Home
User Manual, Bulletin 2364P, Parallel DC Bus Supply Configurations
Contents
1. UP 1 8 DETAIL See U SeeU lo 5 Phase 5 Phase 5 So 8 Detail 8 Detail 8 SLE 5 2 we 2 ETE Cap Bank EA2 Bus Indicator Board Bus LEDI PL1 1 DC Bus 2 See U See U Bus LED2 Energized 8 Board 5 Gj Detail Detail 4 Bus Suppressor ES VN WN e pe F 77 e IEEE Y t y 35 io J10 J8 Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24V s 415V Main Bus 24V 45V DC DC gt DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv E 46 Mai J3 J11 in Control Boar Bridge Thermal ain Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 1203 GM1 2 Analog In 1 3 Analog In 1 Common 92020801 4 Analog In 2
2. r up UP1 DETAIL See U See U le 8 5 I Phase Phase 1 t5 5 3 Detail 3 Detail 3 m 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 E p X UN2 See U See U Filter Bus LED2 Energized S ios Phase in Board B 5 E Detail Detail 24 Bus Suppressor P E NES em VN2 WN2 gt 77 e m Y v 35 J10 J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 FI S 24 gt nsv wee gt DC DC Converter Converter gt 412V gt 12V TB4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv Y E 46 Mai J3 J11 in Control Boar Bridge Thermal Control Board TB1 Sensor NTC 1 Analog In 1 1 RIO Adapter Option 2 Analog In 1 E R2R 3 Analog In 1 Common Communication 4 Analog In 2 punic ott 5 Analog In 2 on 6 Analog In 2 Common J12 swa 7 Analog Out 1 On 8 Analog Out 1 Common
3. DC Bus T To Inverter Units r up UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail t 2 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 ror UN P supply 1 E p X UN2 See 0 See U Filter LED2 fs Ira H a Phase Phase Board Bs 1 Detail Detail 24 Bus Suppressor gr EC WN1 b J VN2 WN2 gt y om c aul ES dt v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 F1 lt 24V 415V Main Bus 24V 15V DC DC e DC DC Converter Converter gt 412V L gt 12 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji 96 Mai J3 J11 in Control Boar Bridge Thermal Control Board TB1 Sensor NTC Analog In 1 RIQ Adapter Option Analog In 1 R2R Analog In 1 Common Communication Analog In 2 punio nici swi ott Analog In 2 Analog In 2 Common J12 Analog Out 1 Analog Out 1 Common Blu Shd osin US UG Analog Out 2 Clr Analog
4. r me UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail c t 8 VP1 92 WP1 9 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 p UN2 See See U Filter LED Energized fs Ira H Phase Phase Board S ae 74 1 Detail Detail HE EA4 Bus Suppressor os 1tT i G V E WN1 e FE em VN2 WN2 gt 77 e IEEE v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24V 415V DCDC ence om ey e DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv E 36 Mal J3 jn in Control Boar Bridge Thermal contol Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 3 Analog In 1 Common 92020801 4 Analog In 2 zd 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8
5. M2 F2 R10 R10A R11 R11A R12 12 1 1 CH1 i STR F2 CH2 o AEN F3 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Bus Control Control Circuitry Publication 2364P 5 01 December 1999 SW1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 T3 and V3 Code Parallel Configurations 8 9 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units
6. M2 F2 R10 R10A R11 R12 12 RGU CB1 F1 M1 CH1 He F2 1 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Control Sf Circuitry Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 R4 and 54 Parallel Configurations 5 9 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units
7. Horizontal DC Bus DC Bus T To Inverter Units r up UP1 DETAIL See U See U le 8 5 I Phase Phase 1 t5 5 3 Detail 3 Detail 3 c E 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 ror UN P supply 1 E p X UN2 See U See U Filter Bus LED2 olo Ira Phase Phase in Board B 5 E Detail Detail 24 Bus Suppressor G P E NES we gun 77 e m Y v 35 J10 J8 W Gate Driver Board Gate Drivers TB7 2 v 1 FI S 24 gt nsv Main Bus 24V 15V DC DC gt DC DC Converter Converter gt 412V gt 12V TB4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji 46 Mai J3 J11 in Control Boar Bridge The
8. 24V 15 24V A5 DC DC gt DC DC Ls Converter Converter gt 412V 12V 4 TP3 TPS TP6 4 TP8 Aux 24V 1 i 24V asv aav Y Ji 26 Mai J3 J11 ain Control Board Bridge Thermal TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 Analog In 1 Common 92039090 Z Analog In 2 ni on 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Shd 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 December 1999 2 10 R1 and 51 Parallel Configurations Publication 2364P 5 01 December 1999 Chapter 3 R2 and S2 Code Parallel Configurations The R2 code parallel configuration is a common DC bus front end R2 Code Parallel Configuration unit consisting of an D code NRU in parallel with a L code RGU Figure 3 1 R2 Code Parallel Configuration Information R2 code Parallel Configuration R2 code Ratings Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 1536 788 460 1536 954 575 1533 1190 S2 Code Parallel Configuration The S2 code parallel configuration is a common DC bus front end unit consisting of an E code NRU in parallel with a L code RGU
9. UP 1 8 DETAIL See U SeeU lo 5 Phase 5 Phase 5 So 8 Detail 8 Detail 8 SLE 5 2 we 2 ETE Cap Bank EA2 Bus Indicator Board Bus LEDI PL1 1 DC Bus 2 See U See U Bus LED2 Energized 8 Board 5 Gj Detail Detail 4 Bus Suppressor ES VN WN e pe F 77 e IEEE Y t y 35 io J10 J8 Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24V s 415V Main Bus 24V 45V DC DC gt DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv E 46 Mai J3 J11 in Control Boar Bridge Thermal ain Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 1203 GM1 2 Analog In 1 3 Analog In 1 Common 92020801 4 Analog In 2 zd 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Sha 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 Decemb
10. 10 4 T5 and V5 Code Parallel Configurations Schematics Figure 10 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter RE 4 SE ie AEN Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Brid Optional Airflow Loss AirlowLoss Choke Md TB1 10 Remote Bridge CB Bay MTR2 3 TB1 1 1 1 3 3H e OMPR 1 m EA5 CR EA6 CR CHG MTR4 5 6 Heatsink Heatsink CB Bay 20 8 Overtemp Overtemp Left Right CR1 CR2 ro 2 12 EP Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 CR CR2 X 5 5 S 1 3 1 4 TB1 5 TB1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note
11. M2 F2 R10 R10A R11 R11A R12 12 1 1 i ae hd i 2 dien 21 Common F3 From RGU CER AC Line Slave From RGU Q Control Power Slave e Isolation Board TB5 Enable SW1 Settings ise x 115 eset On 24VDC Fault Reset For TB5 1 2 3 From RGU 511 Control Circuitry Slave External Main Burden Resistors Common TB1 11 To RGU Control e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 T5 and V5 Code Parallel Configurations Horizontal i Horizontal DC Bus
12. lt Control Bus optional DC Bus Appendix B Catalog Numbers and Spare Parts Kits Understanding Catalog Numbers A catalog number is used to define the components and configuration of a parallel unit The catalog number is arranged as shown in the following diagram Figure 1 Catalog Number Layout Current AC Input Bulletin Unit Wiring Rating Line Number Type Code Enclosure Voltage Options Example 2364 A Type NEMA 1 Enclosure with Family Wiring gaskets and door fan filters P AEA 1R 710P 715P 88GF 14G1 14HAPC Parallel 1 F code NRU 460V AC Options Configuration 1 M code RGU Input 6P Standard capacity control transformer for control bus 4EA Unit not faulted control bus power on pilot light 1R Fault reset 710P Analog AC input ammeter 715P Analog DC bus voltage meter 88GF Ground fault detection 1461 Remote 1 0 communication interface board 14HAPC Door mounted HIM Data Nameplate in Feeder Bay BULLETIN 2300 MOTOR CONTROL CENTER UNIT E 2364PA T3JB 6P 4EA 1R 710P 715P 88GF 14G1 14HAPC POWER RATINGS ORDER AQX101 PUE Eh PH HZ vours 460 Amps 2114 SERIAL STATIC CONVERTOR NO AQX101 0001 COMPRXI AC mpur vours 460 James QuTPUT VOLTS 621 James 2575 FAC MAXIMUM PERMISSIBLE AVAILABLE SHORT CIRCUIT AMPS 65000 Rockwell Automation MADE IN USA Publication 2364P
13. Gate Interface EA2 Bus Indicator Board Bus HT THH LEDI PL1 1 DCB Bus 02 Bus Energized E 4 Bus Suppressor og Ce poe cera gt Ce 4 9 IER Gn Gate Driver Board Gate Drivers Main Bus 24V DC DC DC DC Converter Converter TP5 TP6 TP4 8 TP9 E 415V 15V 45V 12V Main Control Board Bridge Thermal Sensor NTC Analog In 1 FIO Adapter Option Analog In 1 R2R Analog In 1 Common d Communication Analog In 2 920808001 Board nalog In Wi Analog In 2 9 Analog In 2 Common Analog Out 1 Analog Out 1 Common 0310705506 Analog Out 2 Analog Out 2 Common 2 T J8 J10 J9 J7 To System Network RIO Ex SCANport 1 SCANport 2 Tx U3 02 U13 U5 Tx B To RGU Slave A U12 Rx pa 2 R2R Hub Board U6 Rx D 3 U7
14. zd 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Sha 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 December 1999 7 10 T2 and V2 Code Parallel Configurations Publication 2364P 5 01 December 1999 T3 Code Parallel Configuration T3 code Ratings Input Voltage DC Bus Current Rated DC Bus Chapter 8 T3 and V3 Code Parallel Configurations The T3 code parallel configuration is a common DC bus front end unit consisting of an F code NRU in parallel with a M code RGU Figure 8 1 T3 Code Parallel Configuration Information T3 code Parallel Configuration V AC A DC kW 380 2575 1321 460 2575 1599 575 2575 1994 V3 Code Parallel Configuration V3 code Ratings Input Voltage DC Bus Current Rated DC Bus The V3 code parallel configuration is a common DC bus front end unit consisting of an G code NRU in parallel with a M code RGU Figure 8 2 V3 Code Parallel Configuration Information V3 code Parallel Configuration V AC A DC kW 380 3000 1539 460 3000 1863 575 3000 2329 Note Information for the F code NRU and G code NRU can be found in publication 2364E 5 01 Information for the M code RGU can be found in publication 2364 F 5 01
15. Schematics Figure 14 4 Schematics e Master RGU Customer Supplied e 3 Phase AC Input RGU Slave 1 CB2 RGU CB1 RGU EA10 2KHZ Control Power Filter e Q e x SS See F4 SP1 SP4 5 pid gt lt E SE p SP2 ee PE cres al F6 SP3 460VAC F7 SSS PT SS 3 1 115 X2 7 F25 F5 MTR6 EN UD 1 9 1 Door Fan TB1 10 To RGU 4 5 Precharge To RGU Input Circuitry Fuses Bay 2 Fan To Relay MTR1 2 3 circuitry Optional Choke AGUUSNG 7 RGU Door Fans Remote Thermoguards nit Not CR2 Faulted Interlock 54 1 1 i 1 T 4 e bid 4 OMPR T6 TE mE Isolation Board 61 3 solation Boar PLO RGU DC Bus Not Supply Faulted Fault Off On TRI CR2 20 512 CR4 AD 12 Precharge Timer TB1 5 TB1 6 TBI pe m TR1 ons M2 4 Available for Customer Use mS Precharge CR4 BusControl _ CR3 e H6 9H gt lt TB6 Pilot Isolation Board CR3 CR4 CR4 Precharge Lockout CB1 RGU External Main TB37 TB3 8 TB4 4 TB4 5 To RGU Enable Isolation Board CCBERGU d CR3 fi CR3 1 7 TB3 8 TB3 9 TB3 100 TB3 11 TB3 12 lu uta ae eere Re d e 2 Publication 2364P 5 01 December 1999 To RG
16. DC Bus To Inverter Units r up UP1 DETAIL See U See U lo 8 Phase 5 Phase Vs 2 zl Detail 9 zl Detail 5 2 2 2 E 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board o Power Bus LED1 UNI 8 supply 1 UN2 See U See U Filter LEDA G H Phase Board Bs 74 Detail Detail 24 Bus Suppressor S WN1 puru 2 ur Mes pa 77 e dt v 35 J10 J8 Gate Driver Board Gate Drivers TB7 2 V 1 F1 lt Wane 24V gt 15V ain Bus 24V gt 15V DC DC gt e DC DC x Converter Converter gt 412V L gt 12 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji E 46 Mai J3 J11 ain Control Board Bridge Thermal TBI Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 R2R 3 Analog In 1 Common 108000301 Communication 4 Analog In 2 Board m oi 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Shd 9 Analog Out 2 Cir Rx 10 Analog Out 2 Common LIII j J8 J10 J9 J7 RIO Ex SCANport 1 SCANport 2 From Master RGU To System Network 10 13 PL1 DC Bus Energized Publication 2364P 5 01 December 1999 10 14 T5 and V5 Code Parallel Configurations Publication 2364P 5 01 Decemb
17. F6 MSAN 1 11t5vAc 2 F7 PT1 F5 MTR6 ENS REG e TB1 9 Q Bay 1 Door Fan TB1 10 To RGU MTR4 5 Precharge To RGU Input Circuitry Fuses Bay 2 Fan MTR1 2 3 RGU Door Fans MTR9 10 Optional Choke Choke Bay Fans Remote Thermoguards RGU Unit Not Interlock Faulted ene TB1 1 1 4 e o e JMPR TB1 2 Te 1 PL2 Fault CR2 Not Ze va Faulted EA era TB1 5 TB1 6 TR1 TR1 _ 20 sec 11 Available for 118414 TRIS CR4 dico XY es 12 Precharge Customer Use TRI CR4 CR3 M2 e i 1 N N 51 3 Isolation Board Precharge Bus Control 1 CR3 V C rele is s 099 E Pilot Isolation Board CR3 CR4 94 4 Precharge Lockout To RGU 6 Control Circuitry Publication 2364P 5 01 December 1999 To RGU D Control Circuitry W2 Code Parallel Configurations 13 9 CB1 RGU External Main TB3 7 TB3 8 To RGU Enable Isolation Board CBI RGU 1 deb CR3 CR3 4 TB3 7 TB3 8 TB3 9 TB3 100 TB3 11 TB3 12 e aun dear taie ie ias EN E To RGU Q Control Circuitry Publication 2364P 5 01 December 1999 13 10 W2
18. Note The D code NRU has only one AC line fuse per phase Feeder D code NRU 15004 or E code NRU 20004 M code RGU Publication 2364P 5 01 December 1999 R3 and 53 Parallel Configurations 4 3 Figure 4 4 Overhead Bus Assembly Feeder 30 Overhead 25 Overhead 35 Overhead Splice Kit Bus Assembly Bus Assembly Bus Assembly 3 a A Cap Joiner Splice Kits Pd Jo de EN 4 Bus Tabs 1 HB 2 Bus Tabs 7 HH Flex Bus LE Flex Bus To Feeder Buswork Drop Tabs D Drop Tabs UA To RGU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the R3 and S3 Configurations NRU CB1 2000A RD frame with motor operator aux contact 2NO 2NC EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2NO 2NC F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input
19. r me UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail c t 8 VP1 92 WP1 9 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 p UN2 See See U Filter LED Energized fs Ira H Phase Phase Board S ae 74 1 Detail Detail HE EA4 Bus Suppressor os 1tT i G V E WN1 e FE em VN2 WN2 gt 77 e IEEE v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24V 415V DCDC ence om ey e DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv E 36 Mal J3 jn in Control Boar Bridge Thermal contol Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 3 Analog In 1 Common 92020801 4 Analog In 2 zd 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Sha 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 December 1999 8 10 T3 and V3 C
20. M2 1 F1 M1 CH1 CH11 2 CH2 CH3 From RGU ER AC Line From RGU Control Power Isolation Board TB5 Enabl Fault nable Reset uM Fault Reset From RGU S11 Control Circuitry External Main Common To RGU Control e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 2 Resistor Not Required R1 and 51 Parallel Configurations 2 9 Horizontal Horizontal DC Bus DC Bus Q To Inverter Units F1 Snubber Board Snubber Board Snubber Board EA2 Bus Indicator Board Bus LED1 PL1 1 DC Bus Bus LED2 Energized 4 Bus Suppressor ce ee Tct i Gate Driver Board Gate Drivers TB7 P Fi LEK
21. CR4 BusControl CR3 He 9H 5 Pilot Isolation Board CR3 CR4 CR4 Lockout M1 External Main To RGU Q Isolation Board Enable Slave CR3 M1 Main Publication 2364P 5 01 December 1999 12 10 W1 Code Parallel Configuration Figure 12 7 Schematics cont M2 F2 R10 R10A R11 R12 12 1 M1 ES F2 CH2 CH21 Q SER Common F3 From RGU CER AC Line Slave From RGU 1 Control Power Slave e Isolation Board TB5 Enable SW1 Settings Fault X Off 115VAC Reset On 24VDC Fault Reset For TB5 1 2 3 From RGU 511 Control Circuitry Slave External Main Burden Resistors Common TB1 11 To RGU Control ault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 W1 Code Parallel Configuration Horizontal i
22. Holes Recommended Torque 45 lb ft Installation 15 17 Input Wiring Select input wiring which is suitable for the input current and application environment of the parallel configuration in accordance with all applicable codes Table 15 A AC Input Currents Configuration Rated Line Current A AC Code 380 V AC 460V AC 575V AC R1 1245 1245 1244 R2 1260 1260 1255 R3 1295 1295 1286 R4 1318 1318 1306 S1 1654 1653 1653 S2 1669 1668 1664 53 1704 1703 1695 54 1727 1726 1715 2065 2064 2063 T2 2080 2079 2074 T3 2115 2114 2105 T4 2138 2137 2125 T5 2183 2182 2165 T6 2228 2227 2205 Vi 2455 2454 2453 V2 2455 2454 2453 V3 2455 2454 2453 V4 2455 2454 2453 V5 2455 2454 2453 V6 2455 2454 2453 w1 1356 1356 1204 w2 1812 1812 1604 W3 2718 2718 2406 Complete all additional power wiring in the system If any of the inverters or external components will be using separate control power connect it at this time according to the instructions given in the respective device manuals Publication 2364P 5 01 December 1999 15 18 Installation Testing the System Publication 2364P 5 01 December 1999 Prepower Checks 1 Using a meter check that the line to line voltage readings are within the tolerance given in Appendix A 2 Check the line to line and line to ground PE resistance for each unit All readings should show a high resistance
23. r me UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail c t 8 VP1 92 WP1 9 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 p UN2 See See U Filter LED Energized fs Ira H Phase Phase Board S ae 74 1 Detail Detail HE EA4 Bus Suppressor os 1tT i G V E WN1 e FE em VN2 WN2 gt 77 e IEEE v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24V 415V DCDC ence om ey e DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv E 36 Mal J3 jn in Control Boar Bridge Thermal contol Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 3 Analog In 1 Common 92020801 4 Analog In 2 zd 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Sha 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 December 1999 5 10 R4 4 Cod
24. MTR2 3 TB1 1 1 1 3 3H e OMPR 1 m EA5 CR EA6 CR CHG MTR4 5 6 Heatsink Heatsink CB Bay 20 8 Overtemp Overtemp Left Right CR1 CR2 ro 2 12 G Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 CR CR2 X 5 5 8 1 3 1 4 1 5 TB1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied e Q To RGU 3 phase Input AC Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus Dt D2 D4 gem eal L 05 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 CY Iu 1 DC Bus Voltage xt CH11 It cd CH11 X3 f DC Horizontal
25. 1848 CB1 NRU VE Wht Red vA 4 6 TB10 1 TB10 2 TR1 e Blu 4 9 10 3 Blk e 4 7 10 4 Wht e 4 3 10 5 Close TB10 6 CB1 NRU A Blk Red TB44 10 7 TB10 8 4 5 CB1 NRU B Blu TB10 9 CB1 NRU A Blk Red TB10 10 TB10 11 TRI CB1 NRU B Blu 5 TB10 12 Spring Windup Uee 4 2 Publication 2364 5 01 December 1999 4 8 R3 and 53 Parallel Configurations Figure 4 7 Schematics cont M2 F2 R10 R10A R11 R11A R12 12 1 1 CH1 AER F2 CH2 o AEN F3 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Enable SW1 Settings ise x 115 eset On 24vbC Fault Reset For TB5 1 2 3 From RGU 511 Control Circuitry External Main Burden Resistors Common TB1 11 Publication 2364P 5 01 December 1999 To RGU Control e uxControl Circuitry Fault To RGU Bus Control Control Circuitry and 3 Code Parallel Configurations 4 9 Horizontal i Horizontal DC Bus DC Bus Q To In
26. Cutaway View Customer Supplied AC Input Lines Feeder N code RGU Master N code RGU Slave Publication 2364P 5 01 December 1999 W2 Code Parallel Configurations 13 3 Figure 13 3 Overhead Bus Assembly Feeder 20 Overhead 35 Overhead 35 Overhead 20 Overhead 35 Overhead Splice Kit Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly 5 End a g E iau f Bi p J IN Bus Tabs voiner Splice Kits d l UN Bus Tabs lt E 5 Flex Bus A RF Flex Bus To Feeder Buswork Drop Tabs E Drop Tabs 52 2 RGU circuit breaker To RGU circuit breaker New and Revised RGU Components in the W2 Configuration RGU CR4 Precharge Lockout Relay 2NO 2NC master EA11 R2R Communication Board F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22 DC bus fuses 500A 700V 170M F25 Fuse CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC 4 Control Terminal block 30A 600V RGU CH21 Common Mode Choke 900A 4mH slave CR4 Precharge Lockout Relay 2 0 2 EA11 R2R Communication Board F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 38
27. Rect Brid Optional Airflow Loss AirlowLoss Choke d TB1 10 Remote Bridge CB Bay MTR2 TB1 1 11 443 OMPR 1 mE EA5 CR EA6 CR CH11 TG MTR3 Heatsink Heatsink CB Bay 20 8 Overtemp Overtemp Left Right CR1 CR2 ro 2 12 940 G Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 CR CR2 X 5 5 S 1 3 1 4 TB1 5 TB1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus D1 D2 D4 3 eal 05 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 CY id VM1 4 CH
28. 77 e m Y v 35 J10 J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 FI S 24 gt nsv wee gt DC DC Converter Converter gt 412V gt 12V TB4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv Y E 46 Mai J3 J11 in Control Boar Bridge Thermal Control Board TB1 Sensor NTC 1 Analog In 1 1 RIO Adapter Option 2 Analog In 1 E R2R 3 Analog In 1 Common Communication 4 Analog In 2 punic ott 5 Analog In 2 on 6 Analog In 2 Common J12 swa 7 Analog Out 1 On 8 Analog Out 1 Common 1 swa Off sha Fang On U3 U4 U5 U6 9 Analog Qut 2 er 7 10 Analog 2 Common Jt J8 J10 J9 To System Network RIO Ext 5 1 SCANport2 To Slave RGU Publication 2364P 5 01 December 1999 10 10 T5 and V5 Code Parallel Configurations Figure 10 8 Schematics cont From Slave RGU 3 phase Q AC Input SP4 SP1 gt lt SP2 CB1 RGU PE gt lt pue EA10 2KHZ Control Power Filter pede See F4 AV i e e IERI LN ERE EK EAE F6 F7 lt PI CERTO S 34 1 115 X2 7 MTR2 DU
29. 35 M 20 35 ja 35 Cutaway View Customer Supplied Feeder F code 25004 or G code 3000A NRU N code RGU Publication 2364P 5 01 December 1999 4 and V4 Code Parallel Configurations 9 3 Figure 9 4 Overhead Bus Assembly Feeder Splice 30 Overhead 35 Overhead 20 Overhead 35 Overhead Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly 1 End e e Cap Joiner Splice h Bus Tabs Assemblies m m 2 BusTabs J H Flex Bus fF on Flex Bus To Feeder Buswork lt Drop Tabs a Drop Tabs J To RGU circuit breaker circuit breaker New and Revised NRU and RGU Components in the T4 and V4 Configurations NRU CB1 T1 config 2500A SPB frame with motor operator V1 config 3000A SPB frame with motor operator EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR3 Pilot relay 2NO 2NC with aux contact 1NO 1NC CR4 Precharge Locko
