog reset 4 Other exceptions like illegal instructions reading instructions from outside the code memory are handled as under 3 When the microprocessor is restarted by a watchdog reset all program code and initialised data will be reloaded except for the context area The context area exists in three copies well spread in memory The context is error checked by comparing the three areas and if possible corrections are made If corrections can not be made the default value
305. cFreq 8 SVAL MEMRPC000002 00 OscFreq 2 SVAL DEFAULT 11 1 SVAL MEMRPC000002 22 Type2 SVAL MEMRPC000002 11 1 SVAL 00002 00 TypeO SVAL MPFRPC00 111 1 SVAL MPFRPCOO 22 Type2 SVAL 0 987 Rosetta Reference Issue Date RPC UserManual Pas 325 RO RPC UM Draft Rev February 20 2002 00002 DEFAULT 00 TypeO SVAL DEFAULT 22 Type2 SVAL MPFRPCOO 00 TypeO SVAL MEMRPC000002 11 SVAL MEMRPC000002 33 Sci Survey SVAL DEFAULT 99 HVSCI SVAL MEMRPC000002 22 HV Turn On SVAL DEFAULT 33 PAUSE SVAL MEMRPC000002 44 Sci Interest SVAL MEMRPC000002 88 SVAL MEMRPC000002 00 Initializatn SVAL DEFAULT 44 RESUME SVAL DEFAULT 1040 LVENG SVAL MPFRPCOO 33 PAUSE SVAL MPFRPCOO 44 RESUME SVAL MPFRPCOO 88 LVSCI SVAL MPFRPCOO 99 HVSCI SVAL MPFRPCOO 1040 LVENG SVAL DEFAULT 88 LVSCI SVAL MPFRPCOO 11 Normal SVAL DEFAULT 00 Minimal SVAL DEFAULT 11 Normal SVAL DEFAULT 22 Burst SVAL DEFAULT 313 504 SVAL DEFAULT 44 5105 SVAL
306. d scheduled reram pass be triste For greater coverage diring Mars T arihi ga ive IET seguire presenoe sequepce Falls routine ong require pasta I SD Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 200 3 3Failure Detection and Recovery Strategy 3 3 4 General Experiment failure analysis has two elements failure mode analysis to be performed as a theoretical and experimental exercise at the design stage and failure diagnosis to be performed as contingency activity during operations 3 311 Failure Mode Analysis An FMECA has been provided at the EIDR giving details of failure modes regarding mainly electrical interfaces with their effects of the performance of the RPC group of instruments The design premise is that a single failure should affect no more than one instrument from the RPC group and that cross coupling between redundant hardware branches should allow a graceful degradation in the event of multiple failures 3 3 1 2 Failure diagnosis in flight The PIU is used to provide the first level failure diagnosis It gathers house keeping information from the RPC instruments and places relevant material in the HK channel according to a set of pre defined rules A simple analysis of the house keeping information is made
307. d Redundant spacecraft power interfaces Switching between the PSUs is performed by switching the input between the spacecraft Primary to Redundant supplies The PSU secondary voltages are distributed to the user subsystems ICA IES LAP MAG MIP PIU through the Power Management System This consists of individual current limited voltage switches switched on or off by ground command through hardware configuration commands received and decoded in the spacecraft interface units RO RPC UM o c wu 12 Rev 0 987 February 20 2002 83 Draft Issue Date Page A8 A8C 14 6 TO POWER SYSTEM SWITCH 5V 12V 12 MANAGEMENT 28V PSU2 PSU1 Figure 2 2 1 RPC Power Distribution Block Diagram Reference RO RPC UM Rosetta Issue Draft Rev 0 987 M Date February 20 2002 QS 46 RPC UserManual 84 2 21 3 Experiment Power Requirements The operational macro modes of the RPC package are defined in section 4 2 Power Ripquirements Issue 2 Rev 4 of 15272001 pue ____ Me Wom Nom wa Nom es IES Total Table 2 2 2 Power Requirements Reference RO RPC UM Issue Draft Rev 0 987 Date Feb
308. d header spare parameter 7 NONE URRPCOD D 2 4 414 URPRP RPC 88 1 Packet Type 7 SRPRPCOO 2 8 8T BY TMDP N RPC 88 1 Packet Subtype 7 SRPRPCOO BYTE NONE URPRPC00 2 8 8 URPRP Data field header pad 7 2 8 BY Segmentation 7 m NONE c 2 2 2T 2 NONE URPRPCO PC 88 4 Source sequence counter 7 SRPRPCOO nee 3 10 141 14 BIT NONE URPRP 88 4 Coarse time 7 SRPRPCOO INDE n soars 3 14 321 32 URPRP RPC 88 4Fine time 7 SRPRPCOO 3 12 161 PUS version number 7 2 3 3 X NONE URPRPCOD N 7 SRPRPCOO 2 1 1 n T NONE URPREG00 Data field header spare parameter 7 on URERPCOO mor 2 4 414 BIT URPRP RPC 88 4 Packet Type 7 SRPRPCOO 2 8 8T B Db TMDP N RPC 88 4 Packet Subtype 7 NONE URPEPC00 2 8 8 URPRP Data field header pad 7 SRPRPCO m 0 2 8 8 URPR egmentation Flag T SRPRPCO COO DE 0 2 2 212 URPRP RPC 88 12 Source sequence counter 7 SRPRPCOO D N 3 10 141 14 NONE URPRPCI RPC 88 12 Coarse time 7 SRPRPCOO w MDE N soars 3 14 321 32 URPR RPC 88 12Fine time 7 SRPR COO 00 3 12 1677 WORD URPRPCI PUS version number 7 SRPRPCOO 2 3 3 T 3 0 N Checksum
309. d science return 3 1 2 3 2 Command verification Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 170 In the individual command description below commands directly verifiable via HK have the tag specified followed by the RSDB tm parameter LNAME and NAME In the command descriptions below the XW refers to the ICA EGSE X window command application window and is not applicable on S C system level It consists of XW Command group button Applicable command buttons 3 1 2 3 3 Class 0 type 220 The 28V switches statuses The 28 switch commands HK statuses are special by the fact that the switch status On or Off is the software status only SW while the 28V presence after the switch is the true hardware HW status Ideally the switch status should be true hardware as well But in the selection of one of the two hard ware restrictions the 28V present status was chosen as the HV switch status When it comes to the end the 28 presence is the important factor Note that if the Main is off the 28V will not be present on the Opto Mcp even if those switches are on The same is true for all presence status if the HV disable plug is in See the symbolic drawing below Main Opto Opto HV supply 5 Sw present present switch HY supply ZRP22001 Mcp 28 V switch D Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 171
310. e 1 2 5 This micro controller shall communicate with the PIU 2 bus transmit the collected science data and monitor nt status The flight software is written in the C and Forth programming languages The PIU shall store and re transmit the data stream that the instrument produces Other than data compression no special data handling is required The PIU shall store time tagged commands so that a sequence of commands can be performed between the times that ground stations are in direct contact with the satellite Parameter Range 1 eV to 30 KeV Resolution 0 04 Scan mode dependent Range FOV 90 x 360 2 8 sr Resolution electrons 5 22 5 18 azimuthal x 16 polar Resolution ions 5 x 45 5 x 5 for ions in one sector 18 azimuthal x 16 polar Temporal resolution 3D distribution downlink data Geometric factor total ions 5 x 10 cm sr eV eV counts electron per 45 sector ions 5 x 10 sr eV eV counts electron total electrons 5 x 10 cm sr eV eV counts electron 2 per sector electrons 5 x 10 cm sr eV eV counts electron Table 1 2 4 Summary of expected IES performance 1311017000 Ajddng 0887 lejeag mwmw dy IOUO 8 nus uo
311. e 2 5 51 RP Design Temperature Ranges able 2 5 52 MAG Power Dissipations able 2 5 53 MAG Internal Conductive Couplings able 2 5 54 Internal Radiative Couplings 6 able 2 5 55 MAG Tnterface Contact Conductances able 3 1 1 Description of the configuration table able 3 2 1 Preliminary Timeline with Data budgets 98 able 3 2 2 Specific RP imeschedule 99 able 4 2 1 Power Requirements and maximum telemetry rate Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Table 4 2 3 RPC Operational Macro Modes Summary 214 able 4 2 5 Minimum Telemetry Cycle time 960 seconas able 4 2 6 Normal Telemetry Cycle time 192 seconds able 4 2 Burst lelemetry High angular resolution able 4 2 8 Burst Telemetry Energy Mass matrix able 4 2 9 Modes and vector rates Issue Draft Draft Draft Draft Draft Draft Rev 0 93 0 94 0 95 0 96 0 97 0 987 Reference RO RPC UM Rosetta Issue Rev 0 987 February 20 2002 Date PC UserManual race 15 Documentation Change Record Sect Date Changes ECR No all 16 11 00 First draft issue N A EIDB update implemented 20 12 00 UM Meeting partially added amp all changed all 15 03 01 EIDB Changes partially implemented all 06 07 01 all 20 02 02 SOWG comments added etc Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date Febr
312. e 7 SRPRPCOO 2 4 414 DIG CRPV1304 URPRPCOO N ROM Status 7 2 1 1 DIG 0104 URPRPCOO SRAM1 Status 7 2 1 1 DIG 0104 URPRPCOO TMDP 2 Status 7 2 1 1 DIG 104 URPRPCOO EEPROM Status 7 2 1 1 DIG 104 URPRPCOO N EEPROM Write Status 7 SRPRPCOO 2 1 4 T_1_BIT DIG 104 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 279 P Communications Status 7 2 1 1 DIG 104 URPRPCOO N DEF HVPS Enable 7 2 1 1 DIG 0103 URPRPCOO ESA HVPS Enable 7 SRPRPCOO 2 1 1 DIG 103 N ELC MCP HVPS Enable 7 SRPRPCOO 2 1 4 T_1_BIT DIG 0103 URPRPCOO HVPS Enable 7 SRPRPCOO 2 1 1 DIG 0103 URPRPCOO Safe Arm Connector 7 2 2 212 DIG CRPV120D URPRPCOO N HV Control State 7 2 2 212 DIG 0103 URPRPCO
313. e Type Service Subtype Structure ID Packet Length do Data Field Information TBD Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 112 Telemetry Packet Information RPC MAG Process ID Service Type 20 Service Subtype 2 Structure ID Packet Length Data Field Information Burst Science RPC MAG Science Report Every 32 seconds when enabled Header Information Process ID Packet Category Service Type Service Subtype Structure ID Packet Length 4104 Data Field Information TBD Table 2 3 6 RPC MAG TM Packet Definition Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 113 2 3 3 2 2 5 1 Description of the internal MAG Packets The sampling rate of the MAG is 20 Hertz MAG will use 20 bit data words for science and housekeeping data Each word has a 4 bit ID placed in front of them The last two bits of the first ID in each packet is used for identification all the other ID bits are set to zero 8 Byte PIU packets will contain 6 Byte science and housekeeping data Each packet has a leading header byte and a constant trailer byte at the end One set of data one sample will be transmitted in 4 packets 1 8 Byte packet 8 Bit Header 4Bit ID 20 Bit OBX 4 Bit ID 20 Bit 8 Bit Trailer 1 61H 4BitID 20Bit 4BitID 0 20Bit OBY Trailer Byte 55H 01100001 0000 20 OBX 0000
314. ebye length 0 5 20 cm 10 200 cm for Long Debye Length Mode Time resolution 0 8 sec burst mode TBC 10 sec normal mode 200 sec survey mode Table 1 2 13 Summary of expected MIP performance Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 66 Ri B 5 C a CN Gi 5 E co d o u EI gt I 2 gt E 4 Pa ccs N Z 7 OJ d NI N s I O4 EE m SI K Figure 1 2 14 Mutual Impedance Probe MIP Block Diagram Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 67 1 2 2 6 The PIU and Common Electronics Box The PIU is an interface and control unit that lies between the spacecraft and the five RPC sensors The block diagram of RPC Figure 1 2 3 shows the functional architecture of the package and digamos s played by the PIU The principal functions of PIU are e Provision of pwr conversion from the s c primary pwr system to the secondary voltages required by the sensor units
315. ed norm SVAL IRPRPCOO Executing Macro SVAL IRPRPCOO Programming Macro SVAL IRPRPCOO 1 Bit Disabled Enabled SVAL IRPRPCOO LDL mode SVAL Y IRPRPCOO Probe 2 Density bias range SVAL Y IRPRPCOO Probe 1 Density bias range SVAL Y IRPRPCOO Probe 2 ADC 16 SVAL IRPRPCOO Probe 1 ADC 16 SVAL Y IRPRPCOO Probe 2 ADC 20 SVAL Y IRPRPCOO Probe 1 ADC 20 SVAL Y IRPRPCOO Probe 2 feed back mode SVAL Y IRPRPCOO Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 335 Probe 1 feed back mode SVAL Y IRPRPCOO N MIP LAP relay SVAL Y IRPRPCOO N Internal Boot Strap SVAL Y IRPRPCOO Probe 2 connected to SVAL Y IRPRPCOO N Probe 2 SVAL Y IRPRPCOO Probe 1 connected to SVAL Y IRPRPCOO N Probe 1 SVAL Y IRPRPCOO N LDL synchro SVAL IRPRPCOO N 1 Bit Inboard Outboard SVAL IRPRPCOO N THERMISTOR 16 Bit CPOL Y 00 THERMISTOR 16 Bit CPOL Y IRPIESOO
316. eference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 186 3i nulator simulator amatar simulator EGSE S 5 Simulators Figure 3 2 2 Autonomous Test of the PIU Manual Control Y heated lithium Sources EGSE S S C Simulators RPC data amp commands Figure 3 2 3 System Level Test of the Rosetta Plasma Package 0 987 5 o c 5 2 February 20 2002 187 Date RPC UserManual PS on board Calibration um o 2 AN Pa Ag RRQ RRQ 2 RRR SSA WN AN SAAS Md NNNNNN AY 5 RAY RAY N NN WM Pe FF RAR SS RDN RN A NODDY o 2 gt amp 5 Logical Interfaces of the EGSE Figure 3 2 4 Ethernet I P p RA LALA ALK AL LK
317. eir minimum normal and burst data rates independently of each other The RPC must therefore be considered as providing six independent data streams and as six independent units for telecommanding A separate Process ID is therefore requested for each unit in section 2 3 1 5 All PIU software shall comply with the ESA software standard 59 05 0 In addition the Guide to applying software standards to small software projects BSSC 96 2 shall also be applied 2 3 1 1 1 MIP All the MIP management and processing tasks are done by the onboard DSP Analog Devices 2100 The MIP software contains real time code of 8 kwords in length 24 bit word The processing activities are written in DSP assembly language and the management ones in C language The main tasks of the MIP software are receive and decode the configuration table generate the signal for the transmission electrodes synthesizer function perform the data acquisition from the sensor in active and passive modes process the data Fourier analysis run the 32 s sequence combination of active and passive modes create the HK packets packetise the science data with MIP status header before sending to PIU The data time stamp is made by the PIU inside the CCSDS format header every acquisition period for science and HK packets The initialization of the MIP data handling is made using a configuration table of 6 byte length The individual commands sent from
318. ength 7 3 12 16 T WORD NONE URPRPCOO TMGS N Dump Data 7 3 12 16 T WORD URPRPCOO Memory Checksum 7 3 12 16 WORD URPRPCOO TMGS RPC 83 1 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 83 1 Packet length 7 2 16 16 WORD URPRPCOO TMGS RPC 83 1 Data field header time field 7 9 17 481 48 URPRPCOO TMGS RPC 83 1 Data field header PUS 7 3 14 32 32 URPRPCOO TMGS RPC 83 4 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 83 4 Packet length 7 2 16 16 WORD URPRPCOO TMGS N RPC 83 4 Data field header time field 7 9 17 481 48 URPRPCOO TMGS N RPC 83 4 Data field header PUS 7 3 14 321 32 URPRPCOO TMGS N RPC 83 7 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 83 7 Packet length 7 2 16 16 WORD URPRPCOO TMGS RPC 83 7 Data field header time field 7T SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS RPC 83 7 Data field header PUS 7 SRPRPCOO 3 14 32 32 NONE URPRPCOO TMGS RPC 83 9 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS RPC 83 9 Packet length 7 2 16 16 WORD
