Home
NELLCOR N-3000 Patient Monitor Service Manual
Contents
1. 5 3 Section 5 Troubleshooting 5 6 2 Error Codes When there is a problem within the N 3000 monitor an error code may be displayed on the front panel as illustrated ad SHE oo EEE 132 These codes correspond to messages that indicate what part of the monitor is at fault Actions to take when encountering error codes are listed below For a more thorough understanding of the error codes refer to Appendix A 5 6 2 1 User Correctable Error Codes The following error codes can be corrected by the operator Error Explanation Code Current user input values limits volumes times have been lost during an internal reset and the unit has returned to power on defaults Reset the values if different from power on defaults Alarm and beep volume audible alarm silence duration and operating mode have returned to power on defaults due to an internal instrument reset Turning the unit off and back on again produces the same results Cannot calibrate sensor possible shorted open LED or cable Check sensor and cable connections Check sensor and cable replace if necessary If replacing sensor and or cable does not fix the problem remove the N 3000 monitor from service Use the SpO2 diagnostic tests service mode menu item numbers 31 through 39 to further evaluate the problem Alarm limits have been reset to their power on default due to software corruption in the ECG module Press the UPPER or LOWER ALARM LIMIT b
2. 4 18 4 3 12 Menu Item 21 Initial Cluster Instrument Number Report tates ee ee en es 4 18 4 3 13 Menu Item 22 Latching Alarms cceeeeeereteee 4 18 4 3 14 Menu Item 23 Enable Disable Alarm Silence ROMINder ieee Sak Aiea eae Renee 4 19 4 3 15 Menu Item 25 Dump EEPROM Data eee 4 19 4 3 16 Menu Item 28 Enable Disable Battery Charge CICUIT siti ia Bie ee ae 4 20 4 3 17 Menu Item 29 Instrument Compatibility Report 4 20 4 3 18 Menu ltem 30 SpO2 RCAL Report 4 20 4 3 19 Menu ltem 31 SpO2 IR and Red Offset Report 4 21 4 3 20 Menu Item 32 SpO2 Corrected IR and Red Signals REDON aia SAR Re RA RR Raa eta 4 21 4 3 21 Menu ltem 33 SpO2 IR LED Drive Test 4 21 4 3 22 Menu ltem 34 SpO2 Red LED Drive Test 4 22 4 3 23 Menu ltem 35 SpO2 DM Gain Test ceeeeee 4 23 4 3 24 Menu ltem 36 SpO2 P Gain Test 4 23 4 3 25 Menu ltem 37 Set SpO2 Analog Test Mode 4 24 4 3 26 Menu ltem 38 SpO2 A D Cal Line Test 4 24 4 3 27 Menu ltem 39 SpO2 Enable Automatic Operation 4 25 4 3 28 Menu ltem 40 Set ECG Lead 00 eeeeeeeeeeetees 4 25 4 3 29 Menu Item 41 Set ECG Pacer Filter eee 4 25 4 3 30 Menu Item 42 Set ECG Low Frequency Filter 4 26 4 3 31 Menu Item 43 Set ECG Baseline Reset 0 4 26 4 3 32 Menu Item 44 ECG POST Test Signal 4 26 4 3 33 Menu Item 45 Check ECG Cable Off Detection 4 27 4 3 34 Menu Ite
3. cceeeeeeeeeeeeeeceneeeeeeeeeetees 6 8 Display PCB and UIF PCB Disassembly 6 9 Knob Encoder Disassembly ceeeceeeeeeeeeeeeeeenceeeeeeeeeeeeeaaaes 6 10 Knob Disassembly ceeceeeeeeeeeeeeeeeeeceaeeeeeeeeeeeeeaaaeeeeeeeeeeeenaaaes 6 10 N 3000 Expanded View cccceeeeeeeeccnneeeeeeeeeteecaeeeeeeeeeeeeenaaaes 7 2 Repacking the N 3000 cccceeeeeeeeeeeeeeeeeeeeeeseecaaeeeeeeeeeeeeeeaaaes 8 1 Oxyhemoglobin Dissociation Curve c cceeeeeeeeeeeeeetteeeeeeeeeetees S 2 N 3000 Functional Block Diagram ccccccceeeeseeeeeeeeteeeteaees S 4 Timing DiaQram a tetee ha ced ee A Ha S 5 Internal External Stackbus Connections S 13 Communications Sub module Block Diagram S 20 Display Board Block Diagram eesseeeessssssssrrrrrsssssrrrrrnrsssssrrrrennns S 21 Dynamic Operating RAnges cceeeeceeseeeeeeeeeeeeeecaaeeeeeeeeeeeesaaaes 3 9 Serial Port Voltages iue ee i ee 3 16 ECG Cable ReSiStanCes cccccceccecceceeeeeeeeeeeeeeccneeeeeeeeeteeenaaaes 3 20 Configuration Mode Menu cccccccceecceneeeeeeeeeeeeetneeeeeeenenees 4 2 Configuration M nu cccccccceccceeeeeeeeeeeeeeceeeeeeeeeeeteecaaeeeeeeeeetee 4 5 Service Mode Steady State Main Menu cccceeeeeeeeeeeeeeeeeees 4 12 Problem Categories cccccsccceeeeeeeeeececneeeeeeeeeeeeecacaeeeeeeeeeteesnaaaes 5 2 Power Problems cccccccccccccccccccececeeeeeeseeeeeee
4. NELLCOR PURITAN BENNETT SERVICE MANUAL Nellcor Symphony N 3000 Patient Monitor SpO2 ECG and Respiration Capabilities To contact Nellcor Puritan Bennett s representative In the United States call 1 800 NELLCOR or 510 463 4000 outside the United States call your local Nellcor Puritan Bennett representative Caution Federal law U S restricts this device to sale by or on the order of a physician O13 1996 Nellcor Puritan Bennett Incorporated All rights reserved 035071A 1096 Corporate Headquarters Nellcor Puritan Bennett Inc 4280 Hacienda Drive Pleasanton California 94588 U S A Tel 510 463 4000 or 1 800 NELLCOR Fax 510 463 4420 U S Service Repair Center Nellcor Puritan Bennett Inc 2391 Fenton Street Chula Vista California 91914 U S A Tel 619 482 5000 European Office Nellcor Puritan Bennett Europe BV Hambakenwetering 1 5231 DD s Hertogenbosch The Netherlands Tel 31 73 6485200 Asia Pacific Office Nellcor Puritan Bennett HK Ltd Room 1602 Evergo House 38 Gloucester Road Wanchai Hong Kong Tel 852 2529 0363 Regional Local Offices Nellcor Puritan Bennett UK Ltd 10 Talisman Business Centre London Road Bicester Oxfordshire OX6 0JX United Kingdom Tel 44 1869 322700 Nellcor Puritan Bennett Belgium NV SA Interleuvenlaan 62 8 Zone 2 B 3001 Heverlee Belgium Tel 32 16 400467 Nellcor Puritan Bennett France 21 rue Albert Calmette 78353 Jouy en
5. S 19 Technical Supplement S 20 ALARMACTIVE Prog I O from UART Shutdown Prog I O from UART Technical Supplement Connector J5 contains the signals for communicating with the UIF board J8 as detailed in Table S4 2 Auxiliary connector J2 on the communications PCB is for future expansion a Serial Communications Serial communications are available only when the SPS or PSS power supply is connected to the N 3000 docking connector and plugged into an AC outlet When the UIF processor detects that CHARGEBUS is available it enables isolation transformer driver U1 MAX253 This creates power for circuitry on the isolated host computer side of the module Transmit and Receive data cross the barrier through optical isolators U5 and U3 6N136 CTS and RTS signals cross the barrier through optical isolators U4 and U2 4N26 lecdetion Dae m iral set Signa fom UF m coded leclation barrier ALARM A Thy E 1500 volte hamim Eesud rate 13 2 Figure S4 4 Communications Sub module Block Diagram Selecting RS232 serial signaling is accomplished by moving switches 1 S3 S5 S7 on SW1 and SW2 to the on position and switches S2 54 S6 S8 to the OFF position This enables U9 and disables U10 With RS232 selected J1 has the following pinout DTR DSR TXD GND RXD Nurse Call 3 3V OJAN S 21 Technical Supplement 4 2 7 Display Board S 22 Selecting RS422 serial signaling is accomplished by moving switches
6. appears in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 red LED drive value between 0 255 is displayed in the HEART PULSE RATE display To adjust the drive value rotate the knob The HEART PULSE RATE display will flash Pressing the UPPER ALARM LIMIT button will set the displayed value in the SpO2 module which will cease its automatic operation The HEART PULSE RATE display will stop flashing Press and hold the PRINT button to display the SpO2 corrected IR and red output signals as described in menu item 32 Release the PRINT button Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 23 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 23 Menu Item 35 SpO2 DM Gain Test This function allows you to validate sensors and or the operation of the SpO2 module 1 2 Connect the sensor to the N 3000 Verify that the SpO2 module is set for automatic operation using menu item 39 paragraph 4 3 27 Press the LOWER ALARM LIMIT button to return to the service mode steady state From the service mode steady state select menu item 35 by rotating the knob until 35 appears in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 demodulator gain value from 0 to 6 is displayed in the HEART PULSE RATE display To adjust the gain rotate the knob The HEART PULSE RATE display will flash Pressing the UPPER ALARM LIMIT button will se
7. Press and release the LOWER ALARM LIMIT button Verify that the Sp02 display indicates an alarm limit of 80 Verify that the other displays indicate a single bar at the bottom of each window From the normal mode steady state press and release the LOWER ALARM LIMIT button Rotate the control knob CCW Verify that the SpO2 display reduces to a minimum of 20 Press the UPPER ALARM LIMIT button two times rapidly twice within 3 seconds Verify that the HEART PULSE RATE display indicates an alarm limit of 190 Press the LOWER ALARM LIMIT button twice rapidly Verify that the HEART PULSE RATE display indicates an alarm limit of 90 Press the UPPER ALARM LIMIT button three times rapidly Verify that the RESPIRATION RATE display indicates an alarm limit of 80 Press the LOWER ALARM LIMIT button three times rapidly Verify that the RESPIRATION RATE display indicates an alarm limit of 20 Press the ON STANDBY button to turn the monitor off Press the ON STANDBY button to turn the monitor on The monitor performs the sequence described in 3 3 3 1 Verify that the NEO indicator is not lit Press and release the UPPER ALARM LIMIT button Verify that the SpO02 display indicates an alarm limit of 100 Press and release the LOWER ALARM LIMIT button Verify that the SpO2 display indicates an alarm limit of 85 Press the ON STANDBY button to turn the monitor off Section 3 Performance
8. The following pacemaker pulses without over undershoot will be rejected by the N 3000 Amplitude Width The following pacemaker pulses with over undershoot will be rejected by the N 3000 The over undershoot recharge time constant is 6 milliseconds Pulse Amplitude Pulse Width Amplitude ECG Lead ID Fight arm RA Left arm LA Leteo t0 Red ANSI AAMI EC 13 Standard The N 3000 meets the ECG performance requirements of ANSI AAMI EC 13 with the exception of clause 3 2 6 1 The N 3000 is unable to reject signals having a QRS amplitude of 1 0 millivolts and a duration of 10 milliseconds APPENDIX A1 A2 A3 A4 A1 ERROR TYPES Error Types User Correctable Error Codes Failure Error Codes Internally Corrected Error Codes There are six classes of errors that may occur during the operation of the N 3000 as indicated in Table A 1 Table A 1 Error Types Error Type Description 1 Generic POST processor failure Initialization failure Failure error at the end of initialization or during steady state operation Internally corrected error User correctable error Unexpected loss of power A shrill continuous alarm may sound and the display may go blank or nothing may happen This represents a severe hardware failure For example the UIF processor could not activate the display or speaker facilities An error code representing the failure is displayed and
