Home
Methods for site selection in a multi
Contents
1. at the start of each passive channel scan with a channel asso ciated with the radio s current home site being the first chan nel in the given order Results of each passive scan are further used to rearrange the order of the channel list for use in performing an active site selection method in accordance with another embodiment of the teachings herein as illustrated by reference to FIG 4 In an embodiment that that does not interfere with the radio s transmission of signals or reception of signals of interest the radio performs method 200 when 202 the radio is not in a call i e actively transmitting signals or actively receiving a signal of interest Moreover in an embodiment that facilitates power saving in the radio the radio does not continuously perform method 200 even when it is not ina call but has some internal policy for when and how often it per forms the passive channel scan For example the radio starts 204 a passive channel scan only upon expiration of a timer set by the radio at the conclusion of a call and at the conclu sion of every passive channel scan Alternatively or in addi tion the radio monitors the channel at its home site also referred to herein as its home site channel and starts 204 the passive channel scan when 202 the signal strength mea sured for a signal detected on its home site channel falls below aknown threshold In another illustrative implementation the radio receives periodic
2. 982 B2 220 202 wos CHANNEL SORT AND lt SIGNAL STRENGTH gt O SELECT HOME CHANNEL HOME SITE AND RADIO 7 AOT IN A CALL 7 N lt A YES START PASSIVE CHANNEL SCAN 216 WITH HOMESITE CHANNEL t SELECT NEXT CHANNEL IN ORDER OF CHANNEL 206 LIST SIGNAL DETECTED 222 224 FIRST SIGNAL DETECTED RESTART SYNC PRESENT AND ALL CHANNELS ON gt YES OLOR CopE MATCHES2 List SCANNED 0 MEASURE AND RECORD RELEVANT CALL PROCESS CALL SIGNAL STRENGTH 20 FG 2 208 21 US 8 045 982 2 Sheet 3 of 4 Oct 25 2011 U S Patent ole 09 ose Ove oee oze ore f zwe 1 pzs ojze 6 ze Mu B s qo ha aU a t m agmg FT vee vSe pre vee 3375 U S Patent Oct 25 2011 Sheet 4 of 4 US 8 045 982 B2 SIGNAL READY FOR 402 TRANSMISSION SELECT FIRST CHANNEL TO 404 START ACTIVE SCAN SIGNAL DETECTED TRANSMIT SIGNAL ON CHANNEL COLOR CODE MATCH NOTIFY THAT ACTIVE CHANNEL SCAN UNSUCCESSFUL SELECT NEXT CHANNEL IN ORDER OF LIST FIG 4 US 8 045 982 2 1 METHODS FOR SITE SELECTION IN A MULTI SITE COMMUNICATION SYSTEM TECHNICAL FIELD The technical field relates generally to communication sys tems and in particular it relates to a wireless communication device automatically selecting a site for its communi
3. a different order Moreover in this embodiment the home site channel was scanned only once during the passive channel scan However in another embodiment the radio can use the home site chan nel as a priority channel and alternately scan the home site channel with each other channel in the list This enables the radio to remain on the priority channel during half of the channel scan time frame so as not to miss any signal of interest on the home site channel while performing the passive chan nel scan During a subsequent passive channel scan 320 over a sub sequent time frame radio 114 scans the channels in the cur rent order A C D B E beginning with its home site channel A During this passive channel scan the repeaters begin to re key from a sleep mode 302 to an active mode 304 begin ning with repeater 132 in order to repeat a signal and radio 114 detects 206 the signal on channel B Although the repeaters re key at substantially the same time the re keying appears asynchronous from the radio s perspective due to various propagation delays through the backend and RF chan nels as can be seen in FIG 3 by the different transition times from sleep mode to active mode for some of the repeaters Upon detecting the signal the radio determines 208 if a synchronization message SYNC is present in the signal and if so detects the color code from the signal to see if it matches a known color code for the associated site
4. list have been traversed either scanned or skipped at least once 1 at least one full scan cycle was completed radio 114 ends 420 the active channel scan and notifies a user that the active channel scan was unsuccessful e g because of an unsuccessful attempt to send audio or data because no awake repeater having the correct color code was found etc This notification may be some type of indication e g a tone a message on a display etc that the radio is out of range if radio 114 was unable to detect a signal on any of the channels or channel busy where the radio 114 skipped scanning one or more of the channels because a signal was detected on the channel Moreover the radio may perform more than one active scan cycle before providing 420 a failure notification to the user If all chan nels on the list have not been traversed radio 114 selects 418 the next channel in the channel order in this case channel B and continues method 400 by scanning 406 channel B and performing signal detection 408 and a color code compari son 408 to determine whether it can transmit 410 on this channel If as a result of scanning channel C radio 114 detects a signal on the channel the radio detects SYNC and attempts to detect color code from the signal and determines 408 whether a detected color code matches the known color code corresponding to channel C If there is a color code match radio 114 knows that it has detected a cha
5. mode and some are in the active mode in the process of de keying In this case radio US 8 045 982 B2 9 114 confirms 324 that a signal still exists on channel B and thereby selects site 112 as its current home site and rearranges the channels on the list into the order B C A D E based on the signal strengths measured and recorded during the passive channel scan 320 During a subsequent passive channel scan 330 in the chan nel order B C A D E over a subsequent time frame radio 114 measures and records average RSSI for channels B C and A and detects during a channel sort 332 that channel B is again associated with the highest signal strength followed by channels C then A Upon radio 114 confirming 334 that a signal remains on channel B the radio retains site 122 asso ciated with channel B as its home site and retains the channel order B C A D E based on the measured and recorded RSSI During a subsequent passive channel scan 340 in the chan nel order B C A D E over a subsequent time frame radio 114 measures and records average RSSI for channels B C and A and detects during a channel sort 342 that channel C is associated with the highest signal strength followed by chan nels B and A Upon radio 114 confirming 344 that a signal remains on channel C the radio selects site 132 associated with channel C as its new home site and rearranges the channel order to C B A D E based on the measured and recorded R