30. Allen Bradley Parallel DC User Bus Supply Configurations Manual Using Bulletin 2364E NRUs and Bulletin 2364F RGUS Bulletin 2364P Important User Information Solid State equipment has operational characteristics differing from those of electromechanical equipment Safety Guidelines for the Application Installation and Maintenance of Solid State Controls Publication SGI 1 1 describes some important differences between solid state equipment and hard wired electromechanical devices Because of this difference and also because of the wide variety of uses for solid state equipment all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable In no event will Rockwell Automation be responsible or liable for indirect or consequential damages resulting from the use of application of this equipment The examples and diagrams in this manual are included solely for illustrative purposes Because of the many variables and requirements associated with any particular installation the Rockwell Automation cannot assume responsibility or liability for actual use based on the examples and diagrams No patent liability is assumed by Rockwell Automation with respect use of information circuits equipment or software described in this manual Reproduction of the contents of this manual in whole or in part without written permission of Rockw
31. Isolation Board TB5 Fault Enable Reset Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Control Circuitry eno Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 W3 Code Parallel Configurations 14 15 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units r me UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail c t E 8 VP1 92 WP1 9 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply DC Bus O Bus LED2 n UN2 See See U Filter Energized fs Ira H Phase Phase in B
32. Isolation Board CR3 Pilot CR4 CR4 Publication 2364P 5 01 December 1999 Precharge Lockout To RGU Control Circuitry 20 RGU Circuitry CB1 RGU RGU Input Fuses Fault CR2 1 5 0 4 Available for Customer Use T6 and V6 Code Parallel Configurations 11 11 To RGU Q Control Circuitry To RGU Isolation Board CB1 RGU CB1 NRU A 1 JL TB3 7 TB3 8 TB4 4 d TB4 5 COBERGU f deb CR3 CR3 e TB3 7 TB3 8 TB3 9 TB3 10C TB3 11 TB3 12 sor X RC 2 To RGU Control Circuitry Publication 2364P 5 01 December 1999 11 12 T6 and V6 Code Parallel Configurations Figure 11 9 Schematics cont Slave RGU M2 F2 R10 R10A o R11 R12 12 RGU CB1 F1 M1 em e ATA F2 CH2 CH21 4 CH3 Mode Choke From RGU LUO AC Line From RGU Control Power e Isolat
33. 3 Q Q 3 aL Monitoring X Phase Loss Relay CR1 Device of 4 Q Q 4 NRUs Only 5 Qs Fault Relay CR2 2 ault Relay CR2 7 7 Qe Customer Ms 9 Q 9 115 AC From PTI ustomer td e Dus lt 10 115VAC To Control Circuitry Table 15 A Customer Connections TB1 and TB2 NRUs RGUs Terminals Description TB1 1 TB1 2 These terminals are jumpered to allow the Fault Relay CR2 and the Unit Not Faulted Pilot Light PL2 to operate The jumper may be replaced with a customer control to externally cut the 115V AC power from the pilot light and fault relay coil TB1 3 TB1 4 These terminals connect to the normally closed contacts on the Phase Loss Relay CR1 in the NRU During normal operation these contacts will be open These terminals may be wired to a customer monitoring device to indicate undervoltage phase unbalance phase loss and phase reversal conditions in the AC line For more information on the phase loss relay or other wiring configurations see the internal wiring section of this chapter TB1 5 TB1 6 These terminals connect to the normally open contacts on the Fault Relay CR2 During normal operation these contacts will be closed These terminals may be wired to a customer monitoring device to indicate overtemperature phase loss and airflow conditions See the fault relay circuitry in the unit schematics for mo
34. 1 8 Detail Detail 8 2 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 x UN2 See U Filter LED Energized S ios Ira H a Phase Phase Board is E1 p Detail Detail HE 24 Bus Suppressor G E WN1 e FE em VN2 WN2 gt 77 e m v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 F1 lt 24V 415V Main Bus 24V gt 15V DC DC e DC DC Converter Converter gt 412V L gt 12 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji 96 Mai J3 J11 in Control Boar Bridge Thermal Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 ROR 3 Analog In 1 Common RY Communication 4 Analog In 2 Board vi on 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu 9 2 Shd U3 U4 U5 U6 nalog Qut Clr 10 Analog Out 2 Common Jt 41 J8 J10 J9 J7 B EM NO To System Network RIO Ext SCANport 1 SCANport 2 To Slave RGU Publication 2364P 5 01 December 1999 13 8 W2 Code Parallel Configurations Figure 13 6 Schematics cont 3 phase AC Input Slave RGU From CB2 RGU J3 3 2 5 EA10 2KHZ Control Power Filter e e 2 F4
35. 3 phase Input 5 4 SP1 To Slave gt lt gt lt Input 2 33 SP3 2 2 2 CB1 RGU EA10 2KHZ Control Power Filter Pot SSS See Se a F4 i LI 2 Pat E LUN eS ud F6 NEN F7 EE PTI S 34 x1 115 X2 7 F25 MTR2 e TB1 9 Q Bay 1 Door Fan TB1 10 To RGU Input MTR3 Fuses Q Master Bay 1 Internal Fan MTR1 CB1 NRU circuitry e QO e Optional Choke RGU Door Fans Remote Thermoguards RGU Unit Not CR2 Faulted Y Interlock 1 4 4 MPR 2 Tm Ur N s ault Isolation Board 51 3 PL2 Not RGU DC Bus Faulted Fault Supply Off On CR2 TR1 e e e 20 sec 512 1 5 1 6 CR4 12 781 TB1 Available for Customer Use TRI TRI M2 T X Precharge CR4 BusControf CR3 e H6 9H e Pilot Isolation Board CR4 4 CR4 Lockout Ma External Main TB4 4 TB4 5 To RGU Enable Isolation Board CR3 M1 Main Publication 2364P 5 01 December 1999 To RGU Control Circuitry Master From RGU Control Power fue TR1 TB4 1 Spring Windup 4 2 CR3 4 3 4 6 4 7 TR1 TB4 9 Not Used Not Used W1 Code Parallel Configuration 12 5 Publication 2364P 5 01 Decembe
36. Publication 2364 5 01 December 1999 9 8 T4 and V4 Code Parallel Configurations Figure 9 7 Schematics cont M2 F2 R10 R10A R11 12 12 RGU CB1 F1 M1 CH1 2 CH2 1 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 T4 and V4 Code Parallel Configurations 9 9 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units
37. 4 6 10 12 B8 pk CB1 NRU A 87 Used TB10 13 7810 14 _ Available For TR1 CB1 NRU B B Customer Use 9 Blu TB4 TB10 15 CB1 NRU A T Blk Red TB10 16 10 17 CB1 NRU B gu 812 O J 10 18 Publication 2364P 5 01 December 1999 7 7 7 8 T2 and V2 Code Parallel Configurations Figure 7 7 Schematics cont M2 F1 1 i CH1 CH11 2 CH2 o tA F3 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Enabl Fault nable Reset uM Fault Reset From RGU S11 Control Circuitry External Main Common M e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 TB2 Resistor Not Required T2 and V2 Code Parallel Configurations 7 9 Horizontal Horizontal DC Bus DC Bus o To Inverter Units
38. 6 1 Component 6 2 5 cs es Se Se 6 4 T2 and V2 Code Parallel Configurations T2 Code Parallel Configuration 7 1 V2 Code Parallel 7 1 Component 7 2 SCHEMATICS aaa 7 4 T3 and V3 Code Parallel Configurations T3 Code Parallel Configuration 8 1 V3 Code Parallel Configuration 8 1 Component 8 2 8 4 T4 and V4 Code Parallel Configurations T4 Code Parallel Configuration 9 1 V4 Code Parallel 9 1 Component 1 9 2 Schematics 9 4 T5 and V5 Code Parallel Configurations T5 Code Parallel 10 1 V5 Code Parallel 10 1 Component 10 2 DCNEMANCS EEE Pola A 10 4 T6 and V6 Code Parallel Configurations T6 Code Parallel 11 1 V6 Code Parallel 11 1
39. F code 25004 or G code 3000A NRU lt 30 n 30 Mn 35 M 25 20 91 5 T1 and V1 Code Parallel Configurations 6 3 Figure 6 4 Overhead Bus Assembly Feeder 30 Overhead Splice Kit Bus Assembly 22 4 Bus Tabs G E Flex Bus To Feeder Buswork Drop Tabs The RGU AC line is connected to the bus stubs the NRU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the T1 and V1 Configurations NRU CB1 T1 config 2500A SPB frame with motor operator V1 config 3000A SPB frame with motor operator EA10 Control power filter 4kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2 0 2 F4 F6 Primary fuse for 2kVA transformer 10A KLDR for 380V AC input 9A KLDR for 460V AC input 8A KLDR for 575V AC input F21 F22 DC
40. Figure 3 2 S2 Code Parallel Configuration Information S2 code Ratings S2 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 2036 1045 460 2036 1265 575 2033 1578 Note Information for the D code NRU E code NRU be found in publication 2364E 5 01 Information for the L code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 3 2 R2 and 52 Parallel Configurations Component Layout Front View 101 Cutaway View 25 Note The D code NRU has only one AC line fuse per phase Figure 3 3 Enclosure Layout Shipping Split lt lt 30 M 30 Customer Supplied AC Input Lines Feeder Publication 2364P 5 01 December 1999 t 25 D code NRU 15004 or It 30 E code NRU 20004 91 5 L code RGU R2 and S2 Code Parallel Configurations 3 3 Figure 3 4 Overhead Bus Assembly Feeder 30 Overhead Splice Kit Bus Assembly 22 4 Bus Tabs G E Flex Bus To Feeder Buswork Drop Tabs The RGU AC line i
41. Left Right CR2 ro 2 12 EP Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 Ema 9 2 TB1 3 1 4 1 5 1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied e Q To RGU 3 phase Input AC Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L F11 Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl Bi PT Fa a Bi Bus gt 4 MN Bus D1 D2 D4 3 eal L 05 HS1 LD6 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 I VM1 X4 DC Bus Voltage X1 CH11 55 55 27 525525271 11 3 2 DC Horizontal Bus To Inverter Units T4 and V4 Code Parallel Configurations 9 5 To Grounding Resistor Q From NRU Control Power VM2 Ground Fault Detector TB1
42. Aux 24V 1 24 asv Y Ji E 56 Mai J3 a ain Control Board Bridge Thermal TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 Analog In 1 Common 929408001 4 Analog In 2 ni pA 5 Analog In 2 N 6 Analog In 2 Common J12 oF 7 Analog Out 1 y 8 Analog Out 1 Common Blu oF Sha d 9 Analog Out 2 N Clr 10 Analog Out 2 Common Jt J8 J10 J9 J7 To System Network RIO Ext SCANport 1 SCANport 2 R2R Comm Publication 2364P 5 01 December 1999 6 10 T1 and V1 Code Parallel Configurations Publication 2364P 5 01 December 1999 Chapter T2 and V2 Code Parallel Configurations T2 Code Parallel Configuration The T2 code parallel configuration is a common DC bus front end unit consisting of an F code NRU in parallel with L code RGU Figure 7 1 T2 Code Parallel Configuration Information T2 code Ratings T2 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 2536 1301 460 2536 1575 575 2536 1966 V2 Code Parallel Configuration The V2 code parallel configuration is a common DC bus front end unit consisting of an G code NRU in parallel with a L code RGU Figure 7 2 V2 Code Parallel Configuration Information V2 code Ratings V2 code Parallel Configu
43. Protection Communication Options Human Interface Module Unit Door Nameplates Miscellaneous Current Rating Codes 6P Standard capacity control transformer for control bus Unit Not Faulted Control Bus Power Pilot Light 1R Fault Reset 710P Analog AC input ammeter L1 Phase only 715 Analog DC bus voltage meter 14LSP Line RC suppressor module 88GF Ground fault detection 14AFL Cooling fan air flow loss switch 14G1 Remote I O communication interface board 14G2 RS232 422 483 using protocol and DH485 communication interface board 14G5 DeviceNet communication interface board 14 1 ControINet communication interface module mounted separate from power structure 14HAPC Door mounted HIM programmer only 14HNBC Door mounted SCANport connector HIM cradle amp internal connection cable only M3EW White background with black lettering phenolic label N3EB Black background with white lettering phenolic label N3ER Red background with white lettering phenolic label 14WLBL Brady Datab wire labels 7 J12 115V DC 15A duplex receptacle J11 Audio phone jack Catalog Numbers and Spare Parts Kits B 3 Available on 2364P Configuration Type s 1 NRU 1 800 2 RGUs 1 NRU 2 RGUs 3 RGUs Rx 5 Tx Vx mmm Publication 2364P 5 01 December 1999 B 4 Catalog Numbers
44. Shipping Split Shipping Split gt 30 gt 4 35 4 35 gt 4 35 54 55 4 20 gt 4 35 gt Cutaway View Customer Supplied AC Input Lines rq H Feeder F code 25004 or G code 3000A NRU M code RGU Master M code RGU Slave Publication 2364P 5 01 December 1999 T5 and V5 Code Parallel Configurations 10 3 Figure 10 4 Overhead Bus Assembly Feeder Splice 30 Overhead 35 Overhead 35 Overhead 35 Overhead 35 Overhead Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly 5 End Pu T Den Joiner Splice Joiner Splice F Assemblies Assemblies a 4 Bus Tabs 2 Bus Tabs 2 Bus Tabs To Feeder Flex Bus 7 Flex Bus Flex Bus Buswork eJ bd 82 Drop Tabs Drop Tabs Drop Tabs P 0 RGU circuit To RGU circuit breaker breaker To NRU circuit Master Unit Slave Unit breaker New and Revised NRU and RGU Components in the T5 and V5 Configurations NRU CB1 T1 config 2500A SPB frame with motor operator V1 config 3000A SPB frame with motor operator EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for
45. F21 F22 DC bus fuses 500A 700V 170M 21A 22A F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 4 4 R3 and S3 Code Parallel Configurations Schematics Figure 4 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter ese cce for Ferre ae T FA mem cu SE le gi Loco n F6 F7 PT1 e COCC CVC TTT 1 415vac X2 MTR1 e 1 9 Rect Brid Optional Airflow Loss AirlowLoss Choke d TB1 10 Remote Bridge CB Bay MTR2 Interlock re jl 1 1 1 11 3 i 1 3 OMPR ak C de um 1 mic dm EA5 CR EA6 CR CH11 TG MTR3 Heatsink Heatsink CB Bay 208 Overtemp Overtemp Left Right CR2 ro 2 12 940 G Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fa
46. Figure 1 3 RGU RGU Configuration DC Supply for Drive Lineup Each RGU RGU configuration has one master RGU in parallel with either one or two slave RGUs Each slave RGU includes a common mode choke accommodate for minor switching differences between the RGUs and to reduce circulating currents between the master RGU and the slave RGUs Figure 1 4 RGU RGU Configuration Master Slave Common Mode Choke DC Supply for Drive Lineup Publication 2364P 5 01 December 1999 1 4 Theory of Operation Publication 2364P 5 01 December 1999 Output of RGU RGU Configurations In an RGU RGU configuration each RGU when enabled switches its IGBTs to maintain a constant voltage on the DC bus which is typically 1 52 times the input voltage In this process the master RGU evaluates the bus voltage and sends a current command which is used to correct the bus voltage to the slave RGUs Each RGU switches its IGBTs to regulate the current motoring or regenerative needed to maintain the bus voltage Figure 1 5 RGU RGU Bus Voltage Motoring or Regenerating 1 52x VAC DC Bus Voltage 0VDC 0 100 Load When the RGUs are not enabled power is supplied through the free wheeling diodes The diode bridge produces a voltage of 1 35 times the input voltage with no load and decreases to 1 22 times the input voltage at full load During this operation the RGUs do not regulate the voltage or regenerate any current Figure 1
47. 1 swa Off sha Fang On U3 U4 U5 U6 9 Analog Qut 2 er 7 10 Analog 2 Common Jt J8 J10 J9 To System Network RIO Ext 5 1 SCANport2 To Slave RGU Publication 2364P 5 01 December 1999 12 8 W1 Code Parallel Configuration Slave RGU F7 Figure 12 6 Schematics cont EA10 2KHZ Control Power Filter F4 From 3 phase AC Input CB1 RGU J 1 415VAC PT ges F6 2 Bay 1 Door Fan MTR3 Bay 1 Internal Fan MTR1 Optional Remote Interlock TB1 1 Choke Thermoguards To AY RGU Door Fans 9 10 Choke Bay Fans gt lt UMPR 2 d 51 3 521 Isolation Board CR2 le Fault PL2 Not Faulted Publication 2364P 5 01 December 1999 To RGU Control Circuitry Slave TB1 9 TB1 10 Fault CR2 1 5 d Available for Customer Use RGU Input Fuses Slave From RGU Control Circuitry Slave W1 Code Parallel Configuration 12 9 To RGU Control Circuitry Slave RGU DC Bus Supply From Master In 20 e 20sec 1784 14 TB4 151 Precharge 22222 CR4 ee Timer TB1 1 TR1 TR1 CR4 M2 1 I
48. 105 kg 4902 Ib 2223 kg R3 S3 2650 Ib 1202 kg 2900 Ib 1315 kg 557 Ib 253 kg 6107 Ib 2770 kg R4 54 2650 Ib 1202 kg 3850 Ib 1746 kg 7179 10 3210 kg V1 700 Ib 317 kg 4450 Ib 2018 kg 5382 Ib 2441 kg T2 V2 5020 Ib 2277 kg 679 Ib 307 kg 232 10 105 kg 5952 Ib 2700 kg T3 V3 3700 Ib 1678 kg 595 270 kg 7195 Ib 3263 kg T4 V4 3700 Ib 1678 kg 3850 Ib 1746 kg 717 10 325 kg 8267 Ib 3749 kg T5 V5 700 Ib 317 kg 3700 Ib 1678 kg 3950 Ib 1791 kg 232 Ib 105 kg 958 Ib 434 kg 11508 5219 kg T6 V6 3850 Ib 1746 kg 4900 Ib 2222 kg 1202 Ib 545 kg 13652 Ib 6191 kg W1 3600 Ib 1633 kg 3950 Ib 1791 kg 589 Ib 267 kg 8139 Ib 3691 kg W2 4550 Ib 2063 kg 4900 Ib 2222 kg 833 Ib 377 kg 10283 Ib 4663 kg 3700 Ib 1678 kg 4550 Ib 2063 kg 2900 Ib 1315 kg 2900 Ib 1315 kg 4900 Ib 2222 kg 4900 Ib 2222 kg 1458 Ib 661 kg 15808 Ib 7169 kg Publication 2364P 5 01 December 1999 A 10 Specifications Publication 2364P 5 01 December 1999 Figure 5 Typical Bus Architecture 6 2 85 127 7
49. 20 sec CR2 S21 Not From Master Faulted TB1 5 TB1 6 sanau 4 4 ELLEN TRI Available for 0 04 Customer Use 1 4 14 4 15 CR tt 12 Precharge 12 13 Timer TR1 CR4 CR3 M2 TR1 e 1 N X 2 N E Precharge Isolation Board CR3 CR4 e CR4 Precharge Lockout To RGU Q Control Circuitry Publication 2364P 5 01 December 1999 To RGU Q Control Circuitry W3 Code Parallel Configurations 14 13 CB1 RGU External Main 1837 1838 Q To RGU Enable Isolation Board OBERGU 2777 1 deb CR3 CR3 TB3 7 1B3 8 TB3 9 TB3 100 TB3 11 TB3 12 Pp 4 RGU Control Circuitry Publication 2364P 5 01 December 1999 14 14 W3 Code Parallel Configurations RGU Slave B Figure 14 9 Schematics cont M2 F2 R10 R10A R11 From R12 12 RGU CB2 F1 M1 3 F2 CH2 ommon 0 1 CH3 From RGU Choke AC Line From RGU Control Power
50. Component 11 2 Schematics 11 4 Table of Contents toc iii Chapter 12 Chapter 13 Chapter 14 Chapter 15 W1 Code Parallel Configuration W1 Code Parallel Configuration 12 1 Component Layout 12 2 12 4 W2 Code Parallel Configurations W2 Code Parallel Configuration 13 1 Component 13 2 DCNEMANGCS 12232225352332233333332332323332333453554 13 4 W3 Code Parallel Configurations W2 Code Parallel Configuration 14 1 Component 14 2 Schematics 2 nd eR E ST ES 14 4 Installation Receiving Handling and Installing the Parallel Configuration 15 1 Safety PFECQUEBOHS couvre vu etre vette er dee 15 2 Overhead Bus Installation 15 3 Internal Wiring 15 3 15 3 Ground Fault Detection Option 15 5 Phase Loss 15 7 RGU to RGU R2R Communications 15 9 Customer Connections 15 11 Analog Input Output RGU Main Control Board 15 11 SCAN
51. F6 F7 PT1 e COCC CVC TTT 1 415vac X2 MTR1 e 1 9 Rect Brid Optional Airflow Loss AirlowLoss Choke d TB1 10 Remote Bridge CB Bay MTR2 Interlock re jl 1 1 1 11 3 i 1 3 OMPR ak C de um 1 mic dm EA5 CR EA6 CR CH11 TG MTR3 Heatsink Heatsink CB Bay 208 Overtemp Overtemp Left Right CR2 ro 2 12 940 G Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 Ema 9 2 8 8 1 3 1 4 1 5 1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line y Current 1 L CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus D1 D2 D4 3 eal L 05 HS1 LD6
52. based on current capacity In all configurations with an NRU Rx Sx Tx Vx options specified as once per configuration will be located in the NRU In all other configurations Wx options specified as once per configuration will be located in the master RGU Spare Parts Kits See publication 2364 6 0 for a listing of spare parts available for your 2364P configuration Publication 2364P 5 01 December 1999 Glossary Control Power Filter A filter used to reduce harmonics and noise in the 115V AC control power Disable When a unit is disabled the control logic is not directing current flow operations A unit is typically disabled by a disable command or by a fault condition Disconnect A circuit breaking device Enable When a unit is enabled the control logic is directing the motoring or regenerative current by modulating its hardware IGBTs Feedback Signals from the hardware which indicate the hardware status to the control logic Gate Driver Board The RGU gate driver board is responsible for modulating the power modules and supplying power to the control boards The gate driver board is interfaced with the main control board Graphic Programming Terminal GPT A programming terminal with a graphical LED display and a pushbutton keyboard which is used to program control and view the status of a unit The GPT is also able to load and store parameters in its local memory Host Processor The main processor on
53. 1 4 4 MPH T6 Fault Isolation Board PL2 Not RGU DC Bus Faulted Fault Supply Off On CR2 TR1 e e a e 20 sec 912 Precharge TB1 5 1 6 CR4 ico trs Est 12 Timer Y TB1 TB1 Available for Customer Use TRI TR1 cR4 CR3 M2 T X Precharge CR4 BusControf CR3 H6 9H Pilot Isolation Board CR3 CR4 4 CR4 Lockout 4 M1 CB1 U A External Main 44 18107 08 1845 To RGU Enable Isolation Board CR3 M1 e 1 Main To RGU 83 Control Circuitry Publication 2364P 5 01 December 1999 From RGU Control Power R1 and 51 Parallel Configurations 2 7 48 CB1 NRU Wh Red e vA 4 6 TB10 1 TB10 2 TR1 e N Blu e e 4 9 TB10 3 e Blk 4 7 TB10 4 CR3 zx WA e 4 3 TB10 5 Close TB10 6 CB1 NRU A Blk Red 4 4 10 7 10 8 TB4 5 CB1 NRU B Blu TB10 9 CB1 NRU A Blk Red TB10 10 10 11 TRI CB1 NRU B o Blu Not TB10 12 Spring Windup Used 4 2 Publication 2364P 5 01 December 1999 2 8 R1 and 51 Parallel Configurations Figure 2 7 Schematics cont
