Home
creslaf - CVD Group-University of Louisville
Contents
1. 8 3 742E 04 1 124E 18 HN FSINH 2 S 7 483E 04 4 970E 21 HN NH2 S 9 158E 01 2 515 22 DEPOSITION RATE MICRONS MIN 7 SI D 8 209E 01 8 N D 8 208 01 RATE OF PROGRESS OF REACTIONS 1 NH3 HN 5 5 gt 2 5 81 5 1 006E 07 2 SIF4 HN_NH2 S gt F3SI_NH2 5 5 1 006E 07 3 F3SI_NH2 S gt F2SINH S HF 1 006E 07 4 NH3 F2SINH S gt H2NFSINH 8 HF 3 355E 08 5 H2NFSINH S F2SINH S gt HN FSINH 2 S HF 3 355E 08 6 HN FSINH 2 S F2SINH S 3 SIF 5 D 3 355E 08 TWOPNT SEARCH FOUND THE STEADY STATE TWOPNT SUCCESS PROBLEM SOLVED 4 21 o O P N oO 1 00 o O N P N GQ O DISTANCE ORDER OF INTEGRATION ERROR TEST FAILURES Y CM 200E 01 189E 01 176E 01 163E 01 150E 01 136E 01 121801 107 01 919 00 770E 00 619E 00 466 00 312E 00 157E 00 2225 15 Oo ooo Y CM UPPER WALL 0 200E 0 189E 0 176E 0 163E 0 150E 0 136E 0 121E 0 107E 0 919E 00 770E 00 619E 00 466E 00 312F 00 157E 00 222515 0 0 Ore SURFACE SPECIES SIT DEP 1 2 E SI3NA HN SIF S F3SI NH2 S F2SINH S H2NFSINH S HN FSINH 2 HN NH2 S
2. 2 8 DEPOSITION RATE 1 2 53 NUMBER OF STEPS JACOBIAN EVALUATIONS N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000000 5 m 000 00 144E lSlE 135E 126E 157E 146E 607E 889E 867E 509E 250E 166E 354E 492 492 SIF3 On OY OY O O S aus 000E 00 781E 781E 770E 760E 747E 732E HLTE 701E 686E 673E 661E 653E 648E 648E Co O O OO 12 2 1 2 2 O DG 0 Eo D Qo 5 00 0ooodoct 000E 00 308 308 306E 304E 300E 295E 290E 285E 279E 274E 270E 266E 264E 262E 262 TODO COO TOO SIHF3 000E 00 729E 729E 724E 710E 693E 671E 646E 621E 596E 573E 953E 937E 524E ol 7 E 517F OO lt OS en E a 65 QOO 0 0 84 14 NH2 NNH 0005 00 0 000 00 211E 05 0 768 1 2 211E 05 0 768 1 2 211E 05 0 753 1 2 210E 05 0 739E 12 208E 05 0 72 12 207E 05 0 697E 12 205E 05 0 674E 12 203E 05 0 648E 12 202E 05 0 622 12 200E 05 0 600E 12 198E 05 0 579E 12 197E 05 0 562E 12 196E 05 0 549E 12 196E 05 0 543E 12 196E 05 0 543E 12 SIF3NH2 NH
3. 5000 1000 1000 000 1000 000 000 90600 000 0 0 000 39 0 17824296E 3 0 46723179E 04 0 000 0 19412375E 6 0 000 0 13768154E 0 JAM NH3 CST MICHAEL JAM JAM JAM JAM NH3CST H3 CST CST CST CST CST 4 5229655E 05 4 2897310E 05 N N N H N N N zi z 1 2H3 M N2H2 H M 2H3 NH NH2 N2H2 N2H4 H2 N2 IF4 S SIFA H2 SI H3 SI H3 SI ND H H M NH2 M H2 NH2 NH3 NH F NH3 NH2 HF H2 NH2 M N2H4 M H2 N2H3 H4 NH3 N2H3 IF3 F HF SIF3 F4 SIF3NH2 F F3 SIF3NH2 H F3 STHF3 NH2 SR ad Be Cuy Nu 50E 00E 00 20 S 90E 00E 005 27E 00E 00E 00 00E 00E bs gqe amp RS Gy POEM Qo tcl 5 5 QOO 46000 0 0 2500 1500 0 10000 800 147170 50000 40950 5000 10000 OO lt lt 2 gt MSGK MSGK MSGK MSGK MSGK MSGK MSGK KONDRATIEV PHO amp MEC PHO amp MEC GUESS GUESS PHO amp MEC 6 2 Output from CHEMKIN Interpreter for the Example CHEMKIN III GAS PHASE MECHANISM INTERPRETER DOUBLE PRECISION Vers Copyright 1995 The U S 6 24 2000 06 18 Sandia Corporation Government retains a limited license in this software LEMEN
4. OSITION RATE 0 000E 00 0 0 LAST STEP SIZE NUMBER OF FUNCTION CALLS CONVERGENCE TEST FAILURES DO DTO EC SD C OO OO 3 OO OO 2 000E 00 731E 24 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 HE 157E 04 341E 02 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 MASS IN THE FLOW 0 373E 02 P TORR U T OMS DEPOSITION RATE UPPER WALL 0 000E 00 0 5735 03 0 000E 00 0 427E 02 0 5735 03 0 000E 00 0 885E 02 0 5735 03 0 000E 00 0 133E 03 0 573E 03 0 000E 00 0 176E 03 0 573E 03 0 000E 00 0 216E 03 0 59573E 03 0 000E 00 0 253E 03 0 573E 03 0 000E 00 0 286E 03 0 5735 03 0 000E 00 0 315E 03 0 5735 03 0 000E 00 0 341E 03 0 573E 03 0 000E 00 0 362E 03 0 5735 03 0 000E 00 0 378E 03 0 573E 03 0 000E 00 0 390E 03 0 5735 03 0 000E 00 0 398E 03 0 5735 03 0 000E 00 0 398E 03 0 5735 03 0 000E 00 N2H2 N2H3 N2H4 0 000E 00 0 000E 00 0 000E 00 0 184E 24 0 609E 25 0 133E 24 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00
5. and 20 at x 0 This self consistency is necessary because the equations for the surface site fractions and gas phase mole fractions at the walls are actually algebraic equations rather than ordinary differential equations For the solution to begin smoothly it is necessary to satisfy exactly the algebraic equations at x 0 To this end CRESLAF first solves for the correct set of z and Y that satisfy these boundary condition equations at the channel inlet This procedure employs the numerical software TWOPNT to solve for the self consistent set of gas phase and surface concentrations at each wall The user can optionally give the 14 TWOPNT procedure initial guesses for the gas phase and surface concentrations to aid in the convergence The initial TWOPNT problem can also be bypassed altogether if the self consistent values for the z and Y are supplied by the user 2 4 Implementation of Multicomponent Transport Although the mixture averaged transport approximation is inadequate for some applications for example CVD at very low pressures or when a carrier gas is not used it has some properties that make it attractive for numerical computation It is significantly less computationally intensive than the full multicomponent transport formulation see the TRANSPORT manual for more details of the transport options Also the mixture averaged diffusion velocity of species k Eq 6 depends explicitly on the concentration gradient of species k
6. cm cm cm g mole Molecular weight of kth species Site fraction of kth surface species for surface phasen Coordinate index Ofor planar 1for radial coordinates Mixture thermal conductivity Mixture viscosity Stream function Density Density at the reactor inlet Bulk density for the kth bulk species Rate of production of kth species by gas phase reactions Normalized stream function CGS Units g mole ergs cm K sec 9 cm sec cm2 sec g am g g am mole cm3 sec 1 INTRODUCTION The CRESLAF Chemically Reacting Shear Layer Flow program simulates the coupled hydrodynamics gas phase chemistry and surface chemistry in laminar flow channels Detailed mathematical formulation of the model and a demonstration of its application to chemistry in the chemical vapor deposition CVD of silicon from silane have been reported previously in the literature 3 The model is general in that it can be applied to many chemical systems for which gas phase and surface kinetic mechanisms are known It can also be applied to a wide variety of other chemically reacting flow situations The model predicts gas phase temperature and velocity fields concentration fields for any number of chemical species deposition or etching rates and surface species coverage as a function of experimental conditions such as surface temperature flow rate inlet partial pressure of the reactants total pressure and reactor di
7. but the multicomponent diffusion velocity of Eq 5 depends on the concentration gradients of all the remaining species As a result the Jacobian of the diffusion velocity has a strong diagonal term in the former case but not in the latter case We find that solution of the set of differential algebraic equations is aided by using a form for the multicomponent diffusion coefficient discussed by Coltrin amp al 3 found by equating Eqs 5 and 6 and solving for Dym 7 Ys W Di Ox 28 a km ea on fuc ropes ox 96 The denominator in Eq 23 is found by noting that Ke 3X OX gt 5 J 24 96 pur In CRESLAF we implement multicomponent transport using the diffusion velocity of the form in Eq 6 with D calculated using Eq 23 Mass conservation requires that the diffusive mass fluxes sum to zero Kg Y V 0 25 k l However a consequence of using the mixture averaged transport formulation in Eq 6 to define a diffusion velocity and using the mixture averaged diffusion coefficients is that mass is not always conserved i e the diffusive mass fluxes are not guaranteed to sum to zero Therefore at the mixture averaged level of closure of the transport formulation some corrective measures must be taken The user of CRESLAF has two options Oneis to apply an ad hoc correction velocity 8 defined as K V 2 YYX MV 26 k 1 15 When this correction velocity independent of specie
8. 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 000E 00 SITE FRACTIONS OUTER WALL 6 193E 02 4 829E 04 2 064E 02 3 742E 04 7 483E 04 9 158E 01 MICRON MIN 8 209E 01 8 208 01 OE E 4 0 C E Ce Ooccoococooocoocoocoocococcococ 52 0 000E 00 0 0 0 180E 01 N2 000E 00 0 000E 00 258E 24 0 849E 25 0001100 0 000 00 0005 00 0 000 00 000E 00 0 000 00 000E 00 0 000E 00 000E 00 0 000 00 000E 00 0 000 00 0001100 0 000 00 0005 00 0 000 00 000E 00 0 000 00 000E 00 0 000 00 000E 00 0 000 00 000E 00 0 000 00 000E 00 0 000 00 000E 00 0 000 00 F SIF4 000E 00 0 204E 04 687E 25 0 141E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 000E 00 0 143E 00 NUMBER OF STEPS JACOBIAN EVALUATIONS COD 00 55 000 5 5 Ce Ooccoococooocoocoococococ cc 000E 00 736E 25 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 SIF3 000E 00 128E 24 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000
9. 0 893E 13 0 472E 05 0 226E 07 0 116E 08 6 O 771E 00 0 113E 04 0 171E 04 0 305E 12 0 471E 05 0 2265 07 0 115E 08 5 0 620E 00 0 120E 04 0 171E 04 0 271E 12 0 471E 05 0 226E 07 0 114E 08 4 0 467E 00 0 125E 04 0 171E 04 0 335E 12 0 471E 05 0 226E 07 0 113E 08 3 0 313E 00 0 129E 04 0 171E 04 0 250E 12 0 471E 05 0 226E 07 0 113E 08 2 0 157E 00 0 131E 04 0 171E 04 0 276E 12 0 471E 05 0 226E 07 0 112E 08 1 0 2225 15 0 131E 04 0 171E 04 0 276E 12 0 471E 05 0 2265 07 0 112E 08 Y CM N2H2 N2H3 N2H4 HF F 5 4 UPPER WALL 0 000E 00 0 000E 00 0 0005 00 0 647E 05 0 000E 00 0 842E 05 15 0 200E 0 0 133E 08 0 431E 10 0 148E 0 137E 00 0 729E 10 0 993E 01 14 0 189E 0 0 133E 08 0 431E 10 0 147E 0 137E 00 0 729E 10 0 996E 01 13 0 177E 0 0 132E 08 0 431E 10 0 149E 0 136E 00 0 727E 10 0 999E 01 12 0 163E 0 0 132E 08 0 429E 10 0 150E 0 136E 00 0 721E 10 0 100E 00 11 0 150E 0 0 131E 08 0 427E 10 0 150E 0 135E 00 0 717E 10 0 101E 00 10 0 136E 0 0 131E 08 0 425E 10 0 152E 0 134E 00 0 713E 10 0 101E 00 9 0 121E 0 0 130E 08 0 422E 10 0 152E 0 133E 00 0 708E 10 0 101E 00 8 0 107E 0 0 129E 08 0 419E 10 0 152E 0 133E 00 0 703E 10 0 102E 00 7 Q 920E 00 0 128bE 08 0 416E 10 0 154E 0 132E 00 0 698E 10 0 102E 00 6 O 771E 00 0 127E 08 0 413E 10 0 155E 0 132E 00 0 694E 10 0 102E 00 5 0 620E 00 0 126E 08 0 410E 10 0 159E 0 131E 00 0 690E 10 0 102E 00 4 0 467E 00 0 126E 08 0 407E 10 0 625E 12 0 131E 00 0 687E 10 0 103E 00 3 0 313E 00 0 125E 08 0 403E 10 0 702E 12 0 131E
10. 00 0 687E 10 0 103E 00 2 0 157E 00 0 125E 08 0 401E 10 0 738E 12 0 130E 00 0 685E 10 0 103E 00 1 0 222E 15 0 125E 08 0 401E 10 0 738E 12 0 130E 00 0 685E 10 0 103E 00 SURFACE SPECIES SITE FRACTIONS SITE 1 SI3N4 OUTER WALL HN SIF S 4 969E 02 F3SI NH2 S 1 996E 04 F2SINH S 1 656E 02 H2NFSINH S 1 927E 04 FSINH 2 S 3 854E 04 NH2 S 9 330E 01 DEPOSITION RATE MICRON MIN 1 5 3 393 01 2 3 392 03 25 NUMBER OF STEPS JACOBIAN EVALUATIONS OO OO 0 0 0 ot N 000E 00 26E 25E 22E 24E 26E 25E 26E 26E 23E 27E 03E 989E 998 9 9 CO CO N NS SIF3 000E 00 40E 09 40E 09 40E 09 40E 09 40E 09 40E 09 40E 09 40E 09 40E 09 38E 09 38E 09 38E 09 38E 09 38E 09 38E 09 OO 0 0 0 0 5 Oro odo NH 000E 00 9E 08 9E 08 8E 08 8E 08 8E 08 8E 08 7E 08 7E 08 6E 08 6E 08 5E 08 5E 08 5E 08 5E 08 5E 08 SIHF3 000E 00 722E 722E 721E 718E 716E 712E 708E 704E 700E 695E 691E 689E 687E 686E 686E eO oOoccococococooococococcocco CO OO DS 2 lt 2 25 SO G Q6 0 QOO 0 000 OO amp 95 17 NH2 NNH 000E 00 0 000E 00 951E 05 0 456 10 951E 05 0 456E 10 951E 05 0 455E 10 950E 05 0 454E 10 949E 05 0 451E 10 94