9. With the N 3000 turned off press the ON STANDBY button and verify that the BATTERY IN USE BATTERY LOW indicator lights after the power on self test is completed Verify that the monitor is responding to the simulator signal and the audible alarm is sounding Do not silence the alarm during this test a The monitor must operate for at least 4 hours Verify that the BATTERY IN USE BATTERY LOW indicator will start to flash after about 3 5 to 3 75 hours 15 30 minutes before the battery fully discharges Allow the monitor to operate until it automatically powers down due to the low battery If the monitor passes this test immediately recharge the battery paragraph 3 3 1 steps 1 3 3 3 3 Power up Performance The power up performance tests 3 3 3 1 through 3 3 3 3 verify the following monitor functions 3 3 3 1 Power On Self Test 3 3 3 2 Adult Defaults and Alarm Limit Ranges 3 3 3 3 Neonate Defaults and Alarm Limit Ranges 3 3 3 1 Power On Self Test 1 Connect the monitor to an AC power source and verify that the BATTERY CHARGING indicator is lit Do not connect any input cables to the monitor Observe the monitor front panel With the monitor off press the ON STANDBY button The monitor must perform the following sequence a The monitor emits three consecutively higher pitched beeps b All indicators light for a few seconds as illustrated in Figure 3 1 Verify that the SpO2 left most display HEART PULSE R
10. 2 2 1 INTRODUCTION OXIMETRY OVE 1 Introduction S2 Oximetry Overview S3 Stackbus Interconnect S4 Circuit Analysis S5 Schematic Diagrams This Technical Supplement provides the reader with a discussion of oximetry principles and a more in depth discussion of N 3000 circuits A functional overview and detailed circuit analysis are supported by block and schematic diagrams The schematic diagrams are located at the end of this supplement RVIEW Pulse oximetry is based on two principles e Oxyhemoglobin and deoxyhemoglobin differ in their absorption of red and infrared light spectrophotometry e The volume of arterial blood in tissue and hence light absorption by that blood changes during the pulse plethysmography A pulse oximeter determines SpO2 by passing red and infrared light into an arteriolar bed and measuring changes in light absorption during the pulsatile cycle Red and infrared low voltage light emitting diodes LEDS in the oximetry sensor serve as light sources a photodiode serves as the photo detector Because oxyhemoglobin and deoxyhemoglobin differ in light absorption the amount of red and infrared light absorbed by blood is related to hemoglobin oxygen saturation To identify the oxygen saturation of arterial hemoglobin the monitor uses the pulsatile nature of arterial flow During systole a new pulse of arterial blood enters the vascular bed and blood volume and light absorption increase Dur
11. Ensure that the N 3000 is turned off 2 Disconnect the monitor from the external power supply 3 Set the N 3000 upside down facing you as shown in Figure 3 4 Eatery comer Figure 3 4 Battery Cover Removal 4 Using a small Phillips head screwdriver loosen the two battery cover retaining fasteners securing the battery compartment cover 5 Gently squeeze the battery cover sides in the middle as you swing the cover open it is hinged on the right with three tabs that extend into slots on the chassis 3 17 Section 3 Performance Verification 3 18 6 10 11 12 13 14 Lift the battery out of the compartment as shown in Figure 3 5 It may be necessary to use the edge of a flat tip screwdriver to gently pry the battery loose Eatery cover Figure 3 5 Speaker Test Turn the monitor on by pressing the ON STANDBY button When the power on self test is complete disconnect the power connector from the battery Verify that a shrill beeping alarm is emitted from the speaker Reconnect the power connector to the battery Verify that the alarm is silenced and the monitor powers back on Disconnect the power connector from the battery a second time Verify that the Piezo alarm sounds Press the AUDIBLE ALARM OFF button and verify that the alarm is silenced Reconnect the power connecior to the battery Verify that the alarm remains silent and the monitor powers back on Turn the monitor off
12. The chip select for U6 is processor pin CS4 Digital to Analog Converter DAC U5 is an 8 bit converter used by the processor to control speaker volume It is a write only memory mapped peripheral connected to the upper 8 bits D15 through D8 of the processor data bus It converts the 8 bit data value written into it by the processor to control the amplitude of the square wave generated by processor output OC2 The resultant amplitude controlled square wave is then sent to audio amplifier U4 to drive the 8 ohm speaker The chip select for U5 is processor pin CS5 Analog to Digital Converter ADC U27 is an 8 bit analog to digital converter used by the processor to measure three different analog voltages It is a read only memory mapped peripheral connected to the upper 8 bits D15 through D8 of the processor data bus The analog voltage values indicate which display board button has been pressed what the combined voltage of both lithium batteries is and the value of the analog voltage being supplied from transistor Q10 to the SpO2 module and 5V regulator chips U17 and U18 The chip select for U5 is processor pin CS7 The selection of analog voltages to read is Technical Supplement controlled by processor outputs PWMA and PWMB which must be set up prior to accessing U27 Stackbus Adapter Adapter U14 is an FPGA field programmable gate array used by the processor to control the hub functions for both the internal and exte
13. is lit whenever the monitor power supply is on The drivers do not provide power to light the BATTERY CHARGING indicator current for this LED is provided by the UIF module There are four buttons on the display panel the ON STANDBY button SW2 is connected directly to the UIF module The other three UPPER ALARM LIMIT SW1 LOWER ALARM LIMIT SW3 and PRINT SW4 are resistor weighted and attached via one signal line to an A D channel of the UIF module U4 is employed as a drain device to guarantee a certain resistance value when a button is pressed The J1 connector pinouts are as follows 1 5V power for display drivers 8 NC 2 5V power for display drivers 9 ON button signal ONBUTTON 3 5V power for green LED GREENPWR 10 Button signal BUTRES 4 Serial clock to display drivers SERCLK 11 NC 5 Load data to display drivers LED1EN 12 NC 6 Serial data to display drivers SERDATA 13 Ground 7 Current source to battery charging 14 Ground indicator CHRGPWR SCHEMATIC DIAGRAMS The following part locator diagrams and schematics are included in this section Figure Description Figure S5 1 SpO2 PCB Part Locator Diagram Figure S5 2 ECG PCB Part Locator Diagram Figure S5 3 UIF PCB Part Locator Diagram Figure S5 4 SpO2 Controller PCB Part Locator Diagram Figure S5 5 ECG Controller PCB Part Locator Diagram Figure S5 6 Communications PCB Part Locator Diagram Figure S5 7 Display PCB Part Locator Diagram Figure S5 8 SpO2 Schematic Di
14. 0 appears in the SpO2 display and the HEART PULSE RATE display flashes ON while the maximum minimum and average values for the ECG display and ECG analysis channels are captured When ON stops flashing the maximum value in volts for the ECG display channel during the 1 second capture period is indicated in the HEART PULSE RATE display Rotate the control knob CW until 47 1 appears in the SpO02 display The number shown in the HEART PULSE RATE display is the average value in volts for the ECG display channel during the 1 second capture period Rotate the control knob CW until 47 2 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the minimum value in volts for the ECG display channel during the capture period Rotate the control knob CW until 47 3 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the maximum value in volts for the ECG analysis channel during the capture period Rotate the control knob CW until 47 4 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the average value in volts for the ECG analysis channel during the capture period Rotate the control knob CW until 47 5 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the minimum value in volts for the ECG analysis channel during the 1 second period Press the LOWER ALARM LIMIT button to return to the s
15. Action If possible verify the problem with the service mode menu item 2 knob and lamp test Verify proper connection between knob and UIF PCB If the condition still persists replace the UIF PCB Verify the problem and identify faulty buttons with the service mode menu item 3 button test If faulty buttons are AUDIBLE ALARM SILENCE button or NEW PATIENT NEONATAL button replace UIF PCB If faulty buttons are on front panel replace Display PCB If the buttons still do not work replace the UIF PCB Press the NEW PATIENT NEONATAL button twice rapidly If the NEONATAL MODE indicator lights replace the Display PCB If the NEONATAL MODE indicator does not light replace the UIF PCB 5 7 Section 5 Troubleshooting 5 6 4 Display Alarms Table 5 5 lists symptoms of problems relating to nonfunctioning displays audible tones or alarms and recommended actions If the action requires replacement of a PCB or module refer to Section 6 Disassembly Guide Table 5 5 Display Alarms Problems 1 Display values are missing or erratic Display segments do not light When the ECG cable is connected there is no HEART PULSE RATE display but the SpO2 display is functional Alarm sounds for no apparent reason Alarm does not sound 5 8 Recommended Action If the sensor is connected replace the sensor connector assembly If the condition persists replace t
16. Controller PCB white 032974 not pictured Fuse 2 5A type T 250V 5x20 mm 691311 Gasket rubber SpO2 030974 7 1 Section 7 Spare Parts Figure 7 1 shows the N 3000 expanded view with numbered callouts relating to the spare parts list Fea pand 22 Estern cower id Hean paiantnesrate burthor 224 Lead acid batery 24 Doing connector PSE 40 Spl PEE 2 Spo conidia P 2r Con munications PCES Lithium battery smal 11 Lithium battery arge 112 Bt Poe 13 Ets controller POE 114 Grounding dips 2 h Top comer 1S Display PEES Fontparel 1 Figure 7 1 N 3000 Expanded View 7 2 SECTION 8 PACKING FOR SHIPMENT 8 1 General Instructions 8 2 Repacking in Original Carton 8 3 Repacking in a Different Carton To ship the monitor for any reason follow the instructions in this section 8 1 GENERAL INSTRUCTIONS Pack the monitor carefully Failure to follow the instructions in this section may result in loss or damage not covered by the Nellcor Puritan Bennett warranty If the original shipping carton is not available use another suitable carton North American customers may call Nellcor Puritan Bennett Technical Services to obtain a shipping carton Prior to shipping the monitor contact your supplier or the local Nellcor Puritan Bennett office Technical Services Department for a returned goods authorization number Mark the shipping carton and any shipping docume
17. Description InpullOutput Power UARTTXD RS232 422 only lO UARTRXD RS232 422 only Ho QData sub module detection Ho UARTDTR RS232 422 only lO rExtemal Communications Standby Jo UARTDSR RS232 422 only C Technical Supplement Table S4 2 J8 Connector Continued Pin No _ Pin Description InpuvOutpuvPower s husa o oo 21 interrupt rom second comaa MoO o ooo Rest o 26 DSL datastrobelow TO SDCK used for sub module detection 28 Chipseect TO 29 ReadWriteStobe_ CO OE o O S J12 J22 These are two identical connectors that interface to the SpO2 module Power and stackbus signals are sent to these modules Additionally a connection between these two connectors allows the modules to communicate without stackbus if necessary Table S4 3 J12 J22 Inter Module Connector Pin No Pin Description Input Output Power Module reset Signal line from SpO2 to expansion module High voltage power S 15 Technical Supplement J5 Connector J5 connects to the display board which allows the UIF module to control the monitor display Signals at this connector include power serial clock and data lines button signal and charging battery indicator current Table S4 4 J5 Display Connector Pin No Pin Description Input Output Power Power from switch controlled by external Power watchdog Power from switchDcontrolled by external Power watchdog C SSCS 5 LED drivers latch en