319. ength mode will be calibrated using stimuli which act as a double antenna e The response in air between 7 and 140 kHz of the active mode can be only verified during EMC S C test All the individual commands of MIP are tested with a file called Mode Test all the command configurations will be tested and validated at LPCE before delivery The different modes and rates are checked in this test first performed at LPCE See MIP PIU Data Handling Interface RPC MIP RP 126 990253 LPCE Ed 3 Rev 2 18 9 00 The full MIP instrument checking has to be done with its sensor when the MIP sensor is not present it can be replaced by an external coupling through an attenuator The LDL mode checking requires MIP and LAP instruments and sensors For the test activities performed without booms or with folded booms the LDL stimulus capacitive coupling has to be used For more information see the note LDL Mode Stimulus Ed 3 Rev 1 16 05 00 reference RPC MIP RP 142 990003 LPCE Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 197 3 2 1 2 6 For MAG functional Test refer to section 5 1 2 6 1 3 2 1 3 Integrated Consortium Test 3 2 1 4 Consortium Environmental Testing 3 2 1 5 Spacecraft Level Test Plan at Alenia amp ESTEC 3 2 2 In orbit Commissioning Plan For the In orbit Commissioning Plan refer to the CVP document RO RPC MA 6004 Commissioning Plan 3 2 3 Flight Operatio
320. ent cycles MCs There is one MC for each telemetry rate and every MC is a list of measurement blocks MBs A MB is then a complete description of how to set up the instrument i e how to get scientific data and what to do with it The part describing the measurement of scientific data is known as the measurement unit of the MB definition while the processing is described in the processing unit Then the instrument is started the MC is cycled indefinitely starting with the first MB and changing to the next as soon as the first is finished and finally starting over from the beginning when the last MB is reached A MC can consist of just repeating one type of MB or of several different MBs There are 8 predefined MBs stored in the instrument PROM memory and 64 MBs stored in the instrument FLASH memory in five copies The MBs in FLASH are programmed using the maintenance service This provides the flexibility needed for the long lifetime Rosetta mission to a poorly known environment There exists commands to change the predefined MCs and MBs The MB commands however are quite large and should not be used all the time If a single parameter is to be changed we send up a whole new block with only the single parameter changed For further details refer to the LAP Instrument User manual IRFU RPC LAPUM Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 180 3 1 2 4 2 Specific S C Attitude Requi
321. ent and data processing into account Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 41 The Langmuir probe comprises a pair of classic Langmuir probes with sensors in the form of 5 cm diameter spheres on booms and multiple modes of operation ref to the block diagram in Figure 1 2 4 Electron collection mode 1 Positive ion collection mode Two Langmuir probe mode Density fluctuations measurement Measurements of spacecraft potential with a current biased probe voltage mode Detection of AC electric fields with one or two LAPs in voltage mode Active propagation experiment Measurements of solar UV integrated ionizing flux 9 Measurements of micrometeoroid and dust impacts m m a One of the LAP sensors can also be used by the MIP instrument for signal transmission see Sec 1 2 2 5 A summary of the expected LAP performance is given in 21 Electron ion number density Electron temperature Plasma flow velocity Electron ion number density fluctuations Spacecraft potential Plasma Waves Solar UV integrated ionizing flux if ne lt 3x 16cm Dust impacts if d gt 1mm v gt hundreds m s BEDV Table 1 2 3 Summary of expected LAP performance 0 987 Rev RO RPC UM Draft o o c wu 12 Issue February 20 2002 42 Date Page 299044 J0 29uu09 Jamod pue
322. ess bits to The Read Commands are not used by 2 0 select the Write the MAG FPGA Commands Type for the 1355 FPGA HD 7 0 The byte bits of the ADC Data Packets HCS Select 238 4 ns wide writing active Low HIOW Write Pulse starting 119 2 ns wide with HCS HIOR Read Pulse during NOT USED HCS active Low NDATAO Transmit Register Delays the start of the four packet Full data message transfer with the Ndata0A_Out Transmit Register Status Disables the Byte write after the first byte transfer NM Normal Mode Enables the start of the four packet data message transfer with the INDATAO CONV1 The same as the ADC CONV pulses but lead to the 1355 FPGA Issued once at every 50 ms Table 1 2 10 The and the 1355 FPGA interface signals NAME DESCRIPTION Notes DATA LOSS The collected Data four packets were 29 172 not transferred to the 1355 FPGA before starting a new collection cycle EOP_SENDING End Of Packet Write Command Time PIN 163 qfp172 TX_TIME The Packet transfer time period of the 50 ms PIN 33 qfp172 Cycle Time Cycle Ready Table 1 2 11 The Test Signals to see some internal status by SCOPE Note The Pin Assignment Table in the APPENDIX A does NOT contain the above Test pins They are all output pins and are NOT connected to the other circuits on the MAG Board
323. et SVAL 000002 97197 SftyThrshElc SVAL MEMRPC000002 1919 DataGenerEN SVAL RPC000002 112112 STIM ELC ADJ SVAL RPC000002 18118 DATA FORM SVAL RPC000002 114114 STIM ION ADJ SVAL RPC000002 115115 STIM ION EN SVAL RPC000002 128128 5 6 SVAL RPC000002 129129 5 6 SVAL RPC000002 11 SVAL RPC000002 1616 SVAL 9696 SafetyAmbSet SVAL RPC000002 1717 DataAcqPARM SVAL 8282 SVAL RPC000002 9898 SftyThrshlON SVAL LT 69 69 InstWtchgCtl SVAL 97 97 SftyThrshElc SVAL LT 114114 STIM ION ADJ SVAL LT 1131113 STIM ELC EN SVAL LT 112112 STIM ELC ADJ SVAL LT 9898 SftyThrshlON SVAL LT 97197 SftyThrshElc SVAL LT 9696 SafetyAmbSet SVAL LT 8383 MEM WRITE SVAL LT 1441144 SSEQ END SVAL LT 81181 SVAL LT 1451145 SEQ END ALL SVAL LT 68 68 INSTR RESET SVAL LT 6767 InstrProgMd SVAL LT 6565 InstrClearSt SVAL LT 5656 SVAL LT 55155 HvlonMcp EN SVAL LT 54154 HvlonMcp ADJ SVAL LT 5353 SVAL LT 5252 HV ESA ADJ SVAL LT 5151 HV ElcMcp EN SVAL LT 8282 SVAL RPCOO 52152 HV ESA ADJ SVAL RPCOO 146146 SVAL RPCOO 81 81 MEM COPY SVAL RPCOO 69 69 InstWtchgCtl SVAL RPCOO 68 68 INSTR RESET SVAL RPCOO 67 67 InstrProgMd SVAL RPCOO 6565 InstrClearSt SVAL RPCOO 5656 SVAL RPCOO 55155 HvlonMcp EN SVAL 115115 STIM ION EN SVAL RPCOO 5353 SVAL RPCOO 8383 MEM WRITE SVAL
324. et Tono 7T SRPRPCOO 2 4 414 N RPC 85 9 Packet Subtype T SEPRPC00 5 5 5 N Data field header pad T SEPRPC00 5 5 8 NONE URBRPCOO DEN 7 SRPRPCOO 2 8 8 BYTE NONE URDRECOD 85 12 Source sequence counter TISRPRECOO 2 5 ETE URPRPCTO SEN Bod 7 3 10 14 URPRECOO TMDP N RPC 85 12Fine time 7 SRPRPCOO 2 NONE URPRPCAD PCOO 3 12 u 16 T_WORD NONE URPRPC00 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 287 P PUS version number 7T SRPRPCOO 2 3 3IT 3 URPRPCOO TMDP N flag 7 2 1 1 NONE URPRPCOO N Data field header spare parameter 7 2 4 414 URPRPCOO TMDP RPC 85 12 Packet Type 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N RPC 85 12 Packet Subtype 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP N Data field header pad 7 SRPRPCOO 2 8 8 BYTE NONE URPRPCOO TMDP Segmentation Flag 7 SRPRPCOO 2 2 212 URPRPCOO 86 1 Source sequence counter 7 3 10 141 14
325. eters will be calibrated measuring the purity magnitude and frequencies delivered by the synthesizer verifying the frequencies as applied measuring the rejection ratio between transmitting and receiving channels over 75 dB verifying the dynamics and linearity of the instrument verifying the correct operation in a temperature range from 20 C to 50 C Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 196 Calibration of the integrated instrument This calibration is also performed at LPCE with the antenna being in a Faraday cage The following parameters will be calibrated verifying the sensor response in passive mode verifying the active mode flat response in vacuum about 20dB from 100kHz to 3 5MHz The antenna being installed at the top of a 1 5 m support outside the Faraday cage away from metallic devices the following parameters will be calibrated verifying the power consumption verifying the status of the instrument with a special control sequence CT verifying the frequencies and magnitudes of the passive mode by catching local radio emissions verifying every MIP mode d Calibration of the Long Debye Length LDL mode This calibration first will be done at LPCE simulating the transformer cable and electrode of the LAP experiment This cal cannot be done in a Faraday cage because of large LAP MIP distance Before or during RPC integration the long debye l
326. ev 0 987 February 20 2002 157 50642 50662 45 foot 60 Figure 2 5 11 LAP1 and LAP2 Thermal Sketch Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 158 2 5 4 2 5 RPC 4 1 Electrode Receiving Insulated section Transmitting electrode Transmitting insulated section Bar middle Section Bracket Table 2 5 41 Values given for both of the symmetrical parts Monitoring thermistor Table 2 5 42 MIP Node Properties Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 159 Unit Node Op Non Op Op Stab C C CC h MIP 50721 130 100 160 Table 2 5 43 TRP Design Temperature Ranges BOL EOL Unit Mode Node Op Ql Non Op QR W W ON Table 2 5 44 Power Dissipations Node Node j GL W K 50720 50721 2 23 e 3 x 2 50721 50724 2 5 e 3 x 2 50722 50723 2 3 3 2 50723 50724 2 5e 3x2 50724 50725 0 03 2 these values to be multiplied by 2 to take into account the symmetrical part of the sensor Table 2 5 45 MIP Internal Conductive Couplings Node Node j GR C 50720 50721 50721 50724 50722 50723 50723 50724 Table 2 5 46 MIP Internal Radiative Couplings Type Number Node Conductive W K Node
327. experiment in the package be powered PIU and MAG must be powered ref section 3 1 2 6 Commands to any other Reference RO RPC UM Rosetta Issue Draft Rev 0 987 2 Date February 20 2002 RPC UserManual Pae 167 experiment in the package are sent to PIU which distributes these to the correct experiment PIU collects all Housekeeping and Science from the experiments and passes it on to the Spacecraft 3 1 2 2 IES 3 1 2 3 ICA When ICA is powered it will enter it s default telemetry and data reduction mode but high voltages will not be switched on Full high voltage operation will require 3 commands The basic operation consists of stepping through a number of energy levels 32 or 96 for 16 different elevation angles For each energy level held for 202 9 milliseconds a mass angle matrix 32x16 is produced by the imaging system Except for some special modes the data are fed through various integration modules to reduce the amount of data then converted to 8 bit floating code and finally compressed by a loss less method All data are stored in a telemetry FIFO for transmission Due to the compression the experiment formats will vary in length and will therefore be floating in the telemetry packets 3 1 2 3 1 General command structure The majority of the ICA commands consist of a single 16 bit command word Only the two reprogramming commands ZRP22212 ZRP22213 have one extra word OxFEED appended that
328. f 7 22306 85 12 5 14 14 NONE BOTH N 112 N Deflection HV ref 7 22307 85 12 5 14 14 NONE BOTH N 112 N Entrance ref 7 22308 85 12 5 14 14 NONE BOTH N 112 N Noise reduction 7 22309 85 12 5 14 14 NONE BOTH N 112 N Fifo low mark 7 22310 85 12 5 14 14 NONE 112 Fifo high mark 7 22311 85 12 5 14 14 NONE 112 force mark 7 22312 85 12 5 14 14 NONE BOTH N 112 N Fifo clear mark 7 22313 85 12 5 14 14 NONE 112 Start cmd 7 22315 85 12 SPACE 14 14 NONE BOTH N 112 N Dummy Command 7 23001 866 12 5 18 18 NONE BOTH N 144 N Set Telemetry Rate 7 23002 86 12 5 18 18 NONE BOTH N 144 N Start Sampling 7 23004 866 12 5 18 18 NONE BOTH N 144 N Stop Sampling 7 23005 86 12 5 18 18 NONE BOTH N 144 N Execute Macro 7 23006 86 12 5 18 18 NONE BOTH N 144 N Dog Prom 7 23007 86 12 5 18 18 NONE BOTH N 144 N Set Macro 7 23008 866 12 SPACE 18 18 NONE BOTH N 144 N Read Write Macro 7 23009 86 12 5 18 18 NONE BOTH N 144 N Set Relays amp Muxes 7 23010 86 12 5 18 18 NONE BOTH N 144 N Control Register 7 23011 86 12 5 18 18 144 Denisty Sweep 7 23012 86 12 5 18 18 NONE 14
329. f command a pulse decoded in hardware for switching on PIU s processor The second type is the Memory Load TC These are used by all of the RPC experiments 2 3 3 2 2 Telemetry Packet Definitions The tables below give the structure and rules for the RPC HK and science TM packets For the TM Event packet definition refer to section section 6 2 E Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 105 Telemetry Packet Information RPC PIU Service Type 3 Service Subtype 25 Data Field Information Bit 15 LSB Word 6 Bit 2 Main Redundant Flag Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 106 Word8 Bit3 IES HK 1 Flag Spare Table 2 3 1 RPC TM HK Packet Definition 2 3 3 2 2 1 IES TM Packet Definition Telemetry Packet Information Packet Name RPC IES Packet Function Science Report Generation Rules Every 1024 seconds when enabled Header Information Process ID rivate Service Type Structure ID Data Field Information TBD _ O N Te U Telemetry Packet Information Normal Science RPC IES Packet Function Science Report Generation Every 32 seconds when enabled Rules Header Information Process ID Packet Category Service Type 20 Service Subtype 2 Structure ID 2 Packet Length 20 Data Field Information ProessID 84 Service 20 Structure ID 2
330. ference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 272 6 2 3 C TMPARAM N HK Word 0 7 3 T WORD URPRPCOO TMGS N HK Word 1 7 3 12 16 WORD URPRPCOO TMGS HK Word 2 7 SRPRPCOO 3 12 1677 WORD URPRPCOO TMGS HK Word 3 7 SRPRPCOO 3 12 1677 WORD NONE URPRPCOO TMGS N Keyhole Word 7 SRPRPCOO 3 12 1677 WORD URPRPCOO TMGS N Bdcst Pulse Cnt 7 3 12 16 WORD URPRPCOO TMGS N HK Word 6 7 3 12 16 WORD URPRPCOO TMGS N HK Word 7 7 3 12 16 WORD URPRPCOO TMGS N HK Word 8 7 3 12 16 WORD URPRPCOO TMGS Pad 7 3 12 16 WORD URPRPCOO TMGS HK SID Global 7 SRPRPCOO 3 12 1677 WORD URPRPCOO TMGS Event ID 7 3 12 16 WORD URPRPCOO TMGS APID 7 3 12 16 WORD URPRPCOO TMGS N Type Subtype 7 3 12 16 WORD URPRPCOO TMGS N SCET 7 SRPRPCOO 9 17 481 48 BIT NONE URPRPCOO TMGS N Calculated Value 7 3 12 16 WORD URPRPCOO TMGS N Failure Word AO 7 31 12 16 WORD URPRPC
331. flag 7 SRPRPCOO 2 1 Bir NONE Data field header spare parameter 7 SRPRPCOO zx NONE c 2 4 414 URPRPCI RPC 88 12 Packet Type 7 SRPRPCOO 2 8 8T TMDP N RPC 88 12 Packet Subtype 756 BYTE NONE URPRPC00 INDE z SRERPC00 2 8 8 INDE N N z SEPREC00 8 3 777 NONE URPRPCOO NDE C00 3 0 4 4 NONE U N Source 7 SRPRI RPRECOO m 2 3 3IT 3 NONE N Counter 7 URPHECUD RPCOO 3 7 1117 11 NONE U N TC Type 7 coo 3 4 8T BYTE NONE URI N TC Sub type 7T SRPRP EREDDD 5 coo 3 4 8 BYTE NONE Position T SRI URPRPC00 oh PRPCOO 3 4 8T BYTE NONE Value 7 SRPRPCOO 3 4 8 URPRPCOO Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 290 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N Y 4 0 65535 0 0 N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0 N N NONE 0 0