11. 369E 02 P TORR 0 179F 01 U 23 OMS H2 N2 DEPOSITION RATE UPPER WALL 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 171E 04 0 682E 13 0 639E 05 0 227E 07 0 365E 08 0 147E 03 0O 171E 04 0 437E 13 0 639E 05 0 227E 07 0 365E 08 0 305E 03 0O 171E 04 0 795E 13 0 639E 05 0 227E 07 0 365E 08 0 459E 03 0O 171E 04 0 664E 13 0 639E 05 0 227E 07 0 363E 08 0 605E 03 0 171E 04 0 142E 13 0 639 05 0 227E 07 0 362E 08 0 742E 03 0O 171E 04 0 111E 14 0 639 05 0 227E 07 0 360E 08 0 868E 03 0 171E 04 0 109E 13 0 638E 05 0 227E 07 0 357E 08 0 980E 03 0 171E 04 0 786E 13 0 638 05 0 227E 07 0 355E 08 0 108E 04 0 171E 04 0 266E 14 0 638 05 0 227E 07 0 352 08 0 116E 04 0 1738 04 0 167E 13 0 637E 05 0 227E 07 0 350E 08 0 123E 04 0 171E 04 0 866E 14 0 637E 05 0 227E 07 0 348E 08 0 129E 04 0 171E 04 0 264E 13 0 637E 05 0 227E 07 0 347E 08 0 133E 04 0 171E 04 0 138E 13 0 637E 05 0 227E 07 0 345E 08 0 135E 04 0 171E 04 0 153E 13 0 637E 05 0 227E 07 0 345E 08 0 135E 04 0 171E 04 0 155E 13 0 637E 05 0 227E 07 0 345E 08 N2H2 N2H3 N2H4 HF F SIF4 0 000E 00 0 000E 00 0 000E 00 0 586E 05 0 000E 00 0 762E 05 0 278E 08 0 835E 10 0 272E 0 169E 00 0 124E 09 0 895E 0 0 278E 08 0 835E 10 0 272E 0 169E 00 0 124E 09 0 898E 0 0 278E 08 0 834E 10 0 271E 0 168E 00 0 124E 09 0 901E 0 0 277E 08 0 8325 10 0 272E 0 168E 00 0 124E 09 0 904E 0 0 276E 08 0 829E 10 0 271E 0 167E 00 0 123E 09 0 907E 0 0 275E 08 0 826E 10 0 268E 0 166E 00 0 122E 09 0 910E 0 0 2
12. 4 00E 15 4 00E 05 00E 15 6 5 D P D eB ANPP O0 t 00 0000 0000 00G 29592293E 06 0 0 G 3393120E 06 0 0 G 72002223E 07 0 31449478E 0 2944390 04 0 G 41422453E 06 0 0 0 G 6 0 6 0 G 6 0 G 5 0 G 0 G 0 4 0 600 000 000 000 390 000 000 000 000 000 000 000 000 000 000 000 000 000 Ow 6258489E 06 0 0 6 0 0 6 0 7 0 5 0 0 300 000 5000 000 72804829E 10 0 57963329E 14 27646992E 02 0 44784038E 05 27273204E 0 300 000 3000 000 1000 00 62648393E 10 0 17251383E 13 60384651E 02 0 11677322E 05 727298365 0 300 000 3000 000 1000 00 21904345E 10 0 67645906E 14 25885573E 02 0 57959124E 06 78767738E 0 300 000 3000 000 1000 00 39890902E 09 0 89589543E 13 7780151E 01 0 26123043E 05 20454407E 00 300 000 3000 000 1000 00 28582245E 09 0 69157286E 13 4639172E 01 0 18560698E 05 70242615E 0 300 000 3000 000 1000 00 1495040E 09 0 30553014E 13 0087878E 01 0 18055442E 05 46729660E 0 300 000 5000 000 24746863E 09 33702007E 0 13287308E 02 300 000 500 11617130E 10 53571598E 03 11930153E 01 300 000 500 19123038E 10 33023098E 05 30984198E 01 000 000 000 3650 000 10171 000 000 000 000 000 S OoOo 000 000 000 000 0 Q0
13. 79E 09 77E 09 75E 09 73E 09 71E 09 69E 09 68E 09 67E 09 67E 09 DO COD BO CO 0 60 O 0 000E 00 0 789E 00 789E 00 789E 00 790E 00 790E 00 791E 00 791E 00 791E 00 792E 00 792E 00 792E 00 925 00 925 00 793E 00 793E 00 GO GO OO Ca o 0 000E 00 33E 34E 33E 32E 31E 30E 28 27E 25E 24E 22E 21E 21E 20E 20E OTO OO OO OO 5 Oo NH3 204E 05 DISTANCE 0 750E 01 LAST STEP SIZE Q 1298 01 ORDER OF INTEGRATION 3 NUMBER OF FUNCTION CALLS IST ERROR TEST FAILURES 2 CONVERGENCE TEST FAILURES 0 MASS IN THE FLOW 0 370E 02 P TORR 0 180F 01 Y CM T OMS H2 N2 DEPOSITION RATE UPPER WALL 0 000E 00 0 000 00 0 000E 00 15 0 200E 01 0 000E 00 0O 171E 04 0 676E 12 0 473E 05 0 226E 07 0 122E 08 14 0 189E 01 0 143E 03 O 171E 04 0 120E 12 0 473E 05 0 226E 07 0 122E 08 13 0 177E 01 0 2965 03 O 171E 04 0 134E 12 0 473E 05 0 226E 07 0 122E 08 12 0 163E 01 0 446E 03 O 171E 04 0 135E 12 0 473E 05 0 226E 07 0 121E 08 11 0 150 01 0 589E 03 0O 171E 04 0 101E 12 0 473E 05 0 226E 07 0 121E 08 10 0 136E 01 0 722E 03 O 171E 04 0 120E 12 0 473E 05 0 226E 07 0 120E 08 9 0 121E 01 0 843E 03 0 171E 04 0 154E 12 0 472E 05 0 226E 07 0 118E 08 8 0 107E 01 0 953E 03 0 17 04 0 137E 11 0 472E 05 0 2265 07 0 117E 08 7 0 920E 00 0 105E 04 0 171E 04
14. IERW followed by the species name followed by the desired ATOL and RTOL Units None Default The values of ATOL and are used for every species Example IERW SI2 1 0E 8 1 0E 5 HO Specifies the initial step size to be used by DA SSL Units cm Default None chosen by DASSL Example HO 1 0E 8 MORD Maximum order of integration used by DA SSL Units None Default 5 Example MORD 3 PRND Specdifies level of output diagnostics reported by DASSL when integration difficulties are encountered The default level is 0 which is no reporting Levels 1 and 2 the maximum provideinformation on the step size order of integration time step truncation error and which solution components most significantly contributed to a failure in the convergence test Level 1 prints this information only upon a convergence failure Level 2 prints the information at every time step Units None Default 0 Example 2 24 NOTP Do not solve for the initial gas phase and surface concentrations at the walls using the TWOPNT procedure Units None Default Do the initial TWOPNT procedure Example NOTP 4 3 Twopnt Numerical Solution Options Note TWOPNT is used to establish initial conditions for surface site fractions and gas mass fractions TWAB Absolute error tolerance N ame of parameter in TWOPNT manual SSABS Units None Default 1 0E 13 Example TWAB 1 0E 10 TWRE Relati
15. sufficiently large to address the problem described by the input files Programs can be linked to the CRESLAF subroutine by following the examples in the makefiles provided in the sample driver subdirectories drivers f77 or drivers cpp of the standard distribution Users taking advantage of this flexibility should be experienced with compiling and linking program files on their operating system and must have either a C or Fortran compiler installed 3 2 The Save or Restart File In addition to printed output CRESLAF produces a binary solution file save bin that contains the solution data This file has two important uses One use is when the program has terminated due to a time limit prior to reaching the requested channel distance In this case thefile can be used to restart the computation where it left off The second use for the binary solution file is for post processing the solution using the CHEMKIN Graphical Post processor or an alternate program Further information on this subject will befound in the post processing discussion in Chapter 21 3 3 Structure of the User Supplied Initial Profile File Normally the user specifies the initial profile of gas phase species concentrations temperature velocity and surface site fractions via the keyword input described before If more custom tailoring of the initial solution profile is desired use of the PROF option will force CRESLAF to read a user supplied solution profile This
16. 0 0 110E 11 0 127E 12 0 570E 0 0 653E 0 124E 00 0 244E 10 0 109E 11 0 125E 12 0 562E 0 0 645E 0 124E 00 0 240E 10 0 107E 11 0 114E 12 0 554E 0 0 633E 0 125E 00 0 234E 10 0 106E 11 0 914E 13 0 545E 0 0 620E 0 125E 00 0 227E 10 0 105E 11 0 521E 13 0 536E 0 0 604E 0 126E 00 0 220E 10 0 102E 11 0 895E 13 0 527E 0 0 589E 0 126E 00 0 213E 10 0 986E 12 0 633E 13 0 519E 0 0 574E 0 127E 00 0 205E 10 0 950E 12 0 782E 13 0 511E 0 0 560E 0 127E 00 0 199E 10 0 918E 12 0 825E 13 0 504E 0 0 548bE 0 128E 00 0 193E 10 0 888E 12 0 787E 13 0 498E 0 0 537E 0 128E 00 0 188E 10 0 868E 12 0 704E 13 0 494E 0 0 528 0 128E 00 0 184E 10 0 848E 12 0 568F 13 0 490E 0 0 522 0 128E 00 0 182E 10 0 835E 12 0 498E 13 0 488E 0 0 518bE 0 128E 00 0 182E 10 0 835E 12 0 498E 13 0 488E 0 518 0 128E 00 SITE FRACTIONS OUTER WALL 5 708E 02 2 462E 04 1 903E 02 2 070E 04 4 140E 04 9 230E 01 MICRON MIN 4 186E 01 4 185E 01 Y CM 15 0 200E 01 14 0 189E 01 13 0 176E 01 12 0 163E 01 11 0 150E 01 10 0 136E 01 9 0 121E 01 8 0 107 0 7 0 920 00 6 0 7 70 00 5 0 619E 00 4 0 467E 00 3 0 313E 00 2 0 157 00 1 0 222E 15 Y CM UPPER WALL 15 0 200E 0 14 0 189E 0 13 0 176E 0 12 0 163E 0 11 0 150 0 10 0 136E 0 9 0 121E 0 8 0 107E 0 7 0 920 100 6 0O 770E 00 5 0 619E 00 4 0 467E 00 3 0 313E 00 2 0 157 00 1 0 222E 15 SURFACE SPECIES SITE SI3NA HN SIF S F3SI NH2 S F2SINH S H2NFSINH S HN FSINH 2 S
17. 00000E 00 NH 28395E 24 0 00000E 00 0 00000E 00 18775E 26 0 13363E 29 18788E 26 0 00000E 00 NH2 12558E 24 0 00000E 00 0 00000E 00 65151E 27 0 59102E 30 65210E 27 0 00000E 00 NNH 12251E 24 0 00000E 00 0 00000E 00 11729E 26 0 57658E 30 11734E 26 0 00000E 00 N2H2 0 18871E 24 0 00000E 00 0 00000E 00 0 23908E 26 88812E 30 0 23917E 26 0 00000E 00 N2H3 0 64420E 25 0 00000E 00 0 00000E 00 13237E 28 30318E 30 12934E 28 0 00000E 00 N2H4 14538E 24 0 00000E 00 0 00000E 00 10091E 26 0 68421E 30 10098E 26 0 00000E 00 HF 0 23264F 02 0 00000E 00 0 40258 06 44340E 16 10949E 07 0 80651E 05 0 80541E 05 F 0 44516E 25 0 00000E 00 0 00000E 00 0 11742E 26 20950 30 0 11744E 26 0 00000E 00 SIF4 0 50110 0 50460 10064E 06 0 21411E 16 23583E 05 81167E 05 10475E 04 SIF3 0 37011E 24 0 00000E 00 0 00000E 00 39094E 27 1742418529 38920E 27 0 00000E 00 SIHF3 0 80743E 26 0 00000E 00 0 00000E 00 25435E 27 38000E 31 25431E 27 0 00000E 00 SIF3NH2 0 21378E 24 0 00000E 00 0 00000E 00 57366E 27 10061E 29 57266E 27 0 00000E 00 NH3 0 49657 0 49540 13419E 06 0 22912E 16 23370E 05 0 51644E 07 22854E 05 50 Total Velocity into wall positive indicates a net flux into wall 3 1787 cm sec Temperature at the wall 573 150 Temperature in the gas 573 150 SURFACE SPECIES SITE FRACTIONS SITE 1 SI3N4 SITDOT HN SIF S 6 193E 02 3 388 18 351 NH2 S 4 829 04 3 176F 22 F2SINH S 2 064E 02 2 254 18
18. 09 02E 09 01E 09 01E 09 01E 09 00E 09 00E 09 00E 09 00E 09 CO OoOccoococooocoocoocoocococcc 97 18 NH2 000E 00 28E 04 28E 04 28E 04 28E 04 28E 04 28E 04 28E 04 27E 04 27E 04 27E 04 27E 04 27E 04 27E 04 27E 04 27E 04 SIF3NH2 000 00 0 41 00 742E 00 742E 00 742E 00 742E 00 743E 00 743E 00 743E 00 744E 00 744E 00 744E 00 744E 00 744E 00 744E 00 744E 00 539E 09 539E 09 538E 09 537E 09 535E 09 533E 09 531E 09 529E 09 526E 09 524E 09 522E 09 520E 09 519E 09 518E 09 518E 09 DUO 0 0 t0 x C Qo 0o Qo NNH 000E 00 964E 964E 963E 961E 956E 953E 948E 944E 940E 935E 932kE 929E 926E 925E 925E Oc OO OO OOO O00 NH3 166E 05 DISTANCE 0 121E 02 LAST STEP SIZE 0 257E 01 NUMBER OF STEPS 97 ORDER OF INTEGRATION 3 NUMBER OF FUNCTION CALLS 201 JACOBIAN EVALUATIONS 18 ERROR TEST FAILURES 2 CONVERGENCE TEST FAILURES 0 Total CPUtime sec 6 59375 57 J REFERENCES M E Coltrin H K Moffat R J Kee and F M Rupley CRESLAF Version 4 0 A Fortran Program for Modeling Laminar Chemically Reacting Boundary Layer Flow in Cylindrical or Planar Channels Sandia N ational Laboratories Report SA N D93 0478 1993 M 5 Coltrin R J Kee and J A Miller Journ
19. 10 0 115E 00 SURFACE SPECIES SITE FRACTIONS SITE 1 SI3N4 OUTER WALL HN SIF S 94327E 02 F3SI NH2 S 2 213E 04 F2SINH S 1 776E 02 H2NFSINH S 1 993E 04 HN FSINH 2 S 3 986E 04 2 8 9 282 01 DEPOSITION RATE MICRON MIN 1 SI D 3 761E 01 2 3 761E 01 NUMBER OF STEPS JACOBIAN EVALUATIONS OX 20 00 0000 00 cQ 060 OOOO 000E 00 279E 264E 261E 255E 249E 234E 226E 221E 216E 213E 212bE 212bE 214E 214E 214E CO CO Co CO Co CO CO CO CO Q CO CO C Co SIF3 000E 00 34E 09 35E 09 34E 09 34E 09 34E 09 34E 09 34E 09 33E 09 33E 09 33E 09 33E 09 33E 09 33E 09 32E 09 32 09 OC 40 OO 00 OO 0 Oro oO NH 000E 00 368E 09 367E 09 367E 09 366E 09 364E 09 362E 09 3595 09 357E 09 355E 09 352E 09 350E 09 349E 09 347E 09 347E 09 347E 09 SIHF3 000E 00 378E 378E 377E 375E 372E 368E 364E 360E 356E 352E 349E 346E 344E 342bE 342bE OoccocococoooococcoococcOococo UD 00 X500 0 0t 0o Ce Ooccoococooocoococcocococcc 92 16 NH2 000E 00 596E 05 596E 05 596E 05 595E 05 594E 05 593E 05 591E 05 589E 05 588E 05 586E 05 585E 05 584E 05 583E 05 582E 05 5825 05 SIF3NH2 87E 09 87E 09 87E 09 86E 09 84E 09 82E 09
20. 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 WORKING SPACE REQUIREMENTS PROVIDED LOGICAL INTEGER 2073 REAL 68899 CHARACTER 84 TWOPNT DOUBLE PRECISION REQUIRED 1 2073 68899 84 0 999967400000000 0 1000E O5RTOL IWO POINT BOUNDARY VALUE PROBLEM SOLVER 48 0 1000E 03 VERSION 3 30 OF APRIL 1998 BY DR JOSEPH F GRCAR TWOPNT INITIAL GUESS GAS PHASE SPECIES MASS FRACTIONS Species Name Mass frac Wall Mass frac Gas Wdot Residual Bulk Vel Contrb Dif Vel Cont Surface Mass Rate H2 0 00000E 00 0 00000E 00 0 00000E 00 10956E 26 0 00000E 00 10956E 26 0 00000E 00 H 0 00000E 00 0 00000E 00 0 00000E 00 0 12305E 26 0 00000E 00 0 12305E 26 0 00000E 00 N2 0 00000E 00 0 00000E 00 0 00000E 00 0 43779E 27 0 00000E 00 0 43779E 27 0 00000E 00 N 0 00000E 00 0 00000E 00 0 00000E 00 19696E 28 0 00000E 00 18696E 28 0 00000E 00 NH 0 00000E 00 0 00000E 00 0 00000E 00 0 12444E 27 0 00000E 00 0 12444E 27 0 00000E 00 NH2 0 00000E 00 0 00000E 00 0 00000E 00 0 71937E 27 0 00000E 00 0 7193 7ER 27 0 00000E 00 NNH 0 00000E 00 0 00000E 00 0 00000