54. 1036 1654 182 2020 200 52 380 1098 513 1045 1669 330 2036 363 S3AN 380 1121 513 1064 1704 678 2075 746 S4AN 380 1136 513 1077 1727 906 2100 997 TIAN 380 1359 513 1293 2065 182 2520 200 T2AN 380 1369 513 1301 2080 330 2536 363 T3AN 380 1392 513 1321 2115 678 2575 746 T4AN 380 1407 513 1334 2138 906 2600 997 T5AN 380 1437 513 1359 2183 1356 2649 1492 T6AN 380 1467 513 1385 2228 1812 2699 1994 VIAN 380 1616 513 1539 2455 182 3000 200 V2AN 380 1616 513 1539 2455 330 3000 363 V3AN 380 1616 513 1539 2455 678 3000 746 V4AN 380 1616 513 1539 2455 906 3000 997 V5AN 380 1616 513 1539 2455 1356 3000 1492 V6AN 380 1616 513 1539 2455 1812 3000 1994 W1AN 380 892 580 865 1356 1356 1492 1492 W2AN 380 1193 580 1157 1812 1812 1994 1994 380 1789 580 1735 2718 2718 2991 2991 Publication 2364P 5 01 December 1999 A 4 Specifications Table E Electrical Specifications 460V AC Input Catalog Nominal Nominal DC Rated DC Maximum Line Current AC Maximum Bus Current DC Number Input Voltage Input Power Bus Voltage Bus Power Motoring Regenerating Motoring Regenerating 2364P V AC kVA V DC kW R1AB 460 992 621 944 1245 182 1520 201 R2AB 460 1004 621 954 1260 330 1536 364 R3AB 460 1032 621 978 1295 678 1575 749 R4AB 460 1050 621 994 1318 906 1600 1000 S1AB 460 1317 621 1254 1653 182 2020 201 52 460 1329 621 1265 1668 330 2036 364 S3AB 460 1357 621 1289 1703 678 2075
55. 11 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units r me UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail c t E 8 VP1 92 WP1 9 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply DC Bus O Bus LED2 n UN2 See See U Filter Energized fs Ira H Phase Phase in Board S ae 74 1 Detail Detail HE EA4 Bus Suppressor os 1tT i G V D T4 VN1 WN1 47 o Mars 77 e iue D e t v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24 15 e DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji E 36 ud J3 H in Contr
56. 1999 Reach us now at www rockwellautomation com Wherever you need us Rockwell Automation brings together leading brands in industrial automation including Allen Bradley controls Reliance Electric power transmission products Dodge mechanical power transmission components and Rockwell Software Rockwell Automation s unique flexible approach to helping customers achieve a competitive advantage is supported by thousands of authorized partners distributors and system integrators around the world sT 22 Ld Americas Headquarters 1201 South Second Street Milwaukee WI 53204 USA Tel 1 414 382 2000 Fax 1 414 282 4444 Rockwell European Headquarters SA NV avenue Herrmann Debroux 46 1160 Brussels Belgium Tel 32 2 663 06 00 Fax 32 2 663 06 40 Asia Pacific Headquarters 27 F Citicorp Centre 18 Whitfield Road Causeway Bay Hong Kong Tel 852 2887 4788 Fax 852 2508 1846 Automation Publication 2364P 5 01 December 1999 PN 192329 01 1999 Rockwell International Corporation Printed in the U S A
57. 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2NO 2NC F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 F22 DC bus fuses 500A 700V 170M 21A 22A F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC 4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 8 4 T3 and V3 Code Parallel Configurations Schematics Figure 8 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter RE 4 SE ie AEN Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Brid Optional Airflow Loss AirlowLoss Choke Md TB1 10 Remote Bridge CB Bay
58. 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input PT1 Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR3 Pilot relay 2NO 2NC with aux contact 1NO 1NC master CR4 Precharge Lockout Relay 2 0 2 EA11 R2R Communication Board F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22A DC bus fuses 500A 700V 170M F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3 0 1 4 Control Terminal block 30A 600V RGU CH21 Common Mode Choke 600A 4mH slave CR3 Pilot relay 2NO 2NC with aux contact 1NO 1NC CR4 Precharge Lockout Relay 2 0 2 EA11 R2R Communication Board F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22A DC bus fuses 500A 700V 170M 1 Control power transformer 5kVA TR1 Timer relay 3 0 1 4 Control Terminal block 30A 600V Fiber optic cable 26 HP HFBR connector Overhead bus assembly Publication 2364P 5 01 December 1999
59. 5 01 December 1999 WIRING x DIA AQX101 0002 2 B 2 Catalog Numbers and Spare Parts Kits Bulletin Unit Wiring Number Type Type 2364 P Parallel A A type Current Rating AC Input Line Code 1 Enclosure Voltage 380 AC 460 575 Options Type 1 without gaskets and door fan filters J NEMA Type 1 with gaskets and door fan filters DC Bus Currents For Motoring Current Regenerating Curren A DC A DC Publication 2364P 5 01 December 1999 otoring Current Regenerating Current A DC A DC Configuration Type 1 D code NRU 1 K code RGU 1 D code NRU 1 L code RGU 1 D code NRU 1 M code RGU 1 D code NRU 1 N code RGU 1 E code NRU 1 K code RGU E code NRU 1 L code RGU E code NRU 1 M code RGU 1 E code NRU 1 N codeRGU 1 F code NRU 1 K code RGU 1 F code NRU 1 L code RGU 1 F code NRU 1 M code RGU 1 F code NRU 1 N code RGU F code NRU 2 M code RGUs F code NRU 2 N code RGUs 1 G code NRU 1 K code RGU 1 G code NRU 1 L code RGU 1 G code NRU 1 M code RGU 1 G code NRU 1 N code RGU 1 G code NRU 2 M code RGUs 1 G code NRU 2 N code RGUs 2 M code RGUs 2 N code RGUs 3 N code RGUs Options Control Power Source Door Mounted Pilot Lights Door Mounted Pushbutton Metering
60. 575 1372 1163 Note Information for the M code RGU can be found in publication 2364F 5 01 Publication 2364P 5 01 December 1999 12 2 W1 Code Parallel Configuration Component Layout Figure 12 2 Enclosure Layout Front View Shipping Split 101 25 f M Y A Ll Y H 30 4 35 3 4 35 4 35 4 20 35 Cutaway View Customer Supplied AC Input Lines Feeder M code RGU Master M code RGU Slave Publication 2364P 5 01 December 1999 W1 Code Parallel Configuration 12 3 Figure 12 3 Overhead Bus Assembly Feeder Splice 35 Overhead 35 Overhead 35 Overhead m Bus m Bus Assembly E Cap Joiner S NES F Assemblies 8 2 Bus Tabs 2 Bus Tabs To x 4 Flex Bus 4 Flex Bus Buswork Drop Tabs Drop Tabs To RGU circuit breaker To RGU circuit breaker Master Unit Slave Unit New and Revised RGU Components in the W1 Configuration RGU CR3 Pilot relay 2NO 2NC with aux contact 1 0 1 master CR4 Precharge Lockout R
61. 7 10 8 4 5 CB1 NRU B Bu 83 TB10 9 B5 CB1 NRU A i 85 Red TB10 10 TB10 11 CB1 NRU B Blu 86 TB4 6 TB10 12 CB1 NRU A B8 Red B7 O 4 7 Used 10 13 TB10 14 Available For TR1 CB1 NRU B Customer Use Blu 4 10 15 CB1 NRU A Bii Req 810 e 10 16 TB10 17 CB1 NRU B B12 5 J 7810 18 Publication 2364 5 01 December 1999 11 8 T6 and V6 Code Parallel Configurations Figure 11 7 Schematics cont M2 F2 R10 R10A R11 12 12 RGU CB2 F1 M1 CH1 2 CH2 e 1 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 T6 and V6 Code Parallel
62. 7 Precharge 1 11 R1 and S1 Code Parallel Configurations R1 Code Parallel Configuration 2 1 1 Code Parallel Configuration 2 1 Component 2 2 OCNEMAUGS RETI 2 4 R2 S2 Code Parallel Configurations R2 Code Parallel Configuration 3 1 S2 Code Parallel Configuration 3 1 Component 3 2 Schematics x52 desde ouo Du sad uu Mu dus Mus 3 4 R3 and S3 Code Parallel Configurations R3 Code Parallel Configuration 4 1 S3 Code Parallel Configuration 4 1 Component Layout 4 2 SCHEMATICS 4 4 toc ii Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Table of Contents 4 and S4 Code Parallel Configurations R4 Code Parallel Configuration 5 1 S4 Code Parallel 5 1 Component 5 2 da quid ad ad dad Qi 9d icd ad d ded dd ed d d 5 4 T1 and V1 Code Parallel Configurations T1 Code Parallel 6 1 V1 Code Parallel
63. 749 54 460 1375 621 1304 1726 906 2100 1000 1 460 1645 621 1565 2064 182 2520 201 2 460 1656 621 1575 2079 330 2536 364 460 1684 621 1599 2114 678 2575 749 T4AB 460 1702 621 1615 2137 906 2600 1000 T5AB 460 1738 621 1646 2182 1356 2650 1498 T6AB 460 1774 621 1677 2227 1812 2700 2000 V1AB 460 1955 621 1863 2454 182 3000 201 V2AB 460 1955 621 1863 2454 330 3000 364 V3AB 460 1955 621 1863 2454 678 3000 749 V4AB 460 1955 621 1863 2454 906 3000 1000 V5AB 460 1955 621 1863 2454 1356 3000 1498 V6AB 460 1955 621 1863 2454 1812 3000 2000 W1AB 460 1080 700 1049 1356 1356 1498 1498 W2AB 460 1444 700 1400 1812 1812 2000 2000 W3AB 460 2165 700 2100 2718 2718 3000 3000 Publication 2364P 5 01 December 1999 Specifications A 5 Table F Electrical Specifications 575V AC Input Catalog Nominal Nominal DC Rated Maximum Line Current Maximum Bus Current A DC Number Input Voltage Input Power Bus Voltage Bus Power Motoring Regenerating Motoring Regenerating 2364P V AC KVA V DC kW R1AC 575 1239 776 1180 1244 182 1520 201 R2AC 575 1249 776 1190 1255 286 1533 326 575 1281 776 1218 1286 602 1569 686 575 1301 776 1235 1306 802 1591 914 S1AC 575 1646 716 1568 1653 182 2020 201 S2AC 575 1657 776 1578 1664 286 2033 326 S3AC 575 1688 776 1606 1695 602 2069 686 54 575 1708 776 1623 1715 802 2091 914 1 575 2055 776 1956
64. Analog Out 1 Common Blu Sha 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 December 1999 9 10 T4 and V4 Code Parallel Configurations Publication 2364P 5 01 December 1999 Chapter 10 T5 and V5 Code Parallel Configurations T5 Code Parallel Configuration The T5 code parallel configuration is a common DC bus front end unit consisting of an F code NRU in parallel with two M code RGUs Figure 10 1 T5 Code Parallel Configuration Information T5 code Ratings T5 code Parallel Configuration Input Voltage 0 Current Rated DC Bus V AC A DC kW 380 2649 1359 M code 460 2650 1677 RGU 575 2637 2083 Slave V5 Code Parallel Configuration The V5 code parallel configuration is a common DC bus front end unit consisting of an G code NRU in parallel with two M code RGUs Figure 10 2 V5 Code Parallel Configuration Information V5 code Ratings V5 code Parallel Configuration Input Voltage 0 Current Rated DC Bus V AC A DC kW 380 3000 1539 460 3000 1863 575 3000 2329 Note Information for the F code NRU and G code NRU can be found in publication 2364E 5 01 Information for the M code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 10 2 T5 and V5 Code Parallel Configurations Component Layout Figure 10 3 Enclosure Layout Front View
65. CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus D1 D2 D4 3 eal 05 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 CY VM1 x4 CH11 3 DC Bus Voltage DC Horizontal Bus To Inverter Units R2 and S2 Code Parallel Configurations Q From NRU Control Power From NRU Control Power 3 5 To Grounding Resistor VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 S5 Yi R B Flow Sensor Publication 2364P 5 01 December 1999 3 6 R2 and S2 Code Parallel Configurations Figure 3 6 Schematics cont RGU From 3 phase AC Input 5 4 SP1 gt lt SP2 CB1 RGU J PE oe SEATS EA10 2KHZ Control Power Filter pede See 4 Agna LI pa ERE EK EAE 6 F7 EEE PTI S 34 1 115 X2 7 F25 MTR1 2 e
66. EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 I VM1 X4 DC Bus Voltage 1 X1 CH11 551 727 11 ea x2 DC Horizontal Bus To Inverter Units T2 and V2 Code Parallel Configurations 7 5 To Grounding Resistor Q From NRU Control Power VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 From NRU Control Power Flow Sensor Publication 2364P 5 01 December 1999 7 6 T2 and V2 Code Parallel Configurations Figure 7 6 Schematics cont RGU From 3 phase AC Input 5 4 SP1 gt lt SP2 CB1 RGU J PE oe SEATS EA10 2KHZ Control Power Filter pede See 4 Agna LI pa ERE EK EAE 6 F7 EEE PT S 34 1 115 X2 7 F25 MTR1 2 e TB1 9 Q Bay Door Fans TB1 10 MTR3 4 To RGU Input Fuses Bay 1 Door Fans To CB1 N
67. Gnd Limits Rem Loc Selector Line Low Setting Line Hi Setting Bus Low Setting Bus High Setting Bus V Tolerance Aux Iq Limi Iq Pos Limi Iq Neg Limi Id Pos Limi Id Neg Limi Autotune Volt Mode Se Min Bus Re Max Bus Ref Startup Module Data Nom Line Voltage Rated AC Current Line Inductance Utility AC Freq Ext Capacitance Int Capacitance Module Cal Line Voltage Line Voltage Cal Iq Fok Offset Iq Feedback Scaled Bus Fbk Bus Voltage Cal Linear List Full Parameter List SCANport 1 0 a In P1 a In P2 a In P3 In P4 In P5 a In P6 Out P 1 a Out P2 a Out P3 a Out P4 Out P5 a Out P6 1 1 In A2 a In B1 a In B2 a In C1 In C2 Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Rem Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da Da In D1 In D2 SCANport Info Al 2 B1 B2 161 162 101 102 Bus Rate Ref Ref Change Rate Bus Reference Bus Ref Auto Auto RTef Tracking DSP Bandwidth DSP Damping Int Charge Rate Sys Charge Rate Bus Voltage BW Bus Volt Damping Bus Volt Cmd Port Enable Mask Enable Mask Clear Fault Mask Reset Unit Mask Disable Owner Enable Owner Clr Fault Owner Type 1 Status Type 2 Status Publication 2364P 5 01 December 1999 Warn Mask2
68. It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 CY MZ o DC Bus Voltage CH11 Se e UAE EMI NEM CH11 3 DC Horizontal Bus To Inverter Units R1 and 51 Parallel Configurations 2 5 Q From NRU Control Power From NRU Control Power To Grounding Resistor VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device Flow Sensor Publication 2364P 5 01 December 1999 2 6 R1 and 51 Parallel Configurations Figure 2 6 Schematics cont GU From 3 phase AC Input 5 4 SP1 gt lt SP2 CB1 RGU J PE oe po EA10 4KHZ Control Power Filter SS SS des F4 Agna LI pa ERE EK EAE F6 F7 EEE PTI CERTUS S 4 1 115 X2 7 25 MTR1 e TB1 9 Q RGU Door Fan TB1 10 MTR2 To RGU Input Fuses RGU Door Fan To CB1 NRU circuitry e Heros 77 RGU Unit Not 7 Interlock Faulted CR2 T nterloc
69. Numbers Undervoltage Terminal Numbers Threshold Threshold 5 096 10 096 6 5 14 0 8 0 17 090 10 090 20 0 Typical factory setting is 8 0 Typical factory setting is 17 0 The typical factory setting for example has terminals 6 8 and 10 jumpered together Publication 2364P 5 01 December 1999 Installation 15 9 RGU to RGU R2R Communications If more than one RGU is in the parallel configuration an RGU to RGU R2R communications link will be used to transmit current commands and status information from the master unit to the slave unit s The fiber optic cables for R2R communications will be coiled in the slave RGUs When working with the fiber optic cables please note the precautions in Figure 15 7 Figure 15 7 Wiring Guidelines Bending Radius Coiling Excess Cable Tie Wrap Do not overtighten tie wraps Radius 1 inch 254 mm 3 inch 76 mm or greater diameter or greater The fiber cable should be able to move freely within the cable tie wrap Figures 15 8 and 15 9 show the routing path and connection scheme that should be used when connecting the R2R fiber optic cables Figure 15 8 R2R Fiber Optic Cables Routing Paths Routing Path Master With One Slave Wireway Routing Path Master With Two Slaves Publication 2364P 5 01 December 1999 15 10 Installation Figure 15 9 RGU to RGU R2R Communication Wiring R2R Communications Master With One Slave T5 T6 W1
70. Power Isolation Board TB5 Enabl Fault nable Reset uM Fault Reset From RGU S11 Control Circuitry External Main Common To RGU Control e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 2 Resistor Not Required T1 and V1 Code Parallel Configurations 6 9 Horizontal Horizontal DC Bus DC Bus Q To Inverter Units F1 Snubber Board Snubber Board Snubber Board EA2 Bus Indicator Board Bus LED1 PL1 1 DC Bus Bus LED2 Energized 4 Bus Suppressor ce phe IEEE y 17 Gate Driver Board Gate Drivers TB7 2 V 1 P13 F1 lt 24V 15 24V 145V DC DC gt DC DC Ls Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8
71. Q 1 2 Q Q 2 CR3 e 3 Q Q 3 M1 CB1 4 4 To External Main 5 Q Q 5 e 16 Q 4 0 To PE Gnd Qs TRI NH 9 9 10 10 TRIZ Qiu 12 TR1 13 13 To Slave E 14 Q Q 14 Control Circuitry 02 15 Q 15 Publication 2364P 5 01 December 1999 R1 Multiple RGUs Configuring the System SW1 Located on RGU Isolation Board 115V AC Control Voltages Installation 15 15 At this point complete the installation for all the inverters as indicated in the appropriate instruction manuals but do not connect any power to the inverters at this time e Properly install any additional line reactors fuses MOVs filters controls or other components as necessary e Complete all internal wiring grounding and synchronous communications wiring between drives as necessary e Connect all communication devices motors encoders tachometers and any other components Complete the installation for the parallel configuration do not connect any power to the parallel configuration at this time e Properly install any additional options that have not been installed yet e Configure all external communication control and monitoring devices e Ground any items that are not yet properly grounded e For each RGU verify that SW1 on the RGU isolation board is set appropriately typically 115V AC Also verify that J4 and J5 on t
72. So P203 will equal 1650 uf 10 for each of the RGUs Using the formula we can determine the appropriate value for the voltage loop bandwidth P205 200 x 2400 p25 200x2400 _ w BUS Example Bus Uolt SHH pads Set master and slave RGUs with same value Voltage Loop Damping P206 The Voltage Loop Damping P206 also determines the dynamic behavior of the voltage loop This damping influences the amount of overshoot the voltage loop will exhibit during a transient Typically this value should be set to 100 Bus Molt Damping 188 X Set master and slave RGUs with same value Publication 2364P 5 01 December 1999 Specifications Table A Functional Specifications Appendix A AC Input Frequency Tolerance 45 to 65 Hz AC Input Voltage Tolerance 10 Overload Capability 150 for 60 sec Overload Duty Cycle 60 sec every 20 min Output Voltage Variation 10 max for 100 step load Resolution of Output Voltage Selection 1 0V Voltage Regulator Bandwidth 200 rads sec nominal Current Regulator Bandwidth 1200 rads sec nominal Minimum Continuous Load Requirement None Power Factor Near Unity Efficiency 97 Shock and Vibration Meets Seizmic Zone 4 Table B Environmental Specifications Altitude 3 300 ft 1 000 m Ambient Temperature 0 40 C 32 104 F Relative Humidity 5 95 non condensing Publication 2364P 5
73. TB1 9 Bay 1 Door Fan TB1 10 MTR3 To RGU Input Fuses Slave Bay 1 Internal Fan MTRI e RGU Door Fans MTR9 10 Choke Bay Fans Optional Choke Fault Remote Thermoguards RGU Unit Not CR2 CR2 din Interlock 1 Faulted 7 54 4 MPR e tee TS Rg tee au Fe ault Isolation Board TB1 5 TB1 6 51 3 PL2 521 Available for Not Customer Use Faulted Publication 2364P 5 01 December 1999 To RGU Control Circuitry Slave T5 and V5 Code Parallel Configurations 10 11 From RGU Control Circuitry Slave RGU DC Bus Supply From Master TRI TR1 le e 20 sec 4 0 4 11 P ies recharge CR4 diaeta kt he o Timer TB1 1 CR4 CR3 M2 1 e i Precharge CR4 BusControl CR3 e H6 9H 54 Pilot Isolation Board CR3 CR4 e CR4 Lockout M1 CB1 NRU A TB4 4 4 5 RGU e Isolation Board Slave CR3 MI 4 Main To RGU Control Circuitry Slave Publication 2364P 5 01 December 1999 10 12 T5 and V5 Code Parallel Configurations Figure 10 9 Schematics cont
74. This Manual Purpose of This Manual Safety Precautions Preface Preface This manual is intended for those who are responsible for installing or operating an Allen Bradley parallel DC bus supply configuration If you do not have a basic understanding of this product please read through this manual Contact your local Rockwell Automation Drive Systems representative if you have questions about the content of this manual or the product This manual contains specifications installation instructions and operating instructions for the 2364P parallel configuration The following general precautions apply when installing servicing or operating parallel configurations and drive system lineups ATTENTION Only those familiar with the drive system the products used in the system and the associated machinery should plan or implement the installation startup and future maintenance of the system Failure to comply can result in personal injury and or equipment damage ATTENTION Verify that all sources of AC and DC power are deenergized and locked out or tagged out in accordance with the requirements of ANSI NFPA 70E Part II ATTENTION The system may contain stored energy devices To avoid the hazard of electrical shock verify that all voltage on capacitors has been discharged before attempting to service repair or remove a drive system or its components You should only attempt the procedures in this manual if you are quali
75. Tx E To RGU Y Slave B U14 Publication 2364P 5 01 December 1999 14 8 W3 Code Parallel Configurations Figure 14 6 Schematics cont From RGU Slave A 3 phase 9 d AC Input i RGU Slave 2 CB2 RGU HF CB1 RGU 5 5 EA10 2KHZ Control Power Filter p rer Ra F4 F6 IM PTI e 3 1 115 X2 MTR6 NE er F5 e 2 TB1 9 Q Bay 1 Door Fan TB1 10 To RGU MTR4 5 Precharge To RGU Input Circuitry Fuses F7 Bay 2 Fan MTR1 2 3 RGU Door Fans MTR9 10 Choke Bay Fans Optional Choke r RGU Unit Not Remote Thermoguards R2 Interlock Faulted TH Ha MPR TB1 1 Fault Fault PL2 CR2 S21 lt Not From Master Faulted TB1 5 TB1 6 218609 TR1 TR1 20 soc Available for 0 C roo Customer Use 1784 14 TB4 15 CR4 2222 12 M ELLEN Ho Timer TB1 TB1 TR1 CR4 CR3 M2 TR1 H 4 Precharge S1 3 Isolation Board BusContol CR3 9 _ TB6 Pilot Isolation Board CR3 CR4 CR4 Precharge Lockout To RGU Control Circuitry Publication 2364P 5 01 De
76. Voltage Regenerating 1 52x V AC DC Bus Voltage 0VDC 0 100 Load When the RGUs are not enabled only the NRU supplies current to the DC bus The bus voltage is 1 35 times the line voltage at no load and decreases to 1 22 times the line voltage at full load During this operation the RGUS do not regulate the voltage or regenerate any current Figure 1 15 NRU RGU Bus Voltage RGUs Not Enabled 1 35 x VAC 1 22 V AC DC Bus Voltage 0 100 Load Publication 2364P 5 01 December 1999 1 10 Theory of Operation If there are two RGUs in the configuration each RGU will supply up to 10 of its rated motoring current If the load is in this 10 the RGUS will regulate the bus voltage The master RGU will evaluate the bus voltage and will determine the current required to maintain the nominal bus voltage 1 52 times the line voltage The master RGU will send a current command to the slave RGU and both RGUs will begin switching their IGBTs to provide the proper motoring or regenerative current Figure 1 16 NRU With Two RGUs Motoring Motoring Up to 10 of RGU Rated Amperes Current Current No Up to 10 of Up to 10 of Current RGUrated the RGU rated amperes amperes v RGU to RGU Communications V 1 52 x AC Line Voltage Motoring Over 10 of RGU Rated Amperes 3 Phase AC Line Current Current Up to 100