18. Menu Item 22 Latching Alarms This function allows you to disable or enable the latching alarm feature The factory default setting is latching alarm disabled 1 From the service mode steady state select menu item 22 by rotating the knob until 22 appears in the SpO2 display Press the UPPER ALARM LIMIT button 2 Observe the enable disable latching alarm setting of OFF or ON in the HEART PULSE RATE display OFF latching alarm disabled ON latching alarm enabled 3 To change the enable disable latching alarm setting rotate the knob until the desired setting is displayed flashing 4 Press the UPPER ALARM LIMIT button to store the default setting 5 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 19 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 14 Menu Item 23 Enable Disable Alarm Silence Reminder This function allows you to disable or enable the alarm silence reminder feature The factory default setting is alarm silence reminder enabled 1 From the service mode steady state select menu item 23 by rotating the knob until 23 appears in the Sp02 display Press the UPPER ALARM LIMIT button Observe the alarm silence reminder setting of OFF or ON in the HEART PULSE RATE display OFF alarm silence reminder disabled ON alarm silence reminder enabled To change the alarm silence reminder setting rotate the kno
19. PCB There are circuits on the board that are also shown on the schematic diagrams related to respiration monitoring These circuits are not used in this model N 3000 and are not described a Isolated Power Supply DC to DC voltage converter U9 uses Vdd power referenced to chassis ground from the UIF PCB to generate positive VCCI VDDI and VDRIVE voltages from the VOUT output A negative VEEI voltage is generated from the VOUT output of U9 These power supply voltages are electrically isolated from the N 3000 chassis and are referenced to a separate isolated ground at the COM output of U9 The voltages are used to power the conditioning circuits for the ECG lead signals Surge arrestor DT1 provides a high voltage safety discharge path between the isolated ground and chassis ground b Cable Off Detector Circuit When the external ECG lead cable assembly is connected to the N 3000 pin 1 of connector P1 is connected to the isolated ground This keeps the phototransistor part of U7 shown at the top right of schematic sheet 1 turned off If the ECG lead cable assembly is disconnected resistor R37 causes the phototransistor to conduct and NO_CABLE line is pulled low to provide the ECG Controller with an indication that the ECG lead cable assembly is disconnected c ECG Level Shift and Filtering The ECG lead inputs are connected to the ECG PCB through external connector P1 Resistors R44 R45 R46 R47 R48 and R122 form a voltage divider t
20. The CSBOOT signal from U1 which is configured for 16 bit memory access provides the enable signal for U4 After system software comes on or is booted up CSBOOT is configured for a start address of 0 a block length of 256K bytes both read and write access and gated with AS This configuration provides a program memory range of 00000h through 3FFFFh The number of wait states needed before the CSBOOT signal is generated depends upon the U1 clock speed and the speed at which U4 can successfully perform its functions With the N 3000 the number of wait states must be set to 1 based upon a CPU clock speed of 16 0 MHz maximum and the U4 access time of 150ns maximum Resistor R22 pulls the U4 OE signal state to low during normal operation If this signal state is high the U4 output is disabled c RAM Memory The U5 RAM chip provides the SpO2 Controller board with 128K bytes of memory The U1 CS0 provides the chip enable signal for U3 The U3 hardware has an 8 bit wide data path After boot up CSO is configured as a chip select with a start address of 40000h block length of 128K 8 bit port both bytes access both read and write access and gated with AS This configuration gives a data memory range of 40000 through 5FFFFh The number of wait states to generate depends upon the U1 clock speed and the U3 access speed The number of wait states for CSO is set to 0 based on a U3 access time of 85ns minimum d Stackbus The SpO2 c
21. backup lithium battery has been replaced Using a timepiece track the clock to verify proper operation Press the LOWER ALARM LIMIT button to return to the service mode steady state Turn the monitor off by pressing the ON STANDBY button The following test should be completed after defibrillation has been performed on a patient attached to ECG leads and a Nellcor Puritan Bennett SCE 10 ECG cable It does not need to be performed as a component of an N 3000 performance verification test Perform the following procedure to test the ECG cable 1 Disconnect the SCE 10 ECG cable from the N 3000 and the ECG leads Pin locations for both ends of the ECG cable are identified in Figure 3 6 4 E C 2 2 EZ o E F M 2000 Connector EOS Lead Corrector 3 19 Section 3 Performance Verification Figure 3 6 ECG Cable Pin Locations 2 Measure the resistances between the pins as indicated in Table 3 3 Table 3 3 ECG Cable Resistances Pin ToPin Resistance 3 B 900 1100 ohms 8 Cc 900 1100 ohms B 5 open A D foen i B JE open 3 If the resistances are not as indicated replace the cable 3 4 SAFETY TESTS N 3000 safety tests consist of e Ground Integrity e Electrical Leakage 3 4 1 Ground Integrity This test verifies the integrity of the power cord ground wire from the AC plug and connection with the external power supply chassis ground 1 Configure the electrical safety analyzer as f
22. condition still persists replace the UIF indicate a pulse but the digital displays show zeroes SpO2 or heart pulse rate values change rapidly PULSE AMPLITUDE indicator is erratic When the ECG cable is disconnected from the leads during operation there is no cable off alarm When the ECG leads are disconnected from the patient during operation there is no leads off alarm Monitor is functional for some of the ECG lead settings I Il or III but not all PCB The sensor may be damp or may have been reused too many times Replace it An electrosurgical unit ESU may be interfering with performance Move the N 3000 and its cables and sensors as far from the ESU as possible Plug the N 3000 power supply and the ESU into different AC circuits Move the ESU ground pad as close to the surgical site as possible and as far away from the sensor as possible Verify the performance with the procedures detailed in Section 3 If the condition still persists replace the UIF PCB Replace the cable with a known serviceable cable If the condition still persists replace the ECG PCB Replace the cable and leads with known serviceable cable and leads If the condition still persists replace the ECG PCB Replace the cable and leads with known serviceable cable and leads If the condition still persists replace the ECG PCB 5 9 Section 5
23. display Press the UPPER ALARM LIMIT button A 1 appears in the HEART PULSE RATE display and a low level audible tone heard Rotate the control knob CW As the number in the HEART PULSE RATE display increases from 0 to 254 the volume will correspondingly increase Rotate the control knob CCW to decrease the volume Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 5 Menu Item 5 Internal Configuration Code ICC Report 4 16 This menu item verifies whether the current monitor configuration is the desired configuration The ICC is the hexadecimal representation of the instrument hardware configuration derived by the UIF processor through internal examination of the modules and software present in the N 3000 1 From the service mode steady state select menu item 5 by rotating the knob until 5 appears in the SpO2 display Press the UPPER ALARM LIMIT button The ICC value appears as the two left most digits in the HEART PULSE RATE display The right most digit displays H for hexadecimal The monitor s configuration is represented by one of the following values ICC Value Monitor Configuration 3 SpO2 only with serial port 7 SpO2 and ECG only with serial port F SpO2 ECG and respiration with serial port 12 SpOz only with wired network interface 16 SpO2 and ECG only with wired network interface 1E SpO2 ECG and respiration with wired network interface FF Invalid con
24. indication must not exceed 50 microamps for 240 volts 10 microamps for 120 volts for the following AC power configurations with the monitor on AC LINE POWER LINE POLARITY GROUND CABLE Normal Normal Normal Open SECTION 4 CONFIGURATION MODE SERVICE MODE AND ALARM ACTIVE FUNCTION 4 1 4 2 4 1 Introduction 4 2 Configuration Mode 4 3 Service Mode 4 4 Alarm Active Function INTRODUCTION This section discusses use of the configuration mode to reconfigure power on default values the service mode to identify and correct monitor difficulties and the alarm active function CONFIGURATION MODE The following paragraphs describe how to enter the N 3000 configuration mode and change factory power on default settings The N 3000 cannot enter the configuration mode while it is stacked unless the other instruments are in the configuration mode or are turned off If the other instruments are in the configuration mode the N 3000 knob may be used to scroll to the desired menu item and adjust the settings of the other instruments Likewise if the N 3000 is stacked with an N 3200 and both are in the configuration mode the N 3200 knob may be used to scroll to the desired menu item and adjust the settings of the N 3000 Use the following procedure to enter configuration mode 1 Ifthe monitor is on turn it off 2 While simultaneously pressing both UPPER and LOWER ALARM LIMIT buttons turn the monitor on Continue to press both but
25. mode steady state 4 3 28 Menu Item 40 Set ECG Lead This function allows you to change the ECG lead setting The power on default setting is not changed 1 From the service mode steady state select menu item 40 by rotating the knob until 40 appears in the SpO2 display Press the UPPER ALARM LIMIT button The currently selected ECG lead is displayed in the HEART PULSE RATE display 0 OFF 1 lead LA RA 2 lead II LL RA 3 lead III LL LA Rotate the knob to the desired ECG lead setting Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 29 Menu Item 41 Set ECG Pacer Filter 4 26 This function allows you to turn the pacer filter ON or OFF Pacer filter ON causes the N 3000 to filter pacemaker generated signals so that they will not be measured in determining a patient s heart rate When the filter is ON pacemaker signals of 1 to 2 0 milliseconds in duration with 2 0 to 700 0 millivolt amplitude are filtered out The power on default setting is not changed Section 4 Configuration Mode Service Mode and Alarm Active Function From the service mode steady state select menu item 40 by rotating the knob until 40 appears in the SpO2 display Press the UPPER ALARM LIMIT button ON or OFF is displayed in the HEART PULSE RATE display To change the current setting rotate the knob until the desired setting is displayed Press the UPPER