21. 11 0 52486288E 03 0 45272678E 0 4 HN FSINH 2 S J 3 67N 3H 35 2F 28 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 SI D J 3 6781 00 000 000 0S 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 N D J 3 67N 000 000 05 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 END REACTIONS NH3 HN SIF S HN NH2 S SL D HF 7 562508 0 5 0 0 SIF4 HN NH2 S gt F3SI NH2 S N D HF 3 0967E8 0 5 0 0 F3SI NH2 S F2SINH S HF 1 0E05 0 0 0 0 NH3 F2SINH S H2NFSINH S HF 7 562508 0 5 0 0 8 5 gt 2 5 HF 1 0E15 0 0 0 0 HN FSINH 2 S F2SINH S gt 3HN SIF S N D HF 1 0E15 0 0 0 0 END 43 6 4 Output from SURFACE CHEMKIN Interpreter for the Example CHEMKIN III SURFACE MECHANISM INTERPRETER DOUBLE PRECISION Vers 7 20 2000 06 18 Copy
22. 28 2000 08 05 opyright 1995 Sandia Corporation U S Government retains a limited license in t LIB CHEMKIN III MULTICOMPONENT TRANSPORT LIB LE PRECISION Vers 4 6 1999 06 03 yright 1995 Sandia Corporation U S Government retains a limited license in t LIB CHEMKIN III SURFACE KINETICS LIBRARY LE PRECISION Vers 7 17 2000 07 02 opyright 1995 Sandia Corporation U S Government retains a limited license in this software EYWORD INPUT PRES 2 3684E 3 REAC SIF4 0 14286 REAC NH3 0 85714 SURF HN SIF S 5 368E 02 SURF F3SI NH2 S 4 067E 04 SURF F2SINH S 1 789E 02 SURF H2NFSINH S 3 636E 04 SURF HN FSINH 2 S 7 271E 04 SURF HN NH2 S 0 9269 ACT SI D 1 0 ACT N D 1 0 GRAV 980 VEL 400 STMP 1713 14 GTMP 573 15 XEND 10 DX 2D RARY his software RARY his software 47 H PTS 44848 ooQ I D RAD 4 4 ZzOuQqdgo CAUTION gt B N 0 5 URFACE FRACTIONS SUM TO ERROR TOLERANCES TO BE USED SPECIES ATOL H2 H N2 N NH NH2 NNH N2H2 N2H3 N2H4 HF SIF4 SIF3 SIHF3 SIF3NH2 NH3 HN SIF S F3SI NH2 S F2SINH S H2NFSINH S HN FSINH 2 S HN NH2 S SI D N D OS OOOO ONS OO OO OO SO Oo default values for all other species ATOL RTOL 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0 1000E 03 000E 05 0
23. 2H2 H2 NH2 H M H NH2 NH2 H2 2 H2 3 ll cm m m il lt lI zz 26074143E 22293182E 03 38067182bE 0 16837365E 08 0 J 3 678 0 9121363 418895 E 12 78079745E 03 47123275 0 418895 35488207E 03 27842460E 0 0 10411718E 418895 43832823E 02 30469284E 02 70445559E 418895 H 29475559E 02 21694529E 02 56 75433E 41889S 13237924E 02 15502343E 02 J 6 76S 28586756E 02 2752064 0 31584638E 07 0 E 84506114E J 6 77H 02 71489475E 03 38123288E 57869940E 0 J 9 65F 0 64587833E 12 35763852E 03 0 52204057E 0 0 0 38453453E 0 76816336E 05 0 0 0 0 0 0 0 0 0 0 0 0 21893068E 0 0 0 0 0 0 0 0 gt Eo oO 920E 300E 692E 636E 06 500E 500E 500E 254E 720E 500E 52 00 O0 500E 100E 1008 500E 140E 60E 12 H2 H N2 N NH NH2 NNH N2H2 N2H3 N2H4 HF F SIF4 SIF3 SIHF3 SIF3NH2 NH3 31793537E 0 53339032E 05 0 2 0 0 0 0 F 3H 2 62294030E 0 F 3 0 357776330E 0 39180529E 0 0 4704386E 0 3 0 0 21042787E 0 46628685E 0 2129652E 0 0 0 2646314E 0 4 9603289E 0 0 0 68630973E 0 34379986E 0 33818972E 0 0 0 0 97941385E 0 28128740E 0 86604019E 0 005118 l 7
24. 3 000E 00 0 227E 05 358E 10 0 819E 00 358E 10 0 819E 00 355E 10 0 819E 00 348E 10 0 820E 00 338E 10 0 820 00 327E 10 0 821E 00 314E 10 0 821E 00 300E 10 0 821E 00 287E 10 0 822 00 275E 10 0 822 00 265E 10 0 822E 00 256E 10 0 822 00 249E 10 0 823E 00 246E 10 0 823E 00 246E 10 0 823E 00 DISTANCE 0 500E 01 LAST STEP SIZE 0 644E 00 ORDER OF INTEGRATION 3 NUMBER OF FUNCTION CALLS 19 ERROR TEST FAILURES 2 CONVERGENCE TEST FAILURES 0 MASS IN THE FLOW 0 371E 02 P TORR 0 180E 0 Y CM U T OMS H2 N2 DEPOSITION RATE UPPER WALL 0 000E 00 0 000 00 0 000E 00 15 0 200E 01 0 000E 00 0O 171E 04 0 833E 13 0 295E 05 0 225E 07 0 213E 09 14 0 189E 01 0 139E 03 0O 171E 04 0 354E 13 0 2955 05 0 225E 07 0 213E 09 13 0 177E 01 0 287E 03 0O 171E 04 0 910E 14 0 2955 05 0 225E 07 0 212E 09 12 0 163E 01 0 432E 03 0 171E 04 0 262E 13 0 2955 05 0 225E 07 0 211E 09 11 0 150E 01 0 570E 03 O 171E 04 0 577E 13 0 295E 05 0 225E 07 0 208E 09 10 0 136E 01 0 699E 03 0 171E 04 0 250E 12 0 294E 05 0 227E 07 0 205E 09 9 0 121E 01 0 817E 03 0 171E 04 0 444E 13 0 294E 05 0 227 07 0 202E 09 8 0 107E 01 0 923 03 0 171E 04 0 121E 12 0 294E 05 0 2275 07 0 199E 09 7 0 920E 00 0 102bE 04 0 171E 04 0 736E 13 0 293E 05 0 227E 07 0 195E 09 6 O 771E 00 0O 110E 04 0 171E 04 0 149E 13 0 293E 05 0 2275 07 0 192E 09 5 0 619E 00 0 116 04 0 171E 04 0 488bE 14 0 293E 05 0 227E 07 0 189
25. 3 F3SI_NH2 5 gt 25 5 1 00E 05 0 0 0 0 4 NH3 F2SINH 5 gt H2NFSINH 5 7 56E 08 0 5 0 0 5 H2NFSINH S F2SINH S 1 00E 15 0 0 0 0 gt HN FSINH 2 5 8 6 HN FSINH 2 S F2SINH S 1 00E 15 gt 3HN_SIF S D NOTE A units mole cm sec K E units cal mole NO ERRORS FOUND ON INPUT ASCII Version 1 1 surface linkfile surf asc written WORKING SPACE REQUIREMENTS ARE INTEGER 481 REAL 642 CHARACTER 34 Total CPUtime sec 0 45 0 0 6 5 Input to CRESLAF for the Example PRES 2 3684E 3 REAC 5 4 0 14286 REAC NH3 0 85714 SURF HN 5 5 5 368E 02 SURF F3SI NH2 S 4 067E 04 SURF F2SINH S 1 789E 02 SURF H2NFSINH S 3 636E 04 SURF HN FSINH 2 S 7 271E 04 SURF HN NH2 S 0 9269 ACT SI D 1 0 ACT N D 1 0 GRAV 980 VEL 400 STMP 1713 14 GTMP 973415 ND 10 x mH N a 1 i e E 1 i Q m HB 2 gt Q Z x L 66 Q kp t fromCREs for the Benple CRE SLAF CHEMICALLY REACTING SHEAR LAYER FLOW TWO DIMENSIONAL BOUNDARY LAYER MODEL CHEMKIN III Version 5 20 2000 08 01 DOUBLE PRECISION WORKING SPACE REQUIREMENTS PROVIDED REQUIRED LOGICAL 1 1 I REAL c El kq OUB he RAN UB p O ne OUB ne NTEGER 2073 1820 68899 28218 HARACTER 84 84 LIB CHEMKIN III GAS PHASE CHEMICAL KINETICS LIB LE PRECISION Vers 5
26. 30 M e pjuj P ja ja It is important to represent the integral equations as first order differential equations and include the variables such as y in the dependent variable vector The reason for this choice is associated with the structure of the Jacobian matrix which is needed to solve the problem When Eq 30 is used the number of dependent variables increases but the Jacobian remains banded a very desirable feature On the other hand if y were to be considered as a coefficient in the transport equations as defined by the integral of the stream function then the Jacobian loses its banded property and the required computer storage would increase enormously 2 7 Non Uniform Grid In many reacting flow problems a thin reactive boundary layer forms near a surface Many grid mesh points may be needed to resolve the important chemical species concentration profiles However further away from the surface there may be no need for such a finely resolved mesh CRESLAF provides a means to produce a non uniform grid which will make the mesh fine near a surface and more widely spaced as distance from the surface increases For cartesian coordinates if the user has specified N mesh points via the keyword N PTS then the jth grid point will be placed at a distance y j from the lower wall y j Way j 1 31 where H is the channel height If s 1 a uniform grid is produced For s 1 the grid is more tightly spaced at the lower b
27. 6 Note that a full multicomponent model is used for the computation of thermal diffusion coefficients regardless of whether the user has specified the mixture averaged or the multicomponent option for the calculation of the diffusion velocity See the TRANSPORT user manual for more details about this formulation 2 6 Finite Difference Approximations The governing conservation equations require discretization to allow numerical solution CRESLAF uses finite difference approximations on a nonuniform grid with points numbered as j 1 at the lower boundary to at the upper boundary Approximation of the spatial derivatives is accomplished by finite difference representations on a fixed grid in the normalized stream function In the momentum species and energy equations we approximate the second derivatives with conventional central difference formulas as 16 of 2 F ist J 1 zt Ua E J i where the subscript j denotes the jth grid point We approximate the first derivatives as needed in Eq 3 by central differences as oT Cm 29 We evaluate terms with no derivatives such as the chemical production rate in Eq 2 using the conditions existing at Z Likewise the coefficients of derivatives such as pu in Eq 1 are also evaluated at First order ODE s such as Eq 16 are differenced according to the trapezoidal rule as 1 1 gg eer k S e
28. 74E 08 0 823E 10 0 267E 0 166E 00 0 122E 09 0 913E 0 0 273E 08 0 819E 10 0 266E 0 165E 00 0 121E 09 0 916E 0 0 271E 08 0 815E 10 0 265E 0 165E 00 0 121E 09 0 919E 0 0 270E 08 0 812E 10 0 264E 0 164E 00 0 120E 09 0 922E 0 0 269E 08 0 809E 10 0 263E 0 164E 00 0 120E 09 0 924E 0 0 268E 08 0 806E 10 0 266E 0 163E 00 0 119E 09 0 926E 0 0 268E 08 0 804E 10 0 265E 0 163E 00 0 119E 09 0 927E 0 0 267E 08 0 803E 10 0 265E 0 163E 00 0 119E 09 0 928E 0 0 267E 08 0 803E 10 0 265E 0 163E 00 0 119E 09 0 928E 0 SITE FRACTIONS OUTER WALL 4 637E 02 1 807E 04 1 546E 02 1 870E 04 3 740E 04 9 374E 01 MICRON MIN 3 072E 01 3 071E 01 56 NUMBER OF STEPS JACOBIAN EVALUATIONS OW COO UO 100 0 UO co OOOO O 00 000E 00 354E 353E 351E 351E 350E 349E 347E 346E 344E 343E 341E 341E 340E 340E 340E PN 52550 SIF3 000E 00 33E 09 33E 09 33E 09 33E 09 34E 09 34E 09 34E 09 34E 09 34E 09 34E 09 34E 09 35E 09 35E 09 35E 09 35E 09 COO Coo 0 00 O S 0 0 CO Oo OOo 5 NH 000E 00 251E 08 251E 08 251E 08 250E 08 250E 08 249E 08 249E 08 248E 08 247E 08 247E 08 246E 08 245E 08 245E 08 245E 08 245E 08 SIHF3 000E 00 03E 09 03E 09 03E 09 03E 09 03E 09 03E 09 02E
29. 8E 05 0 448E 10 947E 05 0 445E 10 945E 05 0 442E 10 943E 05 0 439E 10 942E 05 0 436E 10 941E 05 0 433E 10 940E 05 0 431E 10 939E 05 0 430E 10 938E 05 0 429E 10 938E 05 0 429E 10 SIF3NH2 NH3 000E 00 0 184E 05 366E 09 0 763E 00 366E 09 0 764 00 365E 09 0 764E 00 364E 09 0 764 00 362E 09 0 765E 00 360E 09 0 765 00 358E 09 0 765 00 355E 09 0 766E 00 353E 09 0 766E 00 351E 09 0 766E 00 348E 09 0 766E 00 347E 09 0 766E 00 345E 09 0 767 00 345E 09 0 767E 00 345E 09 0 767 00 So O P N P N QC OO 1 OO 15 14 1 3 12 11 10 o N QC OO SURFACE SPECIES 1 SITE 2 OO Oo Oo UPPER WALL 0 DOUTO O S OOO oot 0 200E 0 189E 0 177E 0 163E 0 150E 0 136E 0 121E 0 107E 0 920E 00 1800 620E 00 467E 00 313E 00 1957800 DISTANCE Y CM 200 501 189E 01 177E 01 163E 01 150E 01 136E 01 121801 107 01 920E 00 771E 00 620E 00 467E 00 313E 00 157E 00 222E 15 Y CM SI3N4 HN_SIF S F3SI_NH2 S F2SINH S H2NFSINH S HN FSINH 2 S HN_NH2 S DEPOSITION RATE SI D N D 0 100E 02 LAST STEP SIZE 0 257E 01 ORDER OF INTEGRATION 3 NUMBER OF FUNCTION CALLS 201 ERROR TEST FAILURES 2 CONVERGENCE TEST FAILURES 0 MASS IN THE FLOW 0
30. CRE 036 1 CHEMKIN Collection Release 3 6 September 2000 CRESLAF A PROGRAM FOR MODELING LAMINAR CHEMICALLY REACTING BOUNDARY LAYER FLOW IN CYLINDRICAL OR PLANAR CHANNELS Reaction Design Licensing For licensing information please contact Reaction Design 858 550 1920 USA or CHEMKINQ ReactionDesign com Technical Support Reaction Design provides an allotment of technical support to its Licensees free of charge To request technical support please include your license number along with input or output files and any error messages pertaining to your question or problem Requests may be directed in the following manner E Mail Support ReactionDesign com Fax 858 550 1925 Phone 858 550 1920 Technical support may also be purchased Please contact Reaction Design for the technical support hourly rates at Support ReactionDesign com or 858 550 1920 USA Copyright Copyright 2000 Reaction Design All rights reserved No part of this book may be reproduced in any form or by any means without express written permission from Reaction Design Trademark AURORA CHEMKIN The CHEMKIN Collection CONP CRESLAF EQUIL Equilib OPPDIF PLUG PREMIX Reaction Design SENKIN SHOCK SPIN SURFACE CHEMKIN SURFTHERM TRANSPORT TWOPNT are all trademarks of Reaction Design or Sandia National Laboratories Limitation of Warranty The software is provided as is by Reaction Design without warranty of any kind including w