77. and W2 configurations Master Unit Slave Unit R2R TIO R2R TIO U3 U5 U4 U5 Master to Slave Cable length 26 feet 7 92 m R2R Communications Master With Two Slaves W3 configurations Hub Board Master Unit Slave Unit A Slave Unit B R2R TIO R2R 1 R2R 2 R2R 3 R2R 4 R2R TIO U5 U6 U2 U4 U5 6 U7 Master to Hub Hub to Slave 1 Cable length 3 feet 0 91 m Cable length 26 feet 7 92 m Hub to Slave 2 Cable length 34 feet 10 36 m Inspection Precaution Sharp bends kinks and deep nicks in the cable may greatly affect cable performance Consider replacing the cables if they are not in good condition Troubleshooting Tip To test a fiber optic cable flash a light through one end of the cable and see if the light comes out the other end Publication 2364P 5 01 December 1999 Installation 15 11 Customer Connections Analog Input Output RGU Main Control Board Analog input and output connections are available on 1 of the main control board RGU Figure 15 10 Customer Connections TB1 RGU Main Control Board 1k 1k AGND AGND 27 T TP28 e 71 e 71 ik i AGND ik T AGND AGND L gt 20k 20k AGND 20k 20k ey 415V lt 8 25k 20k 20k 20k 20k L
78. can be adjusted from 60 lagging to 40 leading power factor If a non zero value is given as the Id current command the RGU will run at that percentage of reactive current from the rated AC line current even if the RGU is unloaded Vote that reactive current in the RGU takes away from the active work producing current Iq and reduces efficiency of the RGU P102 does not function in slave RGUS Example If an RGU is set with a 40 leading reactive current Id the available active current Iq could be determined in the formula Sold lq ltotal lq V 100 4096 92 Example Only Yoltotal 100 At full load the total current would be 100 but the active work producing current would only be 92 Since P102 only determines the amount of reactive current that the RGU will produce not regarding the load the RGU would operate at a power factor of 0 at no load and increase to a power factor of 0 92 at full load Id Command Voltage Mode Select P123 This parameter determines the voltage command that should be supplied to the regulator The default Bus Ref Auto selects the value from the Bus Reference Automatic P129 which is calculated by P129 Measured AC Line Voltage x V2 x 1 042 P129 460 x V2 x 1 042 678V DC If there is an NRU in the configuration the master RGU must be set to Bus Ref Auto To maintain the bus at a constant voltage independent of the AC line voltag
79. circuit breaker closes and normal operation begins Figure 1 18 Precharge Circuit Note The precharge circuitry is slightly different in the N code RGU See the product schematics for further details Publication 2364P 5 01 December 1999 1 12 Theory of Operation Publication 2364P 5 01 December 1999 The RGUs will precharge the capacitors on the bus until the bus voltage rises to be equal to the line voltage Then the precharge circuit will open the main circuit will close the NRU circuit breaker will close and the DC bus voltage will rise to 1 35 times the line voltage ATTENTION If there is too much capacitance on the DC bus the RGUs may not be able to raise the bus voltage to the threshold for normal operation resulting in damage to equipment Figure 1 19 Precharge Voltage Normal Diode Bridge 1 35 x VAC Operation 1xVAC Precharging Unable to Precharge Too many inverters DC Bus Voltage Time Chapter 2 R1 and S1 Code Parallel Configurations R1 Code Parallel Configuration The R1 code parallel configuration is a common DC bus front end unit consisting of an D code NRU in parallel with a K code RGU Figure 2 1 R1 Code Parallel Configuration Information R1 code Ratings R1 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 1520 780 460 1520 944 575 1520 1180 S1 Code Parallel Configuration The S1 code parallel configuration is a comm
80. of 10 of 1 10 of the the NRU rated RGU rated 1 RGU rated amperes Bisa amperes to y Communications 7 1 35 x AC Line Voltage Figure 1 17 NRU With Two RGUs Regenerating 3 Phase AC Line Current RGU A Current No Up to 100 Up to 100 of Current of RGU rated 4 the RGU rated amperes RGU to RGU _ 7 V 1 52 x AC Line Voltage Publication 2364P 5 01 December 1999 Circuit Breaker or MCP CB1 or MCP1 Precharge Contactor M2 Contactor Theory of Operation 1 11 Precharge Operation When the disconnects are closed and the start switch is turned on each RGU in the parallel configuration will begin its precharge routine This routine charges the capacitors on the DC bus the RGU capacitor bank and inverter capacitors in a controlled fashion Two contactors M1 and M2 are used to perform the precharge operation in the K L and M code RGUs the N code RGU precharge circuit is slightly different When the disconnect MCP1 or CB1 is closed and the start switch is turned on the main contactor M1 remains open the precharge contactor M2 closes and current begins to flow through the precharge circuit bypassing the main 3 phase circuit This precharge circuit which has a resistive load charges up the capacitor bank As the bank approaches capacity the main contactor M1 closes the precharge contactor M2 opens the NRU
81. transformer leakage inductance use the following formulas Leakage Inductance_ 2 65 x Iz x Vrms x Vrms at 60Hz Iz Leakage Reactance of Transformer of Transformer uH KVA Vrms Voltage rating rms of transformer kVA Transformer size Leakage Inductance 3 18 x Iz x Vrms x Vrms of Transformer uH kVA at 50Hz Example A parallel configuration catalog number 2364 5 No TMRO01 1 3 JPhase Hz is supplied with a transformer which has the example nameplate shown 1000 460 Vrms 5 2 1000 In Appendix B we find that the catalog number 2364PA T5B indicates the has two 460V AC M code RGUs The line reactors for these units are rated at 137 uH as indicated in the chart above To determine the transformer leakage inductance we can use the 60Hz formula with the information from the data nameplate Leakage Inductance 2 65 x 0 05 x 460 x 460 28uH of Transformer 1000 Add the total line reactor inductance of a single RGU to the transformer leakage inductance times the number of RGUs to determine the value for P12 P12 137uH 28uH x 2 193uH Li ne Induct ance 165 uF Publication 2364P 5 01 December 1999 Setting Up the Parallel Configuration 16 5 Utility AC Line Frequency P13 Set the Utility AC Line Frequency P13 to the frequency of the AC line Utilty HC Freg Hz Measured AC Line Voltage P14 Using a meter measure the AC line voltage Com
82. unit is supplying 150 of its rated current Most units can operate with an overload condition for a short period of time Power Factor pf A measurement of the time phase difference between the voltage and current in an AC circuit Power Structure A 3 phase power bridge built in the RGU which converts AC to DC motoring current and DC to PWM AC regenerative current The power structure includes control boards a precharge circuit a power bridge and a capacitor bank Regenerative DC Bus Supply Unit RGU A regenerative DC power supply unit produced by Rockwell Automation The RGU is typically used as a front end power supply to provide motoring and regenerative current for a drive system lineup Regenerating Current Current which is being driven back from the motors from motoring induction to the DC bus RGUs are able to place regenerating current back onto the AC line RGU to RGU R2R Communications A communication link used between master and slave RGUs In R2R communications the master RGU passes current commands status information and synchronization signals to the slave RGUs RGU RGU Configuration A parallel configuration of two or three RGUs no NRUs Shipping Split The parallel configurations are shipped in separate pieces which must be fixed together Publication 2364P 5 01 December 1999 A AC input connection 12 16 AC line reactors 76 4 C Capacitance 76 6 A 5 Catalog numbers 7 Cata
83. 0 80 90 100 Load Publication 2364P 5 01 December 1999 A 8 Specifications Watts Dissipation vs Load RGU Figure 4 K code RGU T 380 460V AC Input 515V AC Input L code RGU 2 5 N M code RGU 2 9 e N code RGU 2 S8 e Publication 2364P 5 01 December 1999 3 0 k 2 0 k 1 0 k 0 0k 0 10 20 30 40 50 60 70 80 90 100 Load 12k 10k 8k 6k 4k 2k 0k 0 10 20 30 40 50 60 70 80 90 100 Load 12k 10 k 8k 6k 4k 2k 0k 0 10 20 30 40 50 60 10 80 90 100 Load Physical Details Configuration R1 51 Specifications A 9 Table K Dimensions Configuration Overall Height Overall Width OverallDepth MCC Sections R1 51 101 25 130 20 5 R2 52 101 25 140 20 5 R3 53 101 25 155 25 5 R4 54 101 25 175 25 6 V1 101 25 140 20 5 T2 V2 101 25 150 20 5 T3 V3 101 25 165 25 5 14 V4 101 25 185 25 6 T5 V5 101 25 260 25 8 T6 V6 101 25 300 25 10 W1 101 25 195 25 6 W2 101 25 235 25 8 W3 101 25 350 25 12 Table L Shipping Weight Shipping Split2 Shipping Split 3 Overhead Bus Total Weight Shipping Split 1 700 Ib 317 kg 3400 Ib 1542 kg 232 Ib 105 kg 4332 Ib 1965 kg R2 52 700 Ib 317 kg 3970 Ib 1800 kg 232 Ib
84. 01 December 1999 A 2 Specifications Figure 1 Altitude Derating Curve of NRU 100 Rated Amps at 40 C 90 80 70 6090 5090 0m 1000 m 2000 m 3000 m 4000 m 0 ft 3 300 ft 6 600 ft 9 900 ft 13 200 ft Altitude Figure 2 Temperature Derating Curve Rated RGU 100 Current at 9595 Sea Level 90 85 80 75 0 5 10 15 20 25 30 35 40 45 50 55 C 32 41 50 59 68 77 86 95 104 113 122 131 F Ambient Temperature Table C Operating Sound Level Configuration Sound Level dB R1 51 78 5 R2 52 84 3 R3 53 82 5 R4 54 85 3 T1 V1 79 5 T2 V2 84 6 T3 V3 83 0 V4 85 5 T5 V5 85 5 T6 V6 88 3 W1 85 0 W2 88 0 W3 89 8 Publication 2364P 5 01 December 1999 Specifications A 3 Table D Electrical Specifications 380V AC Input Catalog Nominal Nominal DC Rated 0 Maximum Line Current AC Maximum Bus Current A DC Number Input Voltage Input Power Bus Voltage Bus Power Motoring Regenerating Motoring Regenerating 2364P V AC kVA V DC kW 380 820 513 780 1245 182 1520 200 R2AN 380 829 513 788 1260 330 1536 363 R3AN 380 852 513 808 1295 678 1575 746 R4AN 380 867 513 821 1318 906 1600 997 S1AN 380 1089 513
85. 0V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22A DC bus fuses 500A 700V 170M PT1 Control power transformer 5KVA TR1 Timer relay 3 0 1 TB4 Control Terminal block 30A 600V Fiber optic cable 26 HP HFBR connector Overhead bus assembly Primary fuse for 10kVA control transformer Opt 6P 35A KLDR for 380V AC input 30A KLDR for 460V AC input 25A KLDR for 575V AC input Control power transformer 10kVA Opt 6P Publication 2364P 5 01 December 1999 13 4 W2 Code Parallel Configurations Schematics Figure 13 4 Schematics Master RGU Customer Supplied e 3 Phase AC Input e To RGU Slave CB2 RGU IM CB1 RGU EA10 2KHZ Control Power Filter e Q d eee F4 SP1 SP4 M M LEO r SP2 oe NT GP F6 SP3 460VAC 5 F7 PT CARERE e X1 115 2 25 F5 CT e 1 9 Bay 1 Door Fan TB1 10 To RGU MTR4 5 Precharge To RGU Input O Circuitry Fuses Bay 2 Fan To Relay MTR1 2 3 circuitry Optional Choke RG
86. 11 er DC Bus Voltage DC Horizontal Bus To Inverter Units R4 and 54 Parallel Configurations Q From NRU Control Power From NRU Control Power 5 5 To Grounding Resistor VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 S5 Yi R B Flow Sensor Publication 2364P 5 01 December 1999 5 6 R4 and S4 Code Parallel Configurations Figure 5 6 Schematics cont RGU From 3 phase AC Input SP4 SP1 gt lt SP2 CB1 RGU 2 J PE SP3 e e e EA10 2KHZ Control Power Filter uei eI A CB2 RGU F4 Kasi AA F6 M F7 SE 1 115 X2 7 e F25 F5 MERG wo e TB1 9 e Bay 1 Door Fan TB1 10 To RGU MTR4 5 Piechaige To RGU Input Q Circuitry Fuses Bay 2 Fan To CB1 NRU MTR1 2 3 circuitry RGU Door Fans Choke RGU Unit 7 Remote Thermoguards CR2 Interlock 7 7 gt lt OMPR ay Tm a Isolation Board 51 3 solatio
87. 15VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 T5 and V5 Code Parallel Configurations 10 9 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units r up UP1 DETAIL See U See U le 8 5 I Phase Phase 1 t5 5 3 Detail 3 Detail 3 m 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 E p X UN2 See U See U Filter Bus LED2 Energized S ios Phase in Board B 5 E Detail Detail 24 Bus Suppressor P E NES em VN2 WN2 gt
88. 2063 182 2520 201 2 575 2065 776 1966 2074 286 2533 326 575 2097 776 1994 2105 602 2569 686 575 2116 776 2012 2125 802 2591 914 T5AC 575 2157 776 2047 2165 1204 2637 1372 T6AC 575 2196 776 2083 2205 1604 2683 1828 V1AC 575 2443 716 2329 2453 182 3000 201 V2AC 575 2443 716 2329 2453 286 3000 326 V3AC 575 2443 776 2329 2453 602 3000 686 V4AC 575 2443 776 2329 2453 804 3000 914 V5AC 575 2443 776 2329 2453 1204 3000 1372 V6AC 575 2443 776 2329 2453 1604 3000 1828 W1AC 575 1199 848 1163 1204 1204 1372 1372 W2AC 575 1597 848 1550 1604 1604 1828 1828 W3AC 575 2396 848 2325 2406 2406 2742 2742 Publication 2364P 5 01 December 1999 A 6 Specifications Table G Typical Capacitor Bank Values in uf 10 For 380 460V AC Lineups Frame Size gt A B C D E F G H 75 75 75 125 150 300 300 700 150 200 290 250 450 250 800 0 5 1 15 2 3 5 10 115 20 1 3 10 15 20 30 40 60 60 00 1336 FORCE SA3100 16 33 135 215 430 045 645 900 1200 1200 1500 2070 1500 2400 2400 1336 16 22 33 47 68 135 215 430 645 645 900 1200 1200 1500 2070 1500 2400 2400 1336 PLUS 1336 PLUS II 16 22 33 47 68 135 135 215 430 645 645 900 1200 1200 1500 2070 2070 1500 2400 Table Typical Capacitor Bank Values in uf 10 For 575V AC Lineups Frame Size gt A B C D E F G H 75 200 350 300 700 gt 1 10 15 20 1 10 15 20 25
89. 4 2 TB10 1 SC N oa 5 vis Al Brn Y b LC Bot 2 e N 4 3 10 3 Spring Reg TB10 5 Release Y e Resistor When Required T Not on 120 VAC CB1 NRU A B1 Red 4 4 10 7 CS TELS CB1 NRU B gu TB10 9 CB1 NRU A 5 e Blk Reg 84 o TB10 10 TB10 11 CB1 NRU B 86 4 6 10 12 BB CB1 NRU A Red 87 eO 7 Used 10 13 7810 14 Available For TR1 CB1 NRU B Customer Use 4 0 Blu B9 TB4 TB10 15 BH CB1 NRU A Reg B10 TB10 16 TB10 17 CB1 NRU B BU 10 18 Publication 2364P 5 01 December 1999 10 8 T5 and V5 Code Parallel Configurations Figure 10 7 Schematics cont M2 F2 R10 R10A R11 R11A R12 12 1 1 CH1 i STR F2 CH2 o AEN F3 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Bus Control Control Circuitry Publication 2364P 5 01 December 1999 SW1 Settings X Off 1
90. 5 12 F16 Com L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter DEMNM F4 SE le gi Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Brid Optional Airflow Loss AirlowLoss Choke Md TB1 10 Remote Bridge CB Bay MTR2 3 TB1 1 1 1 3 3H e MPR LES 5 L2 EA5 CR EA6 CR Choke Comp CH11 TG MTR4 5 6 Heatsink Heatsink CB Bay 208 Overtemp Overtemp Left Right CR2 ro 2 12 E C Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 Ema 9 2 8 8 TB1 3 1 4 1 5 TB1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L CR1 F11 A Phase Loss F12 R
91. 5 12 Installation SCANport RGU Main Control Board The RGU main control board has three available ports for SCANport connections Port 6 is designed for use with a SCANport interface board Figure 15 11 Customer Connections SCANport RGU Main Control Board Mounting an optional communication board RGU Main Control Board J9 Port 2 J10 Port 1 J8 Port 6 Table 15 A SCANport Connections RGU Main Control Board Terminals Description J8 This port is used for attaching an optional SCANport adapter board onto the RGU main control board such as a Remote 1 0 or DeviceNet communication board This port is designated as Port 6 J9 J10 These ports used for connecting SCANport devices All three SCANports 1 2 and 6 can communicate simultaneously between the RGU main control board and SCANport devices J10 is designated as Port 1 and J9 is designated as Port 2 Publication 2364P 5 01 December 1999 Installation 15 13 Terminal Blocks Figure 15 12 Customer Connections TB1 and TB2 NRUs and RGUs Power Transformer Grounded Wye Secondary TB2 1 1 150 3000 lt 219 Qi gt 11 1 H 1150 AC From PTI G d Fault Detecti es 2 Fault Rey RD uro M2 pn nit Not Faulted Pilot Light PL2 Customer
92. 6 RGU RGU Bus Voltage Diode Bridge Operation RGU Not Enabled 1 35 x 1 22 V AC DC Bus Voltage 0VDC 0 100 Load Theory of Operation 1 5 NRU RGU Configurations In the NRU RGU configuration the NRU is used to supply motoring current to the DC bus while the RGUs are used to regenerate current to the AC line When motoring the NRU operates to supply its maximum motoring current to the DC bus and the RGUs operate to supply 10 of their maximum motoring current to the DC bus When regenerating the NRU s diode bridge stops operating and the RGUs regenerate the current back onto the AC line Figure 1 7 NRU RGU Configuration 3 Phase AC Line RGU to RGU Communications DC Supply for Drive Lineup The NRU supplies motoring current through its diode bridge and the RGU supplies motoring and regenerative current through its power structure Figure 1 8 Line Waveform NRU RGU Configuration Line Voltage Line Current Publication 2364P 5 01 December 1999 1 6 Theory of Operation Publication 2364P 5 01 December 1999 Diode Chokes In the NRU RGU configuration the NRU has chokes on the DC bus These chokes reduce circulating current between the RGU and NRU If a slave RGU is in the configuration the slave RGU will have a common mode choke installed on its AC line Figure 1 9 NRU RGU Configuration Basic Components Power Structure with IGBTs DC Supply for D
93. 60 100 125 150 300 400 600 800 1336 FORCE SA3100 90 140 290 400 600 900 1500 1800 2400 2400 1336 75 140 290 400 600 900 1500 1800 2400 2400 1336 PLUS 1336 PLUS II 75 175 290 400 600 900 1500 1800 2400 Table Typical Capacitor Bank Values for SA3000 Inverters in uf 10 56A 70A 112A 140A 192A 240A 534A 972A 380 470 760 940 1330 1645 3200 6400 Inverter Capacitance 1457A 12800 Table J Maximum Number of Inverters Supported by 2364P Configurations Inverter 1 51 1 1 R3 S3 3 3 5 V5 6 V6 R2 52 2 2 54 4 V W1 2 W3 Al 1500 3000 6000 9000 A2 750 1500 3000 4500 A3 500 1000 2000 3000 A4 230 460 920 1380 B 30 70 140 210 C 20 40 80 120 D 15 32 64 96 E F 10 20 40 60 G H 6 16 32 48 Publication 2364P 5 01 December 1999 Watts Dissipation gt Specifications 7 This section provides watts dissipation charts for the individual units in the parallel configuration Figure 3 Watts Dissipation vs Load NRU 1500A NRU D code 2000A NRU E code 2500A NRU F code 3000A NRU G code Watts Loss Watts Loss Watts Loss Watts Loss 5 0 k 4 0 k 3 0 k 2 0 k 1 0 k 0 0 k 7 0k 6 0 k 5 0 k 4 0 k 3 0 k 2 0 k 1 0 k 0 0 k Load 10 0 k 8 0 k 6 0 k 4 0 k 2 0 k 0 0 k Load 12 0 k 10 0 k 8 0 k 6 0 k 4 0k 2 0k 0 0 0 10 20 30 40 50 60 7
94. 8 To Customer Monitoring Device TB1 7 From NRU Control Power Flow Sensor Publication 2364P 5 01 December 1999 9 6 T4 and V4 Code Parallel Configurations Figure 9 6 Schematics cont RGU From 3 phase AC Input SP4 SP1 gt lt SP2 CB1 RGU 2 J PE SP3 e e e EA10 2KHZ Control Power Filter aera CB2 RGU F4 Kasi AA F6 M F7 SE 1 115 X2 7 e F25 F5 MIRO wo e TB1 9 e Bay 1 Door Fan TB1 10 To RGU MTR4 5 Piechaige To RGU Input Q Circuitry Fuses Bay 2 Fan To CB1 NRU MTR1 2 3 circuitry RGU Door Fans i 77 RGU Unit Not 7 ermoguards CR2 Interlock 7 7 gt lt OMPR ay Tm a Isolation Board 51 3 PL2 RGU DC Bus Not Supply Faulted Fault On TR1 20 512 CR4 TNR 12 Precharge Timer 1 5 TB1 6 TB1 TBI eS TRI TR1 CR4 CR 2 Available for N Pig Customer Use Precharge CR4 BusControl CR3
95. A SPB frame with motor operator V1 config 3000A SPB frame with motor operator EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2NO 2NC F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 F22 DC bus fuses 500A 700V 170M F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 7 4 T2 V2 Code Parallel Configurations Schematics Figure 7 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter es
96. B1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 3 Analog In 1 Common 92020801 4 Analog In 2 zd 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Sha 9 Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 R2R Comm To System Network Publication 2364P 5 01 December 1999 4 10 R3 and 53 Parallel Configurations Publication 2364P 5 01 December 1999 Chapter 5 R4 and S4 Code Parallel Configurations R4 Code Parallel Configuration The R4 code parallel configuration is a common DC bus front end unit consisting of an D code NRU in parallel with an N code RGU Figure 5 1 R4 Code Parallel Configuration Information R4 code Ratings R4 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 1600 821 460 1600 994 575 1591 1235 S4 Code Parallel Configuration The S4 code parallel configuration is a common DC bus front end unit consisting of an E code NRU in parallel with an N code RGU Figure 5 2 S4 Code Parallel Configuration Information 54 Ratings 54 Parallel Configuration Input Voltage DC Current Rated DC Bus V AC A DC kW 380 2100 1077 460 2100 1304 575 2091 1623 Note I
97. B1 3 1 4 1 5 1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus D1 D2 D4 D5 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 4 CH11 ef 1 DC Bus Voltage DC Horizontal Bus To Inverter Units T1 and V1 Code Parallel Configurations 6 5 To Grounding Resistor Q From NRU Control Power VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 From NRU Control Power Flow Sensor Publication 2364P 5 01 December 1999 6 6 T1 and V1 Code Parallel Config
98. Bus Inverter Units T3 and V3 Code Parallel Configurations 8 5 To Grounding Resistor Q From NRU Control Power VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 From NRU Control Power Flow Sensor Publication 2364P 5 01 December 1999 8 6 RGU F7 T3 and V3 Code Parallel Configurations Figure 8 6 Schematics cont 5 4 SP1 gt lt From 3 phase AC Input SP2 SP3 EA10 2KHZ Control Power Filter CB1 RGU F6 F25 1 11t5VvAc 2 MTR2 ERE To CB1 NRU circuitry Bay 1 Door Fan MTR3 Bay 1 Internal Fan MTR1 N Optional Remote Interlock TB1 1 Choke Thermoguards RGU Door Fans RGU Unit Not Faulted RGU DC Bus Supply Off On 1 3 DE 2 Fault PL2 Isolation Board Not Faulted TR1 512 CR4 TR1 Precharge Timer M2 Precharge Pri TOTTI Thy e 20 sec RGU Input Fuses TB1 9 TB1 10 Fault CR2 1 5 Available for Customer Use CR3 Isolation Board Pil