6. ON Generally speaking methods for selecting a site multi site communication system are described with reference to various embodiments In accordance with a passive site selection method a wireless communication device detects a first signal on a channel in the communication system wherein the channel is one of a plurality of channels that are arranged in a first order ona list of channels and wherein each of the channels on the list is associated with a different site in a multi site communication system Upon detecting the first signal the device attempts during a first time frame to mea sure and record signal strength of a signal at each of the channels on the list based on the first order and beginning with the detected first signal and selects as a current home site the site associated with the channel on the list having the signal with a highest signal strength recorded during the first time frame The device then rearranges the channels on the list into a second order based on the signal strengths recorded during the first time frame Accordingly attempting to measure and record signal strength for each channel on the channel list is extended to check the rest of the channels on the list after a signal on one of the channels is detected This guards against selecting a home site during a time interval when the repeaters are each transitioning to an active mode In another embodi ment prior to confirming a home site the d
7. SSI During a subsequent passive channel scan 350 in the chan nel order C B A D E over a subsequent time frame the repeaters begin de keying to the sleep mode and the radio 114 only measures and records an average RSSI for channel B which by default has the highest recorded signal strength However when the radio 114 attempts to confirm 354 a channel on channel B during a channel sort 352 the radio no longer detects a signal on channel B Therefore radio 114 retains its current home site 132 and retains the current chan nel order C B A D E for the next passive channel scan Similar to the re keying process the repeaters de key at sub stantially the same time However the de keying appears asynchronous from the radio s perspective due to various propagation delays through the backend and RF channels as can be seen in FIG 3 by the different transition times from active mode to sleep mode for some of the repeaters During a subsequent passive channel scan 360 in the chan nel order C B A D E over a subsequent time frame radio 114 fails to detect a signal on any of the channels on its channel list since all of the repeaters are in the sleep mode Therefore during a channel sort 362 the radio retains its current home site 132 and retains the current channel order C B A D E for the next passive channel scan Likewise during a subsequent passive channel scan 370 in the channel order C B A D E over a subsequent time f
8. adio as a result of for example a user of radio 114 pushing a push to talk PTT button to send audio a user manual selection such as the user pressing a button on the radio or using some other user inter face e g selecting a menu item to manually start the active site selection process etc the user requesting to send data via a user interface the radio being programmed to periodically send location data etc Radio 114 obtains the channel list which has a given order which in this embodiment is the order C B A D E generated during the last passive site selection scan 370 and selects 404 a first channel from the list which in this case is the home site channel C to start the active channel scan In another embodiment the channel list has an order that is determined in any suitable manner such as a preprogrammed order Upon selecting the home site channel C radio 114 tunes to the radio frequency of the channel and scans the channel to determine 406 whether a signal is present If no signal is present radio 114 sends a message proprietary or standard to repeater 132 in an attempt 412 to awaken its repeater If the repeater confirms that it is awake e g via some acknowl edgement message radio 114 can synchronize to the repeater and transmit 410 signals on channel C Ifradio 114 is unable to awaken repeater 132 it determines 416 if it has traversed all channels on the channel list If all channels on the channel
9. al on channel B This can be done using any suitable method including but not limited to an average Received Signal Strength Indication RSSD signal to noise SNR ratio local mean signal strength measurement logarithmic signal strength measurement to name a few Signal strength is illus trated in FIG 3 by the height ofa bar above the channel labels at the bottom of the drawings The radio 114 also qualifies the signal to determine 212 whether is it a call of interest for instance by determining whether it is addressed to the radio or to a group to which the radio belongs If the call is of interest radio 114 processes 218 the call and performs 220 the channel sort which includes selecting as the new home site home site 122 associated with channel B Radio 114 further rearranges the channel order by placing channel B at the top of the order The remaining channels can retain their current relative channel order Thus for the initial channel order A C D B E the new channel order could be B A C D E If the signal on channel B is not of interest as in this case radio 114 scans all of the remaining channels on its channel list in the current channel order 1 A C D and then performs a channel sort 322 Since the signal on channel B was the first signal detected 222 during the passive channel scan 320 scanning all of the remaining channels on the chan nel list in this case comprises extending the passive
10. are not limited to two way radios mobile phones cellular phones Personal Digital Assistants PDAs laptops and two way pagers As used herein a repeater is a device that is a part of a fixed network infrastructure and can receive information either control or media e g data voice audio video etc in a signal from a radio and transmit information in signals to one or more radios via a communi cation link A repeater includes but is not limited to equip ment commonly referred to as infrastructure devices base radios base stations base transceiver stations access points routers or any other type of infrastructure equipment inter facing a wireless communication device in a wireless envi ronment and is referred to herein simply as a repeater As mentioned earlier the devices in network 100 commu nicate using communication links also referred to herein as channels The channels are the physical communication resources over which information is sent between the devices within network 100 and can comprise wired links or wireless links Ifthe channels comprise wireless links the correspond ing physical resource is an allocation of radio spectrum that is partitioned into radio frequency RF carriers that are modu lated by a media or control stream As it relates to the embodi 0 a 5 20 40 45 65 6 ments described herein the terms signal communication and transmission refer to messages emanating