31. DEN 4 1683E 9 HN SIF S 2 F3SI NH2 S 2 F2SINH S 2 H2NFSINH S 2 HN FSINH 2 S 4 NH2 S 2 END BULK SI D 2 066 BULK N D 1 374 END THERMO ALL 300 600 685 HN SIF S J 3 67N H 1S 18 1S 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 HN NH2 S J 3 67N 2H 3s OF 0S 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 F3SI NH2 S J 3 67N H 28 F 38 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 8 J 3 67N H 1S F 28 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E 11 0 52486288E 03 0 45272678E 0 4 8 J 3 67N 2H 35 F 15 300 000 685 000 0 24753989E 01 0 88112187E 03 0 20939481E 06 0 42757187E 0 16006564E 13 2 0 81255620E 03 0 12188747E 02 0 84197538E 00 0 83710416E 02 0 13077030E 04 3 0 97593603E 08 0 27279380E
32. E 00 000E 00 000E 00 000E 00 000E 00 000E 00 t 0 O Du DOO OO OO Qo C Or Oc NH 000E 00 555E 24 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 SIHF3 000E 00 275E 26 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 NH2 000E 00 230E 24 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 SIF3NH2 MOO Ot Cy OOS Oo Oo 000E 00 620E 25 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 2 00 OS OO NNH 000E 00 124E 24 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 000E 00 NH3 445E 05 855E 00 857E 00 857E 00 857E 00 857
33. E 00 12713E 26 0 00000E 00 12713E 26 0 00000E 00 N2H2 0 00000E 00 0 00000E 00 0 00000E 00 O132335 26 0 00000E 00 C 1323358 206 0 00000E 00 N2H3 0 00000E 00 0 00000E 00 0 00000E 00 0 31538E 28 0 00000E 00 0 31538E 28 0 00000E 00 N2H4 0 00000E 00 0 00000E 00 0 00000E 00 90510 27 0 00000E 00 90510E 27 0 00000E 00 HF 0 00000E 00 0 00000E 00 0 36087E 06 72198E 05 0 00000E 00 0 35421E 27 0 72198E 05 F 0 00000E 00 0 00000E 00 0 00000E 00 0 18697E 26 0 00000E 00 0 18697E 26 0 00000E 00 SIF4 0 50460 0 50460 10304E 06 0 79540E 05 216998 05 0225039111 10724E 04 SIF3 0 00000E 00 0 00000E 00 0 00000E 00 0 13902E 27 0 00000E 00 0 13902E 27 0 00000E 00 SIHF3 0 00000E 00 0 00000E 00 0 00000E 00 54548E 27 0 00000E 00 54548E 27 0 00000E 00 SIF3NH2 0 00000E 00 0 00000E 00 0 00000E 00 88028E 27 0 00000E 00 88028E 27 0 00000E 00 NH3 0 49540 0 49540 11656E 06 73423E 06 21194E 05 5039 8 11 19952E 05 Total Velocity into wall positive indicates a net flux into wall 3 6993 cm sec Temperature at the wall 513 150 Temperature in the gas 573 150 SURFACE SPECIES SITE FRACTIONS SITE 1 SI3N4 SITDOT HN SIF S 5 368E 02 2 669E 09 F3SI NH2 S 4 067E 04 1 827E 08 F2SINH S 1 789E 02 8 811E 10 H2NFSINH S 3 636E 04 8 802 10 HN FSINH 2 S 7 271E 04 3 886E 12 HN NH2 S 9 269E 01 5615 08 DEPOSITION RATE MICRONS MIN 7 SI D 7 131E 01 8 N D 8 030E 01 49 RATE OF PROGRESS OF REACTIONS 1 NH3 HN_SIF S gt
34. E 00 857E 00 857E 00 857E 00 857E 00 857E 00 lt 857E 00 857E 00 857E 00 857E 00 857E 00 DISTANCE 0 250E 01 LAST STEP SIZE 0 161E 00 ORDER OF INTEGRATION 5 NUMBER OF FUNCTION CALLS 175 ERROR TEST FAILURES 2 CONVERGENCE TEST FAILURES 0 MASS IN THE FLOW 0 372E 02 P TORR 0 180E 01 U T OMS H2 H N2 DEPOSITION RATE UPPER WALL 0 000E 00 0 000E 00 0 000E 00 0 000E 00 0 171E 04 0 411E 13 0 102E 05 0 222E 07 0 460E 0 134E 03 0 171E 04 0 320E 13 0 1025 05 0 222E 07 0 460E 0 277E 03 0 171E 04 0 488E 14 0 102E 05 0 222E 07 0 454E 0 417E 03 0 171E 04 0 155E 13 0 102E 05 0 222E 07 0 445E 0 550E 03 0O 171E 04 0 520E 13 0 102E 05 0 222E 07 0 431E 0 674E 03 0O 171E 04 0 189E 13 0 101E 05 0 221E 07 0 414E 0 788E 03 0 171E 04 0 195E 13 0 101E 05 0 221E 07 0 396E 0 890E 03 0 171E 04 0 921E 14 0 101E 05 0 220E 07 0 378E 0 980E 03 0 171E 04 0 152E 12 0 100E 05 0 220E 07 0 360E 0 106E 04 0 171E 04 0 879E 13 0 998E 06 0 2205 07 0 344E 0 112E 04 0 171E 04 0 205E 12 0 995E 06 0 219E 07 0 329E 0 117E 04 0 171E 04 0 3515 13 0 992E 06 0 219E 07 0 318E 0 120E 04 0 171E 04 0 244E 14 0 990E 06 0 2195 07 0 309E 0 122E 04 0 171E 04 0 142E 13 0 989E 06 0 2195 07 0 304E 0 122E 04 0 171E 04 0 142E 13 0 989E 06 0 219E 07 0 304E N2H2 N2H3 N2H4 HF F SIF4 0 000E 00 0 000E 00 0 0005 00 0 799E 05 0 000E 00 0 104E 04 0 246E 10 0 110E 11 0 127E 12 0 577E 0 0 653E 0 124E 00 0 246E 1
35. E 09 4 0 467E 00 0 121E 04 0 171E 04 0 733E 14 0 292E 05 0 227E 07 0 187E 09 3 0 313 00 0 125E 04 0 171E 04 0 190E 12 0 292E 05 0 227E 07 0 185E 09 2 0 157E 00 0 127E 04 0 171E 04 0 244E 13 0 292E 05 0 227E 07 0 184E 09 1 0 2225 15 0 127 04 0 171E 04 245 13 0 292E 05 0 227E 07 0 184E 09 Y CM N2H2 N2H3 N2H4 HF F SIF4 UPPER WALL 0 000E 00 0 000E 00 0 000E 00 0 718bE 05 0 000E 00 0 934E 05 15 0 200E 0 0 396E 09 0 145E 10 0 594E 12 0 101E 00 0 324E 10 0 111E 00 14 0 189E 0 0 396E 09 0 145E 10 0 588E 12 0 100E 00 0 324E 10 0 111E 00 13 0 177E 0 0 395E 09 0 145E 10 0 594E 12 0 993 0 0 323E 10 0 111E 00 12 0 163E 0 0 392E 09 0 144E 10 0 593E 12 0 986 0 0 320E 10 0 112E 00 11 0 150E 0 0 389E 09 0 143E 10 0 590E 12 0 978E 0 0 317E 10 0 112E 00 10 0 136E 0 0 385E 09 0 141E 10 0 589E 12 0 970 0 0 314E 10 0 112E 00 9 0 121E 0 0 381E 09 0 139E 10 0 586E 12 0 962E 0 0 310E 10 0 113E 00 8 0 107E 0 0 376E 09 0 137E 10 0 585E 12 0 955E 0 0 307E 10 0 113E 00 7 0 920E 00 0 372E 09 0 135E 10 0 587E 12 0 948E 0 0 304E 10 0 114E 00 6 0 7735 00 0 367E 09 0 134E 10 0 5905 12 0 942E 0 0 301E 10 0 114E 00 5 0 619E 00 0 364E 09 0 132E 10 0 595E 12 0 937E 0 0 299E 10 0 114E 00 4 0 467E 00 0 361E 09 0 133E 10 0 601E 12 0 933E 0 0 297E 10 0 114E 00 3 0 313E 00 0 358E 09 0 143E 10 0 607E 12 0 930E 0 0 295E 10 0 115E 00 2 0 157E 00 0 357E 09 0 146E 10 0 610E 12 0 928E 0 0 294E 10 0 115E 00 1 0 222E 15 0 357E 09 0 146E 10 0 6105 12 0 928E 0 0 294E
36. F FIGURES Page Figure l Relationship of CRESLAF to the CHEMKIN SURFACE CHEMKIN and TRANSPORT pre t NOMENCLATURE y max Mixture heat capacity Specific heat capacity of kth species Multicomponent diffusion coefficient Mixture diffusion coefficient Thermal diffusion coefficient Acceleration of gravity Linear growth ratefor the kth bulk species Specific enthalpy of kth species Total number of gas phase species Total number of surface species Total number of bulk species Index of the first surface species in surface phasen Index of the last surface species in surface phase n Index of the first bulk species Index of the last bulk species Mass flux Mass loss rate at the lower boundary Mass loss rate at the upper boundary Mass flux at the channel inlet Number of surface site types phases Thermodynamic pressure Universal gas constant Rate of production of kth species by surface reactions Temperature Fluid velocity in x direction Fluid velocity in y direction Diffusion velocity of kth species Distance along principal flow direction Mole fraction of kth species Cross stream coordinate Maximum channel dimension Mass fraction of the kth species Mixture mean molecular weight CGS Units ergs g K ergs g K cm sec cm sec cm sec cm sec cm sec ergs g g cm sec 9 cm sec g cm sec 9 cm sec dynes eme ergs mole K mole cm sec K cm sec cm sec cm sec
37. HN_NH2 5 5 5 8 743E 08 2 SIF4 HN_NH2 8 gt F3SI_NH2 5 1 030E 07 3 F3SI_NH2 8 8 HF 8 477E 08 4 NH3 F2SINH S gt H2NFSINH 8 HF 2 914E 08 5 H2NFSINH S F2SINH 5 gt HN FSINH 2 S HF 2 826E 08 6 2 8 F2SINH S 3HN 5 D HF 2 825E 08 TWOPNT CALLING SEARCH TO SOLVE THE STEADY STATE PROBLEM SEARCH SOLVE NONLINEAR NONDIFFERENTIAL EQUATIONS LOG10 SLTN SSS SSS SS SS SS Se SS SS SS SS SS SSS Se SSeS NUMBER NORM F COND J NORM S ABS AND REL DELTA B AND D 0 0 64 7 86 1 96 96 1 30 25 4 58 4 58 2 27 2 ISI xxi Hl 5397 37 09 3 2 58 6 90 6 90 23491 4 3 40 Fae 4 2 5 4 21 852 8 52 53 6 5 02 9 34 9 34 6 34 zi 5 84 4 3 10 16 8 6 65 10 96 10 96 9 7 46 l RO 11 78 8 78 10 8 28 12 59 12 59 9 60 44 13 40 13 40 ZERO SEARCH SUCCESS THE SOLUTION GAS PHASE SPECIES MASS FRACTIONS Species Name Mass frac Wall Mass frac Gas Wdot Residual Bulk Vel Contrb Dif Vel Cont Surface Mass Rate H2 50222E 25 0 00000E 00 0 00000E 00 12204E 26 0 23636E 30 12206E 26 0 00000E 00 H 0 88494E 26 0 00000E 00 0 00000E 00 0 19009E 27 41648 31 0 19014E 27 0 00000E 00 N2 0 81108E 25 0 00000E 00 0 00000E 00 35005E 26 38172E 30 35001E 26 0 00000E 00 N 0 35152E 25 0 00000E 00 0 00000E 00 41679E 27 16544E 30 41662E 27 0
38. ICRD SYMC Only one half of the physical domain is used for the symmetric channel case and the lower boundary is a symmetry line Units None Default None ICRD is a required input Example ICRD PLAN XEND Thetotal length of the channel Units cm Default None XEND is a required input Example XEND 25 DX Print the solution every DX cm Units cm Default 0 5 Example DX 0 25 GRAV The value of the acceleration of gravity The buoyancy term can only be included in the boundary layer equations if gravity acts parallel to the principal flow direction Thus GRAV 980 may be used to describe flow vertically upward or GRAV 980 for flow downward Omitting this keyword neglects the buoyancy term Units cm sec Default 0 Example GRAV 980 REAC Molefraction values of the reactants entering at the inlet One of these REAC inputs must appear for each reactant species The sum of all the reactant mole fractions should equal one However if they do not a cautionary message will be printed and the mole fractions will be normalized so the sum does equal one Units None mole fractions Default None required input for at least one gas species Example REAC SIH4 0 2 28 GASW Molefraction of the reactants estimated at the walls The sum of all the GA SW values should equal one However if they do not a cautionary message will be printed and the mole fractions will be normalized so the s
39. NNH H2 6 N2H2 NH NNH NH2 41 00E 17 N2H2 NH2 NH3 NNH 18 NH2 NH2 N2H2 H2 19 NH3 M NH2 H M 20 N2H3 H NH2 NH2 21 N2H3 M N2H2 H M 22 N2H3 NH NH2 N2H2 23 NH2 NH2 M N2H4 M 24 H N2H4 H2 N2H3 25 NH2 N2H4 NH3 N2H3 26 NH H M NH2 M 27 NH2 NH2 NH3 NH 28 F NH3 NH2 HF 29 SIF4 SIF3 F 30 H SIF4 HF SIF3 31 NH2 SIF4 SIF3NH2 F 32 NH3 SIF3 SIF3NH2 H 33 NH3 SIF3 SIHF3 NH2 NOTE A units mole cm sec K E units cal mole NO ERRORS FOUND ON INPUT ASCII Vers 1 1 CHEMKIN linkfile chem asc written WORKING SPACE REQUIREMENTS ARE INTEGER 1086 REAL 423 CHARACTER 21 Total CPUtime sec 0 15625 42 GN QO F QN Q P F G 00 00E 40E 60E 50E 00E 005 2 30E 90E 00E 00E 27E 00E 00E 00E 00E 00E Ree Ext or 3 0 C I0 GD O FQ 5 6 uU Ounoo ayy 1000 0 90600 0 46000 0 0 2500 1500 0 10000 800 147170 50000 40950 5000 10000 Do Co OO O Oo OO gt 6 3 Input to SURFACE CHEMKIN Interpreter for the Example Note this mechanism is included for illustrative purposes only and should not be used as a source of kinetic data for the Si3N 4 deposition system SITE SI3N4 S
40. T COUNT N SIF A T b exp E RT b E 00E 18 gt Ne 20E 00E 00E 92 36E 05 00 04 4 6 3 4 2 005 00 00E 00E 54F 20E 00E Qoo oO DO gt X m m OGC O 5 OO y N 3 3 3 3 3 6 00E c ce ELEMENTS ATOMIC CONSIDERED WEIGHT 1 H 1 00797 2 N 14 0067 Js 28 0860 4 F 18 9984 C P lt A H A A R SPECIES S G MOLECULAR TEMPERATURE CONSIDERED E E WEIGHT LOW HIGH 1 H2 G 0 2 01594 300 5000 2 B G O0 1 00797 300 5000 do N2 G O0 28 01340 300 5000 4 N G O0 14 00670 300 5000 5 NH G O0 15 01467 300 5000 6 NH2 G O0 16 02264 300 5000 7 NNH G 0 29 02137 250 4000 8 N2H2 G O0 30 02934 300 5000 9 N2H3 G 0 31 03731 300 5000 10 N2H4 G O0 32 04528 300 5000 wate HE G 0 20 00637 300 5000 12 F G 0 18 99840 300 5000 13 SIF4 G 0 104 07960 300 5000 14 SIF3 G 0 85 08120 300 3000 15 SIHF3 G O0 86 08917 300 3000 16 SIF3NH2 G 0 101 10384 300 3000 17 NH3 G 0 17 03061 300 5000 REACTIONS CONSIDERED 1 H H M H2 M H2 Enhanced by 0 000E 00 2 H H H2 H2 H2 3 NH N N2 H 4 NH H N H2 5 NH2 H NH H2 6 NH3 H NH2 H2 7 NNH N2 H 8 NNH H N2 H2 9 NNH NH2 N2 NH3 0 NNH NH N2 NH2 1 NH2 NH N2H2 H 2 NH NH N2 H H 3 NH2 N N2 H H 4 N2H2 M NNH H M N2 Enhanced by 2 000E 00 H2 Enhanced by 2 000E 00 5 N2H2 H
41. TRANSPORT Link File Text Output Restart File CRESLAF POST Input Binary Solution File Text Data Files Figurel Relationship of CRESLAF to the CHEMKIN SURFACE CHEMKIN and TRANSPORT pre processors and the associated input and output files The SURFACE CHEMKIN Interpreter must also be executed after the CHEMKIN Interpreter has been run because it relies on gas phase spedes and element information in the CHEMKIN Linking file The SURFACE CHEMKIN Interpreter reads user supplied information 9 surf inp about surface and bulk species names surface site types surface reactions and optional thermochemical information This information is written to a SURFACE CHEMKIN Linking File surf asc and later accessed by the SURFACE CHEMKIN subroutine library when called by the CRESLAF program The SURFACE CHEMKIN Interpreter also generates a text file eg surf out containing the input mechanism information and diagnostic messages 20 Once the pre processors have run successfully the CRESLAF program can then be executed Since the CHEMKIN SURFACE CHEMKIN and TRANSPORT subroutine libraries must be initialized before use the CRESLAF program begins by making the appropriate initialization subroutine calls The purpose of the initialization is to read the Linking Files and to set up the internal working and storage space required by all subroutines in the libraries CRESLAF then reads the user