332. ger per Experiment format When running in TM calibration mode it will be synchronized with the TM packets The Calibration 2 mode delivers a full 96 energy step x full imager compressed data set It will thus be floating in the TM packets The Fake mode is used to test the 1355 link between PIU and ICA Except for the ICA format header it delivers a by one incremented 16 bit counter as data It can run in any TM mode and will always be synchronized to the TM packets 4 2 2 4 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 218 The Langmuir probe can be operated in different modes 4 2 2 4 1 Standard LAP Modes Electron collection mode A probe with positive voltage bias provides the measurements of If ne is determined separately then Tecan be accurately measured or conversely Positive ion collection mode A probe with negative voltage bias provides the measurements of nj If the ion velocity is determined separately then nj can be accurately measured or conversely Two Langmuir probe mode Provides by a cross correlation of probe current fluctuations time of flight the plasma velocity component in direction of probe separation Vp vi This velocity is assumed to equal the neutral gas velocity A sequence of measurements 1 2 and 3 provides the three basic variables electron number density electron temperature and plasma drift velocity
333. gimes e active regime which consumes 1645 mW secondary stand by regime processor idle which consumes 1035 mW secondary The duration of these two regimes inside a 32 s frame depends on the bit telemetry rate Thus we have normal or burst rate 1625 mW secondary e minimum rate 1190 mW secondary 2 4 2 5 21 Data Rates Science and HK Table 2 4 1 resumes the data transfer from MIP to PIU or to S C poco ey every 32 s Science to PIU Science HK to S C Min rate 18 bytes 12 bytes 66 bytes 198 bytes 12 bytes 246 bytes 1200 bytes 12 bytes 1248 bytes Table 2 4 1 MIP data rates 2 4 2 5 2 2 Non Operating Heaters No non operating heaters are required Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 128 2 4 2 5 2 3 S C Powered Thermistors One thermistor located the sensor receiver 1 is monitored by the S C 2 4 2 5 2 4 Pyro Lines No pyro line is used 2 4 2 6 MAG Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 129 2 5 2 5 1 Thermal Design 2 5 1 1 Thermal Design Requirements IES Thermal management of IES is accomplished using passive blankets to protect the instrument against contamination cold trapping early in flight To monitor IES s temperature a total of four thermistors are employed One of these thermistors will need to be monitored by the Rosetta spacecraft It is preferred to mainta
334. his case the basic quantity measured is the voltage of the probe with respect to the spacecraft Probe P2 may also be used by the MIP instrument for use in the LDL Long Debye Length mode In general voltage bias is to be used for determining the prime LAP science parameters of the plasma density electron temperature plasma flow speed and the density fluctuation spectrum while the bias current is applied to get measurements of spacecraft potential and electric wave fields The bias can either be constant or swept i e varied in steps over some range of voltage or current LAP also has the possibility to apply a square wave voltage of up to a few kHz to either probe and observe the resulting signal on the other probe A variety of different measurements can be produced by this arrangement producing different data types The basic data types are listed above however it should be noted that the LAP flight s w is very flexible and functions can be defined for construction of other data types not listed here 1 Time series data With the probes at constant bias the time series at some constant sampling frequency from both or any of the probes or derived time series like their sum or their average can be transmitted 2 Probe bias sweeps The bias voltage or current can be varied during a brief interval known as a sweep While the samples acquired still constitute a time series the basic assumption is that the plasma does not
335. ical Mathematical Model IMP Imager for Mars Pathfinder INTA Instituto Nacional de Tecnica Aerospacial Input Output IQR Internal Quality Report IR Infra Red IS Impact Sensor GIADA ISO International Standards Organisation IST Integrated System Test IT Integration Test IT Interruption ITMM Interface Thermal Mathematical Model Integration Test Plan ITR Integration Test Report ITT Invitation To Tender IUE Internal Ultraviolet Explorer IWF Institut f r Weltraumforschung Graz JPEG Joint Photographics Experts Group JPL Jet Propulsion Laboratory KAL Keep Alive Line KAU Kilo Accounting Units KO LAN LAP LAS LCB LCDA LCL LDL LEOP LESS LET LF LGA LID LIFO LIGA LILT LISN LIT LL LM LMSS LNA LO LOR LOS LOS LPCE LRR LSB LSI LU LV LVPS LW M amp C MAC MACS MAG MAP MAS MB MBS MC MCM MCM MC OCF MCP MCR MCR Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 23 Kilo Bits Per Second Hungarian Research Institute for Particle and Nuclear Physics Kick Off Launch time Local Area Network Langmuir Probe RPC Laboratoire d Astronomie Spatiale Last Chance Bit Launcher Coupled Dynamic Analysis Latching Current Limiter Long Debye Length LAP MIP Mode Launch and Early Orbit Phase Lander Electrical Support System Linear Energy Transfer Low Frequency Low Gain Antenna Lander Interface Document Last In First Out L
336. id the electric field produced by bipolar electrodes deflects ions and electrons with a range of energies and azimuthal angles into a field free entrance aperture containing serrated walls to minimize scattering of ultraviolet light and charged particles into the instrument The particles then enter the top hat region and the electric field produced by the flat electrostatic analyzer segments of the ion and electron analyzers Particles within a narrow 496 energy pass band will pass through the analyzers and be focused onto conversion dynodes The selected energy will correspond to a particular 5 azimuthal entrance angle depending on the ratio of voltages on the angle deflectors and the ESAs Secondary electrons produced on the conversion dynodes are focused on the electron and ion MCPs which produce charge pulses on 16 discrete anodes which define the polar acceptance angles Pulses from the segmented MCPs are amplified by charge sensitive preamplifiers CSPs and recorded in the 16 x 24 bit ion and electron counters The data are buffered before being sent to the output serial Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 44 register for transmission to the PIU as serial telemetry packets The stepping sequences of the angle and energy deflection voltages of the instrument are determined by the modes of operation The IES instrument will contain a single micro controller RTX20X10 as shown in Figur
337. id SVAL MEMRPC000002 N Clock Selection nvalid SVAL DEFAULT N SetType 1 nvalid SVAL MPFRPCOO N SetType 1 nvalid SVAL MEMRPC000002 N SetType 1 nvalid SVAL MEMRPC000002 N Internal State nvalid SVAL MPFRPCOO Internal State nvalid SVAL DEFAULT N Internal State nvalid SVAL DEFAULT N Communications Mode nvalid SVAL MEMRPC000002 N Communications Mode nvalid SVAL N Communications Mode nvalid SVAL N Counter State nvalid SVAL DEFAULT N Counter State nvalid SVAL MEMRPC000002 N Counter State nvalid SVAL N Unit ID nvalid SVAL MEMRPC000002 N Unit ID nvalid SVAL DEFAULT N Unit ID nvalid SVAL DEFAULT N Set Type 2 nvalid SVAL MPFRPCOO N Set 2 nvalid SVAL MEMRPC000002 N Set Type 2 nvalid SVAL MEMRPC000002 N Checksum Status nvalid SVAL DEFAULT N Checksum Status nvalid SVAL Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 314 DEFAULT N IES Last executed opcode nvalid SVAL MPFRPCOO N IES
338. ill provide an excellent opportunity to study in detail the physics of the solar wind asteroid interaction The proposed payload is also most suitable to investigate this interaction Furthermore the planned observations will allow us to study the magnetic and electric conductivity properties of the asteroid 1 2 Experiment Overview A plasma consortium is proposed with five different sensors and a common plasma interface unit PIU as a single interface between the package and the spacecraft Such a highly integrated package saves spacecraft resources such as mass and power Great care has been taken to provide robust sensors of proven technology that will operate and survive in a cometary environment The sensors proposed bear heritage from many different space missions such as GEOS 2 ARCAD 3 Voyager Giotto CLUSTER Viking MARS 96 and Cassini Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 35 1 2 1 Instrument Overview and Accomodation LAngmuir Probe IRF U Uppsala lon and Electron Sensor ES SwRI San Antonio lon Composition Analyser IRF K IES ICA Fluxgate MAGnetometer TU Braunschweig MIP Mutual Impedance Probe LPCE Orleans Plasma Interface Unit PU ICSTM London PIU Electrical Ground Support EGSE KFKI RMKI Budapest Equipment Table 1 2 1 Instrument Accommodation The accommodation of the sensors and interfaces are indic
339. in the IES sensor within a temperature range of 20 C to 40 IES has no radiator and therefore has no special requirements for radiator field of view A 0 5 W non operational heater will be required IES Operation Temperature Ranges Instrument Survival Survival Operating Operating Element Low High Low High Controllers 50 80 30 50 C Table 2 5 1 IES Temperature Ranges ICA ICA will be mounted externally on the comet facing platform The instrument will be collectively controlled The thermal design requirements are driven by temperature constraints on electronics components and the micro channel plates Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 130 ICA Operation Temperature Ranges Instrument Operating Non Operating Element 40 to 55 55 to 70 40 to 50 Central 40 to 55 55 to 40 to 50 Electronics Table 2 5 2 ICA Ranges LAP LAP has no special thermal requirements other than those listed below LAP Operation Temperature Ranges Instrument Operating Non Operating Element 190 to 250 C 190 to 250 C 190 to 250 C Table 2 5 3 LAP Temperature Ranges MIP The sensor contains 2 preamplifiers which cannot be located in the 0 electronics box without an important loss of sensitivity and bandwidth reduction A wide range of heliocentric distances must be considered for the thermal design
340. interconnection harness length between VXI rack and switch box is 215m that between switch box and stimuli box is The LAP baseline test set ups are shown in EID B Fig 5 2 1 Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 190 3 2 1 1 3 Ground OPS Requirements 3 2 1 1 3 1 Specific Experiment System Tests During experiment s specific system tests RPC requests that the burst data rate given in section 4 2 1 be available IES As described the next section we would like to perform an abbreviated instrument calibration during spacecraft thermal vacuum testing The attachment of a small heated filament lithium source placed near the instrument can be used as an instrument stimulus Other tests include the use of an internal pulse to verify counting electronics and built in self test to verify controller and counter operation when the instrument is operating at one atmosphere ICA No instrument specific stimuli will be used during tests A built in test generator will check the hardware and the software performance during all tests All parts of the experiment except the MCPs the anode system and the pre amplifiers will be tested by this test generator since the mentioned system can only be operated under vacuum better than 107 Torr The test generator operates in a standard mode of operation also available in flight configuration for cross reference and correlation with previous gr
341. is loaded After correction a feasibility of the context is made This way ICA should in most cases be able to recover completely to the state before the failure 3 3 5 LAP 3 3 6 MIP MIP has a watchdog which consists of a counter periodically reset If the watchdog is not refreshed an alarm signal is sent to PIU through the link PIU powers immediately MIP off after reception of an alarm signal The watchdog be inhibited with a command Set Wd 1 The alarm protocol has been simplified no retry to be on after an alarm signal PIU powers off when alarm and over current detection e The status of this alarm signal is put into an event reporting stays off until the next on command If no data are received during TBD consecutive sequences PIU resets the link 3 3 7 MAG Reference Issue Date Page 4 0Mode Descriptions 4 1Mode Transition Diagram 4 1 4 RPC Refer to Figure 4 1 1 4 1 2 Experiments 4 1 2 1 PIU RO RPC UM Draft Rev 0 987 February 20 2002 202 To get to the following modes from any other mode Power On Main to Nominal Power Off Main Power On Redundant to Nominal Power Off Redundant Maintenance Mode Power on Experiment IES ICA LAP MIP MAG Refer to Figure 4 1 2 44 22 IES Refer to Figure 4 1 4 4123 The ICA experiment can switch from any telemetry data reduction mode combination to any other by means of
342. isable IES T ETC00306HKDS 84 12 5 14 14 NONE 112 ES Memory Load 7 ETCO0602MMLD 84 12 5 22 248 NONE 1984 ES Memory Dump Request 7 00605 84 12 5 20 20 NONE 160 5 7 ETCOO609MMCK 84 12 5 20 20 NONE N 160 N Enable IES Science 7 ETC02001SDEN 84 12 5 14 14 NONE 112 Disable IES Science 7 020028008 84 12 5 14 14 NONE 112 Set IES Power 7 19201 83 12 5 14 14 NONE 112 Set Power 7 19202 83 12 5 14 14 NONE 112 Set Power 7 19203 83 12 5 14 14 NONE 112 Set Power 7 19204 83 12 5 14 14 NONE 112 Set MAG Power 7 19205 83 12 5 14 14 NONE 112 Reset IES Link 7 19301 83 12 5 12 12 NONE 96 7 19302 83 12 5 12 12 NONE 96 Reset Link 7 19303 83 12 5 12 12 NONE 96 Reset Link 7 19304 83 12 5 12 12 NONE 96 Reset MAG Link 7 19305 83 12 5 12 12 NONE 96 Reset DPIU 7 19306 83 12 5 12 12 NONE 96 Reset SCAT TC Channel 7 19307 83 12 5 12 12 NONE
343. it 7 00502 7 1 1 ES EC PktTrunc unit 7 00502 83 7 AUTH 18 18 1 1144998 NONE N ES EC_InvalidSid unit 7 00502 83 18 18 1 1144999 NONE N ES EC BadScncMode unit 7 00502 83 18 18 1 1145000 NONE N ES EC LinkRst unit 7 00502 83 18 18 1 1145001 ALL _ ES EC LinkRstsMdm unit 7 00502 83 7 AUTH 18 18 1 1145002 NONE ES LinkRstsHgh unit 7 00502 83 7 AUTH 18 18 1 1145003 ES EC HkPktNotValid unit 7 00502 83 7ISPACE AUTH 20 20 1 1145004 5 7 00502 83 7ISPACE AUTH 22 22 1 1145005 NONE 5 _ 7 00501 83 5 AUTH 18 18 1 1145006 NONE CA Relnit unit 7 00502 83 AUTH 18 18 1 1145056 NONE CA NoNormalMode unit 7 0050 83 18 18 1 145057 NONE N CA EC RxTimeout unit 7 0050 83 AUTH