11. az United States Patent US008045982B2 10 Patent No US 8 045 982 B2 Khoo et al 45 Date of Patent Oct 25 2011 54 METHODS FOR SITE SELECTION INA 56 References Cited MULTI SITE COMMUNICATION SYSTEM U S PATENT DOCUMENTS 75 Inventors Hun Weng Khoo Pul MY John P 6 185 423 2 2001 Brown etal 455 434 Belmonte Schaumburg IL US 7 369 869 B2 5 2008 Wiatrowski 2004 0033804 A1 2 2004 Binzel 455 437 Dipendra M Chowdhary 2008 0014928 Al 1 2008 Chen Estates IL US Yueh Ching Chung 2008 0014934 Al 1 2008 Balasubramanian et al Woodstock IL US PCT International Search Report Dated Apr 26 2010 73 Assignee Motorola Solutions Inc Schaumburg cited by examiner IL US Primary Examiner Kamran Afshar Notice Subject to any disclaimer the term of this Assistant Examiner Dung Lam patent is extended or adjusted under 35 74 Attorney Agent or Firm Valerie M Davis U S C 154 b by 573 days 57 ABSTRACT 21 Appl No 12 253 478 A device detects a first signal on a channel that is one of a plurality of channels arranged in a first order on a list with 22 Filed Oct 17 2008 each channel being associated with a different site in a multi site communication system Upon detecting the first signal 65 Prior Publication Data the device attempts to measure and record signal strength of a US 2010 0099404 Al Apr 22 2010 signal at ea
12. beacon messages on its home site channel and the radio starts the passive scan when the signal strength of the beacon messages falls below the threshold or when the radio fails to receive a beacon message within a certain time period which indicates that the radio has moved outside of the coverage area of its current home site radio s performance of the passive channel scan method 200 is next described by reference to a timing diagram 300 illustrated in FIG 3 where time is increasing from left to right as indicated by the direction of the arrow at the end of the time line at the bottom of FIG 3 For purposes of this illustrative example radio 114 is operating in its home site 110 and implementing method 200 Accordingly radio 114 has stored in its memory a channel list that includes channels labeled A its current home site channel B C D and E managed respectively by repeaters 112 122 132 142 152 The chan US 8 045 982 B2 7 nels in the channel list are arranged in the order D and E Upon determining to start 204 the passive channel scan radio 114 tunes to the radio frequency of channel A its home site channel and scans the channel to determine 206 whether a signal is present Radio 214 uses its transceiver to perform the channel scan and signal detection using any known techniques If no signal is detected 206 radio 114 selects 216 and scans the next channel in the order of the channel list to
13. cations while roaming in a multi site communication system BACKGROUND Multi site communication systems provide wide area cov erage for users of the system These systems comprise a number of sites with each site corresponding to a different geographic coverage area and each site having located therein an infrastructure device which will hereinafter be referred to as a repeater serving the coverage area by managing one or more channels e g uplink and downlink channels time slots radio frequency channels etc in the coverage area Accordingly for purposes of the teachings herein a site is characterized by a repeater that serves a particular coverage area a channel for wireless communication device transmis sions and a system identification that identifies transmissions from the repeater on the channel at the site Some or all of the infrastructure devices in a multi site communication system may be networked or connected together to provide the wide area coverage and in many instances two or more of the coverage areas have some degree of overlap Multi site communication systems may be designed as trunked systems or conventional systems In trunked systems a limited number of communication channels are shared among a much larger number of users to facilitate efficient use of the system s communication resources Thus to afford each user a reasonable opportunity to use the system s resources one or more control channels ar
14. ch channel on the list based on the first order cakes beginning with the detected first signal and selects as a home 51 Int Cl site the site associated with the channel having the signal with HOAW 4 00 2009 01 the highest recorded signal strength The device rearranges 52 U S Cl 455 434 455 433 455 432 1 the channels on the list into a second order based on the EE e 455 67 11 455 1435 2 370 332 recorded signal strengths with home site channel at 58 Field of Classification Search A 455 433 top If necessary the radio attempts to awaken its repeaters 455 434 432 1 67 11 435 2 370 331 332 370 328 See application file for complete search history 202 Te 7 rin S 2 N SIGNAL STRENGTH gt TH O S HOME SITE AND RADIO 7 N NOT IN A CALL 7 204 START PASSIVE CHANNEL SCAN WITH HOMESITE CHANNEL 208 OLOR CODE MATCHESZ 210 MEASURE AND RECORD SIGNAL STRENGTH SELECT NEXT CHANNEL IN ORDER OF CHANNEL 206 LisT 222 FIRST SIGNAL DETECTED No PRESENT AND ALL CHANNELS ON LIST SCANNED one after another based on the second order until a repeater 15 found to transmit a signal 13 Claims 4 Drawing Sheets CHANNEL SORT AND SELECT HOME CHANNEL 216 224 RESTART CHANNEL SCAN PROCESS CALL U S Patent Oct 25 2011 Sheet 1 of 4 US 8 045 982 B2 FIG 1 U S Patent Oct 25 2011 Sheet 2 of 4 US 8 045
15. chan nel scan to rescan some of the channels e g A C and D to afford radio 114 a better opportunity to perform the scanning when all repeaters are in the active mode Extending the passive channel scan in this manner essentially has the effect of restarting 224 the passive channel scan after the first detected signal to scan all other remaining channels on the channel list During the extended passive channel scan 320 radio 114 also measures and records average RSSI for channels A and C Moreover the channel sort 322 in this case comprises determining the channel having a signal with the highest measured and recorded signal strength in this case channel B since it has the tallest signal strength bar followed by channels C then A selecting channel B as the new home site and rearranging the channels on the list into a new order for the next passive channel scan based on the measured and recorded signal strengths In this case the channels are rear ranged into the order B C A D E In a further embodiment before selecting a new home site and rearranging the order of the channels on the channel list radio 114 confirms 324 that a signal is still present on the channel having the highest recorded signal strength This prevents the radio from detecting that a channel has the high est signal strength only because the passive channel scan is being performed during a time frame when some of the repeaters have de keyed to the sleep