42. This document is based on the Sandia National Laboratories Report SAND93 0478 authored by Michael E Coltrin Harry K Moffatt Robert Kee and Fran M Rupley Reaction Design cautions that some of the material in this manual may be out of date Updates will be available periodically on Reaction Design s web site In addition on line help is available on the program CD Sample problem files can also be found on the CD and on our web site at www ReactionDesign com CRE 036 1 CRESLAF A PROGRAM FOR MODELING LAMINAR CHEMICALLY REACTING BOUNDARY LAYER FLOW IN CYLINDRICAL OR PLANAR CHANNELS ABSTRACT CRESLAF predicts the velocity temperature and species profiles in two dimensional planar or axisymmetric channels Applications of CRESLAF indude chemical vapor deposition CVD reactors heterogeneous catalysis on reactor walls and corrosion processes The program accounts for finite rate gas phase and surface chemical kinetics and molecular transport The model employs the boundary layer approximations for the fluid flow equations coupled to gas phase and surface species continuity equations The program employs the CHEMKIN SURFACE CHEMKIN and TRANSPORT software packages for the gas phase and surface chemical reaction mechanisms and for the transport properties This manual presents the equations defining the model the method of solution the input parameters to the program and a sample problem illustrating its use CONTENTS LIST O
43. When surface or bulk species names are required as input they must appear exactly as they were specified in the SURFACE CHEMKIN input 6 When more than one piece of information is required the pieces are delimited by one or more blank spaces 7 If more information is input than required then the last read inputs are used For example if the same keyword is encountered twice or if conflicting keywords are given the last one read is implemented 8 A comment line can be inserted by placing either a period a slash or an exclamation point in the first column The program ignores such a line but it is echoed back in the printed output 9 Thekeyword END must bethe last input line 23 4 2 DASSL Numerical Solution Options ATOL Absolute error tolerance for DA SSL Typically ATOL should be smaller than the maximum mass fraction of any species of interest Units None Default 1 8 Example ATOL 5 0 6 RTOL Relative error tolerance for DA SSL Typically RTOL should bein the range of 103 which would provide roughly three significant digits to 106 which would provide roughly six digits Units None Default LE 4 Example RTOL 5 0 4 IERW Error tolerances specified for individual species whether gas phase or surface This allows the flexibility to control the error species by species and overrides the values given by ATOL and RTOL for the species specified The format is to include the keyword
44. al of the Electrochemical Society 131 425 1984 M E Coltrin R J Kee and J A Miller Journal of the Electrochemical Society 133 1206 1986 F K Moore in High Speed Aerodynamics and Jet Propulsion Princeton University Press Princeton NJ 1964 Vol IV R J Keeand L R Petzold Sandia National Laboratories Report SAN D86 8893 1982 L R Petzold A Description of DA 551 Sandia National Laboratories Report SAN D82 8637 1982 K E Brenan S L Campbell and L R Petzold Numerical Solution of Initial Value Problems in Differential Algebraic Equations N orth H olland N ew York 1989 T P Coffee and J M Heimerl Combustion and Flame 43 273 1981 R J Kee F M Rupley and J A Miller Sandia National Laboratories Report SAN D89 8009 1989 10 J P Jenkinson and R Pollard Journal of the Electrochemical Society 131 2911 1984 11 J Juza and J Cermak Journal of the Electrochemical Society 129 1627 1982 12 13 14 15 W G Breiland and M J Kushner A pplied Physics Letters 42 395 1983 P Hoand W G Breiland Applied Physics Letters 43 125 1983 P Ho and W G Breiland Applied Physics Letters 44 51 1984 W G Breiland and P Ho in The Electrochemical Society Softbound Proceedings Series edited by M Robinson C H J v d Brekel G W Cullen J M Blocher and P Rai Choudhury The Electrochemical Society N ew York 1984 58
45. e DTMN Name of parameter in TWOPNT manual TMAX Units sec Default 1 0E 4 Example DTMX 1 0 6 Minimum time step size Name of parameter in TWOPNT manual TMIN Units sec Default 1 0E 10 Example DTMN 10E 12 STPO Initial time step to be tried N ame of parameter in TWOPNT manual STRIDO Units sec Default 1 0E 6 Example STPO LOE 7 26 4 4 Grid Parameters NPTS Thenumber of mesh points in the problem The program will generate an equispaced mesh of NPTS points The user can also specify a nonuniform mesh using the keyword STCH Units None Default None NPTS is a required input Example NPTS 50 STCH Parameter to produce a non uniform grid For cartesian coordinates the initial grid location for anode is X J ZA J 1 STCH where A HITE NPTS 1 STCH HITE is the reactor height and NPTS is the total number of grid nodes If STCH a uniform grid is produced For STCH gt 1 the grid is more tightly spaced at the lower boundary cartesian coordinates or at the outer boundary cylindrical coordinates and consequently the grid is more widely spaced at the other boundary Units None Default 1 0 Example STCH 1 2 4 5 Reactor Description PRES Thepressure Units atmospheres Default None PRES is a required input Example PRES 0 25 VEL Themaximum gas phase velocity at the inlet If the problem is in cartesian coordinates then the average v
46. ed by the TRANSPORT property fitting program tran by the SURFACE CHEMKIN Interpreter and later by the CHEMKIN subroutine library which will be accessed by the CRESLAF program The CHEMKIN Interpreter also writes text output e g chem out that includes a formatted display of the user input and diagnostic messages from the Interpreter The next program to be executed is the TRAN SPORT property fitting program tran It needs input from a transport property database tran dat and from the CHEMKIN subroutine library The user may also optionally input transport property data directly in a separate input file e g tran inp to override or supplement the database information The purpose of the TRANSPORT fitting program is to compute polynomial representations of the temperature dependent parts of the individual species viscosities thermal conductivities and the binary diffusion coefficients Like the CHEMKIN Interpreter the TRANSPORT property fitting program produces a Linking File tran asc that is later needed in the transport property library routines which will evaluate mixture properties during the course of the CRESLAF computation 19 Thermodynamic Chemistr Data CHEMKIN Interpreter Surface Processes Reactions SURFACE CHEMKIN Interpreter SURFACE Link File TRANSPORT CHEMKIN SURFACE Library Library Library Transport Data CHEMKIN Link File TRANSPORT Fitting Program
47. elocity equals two thirds of the maximum velocity of the parabolic velocity profile In cylindrical coordinates the average velocity is half of the maximum velocity If the keyword BLTK is given a flat velocity profile will be used i e everywhere the velocity will be set equal to VEL except within a distance BLTK of the walls Units cm sec Default None VEL is required input Example VEL 15 BLTK This keyword is used to specify a boundary layer thickness When BLTK is declared a parabolic velocity profileis specified with a zero velocity at each wall increasing to the velocity specified by VEL at a distance of BLTK from the wall A flat constant velocity profile is used for distances greater than BLTK from the wall In addition if the initial gas temperature differs from the initial surface temperature the program linearly interpolates the gas phase temperature profile between the wall temperature and the bulk gas temperature over the distance BLTK Units cm Default 0 Example BLTK 0 05 27 HITE Thechannel height for cartesian coordinates or the reactor radius cylindrical coordinates or distance between the channel wall and the symmetry linefor a symmetric planar channel Units cm Default None HITE isa required input Example HITE 2 0 ICRD Flag to specify coordinate system planar coordinates ICRD PLAN or radial coordinates ICRD RAD or cartesian coordinates with symmetric channel walls
48. er supplied initial solution profile 22 4 PROGRAM INPUT 4 1 Keyword Syntax and Rules The CRESLAF program s input is in a Keyword format On each input line an identifying keyword must appear first For some keywords only the keyword itself is required while for others additional information such as a number is required Some keywords have default values associated with them and in such cases the keyword line is optional The order of the keyword inputs is generally unimportant except for some grouped lists that must be ordered All keywords and associated modifiers are given in upper case Therules governing the syntax of the keywords are listed below 1 The first four columns of the line are reserved for the keyword and it must begin in the first column 2 Any further input associated with the keyword can appear anywhere in columns 5 through 80 The specific column in which the information begins is unimportant 3 When more than one piece of information is required the order in which the information appears is important 4 When numbers are required as input they may be stated in either integer floating point or E format The program converts the numbers to the proper type The double precision specification is not recognized however the double precision conversion is done internally as necessary 5 When gas phase species names are required as input they must appear exactly as they were specified in the CHEMKIN input
49. ew independent variable whose total magnitude is fixed for the entire problem we define a new stream function that is normalized by the local total mass flux 8 where M is the locd value of the total mass flux Therefore ranges between 0 and 1 and is not dependent on the total mass previously lost or gained at the walls The relationships between the physical coordinates y and x and the transformed coordinates Z y and x are stated in the following equations that define the Von M ises transformation 2 tz tt ax Nox Ow dx y 11 2 23 9 ao Pron 172 DRE Dea an The total local mass flux M is computed from an equation that accounts for the mass deposited on each boundary dM dM dM 12 dx dx dx The mass flux at the lower boundary in the asymmetric planar case is determined from the convective Stefan mass flux to the boundary dM _ dx m p y 0 asymmetric planar case only 13 Calculation of the transverse velocity v at the boundary is discussed in Section 2 Note that Eq 13 applies only in the asymmetric planar coordinate case since in cylindrical coordinates or for a symmetric channel in planar coordinates the lower boundary is the centerline and thus there is no mass change at that boundary The rate of change of mass flux at the upper boundary which is the upper wall in planar coordinates or the outer radius in cylindrical coordinates is similarl