344. ithographie Galvanoformung und Abformung Low Intensity Low Temperature Line Impedance Stabilization Network Listen In Test Low Limit Launch Mode Lander Mechanical Support and Separation systems Low Noise Amplifier Local Oscillator Lander Operational Request Loss Of Signal Line Of Sight Laboratoire de Physique et Chimie de l Environnement Launch Readiness Review Least Significant Bit Large Scale Integration Latch Up Latch Valve Low Voltage Power Supply Launch Window Monitoring and Control Model Assurance Criterion Modular Attitude Control System Fluxgate Magnetometer RPC Multiplexing Access Point Mission Analysis Section Measurement Block Micro Balance Sensor GIADA Measurement Cycle Monitoring and Control Module Multi Chip Module Master Channel Operational Control Field Micro Channel Plate Main Control Room Memory Checksum Request MCRR MCS MDR MGA MGM MGSE MICD MID MIDAS MINT MIP MIP MIP MIRD MIRO ML MLC MLI MM MM MMB MMD MMH MMI MMS MMS B MMS H MMS T MMU MOC MOD MODULUS MOI MOP MOS MOU MPA MPAE MPI MPIK MPP MPPT MPR MPS MPTS MRB MRT MSB MSDR MSP MSS MST MSSW Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 24 Mission Commissioning Results Review Mission Control System Memory Dump Request Medium Gain Antenna Magnetometer Mechanical Ground Support Equipment Mechanical Interface Control Document Memory
345. l design of the IES is based on a totally passive thermal maintenance approach Since the operating temperature range of the instrument is so broad it presents no special thermal problem We plan to cover the sensor with thermal blankets except for the entrance aperture Conductive through the mechanical interface to the spacecraft will provide a large thermal capacitance to the 5 design We do not require any radiation surfaces since the instrument draws so little power and can sink heat into the structure of the spacecraft A small survival heater of approximately 0 5 W will be sufficient to protect the instruments during periods of dormancy ICA ICA is an collectively controlled instrument ICA will be covered by electrically conducting MLI except for the aperture opening LAP Testing will be used to verify that all electronics and mechanical parts will be within their specified temperature ranges Temperature ranges for the LAP units are specified in sec 2 5 1 57 sensor is thermally and electrically insulated from the boom Due to the weak power dissipated by the sensor electronics the thermal exchange is always from the spacecraft to the sensor MIP will require one spacecraft powered thermistor to measure the sensor temperature when PIU is off and one experiment powered thermistor working when PIU is on To simplify and to save mass and cables no redundant thermistor is required Reference
346. lects the 55 trailer byte while 0 lt 1 6 selects the appropriate ADC data bytes Transfer Data Next Packet 50 ms ConvTime expired Does the 1355 FPGA allow the Data transfer Y nm ndataQ if b 0 Y IndatOa intim o if b 21 7 Intim 051 if 134 usec Int Timer has been expired Intim_o define the byte transfer frequency Transfer means putting the required address to the HA lines the selected Data to the HD lines and issuing HCSY and HIOW control signals Y Issue EOP Command then Incr Next Packet N Data Tx end 2 gt Data Tx Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 63 Next Conversion Cycle 50 ms conversion time expired N READY from ADC1 arrived N Simulate RDY Start Calibration One Day Counter expired Issue Internal Reset but keep Normal ACQ State End of Calibration Start Initialisation Reference RO RPC UM Rosetta Issue Draft Rev 0 987 February 20 2002 Date PC UserManual race 64 nm and ndata0 is N NOT tested here Ndat0a_O 0 Send CMD to 1355 FPGA Y Ndat0a_O 0 Y Send LISTEN CMD to 1355 FPGA End of Initialisation Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 65 1 2
347. librated data either directly provided by the individual instrument teams or produced by s w provided by them Reference RO RPC UM lt Rosetta Issue Draft Rev 0 987 49 Date February 20 2002 RPC UserManual 66 Vrpiermaentation peratibns Planning Group Principal 1 Consists of one engineer representative from er designaled each experiment representan tha PILI Comet Phases SWT RPC k d Post Launch Support Organisation Diagram Figure 3 1 1 RPC Post Launch Support Organisation 3 1 2 Experiments 3 1 2 1 PIU All electrical telemetry and telecommand interfaces between the RPC group of instruments and the spacecraft are handled by the PIU This unit distributes secondary power within the group of instruments it provides the first level of command decoding and it controls the packaging of data for transmission to the spacecraft When PIU is powered the nominal mode shall be to have MAG powered on one MAG ADC is needed for the PIU HK as well but not producing any Science The PIU HK will be automatically produced at power on Once spacecraft time update has been received PIU will send an alive event and the first packet of housekeeping MAG should then be powered on and only after the ADC s in MAG have started to send voltage and thermistor values will all of PIU Housekeeping be valid In order for any other
348. ma and fields measurements thus provide complementary information to that of other Rosetta instruments for a deeper understanding of the overall physics and chemistry of an active comet However the ultimate objective of the mission the comet exploration phase will only start at the end of 2011 when the Rosetta spacecraft will reach the target comet In scientific terms the mission has a range of objectives exploiting the targets of opportunities that are encountered along the mission orbit As the RPC instruments are capable of making wellcoordinated observations of the plasma medium in interplanetary space as well as during the planetary and asteroid flybys the Consortium will be able to carry out scientific investigations during all operational phases Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 33 1 1 Scientific Objectives The Rosetta Orbiter Plasma Consortium will consist of five sensors Langmuir Probe LAP e lon Electron Sensor IES lon Composition Analyser ICA Fluxgate Magnetometer MAG e Mutual Impedance Probe MIP as well as a joint Plasma Interface Unit PIU acting as instrument control spacecraft interface and power management unit The scientific objectives are far reaching and related to the overall scientific aims of the ROSETTA mission It is intended to investigate the following scientific areas of interest The physical prope
349. mal Nodes Y side Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 155 50606 50600 50601 50607 50605 2 except Z baseplate 4 feet Figure 2 5 10 ICA Thermal Nodes Y side 2 5 4 2 4 LAP RPC 3 1 and RPC 3 2 ref 3 amp 4 in RO EST TN 1021 Node Name Material Thermal Finish Pn ij C C 9 C C C LAP1 probe Ti alloy Ti Nitride LAP1 stub Ti alloy Ti Nitride LAP1 foot Al alloy Alodine LAP2 probe Ti alloy Ti Nitride LAP2 stub Ti alloy Ti Nitride LAP2 foot Al alloy Alodine Table 2 5 35 LAP BOL EOL Surface Properties P M LAP1 stub LAP1 foot LAP2 probe LAP2 stub LAP2 foot Table 2 5 36 LAP Node Properties Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 156 Unit Node C 5 LAP1 50640 190 250 190 250 LAP2 50660 190 250 190 250 Table 2 5 37 LAP TRP Design Temperature Ranges BOL EOL 50640 0 0 no heater LAP2 no power 50660 0 0 no heater Table 2 5 39 LAP Internal Conductive Couplings ron Node W K K flat S 0 24 x S C Sc boom LAP2 flat 4 M3 0 24 50662 S C S C boom Table 2 5 40 Interface Contact Conductances Reference Issue Date Page 50640 50660 50 probe RO RPC UM Draft R
350. ment power and bit rates as well as the PIU overhead 4 2 1 1 6 Flyby mode OMM 5 During the Earth Mars and asteroid flyby the RPC package is expected in the OMM 31 However the specific modes are TBD depending on power and telemetry available Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 214 4 2 1 2 Summary of Mode Characteristics The bit rate of each individual sensor in different modes are summarised in the following table where the PIU bit rate includes all HK data MINIMUM BIT S NORMAL BIT S MAXIMUM BIT S BURSTMODE Table 4 2 2 RPC Operational Modes and Bit Rates The power and TM requirements for the different OMMs are summarised in the following table OPERATIONAL MACRO RPC PRIMARY TELEMETRY MODE POWER mW IRATE Bit s Hibernation OMM 0 Eco x Maintenance OMM 1 2800 Calibration OMM 2 Normal OMM 31 OMM 32 OMM 33 OMM 34 OMM 35 OMM 36 OMM 37 OMM 4 OMM 5 Table 4 2 3 RPC Operational Macro Modes Summary Reference Issue Date Page 4 2 2 Experiments 4 2 2 1 PIU 4 2 2 2 IES 4 2 2 3 ICA RO RPC UM Draft February 20 2002 215 0 987 The ICA modes can be described as a combination of a telemetry mode and a data reduction mode The number of energy levels 32 or 96 is tied to the data reduction mode In principle any one combination of telemetry and data reduction mode can be used but some combinations will not optimi
351. mperatures are measured by a PT1000 with a nominal reference voltage of 2 5 V A voltage divider is built up with a Rser 1 resistor in series The nominal temperature dependent analog voltages are given Table 2 3 8 The conversion from the temperature dependent eoe I the output voltage Uanc is given by snc f Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 118 TIC R D Ohm 0 out hex 461 402 90 65235 09 82880 EE EN NETT NT 729 005 Lm um iem 100 14 Co000 60 1236 577 1 822 6 50 8 1316 36 142072 C8BDA 9 1356425 1 43907 Table 2 3 8 Thermistor Resistance to Voltage Conversion Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 119 The temperature calibration at Magnetsrode revealed that the temperatures calculated in Table 2 3 8 have to be corrected in the following way Tos table 2 7 1 5 Conversion of the Digital Values into Magnetic Field Values respectively into Voltages For magnetic field values range 16000nT lt gt 16000nT Decimal Q0000 FFFFF ssc 524287 5 0 0305176 For voltages range 2 5V lt gt 2 5 Decimal 00000 FFFFF s 524287 5 0 0000047683 V 10 Bit cycle counter range z 0 1023 Decimal 000 16 Housekeeping ch
352. n First Out Fabrication and Test Outline Flight Model Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 21 FM File Management FMECA Failure Mode Effect and Criticality Analysis FMI Finnish Meteorological Institute FMS Failure Management system FMS File Management System FOD Flight Operations Director FOP Flight Operations Plan FOP Flight Operation Procedure FOV Field Of View FP Formal Procedures FPA Focal Plane Assembly FPGA Field Programmable Gate Array FRR Flight Readiness Review FS Flight Spare FT File Transfer FTA Fault Tree Analysis FTP File Transfer Protocol FUSE Far Ultraviolet Spectrograph Experiment FUV Far Ultra Violet FWM Filter Wheel Mechanism G S Ground Station GFURD Ground Facilities User Requirements Document GH Grand Heading GIADA Grain Impact Analyser and Dust Accumulator Orbiter Payload GMI Global Mapping Injection point GMI Global Mapping Insertion GMT Greenwich Mean Time GPIB General Purpose Instrument Bus IEEE 488 75 GPR Ground Penetrating Radar GRD Graphic Display GRM Ground Reference Model GS Ground Station GSDR Ground Segment Design Review GSE Ground Support Equipment GSIR Ground Segment Implementation Review GSIS Ground Station Interface Specification GSM Ground Segment Manager GSMP Ground Segment Management Plan GSOC German Space Operations Centre GSRQR Ground Segment Requirements Review GSRR Ground Segment
353. nable disable FRPCOO Thruster enable disabl FAULT Thruster enable disabl FRPCOO N Compr switch FAULT N Compr switch Rosetta Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 2 31 MEMRPCO00002 N switch MEMRPCO00002 N Alt Pacc switch DEFAULT N Alt Pacc switch N Alt Pacc switch N Pacc level DEFAULT N Pacc level CPOI MEMRPCO00002 N Pacc level MEMRPCO00002 N Auto red sw DEFAULT N Auto red sw Auto red sw MPFRPCOO N Boot EEP incl Context MEMRPCO00002 N Boot EEP incl Context DEFAULT N Boot EEP incl Context DEFAULT N Test pattern N Test pattern CPOI MEMRPCO00002 N Test pattern Boot EEP excl Context MEMRPCO00002 N Boot EEP excl Context DEFAULT N Boot EEP excl Context CPOI MPFRPCOO N RPC Internal SID nr DEFAULT N RPC Internal SID nr CPOI MEMRPCO00002 N RPC Internal SID nr Default boot secti
354. nd ICA The only constraint on the operation of IES and ICA is to maintain contamination control in the area around the instrument when it is out of its shipping container A slow purge of must be maintained on the instrument whenever it is not stored in its shipping container High voltages must not be turned on at pressures above 10 Torr Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 195 3 2 1 2 Individual Unit Tests 3 2 1 2 1 PIU 3 2 1 2 2 IES 3 2 1 2 3 ICA 3 2 1 2 4 LAP 3 2 1 2 5 MIP MIP consists of the antenna system and the electronic board integrated into 0 The MIP calibrations are performed first on the sub systems antenna electronics and then on the integrated instrument a Calibration of the antenna The preamplifiers integrated into the antenna will be tested calibrated versus a wide temperature range under responsibility of SSD ESTEC Then the following parameters of the antenna will be calibrated in LPCE inside a FARADAY cage measuring the level of the two transmitters in the frequency range 28kHz 3 5MHz measuring the receivers response from 7kHz 3 5MHz measuring the whole antenna response in vacuum or atmosphere from 7kHz 3 5MHz measuring the noise level b Calibration of the MIP electronic board The calibration of the MIP electronics board is under responsibility of LPCE The calibrations also will be performed at LPCE The following param
355. ng the development EGSE Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 184 3 2 1 1 1 3 Software Description The S W for the RPC EGSE is written with National Instruments LabVIEW S W V6 0 running under Windows NT 2000 The version of the EGSE S W at the time of writing is 3 0 The S W design is based on a state machine with the subsequent state generally determined by a user action or the type of TM received Running in parallel with the state machine is a loop that listens on the network sockets for new TCP IP connections The network connection to the LAP stimuli rack can be opened at any time from a control on the GUI The EGSE S W carries out the following main functions 1 2 To communicate with the ROSIS CCS using the RPRO and display RPRO level information To receive TM from the ROSIS CCS and distribute this in CCSDS format over LAN to the relevant instruments EGSE To log the TM to archive files on the local hard drive The files contain TM in CCSDS packet format therefore individually time stampede with the on board time The files are in binary format and represent a fixed time bin during a test This bin can be set as part of an archive setup screen that appears after starting the EGSE program To decode and display TM on the and notify the user of unexpected or erroneous results The last 30 TM packets received by the EGSE are displayed Packets that arrived before