16. determine 206 whether a signal is present Radio 114 con tinues this channel selection and channel scan loop until a signal is detected or until it determines 214 that all channels have been scanned on the list at which point radio 114 per forms 220 achannel sort which includes selecting or choos ing a home site and determining the channel order of the channel list Turning momentarily to FIG 3 radio 114 performs a first passive channel scan 310 during a first time frame During this passive channel scan the radio sequentially scans all five channels in the given order i e A C D B E at the start of the passive channel scan but fails to detect 206 a signal on any of the channels because all of the respective repeaters 112 132 142 122 and 152 are in the sleep mode At the conclusion of the passive channel scan 310 during a channel sort 312 radio 114 maintains site 112 associated with channel Aas its current home site and maintains the channel order A C D B E of the channel list for the next passive channel scan It should be noted that during the channel sort selecting or choosing a home site includes both maintaining the current home site as the new home site and selecting a completely different home site as the new home site In addi tion rearranging the order of the channels on the channel list includes both maintaining the current order of the chan nels and actually changing the order to
17. e embodiments and that the teachings set forth herein are applicable in a variety of alternative settings Thus since the teachings described do not depend on the environment they can be applied to any type of wireless communication net work or system having any number sites repeaters and radios wherein the radios have access to a list of the channels that can be used at the various sites in the network Referring again to FIG 1 each repeater and radio is at least equipped with a transceiver i e transmitter and receiver apparatus a memory and a processing device and is further equipped with any additional components as needed for a commercial embodiment The transceiver memory and pro cessing device can have any suitable physical implementation and are topologically coupled depending on the particular device implementation These components are further opera tively coupled and can be adapted arranged configured and designed to perform methods in accordance with the teach ings herein for example as illustratively described by refer ence to FIG 2 through FIG 4 As referred to herein a radio includes but is not limited to devices commonly referred to as wireless communication devices access terminals mobile radios mobile stations subscriber units user equipment mobile devices or any other device capable of operating in a wireless environment and are referred to herein simply as radios Examples of radios include but
18. e highest signal strength recorded during the second time frame and rearranging the channels on the list into a third order based on the signal strengths recorded during the second time frame 2 The method of claim 1 wherein the attempting to mea sure and record during the second time frame is performed after the signal strength measured for a signal at the channel associated with the current home site falls below a signal strength threshold 3 The method of claim 1 wherein the attempting to mea sure and record signal strength during the first and second time frames is performed by a wireless communication device that is not participating in a call on any of the channels on the list 4 The method of claim 1 wherein the new home site is selected only if the signal strength recorded for the signal at its associated channel exceeds by a threshold the signal strength recorded for the signal at the channel associated with the current home site 5 The method of claim 1 wherein the attempting to mea sure and record during the second time frame is performed after a beacon message is not received on the channel asso ciated with the current home site for a first time period 6 The method of claim 1 wherein the measured signal strengths are recorded for the detected signals that include a repeater synchronization and an expected system identifica tion 7 The method of claim 1 wherein each channel on the list is managed by a different
19. e utilized by the infrastructure to allocate the shared resources between the many users in the system In general when a wireless com munication device which will hereinafter be referred to as a radio wants to communicate on the trunked system it sends arequest on the control channel to communicate with another radio or group of radios In turn the requesting radio and the radios to which it desires to communicate receives back on the control channel the allocation ofa traffic channel to use for their communications Upon the conclusion of the commu nications the allocated channel is released for use by other radios in the system In conventional systems a number of communication channels are also shared amongst a number of users although the number of users per channel is typically much smaller than in trunked systems However there is no control mecha nism provisioned in the infrastructure to allocate the resources among the users in the system Thus in contrast to a trunked system each channel in a conventional system is dedicated to one or more groups of users enabling the users to control access to the channels through their radios by manu ally selecting a channel or selecting a talkgroup that is assigned a particular channel As user roams or travels in a multi site communication system the user may move from one coverage area served by one repeater of which it is aware to a new coverage area served by a different repea
20. ent home site when no signal is detected from the repeater managing the channel and associated with the known system identification attempting to awake the repeater from the sleep mode to the active mode and if the attempting to awake is successful using the repeater to transmit the signal d otherwise selecting the next channel in the first order and when no signal is detected from the repeater managing the channel and associated with the known system iden tification attempting to awake the repeater from the sleep mode to the active mode and if the attempting to awake is successful using the repeater to transmit the signal US 8 045 982 B2 15 16 otherwise repeating d until a first repeater is confirmed the first confirmed repeater to transmit the signal and as being in the active mode and having the known system selecting as the new home the site associated with the identification or until all the of the channels on the list channel managed by the first confirmed repeater have been selected at least once f upon confirming the first repeater as being in the active 5 mode and having the known system identification using OK UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO 8 045 982 B2 Page 1 of 1 APPLICATION NO 12 253478 DATED October 25 2011 INVENTOR S Khoo et al It is certified that error appears in the above identified patent and that said Letters Patent is hereb