50. hey do not a cautionary message will be printed and the bulk species fractions for each bulk phase will be normalized so the sum does equal one Units None bulk species mole fractions Default None required for at least one bulk species per bulk phase Example ACT SI D 1 0E 3 TSPL This keyword allows an optional specification of the surface temperature profile as an x T pair Thereis a TSPL keyword line for each desired x T pair The x coordinates of each TSPL line must be given in ascending order Units cm K Default None optional input Example TSPL 0 1 973 GTM P Gas phase temperature at the inlet Units K Default None GTMP is required input Example GTMP 298 STM P Surface temperature Units K Default None STMP is required input unless TSPL keyword is included Example STMP 973 29 XTMP If STMP is used to specify the surface temperature the program will set the surface temperature to GTMP at x20 and smoothly ramp the temperature up to STM P at a distance of XTMP Units cm Default 0 5 Example XTMP 0 25 FIXT Keyword for temperature boundary condition on the upper wall only used for cartesian coordinates The upper wall is held at a fixed temperature of GTMP if FIXT is specified A zero temperature gradient is enforced if FIXT is omitted adiabatic wall Units None Default Adiabatic top wall is used Example FIXT SYMT Keyword for tem
51. input that defines a particular reacting flow problem and the parameters needed to solveit This input is read in Keyword format from the input file e g creslaf inp described in Chapter l In addition to this input thereis a provision for the CRESLAF program to begin its solution from a previously computed solution In this case the old solution is read from a binary Restart File called rest bin The program produces printed output eg creslaf out and it saves the solution in a binary Save File save bin The Save File can be used to restart CRESLAF to the channel flow simulation farther downstream The Restart File is the same format as the Save File a Restart File can therefore be created simply by copying a Save File eg save bin to the Restart File name rest bin 3 1 Optional User Programming In addition to using CRESLAF through the CHEMKIN Application User Interface users have the flexibility to write their own interface to the reacting flow model To facilitate this the CRESLAF program itself is written as a Fortran subroutine that may be called from a user supplied driver routine We provide examples of such driver routines as part of the CRESLAF software distribution written in both C and Fortran The driver routine performs the function of allocating total memory usage through definition of array sizes as well as opening input and output files CRESLAF checks internally to make sure that the allocated work arrays are
52. ithout limitation any warranty against infringement of third party property rights fitness or merchantability or fitness for a particular purpose even if Reaction Design has been informed of such purpose Furthermore Reaction Design does not warrant guarantee or make any representations regarding the use or the results of the use of the software or documentation in terms of correctness accuracy reliability or otherwise No agent of Reaction Design is authorized to alter or exceed the warranty obligations of Reaction Design as set forth herein Any liability of Reaction Design its officers agents or employees with respect to the software or the performance thereof under any warranty contract negligence strict liability vicarious liability or other theory will be limited exclusively to product replacement or if replacement is inadequate as a remedy or Design s opinion impractical to a credit of amounts paid to Reaction Design for the license of the software Literature Citation for CRESLAF The CRESLAF program is part of the CHEMKIN Collection R J Kee F M Rupley J A Miller M E Coltrin F Grcar E Meeks H K Moffat A E Lutz G Dixon Lewis M D Smooke J Warnatz G H Evans R S Larson R E Mitchell L R Petzold W C Reynolds M Caracotsios W E Stewart P Glarborg C Wang and 0 Adigun CHEMKIN Collection Release 3 6 Reaction Design Inc San Diego CA 2000 Acknowledgements
53. its None Default Thermal diffusion is not used Example TDIF VCOR Inclusion of this keyword causes the calculation to be run using a correction velocity to ensure mass conservation i e the sum of the diffusion fluxes is zero See Eq 26 Units None Default Correction velocity is not used Example VCOR 4 7 Miscellaneous Controls IRST Inclusion of this keyword causes the program to begin the calculation at the point where a previous solution ended This previously computed solution will be read from a binary solution file normally called rest bin Units None Default Solution started anew not from a restart file Example IRST PROF Inclusion of this keyword causes the program to read an initial solution profile gas phase concentrations temperatures velocities surface site fractions etc from a user supplied input file This feature allows the user almost complete freedom in specifying customs of initial conditions a flexibility not availablefrom standard keyword input This previously computed profile will be read from a formatted ascii input file normally called cres pro Theformat for this file is explained in SectionB 3 Units None Default User supplied profile not used Example PROF GFAC Useof this keyword specifies that the rates of all gas phase reactions will be multiplied scaled by the factor GFAC Units None Default 1 actual values of the gas phase reac
54. ma tab or space delimited text for further analysis with other software packages For more information on the Graphical Post processor please see the CHEMKIN Getting Started manual 5 2 Configurable Command line Post processor In addition to the CHEMKIN Graphical Post processor representation of solution data we provide the user with a FORTRAN post processor called CRESLAF POST This program reads the binary solution file and prints selected data to text files which can then be imported by many other graphics programs The full source code creslaf_post f is provided in the CHEMKIN post processors subdirectory Also in this directory is a makefile script for re building the CRESLAF POST program in case the user makes changes to the source code In this way the user may easily configure CRESLAF POST for their own analysis needs To run CRESLAF POST from the command line you will need to do the following 1 Open a MS DOS Prompt PC or shell UNIX 2 Changedirectories to your working directory where your save bin solution file resides 3 Run CRESLAF POST from the command line specifying the full path to the CHEMKIN bin directory where the creslaf post executable resides unless this is already in your environment path variable creslaf post creslaf post inp creslaf post out Here creslaf postinp is an input file that contains keywords described below The output creslaf post out will contain diagnostics and er
55. mensions However it is restricted to a two dimensional geometry using either planar or radial coordinates for 2 D Cartesian or 2 D axisymmetric flows respectively The CRESLAF program employs the TRANSPORT software package for calculating thermal diffusion coefficients and for the rigorous calculation of ordinary multicomponent transport properties CRESLAF includes the effects of thermal diffusion which is the separation of species of differing size in a temperature gradient Thermal diffusion can have an important effect on predicted concentration profiles The boundary conditions describing chemical reactions at the surface are formulated using the SURFACE CHEMKIN Utility package while the gas phase kinetics calculations employ the CHEMKIN Gas phase Utility software 2 DESCRIPTION OF MODEL 2 1 Defining Equations CRESLAF solves the boundary layer equations for the fluid flow coupled with species equations These equations describe chemical species production and destruction and both convective and diffusive transport Details of the formulation have been published by Coltrin et al 2 3 The applicability of the equations relies on the existence of a principal flow direction in which diffusive transport is negligible compared to convective transport To simplify the numerical procedure somewhat we recast the equations using the Von Mises transformation 4 in which the cross stream coordinate is replaced by the stream function as an independen
56. nd 6 at every gas phase mesh point In planar coordinates we also solve Eqs 17 and 18 at the upper and lower boundaries In cylindrical coordinates or for a symmetric channel in planar coordinates we solve Eqs 17 and 18 only at the upper boundary This is a parabolic system of equations where the dependent variables are p y u T M and Y The equations are subject to a set of algebraic constraints which are the equations for the surface site fractions z This system of equations is solved using the method of lines We treat the equations as a set of Differential Algebraic Equations DA E s gt which we solve using the numerical software DA 551 6 7 At the entrance to the reactor channel the initial profiles of T and Y the pressure and the surface site fractions z must be specified see Section Palon species concentration at boundaries The velocity profile can be either a fully developed parabolic profile or a flat velocity profile with an optionally specified boundary layer thickness If the boundary layer thickness is specified then a parabolic profile is assumed only within the boundary layer The initial gas temperature across the channel is usually set equal to the initial surface temperature However the user may also specify different gas and surface temperatures As with the velocity profile if a boundary layer thickness is specified the program linearly interpolates the gas phase temperature bet
57. oundary In cylindrical coordinates the grid will be made finer at the outer boundary through use of an analogous formula 17 2 8 Jacobian Matrix The finite difference representation of the defining equations forms a set of differential algebraic equations DA E s which we solve numerically using the software package DASSL 6 7 The DAE s are written in the general form g y y 0 where y and y represent the components of the solution and their time derivatives and is time As part of the solution to the equations a numerical Jacobian is formed i e the partial derivative of the residual g with respect to each component of the solution Jacobian is needed because DASSL employs an implicit time stepping method Implicit methods are most efficient for solving the stiff equations usually found in chemical kinetics problems Calculating the Jacobian is expensive and the most computationally expensive aspect of evaluating it is calculation of the multicomponent transport properties The computer time required to solve the set of DAE s can be reduced significantly by holding the transport properties fixed when calculating the numerical Jacobian Although this introduces some error into the Jacobian DASSL requires only an approximate Jacobian for the purpose of iterating to a converged solution 6 7 No error is introduced into the solution by making this simplification in the Jacobian evaluation However the computer time required by
58. perature boundary condition on the upper wall only used for cartesian coordinates The upper wall temperature is set equal to the bottom wall temperature if SYM T is specified Units None Default Top temperature is different than bottom Example SYMT ADIA Keyword that turns on the adiabatic wall condition for symmetric cases For planar non symmetric cases an adiabatic wall is the default but for symmetric planar or cylindrical cases theADIA keyword is required for the adiabatic condition Units None Default Specified non adiabatic condition Example ADIA 4 6 Transport Property Options MULT Inclusion of this keyword causes the calculation to be run with a full multicomponent model for thetransport coefficients and diffusion velocities Units None Default Multicomponent transport is not used Example MULT MIX Inclusion of this keyword causes the calculation to be run using a mixture average model for calculating the transport coefficients and diffusion velocities Units None Default Mixture averaged transport is used Example MIX TDIF Inclusion of this keyword causes the calculation to be run with thermal diffusion Soret effect Thethermal diffusion coefficients are always calculated from the multicomponent model 30 However the keywords MULT or MIX still determine whether the diffusion coefficients and diffusion velocities are calculated with the multicomponent model Un