356. noes z N gt lt 01142245 uo dwa x P umy 5 c ved WIL VOGAZI lt ATE lt 2e 4 ING 3 5 G OCAS tc 5 Sd Sd AZI S o tc Qu SdAH ON SdAH ON SdAH Ore 1 65 SdAH SdAH STAN Jez amp qeuy uonaepaq 101990009 p dW serg dOW KSiouq SdAH PZeuy Sq AH Honea UO DS On G G 1 1 I 8 3 19151894 T 15 518 4 X D 1915155 2194 iion jonuog T ON SdAH m 1 I 2 onuoj 101009 JNV3IS yeroeords m saansea SdAH sut dezvuy a SdAH 2 08 dO uo dON KS1 us uo 1 E 5 dO ZHN rc JUSAT jueAj WOA OSZIHMN Wwvus PTX 91 _ HH TX OT Rosetta RPC UserManual eq uono q
357. ns Plan for each Mission Phase The Flight Operations Plan is defined in the document RO RPC MA 6005 RPC Cruise Phase Plan Operating procedures include Commissioning Switch on Switch off and Cruise Phase Checkout Each procedure will be described in terms of command sequences to be executed Command sequences will be listed separately to Procedures It is expected that each mode transition will be triggered by a single command sequence Any contingency conditions within mode transition will be handled by the software of the PIU Table 3 2 1 gives a preliminary timeline for RPC operations specified poene us and data requirements are still approximate 5 o 5 o c 2 o 5 2 CN e e N CN 5 2 25 y pue ggd pesn si 0053 pue si eseud ILON 10053 0059 2 ILON aseud ILON 82 5 595 268 29 08 r e payowal 1902 90 00 Inn 60 058 ba uoissiui eoueros Y
358. o During this period LAP does essentially nothing with the other probe this means LAP does nothing that is interfered or interferes with MIP transmitting or measuring How to set up and synchronise the two instruments are described in Section 4 2 2 4 2 3 422422 LDL Mixed Mode In the LDL Mixed mode does mixed measurements thus uses the probe in every second AQP and LAP does nothing Interleaved between the times MIP uses the lent probe and LAP uses the other probe and MIP does nothing LAP could also use the probe lent out to MIP but LAP wants to minimise relay switches How to set up and synchronise the two instruments is described in Section 4 2 2 4 2 3 4 2 2 4 23 amp LAP Synch To get the two instruments to interact smoothly with each other some kind of synchronisation is necessary This is particularly important in the mixed mode since if there is a shift in the AQP period with respect to the other the LAP measurement is performed when MIP sends which is a bad timing Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 220 The synchronisation and set up of the two instruments is best handled by the S C DMS This method requires that the DMS can check HK and branches depending on the result Furthermore two bits are needed in both MIP and LAP HK to achieve synchronisation If the acknowledge in HK is negative it retries several times about 3 times As soon a
359. o view the solar wind direction On board operations constraints such as the availability of OBCP slots which are dynamic programs run on the spacecraft system which control the operation of the payload the possibility to execute these is a limited resource Space available in the SSMM e Additionally for the magnetometer MAG experiment the operation of other payload subsystems particularly the reaction wheels and the Lander must be taken into account since these are a significant cause of magnetic interference For the fly by phases of the mission Mars and Asteroids the mission timeline will be rather pre determined and well suited to advance planning This is also the case for the Earth swing by which can be well used by RPC for sensor calibration purposes RPC also anticipates significant possibilities to take data in the solar wind during the cruise where meaningful science can be done and has already requested that the sensors be operated when possible Although there are times when all the payload must be switched off it is likely the RPC can be operated during significant parts of the cruise since the resource hungry imaging instruments will be off During comet operations however the situation will be rather more complex with all the instruments requesting resources Moreover the planning during comet operations will be rather dynamic with the spacecraft and science operations being tailored to the evolu
360. oard In this case we need MIP and LAP2 sensors installed on their respective booms linked to the MIP electronic breadboard installed about 3 m far from the S C The effect of the solar panel located near the booms that plays the most important role should be simulated by metallic panels or gratings 2 2 m wide x long about electrically connected to the S C The system composed by S C and panels have to be insulated from ground MAG During the system level magnetic test a calibration verification test will be performed Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 192 3 2 1 1 3 2 Experiment Stimuli IES There are two experiment stimuli associated with IES The first is a built in pulser that is used to generate pulses downstream of the micro channel plates and in front of the counting electronics When commanded to use its internal pulser IES can test all of its counting electronics and controller electronics The second stimulus is a small heated wire lithium source that we would like to use during spacecraft thermal vacuum testing Placed directly in front of the instrument the lithium source will emit a low rate of lithium ions when a current is applied to its filaments The lithium ions are used to perform an absolute calibration of the instrument including HVPS deflection plate assemblies and micro channel plate detectors Setup and Operation TBD ICA No instrument specific
361. ocol ROSETTA System Database Radiated Susceptibility Radio Science Investigation Orbiter Payload Rosetta Science Operations Centre Root Sum Square Real Time Remote Terminal Real Time Clock Reduced Thermal Model Reduced Thermal Mathematical Model Reflectron Time Of Flight Remote Terminal Unit Reaction Wheel Assembly Reaction Wheel Receiver Solar Array Spacecraft Safe Hold Mode Subsystem Software Solar Array Solar Aspect Angle Solar Array Drive Mechanism Sun Aquisition Mode Sun Aquisition Phase Science Activity Plan Sun Aquisition Sensor Standard Application Software Standard Balanced Digital Link Spacecraft Elapsed Time Spacecraft Control Language Spacecraft Check Out Equipment Sun Capture Phase SDB SDD SDE SDID SDR SE SECDED SEL SEPAC SESAME SEU SF SFDU SFT SGICD SGM S SID SIM SIMSAT SIR SIS SIS SIV SKM SLE SM SMCS SMD SNR SOC SOHO SOM SOR SOT SOW SPACON SPB SPC SPD SPG SPL SPEVAL SpM SPP SPR SPT SPWR SQA SR SRD SREM SRR Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 29 Satellite Spacecraft Data Base System Design Document Software Development Environment Station Data Interchange Document System Design Review System Engineer 16 22 Hamming Single bit for Error Correcting code Single Event Latchup Space Experiment with Particule Accelerator LANDER PAYLOAD INSTRUMENT Single Event Upset Safet
362. of the configuration table A default table is stored in a MIP PROM This default table cannot be updated It will only be used in case of transmission problems between PIU and The default table is 0 00 00 00 45 02 00 The type of table update default and its contents sent back in the CONTROL or TABLE sequence as data The table update is sent back in the HK packet type as execution acknowledgement 3 1 2 6 MAG As written in section 3 1 2 1 there is a hard constraint to power on MAG both sensors PIU has sent the first housekeeping packet The two reaso the following MAG provides HK for PIU and With MAG powered on before the other experiments there is the possibility to detect any interexperimental interference There is only one single command to power MAG on completely with all 7 ADCs starting to convert the two times 3 magnetometer components and the housekeeping channels voltages and thermistors Also the sampling rate is fixed to 20 vectors per second All other handling on the data like packetizing and changing the vector rate is done under control of the PIU depending on actual downlink capabilities Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 182 3 2 Nominal Operating Plans 3 2 1 Ground Test Plan 3 2 1 1 System Ground I F amp OPS Requirements 3 2 1 1 1 EGSE 3 2 1 1 1 1 Concept
363. og Prom param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3124 16 NONE N M Dog Prom param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 Y PRPG3124 32 NONE TCDP N M Set Macro Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h88 N 128 0 TCDP N M Set Macro param 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3128 8 NONE TCDP N M Set Macro param 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3128 16 NONE TCDP N M Set Macro param 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 PRPG3128 32 NONE M Read Write Macro Opcod 7 SRPRPCOO 2 8 8 URPRPCOO h89 N PRPG3132 0 N M Read Write Macro Par 1 7 2 8 8 URPRPCOO 0 PRPG3132 8 NONE N M Read Write Macro Par 2 7 2 16 16 URPRPCOO 0 PRPG3132 16 NONE N M Read Write Macro Par 3 7 2 16 16 URPRPCOO 0 PRPG3132 32 NONE M Set Relays Mux Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8A N PRPG3136 0 N M Set Relays Mux Par 1 7 SRPRPCOO 2 8 8 URPRPCOO 0 PRPG3136 8 NONE TCDP N M Set Relays Mux Par 2 7 SRPRPCOO 2 16 16 URPRPCOO 0 136 16 NONE N M Set Relays Mux Par 3 7 SRPRPCOO 2 16 16 URPRPCOO 0 136 32 N M ADC Control Reg Opcode 7 SRPRPCOO 2 8 8 URPRPCOO h8B N PRPG3140 0 N M ADC Control Reg Par 1 7 SRPRPCOO 2 8 8 URPRPCOO 0
364. on DEFAULT N Default boot section DEFAULT N Deflection level MEMRPCO00002 N Deflection level MPFRPCOO Deflection level DEFAULT N Entrance level MEMRPC000002 MEMRPCO00002 N SW start level DEFAULT N SW start level N SW start level MEMRPCO00002 N Spare level N GAS pressure low CPOI DEFAULT N GAS pressure low CPOI DEFAULT N GAS pressure high CPOI N GAS pressure high DEFAULT N Mode cmd CPOI MPFRPCOO N Mode cmd MEMRPCO00002 N Mode cmd MEMRPCO000002 N Reprog all EEP sections DEFAULT N Reprog all EEP sections N Reprog all EEP sections DEFAULT N Reprog EEP section MEMRPCO000002 N Reprog EEP section MEMRPCO000002 N Opto reference DEFAULT N Opto reference MPFRPCOO N Opto reference CPOI MEMRPCO000002 N Mop reference DEFAULT N reference CPOI N Mop reference Grid reference DEFAULT N Grid reference MEMRPC000002 Grid reference DEFAULT N Pacc low ref N Pacc low ref MEMRPCO00002 N Pacc low ref MPFRPCOO N Pacc high ref MEMRPCO00002 N Pacc high ref DEFAULT N Pacc high ref MPFRP
365. onitor 7 0050 84 7ISPACE AUTH 22 22 1 1145409 NONE ES SysErr Plug Change 7 0050 84 7ISPACE AUTH 22 22 1 1145410 NONE N ES SysErr 5V 7 0050 84 7 AUTH 22 22 1 1145411 ALL ES SysErr 12V 7 0050 84 7 AUTH 22 22 1 1145412 NONE N ES Rejected 7 0050 84 7 AUTH 22 22 1 1145424 NONE N ES 7 0050 84 AUTH 22 22 1 1145425 ES Invalid 7 0050 84 22 22 1 1145426 NONE N ES CmdErr LinkPkt Err 7 0050 84 22 22 1 1145427 NONE N ES CmdErr CmdLength 7 0050 84 7ISPACE AUTH 22 22 1 1145428 NONE ES PIU Link Error 7 00502 84 7ISPACE AUTH 22 22 1 1145441 ALL ES Acquisition Error 7 00502 84 7ISPACE AUTH 22 22 1 1454566 NONE N ES Sequence Error 7 00502 84 7 AUTH 22 22 1 1145472 NONE ES Missed 7 00502 84 7 AUTH
366. or use of one HPC only 6 1 2 TCPCK ELT Issue Date Page 1 1 PRPG6200 0 1 16 PRPG6100 0 1 16 PRPG7100 0 1 16 PRPG7100 0 1 16 PRPG8100 1 1 32 PRPG8200 2 1 16 PRPG8300 3 4 PRPG8400 0 1 PRPG8100 1 1 PRPG8200 2 1 16 PRPG8300 0 1 16 PRPG8100 1 1 32 PRPG8200 2 1 16 PRPG8300 0 1 48 PRPG9100 0 1 16 PRPG7100 0 1 16 PRPG7100 0 1 16 PRPG8100 1 1 32 PRPG8200 2 1 16 PRPG8300 3 4 16 PRPG8400 1 1 32 PRPG8200 2 1 16 PRPG8300 0 1 16 PRPG8100 1 1 32 PRPG8200 2 1 16 PRPG8300 0 1 16 PRPG8100 0 16 1 16 PRPGA100 0 16 1 16 PRPGA100 0 16 1 16 PRPGO0001 0 16 1 16 0002 0 16 1 16 0003 0 16 1 16 0004 0 16 1 16 PRPGO0005 0 16 1 16 0012 0 32 1 32 0013 0 16 1 16 0014 1 16 16 1 16 0015 0 16 1 16 0016 0 16 1 16 0017 0 16 1 16 PRPGO0007 0 16 1 16 0008 0 16 1 16 0009 0 16 1 16 0010
367. ormal and burst rates 1625 mW The operational modes have to be defined within RPC 4 2 2 6 The MAG Science Data Modes are defined as follows Science Sample Packet Packet Bit Rate Name Mode Rate Period Length SID 1 1 32 2 1024s 32 vec 2 bits s Minimum Mode 1 IB vec SID 2 1Hz 32 32 vec 66 bits s Normal Mode 1 IB vec SID 3 20 Hz 16 s 320 1344 bits s Burst Mode 16 IB vec SID 4 5 2 32 s 160 OB vec 322 bits s Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 222 1 IB vec SID 5 1 4 Hz 128 s 32 vec 16 5 bits s 1 IB vec Table 4 2 9 MAG Science Modes and vector rates The magnetometer vector rates for IB and OB main correspond to the above defined modes as follows Minimum Mode 1 packet every 1024 s containing 32 vectors from OB sensor and 1 from IB sensor total 2112 bits 1024 s Normal Mode 1 packet every 32 s containing 32 vectors from OB sensor and 1 vector from IB sensor total 2112 bits 32 s Burst Mode 1 packet every 16 s containing 320 vectors from OB sensor and 16 vectors from IB sensor total 21504 bits 16 s SID 4 Mode 1 packet every 32 s containing 160 vectors from OB sensor and 1 vector from IB sensor total 10304 bits 32 s SID 5 Mode 1 packet every 128 s containing 32 vectors from OB sensor and 1 vector from IB sensor total 2112 bits 128
368. ot change experiment configuration Off Power off experiment SID1 SID2 SID3 5104 505 506 Maintenance Quiet turn off science The meaning of the values is self explanatory The default action if it is not defined will be NoChange During the mode change of one instrument the other ones will be kept in their actual state Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 125 2 3 4 3 On Board Monitoring The DMS shall perform periodic and event driven monitoring of the RPC status Periodic monitoring shall be performed on parameters defined within the RPC Housekeeping Report delivered every 32 seconds According to a limit set for each parameter the DMS may be required to execute an OBCP for make safe action The RPC shall also generate discrete Event Packets which shall trigger the execution of an OBCP The able below gives an example of the expected monitoring requirements The total number of periodic monitored parameters is estimated to be typically 3 per unit PIU and experiments i e 18 total and the number of Event Packets requiring on board action will be typically 2 per unit Instrument Monitored Entity RSDB Mnemonic Monitoring Requirements Action On Error Parameters RSDB RSDB RPC 12V NRPD0320 According to Limit Set in RPC Off ka qo RSDB RSDB RSDB TBD PIU Monitor Danger YRPOAECA Parameter Unit ID Run OBCP MIP Dog barking YRPOAE