21. entral controller for the repeaters as is common in conventional systems More particularly site 110 includes a repeater 112 that manages at least one channel at site 110 Site 120 includes a repeater 122 that manages at least one channel at site 120 Site 130 includes a repeater 132 that manages at least one channel at site 130 Site 140 includes a repeater 142 that manages at least one channel at site 140 Site 150 includes a repeater 152 that manages at least one channel at site 150 Moreover each site is associated with a different system identification such as a color code a Network Access Code a PL private line tone or a DPL digital private line word but that will hereinafter be referred to as a color code that uniquely identifies transmissions from the repeater at the site Each repeater in network 100 is capable of operating in an active repeater mode or de keying to an inactive sleep mode A repeater de keys when the channel s that it manages have not been used for radio transmission for some predetermined period of time As is known in the art de key and conjuga tions of de key means that the repeater s transmitter is turned off Further known in the art de keyed means that the repeater s downlink channel for repeater to radio transmis sions is inactive while the repeater s uplink channel for radio to repeater transmissions remains active and available to detect radio transmissions When the repeater is de ke
22. evice confirms that a signal is still present on a channel before the channel s signal strength is used as the basis for selecting a home site This guards against selecting a home site during a time inter val when the repeaters are each transitioning to a sleep mode In accordance with an active site selection method a wireless communication device arranges a plurality of chan nels on a list during a first time frame wherein each of the channels on the list is associated with a different site in a multi site communication system and is managed by a differ ent repeater at the associated site wherein each repeater has an active mode and a sleep mode and is associated with a known system identification and wherein the channels on the list are arranged in a first order beginning with the channel associated with a current home site Thereafter the device determines to transmit a signal and beginning with the chan nel associated with the current home site when no signal is detected from the repeater managing the channel and associ ated with the known system identification attempts to awake the repeater from the sleep mode to the active mode and if the attempt to awake is successful uses the repeater to transmit the signal Otherwise the device selects the next channel in the first order and when no signal is detected from the repeater man aging the channel and associated with the known color code attempts to awake the repeater f
23. from one device As such signals communications and transmissions may generically refer to voice data or control information relat ing to network 100 The term call refers to related transmis sions between radios in network 100 Moreover since the repeaters are networked together at least one channel managed by each repeater is coupled together to form a wide area channel on which radios at different sites can hear the same transmissions Accordingly during each transmission on the wide area channel all sites light up so that each repeater is repeating the same signal while in the active mode This further means that the repeaters all transition to the active mode together although not nec essarily synchronously from a radio s perspective and that the repeaters all transition to the sleep mode together al though not necessarily synchronously from a radio s perspec tive FIG 2 is a flow diagram of a method 200 performed by a radio for passive site selection in accordance with an illustra tive embodiment The site selection method is deemed pas sive because the radio is not required to send messages to the repeater in order to perform the method The radio simply passively scans the channels in its channel list in an attempt to detect and measure signal strength of signals on the channels in order to select a home site based on these measurements The channels in the channel list are arranged in a given order
24. hannels on the list have been selected at least once without a repeater being confirmed as being in the active mode and having the known system identification 20 25 30 35 40 45 50 55 65 14 10 The method of claim 7 wherein the attempting to awake is performed according to a rule of politeness compris ing one of attempting to awake the repeater only if no signal is detected on the channel attempting to awake the repeater even if a signal from a repeater having an unknown system identification an incorrect system identification or no system identifica tion is detected on the channel or attempting to awake the repeater irrespective of whether any signal is detected on the channel 11 The method of claim 7 wherein the attempting to awake a repeater is a result of a manual user selection 12 A method for selecting a home site while roaming in a multi site communication system the method comprising arranging a plurality of channels on a list during a first time frame wherein each of the channels on the list is asso ciated with a different site in multi site communication system and wherein the channels on the list are arranged in a first order beginning with the channel associated with a current home site attempting during a second time frame subsequent to the first time frame to measure and record signal strength of a signal at each of the channels on the list based on the first order and begi
25. he repeater for the coverage area in which he is currently located As might be expected this approach can be cumbersome time consuming and not the most effective method of finding the repeater that provides the radio with the best signal strength for transmitting and receiving the radio s communications In addition some conventional systems require the repeater to de key or enter into an inactive sleep mode when there have been no transmissions on its channel s for a certain length of time This can further exacerbate the problem of a radio locating the repeater upon entering the repeater s coverage area especially if there happens to bea relatively lengthy time until the next transmission by the repeater on the channel Thus there exists a need for a method for site selection by aradio in a multi site communication system that can be used in conventional multi site communication systems BRIEF DESCRIPTION OF THE FIGURES The accompanying figures where like reference numerals refer to identical or functionally similar elements throughout the separate views which together with the detailed descrip tion below are incorporated in and form part of the specifica tion and serve to further illustrate various embodiments of concepts that include the claimed invention and to explain various principles and advantages of those embodiments FIG 1 is a block diagram of a wireless communication network in which may be implemented some illust