26. mode steady state 4 2 8 Default Alarm Volume Perform the following steps to adjust the default alarm volume 1 From the configuration mode steady state press and hold the AUDIBLE ALARM OFF button After 3 seconds a continuous tone at the current volume setting is emitted VOL is displayed in the HEART PULSE RATE display and the current default alarm setting a number from 1 to 10 is displayed in the SpO2 display While continuing to hold the AUDIBLE ALARM OFF button turn the control knob on the top of the monitor CW to increase the default volume CCW to decrease the default volume Release the AUDIBLE ALARM OFF button and the monitor returns to the configuration mode steady state 4 2 9 Default Alarm Silence Duration The default alarm silence duration may also be adjusted while in the configuration mode To do so 1 From the configuration mode steady state press and hold the AUDIBLE ALARM OFF button for 3 seconds or less The current default setting for the alarm silence duration appears in the HEART PULSE RATE display The SpO2 display indicates CFG while the RESPIRATION RATE display indicates SEC seconds 4 5 Section 4 Configuration Mode Service Mode and Alarm Active Function Note Pressing the AUDIBLE ALARM OFF button for more than 3 seconds without turning the knob causes the N 3000 to enter the Default Alarm Volume mode as described in paragraph 4 2 8 2 Use the control k
27. or off 1 From the service mode steady state select menu item 28 by rotating the knob until 28 appears in the Sp0O2 display Press the UPPER ALARM LIMIT button Observe the battery charging circuit setting of OFF or ON in the HEART PULSE RATE display OFF battery charging circuit disabled ON battery charging circuit enabled To enable or disable the battery charge circuit rotate the knob until the desired setting is displayed flashing Press the UPPER ALARM LIMIT button Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 17 Menu Item 29 Instrument Compatibility Report This function allows you to determine the cause of an instruments not compatible error message 1 From the service mode steady state select menu item 29 by rotating the knob until 29 appears in the SpO2 display Press the UPPER ALARM LIMIT button The number 29 0 appears in the SpO2 display The number in the HEART PULSE RATE display is the sensorbus protocol version and revision number of the N 3000 Rotate the knob until 29 1 appears in the SpO2 display Press the UPPER ALARM LIMIT button The number in the HEART PULSE RATE display is the multicast version and revision number of the N 3000 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 18 Menu Item 30 SpO2 RCAL Report This function allows you to check the sensor RCAL value readi
28. the instrument has failed This alarm is powered by the secondary back up lithium batteries located on the UIF PCB A 1 Appendix In all cases an attempt to store an error in the Error Log may fail due to failure or corruption of the Error Log in EEPROM This condition alone does not constitute a failure error and operation of the instrument proceeds as if the error has been successfully logged A2 USER CORRECTABLE ERROR CODES The error codes listed in Table A 2 are user correctable Table A 2 N 3000 User Correctable Error Codes Error Explanation Code Current user input values limits volumes times have been lost during an internal reset and the unit has returned to power on defaults 055 058 62 or Alarm and beep volume audible alarm silence duration and operating mode have returned to power on defaults due to an internal instrument reset 0 Alarm limits have been reset to their power on default due to software corruption in the ECG module 063 Cannot calibrate sensor A3 FAILURE ERROR CODES Table A 3 lists the possible failure error codes in numerical order Table A 3 N 3000 Failure Error Codes Error Explanation Code UIF excessive watchdog resets Battery Power management failure Stackbus gating failure Lithium battery voltage too low 111 UIF unknown POST failure typically processor derail or memory corruption during POST Excessive resets more than three in 1 minute 151 UIF
29. 12 provide secondary protection against over current drive by disabling the control op amp if the voltage goes above 0 9 volts S 5 Technical Supplement Components R30 and C24 filter any high frequency noise on VCCI that is beyond the bandwidth of U32 Finally Q13 R104 and R105 turn the LEDs off between pulses e Differential Input Amplifier Input op amp U23 converts the differential current to a voltage One side of the output is coupled through capacitor C48 while the other output is used as a reference that is switched by U24 onto R78 only during one channel on off cycle This AC couples only one channel Low frequency noise on the other channel is eliminated also since the LED off output for both channels is the same This switched AC coupling removes the DC without resulting in channel crosstalk The resulting AC coupled signal and reference are switched through U25 to the input of differential amplifier U21 when the patient module is plugged in If the cable is plugged in U25 selects the output of the preamp and ground as the input to U21 AC coupling is performed to keep crosstalk from the preamped AC signal Differential amplifier U21 has a programmable gain of 1 4 16 or 64 depending upon the state of PDO and PD1 f Synchronous Demodulator and Gain If calibration is not selected the output of U21 is directed through U26 to filter U27 to eliminate high frequency noise Amplifier U28 is either an inverting or noninve
30. 2 54 S6 S8 on SW1 and SW2 to the on position and switches S1 83 85 S7 to the OFF position This enables U10 and disables U9 With RS422 selected J1 has the following pinout TXD RXD TXD GND RXD Nurse Call 3 3V OJAN b Alarm Active 3 3V Power Isolated alarm active or 3 3 volt power is selectable as a 500mA fused output on J1 Pin 6 Placing switch block SW3 S1 to the on position and S2 S3 S4 to the OFF position will select the alarm active signal on J1 Pin 6 The alarm active signal provided is a normally open relay that shorts Pin 6 J1 to Pin 4 J1 signaling an alarm event To select isolated 3 3 volt power place switch SW3 S1 to the OFF position and S2 S3 S4 to the on position This provides up to 100mA of 3 3 volt power The N 3000 display board is the assembly that contains the front panel display for the monitor The display board is connected to and controlled by the UIF module The display board block diagram is shown in Figure S4 5 Synchro Saal Inbetace Five Yo Suppy ee ee Eaton Eres Lower Aarm Lirak Print Poin barcy Figure S4 5 Display Board Block Diagram Technical Supplement The display driver ICs consist of U1 U2 and U3 which use a three wire serial interface connect to CPU U3 on the UIF module The three drivers used on this module are cascaded together and require that the host processor write 48 bits 16 x 3 to the board per each display update The front panel POWER LED DS23
31. 4 Timing for the isolated circuitry is derived from the switching frequency of the power supply hence ANALOG CLK is used to control front end aliasing If no ANALOG CLK signal is available R13 and C8 provide a default timing circuit for the U4 controller Two parallel FETs Q7 drive the T1 transformer in flyback mode channeling the current through sense resistors R23 and R133 Any inductive spike created by the leakage inductance of the T1 transformer is filtered out of the circuit by R105 and C9 Feedback for the U4 controller is optocoupled through one half of U34 This controls the circuit pulse width which also maintains the isolated VCCI at 5 volts Components R68 R69 R70 C45 and CR8 detect the value of VCCI and increase the output of the optocoupler when it VCCI is over 5 volts Technical Supplement The transformer flyback pulse is rectified by CR7 and filtered by C12 C57 and R5 to create VCCI The other two transformer windings have three times as many turns than the VCCI winding These windings are rectified by CR5 and CR6 to achieve 15 volts during the flyback cycle These supplies are then regulated by U2 and U15 to 12 volts Normal transformer signals are filtered out of the circuitry by C55 R110 CR2 Q3 R38 C14 Q6 R53 and R49 However the Q7 turn on transition is a direct result of the ANALOG CLK signal This creates the isolated clock signal ISO CLK and guarantees a consistent output pulse time independen
32. A hexadecimal number appears across the entire monitor display with an H in the last far right position 4 17 Section 4 Configuration Mode Service Mode and Alarm Active Function 2 Verify that this number agrees with the number on the monitor external label If the number does not agree the number on the external label should be changed to agree with the displayed number Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 9 Menu Item 18 Power Status This test allows you to determine battery conditions 1 From the service mode steady state select menu item 18 by rotating the knob until 18 appears in the SpO2 display Press the UPPER ALARM LIMIT button The number 18 0 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the lead acid battery voltage to the nearest tenth of a volt Rotate the control knob CW until 18 1 appears in the SpO02 display The number shown in the HEART PULSE RATE display is the charge bus voltage to the nearest tenth of a volt Rotate the control knob CW until 18 2 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the backup lithium battery voltage to the nearest tenth of a volt Note The control knob can be rotated until 18 3 appears in the SpO02 display However the number shown in the HEART PULSE RATE display has no meaning and can be disregarded Press t
33. ALARM LIMIT button to change the setting Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 30 Menu Item 42 Set ECG Low Frequency Filter This function allows you to change the ECG low frequency filter for service mode testing Selecting ON enables a 05 Hz ECG channel high pass filter providing better ST segment resolution When OFF is selected a 0 5 Hz filter is used The power on default setting is not changed 1 From the service mode steady state select menu item 42 by rotating the knob until 42 appears in the SpO2 display Press the UPPER ALARM LIMIT button The currently selected ECG low frequency filter status is displayed in the HEART PULSE RATE display OFF Filter is disabled 0 5 40 Hz bandwidth ON Filter is enabled 0 05 40 Hz bandwidth Rotate the knob to the desired low frequency filter setting Press the UPPER ALARM LIMIT button to change the setting Press the LOWER ALARM LIMIT button to select the setting and return to the service mode steady state 4 3 31 Menu Item 43 Set ECG Baseline Reset This function allows you to control the ECG reset switch for service mode testing The power on default setting is not changed It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 From the service mode steady state select menu item 43 by rotating the knob until 43 appears in the Sp