369. ound tests and operations During the Thermal Vacuum test the instrument will be fully operational and operated if the vacuum is better than 10 Torr This procedure will be sufficient for functional verification of the ICA instrument on the S C LAP When the ROSETTA S C is fully integrated there is a need for a noise environment investigation in an EMC chamber Reference RO RPC UM Rosetta Issue Draft Rev 0 987 2 Date February 20 2002 RPC UserManual Pae e MIP The LDL common mode is an active mode which consists of Low frequency emission by LAP opposite sensor LAP 2 Reception on MIP sensor This mode is very sensitive to the electric environment of the S C A life size verification is requested with the S C as soon as possible to verify the good orientation of the boom and the emission level theoretically obtained by simulation The test will require Booms deployed No metallic structure close to the MIP LAP sensors e EMI cleanliness The test could be done during the system level EMC test optionally the test could be performed with flu S C RF mock up The test consists of a verification of the theoretical emission level on a representative S C with booms deployed and solar panels partly deployed or equivalent electrostatic panels during EMI tests in anechoic chamber A preliminary verification could be done on a dummy S C STM or other RF mock up respectively metallic breadb
370. pe nvalid SVAL DEFAULT N HV type nvalid SVAL MPFRPC00 N HV type nvalid SVAL MEMRPC000002 N Pacc type nvalid SVAL DEFAULT N Pacc type nvalid SVAL MEMRPC000002 N High Voltage nvalid SVAL MPFRPC00 N High Voltage nvalid SVAL DEFAULT N High Voltage nvalid SVAL MPFRPC00 N Cmd status nvalid SVAL MEMRPC000002 N Cmd status nvalid SVAL DEFAULT N Cmd status nvalid SVAL MEMRPC000002 N RPC Internal Sid type nvalid SVAL DEFAULT N Internal Sid type nvalid SVAL MPFRPC00 N RPC Internal Sid type nvalid SVAL DEFAULT N Mode nvalid SVAL MEMRPC000002 N Mode nvalid SVAL MPFRPC00 N Mode nvalid SVAL MPFRPC00 N 1 Bit Enabled Disabled nvalid SVAL MEMRPC000002 N 1 Bit Enabled Disabled nvalid SVAL DEFAULT N 1 Bit Enabled Disabled nvalid SVAL MEMRPC000002 N 1 Bit Alive Dead nvalid SVAL DEFAULT N 1 Bit Alive Dead nvalid SVAL MPFRPC00 N 1 Bit Alive Dead nvalid SVAL DEFAULT N LDL Syncronisation nvalid SVAL MEMRPC000002 N LDL Syncronisation nvalid SVAL DEFAULT N LDL mixed norm nvalid SVAL MEMRPC000002 N LDL mixed norm nvalid SVAL MPFRPC00 N Executing Macro nvalid SVAL DEFAULT N Executing Macro nvalid SVAL DEFAULT N Programming Macro nvalid SVAL MPFRPC00 N Programming Macro nvalid SVAL MPFRPC00 N 1 Bit Disabled Enabled nvalid SVAL DEFAULT N 1 Bit Disabled Enabled nvalid SVAL DEFAULT N LDL mode nvalid SVAL MPFRPC00 N LDL mode nvalid SVAL DEFAULT N Probe 2 Density bias range nvalid SVAL MPFRPC00 N Probe 2 Density bias range nvalid SVAL MPFRPC00 N Probe 1 Density bias r
371. r interfaces are not redundant Digital interface circuits will comply with the Standard Balanced Digital Link specification SBDL interface circuits within PIU are designed such that unpowered circuits maintain a high impedance to the spacecraft Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 89 2 2 2 5 2 SBDL Receiver Circuit Specification Figure 2 2 2 shows the SBDL interfaces main side only All circuits for the redundant interface according to the pin out of ector given in EID B section 2 6 4 2 2 2 5 3 SBDL Driver Circuit Specification The driver interface circuit is given in Figure 2 2 2 1 2 2 2 5 4 Thermistors Thermistors shall be of type TBC selected from the standard range and supplied by the Prime 2 2 2 5 5 High Power On Off Command Interface Figure 2 2 3 shows the High Power On Off Command interface main prose circuit is replicated for the redundant interface Internal Tm RPC IES Sin IES Signals IES SOut ICA Sin ICA Sin ICA SOut ICA SOut Telemetry Data Main Telemetry Data Main Serial Clock Main Serial Clock Main Telecommand Data Main Telecommand Data Main Spacecraft Data Sample Main Interface Telemetry Sample Main M ai n Telemetry Sample Main RPC 0 101 High Frequency Clock Main High Frequency Clock Main Telecommand Sample Main Timer Sync Pulse Main Timer Sync Pulse Main Note
372. rements To enable the LAP experiment to make low density ion measurements one or both of the LAP sensors should be occasionally in the shadow of the spacecraft in sunlight or in solar wind Therefore it is necessary to know the s c position amp orientation with respect to the sun and the outlines amp position of the s c shadow zone with respect to the LAP sensors It might happen that the s c has to be turned to generate a shadow zone at the LAP sensors from time to time The solar wind should come as close as possible towards the Zs axis Solar wind from 2 axis is excluded for measurement purposes 3 1 2 5 No special is required to switch on MIP See Data Handling Interface RPC MIP RP 126 990253 LPCE Ed 3 Rev 2 18 9 00 A parameter table Table 3 1 1 of 6 bytes is required for software initialization and E table contains internal parameters transmitter selection transmission level commands for selection of working modes and telemetry rates The size of 6 bytes corresponds to one link packet between PIU and s so so Byte2 Interference frequency n 3 ps ps Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 181 Sweep mode bandwidth Survey mode bandwidth Ampl pas Autoloop g Watchdo Science sequence number LDL type TM rate Table 3 1 1 MIP Description
373. rence RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 326 DEFAULT 1919 DataGenerEN SVAL DEFAULT 4848 HV ADJ SVAL MEMRPC000002 66 66 InstrDiagntc SVAL MEMRPC000002 3333 EEPROM WRITE SVAL MEMRPC000002 4848 HV ADJ SVAL MEMRPC000002 4949 SVAL MEMRPC000002 5050 HvEIcMcpAdj SVAL MEMRPC000002 5151 HV ElcMcp EN SVAL MEMRPC000002 5252 HV ESA ADJ SVAL MEMRPC000002 5353 SVAL MEMRPC000002 54154 HvlonMcp ADJ SVAL MEMRPCO00002 6767 InstrProgMd SVAL MEMRPC000002 5656 SVAL DEFAULT 5050 HvEIcMcpAdj SVAL MEMRPC000002 64164 InstrChecksm SVAL MEMRPC000002 6565 InstrClearSt SVAL MPFRPCOO 145145 SSEQ END ALL SVAL MPFRPCOO 1441144 SVAL MPFRPCOO 115115 STIM ION EN SVAL MPFRPCOO 114114 STIM ION ADJ SVAL MPFRPCOO 113113 STIM ELC EN SVAL MPFRPCOO 112112 SSTIM ELC ADJ SVAL MEMRPC000002 55155 HvlonMcp EN SVAL MEMRPC000002 113113 STIM ELC EN SVAL MEMRPC000002 6868 INSTR RESET SVAL 00002 69 69 InstWtchgCtl SVAL 000002 8080 SVAL 000002 81181 SVAL MEMRPC000002 8282 SVAL 000002 8383 MEM WRITE SVAL MEMRPC000002 9696 SafetyAmbS
374. riod 32 seconds are 1 HK type I packet of 6 bytes in length 1 HK type packet of 6 bytes in length The 2 HK packets the temperature value managed by MAG PIU and a 2 byte identifier are combined to create an telemetry HK packet of 16 bytes in length 2 3 1 5 4 Use of Event Packets The PIU shall use the Event Reporting service to report both normal progress action as well as warnings which are detected during the operation of the RPC package An event may also be generated by the PIU monitoring system which monitors all the RPC These events will be monitored by the DMS so that they may trigger OBCPs The possible events may be any of the following Parameter Out of bounds Warning Parameter Out of bounds Danger Autoshutdown occurrance Each of the three EID will identify the related unit in its parameters MIP does not create event packets Reference Issue Date Page The following list gives an overview about the Events Event EID Probable Cause Ground Action Events subtype 3 EC MIPDogBArking Ec RxTimeout Ec Autoshutdown Ec ChecksumFail Ec RamTestFail Ec NoNormalMode IES Ec NoNormalMode ICA Ec NoNormalMode LAP Ec NoNormalMode MIP Ec NoNormalMode MAG Mip Watchdog fired Dead Experiment Piu turned off experiment Piu Code is corrupted Ram failure on board Dead Experiment Dead Experiment Dead Experiment Dead Experiment Dead Experiment OBCP Action Events s
375. ror 7 00504 85 AUTH 22 22 1 145572 NONE Event 7 00501 86 AUTH 22 22 1 1145825 NONE N EC BadSensorEvent 7 00502 88 120 20 1 1146337 NONE N EC MAG BadSidEvent 7 00502 88 7 AUTH 20 20 1 146338 EC MAG CounterUnsync 7 00502 88 7 AUTH 22 22 1 146339 NONE N EC MAG TaskFill 7 00502 88 7ISPACE AUTH 22 22 1 1 46340 NONE N EC MAG MissedSamples 7 00502 88 7 AUTH 22 22 1 146341 IES SID 1 7 00325 84 4 NONE 42 42 1 111 ALL IES Memory Dump Report 7 ETMOO606MMDP 84 QISPACE JAUTH OTHER 26 4112 1 1130 IES Memory Check Report 7 00610 84 AUTH 26 26 1 1130 ALL IES Science 7 ETM02003SDRP 84 125 AUTH OTHER 214 2026 1 1 ALL N ICA HK WORD 7 00325 85 4ISPACE NONE 42 42 1 11 ALL ICA Memory Dump Report 7 00606 85 95 AUTH 26 4112 1 1130
376. rties of the cometary nucleus and its surface Special emphasis will be paid to determine the electrical properties of the crust its remnant magnetization surface charging and surface modification due to solar wind interaction and early detection of cometary activity The inner coma structure dynamics and aeronomy Charged particle observation as planned will allow a detailed examination of the aeronomic processes in the coupled dust neutral gas plasma environment of the inner coma its thermodynamics and structure such as the inner shocks The development of cometary activity and the micro macroscopic structure of the solar wind interaction region as well as the formation and development of the cometary tail In order to realize these investigations extensive in situ monitoring of the plasma electrons and ions their composition distribution temperature density flow velocity and the magnetic field is necessary These anticipated measurements will improve the understanding of the coupling processes of cometary dust gas and plasma as well as its interaction with the solar wind The plasma and fields measurements thus provide complementary information to that Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 34 of other Rosetta instruments for a deeper understanding of the overall physics and chemistry of an active comet The planned asteroid flybys of the ROSETTA spacecraft w
377. rtment Solid State Mass Memory Surface Science Package Solid State Power Amplifier Solid State Recorder Station Computer Irish Space Technology Institute Structural Thermal Model Standard Soyuz Transfer Orbit Star Tracker Solar Terrestrial Science Programme Software User Manual Survival Mode Software Validation Facility Service Module System Validation Test Software Science Working Group Standing Wave Ratio South West Research Institute Science Working Team To be confirmed To Be Defined To be Inserted Time Broadcast Pulse To be resolved To be supplied To be written Telecommand Test Configuration Data List Tele Command Detail Parameter Tele Command Global Parameter Trajectory Correction Manoeuvre Transport Protocol Internet Protocol Test Control System Thermal Control Subsystem Test Configuration Status List Thermal Control Subsystem Time Domain Terma Elektronic A S Transfer Function Transfer Frame Generator Transport Handling Adapter Task Identifier Thermal lon Dynamics Explorer Telcommand Telemetry Telemetry Thermal Mathematical Model RO RPC UM Draft Rev 0 987 February 20 2002 90 Telemetry Processing System within ground station Transfer Orbit Phase TRB TRP TRP TRR TRRB TSE TSP TSY TT amp C TT amp C S S TTC TUB TUB TUBS TV TWTA TWTL TX UARS UD UM UMOS UFT U L UPM URD URF USO UTC UTC UV UVD UVSC V amp V VD
378. ruary 20 2002 Page 85 2 2 1 4 Interface Circuits Each of the RPC PSUs have an interface to the spacecraft which is designed to prevent short circuit under any single point failure This interface also features a current limited trip out switch to protect the RPC and a slow turn on circuit which will comply with the inrush current and current slew specifications of the spacecraft LCL The interface is also compliant in respect of reverse current generation and will operate safely under any of the over under voltage situations as detailed in the EID A Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 86 2 2 2 OBDH Interface Requirements 2221 Channel Allocation t Telecommand Channels Memory Load Commands High Power ON OFF 1 1 Commands Telemetry Channels 16 Bit Serial Digital Channel Monitor Channels Spacecraft Powered 3 Thermistors Analogue Channels Timing Channels High Frequency Clock Broadcast Pulse Special Synchronisation Converter Synchronisation Channels Signal Table 2 2 3 Experiment OBDH Interface Channels Functions Note The high power On Off channel will be used to select either the main or redundant PIU data processing unit This is independent of the main or redundant LCL selection Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 87 2 2 2 2 Bit Rate Requirements RPC package will accommodate available telemetry re
379. ry 20 2002 69 The following diagram shows the approximate bench set up of RPC and refers to Figure 1 2 1 and Figure 1 2 2 for the experiment layout on the j Figure 2 1 1 RPC Bench Setup ES I ED 571 NOINATEN LE 0 24 KG EO VL AJIA 3015 1 918 ASIA gt 2 Sac NAIA 1083 3015 1397 TNT xum d Eras A HR A as emsa N T s gt fc gt 1 gt 1 1 o c UN gt 370501 CUS VIA NINOS 0907 YN SIRL IT VIVO i i 217 G G VIV
380. ry 20 2002 RPC UserManual 286 P N Segmentation Flag 85 1 Source sequence counter T SEPEPC00 2 um Bar Source sequ 7T SRPRPCOO 3 10 141 14 BIT NONE URPRPCOD RPCSSTCoamet 7 SRPRPCOO 3 14 32 T 32 __ ue 7 SRPRPCOO 3 12 16T WORD NONE URPRPC00 SEN Checksum flag 7 SRPRPCOO 2 3 3 3 URERECOD Data field header spare parameter 7 SRERPC00 5 f 4 T NONE URBRPCOO NDE IN 7 SRPRPCOO 2 4 414 URPRPCOD 85 1 Packet Subtype T SEPRPC00 5 5 5 Data field header pad T SRPRPC00 5 5 8 NONE 2 280 SEES 7 SRPRPCOO 2 8 BYTE NONE URDRECOD 85 4 Source sequence counter T SEPEPC00 3 5 NONE URPRPCTO 854 seq 7 3 10 141 14 URPRPCOD INDE EPO 8574 Coarse ti 7 SRPRPCOO 3 14 s2 T 32 URPRPCOO EPO Sa Fine me 7 SRPRPCOO 3 12 16 WORD URPRPCOD NDE IN 7 SRPRPCOO 2 3 URDRECOD Data field header spare parameter 5 f i NONE URPRPCTO NDE IN PC BEA Peake T 7
381. s and also control the power switches which distribute power within RPC The processor and DC DC converter units are used in cold redundant fashion Embedded software operating in the PIU processor will handle the complex packet services and data management protocols required by the spacecraft The PIU will also monitor the sub experiments health and safety and will take autonomous action in order to prevent damage from occurring 5 o e N a gt cee 62 o c 2 o 92529575 c Q x 25 tc 3 95 V fai 104405 JAMOJ puewwog papu pue 285 JaMO4 ejeg juauuadxy quepunpay sasea 1 4939 95 105592044 quepunpay 2424 wn buys ule 2424 sasea pawuadxg 3 405599049 ejeg 40 40 juepunpay ABCH UIEN 80 40 ejeq S10 8I18U Figure 1 2 15 Plasma Interface Unit PIU Block Diagram Rosetta oe lt Date RPC UserManual PS 2 0 Experiment Configuration 2 1 Physical RO RPC UM Draft Rev 0 987 Februa