26. ly A device or structure that is configured in a certain way is configured in at least that way but may also be configured in ways that are not listed Also the sequence of steps a flow diagram or elements in the claims even when preceded by a letter does not imply or require that sequence The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclo sure It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims In addition in the foregoing Detailed Description it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more fea tures than are expressly recited in each claim Rather as the following claims reflect inventive subject matter lies in less than all features of a single disclosed embodiment Thus the following claims are hereby incorporated into the Detailed Description with each claim standing on its own as a sepa rately claimed subject matter We claim 1 A method for selecting a home site while roaming a multi site communication system the method comprising detecting a first signal on a channel in the communication system wherein the channel is one of a plurality of channels that are arranged in a fir
27. ly attempted to awaken repeaters within a certain time frame e g 30 seconds This limits unwanted inbound transmissions especially when the radio is out of the coverage area of the multi site communi cation system and is attempting to send periodic data like location updates In the foregoing specification specific embodiments have been described However one of ordinary skill in the art will appreciate that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below Accordingly the specification and figures are to be regarded in an illustrative rather than a restrictive sense and all such modifications are intended to be included within the scope of present teachings The benefits advantages solutions to problems and any element s that may cause any benefit advantage or solution to occur or become more pronounced are not to be construed as a critical required or essential features or elements of any or all the claims The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued Moreover in this document relational terms such as first and second top and bottom and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such en
28. nnel managed by repeater 132 that it can use to transmit 410 its signals If radio 114 fails to detect a color code detects an unknown color code or the detected color code fails to match the known color code the radio follows its internal policy for politeness 414 if it has one If the radio has no politeness policy or if the radio s politeness policy is impolite to all or polite to its own color code only then the radio attempts 412 to awaken its repeater and if successful uses the repeater for its transmissions If radio 114 is unable to awaken 412 its repeater or if its politeness policy 414 is polite to all the radio skips attempt ing to awaken its repeater associated with the current selected US 8 045 982 2 11 channel and determines 416 if it has traversed all channels on the channel list The radio further either ends 420 the active channel scan and notifies a user that the active channel scan was unsuccessful or continues 418 the active channel scan with the next channel in the channel order If as a result of the active channel scan radio 114 selects a channel on which to transmit 410 the site associated with this channel is made current home site if it is not already the home site In this case the radio transmits if there is no signal detected on the channel but the repeater is keyed the radio is provi sioned with impolite access irrespective of whether any signal is detected on the channel
29. nning with the channel associated with the current home site determining the channel from the list having the signal with a highest signal strength recorded during the second time frame determining whether the signal with the highest signal strength recorded during the second time frame can still be detected at a subsequent time to the second time frame if the signal with the highest signal strength recorded dur ing the second time frame can still be detected then selecting as a new home site the site associated with the channel having the signal with the highest signal strength recorded during the second time frame and re arranging the channels on the list into a second order based on the signal strengths recorded during the second time frame 13 A method for selecting a home site while roaming in a multi site communication system the method comprising a arranging a plurality of channels on a list during a first time frame wherein each of the channels on the list is associated with a different site in a multi site communi cation system and is managed by a different repeater at the associated site wherein each repeater has an active mode and a sleep mode and is associated with a known system identification and wherein the channels on the list are arranged in a first order beginning with the chan nel associated with a current home site b determining to transmit a signal c beginning with the channel associated with the curr
30. or the radio is partied to the call that is active on the channel and its politeness policy allows impolite behavior during a call to which it is partied Moreover in an embodiment upon the user requesting a manual active site scan the method 400 begins at the channel with which the previous active channel scan ended which many times is the channel associated with the current home site In addition after the radio awakens a repeater during a manual active site scan the radio can be programmed to wait for a predetermined duration e g 15 seconds before starting an active channel scan to provide the user time to lock the radio to the corresponding channel In yet another embodiment as briefly mentioned above the user can lock and unlock the radio to the current home site channel e g through a programmable button or menu in order to prevent the radio from performing a passive channel scan This is useful when the user stays within a site and the radio has determined the correct home site channel for its communications Locking the radio to the current home site channel optimizes call reception performances as well as battery life In addition the radio is able to spend more time in a low power mode when operating in the locked state since it ceases to perform passive channel scans In yet another embodiment the radio does not attempt to awaken a particular repeater if the radio is attempting to send data and the radio has unsuccessful