34. ATE middle and RESPIRATION RATE right displays all indicate 8 8 8 689 lia 68 886 Figure 3 1 Self Test Display c All displays turn off momentarily 3 3 Section 3 Performance Verification d Digital displays individually light in a scanning test pattern e A 1 second beep sounds and all displays again illuminate momentarily f All displays turn off except the POWER ON and BATTERY CHARGING indicators The SpO2 and HEART PULSE RATE displays are blank The RESPIRATION RATE display indicates 0 for about 15 seconds then is blank The monitor is in the normal mode steady state g Press and hold the NEW PATIENT NEONATAL button located on the rear panel for 3 seconds until you hear three beeps indicating that stored patient data is cleared 3 3 3 2 Adult Power On Defaults and Alarm Limit Ranges 3 4 Note When observing or changing default limits a 3 second timeout is in 1 effect that is if no action is taken within 3 seconds the monitor automatically returns to the normal mode steady state Ensure that the monitor is on Press and release the UPPER ALARM LIMIT button Verify that the monitor emits a single beep and the SpO2 display indicates an alarm limit of 100 for about 3 seconds Verify that the other displays indicate a single bar at the top of each window while the 100 is displayed At the end of the 3 seconds the displays are blank normal mode steady state P
35. BQ2001 When the area around the transistor approaches 70 C the circuit will signal the BQ2001 to stop charging When the transistor cools charging is resumed To protect the battery a thermal cutoff switch is located on the docking connector close to the lead acid battery compartment When the temperature in Technical Supplement the battery compartment approaches 50 C the switch opens to prevent damage to the lead acid battery b Processor The processor for the UIF PCB is U3 a Motorola MC68331 IC This processor uses a 32 bit CPU and contains several submodules including pulse width modulators internal RAM and a Queued Serial Module QSM The processor also contains a non multiplexed data address bus and input output timer pins The processor generates chip selects address lines data direction and data strobes for communicating with its peripherals over its bi directional 16 bit data bus D15 through DO The chip select outputs are CSBOOT and CSO through CS8 The address lines are AO through A18 The data direction is generated by U3 on R W The data strobe for indicating valid data is generated on DS Using these control lines the processor is capable of reading from or writing to any of the peripherals attached to its data bus Data transfers are either 16 bit D15 through DO or 8 bit D15 through D8 A 32 679 kHz source clock signal for the processor is produced by stackbus adapter U14 from crystal Y3 System c
36. Flashing Display Characteristics During high or medium priority alarms the 5 inch red front panel display whose parameter is outside the alarm limits flashes at the following rates High priority 300 milliseconds ON 150 milliseconds OFF Medium priority 750 milliseconds ON 600 milliseconds OFF Accuracy SpO2 Adult 70 100 2 digits 0 69 unspecified Neonatal 70 100 2 digits 0 69 unspecified Accuracies are expressed as plus or minus X digits saturation percentage points between saturations of 70 100 This variation equals plus or minus one standard deviation 1SD which encompasses 68 of the population All accuracy specifications are based on testing the subject monitor on healthy adult volunteers in induced hypoxia studies across the specified range Adult accuracy is determined with Oxisensor II D 25 sensors Neonatal accuracy is determined 9 3 Section 9 Specifications with Oxisensor II N 25 sensors In addition the neonatal accuracy specification is neonatal blood on oximetry measurements 9 4 Section 9 Specifications Pulse Rate optically derived 20 250 bpm 3 bpm Heart Rate ECG derived 20 250 bpm 5 bpm Respiration Rate 3 150 breaths min 3 breaths min Accuracies are expressed as plus or minus X bpm across the display range This variation equals plus or minus 1SD which encompasses 68 of the population ECG Specific Performance Characteristics CMRR Common M
37. Josas Cedex France Tel 33 1 34 63 06 00 Nellcor Puritan Bennett Germany GmbH Black amp Decker Strasse 28 65510 Idstein Germany Tel 49 6126 5930 Nellcor Puritan Bennett Italia Srl Via dei Tulipani 3 20090 Pieve Emanuele MI Italy Tel 39 2 90786404 To obtain information about a warranty if any for this product contact Nellcor Puritan Bennett Technical Services or your local Nellcor Puritan Bennett representative Purchase of this instrument confers no express or implied license under any Nellcor Puritan Bennett patent to use the instrument with any sensor that is not manufactured or licensed by Nellcor Puritan Bennett Nellcor Puritan Bennett Durasensor Nellcor Symphony Oxisensor II and the Nellcor Puritan Bennett knob configuration are trademarks of Nellcor Puritan Bennett Incorporated Covered by one or more of the following U S Patents and foreign equivalents 4 621 643 4 653 498 4 700 708 4 770 179 4 869 254 5 078 136 5 351 685 and 5 368 026 TABLE OF CONTENTS List of Figures List of Tables Section 1 INGFOAUCTION 0 0cc cece ccc cece ccc e cece eeeeeeeeeeeeeeeeeeeeeeetenins 1 1 1 1 Manual Overview 20 2 cc ccccccececeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenees 1 1 1 2 N 3000 Patient Monitor Description 0 ceecceeeeeeeeeeeeeeetee 1 1 1 3 Related Documents cccccccccccccccececeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeess 1 2 Section 2 Routine Maintenance ccccccc
38. LSE RATE display will flash indicating the heart rate is below the default lower alarm limit The heart rate beep can still be heard Press the AUDIBLE ALARM OFF BUTTON Verify that the alarm is silenced Increase the heart rate setting on the ECG simulator to 240 bpm Verify that the rate of beeps increases and the HEART PULSE RATE display value increases After at least five heartbeats verify that the monitor displays a heart rate of 240 5 bpm Verify that the audible alarm sounds and the HEART PULSE RATE display flashes indicating that the heart rate is above the default upper alarm limit Press AUDIBLE ALARM OFF button to silence the alarm Decrease the heart rate setting on the ECG simulator to 120 bpm After at least five heartbeats verify that the monitor displays a heart rate of 120 5 bpm Disconnect the LL lead from the ECG simulator Verify that the LEADS OFF indicator lights three dashes are displayed in the HEART PULSE RATE display and a low priority audible alarm sounds 12 13 14 Section 3 Performance Verification Reconnect the LL lead to the ECG simulator Verify that the LEADS OFF indicator is no longer lit and that the alarm is silenced Note Depending on the lead used and pleth configuration the HEART PULSE RATE display may revert to a pulse rate as leads are removed in step 11 If a medium priority alarm results and is silenced the low priority alarm from leads off will not break th
39. Menu Item 3 Button Test This test verifies proper operation of individual buttons and button combinations 1 From the service mode steady state select menu item 3 by rotating the knob until 3 appears in the SpO2 display Press the UPPER ALARM LIMIT button A 0 appears in the HEART PULSE RATE display Press each of the buttons and button combinations listed below The corresponding number appears in the HEART PULSE RATE display to indicate that these buttons and button combinations are functioning correctly Displayed Press the following button and or button combinations number None pressed 0 Audible alarm off New patient neonatal rear panel Upper alarm limit Lower alarm limit Print Upper and lower alarm limits simultaneously Upper lower limits and print simultaneously Upper limit and audible alarm off simultaneously o oo N OORA OD Lower limit and audible alarm off simultaneously oO Any combination not listed above 4 15 Section 4 Configuration Mode Service Mode and Alarm Active Function 3 Rotate the knob CW or CCW to return to the service mode steady state 4 3 4 Menu Item 4 Speaker Test This test verifies that the volume control is functional and determines whether or not there are any discontinuities or saturation conditions in the audible output 1 From the service mode steady state select menu item 4 by rotating the knob until 4 appears in the SpO2
40. O2 display Press the UPPER ALARM LIMIT button The currently selected reset position OFF or ON is displayed in the HEART PULSE RATE display Rotate the knob to the desired ECG reset Press the UPPER ALARM LIMIT button to change the setting Press the LOWER ALARM LIMIT button to select the setting and return to the service mode steady state 4 3 32 Menu Item 44 ECG POST Test Signal 4 27 Section 4 Configuration Mode Service Mode and Alarm Active Function This function allows you to send an internal test signal either singly or repetitively from the ECG module for service mode testing 1 From the service mode steady state select menu item 44 by rotating the knob until 44 appears in the Sp0O2 display Press the UPPER ALARM LIMIT button 44 is displayed in the SpO2 display 0 is displayed in the HEART PULSE RATE display Rotate the knob to display the following functions 0 ECG POST TEST line high 1 ECG POST TEST line low 2 Lead selection is set to OFF and a 100 ms pulse is transmitted out the ECG POST TEST line each time the UPPER ALARM LIMIT button is pressed 3 Lead selection is set to OFF and a 100 ms pulse is transmitted out the ECG POST TEST line once a second Press the UPPER ALARM LIMIT button to select the desired setting Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 33 Menu Item 45 Check ECG Cable Off Detection This funct
41. OM To allow the use of either a 256K x 16 or 128K x 16 PROM at U10 Pin 43 of U10 is connected to J10 Pin 2 On a 256K x 16 PROM Pin 43 will be PROM address A17 On a 128K x 16 PROM Pin 43 will be an active high output enable Address line A18 from U3 is connected to J10 pin 1 and VDD is connected to J10 pin 3 Attaching a jumper between J10 pins 1 and 2 will connect U3 address line A18 to PROM address A17 to address all 256K words in a 256K x 16 S 11 Technical Supplement S 12 PROM Connecting a jumper between J10 Pins 2 and 3 will connect Pin 43 to VDD for the active hi output enable of a 128K x 16 PROM The PROM chip select is connected to the CSBOOT signal Pin 112 of U3 At system reset this signal defaults to decode address 00000 for a block of 1 megabyte held active for 13 wait states and gated with the processor address strobe The output enable of the PROM pin 22 is connected to ground through R8 to allow data to be gated onto the data bus as soon as the CSBOOT signal goes active After a system reset CSBOOT is configured to have one wait state and to be active only for the address range of the PROM Processor RAM U13 and U23 N The RAMs are used by the processor to store program variables values and trend data Each is 128K x 8 arranged to provide 128K x 16 bits of RAM for use by the processor U3 address lines A17 through A1 are connected to both RAMs address lines A16 through AO U3 data bus lines D15 through D8