59. r depletion rates of gas phase species by surface reactions This relationship is PY Vey v 5 Wg 8 gt 1 19 where the gas phase diffusion velocities are given by 545 5 or 6 In nonreacting flows the fluid velocity normal and tangential to a solid wall is zero However if there are chemical reactions at the wall then the normal velocity can be nonzero This so called Stefan flow velocity occurs when there is a net mass flux between the surface and the gas The Stefan velocity is given by 1 Xs v W 20 P k This expression is easily obtained from the interfacial mass balance Eq 19 by summing over all K gas phase species and using the requirement that the mass fractions must sum to one i e K 25 Y 21 21 k 1 and that the sum of the diffusion fluxes must be zero The SURFACE CHEMKIN input includes the mass densities p for the K bulk species involved in a surface reaction mechanism CRESLAF uses these densities to convert the surface reaction rate of production of a bulk species in moles 2 sec into a growth rate G in cm sec for each bulk species The relationship is given by def e eo oR 22 Pk 2 3 Initial Conditions on Species Concentrations at Boundaries For an arbitrarily complex surface reaction mechanism it can be difficult to provide an initial set of surface site fractions z and gas phase mass fractions Y at the surface which satisfies Eqs 17 18 19
60. rameters In addition to input directly from the user CRESLAF depends on data obtained from the CHEMKIN Gas phase SURFACE CHEMKIN and TRANSPORT packages Therefore to solve a reacting flow problem the user must first execute the three preprocessor programs chem tran and surf which have access to thermodynamic and transport property databases CRESLAF then reads input from the user described in Chapter Ly defines the governing equations solves the equations and prints solutions for the reacting flow problem The CHEMKIN Graphical Post processor can then be launched from the A pplication User Interface to plot solution data Eigure shows the relationships between these components For more information about the CHEMKIN Application User Interface or Graphical Post processor please see the CHEMKIN Getting Started manual The first step is to execute the CHEMKIN Interpreter chem The CHEMKIN Interpreter first reads user supplied information about the species and chemical reactions for a particular reaction mechanism It then extracts further information about the species thermodynamic properties from a database therm dat The user may also optionally input thermodynamic property data directly in the input file to the CHEMKIN Interpreter to override or supplement the database information The information from the user input and the thermodynamic properties is stored in the CHEMKIN Linking File chem asc a file that is need
61. re identical and there is a plane of symmetry In this case y is the distance above the symmetry plane The independent variables x and represent the axial coordinate and the normalized stream function respectively All variables are defined in the N omendature section at the beginning of the manual The last term in the momentum equation Eq 1 can only be included when the gravity vector is along the principal flow direction i e when the flow iseither vertically upward or downward rather than horizontal We define the stream function y as 1 y f 7 atl The stream function is defined such that there is an equal mass flow rate between two lines of constant stream function value between streamlines when there is no mass loss If there is no mass loss to the walls the reactor walls themselves are streamlines i e lines of constant streamfunction The independent variable y then ranges from zero at one boundary to the total mass flux M at the other If there is no mass loss at the surfaces then the total mass flux is evaluated at the initial condition and is constant throughout the computation In this case the numerical method can use a mesh in which each mesh point has a specified value of stream function However if mass is lost from the gas then the total mass flux changes along the flow direction and the independent variable changes at each mesh point i e a moving coordinate system In order to make a n
62. reactions describing SiF4 decomposition and three cross reactions At the low pressures we consider the gas phase decomposition of reactants is slow The surface reaction mechanism contains six steps describing the overall conversion of 3 SiF4 and 4 N H3 molecules to Si d and 4 N d and 12 HF N ote that the surface reaction mechanism is from a preliminary analysis at one temperature and thus we have not supplied any activation energies As such this mechanism should be considered only as illustrative and not as a source of kinetic data on the Si3N 4 system Section 1 the input file for the CHEMKIN Interpreter which defines the gas phase reaction mechanism The output from the CHEMKIN Interpreter is shown next in Section E lThe input to and output from the SURFACE CHEMKIN Interpreter Sections e 3l and la show the surface species and surface reactions in the problem More details on the CHEMKIN and SURFACE CHEMKIN Interpreters can befound in the user s manuals for each program The file containing the Keyword input to CRESLAF gives the specific run conditions for the problem and is listed in Section 65 The input specifies 15 grid points N PTS a computational domain that ends at 10 cm XEND and a pressure of 2 3684E 3 atmospheres PRES The reactor geometry is a radially symmetric channel ICRD with a radius of 2 0 cm HITE The reactant mole fractions at the inlet are given REA C as are the site fractions of the
63. right 1995 Sandia Corporation The U S Government retains a limited license in this software LIB CHEMKIN III GAS PHASE CHEMICAL KINETICS LIBRARY OUBLE PRECISION Vers 5 28 2000 08 05 opyright 1995 Sandia Corporation HdHQoUuo he U S Government retains a limited license in this software SPECIES MOLECULAR ELEMENT COUNT CONSIDERED WEIGHT Density Nsites H N SIF Gas phase species Ly H2 2 01594 2 zu H 1 00797 1 0 0 0 3 N2 28 01340 0 2 0 0 4 N 14 00670 0 0 5 NH 15 01467 I dE 6 NH2 16 02264 2 1 0 0 7 NNH 29 021 37 1 2 0 00 8 N2H2 30 02934 2 2 0 0 9 N2H3 31 03731 3 2 0 0 N2H4 32 04528 4 2 0 0 1 HF 20 00637 1 v 29 2 F 18 99840 Q0 300 3 SIF4 104 07960 0 1 4 4 SIF3 85 08120 9 23 5 8 8 3 86 08917 1 1 3 6 SIF3NH2 101 10384 2 eh 3 7 NH3 17 03061 3 X 0 9 SITE SI3N4 0 417E 08 moles cm 2 8 HN SIF S 62 09907 2 1 dr 1 4 9 F3SI NH2 S 101 10384 2 2 E 3 20 F2SINH S 81 09747 2 1 1 1 2 21 H2NFSINH S TOSI2I71 2 322 5 de ok 22 HN FSINH 2 S 139 21281 4 3 d 2 2 23 HN NH2 S 31 03731 2 3 20 BULK BULK1 24 SI D 28 08600 0 207E 01 g cm 3 Qr 0 0 BULK BULK2 25 N D 14 00670 0 137E 01 g cm 3 0 k A T b exp E RT SURFACE REACTIONS CONSIDERED A b E 1 NH3 HN 5 S gt HN_NH2 5 5 5 7 56E 08 0 5 0 0 2 SIF4 HN_NH2 5 gt F3SI1_NH2 5 5 3 10E 08 0 5 0 0
64. ror messages for the CRESLAF POST run CRESLAF POST will also create text files containing comma separated values The names for these files use a suffix extension of csv CRESLAF POST uses keyword input The available keywords are printed as a banner when the program is invoked they are also described briefly here PREF DIST SPEC MOLE MASS SMIN HELP END Requests the text file name be prefixed by a character string Default cres Example PREF cres Requests a particular distance solution be selected from the binary solution file or ALL Units cm Default the final solution in the binary solution file Example DIST 1 0 Requests species fractions for a space delimited list of species or ALL Default none Example SPEC H2O2 OH H20 HO2H O Print species as mole fractions Default MOLE Print species as mass fractions Default MOLE Do not print species whose maximum fraction is less than SMIN Default 0 0 Print a brief guide to keyword input Begin post processing 35 6 SAMPLE PROBLEM CHEMICAL VAPOR DEPOSITION IN SYMMETRIC CHANNEL In this chapter we show solution of an example problem using the CRESLAF program sample input files and output files are listed in Sections lal b d We have chosen as a sample the deposition of SisN 4 from SiF and NH3 The gas phase reaction mechanism contains a detailed description of NH decomposition about which there is much published information two
65. s k is added to all the species diffusion velocities as computed from Eq 6 diffusional mass conservation is assured This option is specified by the keyword VCOR Another option to account for the deficiencies of the mixture averaged closure of the transport problem and to assure mass conservation is to solve only K 1 gas phase species conservation equations and to determine the remaining mass fraction by requiring un Y 1 The mixture averaged transport closure is asymptotically correct in the trace species limit In cases where one species is present in large excess such as a carrier gas this is a reasonable option The carrier gas composition is conveniently determined as Yk 1 MY 27 k l If the user does not specify use of a correction velocity CRESLAF assumes that the last named species in the gas phase CHEMKIN Interpreter input is the carrier gas and thus does not solve the corresponding conservation equation Eq 2 for that species but applies Eq 27 2 5 Thermal Diffusion Thermal diffusion is the separation of two species of differing size in the presence of a temperature gradient Because there can be strong temperature gradients in a reactor thermal diffusion can significantly influence deposition rates 211 as well as density profiles as observed by in situ measurements 12 15 The effect of thermal diffusion is included in the diffusion velocity as the second term on the right side of Eqs 5 or
66. solution profile will be used as the starting point for CRESLAF The user has complete freedom in specifying a particular velocity profile concentration profile or grid node placement for example A portion of FORTRAN code that will write the information needed on the profile file in the correct format is shown in Eigure 2l Actual specification of the information in each array for example in the TEMPERATURE array which would be up to the user is not shown e put components into the solution vector DO 750 J 1 JJ SOLUTION 1 J PRESSURE J IF ICRD EQ 1 THEN G radial coordinates SOLUTION 2 J HEIGHT J 2 ELSE G planar coordinates SOLUTION 2 J HEIGHT J ENDIF SOLUTION SOLUTION SOLUTION SOLUTION DO 500 K SOLUTION 500 CONTINUE 750 CONTINUE VELOCITY J TEMPERATURE J LOWERMASSLOSS J UPPERMASSLOSS J KKGAS K J MASSFRACTION J K Cc c NATJ KKGAS 6 WRITE LPROF ICRD JJ NATJ KKGAS KKSURF KKBULK IF ICRD EQ 0 THEN planar coordinates WRITE LPROF SITELOW K K 1 KKSURF 1 SOLUTION N J N 1 NATJ J 1 JJ 2 SITEHIGH K K 1 KKSURF 3 ACT K K KK KKSURF 1 KK KKSURF KKBULK ELSE e radial coordinates or planar with symmetry axis WRITE LPROF SOLUTION N J N 1 NATJ J 1 JJ 1 SITEHIGH K K 1 KKSURF 2 ACT K K KK KKSURF 1 KK KKSURF KKBULK ENDIF Figure2 Sample FORTRAN code segment for generating a us