31. peaters communicate over an air interface using an air interface pro tocol that can be either standard or proprietary One such standard is a Digital Mobile Radio DMR air interface stan dard which specifies various protocols used by two way radios that can both transmit and receive signals at the data US 8 045 982 2 5 link layer 1 layer 2 of well known seven layer Open Systems Interconnection computer networking model and which is described in ETSI TS Technical Specification 102 361 1 v1 4 5 2007 12 published by European Telecommu nication Standards Institute ETSI The ETSI DMR standard specifies a two slot Time Division Multiple Access TDMA structure that transmitting and receiving devices can utilize to send voice and or data signals The voice and data signals are transmitted in the TDMA slots in accordance with a general burst format specified in the standard However any other proprietary or standard air interface protocols could be used in network 100 In addition the radios and repeaters can communicate information over a channel using any modulation scheme including but not limited to TDMA having any slotting structure Frequency Division Multiple Access FDMA Code Division Multiple Access CDMA Orthogonal Fre quency Division Multiple Access OFDMA to name a few As such those skilled in the art will recognize and appreciate that the specifics of this example are merely illustrative of som
32. rame radio 114 fails to detect a signal on any of the channels on its channel list since all of the repeaters remain in the sleep mode Therefore during a channel sort 372 the radio retains its current home site 132 and retains the current channel order B A D E for the next passive channel scan A benefit of performing a passive channel scan is that it results in an ordering of the channels on a radio s channel list with the channels at the top of the order being those corre sponding to sites associated with the highest signal strengths and therefore the most likely sites for the radio to success fully start a call This reduces the time to find a repeater if the ordering of channels resulting from the passive channel scan is used during an active channel scan or active site selection method FIG 4 is a flow diagram ofa method 400 for active site selection in accordance with an illustrative embodiment Method 400 is deemed an active site selection method because the radio may attempt to awaken one or more repeat ers to the active mode during the course of performing the 20 25 30 35 40 45 50 55 60 65 10 method For purposes of consistency and ease of understand ing radio 114 is described as also performing method 400 Method 400 starts upon radio 114 determining that a signal is ready 402 for transmission by the radio The signal is any type of transmit request generated in the r
33. rative embodiments FIG 2 is a flow diagram of a method for site selection in accordance with an illustrative embodiment FIG 3 is a timing diagram used to illustrate a wireless communication unit implementing the site selection method shown in FIG 2 FIG 4 is a flow diagram of a method for site selection in accordance with an illustrative embodiment Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not neces sarily been drawn to scale For example the dimensions of some of the elements in the figures may be exaggerated rela tive to other elements to help improve understanding of vari ous embodiments In addition the description and drawings do not necessarily require the order illustrated Apparatus and method components have been represented where appropri ate by conventional symbols in the drawings showing only those specific details that are pertinent to understanding the various embodiments so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein Thus it will be appreciated that for simplicity and clarity of illustra US 8 045 982 2 3 tion commonand well understood elements that areusefulor necessary ina commercially feasible embodiment may not be depicted in order to facilitate a less obstructed view of these various embodiments DETAILED DESCRIPTI
34. repeater at the associated site and wherein each repeater has an active mode and a sleep mode and is associated with a known system identification the method further comprising a determining to transmit a signal b beginning with the channel associated with the current home site when no signal is detected from the repeater managing the channel and associated with the known system identification attempting to awake the repeater from the sleep mode to the active mode and if the attempting to awake is successful using the repeater to transmit the signal c otherwise selecting the next channel in the second order and when no signal is detected from the repeater man aging the channel and associated with the known system identification attempting to awake the repeater from the sleep mode to the active mode and if the attempting to awake is successful using the repeater to transmit the signal d otherwise repeating c until a first repeater is confirmed as being in the active mode and having the known system identification or until all the of the channels on the list have been selected at least once 8 The method of claim 7 further comprising using the first confirmed repeater to transmit the signal and selecting as the new home site the site associated with the channel managed by the first confirmed repeater 9 The method of claim 7 further comprising providing an indication to user ofa failure to transmit if all of the c
35. rom the sleep mode to the active mode and if the attempt to awake is successful uses the repeater to transmit the signal The device repeats this process of selecting the next channel in the first order and attempting to transmit on the channel until a first repeater is confirmed as being in the active mode and having the known system identification or until all of the channels on the list have been selected at least once If a repeater is confirmed as being in the active mode and having the known system iden tification the device uses the first confirmed repeater to trans mit the signal and chooses as the new home site the site associated with the channel managed by the first confirmed 20 25 30 35 40 45 50 55 60 65 4 repeater Those skilled in the art will realize that the above recognized advantages and other advantages described herein are merely illustrative and are not meant to be a complete rendering of all of the advantages of the various embodi ments Referring now to the drawings and in particular to FIG 1 a conventional wireless communication network 100 is depicted in which may be implemented some illustrative embodiments Network 100 comprises sites 110 120 130 140 and 150 each having at least one repeater located in a geographic coverage area as indicated by the circles drawn in the figure wherein all of the repeaters in this illustrative embodiment are networked together and there is no c
36. site 122 in this case Checking the color code enables the radio 114 to con firm that it has detected a channel managed by a repeater with which it is authorized to operate since there may be a number of other repeaters not shown in the network 100 with which the radio is not authorized to operate but that manage a chan nel at the same frequency Attempting to transmit using an unauthorized repeater results in an illegal transmission for instance under the United States Federal Communication an 0 an 5 40 45 55 65 8 Commission rules which should be avoided Verifying the color code helps to prevent such illegal transmissions The format of the SYNC message depends on the particular pro tocols being used in the network In a DMR system for example the SYNC is included in a 48 bit field in the center of some TDMA bursts and the color code can be found in the Slot Type field in data bursts and in the EMB field in voice bursts If SYNC is not present in the signal e g as in the case of an analog signal or if the SYNC contains an unknown color code e g due to errors when decoding the color code or an incorrect color code one that doesn t match the known color code for the channel radio 114 proceeds to select 216 and scan the next channel in the list In this illustrative example the SYNC is present and the color code matches so radio 114 measures and records 210 the signal strength of the sign