42. PCB The ECG Controller PCB contains a microprocessor and supporting circuits used to supply ECG data to the UIF PCB The Communications module allows messages to be sent to a host computer using asynchronous serial communications All communications signals on the Communications module originate from the UIF module The Display module contains annunciators and push buttons allowing the user to access information and to select various available parameters The Display PCB contains SpO2 and heart rate LEDs and their associated driver circuits Front panel switches also allow the user to turn the unit on and off to set alarm limits and to print data The Display PCB is connected to the UIF module via a 14 pin connector S 3 Technical Supplement Ospley Modde viad Qninurrcetors and orrol Figure S4 1 N 3000 Functional Block Diagram 4 2 Circuit Description 4 2 1 SpO2 Module S 4 The following paragraphs discuss the operation of each of the printed circuit boards within the N 3000 oximeter Refer to the appropriate schematic diagram at the end of this supplement as necessary a Isolated Power Supply Transformer T1 and associated components comprise the isolated power supply circuitry of the SpO2 module see sheet 1 of the schematic diagram This power supply is a pulse width modulated current mode switching supply In this circuitry controller U4 is synchronized to a programmable clock frequency ANALOG CLK U4 pin
43. R ALARM LIMIT button to return to the service mode steady state 4 3 25 Menu Item 37 Set SpO2 Analog Test Mode This function allows you to validate sensors and or the operation of the SpO2 module 1 2 Connect the sensor to the N 3000 From the service mode steady state select menu item 37 by rotating the knob until 37 appears in the SpO2 display Press the UPPER ALARM LIMIT button The test mode setting of 0 normal operation is displayed in the HEART PULSE RATE display SEr is displayed in the AUXILIARY display and 37 is displayed in the SpO2 digital display Rotate the knob to select other settings 1 zero setting 2 system test setting If the displayed value is different from the current SpO2 value the display will flash Pressing the UPPER ALARM LIMIT button will set the displayed value in the SpO2 module which will cease its automatic operation Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 26 Menu Item 38 SpO2 A D Cal Line Test This function allows you to verify calibration of the SpO2 A D converter 1 From the service mode steady state select menu item 38 by rotating the knob until 38 appears in the SpO2 display Press the UPPER ALARM LIMIT button Observe the PULSE RATE display The possible values 0 1 2 or 3 indicate the following status 0 Indicates that both A D converters are undergoing self calibr
44. T button 2 5 10 or 20 is displayed in the HEART PULSE RATE display Rotate the knob to display the desired default trend type 3 Press the LOWER ALARM LIMIT BUTTON to return to the configuration menu steady state 4 2 10 6 Reset to Factory Defaults Menu item number 5 allows you to reset all default settings to the original factory settings as listed in paragraph 9 6 Factory Default Settings of the Specifications section 1 From the configuration menu steady state rotate the knob until 5 is displayed in the SpO2 display 2 Press the UPPER ALARM LIMIT button to reset to factory defaults Three beeps indicate that all configurable power on default parameters except latching alarms and alarm silence reminder enable are set to their factory default values You are automatically returned to the configuration menu steady state 4 2 10 7 Primary Heart Pulse Rate Source 4 8 Menu item number 6 allows you to select the default primary heart pulse rate source Selecting SPO causes the pulse rate measured by an SpO2 sensor to be used as the primary source displayed in the HEART PULSE RATE display Section 4 Configuration Mode Service Mode and Alarm Active Function Selecting ECG causes the heart rate measured by ECG leads to be used as the primary source displayed in the HEART PULSE RATE display 1 From the configuration menu steady state rotate the knob until 6 is displa
45. TTERY LOW BATTERY CHARGING indicator LINKED indicator RF LOCKED indicator LOWER ALARM LIMIT button UPPER ALARM LIMIT button LEADS OFF indicator PULSE SEARCH indicator PATIENT MOTION indicator To perform test and troubleshooting procedures and to understand the principles of operation and circuit analysis sections of this manual you must know how to operate the monitor Refer to the N 3000 operator s manual To understand the various Nellcor Puritan Bennett sensors and ECG leads that work with the monitor refer to the individual sensor or leads directions for use SECTION 2 ROUTINE MAINTENANCE 2 1 2 2 2 3 CLEANING 2 1 Cleaning 2 2 Periodic Safety and Functional Checks 2 3 Batteries Caution Do not immerse the N 3000 or its accessories in liquid or clean with caustic or abrasive cleaners Do not spray or pour any liquid on the monitor or its accessories To clean the N 3000 dampen a cloth with a commercial nonabrasive cleaner and wipe the exterior surfaces lightly Do not allow any liquids to come in contact with the power connector fuse holder or switches Do not allow any liquids to penetrate connectors or openings in the instrument cover Wipe sensor and ECG lead extension cables with a damp cloth For sensors and ECG leads follow the individual directions for use PERIODIC SAFETY AND FUNCTIONAL CHECKS BATTERIES The following checks should be performed at least every 2 years by a qualified service tec
46. Troubleshooting 5 6 6 Stacked Operation Table 5 7 lists symptoms of problems encountered while in the stacked configuration with the N 3100 and recommended actions Refer to the N 3100 service manual for more troubleshooting information For problems encountered while stacked with the N 3200 refer to the N 3200 service manual Table 5 7 Stack Problems Condition 1 BATTERY IN USE BATTERY LOW indicators on the N 3000 and N 3100 light steadily while they are connected to AC via the external power supply Both units are operational BATTERY IN USE BATTERY LOW indicators on the N 3000 and N 3200 light steadily while they are connected to AC Both units are operational BATTERY IN USE BATTERY LOW indicators on the N 3000 light steadily but N 3100 and or N 3200 does not while they are connected to AC The units are operational BATTERY IN 5 10 USE BATTERY LOW indicators on the N 3100 or N 3200 light steadily but N 3000 does not while they are connected to AC via the external power supply Both units are operational Recommended Action Ensure that the SPS or PSS power supply is plugged into an operational AC outlet If using the SPS power supply and the power supply indicator light is not lit replace the power supply If using the PSS power supply refer to the PSS 1 technical manual Ensure that the power supply is properly plugged into the N 3100 Check the N 3000 fuse and replac
47. Verification This completes the power up performance tests 3 3 4 Hardware and Software Tests Hardware and software testing include the following tests 3 3 4 1 Operation with a Pulse Oximeter Tester 3 3 4 2 Operation with an ECG Simulator 3 3 4 3 Operation with a Respiration Simulator 3 3 4 4 General Operation 3 3 4 1 Operation with a Pulse Oximeter Tester Operation with an SRC 2 pulse oximeter tester includes the following tests 3 3 4 1 1 Alarms and Alarm Silence 3 3 4 1 2 Alarm Volume Control 3 3 4 1 3 Pulse Tone Volume Control 3 3 4 1 4 Dynamic Operating Range 3 3 4 1 5 RCAL Determination 3 3 4 1 6 LED Drive Test 3 3 4 1 1 Alarms and Alarm Silence 1 Connect the SRC 2 pulse oximeter tester to the sensor input cable and connect the cable to the monitor Set the SRC 2 as follows SWITCH POSITION RATE 38 LIGHT LOW MODULATION OFF RCAL MODE RCAL 63 LOCAL Press the ON STANDBY button to turn the monitor on After the normal power up sequence verify that the Sp02 HEART PULSE RATE and RESPIRATION RATE displays initially indicate zeroes Note The pulse bar may occasionally indicate a step change as the monitor is in the pulse search mode Move the modulation switch on the SRC 2 to LOW Verify that the following monitor reaction a The pulse bar begins to track the artificial pulse signal from the SRC 2 b The pulse tone is heard c Zeroes are displayed in the SpO2 HEART PULSE RATE and RESPIRATION RATE di
48. a low priority alarm sounds but no entry is made in the Error Log POST has proceeded to the point that the UIF processor controls the display and speaker facilities The error cannot be logged because the Error Log portion of the EEPROM has failed or internal communications to the Error Log cannot be established An EEExxx code representing the failure is displayed a low priority alarm sound is produced and a failure class error entry is made in the Error Log These errors do not appear on the display or cause an alarm They are entered in the Error Log These errors represent events that have occurred in the instrument that are undesirable but for which their is an effective means of recovery This includes such things as watchdog resets data stream restarts due to data under run or stoppage and resource exhaustion An EEEOxx code representing the failure is displayed and a low priority alarm sounds but no entry is made in the Error Log These errors represent hardware failure conditions that can be corrected by the user such as replacing a faulty sensor or cable They are not logged because they are caused by equipment external to the N 3000 They are readily identified by the 0 leading digit in the error number displayed along with EEE failure errors have a leading digit other than 0 This results in a shrill pulsing alarm sound Nothing is logged in the Error Log and the display is blank because the primary power in
49. able O ooN C 8 Notused a of Onbutton s e 10 Buttonvoltage S P na J2 Connector J2 connects the UIF board to the monitor speaker Table S4 5 J2 Speaker Connector Pin No Pin Description Input Output Power Differential speaker signal Differential speaker signal J3 Knob connector J3 allows the U3 controller to detect knob movement Table S4 6 J3 Knob Connector Pin No Pin Description Input Output Power Digital ground Knob channel B a komana SSCS Chassis case ground 4 2 4 SpO2 Controller S 16 The central processing unit CPU for the SpO2 Controller PCB is the U1 microprocessor It contains an 8 channel 10 bit analog to digital converter Six inputs ANALOGO to ANALOG5 are bussed to the analog board interface connector J4 Of the remaining signals ANALOG6 is connected to Vcc and ANALOG7 is connected to ground These analog inputs are used during the POST to verify proper operation Technical Supplement a CPU Reset Voltage monitor U2 shown in the upper left hand corner of the schematic diagram generates the reset for U1 Reset is held low until Vcc raises above 4 6 volts After Vcc is above 4 6 volts reset is tri stated and pulled high by R10 Note L1 L2 and L3 provide filtering for Vcc b Program Memory EPROM The program memory chip U4 provides the SpO2 controller board with 128K bytes of memory This program boot ROM memory can be expanded up to 256K bytes