99. Code Parallel Configurations Figure 13 7 Schematics cont Slave RGU M2 F2 R10 R10A R11 R12 12 RGU CB2 F1 M1 em e CY F2 CH2 CH3 From RGU V AC Line From RGU Control Power e Isolation Board TB5 Faul Enable SW1 Settings meas x 115 eset On 24VDC Fault Reset For TB5 1 2 3 From RGU 511 Control Circuitry External Main Burden Resistors Common TB1 11 To RGU Control e uxControl Circuitry Fault To RGU Control Circuitry eno Publication 2364P 5 01 December 1999 W2 Code Parallel Configurations Horizontal i Horizontal DC Bus
100. Configurations 11 9 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units lot up UP1 o DETAIL See U See U lo 8 8 I Phase Phase 1 8 Detail Detail 8 2 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 x UN2 See U Filter LED Energized S ios Ira H a Phase Phase Board Bs Detail Detail HE 24 Bus Suppressor G E WN1 e FE Hie 77 e o dt v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 F1 lt 24V 415V Main Bus 24V 15V DC DC e DC DC Converter
101. Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus D1 D2 D4 D5 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 x4 CH11 3 I 1 DC Bus Voltage DC Horizontal Bus To Inverter Units T5 and V5 Code Parallel Configurations 10 5 To Grounding Resistor Q From NRU Control Power VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 From NRU Control Power Flow Sensor Publication 2364P 5 01 December 1999 10 6 T5 and V5 Code Parallel Configurations Figure 10 6 Schematics cont _ i0 Master RGU AC Input 5 4 SP1 To Slave gt lt gt lt RGU Input 2 33 SP3 2 2 2 CB1 RGU EA10 2KHZ Control P
102. Converter gt 412V L gt 12 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji 96 Mai J3 J11 in Control Boar Bridge Thermal contol Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 R2R 3 Analog In 1 Common Communication 4 Analog In 2 JROSOSOS muni mn vi on 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Shd 9 Analog Out 2 Clr 10 Analog Out 2 Common Jt J8 J10 J9 J7 RIO Ex 5 1 SCANport 2 To Slave RGU To System Network Publication 2364P 5 01 December 1999 11 10 T6 and V6 Code Parallel Configurations Figure 11 8 Schematics cont From 3 phase AC Input Slave RGU O CB2 RGU F7 EA10 2KHZ Control Power Filter F4 F6 MSAN TB1 1 Optional Remote Interlock Choke Thermoguards 1 11t5vAc 2 F5 PT1 MTR6 RGU Unit Not Faulted M Bay 1 Door Fan MTR4 5 Bay 2 Fan MTR1 2 3 RGU Door Fans MTRS 10 Choke Bay Fans R2 JMPR From Master TB1 2 a 81 3 S21 Isolation Board gd PL2 Not Faulted TR1 4 14 4 15 Precharge Timer M2 Precharge CR3
103. H6 9H 186 ______ 18 Pilot Isolation Board CR3 CR4 CR4 Lockout CB1 RGU CBI NR U A External Main TB3 7 TB3 8 TB4 4 TB10 7 10 8 4 5 Q To RGU Enable Isolation Board CBi HGU 7 CR3 7 TB3 8 TB3 9 TB3 100 TB3 11 TB3 12 GM Publication 2364P 5 01 December 1999 To RGU Control Circuitry From RGU Control Power T4 and V4 Code Parallel Configurations 9 7 PN TB48 CB1 NRU TR1 EL Wht Red A11 4 vr o e TB4 1 TB10 2 09 wht 9 Digitri Gm 010 gk igitrip Spring Windup x Blu TB4 2 TB10 SC N UN 9 gt 5 ia 1 Y b LC A2 e y Ni N 1 e A 4 3 TB10 3 Spring Red Release Y Resistor When Required Not on 120 VAC CB1 NRU A B1 Bik Red 4 4 10 7 10 8 4 5 CB1 NRU B Bu 83 TB10 9 B5 CB1 NRU A i 85 Red TB10 10 TB10 11 CB1 NRU B Blu 86 TB4 6 TB10 12 CB1 NRU A B8 Red B7 O 4 7 Used 10 13 TB10 14 Available For TR1 CB1 NRU B Customer Use Blu 4 10 15 CB1 NRU A Bii Req 810 e 10 16 TB10 17 CB1 NRU B B12 5 J 7810 18
104. L SE E SL 100 100 20k AGND 20k V 2 AGND 20k i AGND AGND i 2200p us 2200p o 10 10 AGND 10 10 AGND 42 3 4 5 6 7 439 10 40000000000 RIP X cus X E bu N Se She 5 D 2 gt EN w US gt 8 o3 lt amp 8 Ji 10Vto 10V 10Vto 10V 10V to 10V 10V to 101 Table 15 A Customer Connections TB1 RGU Main Control Board Terminals Description TB1 1 TB1 2 TB1 3 TB1 4 TB1 5 TB1 6 Terminals TB1 1 2 3 are designated to Analog Input 1 and TB1 4 5 6 are designated to Analog Input 2 These can be connected to a customer device which sends signals between 10V The analog voltage supplied is sampled by a 14 bit analog to digital converter and the resulting value is stored in parameter P36 A D Converter 0 Input The internal circuitry has an 80k differential input resistance and a 40k common mode input resistance 14AWG wiring is recommended for customer connection TB1 7 TB1 8 TB1 9 TB1 10 Terminals TB1 7 and TB1 8 supply analog output from parameter P47 D A Converter 1 Output TB1 9 and TB1 10 supply analog output from parameter 48 D A Converter 2 Output The RGU can be programmed to report parameter values such as trend parameters to the customer device The customer device must have a minimum 1k load resistance 14AWG wiring is recommended for customer connection Publication 2364P 5 01 December 1999 1
105. M1 CH1 2 CH2 Q CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Control Sf Circuitry Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 W2 Code Parallel Configurations 13 7 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units r me UP1 o DETAIL See U See U lo 8 8 I Phase Phase
106. Out 2 Common J8 J10 J9 J7 RIO Ext SCANport 1 SCANport 2 To System Network To Master RGU 13 11 PL1 DC Bus Energized Publication 2364P 5 01 December 1999 13 12 W2 Code Parallel Configurations Publication 2364P 5 01 December 1999 W2 Code Parallel Configuration Rated DC Bus Chapter 14 W3 Code Parallel Configurations The W3 code parallel configuration is a common DC bus front end unit consisting of three N code RGUs Figure 14 1 W2 Code Parallel Configuration Information V6 code Parallel Configuration kW 1735 N code 2100 RGU 2325 Slave Note Information for the N code RGU can be found in publication 2364F 5 01 Publication 2364P 5 01 December 1999 14 2 W3 Code Parallel Configurations Component Layout Figure 14 2 Enclosure Layout Front View Shipping Split Shipping Split 101 25 N LN omnc sns suum IURE 30 gt lt 20 gt 4 35 gt 4 lt 35 gt lt 420 gt 35 gt 25 35 gt lt 20 gt 35 lt 25 gt 35 gt Cutaway View Customer Supplied AC m Lines Feeder N code RGU Master N code RGU Slave N code RGU Slave Publication 2364P 5 01 December 1999 Feeder 20 Overhead Splice Assembly 35 Overhead Bus Assembly W3 Code Parallel Co
107. Publication 2364P 5 01 December 1999 8 2 T3 and V3 Code Parallel Configurations Component Layout Figure 8 3 Enclosure Layout Front View Shipping Split Cutaway View Customer Supplied AC Input Lines Feeder F code 25004 or G code 3000A NRU M code RGU Publication 2364P 5 01 December 1999 T3 and V3 Code Parallel Configurations 8 3 Figure 8 4 Overhead Bus Assembly Feeder 30 Overhead 35 Overhead 35 Overhead Splice Kit Bus Assembly Bus Assembly Bus Assembly uu cm i es 4 Bus Tabs lt 2 Bus Tabs 7 HH Flex Bus L LI Flex Bus To Feeder Buswork Drop Tabs 5 D Drop Tabs UA To RGU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the T3 and V3 Configurations NRU CB1 T1 config 2500A SPB frame with motor operator V1 config 3000A SPB frame with motor operator EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input
108. RGU F7 R3 and 53 Parallel Configurations Figure 4 6 Schematics cont 5 4 SP1 gt lt From 3 phase AC Input SP2 SP3 EA10 2KHZ Control Power Filter CB1 RGU F6 F25 1 11t5VvAc 2 MTR2 ERE To CB1 NRU circuitry Bay 1 Door Fan MTR3 Bay 1 Internal Fan MTR1 N Optional Remote Interlock TB1 1 Choke Thermoguards RGU Door Fans RGU Unit Not Faulted RGU DC Bus Supply Off On 1 3 DE 2 Fault PL2 Isolation Board Not Faulted TR1 512 CR4 TR1 Precharge Timer M2 Precharge Pri TOTTI Thy e 20 sec RGU Input Fuses TB1 9 TB1 10 Fault CR2 1 5 Available for Customer Use CR3 Isolation Board Pilot CR4 CR4 54 Lockout CB1 NRU A External Main TB4 4 TB10 7 10 8 4 5 RGU Isolation Board Enable E Publication 2364P 5 01 December 1999 To RGU Control Circuitry From RGU Control Power R3 and S3 Code Parallel Configurations 4 7
109. RU circuitry e Optional pote uae ced Remote RGU Unit Not CR2 Interlock Faulted we TB1 1 1H HH 4 e gt MPH T6 ELA Fault Isolation Board PL2 Not RGU DC Bus Faulted Fault Supply CR2 Off On TR1 e e a e 20 sec 912 Precharge TB1 5 1 6 CR4 ico trs Est 12 Timer Y TB1 TB1 Available for Customer Use TRI TR1 cR4 CR3 M2 T X Precharge CR4 BusControf CR3 H6 9H Pilot Isolation Board CR3 CR4 4 CR4 Lockout e M1 CBI NR UA External Main TB4 4 TB10 7 10 8 4 5 To RGU Isolation Board 1 e 1 Main To RGU 83 Control Circuitry Publication 2364P 5 01 December 1999 From RGU Control Power T2 and V2 Code Parallel Configurations FI TB4 8 CB1 NRU TR1 AT Wht Red A11 p 0 TB4 1 TB10 2 09 Wht Digitrip Grn D10 L0 Spring Windup A6 Blu TB4 2 TB10 1 Sc X A3 Org 9 SC bn 1 Brn Y b LC Bot A2 Ne 4 3 TB10 3 Spring Red Release Y Resistor When Required Not on 120 VAC CB1 NRU A s 82 Red P nd 4 4 10 7 10 8 4 5 CB1 NRU B Bu TB10 9 CB1 NRU A m 88 Blk Red 181050 TB10 11 CB1 NRU B 86
110. S ios Ira H a Phase Phase Board is E1 p Detail Detail HE 24 Bus Suppressor G E WN1 e FE Hie 77 e o dt v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 F1 lt 24V 415V Main Bus 24V 15V DC DC e DC DC Converter Converter gt 412V L gt 12 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji 96 Mai J3 J11 in Control Boar Bridge Thermal Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 R2R 3 Analog In 1 Common Communication 4 Analog In 2 JROSOSOS muni mn vi on 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Shd 9 Analog Out 2 Clr 10 Analog Out 2 Common Jt J8 J10 J9 RIO Ext SCANport 1 SCANport 2 From Master RGU To System Network Publication 2364P 5 01 December 1999 11 14 T6 and V6 Code Parallel Configurations Publication 2364P 5 01 December 1999 Chapter 12 W1 Code Parallel Configuration W1 Code Parallel Configuration The W 1 code parallel configuration is a common DC bus front end unit consisting of two M code RGUs Figure 12 1 W1 Code Parallel Configuration Information W1 code Ratings W1 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 1492 865 460 1498 1049
111. Status 3 eport Mask 3 Warn Mask3 Status 4 eport Mask 4 Warn Mask4 ay Ind Aux Relay Mask Aux Relay Select Aux Relay Hyst RGU to RGU R2R Xmit Addr R2R Xmit Ind1 R2R Xmit Ind2 R2R Rcv Addr 1 R2R Rev Ind1 R2R Rcv Ind2 Analog ADCO Input ADC1 Input DAC1 Output DAC2 Output DAC1 Indirect DAC1 Offset DAC1 Gain DAC1 Cutoff Freq DAC2 Indirect DAC2 Offset DAC2 Gain DAC2 Cutoff Freq Linear List Full Parameter List Fault Sel Stat Line Low Setting Line Hi Setting Bus Low Setting Bus High Setting Bus V Tolerance Status 1 eport Mask 1 Warn 1 Status 2 eport Mask 2 ult Warn Mask2 ult Status 3 eport Mask 3 ult Warn Mask3 ult Status 4 eport Mask 4 Warn Mask4 ware Version Language Sel RGU Catalog RGU Control Mode Unit Selection Nom Line Voltage Rated AC Current Nom DC Bus Voltage Host Host Command Host Sta Host Sta Master 5 Host Mode 14 Bit A 14 Bit A 14 Bit A 14 Bit A 14 Bit A 14 Bit A 14 Bit A us 1 us 2 atus D Chan2 D Chan3 D Chan4 D 5 D Chan6 D Chan7 D Chan8 14 Bit A D Chan9 Bus Volt In Sel DSP DSP DC Bus DSP Ave DC Bus DSP Status CrossCouple Gain Iq Ref Scaled Id Ref Scaled Ide Current Lim Current Loop Ki Current Loop Kp Net Id Cmd DSP 1 DSP Monitor RGU State Line Voltage Line Voltage Cal Abs Junct Temp Heatsink Temp Iq Fbk Offset 19 Feedback DC Bus Current lac Total S
112. Supplied Feeder 25004 or G code 30004 N code RGU Master N code RGU Slave NRU Publication 2364P 5 01 December 1999 T6 and V6 Code Parallel Configurations 11 3 Figure 11 4 Overhead Bus Assembly Feeder 30 Overhead 35 Overhead 20 Overhead 35 Overhead 35 Overhead 20 Overhead 35 Overhead Splice Kit Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Bus Assembly End 8220 4 Bus Tabs Flex Bus PES Flex Bus Drop Tabs D Drop Tabs To Feeder Buswork 42 To RGU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the T6 and V6 Configurations HART 4 ins TN Joiner Splice Kits 2 BM Bus Tabs LL H E Flex Bus Drop Tabs To RGU circuit breaker NRU CB1 T1 config 2500A SPB frame with motor operator V1 config 3000A SPB frame with motor operator EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC
113. TB1 9 Q Bay Door Fans TB1 10 MTR3 4 To RGU Input Fuses Bay 1 Door Fans To CB1 NRU circuitry e Optional pote uae ced Remote RGU Unit Not CR2 Interlock Faulted we TB1 1 1H HH 4 e gt MPH T6 ELA Fault Isolation Board PL2 Not RGU DC Bus Faulted Fault Supply CR2 Off On TR1 e e a e 20 sec 912 Precharge TB1 5 1 6 CR4 ico trs Est 12 Timer Y TB1 TB1 Available for Customer Use TRI TR1 cR4 CR3 M2 T X Precharge CR4 BusControf CR3 H6 9H Pilot Isolation Board CR3 CR4 4 CR4 Lockout e M1 CBI NR External Main TB4 4 TB10 7 TB10 8 TB4 5 To RGU Isolation Board 1 e 1 Main To RGU 83 Control Circuitry Publication 2364P 5 01 December 1999 From RGU Control Power R2 and 52 Parallel Configurations 3 7 CN 48 CB1 NRU r 2 Wht Red e vA o o e TB4 6 10 1 TB10 2 TRI e Blu TB4 9 10 3 Blk e TB4 7 10 4 CR3 re Wi e 4 3 10 5 Close TB10 6 CB1 NRU A Blk Red TB4 4 TB10 7 TB10 8 4 5 CB1 NRU B Blu TB10 9 CB1 NRU A Blk Red TB10 10 10 11 CB1 NRU B o Blu N TB10 12 2 Spring Windup Used 4 2 Publication 2364P 5 01 December 1999 3 8 R2 and 52 Parallel Configurations Figure 3 7 Schem
114. The basic startup must be performed when starting a new unit replacing the main control board or upgrading firmware Improper parameter settings may result in poor performance or equipment damage ATTENTION Do not enable the RGU until the basic startup procedure has been completed Starting the RGU 1 Verify that the start switch is turned to off and that the disconnect lever is pushed to off 2 Verify that the disconnect levers for all inverters are pushed to off 3 Visually inspect all wiring in the RGU board connections DC bus terminals customer connections etc 4 Push the RGU disconnect lever to on and turn the door mounted start switch to on The RGU will power up and perform its precharge routine Publication 2364P 5 01 December 1999 16 4 Setting Up the Parallel Configuration Programming the RGU Using a HIM GPT or other programming device enter the linear parameter list The startup procedure below will guide you through several parameters that need to be configured before operating the parallel configuration Program each RGU in the configuration Frame Catalog Number P4 Enter the frame catalog number of each RGU this should correspond to the catalog number shown on the data name plate of the RGU located below the Catalog Number CONSTANT TORQUE VOLTS PH main control board AC INPUT 541 460 678 3 50 60 DC OUTPUT 52 683 749 DC ATTENTION Chang
115. U F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter RE F4 SE ie AEN Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Rect Brid Optional Airflow Loss AirlowLoss Choke d TB1 10 Remote Bridge CB Bay MTR2 TB1 1 11 443 OMPR 1 mE EA5 CR EA6 CR CH11 TG MTR3 Heatsink Heatsink CB Bay 20 8 Overtemp Overtemp Left Right CR1 CR2 ro 2 12 940 G Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 CR CR2 X 5 5 S 1 3 1 4 TB1 5 TB1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L
116. U Control Circuitry W3 Code Parallel Configurations 14 5 From RGU Control Power a TR1 TB4 1 Spring Windup Not TB4 2 Used CR3 TB4 3 TB4 6 Not TB4 7 Used TR1 TB4 9 Publication 2364P 5 01 December 1999 14 6 W3 Code Parallel Configurations Figure 14 5 Schematics cont M2 F2 R10 R10A l F3 R11 R11A From R12 12 RGU CB1 F1 M1 CH1 XX F2 CH2 Eu F3 CH3 From RGU CO AC Line From RGU Control Power e Isolation Board TB5 Enable Fault Reset Q e Fault Reset From RGU 511 Control Circuitry External Main ua Aux Control Circuitry Fault To RGU Bus a Control ircuitry SW1 Settings Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors TB1 1 Publication 2364P 5 01 December 1999 W3 Code Parallel Configurations 14 7 Horizontal 19 Horizontal DC Bus DC Bus To Inverter Units See U See U if x Phase Phase 1 Detail Detail VP1 WP1 b VP2 WP2 J y
117. U Door Fans Remote Thermoguards RGU Unit Not CR2 Interlock Faulted TB1 1 1 H 4 e 4 MPR E T6 Te mE Isolation Board 1 3 solation Boar PL2 RGU DC Bus Not Supply Faulted Fault Off On TRI CR2 20 sec S12 CR4 12 Timer TB1 5 1 6 TB1 TB1 m TRI TR1 CR4 CR3 M2 Available for Customer Use Precharge CR4 Bus Control CR3 Pilot Isolation Board CR3 CR4 4 CR4 Precharge Lockout CB1 RGU External Main 3 7 TB3 8 4 4 4 5 RGU Enable Isolation Board CBI RGU CR3 tf CR3 1 e 3 7 TB3 8 TB3 9 3 100 TB3 11 TB3 12 M T ee LENNON 4 To RGU Control Circuitry Publication 2364P 5 01 December 1999 From RGU Control Power SY TR1 TB4 1 Spring Windup 4 2 CR3 4 3 eO TB4 6 TB4 7 TR1 TB4 9 Not Used Not Used W2 Code Parallel Configurations 13 5 Publication 2364P 5 01 December 1999 13 6 W2 Code Parallel Configurations Figure 13 5 Schematics cont M2 F2 R10 R10A R11 12 12 RGU CB1 F1
118. and Spare Parts Kits Footnotes O The configurations presented are the only standard configurations available You may not change the order of any units or individual bays within a configuration Each parallel configuration includes a basic capacity control transformer s to supply only the parallel configuration with power Control power source option s allow you to select a higher capacity control transformer for control bus applications Control power source option s includes a control bus fuse and the control bus The line RC suppressor is recommended for installations where the primary of the distribution transformer is 2300V AC or greater Power transformer must have a resistive grounded wye secondary where the resistance is 150 ohms You may select up to one option from this group You must select one option from this group Units come standard with cloth wire labels Datab labels offer the added protection of a clear plastic cover on top of the labels Customer supplies 115V AC control power and wiring to the duplex receptacle This term Refers to configuration The entire 2364P consisting of RGUs 5 and any additional hardware required each unit A 2364P is comprised of RGU s and or NRUs Each RGU NRU is considered a unit each RGU The entire RGU comprised of 1 2 or 3 MCC sections based on current capacity each NRU The entire NRU comprised of 1 or 2 MCC sections
119. ansient Typically this value should be set to 100 DSF Damping X Set master and slave RGUS with same value Publication 2364P 5 01 December 1999 16 8 Setting Up the Parallel Configuration Voltage Loop Bandwidth P205 The voltage loop bandwidth determines the dynamic behavior of the voltage loop The voltage loop becomes more responsive and is able to track faster as the bandwidth is increased However note that system limitations and excessive noise may adversely affect the performance of the RGU if the bandwidth is set too high If the RGU is supplying a single inverter a voltage loop bandwidth of 200 rad s is recommended 300 rad s maximum If the RGU is supplying multiple inverters the voltage loop bandwidth should be calculated using the following formula 200 x P204 p205 2d P203 P204 Default values for P204 Internal Capacitance are given in the following chart K code RGUs L code RGUs M code RGUs N code RGUs Factory 1200 380 460V Factory 1500 Factory 2400 Factory 2400 Default 600 575V Default Default Default Example A 460V AC T5 configuration catalog number 2364PA T5AB is connected to a 1336 FORCE 100HP 1336 PLUS 150HP and SA3100 150HP The catalog number 2364PA T5AB indicates two 460V AC M code RGUs are in the configuration The internal capacitance for each RGU is 2400 uf 10 as shown above The total external capacitance for the inverters is 3300 uf 10
120. atics cont M2 F1 M1 i CH1 CH11 2 CH2 o tA F3 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Enabl Fault nable Reset uM Fault Reset From RGU S11 Control Circuitry External Main Common M e uxControl Circuitry Fault To RGU Bus Control Circuitry Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 TB2 Resistor Not Required R2 and 52 Parallel Configurations 3 9 Horizontal Horizontal DC Bus DC Bus o To Inverter Units
121. bus fuses 250A 700V 170M F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 2kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 6 4 T1 and V1 Code Parallel Configurations Schematics Figure 6 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 4KHZ Control Power Filter esta aee T FA mem cu SE le gi Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Brid Optional Airflow Loss AirlowLoss Choke Md TB1 10 Remote Bridge CB Bay MTR2 3 Interlock re jl 1 1 1 11 3 i 1 3 MPR 4 EA5 CR EA6 CR Choke Comp CHG MTR4 5 6 Heatsink Heatsink CB Bay 208 Overtemp Overtemp Left Right CR2 ro 2 12 EP Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 Ema 9 2 T
122. caled Bus Fbk Bus Volt Cal Bus Volt to Gnd Bus Volt to Gnd Factory Use Only Real Power Reactive Power Apparent Power Power Factor kW Hours kVA Hours kVAR Hours MW Hours MVA Hours MVAR Hours Meter Reset Hour Meter Reset Min Meter Reset Mon Meter Reset Day Meter Reset Year Simulate Simulator Rate Simulator Load Sim Charge Rate Sim Bus Fbk Current Ref it Foldback Cur Lim Linear PI Out Aux Iq Command 19 Mode Select Iq Pos Limit Iq Neg Limit Id Reference 19 Command Filtered Iq Ref Iq Reference Net Iq Pos Limit Net Iq Neg Limit Id Reference Net Iq Pos Limit Net Iq Neg Limit Iq Fok Offset Aux Id Command Id Command Id Mode Select Id Pos Limit Id Neg Limit Id Feedback Current Autotune DSP Bandwidth DSP Damping Iq Change Rate Voltage Current Voltage Ref Line Low Setting Line Hi Setting PI Error Limit PI Err Lim Step PI Err Gain Lim Iq Kp Gain Iq Ki Gain 19 Integ Output PI Ref Out Aux Volt Cmd Volt Mode Sel Min Bus Ref Max Bus Ref Bus RateRef Ref Change Rate Bus Reference Bus Ref Auto Auto Ref Tracking Bus Volt Cmd Basic Startup Procedure Setting Up the Parallel Configuration 16 3 The basic startup procedure must be performed when starting a new unit to configure the essential parameters for operating the unit The following items will be needed when starting up the RGU a multimeter for reading voltage and resistance a HIM GPT or other programming device ATTENTION