382. s an instrument LAP or MIP enters LDL mode it should set one bit to indicate this in the MIP LDL and the LAP LDL It should also set a toggle bit MIP LDL SYNC and LAP LDL SYNC The instruments toggle the synchronisation bits every AQP making it possible to synchronise the instruments by comparing these two bits If we are out of sync for an even number of AQPs we are again in sync afterwards Therefore only one bit is needed The instruments will be out of sync when one instrument starts up in one AQP and the other in the next happening if commands are received at a boundary of an AQP 4 2 2 5 The modes are described in details in Onboard Data Handling RPC MIP RP 13 980317 LPCE Ed 3 4 20 9 00 A sequence is a series of elementary working modes run during an acquisition period 32 seconds Four types of sequences have been defined MIP science sequence LDL science sequence Control sequence Table sequence For one science type several sub sequences will be defined with different series of elementary modes The MIP science sequences correspond to the nominal operating order of the experiment around the comet when the Debye length is greater than a few millimeters and lower than 20 cm Transmission and reception are done with the MIP antenna Combination of elementary modes Survey Sweep and are run The LDL science sequences correspond to the nominal operating mode with MIP and LAP experiments
383. s of operation are given together with the percentage of time operation is requested to be active in the specified mission phase The specified power is maximum primary power requested Internal mode switching will allow to delimited the average power required down to the allocated value Data rates and data requirements are still approximate detailed numbers can only be given if the detailed sub mode sequences etc have been defined pian Commenting X Venfication activity perd APC m operational for the whole pened ona best effort by Felemmeiry amp Operstion verification ell aih Contact with Sun Hibernation Moda brated by week by contact with Sel Fey months ga piata Payload checkout al 871 Crier Daily ground contact checkout mil Weekly ground cortaci D ais K raisa checkout 83 Crac liene 1 _ Contact F baila centai with Payload checkout 66 AT di Paylrad checkout Sera Payload checker 810 amp 211 i Bur w ee Fun fe Table 3 2 2 Specific Timeschedule activity requinod s ESTU will be sequareul fer rtrarieuka rin Tirai C ALTES HY
384. s used to connect to the ROSIS or CCS This card connects to the network via twisted pair cable and an RJ 45 connector Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 183 n CCS Remote Network EGS SIS RPC 0 i Local Network i mE C10000 52001 Stim IES c10001 C10002 C10003 C10004 C10005 Figure 3 2 1 Overview of the RPC EGSE In Figure 3 2 1 C represents Client and S represents Server towards the m d the number following is the TCP IP port number This 2 the system can run without changing the network settings for various testing facilities in Phase 1 Also system level tests require only a single change of IP address when the SIS socket is replaced by a socket to the CCS Phase 2 For certain tests tghe experiment EGSEs can also be connected to the remote network e g tests with the instrument at IC and the experiment team at a remote institute There 2 EGSEs one to remain with the S C for system level tests and one for using development with the ROSIS The system level EGSE is a desktop PC the development EGSE is a laptop This portability is useful for RPC testing away from IC The RPC EGSE archives all the RPC data as it arrives during a test on the local harddisk After a test is completed the files can be copied onto CD using the built in CD writer on the system level EGSE and via a shared CD writer on the network when usi
385. setta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 300 N NRPA2300 15 NONE N NRPA2310 0 N NRPA2310 1 NONE N NRPA2310 4 N NRPA2310 5 NONE Y N NRPA2310 6 NONE Y N NRPA2310 7 N NRPA2310 8 NONE N N NRPA2320 0 kV N N NRPA2330 0 kV N N NRPA2330 8 NONE kV N N NRPA2340 0 N NRPA2340 8 NONE kV N N NRPA2350 0 N NRPA2350 8 NONE N LRPD2360 NRPA2360 0 LRPD2368 NRPA2360 8 NONE N NRPA2370 0 N NRPA2370 1 NONE N N NRPA2370 4 N NRPA2380 0 N NRPA2380 1 NONE N N NRPA2380 4 N NRPA2390 0 N NRPA2390 1 NONE N N NRPA2390 4 N NRPA23A0 0 N NRPA23A0 3 NONE kV N N NRPA23A0 7 N NRPA23B0 0 N NRPA23B0 3 NONE kV N N NRPA23B0 7 NONE N N NRPA3300 0 N NRPA3300 3 NONE N N NRPA3300 6 NONE N N NRPA3300 7 N NRPA3300 8 NONE N N NRPA3310 0 N NRPA3310 2 NONE N N NRPA3310 7 N NRPA3310 8 NONE N N 10 9 N NRPA3310 10 NONE N N NRPA3310 11 Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual
386. signal with adjustable frequency amplitude and duration from one probe and receive it at the other probe with the possibility to interchange the Tx Rx roles of the probes Study dust by the electrostatic structure of the impacts From this list it is obvious that LAP is characterised by a large number of different operational modes When comparing the very limited telemetry rates available nominally 1 bit s 5 bit s or 2200 bit s to the data output 20 ksample s from two probes with 16 bit samples implies 640 kbit s it is obvious that another characteristic of LAP is the need for extensive onboard data processing It is also clear that the data processing needs are very different for different types measurement For the probe sweeps some non linear parameterisation process is called for for wave studies Fourier or wavelet transforms may be used to reduce data for time of flight measurements cross correlation techniques will be useful and so on Finally it is also clear that a data processing technique used for one type of measurement may be completely inapplicable to another type of measurement taking the Fourier transform of sweep data or fitting a Langmuir sweep expression to pulsed propagation experiment data are two examples of such mismatches between measurement and data processing each likely to have disastrous results for quality of the data Therefore all commanding of LAP has to take this close coupling of measurem
387. sources during all phases of the mission There are baselined three operational scenarios Minimum absolute minimum requirement for safe sensor unit operation with minimal data products just HK ref Table 4 2 2 54 bit s PIU 23 bit s experiments pee RPC Normal adequate for normal operation compatible with routine operations 392 bit s Burst for transmission of high resolution or raw data products to on board burst memory 5239 bit s The above data rates are including packet overheads Contained within this requirement is a housekeeping bit rate of 20 bit s Normal and Burst This can be reduced to 1 bit s Minimum The operational duty cycles for the above bitrate scenarios are TBD The above data rates represent a typical operational scenario Although representative of the actual data rates exact figures are difficult to provide due to the complexity of the RPC package and lack of full operational details Refer to section 2 3 1 1 2 2 2 5 Timing RPC requires the following timing channels services High Frequency Clock redundant channel e Timer Synchronisation Pulse redundant channel e Telecommand Time Packet For the Timer Synchronisation Pulse a repetition rate of 8 seconds is required The time Packet will be required after PIU power on and thereafter approximately every day Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 88 Timing informa
388. ssion of number of vectors sec respectively burst mode memory operation will be adopted to available data rate by averaging of vector rate inside the PIU DPU Bandwidth 0 10 Hz Time resolution OB IB 20 vectors sec Table 1 2 6 Summary of expected MAG performances gt AS jddng S m gt AS lt DEN o E 252 YH 998 X 29805 S51U01 59 3 Alla 5 8 x qvx 591049913 s Bojeuy A go o 90 2 O oc 90499 SYN Nid woog Figure 1 2 7 Fluxgate Magnetometer MAG Diagram Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 50 1 2 2 4 4 The FPGAs the There are really two FPGAs now the MAG FPGA and the 1355 FPGA This description deals with the MAG FPGA only emphasizing the operation control of the ADCs and the interface transactions between the1355 FPGA and the MAG FPGA Figure 1 2 8 shows the distribution of the functions between the two lou e signals between them and the connections to XTAL CLK u MAG_DRV GENERATION SYSCLKI xin LOGIC CLKSYG lt lt CONV lt CAL i
389. ssue Draft Rev 0 987 Date February 20 2002 Page 138 2 5 2 5 Thermal Interface Control Drawing IES ref Figure 2 5 1 ICA ref Figure 2 5 21 LAP ref Figure 2 5 31 MIP ref Figure 2 5 4 MAG ref Figure 2 5 8 RPC 0 ref MICD Figud 2 1 2 _ 6 6 9 9 4 8 X 600818 09 c m mem SILON SNINECIETOHINOO 3OVEHHINI ENZEHONABLEIERIN L TPNH MS 679 on 0002 159 o X OUENHOHESHSMHECUS N n 0091 S m pt aun al gt L OMS 3O04ONIN TOAREBALALTCNCO WH 9 ONREENIONG tet At D N SURES NINA z S 6 gt j b 1 gt X o H ou s o SS o 8 AN N SS S LL coh DS 29406 00 02 3NVId3OVERELN N V 00701 p 2199 N X mer D Hgo c P
390. st Files CRID Command Request Interface Document CRMA Consolidated Report on Mission Analysis CRP Contingency Recovery Procedure CRV Command Station Reception Verification CS Conducted Suszeptibility CSG Centre Spatiale Guyanaise CSM Communication Switching Matrix CSME Communication Switching Matrix Element CSP Carge Senisitive Preamplifier CSV Command Station Radiation Verification CSY Converter Synchronisation CTC Cost to Completion CUC CCSDS Unsegmented Time Code CUV Command Uplink Verification CVP Commissioning and Verification Phase D TOS Directorate of Technical and Operational Support DARA Deutsche Agentur f r Raumfahrtangelegenheiten DAT Digital Analog Tape DB Database DBMS Data Base Management System DC Data Centre DC Direct Current DCA Dedicated Control Area DCL Declared Components List DCR Document Change Request DCR Data Change Request Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 19 DCR Dedicated Control Room DCS Dust Collector Subsystem COSIMA DCT Discrete Cocine Transform D amp D Design and Development DDD Detailed Design Document DDID Data Delivery Interface Document DDS Data Distribution System DDV Design Development and Verification DFMS Double Focusing Mass Spectrometer DIB DPU Interface Board DISR Descent Imager Spectral Radiometer D L Down Link DLR Deutsche Forschungsanstalt fhr Luft und Raumfahrt e V DM Dynamic
391. stFail 7 0050 83 26 26 1 144864 NONE EC RamMapinvert 7 00502 83 7 AUTH 18 18 1 144865 NONE N EC ScatTcFifoFail 7 00502 83 7 AUTH 18 18 1 144866 NONE EC ScatTmFifoFail 7 00502 83 7 AUTH 18 18 1 144867 NONE N IES EC Relnit unit 7 00502 83 7ISPACE AUTH 18 18 1 1144992 IES _ 7 0050 83 7 AUTH 18 18 1 1144993 ALL IES RxTimeout unit 7 0050 83 18 18 1 1144994 NONE IES EC_BadTcType unit 7 00502 83 18 18 1 1144995 NONE N IES EC PktTooLong unit 7 00502 83 18 18 1 1144996 NONE Reference RO RPC UM Rosetta Issue Draft Rev 0 987 Date February 20 2002 RPC UserManual 251 ES EC PktTooShrt un
392. stimuli will be used during any tests LAP See EGSE manual Mu metal tube around the sensors ref Figure 3 2 7 within will be provided for use during system level tests Setup and Operation are given in the ADP of and Heg uonpunbijuos 159 uejs s peipjbeju 205495 41 80 0 987 OVW 113505 aos res EMEN Z S 11014340W o jueuuedx3 9vN Aq 5910559590 PUD 9 98 gt At oneubpu uou 1010998 At E G dSSGL NOA 4585 E 76 94 BO 15 70 J orm 5 25 244 80 15 248 DA AA L jot a u t MG MG A o SS o w 7 gio a ot 7 1002 0 o 5 dSS61 gt 529 l NN 80 19 048 c inus Um 081 c T MEM MEM peces N c Lp
393. t PPWR Primary Power PRNU Pixel Response Non Uniformity PROM Programmable Read Only Memory PRR Propellant Refillable Reservoir PS Pass Schedule PSF Point Spread Function PSK Phase Shift Key PSM Payload Support Module RCCCS RCS RD RDB RDDD RDDS RDM RDVM RE RF RF S S RFC RFC RFD RFDU RFI RFMU RFW RH RID RIS RISC Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 27 Project Support Room Processor Status Registers Planetary Science Research Institute Portable Satellite Simulator Procedures Specifications and Standards Programme System Standards Power Supply Unit Product Tree Parameter Type Code Pointing Requirement File Post Telegraph and Telephone authority Pre Transmission Validation Packet Utilisation Standard Pyro Valve Normally Closed Pyro Valve Normally Opened Quality Assurance Quality Assurance Engineer Quality Assurance Management Quality Assurance Procedures Manual Quality Control Quality Policy Manual Qualification Test Review Research amp Development Real Time system Return All Frames Rutherford Appleton Laboratory Random Access Memory Reliability Availability Maintainability and Safety Resolution Band Width Responsibility Code Remote Computer Rosetta Common Checkout amp Control System Reaction Control Subsystem Reference Document Rosetta Database Rosetta Database Definition Document Rosetta Data Disposition System
394. t sequence counter 7 3 WORD URP TMGS N RPC 86 12 Packet length 7 SRPRPCOO 2 16 16 WORD NONE URPRPCOO TMGS N RPC 86 12 Data field header time field 7 SRPRPCOO 9 17 481 48 NONE URPRPCOO TMGS N RPC 86 12 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS N RPC 87 1 Packet sequence counter 7 3 12 16 WORD URPRPCOO TMGS N RPC 87 1 Packet length 7 SRPRPCOO 2 16 1677 WORD NONE URPRPCOO TMGS RPC 87 1 Data field header time field 7 SRPRPCOO 9 17 481 48 BIT NONE URPRPCOO TMGS N RPC 87 1 Data field header PUS 7 SRPRPCOO 3 14 321 32 NONE URPRPCOO TMGS RPC 87 4 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS RPC 87 4 Packet length 7 2 16 16 WORD URPRPCOO TMGS N RPC 87 4 Data field header time field 7 9 17 481 48 URPRPCOO TMGS RPC 87 4 Data field header PUS 7 3 14 321 32 TMGS N 87 12 Packet sequence counter 7 SRPRPCOO 3 12 16 WORD NONE URPRPCOO TMGS N RPC 87 12 Packet length 7 2 16 16 WORD URPRPCOO TMGS RPC 87 12 Data field header time field 7 9 17 481 48 URPRPCOO TMGS RPC 87 12 Data field header PUS 7 3 14 321 32 URPRPCOO TMGS RPC 88 1 Packet sequence counter 7 3 12 16 WORD
395. tch off Procedures will be devised for the transfer of software to and from the spacecraft mass memory 2 3 1 5 Data Delivery Concept 2 3 1 5 1 Process ID Requirements The RPC package requires six Process IDs The requested allocation is as follows ref to Table 2 8 1 1 in the EID A Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 96 BET D CATEGORY 4 18 _ __ 7 TM Event Packets _ 12 JjMemoyLoad 12 TC Memory Dump Request 29 TM JMemoyDump 12 TC Memory Check Request _ __ 7 TM 1 Check Report 12 TC Time Update 12 TC _ _ 4 TM jHousekeping 1sid 4127 TM Event Packets o j 12 TC jMemoyLoad Housekeeping 1 sid ___ 9 TM Memoy Dump 12 TC Memory Check Request 7 TM Check Report _ 12 TM Science TM O TC _ 86 1 TM __ _ 4 TM Housekeeping tsid _ j 7 TM Event Packets 12 TC j 12 TC ______ ___ 9 j TM j MemrDump _ 12 TC Memory Check Request _ 7 TM Check Report _ 12 TM Science TM s NENNEN