67. surface species SURF and the mole fractions of the bulk phase species ACT Therest of the Keywords specify numerical error tolerances printing controls etc The last file shown in Section m is the output from the CRESLAF program A series of banners are displayed showing the version numbers of CRESLAF and the CHEMKIN SURFACE CHEMKIN and TRANSPORT libraries being used After giving statistics on the workspace requirements the program echoes back the keyword inputs The CHEMKIN two point boundary value solver TWOPNT solves for the initial set of site fractions and gas phase mass fractions which satisfy Eqs 17 20 at the boundary node The results from the TWOPNT problem are shown next The boundary values calculated are then used in solving the boundary layer problem At a distance interval controlled by the keyword DX CRESLAF prints the current value of the solution At the top of each page it prints the distance and some statistics on the progress of the solution from DA SSL as well as the total mass in the flow and the pressure For each gas phase node the program prints the 37 value of the y coordinate the velocity j the temperature and the mole fraction of each gas phase species The column labeled OMS contains the difference between the sum of the mass fractions and unity Below each species name the program also prints the flux of the species to the boundary in g cm sec This information is sometimes useful in identif
68. t variable We use an additional transformation of the stream function that accounts for possible mass loss or gain in the gas due to deposition or etching at the reacting surfaces The set of equations describing the CRESLA F model is as follows 2 1 1 MOMENTUM u puf dM dM Qu dp _ pu ou 4 1 u p rahe ie POE 32 p 1 2 1 2 SPECIES pal ait 8 1 2 pu W VE Se MA ae k UM 2 L3 ENERGY oT puc dM dM 7 p mu a y A k 1 PEE 2 62 _ pruy z DUUM 3 214 STATE pRT at 4 4 We provide the option of choosing from two different transport models In these equations when multicomponent transport is used the diffusion velocity V is given by OX puy ar Vry DLW Dy 5 X WM z dE PY TM or when mixture averaged transport is used 10 Dy puy aX D puy oT Tu N 6 p XM 06 PY TM 6 The equations represent either cylindrical or cartesian coordinates For a flow in cylindrical coordinates the parameter is 1 and y represents the radius measured from the flow centerline If a is zero then the equations are in planar coordinates for the flow between two infinitely wide plates and y is the height above the lower wall We also allow 8 third case of cartesian coordinates in which both walls a
69. the model can be decreased by a factor of ten or more 2 9 Modified Version of DASSL The CRESLAF program actually uses a slightly modified version of DASSL One very minor modification enables us to hold the transport properties fixed during a Jacobian evaluation as discussed in Section bal We have also added options to DASSL for printing sometimes copious amounts of information when integration difficulties are encountered A Keyword PRND controls these error diagnostics The default level is 0 which results in no reporting Levels 1 and 2 the maximum provide information on the step size order of integration time step truncation error and solution components that most significantly contributed to a convergence test failure Level 1 prints this information only upon a convergence test failure Level 2 prints this information at every time step This diagnostic information can be quite helpful but requires thorough knowledge of DASSL s solution algorithm to be useful The reader is referred to the DA SSL citations for further documentation 7 18 3 PROGRAM STRUCTURE The CHEMKIN Application User Interface runs the CRESLAF program automatically through a mouse driven interface and then allows the user to directly launch visualization of solution results using the CHEMKIN Graphical Post processor The CRESLAF program has a modular structure with interfaces to the CHEMKIN Utility package for obtaining kinetic thermodynamic and transport pa
70. tion rates are used Example GFAC SFAC Use of this keyword specifies that the rates of all surface reactions will be multiplied scaled by thefactor SFAC SFAC cannot be set to zero doing so would cause a singular Jacobian Units None Default 1 actual values of the surface reaction rates are used Example SFAC 0 1 31 MOLF Molefractions of the gas phase species will be used in the solution print out Units None Default Molefractions are printed Example MOLF PARP Partial pressures of the gas phase species will be used in the solution print out Units None Default Molefractions are printed not partial pressures Example PARP END Thislinesignifies the end of the input data 32 33 5 POST PROCESSING 5 1 CHEMKIN Graphical Post processor The CHEMKIN Graphical Post processor provides a means for quick visualization of results from CRESLAF Launched from the CHEMKIN Application User Interface the Graphical Post processor will automatically read in the solution date from the save bin file in the working directory Alternatively the post processor may be launched independently and a solution file may be opened from within the Post processor The user may open one or more solution files in the Post processor and may also import external data for comparisons with the simulation results In addition the Graphical Post processor can be used to export all of the solution data into com
71. um does equal one If GA SW is not specified then the values given by the REAC keyword will be used The actual gas mole fractions at each wall at the initial condition of the boundary layer calculation will be calculated via the TWOPNT procedure unless the NOTP keyword appears Units None mole fractions Default Values given by the REAC keyword will be used Example GASW SIH2 1 0E 4 SURF Surface site fraction values estimated for the surface species for each surface site type phase on the surface One of these SURF inputs should appear for each surface species in large concentration on the surface sum of the site fractions should equal one for each surface site type Surface phase However if they do not a cautionary message will be printed and the site fractions for each surface site type will be normalized so the sum does equal one The actual surface site fractions at each wall as the initial condition of the boundary layer calculation will be calculated via the TWOPNT procedure unless the NOTP keyword appears Units None surface site fractions Default None required input for at least one surface species in each site phase Example SURF SIH2 S 1 0E 3 ACT Molefraction values for the bulk species in each bulk mixture phase One of these ACT inputs should appear for each bulk species in a bulk phase The sum of the bulk species fractions should equal onefor each bulk mixture bulk phase H owever if t
72. ve error tolerance Name of parameter in TWOPNT manual SSREL Units None Default 1 0E 14 Example TWRE LOE 10 TWTA Absolute error tolerance if time stepping required Name of parameter in TWOPNT manual TDABS Units None Default 1 0E 12 Example TWTA LOE 10 TWTR Relativeerror toleranceif time stepping required Name of parameter in TWOPNT manual TDREL Units None Default 1 0 4 Example TWTR 1 0 10 TWPR Specifies print level Name of parameter in TWOPNT manual LEVELD LEVELM Units None Default 22 Example TWPR 0 TWST Number of time steps before trying another N ewton step Name of parameter in TWOPNT manual STEPS1 Units None Default 100 Example TWST 50 25 ISTP IRET Number of initial time steps before beginning initial Newton try Name of parameter in TWOPNT manual STEPSO Units None Default 0 Example ISTP 500 Minimum number of time steps before retiring this step size and trying a new one N ame of parameter in TWOPNT manual STEPS2 Units None Default 50 Example IRET 25 NJAC Retirement age of Jacobian during Newton iteration N ame of parameter in TWOPNT manual SSAGE Units None Default 20 Example NJAC 15 TJAC Retirement age of Jacobian during time stepping N ame of parameter in TWOPNT manual TDAGE Units None Default 20 Example TJAC 15 DTMX Maximum time step siz
73. ween the surface temperature and the gas temperature over the boundary layer thickness The initial gas phase species mass fractions Y are taken to be uniform across the channel with the exception of the mass fractions at reactive walls These are calculated by the procedure described in the Section Palon species concentration at boundaries From the initial profiles we compute the local mass flux M and the physical locations of all the mesh points i e a profile of y 22 Boundary Conditions For the energy equation either the temperature or a zero heat flux adiabatic condition is specified at the solid walls In the transformed equations is the independent variable and the physical coordinate y is a dependent variable For the evaluation of y then we specify as boundary conditions that y 0 at the lower boundary and y ymax at the upper boundary the channel radius in the case of cylindrical coordinates Notice that there is no explicit equation or boundary condition for the pressure p even though it is a dependent variable Note also that a boundary value of y is specified at both boundaries even though 13 Eq 16 is only a first order equation This apparent over specification is resolved by the fact that there is no boundary condition for pressure 2 The boundary conditions for the species involve the heterogeneous reactions The convective and diffusive mass fluxes of gas phase species at the surface are balanced by the production o
74. y defined by dM E 14 dx Y Ymax Theinitial mass flux entering the channel is defined by Mo pe 15 which serves as the initial condition for Eq 12 The system of equations is completed by an equation that relates the cross stream coordinate y to the normalized stream function 19 a M pu 16 This equation comes from differentiating the definition of the streamfunction Eq 7 In addition to induding detailed gas phase chemistry we include detailed surface reaction chemistry through use of the SURFACE CHEMKIN package Here we consider N different surface phases or site types and at each axial position solve for the steady state surface site fractions for each of the N surface phases Thus we solve additional equations where K is the total number of surface species in the heterogeneous reaction mechanism These equations are shown in Eqs 17 and 18 below 12 1 n 0 k Kf n K n 1 n 1 N 17 1 Y n n i N 18 Here n and K n represent the first and last species for surface phase number n This nomenclature is described in more detail in the SURFACE CHEMKIN manual For one species in each surface phase we do not solve the steady state condition given by Eq 17 but instead use Eq 18 which requires that the site fractions sum to unity in each phase To summarize the system of equations considered by CRESLAF we solve Eqs 1 4 13 14 a
75. ying which species is most responsible for carrying mass to the surface in a deposition process The program then prints the values of surface site fractions at each wall lower and upper for cartesian coordinates outer wall only for cylindrical coordinates top wall only for the symmetric planar channel Finally the program prints the deposition rate for each bulk phase species CRESLAF calculates the growth rate from the molar production rate and the value of the bulk density for each bulk species that was supplied to the SURFACE CHEMKIN Interpreter 38 6 1 Input to CHEMKIN Interpreter for the Example ELEMENTS H N SI F END SPECIES END THERMO S 0 0 0 e 0 0 HF 8 et 0 26506014E 0 0 53437054E 05 0 0 32833177E 08 0 2 61424704E 0 11440422E 05 0 45795536E 08 41200666E 0 75613784E 04 3 4 0 0 0 0 0 8072788E 08 F3NH2 2109636E 02 0 6417678E 06 0 2672435E 07 0 HF 3 9 3635674E 01 0 4860736E 06 0 0582003E 07 0 5247898E 01 0 2235223E 06 0 43778518E 7692990E 08 0 0478473E 02 0 9790550E 06 0 0 29919110E 01 0 0 33621364E 05 0 0 17564491E 08 0 F 0 27004353E 01 0 0 87163617E 04 0 END H H 4224242424222 1 REACTIO H H M H2 M H2 0 0 N H 3 NS H2 H2 N2 H N H2 H H H2 H 2 H2 2 NH3 N2 NH2 N2H2 H 2 H H 2 H H NNH H M 2 H2 2 NNH H2 H NNH NH2 H2 NH3 NNH NH2 N
Download Pdf Manuals
Related Search
Related Contents
Instrucciones de montaje y servicio EB 8384-2 ES Sea Gull Lighting 88117-962 Installation Guide Samsung MAX-C570 Felhasználói kézikönyv Control 50 Series 取扱説明書 - All IT eBooks Philips PI3210GB1 4GB 3G Black MANUAL DE UTILIZAÇÃO DO REC. DE FIRMAS COM MANUAL VTech Twist & Learn User`s manual Serrure Electronique Axessor IP Copyright © All rights reserved.
Failed to retrieve file