50. ady state rotate the knob until 1 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button The UIF software version number is the six digit number in the SpO2 and HEART PULSE RATE displays Press the LOWER ALARM LIMIT BUTTON to return to the configuration menu steady state 4 2 10 3 SpO2 Software Version Report 1 From the configuration menu steady state rotate the knob until 2 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 software version number is the six digit number in the SpO2 and HEART PULSE RATE displays Press the LOWER ALARM LIMIT BUTTON to return to the configuration menu steady state 4 2 10 4 Serial Port Baud Rate 1 From the configuration menu steady state rotate the knob until 3 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button The current baud rate in thousands is displayed in the HEART PULSE RATE display To change the default baud rate setting rotate the knob until the desired setting is displayed Baud rates available are 1 2k 2 4k 9 6k 19 2k and 38 4k Note Baud rates should not exceed 19 200 in RS 232 mode use EIA 422 mode Refer to paragraph 6 5 1 to change the communication mode settings 4 7 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 2 10 5 Trend Type 3 Press the LOWER ALARM LIMIT button to return to the configuration menu steady state Patient trend informa
51. agram Figure S5 9 ECG Schematic Diagram Figure S5 10 UIF Schematic Diagram Figure S5 11 SpO2 Controller Schematic Diagram Figure S5 12 ECG Controller Schematic Diagram Figure S5 13 Communications Schematic Diagram Figure S5 14 Display Schematic Diagram Figure S5 15 Lower Docking Connector Schematic Diagram S 23 Technical Supplement S 24
52. are connected to U13 data bus lines D7 through DO for the upper 8 bits of data U3 data bus lines D7 through DO are connected to U23 data bus lines D7 through DO for the lower 8 bits of data The active low chip select inputs of U13 and U23 are connected to the CSO and CS1 chip select outputs of U3 The active high chip select inputs of U13 and U23 are connected to the active low system reset to prevent writing to the RAM while the system power is coming on or while the watchdog reset is active The output enables of U13 and U23 are connected to digital ground The write enable inputs of U13 and U23 are connected to the data direction R W output of U3 At system reset the RAM chips are disabled and CSO and CS1 from U3 are disabled After system reset CSO and CS1 are configured to be gated with data strobe output DS from U3 When the N 3000 is in STANDBY RAM power is supplied by the backup battery output of the BQ2001 Power is maintained by the N 3000 lead acid battery and in the event that the lead acid battery becomes discharged or is removed by the lithium backup battery BT1 Arcnet controller U6 is the Arcnet controller COM20020 It is used by the processor to implement the stackbus protocol It is an 8 bit memory mapped device that manages the stackbus communications physical implementation along with the stackbus adapter It is connected to the upper 8 bits of the processor data bus to allow for byte operations from the processor
53. ation which will take approximately 3 seconds A value of 0 after the 3 second period indicates that both converters have failed self calibration 1 Indicates that the IR A D converter has completed self calibration and the red A D is still undergoing self calibration or has failed self calibration 2 Indicates that the red A D converter has completed self calibration and the IR A D is still undergoing self calibration or has failed self calibration 3 Indicates that both converters have completed self calibration 4 25 Section 4 Configuration Mode Service Mode and Alarm Active Function 3 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 27 Menu Item 39 SpO2 Enable Automatic Operation This function allows you to enable or disable the SoO2 module automatic operation mode 1 2 Connect the sensor to the N 3000 From the service mode steady state select menu item 39 by rotating the knob until 39 appears in the SpO2 display Press the UPPER ALARM LIMIT button Observe the SpO2 automatic operation setting of OFF or ON in the HEART PULSE RATE display OFF SpO2 module is not in automatic operation ON SpO2 module is in automatic operation Rotate the knob to change the display and turn automatic operation ON or OFF Press the UPPER ALARM LIMIT button to change the setting Press the LOWER ALARM LIMIT button to return to the service
54. ation Rate 3 150 bpm 9 6 FACTORY DEFAULT SETTINGS General Factory Default Settings Operating Mode Pulse Beep Volume Audible Alarm Volume Audible Alarm Silence Duration Alarm Silence Reminder Latching Alarms Primary Heart Pulse Source Pulse Beep Source ECG Lead Selection ECG Pacer Filter ECG Low Frequency Filter Trend Format Serial Port Baud Rate Respiration Noise Timeout Respiration Monitoring 9 2 Default Setting Adult Pediatric 57 5 dB A at 1 meter volume setting 4 62 5 dB A at 1 meter volume setting 5 60 seconds ON OFF OFF 10 second averaged Format 1 19 200 bits per second 20 seconds adult pediatric 15 seconds neonate On Section 9 Specifications Respiration Sensitivity 4 Breath Pulses Off Factory Default Alarm Settings Adult Neonate SpO2 Upper Alarm Limit 100 95 SpO2 Lower Alarm Limit 85 80 Heart Pulse Rate Upper Alarm Limit 170 bpm 190 bpm Heart Pulse Rate Lower Alarm Limit 40 bpm 90 bpm Respiration Rate Upper Alarm Limit 40 breaths min 80 breaths min Respiration Rate Lower Alarm Limit 4 breaths min 20 breaths min 9 7 PERFORMANCE Measurement Range SpO2 0 100 Pulse Heart Rate 20 250 bpm Respiration Rate 3 150 bpm Alarm Characteristics Alarm Pitch Pulse Width Pulse Repetition Priority 30 Hz 20 msec Interval 20 msec 932 Hz 752 Hz Low 500 Hz 3600 msec Rise fall time for pulses is 16 milliseconds 3 milliseconds
55. b until the desired setting is displayed flashing Press the UPPER ALARM LIMIT button to store the default setting Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 15 Menu Item 25 Dump EEPROM Data 4 20 This function allows you to dump the entire contents of the EEPROM to a serial data capture device This data may then be transmitted to Nellcor Puritan Bennett to assist in diagnosing the condition of the instrument Note The N 3000 must be operating from AC power to perform this menu item Turn the N 3000 off Connect the N 3000 to a PC through the serial port Execute your communication software application Port settings should be set as indicated below Baud Rate 19 200 or equivalent to N 3000 setting as determined by using menu item 60 Parity N Data Bits 8 Stop Bits 1 Power on the N 3000 and place it in the service mode steady state Select menu item 25 by rotating the knob until 25 appears in the SpO02 display Press the UPPER ALARM LIMIT button EE will be displayed in the HEART PULSE RATE display Press the PRINT button to transmit the contents of the EEPROM memory out of the serial port Press the LOWER ALARM LIMIT button to return to the service mode steady state Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 16 Menu Item 28 Enable Disable Battery Charge Circuit This test allows you to turn the battery charging circuit on
56. bject Patient monitoring involves connecting the monitor to a live subject for a qualitative test 1 Ensure that the monitor is connected to an AC power source through the SPS N1 or PSS 1 power supply Connect an SCP 10 sensor input cable to the monitor Connect a Nellcor Puritan Bennett Durasensor oxygen transducer model DS 100A to the sensor input cable Clip the DS 100A to the subject as recommended in the sensor directions for use Connect ECG electrodes to the patient Connect an SCE 10 ECG cable to the N 3000 Connect ECG leads to the cable Connect the ECG leads to the electrodes on the patient according to the leads directions for use Section 3 Performance Verification 8 Press the ON STANDBY button to turn the monitor on and verify that the monitor is operating 9 The monitor should stabilize on the subject s physiological signal in about 15 to 30 seconds Verify that the saturation and heart and respiration rates are reasonable for the subject 3 3 4 4 3 Serial Interface Test The communications submodule of the N 3000 using an asynchronous EIA 232 communications format allows communications between the N 3000 and a PC via the 6 pin connector on the rear panel of the N 3000 as illustrated in Figure 3 2 An SAK 232 cable and detailed directions for use are available by contacting your local Nellcor Puritan Bennett representative m NNN mu L mm Figure 3 2 Serial Port Interface The two co
57. block length of 2k 8 bit port both bytes access both read and write access and gated with AS This configuration maps the stackbus in the memory range of 60000h through 607FFh The number of wait states to generate depends on the U1 clock speed The number of wait states for CS1 must be set to 2 based upon a CPU clock speed of 16 0 MHz e Analog Interface The ANALOGO to ANALOGS signal lines are used as the analog interface with the ECG PCB through connector J4 These analog signal lines are applied to analog to digital converter U10 Digital representations of the analog signals are then provided to microprocessor U1 serially on the MISO QS0 line f Intermodule Connector The ECG controller board is connected to the UIF board via the J1 intermodule connector The UIF board provides power to the ECG controller Stackbus and module synchronization lines are also routed through J1 4 2 6 Communications Submodule The communications submodule contains circuitry for allowing 1500V isolated asynchronous serial RS232 or RS422 communications between the N 3000 UIF module and a host computer a 1500V isolated nurse call signal that operates whenever an alarm condition exists or a 1500V isolated 3 3V power source for powering remote external serial equipment Signals that originate on the UIF board include UARTTXD Transmit data from UART UARTRXD Receive data to UART UARTDTR Data terminal ready from UART UARTDSR Data set ready to UART
58. by pressing the ON STANDBY button Replace the battery in the battery bracket and reconnect the battery cover Section 3 Performance Verification 3 3 4 4 5 Persistent Time Clock Test This procedure allows you to check the operation of the persistent time clock 1 6 3 3 4 5 ECG Cable Test Enter the service mode as follows a While holding down the UPPER and LOWER ALARM LIMIT buttons and the PRINT button press and release the ON STANDBY button Continue to hold the UPPER and LOWER ALARM LIMIT and PRINT buttons while the monitor performs the power on test b When SEr begins flashing in the AUXILIARY display release the UPPER and LOWER ALARM LIMIT and PRINT buttons c Press the PRINT button within 15 seconds or the monitor will turn off automatically The number 1 appears in the SpO2 display You are now in the service mode steady state Select menu item 19 by rotating the control knob Press the UPPER ALARM LIMIT button The persistent time in seconds is displayed in the Sp02 and HEART PULSE RATE displays For example 001 688 indicates that the monitor has been powered on for 1 688 seconds 28 minutes 8 seconds Verify that the right most digit is counting seconds If the display reads 999 999 this indicates that persistent time is greater than or equal to 999 999 seconds If dashes are displayed the contents of the memory of the persistent time circuit are lost This can occur when the