37. st order on a list of channels and wherein each of the channels on the list is associated with a different site in a multi site communi cation system upon detecting the first signal attempting during a first time frame to measure and record signal strength of a signal at each of the channels on the list based on the first order and beginning with the detected first signal selecting as a current home site the site associated with the channel on the list having the signal with a highest signal strength recorded during the first time frame and rear ranging the channels on the list into a second order based on the signal strengths recorded during the first time frame attempting during a second time frame subsequent to the first time frame to measure and record signal strength of a signal at each of the channels on the list based on the second order and beginning with the channel associated with the current home site determining the channel from the list having the signal with a highest signal strength recorded during the second time frame determining whether the signal with the US 8 045 982 B2 13 hiehest signal strength recorded during the second time frame can still be detected at a subsequent time to the second time frame if the signal with the highest signal strength recorded dur ing the second time frame can still be detected then selecting as a new home site the site associated with the channel having the signal with th
38. ter of which it may not be aware In that case the user s radio must be able to detect the repeater in the new coverage area to facilitate communications in that coverage area In trunked systems naturally the control chan nels can be used to help radios locate a repeater More par ticularly the repeaters periodically send out a message on the 20 25 30 35 40 45 50 55 60 65 2 control channel that identifies the repeater e g via the sys tem identification and that provides addressing for contact ing the repeater Moreover the repeaters in trunked systems are generally continuously keyed which helps to locate a repeater and some repeaters transmit adjacent site informa tion that can assist a radio in finding a suitable repeater Conventional systems do not use control channels to locate a repeater upon a radio moving to a new coverage area However in some conventional systems the repeaters peri odically broadcast beacon messages that serve the same pur pose as the messages sent on the control channel in that they identify the repeater and provide contact information for the repeater However the transmission of beacon messages is not allowed in all conventional communication systems for various reasons including transmission regulations An alternative manual method could be used to find a repeater in a conventional system which involves a user manually tuning his radio in an attempt to locate t
39. tities or actions The terms comprises comprising has having includes including contains containing other variation thereof are intended to cover a non exclusive inclusion such that a process method article or apparatus 20 25 30 35 40 45 50 55 60 65 12 that comprises has includes contains a list of elements does not include only those elements but may include other ele ments not expressly listed or inherent to such process method article or apparatus An element proceeded by comprises a has a includes a contains a does not without more constraints preclude the existence of additional identical elements in the process method article or apparatus that comprises has includes contains the element The terms a and an are defined as one or more unless explicitly stated otherwise herein The terms substantially essentially approximately about or any other version thereof are defined as being close to as understood by one of ordinary skill in the art and in one non limiting embodiment the term is defined to be within 10 in another embodiment within 5 in another embodi ment within 1 and in another embodiment within 0 5 The term coupled as used herein is defined as connected although not necessarily directly and not necessarily mechanical
40. y corrected as shown below In Column 13 Line 57 in Claim 7 delete all the and insert all therefor In Column 14 Line 5 in Claim 10 delete channel and insert channel therefor In Column 15 Line 3 in Claim 13 delete all the and insert all therefor In Column 16 Line 2 in Claim 13 delete home the and insert home therefor Signed and Sealed this Eighteenth Day of December 2012 David J Kappos Director of the United States Patent and Trademark Office
41. yed even though the repeater is able to detect transmissions from the radio the repeater cannot process and repeat those trans missions because the radio and the repeater are not synchro nized Thus when the repeater is de keyed a radio cannot utilize the repeater for communications until a the radio sends a wakeup message to the repeater which causes the repeater to re key to the active mode and b the radio syn chronizes to the repeater to receive timing information about the repeater After the wakeup and synchronization processes are completed then a radio may finally utilize the repeater for communications Further illustrated are radios 114 and 116 operating in site 110 radios 124 and 126 operating in site 120 radio 134 operating in site 130 radio 144 operating in site 140 and radios 154 and 156 operating in site 150 Each radio has access to a list of the channels at sites 110 through 150 that the radio can select for its transmissions and receptions In an embodiment list is stored in the radio s memory In accor dance with the teachings herein the radio implements various methods to select a home site associated with a channel on the list and to arrange the channels on the list in an order to facilitate the radio quickly finding a channel when it needs to transmit The home site is the site that the radio will first attempt to use for its transmissions and receptions Since the radios are mobile the radios and the re
Download Pdf Manuals
Related Search
Related Contents
CountPlus_Cable_Conecter_final_20090626 USER MANUAL - Webklik.nl Ramsey Winch Company OWNER`S MANUAL Front Mount Electric PDFカタログ endosphere endosphere endosphere endosphere endosphere Manual - PLATINO イベント用器具・機械器具等ご利用のお客様はこちら La Crosse Technology WS-9228U-IT User's Manual KOHLER K-8973-7-BN Installation Guide Copyright © All rights reserved.
Failed to retrieve file