396. the IST For the functional test in the RPC integrated configuration it must be assured that the Mumetal can is installed properly on the boom according to installation procedure see MAG ADP Check that MAG EGSE notebook is connected via network to the IC London RPC EGSE Power MAG on Wait for 3 minutes and check MAG sensors to be in range all 6 components If out of range tune sensor position orientation respectively move the Mumetal can slightly in boom axis direction until all sensor components are in range Check housekeeping channels versus nominal values including sensor temperatures Run test about 5 minutes and control sensor reading stability Due to the LAB environment this stability will be in the order of several 10 nT per second or minute with excursions to several 100 nT if H W is moved close to the S C Easiest control is to take the first science data packets as reference and compare al following data with these packets There is no fixed value that can be given and no known stability of the magnetic field in the LAB the Mumetal can just reduces ambient field by a factor of 5 10 and the technical noise in the LAB The HK parameters have to be checked against the values listed in Table 2 3 7 The procedures are defined by the PIU IC team Reference Issue Date Page 5 2 OBCPs Refer to section 2 3 4 2 5 3 RO RPC UM Draft Rev 0 987 February 20 2002 225
397. the ground are combined by PIU to update the current MIP table Then PIU sends the table to MIP 2 3 1 2 Autonomy Concept The principal mode of operation of the RPC shall be by the execution of OBCPs initiated from the mission timeline This approach shall maximise the flexibility of the RPC operational concept by removing autonomous operations from the experiments hard coded PROM software and placing the responsibility on the DMS where it is assumed that the procedures may be fine tuned as the mission progresses This approach should also enhance the safety and reliability of autonomous operations Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 94 The PIU shall monitor specified fields within each experiments housekeeping data If a parameter goes out of bounds then the PIU will generate a PIU event packet identifying the unit and the parameter which is out of bounds Two sets of limits may be defined for each parameter a warning level and a danger level Each level will generate a different EID Monitor functions with in the DMS shall detect either of these EIDs and use its data to trigger the correct OBCP to perform corrective or make safe actions The PIU shall monitor the experiments housekeeping data Anomalies are reported to the DMS by event packets Monitor functions within the DMS shall trigger the execution of defined OBCPs order to perform corrective or make safe
398. this can be viewed by freezing the display window and scrolling up the display up to a maximum of 1000 packets Events are shown in a separate display with the event ID decoded into text using a look up table In addition the parameters of all the RPC experiments housekeeping packets are decoded and displayed in a separate section To allow the user to control the ROSIS and send commands to RPC when testing at experiment level this can take the form of discrete commands or scripts of up to several hundred commands The experiment EGSEs are also able to command their own instrument via the network To control the LAP stimuli and display the command acknowledgements An extra utility program called HPC Telemetry Replay V1 1 is used for displaying archived data and can distribute TM to single or multiple experiment EGSEs over the network The TM rate can be set to Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 185 1 Single step through packets one at a time 2 Replay TM in real time as if connected to the CCS 3 Continuous download data to experiment EGSEs at fastest rate The utility program can also filter TM to display distribute only packets with a certain PID or category 3 2 1 1 1 4 Compliance The EGSE I F to the CCS conforms with the SCOE state table given in section 6 1 of EID B AD 1 and functions correctly with the ROSIS acting as a CCS simulator to the EGSE R
399. tion of the cometary activity and driven by events and observations Whilst there will be a baseline plan it is expected that this will be iterated and modified heavily during this phase of the mission often on a short timescale 3 1 1 1 Operational Concept The choice of the mode is due to mission phase available power and telemetry as well as scientific requirements Appropriate instrument Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 165 commanding is required The selection and initiation of the modes and sub modes are under the control of the RPC Pl spokesman after consultation with the RPC team A more detailed preferred operational concept is described in section 4 2 1 The sequence of sub modes during operational phases is TBD pl on power and telemetry available In any case OMM 31 preferred mode OMM 36 is designed for the delivery phase when both the orbiter and the lander magnetometers are required to operate simultaneously 3 1 1 2 Data Flow The RPC data will be retrieved from the ESOC DDS system by a procedure TBD The data from each instrument are unpacked from the RPC science telemetry by a procedure TBD On a common RPC level the data consists of housekeeping data and possible TBD common data products Each instrument team is responsible for the decoding calibration validation and archiving of the data from their instrument The TBD common RPC data products are based on ca
400. tion received from the spacecraft will be decoded in the PIU and distributed to the sub experiment units to be used for time stamping of science telemetry data RPC has no special requirements on timing A correlation of on board time to UTC to within 100 ms is acceptable 2224 Monitoring The PIU will monitor the reception and correct execution of all telecommands The effect of every defined telecommand shall be verifiable by monitoring of the housekeeping The PIU will monitor specified internal voltages temperatures and digital status of all sensor units Logic for corrective action and safe shut down of sensors shall be built into the PIU The spacecraft is required to monitor three spacecraft powered thermistors for sensor units IES ICA and MIP Heaters are provided for IES and ICA operable by the spacecraft according to TBD limit set The PIU will monitor and verify correct reception for all TCs Correct execution of a TC can be verified either by a change of state in the HK or the transmission of an execution acknowledge 2225 Electrical Interface Circuits 2 2 2 5 1 General As indicated in section 2 2 2 1 the PIU digital electronics are fully redundant with the red branch being powered off whilst the nominal branch is oper and vice versa Branch selection is made with the high power ON OFF command Internally PIU will implement no cross over between the redundant receiver driver circuits RPC Thermisto
401. to fill this volume In the case of RPC this is no easy task there are five sensor units producing science and housekeeping data plus housekeeping data from the PIU Moreover any sensor unit may be powered on or off for power budgeting reasons or telemetry saving When operating each sensor unit may be generating data at up to six different data rates It therefore becomes clear that RPC can not be operated as a classical instrument with a limited set of modes In fact the possible number of modes for RPC is many thousands and the associated data rates and power requirements are commensurately large It is also clear that given the capabilities of the Rosetta spacecraft this flexibility can be used to optimise the scientific return from RPC There are of course a large number of constraints placed on payload operations and these include specific constraints for RPC Power availability RPC can operate from 2 to 18 W and RPC operations will at times be constrained to an allowed maximum of 11 W Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 164 Spacecraft pointing The orientation of s c with respect to the sun due to the s c shadow covering the instruments is only relevant for LAP and MIP refer to section 3 1 2 4 2 They require pointing parallel to the plasma flow plus i Buil the ICA sensors which require to have the plasma flow in of view with the added requirement that IES likes t
402. uary 20 2002 RPC UserManual 16 Acronym List Acronym Description AID Analog Digital AIR As Required AAD Attitude Anomaly Detector AC Alternate Current ACID Application Configuration Interface Data ACK Acknowledge ACM Active Cruise Mode ACS Avionics Computer System ACS Attitude Control System ACU Attitude Control Unit AD Applicable Document ADC Analog to Digital Converter ADD Architectural Design Document ADP Acceptance Data Package AFM Asteroid Flyby Mode AIT Assembly Integration Tests AIU Interface Unit AIV Assembly Integration and Verification AIV Activity of Integration and Validation ALICE ORBITER PAYLOAD INSTRUMENT ALS Alenia Spazio AM Activation Mode AME Absolute Measurement Error AND Alphanumeric Display ANSI American National Standards Institute AO Announcement of Opportunity AOCMS Attitude amp Orbit Control Measurement System AOCS Attitude amp Orbit Control System AOS Acquisition Of Signal AOU Astronomical Observatory Uppsala APE Absolute Pointing Error APID Application Process Identifier APM Antenna Pointing Mechanism APXS LANDER PAYLOAD INSTRUMENT AQP Acquisition Period AS Address State 1750 Processor ASA Austrian Space Agency ASF Additional Safety Factors ASI Agenzia Spaziale Italiana ASIC Application Specific Integrated Circuit ATA Alignment Test Adapter ATP Approach Transition Point AU Astronomical Unit AWG American Wire Gauge BCP1 BCU
403. ubtype 4 EC ParameterMntrDngr EC BadLdLSync Parameter out of range MIP and LAP are not agreeing this LDL state RO RPC UM Draft Rev 0 987 February 20 2002 100 Subtype 3 and Subtye 4 Action Investigate causes Turn it off and contact RPC Investigate causes Power cycle PIU and this RPC Investigate location and perform work around Turn it off and contact RPC Turn it off and contact RPC Turn it off and contact RPC Turn it off and contact RPC Turn it off and contact RPC Decode parameters and power LCL off if necessary Start LDL synchronizing procedure Table 2 3 2 Subtype 3 and Subtype 4 Event List 2 3 1 6 Timing Requirements The RPC has no specific requirements on timing accuracy beyond that given in the EID A The RPC shall use the Timer Synchronisation Pulse and the Time Packet to synchronise with spacecraft elapsed time Within 20 seconds of the PIU power on procedure the PIU shall expect a time update by the Time Management service This must be completed before any telemetry packets are sent On receipt of the time update the PIU shall load the time value into a coarse time register On each subsequent Timer Synchronisation Pulse the coarse time register will be incremented by 8 seconds The PIU also receives the high frequency clock which is used to drive the PIU s tick timer A Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 101
404. ue Draft Rev 0 987 Date February 20 2002 Page 56 1280 us 10 64 ms DAQ Cycle from prev CONV Cycle 39 36 ms DATA Transfer Cycle to 1355 FPGA Figure 1 2 10 The Conversion Cycle timing First all Data generated by the previous Conversion Cycle are collected then transferred to the 1355 FPGA on byte by byte basis in the predefined packet format See later 1 2 2 4 2 2 The Data Acquisition Buffers After shifting the SDATA with the SCLK into a 20 bit shift register the Data Words are temporally stored in two FIFO type data buffers to spare the resources of the FPGA and to make the packet building easier See Figure 1 2 11 The FIFOs consist of four and three 20 bit registers loading the first register the content of the other ones into the next register as Figure 1 2 12 shows Each read write one word into the Buffer 22 or three loading pulse series The outputs of the F source of the Data Selector Logic which is controlled by the Interface Control Logic Figure 1 2 13 to select the required byte for the packet building Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 57 4 20 bit FIFO HKD 19 0 ADC SHR 19 0 for ADC Oz _ly and Hk DATA Load 4 Read 4 From Interface Foi DATA 3 x 20 bit SOURCE FIFO ADC SHR 19 0 HD 7 0 SHR 19 0 for ADC
405. y Factor Standard Formatted Data Unit System Functional Test Space Ground Interface Control Document Safeguard Memory Silicon Structure Identifier Simulator Software Infrastructure for Modelling SATellites Simulation Room Spacecraft Information System Spacecraft Interface Simulator Software Independent Validation Sun Keeping Mode Space Link Extension Structural Model Scaleable Multi Channel Communication Subsystem Surface Mounted Device Signal to Noise Ratio Science Operations Centre Solar amp Heliospheric Observatory Spacecraft Operations Manager Spacecraft Operation Request Science Operations Team Statement of Work Spacecraft Controller Superpixel Binning Science Programme Committee Space Division Single Point Ground Scenario Parameter List Spacecraft Performance Evaluation System Sin up Mode Sun Point Phase Software Problem Report Specific Performance Test Secondary Power Terma Space Division Quality Assurance Software Requirements Software Requirements Document Standard Radiation Environment Model Subsystems Requirements Review SSC SSD SSMM SSP SSPA SSR STC STIL STM STN STO STR STSP SUM SuM SVF SVM SVT SW SWG SWR SWRI SWT TBC TBD TBI TBP TBR TBS TBW TC TCDL TCDP TCM TCP IP TCS TCS TCSL TC S S TD TER TF TFG THA TID TIDE TLC TLM Reference Issue Date Page Status Consistency Checking Space Science Depa
406. ze the use of the telemetry capacity Further more ICA has a built in way to autonomously change the data reduction within some mode groups The normal combination of telemetry and data reduction modes are Telemetry Data reduction Minimum Spectra Selected lon Species Energy Mass matrix Normal Normal 0 7 Burst High angular resolution 0 7 Energy Mass matrix 0 7 Calibration Calibration 1 Special Calibration 2 Test Test Table 4 2 4 LCA TM modes amp Data reduction The Normal and Burst Data reduction modes can autonomously change their reduction scheme indicated by 0 7 to adopt to the TM capacity This is controlled by the amount of data in the telemetry FIFO against a low and a high water mark The measured parametric space is mass bins polar angles azimuth angles and energies The table below gives the characteristic for each individual mode The Minimum modes deliver up to Max sets The number of sets is adjusted so that on the average the data production stays within the TM capacity Reference RO RPC UM Issue Draft Rev 0 987 Date February 20 2002 Page 216 Mode Mass Azimuth Energies Polar sets bins angles angles Idle 0 0 0 0 0 Void Spectra 2 1 32 1 15 Void Selected ions 6 1 96 1 5 Energy Mass 32 1 96 1 1 The Idle mode is a none science mode i e it delivers no science data Table 4 2
Download Pdf Manuals
Related Search
RPC UserManual
Related Contents
NX2000 Samsung GT-S5050 Lietotāja rokasgrāmata Absalzregler BC 3250 LSI LANCAR SERVIZI INTEGRATI Srl Genius GHP-400F Copyright © All rights reserved.
Failed to retrieve file