123. cember 1999 To RGU D Control Circuitry W3 Code Parallel Configurations 14 9 CB1 RGU External Main 1B37 1838 To RGU Enable Isolation Board CBI RGU E deb CR3 CR3 4 TB3 7 TB3 8 TB3 9 100 TB3 11 TB3 12 e aun dear taie ie ias EN E To RGU Q Control Circuitry Publication 2364P 5 01 December 1999 14 10 W3 Code Parallel Configurations Figure 14 7 Schematics cont M2 F2 R10 R10A R11 From R12 12 RGU CB2 F1 M1 3 F2 CH2 CH21 CY Common F3 CH3 Mode From RGU Choke AC Line From RGU Control Power e Isolation Board TB5 Fault Enable Reset Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Control Publication 2364P 5 01 December 1999 5 1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 W3 Code Parallel Configurations 14
124. chematics component layout and overhead bus configuration for the W2 code parallel configurations 14 W3 Code Parallel Configurations Schematics component layout and overhead bus configuration for the W3 code parallel configurations 15 Installation Instructions for installing wiring and testing the parallel configuration 16 Setting Up the Parallel Configuration Instructions for setting the RGU parameters in the parallel configuration A Specifications Operational environmental and electrical specifications for the parallel configuration B Catalog Numbers and Spare Parts Kits Information concerning the parallel configuration catalog numbers and spare parts kits C Physical Details Enclosure dimensions and sound levels Index Publication 2364P 5 01 December 1999 P 4 Related Documentation The following documents include information that may be helpful when installing or services components in your drive system obtain a copy of any of the Rockwell Automation publications contact your local Rockwell Automation office or distibutor For Read This Document Document Number NRU layout diagrams schematics component information and installation Non Regenerative DC Bus Supply Unit NRU User 2364 5 01 setup instructions Manual RGU layout diagrams schematics component information installation setup Regenerative DC Bus Supply Unit RGU User 2364F 5 01 instructions and parameter li
125. ctions Instructions for enclosure and busbar assembly Bulletin 2300 Family of Drive Systems Installation 2300 5 1 Manual Information for installing configuring and programming the SA3000 AC A3000 Binder 3001 drive Information for installing configuring and programming the SA3100 AC A3100 Binder 3053 drive Instructions for working with FD86N enclosures FD86N Drive Systems Enclosure Hardware 3062 Installation Manual Electrical specifications established by the National Fire Protection National Electrical Code ANSI NFPA70 Association NFPA Boston MA List of documentation available through Allen Bradley Allen Bradley Publication Index 50499 Dictionary of terms that are common to industrial automation Industrial Automation Glossary AG 7 1 Publication 2364P 5 01 December 1999 Receiving Your Drive System Rockwell Automation Support 5 The Customer is responsible for thoroughly inspecting the equipment before accepting the shipment from the freight company Check the item s that you receive against your purchase order If any items are obviously damaged do not accept the delivery until the freight agent has noted the damage on the freight bill Should you discover any concealed damage during unpacking you are responsible for notifying the freight agent In such a case leave the shipping container intact and request that the freight agent make a visual inspection of the equipment Rockwell Automation offer
126. e the Aux Volt or Volt Cmd may be selected However note that the RGU will not operate at 1 0 power factor if the the specified voltage is less than the peak of the AC line AC line voltage x V2 For example if an RGU is supplied with 460V AC input but the DC voltage command is set to 640V DC the RGU would be forced to operate with a some lagging current which would reduce the efficiency of the RGU In this case a voltage command greater than 651V DC 460 x V2 would be a better choice Holt Mode Sel Bus Ref Auta Current Loop Bandwidth P198 The current loop bandwidth determines the dynamic behavior of the current loop The current loop becomes more responsive and is able to track faster as the bandwidth is increased However note that system limitations and excessive noise may adversely affect the performance of the RGU if the bandwidth is set too high Typically acceptable bandwidth settings are in the range of 800 1000 rad s for J or K code RGUS or in the range of 600 900rad s for L M N code RGUs A current bandwidth of 800 rad s is recommended In any case both master and slave RGUs must have the same setting Bandwidth radis Set master and slave RGUS with same value Current Loop Damping P199 The current loop damping determines the dynamic behavior of the current loop This damping influences the amount of overshoot the current loop will exhibit during a tr
127. e Parallel Configurations Publication 2364P 5 01 December 1999 T1 Code Parallel Configuration T1 code Ratings Input Voltage DC Bus Current Rated DC Bus Chapter 6 T1 and V1 Code Parallel Configurations The T1 code parallel configuration is a common DC bus front end unit consisting of an F code NRU in parallel with a K code RGU Figure 6 1 T1 Code Parallel Configuration Information T1 code Parallel Configuration V AC A DC kW 380 2520 1293 460 2520 1565 575 2520 1956 V1 Code Parallel Configuration V1 code Ratings Input Voltage DC Bus Current Rated DC Bus The V1 code parallel configuration is a common DC bus front end unit consisting of an G code NRU in parallel with a K code RGU Figure 6 2 V1 Code Parallel Configuration Information V1 code Parallel Configuration V AC A DC kW 380 3000 1539 460 3000 1863 575 3000 2329 Note Information for the F code NRU and G code NRU can be found in publication 2364E 5 01 Information for the K code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 6 2 T1 and V1 Code Parallel Configurations Component Layout Front View 101 Cutaway View 25 Shipping Split Customer Supplied L3 Feeder Publication 2364P 5 01 December 1999 Figure 6 3 Enclosure Layout
128. e bit must be activated P35 bit 0 1 The Err Limiter bit should be set to zero P35 bit 1 0 This will prevent overvoltage trip problems in the drives Iq Feedback P100 Since all of the inverters are disconnected at this time this value should be 0 090 Determine the offset that will be required Iq Feedback Iq Feedback Offset P99 Set this parameter to adjust the value of P100 to equal 0 0 If this offset parameter is changed check the Iq Feedback P100 again Tq Offset Bus Feedback P141 Using a meter measure the DC bus voltage Compare the Bus Feedback P141 with the meter reading Determine the adjustment that needs to be made in the RGU by percent Bus Feedback Wolt Bus Voltage Feedback Calibration P144 Set this parameter to adjust the value in P141 If this calibration parameter is changed check the Bus Feedback P141 again Bus Uolt Cal Publication 2364 5 01 December 1999 16 6 Setting Up the Parallel Configuration External Capacitance P203 Determine the maximum amount of capacitance that is expected to be on the DC bus at any one time a table of inverter capacitances are given in Appendix A The total external capacitance must be divided SS among the number of RGUs in the configuration Important If additional inverters are added in the future this parameter must be updated Example A parallel config
129. e cce for Ferre ae T FA mem cu SE le gi Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Brid Optional Airflow Loss AirlowLoss Choke Md TB1 10 Remote Bridge CB Bay MTR2 3 Interlock re jl 1 1 1 11 3 i 1 3 MPR 4 EA5 CR EA6 CR Choke Comp CHG MTR4 5 6 Heatsink Heatsink CB Bay 208 Overtemp Overtemp Left Right CR2 ro 2 12 G Fault 53 51 52 PL2 Not Faulted Ground Fault Detector and Airflow Sensors Phase Loss Fault 5 2 Ema 9 2 TB1 3 1 4 1 5 1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied e Q To RGU 3 phase Input AC Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L F11 Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl Bi PT Fa a Bi Bus gt 4 MN Bus D1 D2 D4 3 eal L 05 HS1 LD6
130. e parallel configuration will be equipped with a phase loss relay which is used to indicate phase loss phase unbalance undervoltage phase reversal conditions in the 3 phase AC line The relay has NO NC contacts connections for a reset control and jumper connections for setting undervoltage and phase unbalance tolerances The relay LEDs indicate AC line conditions and change of state in the relay Figure 15 5 Phase Loss Relay Terminal Definitions 1 2 3 4 5 Manual Reset NO Contacts NC Contacts 1 1 1 1 4 Customer Supplied Reset Switch PUR S Y 1 1 1 1 1 1 1 1 1 10 Undervoltage Phase Unbalance Response Curves Response Curves 0 Phase A Phase B Phase C Voltage Voltage Voltage The system voltage dial should be set to the nominal AC line voltage and a restart delay of 0 0 minutes is recommended Typically the normally open contacts terminals 1 and 2 will be wired to the fault circuitry in the NRU and the normally closed contacts terminals 3 and 4 will be wired to TB1 3 and TB 1 4 for customer connection Publication 2364P 5 01 December 1999 15 8 Installation The phase unbalance and undervoltage thresholds are set by the jumper configuration across terminals 6 through 10 The following illustration shows how to jumper the relay for different threshold settings Figure 15 6 Jumpers Settings for Phase Imbalance and Undervoltage Thresholds Phase Unbalance Terminal
131. el Hro 7 TB1 ssepe Ep 4 11 Q 7 2 4 8 Qs X 7 Ec ee Pe N Publication 2364P 5 01 December 1999 15 6 Installation Voltage Indicator Needle Low Set Point Adjuster Not Used Indicator Device is Powered Publication 2364P 5 01 December 1999 To calibrate the meter turn the zero adjuster until the voltage indicator needle black is aligned with the zero mark To set the trip point for the detector relay turn the high set adjuster until the orange needle points to the appropriate trip voltage The trip voltage should be approximately 50V higher than the maximum reading on the meter when all the common bus inverters are modulating Figure 15 4 Ground Fault Detection Meter Trip Voltage Needle High Set Point Adjuster Under Black Cap Indicator Coil is Energized Zero Adjuster The meter will typically indicate a low voltage value between 80 and 100V when the inverters on the DC bus are modulating This voltage is produced by capacitively coupled currents to ground in the motor s cables and windings For more details on the detector wiring for your configuration see the system schematics For other detector functions such as normally open contacts see the detector documentation or the detector label To Fault To TB1 3 Circuitry TB1 4 L1 VOLTAGE UNBALANCE CONTACTS TRANSFERRED L2 SYSTEM VOLTAGE L3 Installation 15 7 Phase Loss Relay An NRU in th
132. elay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus Dt D2 D4 gem eal 05 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 CY id VM1 X4 DC Bus Voltage e CH11 CH11 DC Horizontal Bus Inverter Units T6 and V6 Code Parallel Configurations 11 5 To Grounding Resistor Q From NRU Control Power VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 From NRU Control Power Flow Sensor Publication 2364P 5 01 December 1999 T6 and V6 Code Parallel Configurations Master RGU F7 Figure 11 6 S chematics cont EA10 2KHZ Control Power Filter From 3 phase AC Input CB2 RGU F4 33 F6 460VAC F25 d e To CB1 NRU circuitry TB1 1 Optional Remote Interlock Choke Thermoguards 1 X2 115VAC F5 PT1 MTR6 TV Bay 1 Door Fan MTR4 5 Bay 2 Fan MTR1 2 3 RGU Door Fans CR2 JMPR TB12 RGU DC Bus Supply Off On 51 3 I
133. elay 2 0 2 EA11 R2R Communication Board F6 Primary fuse for 5kVA transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input F21 21A 22 22 DC bus fuses 500A 700V 170M F25 Fuse CB1 motor operator 10A KLDR Control power transformer 5 Control power transformer 10kVA Opt 6P TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V RGU CH21 Common Mode Choke 600A 4mH slave CR3 Pilot relay 2NO 2NC with aux contact 1NO 1NC CR4 Precharge Lockout Relay 2 0 2 EA11 R2R Communication Board F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22A DC bus fuses 500A 700V 170M PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Fiber optic cable 26 HP HFBR connector Overhead bus assembly Publication 2364P 5 01 December 1999 12 4 W1 Code Parallel Configuration Schematics Figure 12 4 Schematics Master RGU Customer Supplied
134. ell Automation is prohibited Throughout this manual we use notes to make you aware of safety considerations ATTENTION Identifies information about practices or circumstances that can lead to personal injury or death property damage or economic loss Attention statements help you to e identify a hazard e avoid a hazard recognize the consequences Datab is a trademark of W H Brady Company NRU RGU HIM Remote I O DeviceNet ControlNet are trademarks of Rockwell International or its subsidiaries Preface Chapter 1 Chapter 2 Chapter 3 Chapter 4 Table of Contents Who Should Use This Manual P 1 Purpose OF This Manual P 1 Safety 18 210 du ed ed Ea P 1 Contents of this Manual P 3 Related Documentation P 4 Receiving Your Drive System P 5 Rockwell Automation 5 P 5 Local Product Support P 5 Technical Product Assistance P 5 Theory of Operation lues gir gn TP 1 1 Parallel Configuration 1 3 RGU RGU Configurations 1 3 Output of RGU RGU Configurations 1 4 NRU RGU Configurations 1 5 Output of NRU RGU Configurations 1
135. er 1999 3 10 R2 and 52 Parallel Configurations Publication 2364P 5 01 December 1999 Chapter 4 R3 and S3 Code Parallel Configurations R3 Code Parallel Configuration The R3 code parallel configuration is a common DC bus front end unit consisting of an D code NRU in parallel with an M code RGU Figure 4 1 R3 Code Parallel Configuration Information R3 code Ratings R3 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 1575 808 460 1575 978 575 1569 1218 S3 Code Parallel Configuration The S3 code parallel configuration is a common DC bus front end unit consisting of an E code NRU in parallel with an M code RGU Figure 4 2 S3 Code Parallel Configuration Information S3 code Ratings S3 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 2075 1064 460 2075 1289 575 2069 1606 Note Information for the D code NRU and E code NRU can be found in publication 2364E 5 01 Information for the M code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 4 2 R3 and S3 Code Parallel Configurations Component Layout Figure 4 3 Enclosure Layout Front View Shipping Split 4 101 25 91 5 1 Customer Supplied Cutaway View AC Input Lines
136. er 1999 Chapter 1 1 T6 and V6 Code Parallel Configurations T6 Code Parallel Configuration The T6 code parallel configuration is a common DC bus front end unit consisting of an F code NRU in parallel with two N code RGUs Figure 11 1 T6 Code Parallel Configuration Information T5 code Ratings T6 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 2699 1385 460 2700 1677 575 2683 2083 V6 Code Parallel Configuration The V6 code parallel configuration is a common DC bus front end unit consisting of a G code NRU in parallel with two N code RGUs Figure 11 2 V6 Code Parallel Configuration Information V6 code Ratings V6 code Parallel Configuration Input Voltage DC Current Rated DC Bus V AC A DC kW 380 3000 1539 N code 460 3000 1863 RGU 575 3000 2329 Slave Note Information for the F code NRU and G code NRU can be found in publication 2364E 5 01 Information for the N code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 11 2 T6 and V6 Code Parallel Configurations Component Layout Figure 11 3 Enclosure Layout Front View Shipping Split Shipping Split 101 25 30 gt 4 30 gt 4 35 gt 4 lt 20 gt 357 54 35 gt 4 lt 20 gt 4 35 lt 25 gt 35 gt Cutaway View Customer
137. fied to do so and are familiar with solid state control equipment and the safety procedures in ANSI NFPA 70E P 2 Publication 2364P 5 01 December 1999 ATTENTION An incorrectly applied or incorrectly installed drive system can result in component damage and or a reduction in product life Wiring or application errors such as undersizing the motor incorrect or inadequate AC supply and excessive ambient temperatures can result in the malfunction of the drive equipment ATTENTION This drive system contains parts and assemblies that are sensitive to ESD electrostatic discharge Static control precautions are required when installing testing or repairing this assembly Component damage can result if ESD control procedures are not followed If you are not familiar with static control procedures refer to Rockwell Automation publication 8000 4 5 2 Guarding Against Electrostatic Damage or another adequate handbook on ESD protection Contents of this Manual Chapter Title Contents Preface Safety precautions reference tables and support information 1 Theory of Operation Overview of the parallel configurations Includes basic theory and operational information 2 R1 and S1 Code Parallel Configurations Schematics component layout and overhead bus configuration for the R1 and 51 parallel configurations 3 R2 and S2 Code Parallel Configurations Schematics compone
138. he RGU main control board are not jumpered Make sure that the circuit breaker settings are correct and verify that all circuit breaker switches in the entire system are in the off position Also make sure that the start switch is turned to off Note More information about circuit breaker settings can be found in 2364E 5 01 2364F 5 01 or the circuit breaker documentation Publication 2364P 5 01 December 1999 15 16 Installation Connecting the AC Input Publication 2364P 5 01 December 1999 Isolation Transformer The parallel configuration should be supplied with a balanced 3 phase input providing the nominal AC line voltage plus or minus the tolerance To ensure that the AC input is balanced and isolated an isolation transformer is recommended MOV Protection The units in the parallel configuration are supplied with MOVs to handle voltage surges high phase to phase voltages and high phase to ground voltages Connecting an input voltage greater than the listed input voltage tolerance may cause the MOVs to be damaged resulting in a continuous current path to ground Feeder Bay The feeder bay allows top or bottom entry and allows up to 10 connections to be attached for each phase on alternate sides of the busbars if desired The recommended torque is 45 Ib ft Figure 15 14 AC Input Connections Customer Supplied AC Input Lines N Up to 10 connections available per phase
139. he bus voltage again to 1 52 times the line voltage and the diodes in the NRU will stop conducting Publication 2364P 5 01 December 1999 1 8 Theory of Operation Publication 2364P 5 01 December 1999 The diagram below shows the NRU RGU motoring bus voltage The RGUs regulate the bus voltage for the first 10 of the rated current for the RGUs then the NRUs supply current for the remainder of the load while the RGU current is limited to 10 of the RGU rating Figure 1 12 NRU RGU Bus Voltage Motoring 1 52x V AC 1 35 x DC Bus Voltage 0 V DC 0 10 100 of RGU rating 0 Total NRU rating Load 10 of RGU rating When the load is under 10 of the maximum motoring current the RGUS can regulate or maintain the bus voltage The RGU master RGU will evaluate the voltage on the bus and will calculate the current needed to maintain the bus voltage If a regenerative current is needed to maintain the voltage the RGUs will begin switching their IGBTS to regenerate current onto the AC line The diodes in the NRU will still not conduct current Figure 1 13 RGU Regenerating 3 Phase AC Line Current Up to 100 of the RGU rating No Current 1 52 x AC Line Voltage Theory of Operation 1 9 The diagram below shows the NRU RGU regenerative bus voltage The RGUs regenerate up to 100 of their rated current to the AC line while the NRU diode bridge stops conducting Figure 1 14 NRU RGU Bus
140. ing P4 will reinitialize Refer to user manualfor 69 all parameters in the RGU and will configure instructions MADE WS several key parameters to the catalog number selected FCL Catalog 2364F NNE RGU Control Mode P5 Set this parameter to the appropriate setting Master Mode 0 Use this setting if this is a master unit in a lineup of multiple RGUs Slave Mode 1 Use this setting if this is a slave unit in a lineup of multiple RGUs Standalone 2 Use this setting if there are no other RGUs in the lineup default FGL Control Node St andal one Remote Local Selector P8 Set this parameter to the desired setting Local Only is default Local Only 0 Use this setting for automatic enabling at startup HIM GPT not used for enable Remote Local 1 Use this setting for manually enabling the RGU via a HIM or GPT Fen Loc Sel ect or Fenot e Local AC Line Reactor Inductance P12 Determine the total line inductance This is a sum of the RGU line inductance and the transformer leakage inductance P12 Line Inductance of single RGU Transformer Leakage Inductance x RGUs The RGU line inductance values are given below K code RGUs Factory 510 380 460V Default 832 575V L code RGUs Factory 317 380 460V Default 404 575V M code RGUs Factory 137 380 460V Default 191 575V N code RGUs Factory 102 380 460V Default 144 575V For
141. input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2NO 2NC master R2R Communication Board F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22A DC bus fuses 500A 700V 170M F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3 0 1 TB4 Control Terminal block 30A 600V RGU CH21 Common Mode Choke 900A 4mH slave CR4 Precharge Lockout Relay 2 0 2 EA11 R2R Communication Board F4 F6 Primary fuse for 5 transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 21A 22 22A DC bus fuses 500A 700V 170M PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC 4 Control Terminal block 30A 600V Fiber optic cable 26 HP HFBR connector Overhead bus assembly Publication 2364P 5 01 December 1999 11 4 T6 and V6 Code Parallel Configurations Schematics Figure 11 5 Schematics NRU F14 LineRC Suppressor F1
142. ion Board TB5 Enable SW1 Settings ise x 115 eset On 24vbC Fault Reset For TB5 1 2 3 From RGU 511 Control Circuitry External Main Burden Resistors Common TB1 11 To RGU Control e uxControl Circuitry Fault To RGU Bus Control Control Circuitry Publication 2364P 5 01 December 1999 T6 and V6 Code Parallel Configurations 11 13 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units r up UP1 o DETAIL See U See U lo 8 8 I Phase Phase 1 8 Detail Detail 8 2 8 VP1 92 WP1 52 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 x UN2 See U Filter LED Energized
143. izes and additional grounding specifications consult the applicable electrical code documentation i e Table 250 95 NEC Publication 2364P 5 01 December 1999 15 4 Installation Figure 15 1 PE and TE Busbars i Top View of Bay Figure 15 2 Grounding PE TE Power Transformer Grounded Wye Secondary Parallel Configuration Inverter Lineup SS 10 feet or more For specific grounding instructions for inverters motors and other system components refer to the system schematics or the designated component manuals Publication 2364P 5 01 December 1999 Installation 15 5 Ground Fault Detection Option The parallel configuration may include the optional ground fault detector When configured properly this detector will indicate the ground voltage on the door mounted meter and will energize the relay with NO NC contacts in the event of an excessive ground voltage To configure the ground fault detection relay wire terminals TB2 1 and TB2 2 across the power transformer grounding resistor in accordance with system schematics and transformer manufacturer specifications Terminals TB1 7 and 1 8 can be wired to an appropriate monitoring device if desired Figure 15 3 Ground Fault Detection Wiring Power Transformer Grounded Wye Secondary To Monitoring Device Ground Fault Detection Meter Relay Option VM2 TB2 1 1
144. log string 16 4 Cautions P 1 15 2 Current regulation 76 7 D Derating A 2 Description of Operation 7 7 G Ground fault detection option 15 2 Grounding 75 3 H Human Interface Module HIM 16 7 16 2 1 0 connections 12 11 Inductance 16 4 Installation 12 1 Isolation transformer 12 16 N NRU RGU Configurations 1 2 0 Options B 3 Overhead bus 75 3 Index P Parameters 16 2 Phase loss relay 15 7 Power factor 16 7 Precharge 1 11 Product Overview 1 1 Programming 76 1 R1 code configuration 2 7 R2 code configuration 3 7 R3 code configuration 4 7 R4 code configuration 5 7 Reactive current Id 76 7 Receiving Your Drive System P 5 References P 4 Related Documentation P 4 RGU Enabling 16 6 Setup 76 1 RGU RGU Configurations 1 3 S 1 code configuration 2 7 2 code configuration 3 7 3 code configuration 4 7 4 code configuration 5 7 Safety Precautions P 7 15 2 SCANport 15 12 16 6 Setting up the configuration 76 1 Shipping Weight 8 Spare parts B 4 Specifications A 1 Startup Advanced 16 7 Basic 16 3 Support P 5 2 Index T T1 code configuration 6 1 T4 code configuration 9 7 T6 code configuration 11 1 Testing the system 75 18 V V1 code configuration 6 7 V4 code configuration 9 7 V6 code configuration 11 1 Voltage regulation 76 8 W1 code configuration 12 1 W3 code configuration 14 1 Publication 2364P 5 01 December
145. n 8000 4 5 2 Guarding Against Electrostatic Damage or another adequate handbook on ESD protection Overhead Bus Installation Internal Wiring Installation 15 3 The overhead bus provides a common input for all the units in the parallel configuration If top entry will be used for the feeder bay make sure to remove the top plate cut or punch the appropriate area for the AC wiring and replace the top plate before installing the overhead bus install the overhead bus refer to the instructions in publication 2364P 5 10 titled Overhead Bus Installation Note In R2 SI and S2 code configurations the RGU input leads need to be connected to the NRU bus stubs on NRU circuit breaker Grounding The parallel configuration has a PE ground busbar as shown in Figure 15 1 which allows a single point for grounding the parallel configuration and the entire system PE should be connected to the nearest building steel or substation ground using the appropriate wire consult the applicable electrical code i e Table 250 59 NEC To simplify your grounding arrangement you can splice the system ground bus to PE and connect any external device grounds to PE The parallel configuration also has a TE busbar as shown in Figure 15 1 which is attached for grounding control signal shielding in the system TE should be connected to a separate earth ground at least 10 feet from the PE ground point see Figure 15 2 For wire s
146. n Boar PL2 RGU DC Bus Not Supply Faulted Fault On TR1 20 512 CR4 TNR 12 Precharge Timer 1 5 TB1 6 TB1 TBI eee TRI TR1 CR4 CR 2 Available for N Pig Customer Use Precharge CR4 BusControl CR3 H6 9H 186 ______ 18 Pilot Isolation Board CR3 CR4 CR4 Lockout CBI RGU CBI NR U A External Main TB37 TB38 TB 4 18107 18108 1845 Q To RGU Enable Isolation Board 7 CR3 7 TB3 8 TB3 9 TB3 100 3 11 TB3 12 GM Publication 2364P 5 01 December 1999 To RGU Control Circuitry From RGU Control Power R4 and 54 Parallel Configurations 5 7 TB4 8 9 4 CB1 NRU VE Wh Red e TB4 6 10 1 TB10 2 TR1 LS x N N TB4 9 10 3 Ly Bik e 187 18104 x Motor Red X Wht e E 4 3 10 5 10 6 CB1 NRU A Blk Red 4 4 10 7 TB10 8 4 5 CB1 NRU B Blu TB10 9 CB1 NRU A Blk Red TB10 10 TB10 11 TRI CB1 NRU B o Blu TB10 12 Spring Windup Used TB4 2 Publication 2364P 5 01 December 1999 5 8 R4 and S4 Code Parallel Configurations Figure 5 7 Schematics cont
147. nd units Regenerative DC Bus Supply Unit RGU e Non Regenerative DC Bus Supply Unit Each parallel configuration will include one two or three Regenerative DC Bus Supply Units RGUs These units are used to supply motoring current to the DC bus and are used to regenerate current back onto the AC line Most of the parallel configurations will also include a Non Regenerative DC Bus Supply Unit NRU to supply the motoring current to the DC bus Note When there is an NRU in the configuration the NRU supplies motoring current while the RGUs regenerate most of the excess capacity the RGU also contributes 10 of its rated motoring current to the DC bus Figure 1 2 NRU and RGU Operation NRU RGU Configuration 3 Phase AC Line 10 Motoring Current Motoring Current Regenerating Current RGU RGU Configuration Publication 2364P 5 01 December 1999 3 Phase AC Line Motoring Regenerating Motoring Regenerating Current Current Current Current Parallel Configuration Theory of Operation 1 3 RGU RGU Configurations In an RGU RGU configuration each RGU supplies 100 motoring current and 10046 regenerative current When operating the master RGU evaluates the bus voltage and sends current commands to the slave RGUs through an RGU to RGU R2R communication network This allows the RGUS to operate together to supply the appropriate current while maintaining a constant voltage on the DC bus
148. nfigurations 14 3 Figure 14 3 Overhead Bus Assembly 35 Overhead 20 Overhead 35 Overhead 25 Overhead 35 Overhead 20 Overhead 35 Overhead End Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly Bus Assembly To Feeder Buswork le 8 p om me ow ad 2 Bus Tabs Joiner Splice Kits Bus Tabs Joiner Splice Kits 2 Bus Tabs v 1 8 A Flex Bus Flex Bus D Drop Tabs Drop Tabs Drop Tabs Dn To RGU circuit breaker To RGU dui breaker To RGU circuit breaker New and Revised RGU Components in the W3 Configuration RGU master RGU slave A RGU slave B CR4 EA9 EA11 F4 F6 F21 21A 22 22A F25 TR1 4 21 CR4 EA11 F4 F6 F21 21A 22 22A MTR9 10 TR1 TB4 21 CR4 EAT1 F4 F6 F21 21A 22 22A MTRQ 10 PT1 4 Precharge Lockout Relay 2 0 2 R2R Hub Board R2R Communication Board Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input DC bus fuses 500A 700V 170M Fuse CB1 motor operator 10A KLDR Control power transformer 5kVA Timer relay 3NO 1NC Con
149. nformation for the D code NRU and E code NRU can be found in publication 2364E 5 01 Information for the N code RGU can be found in publication 2364F 5 01 Publication 2364P 5 01 December 1999 5 2 R4 and S4 Code Parallel Configurations Component Layout Figure 5 3 Enclosure Layout Front View m Split 101 25 1 Cutaway View Customer Supplied mmm t Horse 1 9 Feeder D code NRU 1500 or E code NRU 20004 N code RGU Publication 2364P 5 01 December 1999 R4 and 54 Parallel Configurations 5 3 Figure 5 4 Overhead Bus Assembly Feeder 30 Overhead 25 Overhead 20 Overhead 35 Overhead Splice Kit Bus Assembly Bus Assembly Bus Assembly Bus Assembly 9 Joiner Splice Kits id F3 4 Bus Tabs m m m 2 BusTabs 11 Flex Bus Flex Bus To Feeder Buswork Drop Tabs 2 ts Drop Tabs 1 RGU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the R4 and S4 Configurations NRU CB1 2000A RD frame with motor operator aux contact 2NO 2NC EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC inpu
150. ng and installing the unit at the designated site joining enclosures and buswork installing the overhead bus connecting internal communications and power wiring connecting all customer wiring and connecting AC input This chapter includes instructions for testing the parallel configuration After the installation is complete follow the setup instructions in the next chapter Directions for receiving and handling the parallel configurations can be found in publication 2100 5 5 Receiving Handling and Storing Motor Control Centers Instructions Prepare a place suitable for the units according to the system size and the NEMA type ordered After the system is in place follow the directions in publication 2300 5 1 Bulletin 2300 Family of Drive Systems Hardware Installation Manual to join the enclosures and to splice the PE TE DC and control busbars in the system Refer to publication S 3062 FDS86N Drive Systems Enclosure Hardware Installation Manual if there are any FD86N enclosures in the system Make sure that all circuit breakers in the system are in the off position at this time Publication 2364P 5 01 December 1999 15 2 Installation Safety Precautions Publication 2364P 5 01 December 1999 The following general precautions apply when installing servicing or operating parallel configurations and drive system lineups ATTENTION Only those familiar with the drive system the products used in the system and the a
151. nt layout and overhead bus configuration for the R2 and 52 parallel configurations 4 R3 and S3 Code Parallel Configurations Schematics component layout and overhead bus configuration for the R3 and 3 code parallel configurations 5 R4 S4 Code Parallel Configurations Schematics component layout and overhead bus configuration for the R4 and 4 code parallel configurations 6 T1 and V1 Code Parallel Configurations Schematics component layout and overhead bus configuration for the T1 and V1 code parallel configurations 7 T2 and V2 Code Parallel Configurations Schematics component layout and overhead bus configuration for the T2 and V2 code parallel configurations 8 T3 and V3 Code Parallel Configurations Schematics component layout and overhead bus configuration for the T3 and V3 code parallel configurations 9 T4 and V4 Code Parallel Configurations Schematics component layout and overhead bus configuration for the T4 and V4 code parallel configurations 10 T5 and V5 Code Parallel Configurations Schematics component layout and overhead bus configuration for the T5 and V5 code parallel configurations 11 T6 and V6 Code Parallel Configurations Schematics component layout and overhead bus configuration for the T6 and V6 code parallel configurations 12 W1 Code Parallel Configurations Schematics component layout and overhead bus configuration for the W1 code parallel configurations 13 W2 Code Parallel Configurations S
152. oard S ae 74 1 Detail Detail HE EA4 Bus Suppressor os 1tT i G V D T4 VN1 WN1 47 o Mars 77 e iue D e t v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24 15 e DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24V asv aav Y Ji E 36 ud J3 H in Control Boar Bridge Thermal aini Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 1203 GM1 2 Analog In 1 3 Analog In 1 Common R2R Communication 4 Analog In 2 999990901 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu 9 Shd Us Uae US E Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 RIO Ex SCANport1 SCANpot2 R2R Hub Board To System Network Publication 2364P 5 01 December 1999 14 16 W3 Code Parallel Configurations Publication 2364P 5 01 December 1999 Receiving Handling and Installing the Parallel Configuration Chapter 15 Installation The instructions in this chapter will guide you in properly installing the parallel configuration The processes include receivi
153. ode Parallel Configurations Publication 2364P 5 01 December 1999 Chapter 9 T4 and V4 Code Parallel Configurations T4 Code Parallel Configuration The T4 code parallel configuration is a common DC bus front end unit consisting of an F code NRU in parallel with a N code RGU Figure 9 1 T4 Code Parallel Configuration Information T4 code Ratings 14 Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 2600 1334 460 2600 1615 575 2591 2012 V4 Code Parallel Configuration The V4 code parallel configuration is a common DC bus front end unit consisting of an G code NRU in parallel with a N code RGU Figure 9 2 V4 Code Parallel Configuration Information V4 code Ratings V4 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 3000 1539 460 3000 1863 575 3000 2329 Note Information for the F code NRU and G code NRU can be found in publication 2364E 5 01 Information for the N code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 9 2 T4 and V4 Code Parallel Configurations Component Layout Figure 9 3 Enclosure Layout Front View Shipping Split 101 25 91 5 1 30 _ 30 _
154. ol Boar Bridge Thermal aini Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 1203 GM1 2 Analog In 1 3 Analog In 1 Common R2R Communication 4 Analog In 2 999990901 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu 9 Shd iis Ua Analog Out 2 Clr 10 Analog Out 2 Common J8 J10 J9 RIO Ext SCANport1 SCANpot2 ROR Hub Board To System Network Publication 2364P 5 01 December 1999 14 12 W3 Code Parallel Configurations Figure 14 8 Schematics cont 3 phase AC Input RGU Slave B From 4 CB2 RGU HF CB1 RGU 5 E EA10 2KHZ Control Power Filter p rer Ra F4 F6 Lala TOTTI TITTY F7 BAAR 1 115 X2 6 hr F5 e 2 TBI 9 Q Bay 1 Door Fan TB1 10 To RGU MTR4 5 Precharge To RGU Input Circuitry Fuses Bay 2 Fan MTR1 2 3 RGU Door Fans MTR9 10 Choke Bay Fans Optional Choke Interlock TB1 1 JMPR TB1 2 a Fault 51 3 Isolation Board PL2
155. on DC bus front end unit consisting of an E code NRU in parallel with a K code RGU Figure 2 2 S1 Code Parallel Configuration Information S1 code Ratings S1 code Parallel Configuration Input Voltage DC Bus Current Rated DC Bus V AC A DC kW 380 2020 1036 460 2020 1254 575 2020 1568 Note Information for the D code NRU and E code NRU can be found in publication 2364E 5 01 Information for the K code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 2 2 R1 and 51 Parallel Configurations Component Layout Figure 2 3 Enclosure Layout Front View Shipping Split Cutaway View Feeder D code NRU 15004 K code RGU Publication 2364P 5 01 December 1999 R1 and 51 Parallel Configurations 2 3 Figure 2 4 Overhead Bus Assembly Feeder 30 Overhead Splice Kit Bus Assembly T 22 4 Bus Tabs E Flex Bus To Feeder Buswork Drop Tabs The RGU AC line is connected to the bus stubs the NRU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the R1 and S1 Configurations NRU CB1 2000A RD frame with motor operator aux contact 2NO 2NC EA10 Control
156. or open circuit Testing The System Before testing the system verify that all the circuit breakers are in the off position and that the start switch on the parallel configuration is turned to off The bay doors should be closed 1 Push each RGU circuit breaker lever to on do not attempt to use the NRU circuit breaker 2 Turn the start switch to on The RGU s will begin their precharge operation When the precharge sequence has finished about 15 seconds the NRU circuit breaker will close You can check the programming terminal HIM for the bus voltage and any fault information Note The parameters for this unit may not have been configured yet If the unit will not operate skip to chapter 16 to configure the parameters 3 Close the inverter circuit breakers and verify that the inverters are receiving power 4 Open all system circuit breakers Introduction to the Human Interface Module HIM Chapter 16 Setting Up the Parallel Configuration This chapter will guide you through the setup procedures for the parallel configuration If you need more information about RGU parameters please see publication 2364F 5 01 The Human Interface Module HIM shown in Figure 16 1 can be used to program and set up the RGU The table below shows the function of the keys Figure 16 1 Human Interface Module HIM ESC SEL Escape Pressing the escape key causes the programming system to go back one level in the men
157. ot CR4 CR4 54 Lockout CB1 NRU A External Main TB4 4 TB10 7 10 8 4 5 To RGU Isolation Board Enable E Publication 2364P 5 01 December 1999 To RGU Control Circuitry T3 and V3 Code Parallel Configurations From RGU Control Power AEN TB4 8 CB1 NRU TR1 12 Wht Red 11 v TB4 1 TB10 2 2 Wht Grn Digitrip D10 210 Bk Spring Windup 6 Blu 4 2 TB10 1 SC X os i SC dis B Y b LC A2 m SR amp N R 4 3 10 3 Spring Red TB10 5 Release Y dd Resistor When Required Not on 120 VAC CB1 NRU A E 82 Red 10 8 4 5 CB1 NRU B Bu TB10 9 CB1 NRU A E Blk Reqd 84 8 10 10 TB10 11 CB1 NRU B 86 lt 4 6 TB10 12 Bd CB1 NRU A nea 87 Used 10 13 10 14 Available For TR1 CB1 NRU B Customer Use B9 TB4 TB10 15 BH pk CB1 NRU A Reg B10 O TB10 16 TB10 17 CB1 NRU B Bio 10 18 Publication 2364P 5 01 December 1999 8 8 T3 and V3 Code Parallel Configurations Figure 8 7 Schematics cont
158. ower Filter PSS Snes SS SS a F4 AV i LI pa Ec utra LR E EE EK EAE F6 F7 EEE PTI CERTO S 34 1 115 X2 7 F25 MTR2 M TB1 9 Bay 1 Door Fan TB1 10 To RGU Input MTR3 Fuses Master Bay 1 Internal Fan To CB1 NRU MTR1 circuitry e QO r Optional Choke esee UC RGU Door Fans Remote Thermoguards RGU Unit Not CR2 Interlock l sio yo TB1 1 MPR 7614 2 m d 9 4 Isolation Board 51 3 PL2 Not RGU DC Bus Faulted Fault Supply Off On CR2 TR1 e e 20 sec 912 Precharge TB1 5 1 6 CR4 ico trs Est 12 Timer E o S Available for TR1 TAi cra CR3 M2 Customer Use X cra Precharge BusControf CR3 e H6 9H 18 Pilot Isolation Board CR3 CR4 4 CR4 Lockout e 1 CBI NR U A External Main TB4 4 TB10 7 TB10 8 TB4 5 To RGU Enable Isolation Board CR3 M1 Main Publication 2364P 5 01 December 1999 To RGU Control Circuitry Master T5 and V5 Code Parallel Configurations 10 7 From RGU Control Power 48 CB1 NRU 1 i 2 WhiRed An v e TB4 1 TB10 2 09 wht Grn Digitrip D10 Spring Windup A6 Blu
159. pare the Measured AC Line Voltage P14 with the meter reading Determine the adjustment that needs to be made in the RGU by percent Line Woltage 4 Urins AC Line Voltage Calibration P15 Set this parameter to adjust the value in P14 If this calibration parameter is changed check the Measured AC Line Voltage P14 again Line Woltage Cal AC Line Low Setting P26 Verify that the AC Line Low Setting P26 is at an acceptable voltage Typically the default setting should be sufficient Line Low Setting 452 AC Line High Setting P27 Verify that the AC Line High Setting P27 is at an acceptable voltage Typically the default setting should be sufficient Line Hi Setting 1512181 rms DC Bus Low Setting P28 Verify that the DC Bus Low Setting 28 is at an acceptable voltage Typically the default setting should be sufficient Bus Low Setting 388 Wolt DC Bus High Setting P29 Verify that the DC High Setting P29 is at an acceptable voltage Typically the default setting should be sufficient Bus High Setting 388 Uolt Host Mode P35 The bits in the host mode parameter select current limiting functions in the current regulator Regen Only bit 0 Limits the motoring current to 10 regenerative current limit remains at 150 Err Limiter bit 1 Limits the gain step and value allowed in the bus voltage error If an NRU is in the configuration the Regen Mod
160. port RGU Main Control Board 15 12 Terminal Blocks 15 13 Configuring the System 15 15 Connecting the AC 15 16 Isolation Transformer 15 16 MOV Protection dud and itk ded ad id dad dead eh ed dr e o 15 16 RJ Em 15 16 Input Wiring 15 17 Testing Tie System 5 o o e RC e taa 15 18 Prepower Checks 15 18 Testing The System sss ir oe da oe ds oe oe DE 15 18 toc iv Chapter 16 Appendix A Appendix B Glossary Index Table of Contents Setting Up the Parallel Configuration Introduction to the Human Interface Module HIM 16 1 Basic Startup 16 3 Starting the RGU 16 3 Programming the RGU 16 4 Enabling the RGU 16 6 Advanced Startup Procedure 16 7 Specifications Watts Dissipation A 7 Physical Details A 9 Catalog Numbers and Spare Parts Kits Understanding Catalog Numbers B 1 NIIS Ea B 4 Who Should Use
161. power filter 4kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2NO 2NC F4 F6 Primary fuse for 2kVA transformer 10A KLDR for 380V AC input 9A KLDR for 460V AC input 8A KLDR for 575V AC input F21 F22 DC bus fuses 250A 700V 170M F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 2kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 2 4 R1 and 51 Parallel Configurations Schematics Figure 2 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 4KHZ Control Power Filter esta aee T FA mem cu SE le gi Loco n
162. r 1999 12 6 W1 Code Parallel Configuration Figure 12 5 Schematics cont M2 F2 R10 R10A R11 R11A R12 12 1 1 CH1 i STR F2 CH2 Q AEN F3 CH3 From RGU AC Line From RGU Control Power Isolation Board TB5 Fault Enable Reset eee Fault Reset From RGU 511 Control Circuitry External Main Common e uxControl Circuitry Fault To RGU Bus Control Control Circuitry Publication 2364P 5 01 December 1999 SW1 Settings X Off 115VAC On 24VDC For TB5 1 2 3 Burden Resistors 1 11 W1 Code Parallel Configuration 12 7 Horizontal i Horizontal DC Bus DC Bus Q To Inverter Units
163. ration Input Voltage DC Current Rated DC Bus V AC A DC kW 380 3000 1539 460 3000 1863 575 3000 2329 Note Information for the F code NRU and G code NRU can be found in publication 2364E 5 01 Information for the L code RGU can be found in publication 2364 F 5 01 Publication 2364P 5 01 December 1999 7 2 T2 and V2 Code Parallel Configurations Component Layout Figure 7 3 Front View 101 25 Cutaway View Enclosure Layout Shipping Split Customer Supplied Feeder F code 25004 or G code 3000A NRU Publication 2364P 5 01 December 1999 TCR IRI Dc 30 Mr 30 35 lt 30 25 L code RGU 91 5 T2 and V2 Code Parallel Configurations 7 3 Figure 7 4 Overhead Bus Assembly Feeder 30 Overhead Splice Kit Bus Assembly 22 4 Bus Tabs G E Flex Bus To Feeder Buswork Drop Tabs The RGU AC line is connected to the bus stubs the NRU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the T2 and V2 Configurations NRU CB1 T1 config 2500
164. re details TB1 7 TB1 8 These terminals connect to the normally closed contacts on the Ground Fault Detection Option VM2 During normal operation these contacts will be closed These terminals may be wired to a customer monitoring device to indicate ground fault conditions For more information on the ground fault detector or other wiring configurations see the internal wiring section of this chapter TB1 9 TB1 10 These terminals are jumpered to allow the 115V AC power to reach the control circuitry Opening this circuit will cut power to the control circuitry which in an RGU will cause the power circuitry to trip open The jumper may be replaced with a customer control to externally cut power to the control circuitry TB2 1 TB2 2 These terminals connect to the relay coil of the Ground Fault Detection Option VM2 If the option is selected these terminals should be wired across the grounding resistor of the power transformer Publication 2364P 5 01 December 1999 15 14 Installation 1500 2000A NRU 2500 3000A NRU Not Used Not Used Undervoltage Relay CB Close Spring Release CB NRU A CB NRU A Undervoltage Relay Not Used CB Power Not Used CB Open Not Used To Slave A To Slave B From Master Figure 15 13 TB4 Connections RGUs 115V AC 4 TRI e 1 Q
165. rive Lineup The RGU evaluates the bus voltage and adjusts its current to maintain the nominal bus voltage If there are two RGUs in the configuration the master RGU evaluates the voltage and sends current commands to the slave RGU and both RGUs will switch their IGBTs to regulate the necessary current on the DC bus Theory of Operation 1 7 Output of NRU RGU Configurations The RGUs supply up to 10 of their rated amperes as motoring current In this first 1096 the RGUS will regulate the voltage to 1 52 times the line voltage the voltage on the DC bus will be greater than the AC line and the diodes in the NRU will not conduct Figure 1 10 RGU Motoring Load Up To 1096 of RGU Rating 3 Phase AC Line smaller voltage Current 1 Up to 10 of the RGU rating No Current 1 52 x AC Line Voltage greater voltage When the load increases beyond the first 1096 the RGU is no longer able to regulate the voltage since the current limit is set to 1096 and the bus voltage drops to a level where the diodes in the NRU can conduct The NRU then supplies the motoring current for the remainder of the load resulting in a bus voltage of 1 35 times the line voltage Figure 1 11 RGU and NRU Motoring Load Over 10 of RGU Rating 3 Phase AC Line Current 10 of the Current RGU rating i 1 35 x AC Line Voltage When the load drops under the 10 capability of the RGUS the RGUS will begin to regulate t
166. rmal Control Board TB1 Sensor NTC 1 Analog In 1 RIO Adapter Option 2 Analog In 1 R2R 3 Analog In 1 Common Communication 4 Analog In 2 8090939 nw g Wi 5 Analog In 2 on 6 Analog In 2 Common J12 7 Analog Out 1 8 Analog Out 1 Common Blu Shd 9 Analog Out 2 Clr Rx 10 Analog Out 2 Common LIII j J8 J10 J9 J7 RIO Ex 5 1 SCANport 2 From Master RGU To System Network 12 11 PL1 DC Bus Energized Publication 2364P 5 01 December 1999 12 12 W1 Code Parallel Configuration Publication 2364P 5 01 December 1999 Chapter 13 W2 Code Parallel Configurations W2 Code Parallel Configuration The W2 code parallel configuration is a common DC bus front end unit consisting of two N code RGUs Figure 13 1 W2 Code Parallel Configuration Information W2 code Ratings W2 code Parallel Configuration Input Voltage 0 Current Rated DC Bus V AC A DC kw 380 1 994 11 57 N code 460 2000 1400 RGU 575 1828 1550 Slave Note Information for the N code RGU can be found in publication 2364F 5 01 Publication 2364P 5 01 December 1999 13 2 W2 Code Parallel Configurations Component Layout Figure 13 2 Enclosure Layout Front View Shipping Split 101 25 91 5 lt 30 gt lt 20 t 35 gt 35 20 35 25 h 4 35
167. s From RGU Control Power I TB4 8 CB1 NRU N TR1 7 2 whvRed m 4 1 TB10 2 09 wht s Digitrip Gm D10 Bik Spring Windup A Blu TB4 2 TB10 smi SC N gt i 5 is 1 Y b LC A2 e 1 O O 4 3 TB10 3 Spring Red TB10 5 Release Y e wr Resistor When Required Not on 120 VAC CB1 NRU A 82 Red P P TB4 4 10 7 10 8 4 5 CB1 NRU B Bu 83 TB10 9 CB1 NRU A m e Bik Red 84 6 TB10 10 TB10 11 CB1 NRU B 86 O 4 6 10 12 BB CB1 NRU A seah B 4 7 Used 10 13 TB10 14 _ Available For TR1 CB1 NRU B Customer Use 9 Blu N o 4 10 15 B11 CB1 NRU A Red 10 16 781017 CB1 NRU B B O J TB10 18 Publication 2364P 5 01 December 1999 6 8 T1 and V1 Code Parallel Configurations Figure 6 7 Schematics cont M2 1 F1 M1 CH1 CH11 2 CH2 CH3 From RGU ER AC Line From RGU Control
168. s connected to the bus stubs the NRU circuit breaker To NRU circuit breaker New and Revised NRU and RGU Components in the R2 and S2 Configurations NRU CB1 2000A RD frame with motor operator aux contact 2NO 2NC EA10 Control power filter 2kHz F4 F6 Primary fuse for 5kVA control transformer Primary fuse for 10kVA control transformer Opt 6P 25A KLDR for 380V AC input 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input Control power transformer 5kVA Control power transformer 10kVA Opt 6P TB10 Control terminal block 30A 600V RGU CR4 Precharge Lockout Relay 2NO 2NC F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 F22 DC bus fuses 500A 700V 170M F25 Fuse NRU CB1 motor operator 10A KLDR 1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 3 4 R2 and 52 Parallel Configurations Schematics Figure 3 5 Schematics NR
169. s in the RGU Verify that the desired bits are set to 1 P224 SCANport Port Enable Mask must be set accordingly SCANport Reset Mask P227 This setting determines which SCANport ports i e J8 J9 or J10 can be used to reset the RGU Verify that the desired bits are set to 1 P224 SCANport Port Enable Mask must be set accordingly Enabling the RGU After the basic startup procedure has been completed the RGU can be enabled The RGU can be enabled by three different methods 1 Sendan enable command to the Host Command Word by setting the Enable bit P32 bit 1 1 2 Ifthe Remote Local Selector has been set to Local Only P820 reset the RGU The unit will automatically enable after the reset 3 If the Remote Local Selector has been set to Remote Local P8 1 press the green start key on a HIM GPT or DrivePanel DriveTools Note that P224 and P225 must be configured appropriately for this Publication 2364P 5 01 December 1999 Setting Up the Parallel Configuration 16 7 Advanced Startup Procedure This advanced startup procedure may be performed to set the RGU for optimum performance HIM GPT or other programming device will be required to complete the procedure below Id Current Command P102 The Id current command determines the amount of reactive current that the RGU should allow Typically this value should be set to 0 0 default For applications requiring reactive current P102
170. s support services worldwide with Sales Support Offices authorized distributors and authorized Systems Integrators located throughout the United States plus Rockwell Automation representatives in every major country in the world Local Product Support Please contact your local Rockwell Automation representative for e sales and order support e product technical training e warranty support support service agreements Technical Product Assistance If you need to contact us for technical assistance please review the product and troubleshooting information in this manual first When you do contact us please have the catalog numbers of your products ready when you call so we can provide the quickest response for your situation Publication 2364P 5 01 December 1999 P 6 Publication 2364P 5 01 December 1999 Chapter 1 Theory of Operation Introduction The parallel configuration a DC bus supply front end with regenerative capability is used to supply DC power for AC digital drive inverter units in a common bus drive system Twenty three different parallel configurations provide a spectrum of different supply and regenerative capabilities Figure 1 1 Parallel Configuration 3 Phase AC Line Inverters EI Cs ee DC Supply for Drive Lineup E NES Publication 2364P 5 01 December 1999 1 2 Theory of Operation Parallel configurations use the following front e
171. solation Board oe Fault PL2 3j Not Faulted TR1 12 TR1 CR Precharge Timer M2 Precharge To RGU Precharge Circuitry 20 sec RGU Slave CB1 RGU DUE SP1 SP2 SP4 i SP3 Q To RGU Input Fuses Fault CR2 l TB1 5 d Available for Customer Use Isolation Board CR3 CR4 CB1 RGU CB1 NRU A Precharge Lockout External Main 7 i TB3 8 TB4 4 TB10 7 TB10 8 4 5 Enable TB3 8 TB3 9 TB3 11 TB3 12 Publication 2364P 5 01 December 1999 To RGU Control Circuitry je To RGU Isolation Board From RGU Control Power T6 and V6 Code Parallel Configurations 11 7 PN TB48 CB1 NRU TR1 EL Wht Red A11 4 vr o e TB4 1 TB10 2 09 wht 9 Digitri Gm 010 gk igitrip Spring Windup x Blu TB4 2 TB10 SC N UN 9 gt 5 ia 1 Y b LC A2 e y Ni N 1 e A 4 3 TB10 3 Spring Red Release Y Resistor When Required Not on 120 VAC CB1 NRU A B1 Bik Red 4 4 10
172. ssociated machinery should plan or implement the installation startup and future maintenance of the system Failure to comply can result in personal injury and or equipment damage ATTENTION Verify that all sources of AC and DC power are deenergized and locked out or tagged out in accordance with the requirements of ANSI NFPA 70E Part II ATTENTION The system may contain stored energy devices To avoid the hazard of electrical shock verify that all voltage on capacitors has been discharged before attempting to service repair or remove a drive system or its components You should only attempt the procedures in this manual if you are qualified to do so and are familiar with solid state control equipment and the safety procedures in ANSI NFPA 70E ATTENTION An incorrectly applied or incorrectly installed drive system can result in component damage and or a reduction in product life Wiring or application errors such as undersizing the motor incorrect or inadequate AC supply and excessive ambient temperatures can result in the malfunction of the drive equipment ATTENTION This drive system contains parts and assemblies that are sensitive to ESD electrostatic discharge Static control precautions are required when installing testing or repairing this assembly Component damage can result if ESD control procedures are not followed If you are not familiar with static control procedures refer to Rockwell Automation publicatio
173. stings Manual Troubleshooting information testing procedures and fault descriptions for Regenerative DC Bus Supply Unit RGUJ 2364F 5 05 the RGU Troubleshooting Guide Instructions for installing an overhead bus assembly Overhead Bus Installation Instructions for Bulletin 2364P 5 10 2300 MCCs Information for operating and understanding the Graphic Programming Bulletin 1201 Graphic Programming Terminal 1201 5 0 Terminal GPT User Manual Information for installing and configuring the Remote 1 0 RIO Bulletin 1203 Remote 1 0 Communications 1203 5 1 Communications Module Module Getting Started Manual Information for installing and configuring the DeviceNet Communications Bulletin 1203 DeviceNet Communications 1203 5 3 Module Module User Manual Information for installing and configuring the Series Communications Module Bulletin 1203 Series Communications Module 1203 5 5 User Manual Information for installing configuring programming and troubleshooting the 1336 FORCE adjustable frequency AC drive 1336 FORCE Adjustable Frequency AC Drive User Manual 1336 FORCE 5 12 Information for installing configuring programming and troubleshooting the 1336 PLUS adjustable frequency AC drive 1336 PLUS Adjustable Frequency AC Drive User Manual 1336 PLUS 5 0 Instructions for properly handling and moving motor control centers Receiving Handling and Storing Motor Control 2100 5 5 Centers Instru
174. t 35A KLDR for 380V AC input 20A KLDR for 460V AC input 30A KLDR for 460V AC input 17 5A KLDR for 575V AC input 25A KLDR for 575V AC input PT1 Control power transformer 5KVA Control power transformer 10KVA Opt 6P TB10 Control terminal block 30A 600V RGU CR3 Pilot Relay 2NO 2NC with aux contact 1 0 1 CR4 Precharge Lockout Relay 2NO 2NC F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 F22 DC bus fuses 500A 700V 170M 21A 22A F25 Fuse NRU CB1 motor operator 10A KLDR PT1 Control power transformer 5kVA TR1 Timer relay 3NO 1NC TB4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 5 4 R4 and 54 Parallel Configurations Schematics Figure 5 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter RE F4 SE ie AEN Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9
175. the main control board of the RGU This component processes feedback and controls most of the activities in the RGU Human Interface Module HIM A programming terminal used to program control and view the status of a unit Insulated Gate Bipolar Transistor IGBT A transistor which can be used to allow current to flow in two opposite directions Also known as power module Isolation Board The RGU isolation board receives direct feedback from the AC line DC bus and current transducers This board supplies scaled feedback to the main control board Main Control Board The RGU main control board regulates the voltage and current oversees activities in the unit and processes I O This board is isolated from the power circuitry Metal Oxide Varistor MOV A component used to protect against voltage surges and excessively high line to line line to ground voltages Publication 2364P 5 01 December 1999 6 2 Motoring Current Current which is being supplied to the inverters through the DC bus for motoring Non Regenerative DC Bus Supply Unit NRU A six pulse DC power supply produced by Rockwell Automation The NRU is typically used as a front end power supply on a drive system lineup NRU RGU Configuration A parallel configuration of one or two RGUs connecting to an NRU Overload A condition where the unit is supplying current above its rated current For example operating a unit at 15096 overload would indicate that the
176. trol Terminal block 30A 600V Fiber optic cable 3 HP HFBR connector Common Mode Choke 900A 4mH Precharge Lockout Relay 2 0 2 R2R Communication Board Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input DC bus fuses 500A 700V 170M Fan choke bay 6 9 340 CFM 115V AC Control power transformer 5kVA Timer relay 3NO 1NC Control Terminal block 30A 600V Fiber optic cable 26 HP HFBR connector Common Mode Choke 900A 4mH Precharge Lockout Relay 2NO 2NC R2R Communication Board Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input DC bus fuses 500A 700V 170M Fan choke bay 6 9 340 CFM 115V AC Control power transformer 5kVA Timer relay 3NO 1NC Control Terminal block 30A 600V Fiber optic cable 34 HP HFBR connector Overhead bus assembly Primary fuse for 10kVA control transformer Opt 6P 35A KLDR for 380V AC input 30A KLDR for 460V AC input 25A KLDR for 575V AC input Control power transformer 10kVA Opt 6P Publication 2364P 5 01 December 1999 14 4 W3 Code Parallel Configurations
177. u tree Select SEL Pressing the select key alternates between the top and bottom lines in the display Increment Pressing the increment key will increment a displayed value This key is also used for scrolling through a lists on the display key is also used for scrolling through lists on the display Enter Pressing this key causes a parameter entry to be saved to memory This key is also used to select items on the display Decrement Pressing the decrement key will decrement a displayed value This E The parameters and functions are organized into a menu tree This menu tree is broken into seven modes including Startup EEProm Search Control Status Password Display and Process see Figure 16 2 Publication 2364P 5 01 December 1999 16 2 Setting Up the Parallel Configuration Figure 16 2 HIM Menu Tree Choose Mode Display Example Choose Mode Startup Continue or EEProm Search for fault and Modify Parameter List Process Parameter List Parameters or Warning Queues Reset Functions Password Display Variables Edit Links Reset Drive 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p Monitor RGU State Line Voltage Line Voltage Cal Abs Junct Temp Heatsink Temp Iq Fbk Offset 19 Feedback DC Bus Current lac Total Scaled Bus Fbk Bus Volt Cal Bus Volt to Gnd Bus Volt to
178. ult 5 2 Ema 9 2 8 8 1 3 1 4 1 5 1 6 115VAC Publication 2364P 5 01 December 1999 Control Bus To Inverter Units Customer Supplied Q To RGU AC Input 3 phase Input E 2 Note Control power for this CB1 NRU motorized breaker originates in the RGU Do not operate this breaker manually AC Line Current 1 L CR1 F11 A Phase Loss F12 Relay B CR F13 F1 F2 Heat Heat Sink Sinl PORTA Fa a Bus pH 4 Lp Bus D1 D2 D4 3 eal 05 HS1 LD6 It 1 EA4 Bridge Suppressor EA2 Bus Indicator PCB Bus LED1 DC Bus i Energized Bus LED2 PL1 CY VM1 4 CH11 3 DC Bus Voltage DC Horizontal Bus To Inverter Units R3 and S3 Code Parallel Configurations Q From NRU Control Power From NRU Control Power 4 5 To Grounding Resistor VM2 Ground Fault Detector TB1 8 To Customer Monitoring Device TB1 7 S5 Yi R B Flow Sensor Publication 2364P 5 01 December 1999 4 6
179. uration catalog number 2364PA T5B is connected to a 1336 FORCE 100HP 1336 PLUS 150HP and SA3100 150HP In Appendix A we find that the catalog number 2364PA T5B indicates two 460V AC M code RGUs in the configuration Using the capacitor bank tables in Appendix A for 460V AC lineups we have the following values 1336 FORCE 100HP 900uf 10 1336 PLUS 150HP 1200 uf 10 5 3100 150HP 1200 uf 10 Total Ext Capacitance 3300 uf 10 Since there are two RGUS half of this value 1650 uf 10 would be programmed into P203 of each RGU SCANport Port Enable Mask P224 Verify that the appropriate SCANport ports are active Note the following bits SCANport 1 bit Activates J10 on the main control board used for HIM GPT etc connection SCANport 2 bit2 Activates J9 on the main control board used for HIM GPT etc connection SCANport 6 bit 6 Activates J8 on the main control board used for optional SCANport interface board SCANport Enable Mask P225 This setting determines if the start key on a connected SCANport device can be used to enable the RGU Verify that the appropriate bits are set to 1 Note P5 Remote Local Selector and P224 SCANport Port Enable Mask must be set accordingly if a programming terminal SCANport device will be used to enable the RGU SCANport Clear Fault Mask P226 This setting determines which SCANport ports i e J8 J9 or J10 can be used to clear fault
180. urations Figure 6 6 Schematics cont R GU From 3 phase AC Input 5 4 SP1 gt lt SP2 CB1 RGU J PE gt lt EA10 4KHZ Control Power Filter SS SS des Lid F4 Agna LI pa ERE EK EAE F6 F7 EEE PT CERTUS S 4 X1 115VvAc 2 5 F25 MTR1 e TB1 9 Q RGU Door Fan TB1 10 MTR2 To RGU Input Fuses RGU Door Fan To CB1 NRU circuitry e Optional EEUU E TRE Remote RGU Unit Not CR2 Interlock Faulted TB1 1 1H HH 4 e OMPR L lt Fault Isolation Board PL2 Not uie Bus Faulted Fault upply Off On CR2 TR1 e e a e 20 sec 912 Precharge TB1 5 1 6 CR4 ibl Ee 12 Timer TB1 TB1 Available for TRI TR1 M2 Customer Use Precharge CR4 BusControf CR3 H6 9H e Pilot Isolation Board CR3 CR4 9 7 Lockout e m CBI NR U A External Main 7844 1807 1845 RGU Enable Isolation Board 1 1 Main To RGU 83 Control Circuitry Publication 2364P 5 01 December 1999 T1 and V1 Code Parallel Configuration
181. ut Relay 2NO 2NC F4 F6 Primary fuse for 5kVA transformer 25A KLDR for 380V AC input 20A KLDR for 460V AC input 17 5A KLDR for 575V AC input F21 F22 DC bus fuses 500A 700V 170M 21A 22A F25 Fuse NRU CB1 motor operator 10A KLDR Control power transformer 5kVA TR1 Timer relay 3NO 1NC 4 Control Terminal block 30A 600V Overhead bus assembly Publication 2364P 5 01 December 1999 9 4 T4 and V4 Code Parallel Configurations Schematics Figure 9 5 Schematics NRU F14 LineRC Suppressor F15 12 16 L3 SP4 SP1 pid SP2 PE gt lt SP3 gt lt EA10 2KHZ Control Power Filter ese cce for Ferre ae T FA mem cu SE le gi Loco n F6 F7 PT1 e COCC CVC TTT 4 115vac 2 MTR1 e 1 9 Brid Optional Airflow Loss AirlowLoss Choke Md TB1 10 Remote Bridge CB Bay MTR2 3 Interlock re jl 1 1 1 11 3 i 1 3 MPR 4 EA5 CR EA6 CR Choke Comp CHG MTR4 5 6 Heatsink Heatsink CB Bay 208 Overtemp Overtemp
182. verter Units r me UP1 o DETAIL See U See U 8 8 Phase Phase 1 5 Detail Detail c t 8 VP1 92 WP1 9 VP2 WP2 Cap Ban BEN EA2 Bus Indicator Board amp Power Bus LED1 PL1 ror UN Supply 1 p UN2 See See U Filter LED Energized fs Ira H Phase Phase Board S ae 74 1 Detail Detail HE EA4 Bus Suppressor os 1tT i G V E WN1 e FE em VN2 WN2 gt 77 e IEEE v 35 J10 L J8 W Gate Driver Board Gate Drivers TB7 2 v 1 P13 F1 lt 24V 415V DCDC ence om ey e DC DC Converter Converter gt 412V gt 12V 4 TP3 TPS TP6 4 TP8 TPO Aux 24V 1 24 asv E 36 Mal J3 jn in Control Boar Bridge Thermal contol Board T
Download Pdf Manuals
Related Search
Related Contents
GEMINI 1035216 COVER Iss D d–control 600, 1000, 1600 PayPal Invoicing - 2012 User Guide Trockner Sèche-linge TKF 7431 A Copyright © All rights reserved.
Failed to retrieve file