59. cal Services or your local Nellcor Puritan Bennett representative they may request information from the Error Log Table A 4 N 3000 Internally Corrected Error Codes Error Explanation Code General failure of UIF Generic POST in unit or validation testing 125 UIF cannot allocate a resource ran out of a dynamic resource memory corruption during initialization or a logic error resulting from a low probability combination of events that did not appear Appendix Table A 4 N 3000 Internally Corrected Error Codes Continued Error Explanation Code 126 UIF stack overflow 150 UIF general watchdog reset 152 UIF memory corruption 153 UIF unexpected interrupt e 225 SpO2 can t allocate a resource 226 SpO2 stack overflow 250 SpO2 general watchdog reset 52 2 SpO2 memory corruption 253 SpO2 unexpected interrupt 2 SpO2 RTXC executive function failed 2 54 SpO2 communication bus common code failed 257 SpOz state machine illegal transition or unknown state 278 SpOz cannot get power on defaults from EEPROM or they are invalid bad values or low limit above high limit Operating mode changed during internal reset SpO2 Controller PCB failure 286 SpO2 PCB failure 287 SpO2 detected failure of other system component UIF PCB UIF software or communication problem 288 SpO2 module failure cannot determine whether SpO2 Controller PCB or SpO2 PCB A 5 TECHNICAL SUPPLEMENT 1
60. cccccccccccceeceeceeeeeeeeeeeeeeeess 2 1 21 Glean iina a a ai aa 2 1 2 2 Periodic Safety and Functional Checks 2 1 EEEO E E EENT EEEREN ala eee ees 2 1 Section 3 Performance Verification ccccccccccccccccccccceeeeseeeteeeeeeeess 3 1 Si INTOGUCHION ssie aaa a a a a a 3 1 3 2 Equipment Needed cccccccceeceeeeeceeeeeeeeeeeeeeecneeeeeeeeeteeenaaaes 3 1 3 3 Performance Tests iii iieii iii aint 3 2 3 3 1 Battery Charge ccccccccccccccseseeeeeeeeeeeeeeccneeeeeeeeteeetaaes 3 2 3 3 2 Battery Performance Test 3 2 3 3 3 Power Up Performance cceceeeeeeneeeeeeeeeeeeetnteeeeeees 3 3 3 3 3 1 Power On Self Test cccecssssssssssessssssseessessseseeeeeee 3 3 3 3 3 2 Adult Power On Defaults and Alarm Limit Ranges 3 4 3 3 3 3 Neonate Power On Defaults and Alarm Limit Ranges 3 6 3 3 4 Hardware and Software TeSts cccccccccccccsseeeeeeeees 3 7 3 3 4 1 Operation with a Pulse Oximeter Tester 3 7 3 3 4 2 Operation with an ECG Simulator 3 11 3 3 4 3 Operation with a Respiration Simulator 00 6 3 13 3 3 4 4 General Operation cccccceeeeeeeeeeeeeecnteeeeeeeeeeeesaaees 3 13 3 3 4 5 ECG Cable TeSt i cccssssssssesesssessssssssssssssesseeaaes 3 19 3 4 Safety Tests 0 cccecccceeee cece eeeeeeceeeeeeeeeeeeecaaaeeeeeeeeeeeessnaeeeeees 3 19 3 4 1 Ground Integrity cece eee eeeteeeeeeeeeeeeeeetteeeeeeeeeeteee 3 19 3 4 2 Electrical Leakage c ccccceeceeeeee
61. ccccceeeeeeeecceeeeeeeeeeeeeenaees A 2 A3 Failure Error Codes s cniciceet naa uae deen A 2 A4 Internally Corrected Error Codes ccccccccseeteteeeeeeeeeeeeeetaees A 3 Technical Supplement 0 cccccccccceccceee eee eecccnee teste ee eeeecaaeeeeeeeetneenaaaes S 1 S1 Mroduc ion eeta S 1 S2 Oximetry OVErVICW eee eee eectetee teen eeeeeeaaaeeeeeeeetteeeaaaeeeeees S 1 2 1 Automatic Calibration eeeceeeeeeeeeeeeeeeceteeeeeeeeeteee S 1 2 2 Functional Versus Fractional Saturation 0 00 S 2 2 3 Measured Versus Calculated Saturation 00 S 2 S3 Stackbus Interconnect seeeeseesseenrneessessrerrnrsssesrrennnesssesrnens S 2 S4 Circuit Analysis eeeeeeeeeeeeeeeseeossessrneorrrsrnnsssessrresnnnsnnnsseens S 3 S4 1 Functional Overview ccccccceeeeeeeeeeeeeeeeeeeeeeeeeseeeees S 3 4 2 Circuit Description eee cette cece ee eeeeeeeetteeeeeeeeeeneees S 4 84 2 1 SpO2 Module ec ccceee cece cette eeeecaaeeeeeeeeeteeees S 4 4 2 2 ECG Respiration Module S 6 S4 2 3 UIF Module ccc ecceceececeeeeeeneeeeeeecaeeeeeeceeeeeseneeeeeees S 9 S4 2 4 SpO2 Controller cceeeeeeeeeeeeeecceeeeeeeeeeeeeeaaaes S 16 54 2 5 ECG Controller ccccsssssssscceeeeeessesssesssssssssessaaes S 18 4 2 6 Communications Submodule cececeeeeeeeeees S 19 4 2 7 Display Board cccccccccccceccceeeeeeeeeeeeeeeenneeeeeeeeneeeeas S 21 S 5 Schematic Diagrams cccc
62. cecceeeeeeeeeeeeeeeecneeeeeeeeeteeseeeeeees S 22 vi LIST OF FIGURES LIST OF TABLES 1 1 3 1 3 2 3 3 3 4 3 5 3 6 6 1 6 2 6 3 6 5 6 6 6 8 6 9 6 10 6 11 S4 1 S4 2 S4 3 S4 4 S4 5 S4 6 Table of Contents N 3000 Front Panel ssenseeseessesseesrrerrnsssrennnnsssesrrennnnsssosrrennnens 1 2 Self Test Display 0 ccccecceseeeeeee eee eeeeeceeeeeeeeeeccaaaeeeeeeeeeeenenees 3 3 Serial Port Interface eee ee ee eeeceeeee eee eteecaeeeeeeeetteeeteee 3 15 Serial Port Connector External Pin Locations ccceeeeee 3 16 Battery Cover Removal ccccceecceecceeeeeeeeeeeeeetcteeeeeeeeeeeennaaaes 3 17 Speaker T6St vicar aie ieee tethered 3 18 ECG Cable Pin Locations ccccccccceeeeeeeeeeeeeeeenneeeeeeeeeeeeeaaaes 3 19 Serial Port Pin LOCAtIONS serce 4 33 Battery Replacement cc cccceeeeeeeeeceaeeeeeeeeeeeeecaaeeeeeeeeteeeeaaaes 6 2 Removing the Battery c ccccceeccececeeeeeeeeeeeeeeecaeeeeeeeeeeeeeaaaes 6 3 N 3000 FUSES cccceceeeeeeeeceeaeeee eee eteceaaaeeeeeeeeetegcaaaaeeeeeeeteeeeaaaaes 6 4 N 3000 Corner SCrews cccccccceeeeeeeeecceeeeeeeeeeeeeeccaeeeeeeeeeeeeenaaaes 6 4 Opening the N 3000 Monitor cccccccceeceeeeeeeeeeeeeeeccteeeeeeeeetees 6 5 Handle Left Side Panel and Speaker Disassemblly 005 6 6 Rear Panel and SpO2 Module Disassembly ccceesceeeeeeees 6 7 Communications PCB REMOVal
63. ck of the system 3 3 4 4 1 LED Excitation Test 3 3 4 4 2 Operation with a Live Subject 3 3 4 4 3 Serial Interface Test 3 3 4 4 4 Piezo Speaker Test 3 3 4 4 5 Persistent Time Clock Test 3 13 Section 3 Performance Verification 3 14 3 3 4 4 6 ECG Cable Test 3 3 4 4 1 LED Excitation Test This procedure uses normal system components to test circuit operation A Nellcor Puritan Bennett Oxisensor IK oxygen transducer model D 25 is used to examine LED intensity control The red LED is used to verify intensity modulation caused by the LED intensity control circuit 1 Connect the monitor to an AC power source through the SPS N1 or PSS 1 power supply 2 Connect an SCP 10 sensor input cable to the monitor 3 Connect a D 25 sensor to the sensor input cable 4 Press the ON STANDBY button to turn the monitor on 5 Leave the sensor open with the LEDs and photodetector visible 6 After the monitor completes its normal power up sequence verify that the sensor LED is brightly lit 7 Slowly move the sensor LED in proximity to the photodetector element of the sensor Verify as the LED approaches the optical sensor that the LED intensity decreases 8 Open the sensor and notice that the LED intensity increases 9 Repeat step 7 and the intensity will again decrease This variation is an indication that the microprocessor is in proper control of LED intensity 10 Turn the N 3000 off 3 3 4 4 2 Operation with a Live Su
64. connect from the Pemm studs To remove the ECG PCB from the ECG Controller PCB unsnap the ECG PCB from the Pemm studs on the ECG Controller PCB 6 10 REMOVING THE UIF PCB AND DISPLAY PCB Complete the procedures in paragraphs 6 7 6 8 and 6 9 Remove the right side panel by lifting it straight up Remove the front panel bezel by gently lifting it up and rotating it away from the Display PCB as illustrated in Figure 6 9 6 9 Section 6 Disassembly Guide The display PCB is secured to the UIF PCB via the J5 connector To remove the Display PCB the UIF PCB must first be loosened to allow the Display PCB to be lifted out of the molded chassis housing slots J5 conn ector UIF PCE Rezo power los aam speaker Uhum backup batery Speaker boos Inhium batery d connector Display PCE Froni panel bezel Figure 6 9 Display PCB and UIF PCB Disassembly 4 Using a Phillips head screwdriver remove the six screws securing the UIF PCB to the chassis 5 Remove the Display PCB by lifting up on the mother board then pulling the Display PCB away from the UIF PCB and disconnecting from J5 6 Disconnect the control knob ribbon cable from J3 on the UIF PCB Push the top of the connector down then pull the cable straight up and out of the connector 7 Lift the UIF PCB out of the chassis housing 6 10 1 Installing a Replacement UIF PCB Complete the following procedure after replacing a UIF PCB 1 Power up i
65. ct Before servicing the N 3000 read the carefully for a thorough understanding of operation 1 2 N 3000 PATIENT MONITOR DESCRIPTION The purpose and function of the Nellcor Symphony N 3000 patient monitor is to noninvasively and continuously monitor functional arterial oxygen saturation ECG pulse rate heart rate and respiration rate for adult pediatric and neonatal patients in all hospital areas and hospital type facilities It may be used for hospital transport when powered by its internal battery The N 3000 can operate as a standalone monitor or it can be connected to stacked with other Nellcor Symphony instruments such as the N 3100 blood pressure monitor and N 3200 display printer When used with the N 3200 display printer the instruments can display and print out ECG respiration and plethysmographic waveforms and SpO2 pulse rate heart rate and respiration rate tabular data Figure 1 1 depicts the front panel of the N 3000 and the names of its displays and controls 1 1 Section 1 Introduction 1 3 Figure 1 1 N 3000 Front Panel 1 SpO02 display 2 PULSE AMPLITUDE indicator indicator ECG HEART RATE indicator HEART PULSE RATE display RESPIRATION RATE display NEONATAL MODE indicator AUDIBLE ALARM OFF indicator ON STANDBY button 9 POWER ON indicator 10 STACKED indicator Not used on this model 00 12 OV g RELATED DOCUMENTS 11 12 13 14 15 16 PRINT button BATTERY IN USE BA
66. ct AC line voltage from the monitor 2 With the monitor upside down and facing you open up the chassis as shown in Figure 6 5 3 Locate the lithium batteries on the UIF PCB Figure 6 9 The backup lithium battery the larger of the two lithium batteries is used to supply backup power to the UIF processor if the lead acid battery fails during DC use It also supplies power to the piezo power loss alarm speaker during a microprocessor or power failure alarm The other smaller battery provides additional voltage to power the piezo speaker 4 Slide battery or batteries from underneath the spring clips Do not dispose of lithium batteries by placing them in the regular trash Dispose of properly or return to Nellcor Puritan Bennett Technical Services for disposal 5 Replace batteries observing correct polarity positive terminal up Ensure that they are secure 6 Reassemble the chassis Reassemble the monitor by performing the disassembly steps in reverse order 1 Ensure that all plastic isolation shields are reinstalled correctly Section 6 Disassembly Guide Ensure that the small wiper fingers that make contact with the side panel metalized coating throughout the top chassis fit properly Ensure that all buttons are seated properly and operate smoothly All of the side panels have channel guides molded into the top and bottom chassis to assist in proper location and seating To install the handle locate the small sp
67. ct the default ECG leads option The leads option allows detection of the electrical signal generated by the heart along different axes through the heart Selections are 1 lead I LA RA 2 lead Il LL RA or 3 lead III LL LA 1 From the configuration menu steady state rotate the knob until 8 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 2 1 2 or 3 is displayed in the HEART PULSE RATE display To change the default setting rotate the knob until the desired setting is displayed 3 Press the LOWER ALARM LIMIT button to return to the configuration menu steady state 4 2 10 10 ECG Pacer Filter Status Menu item number 9 allows you to select either ON or OFF as the pacer filter default Pacer filter ON causes the N 3000 to detect and filter pacemaker generated noise signals so that they will not be measured in determining a patient s heart rate When the filter is ON pacemaker signals of 1 to 2 0 milliseconds in duration with 2 0 to 700 0 millivolt amplitude are filtered out 4 9 Section 4 Configuration Mode Service Mode and Alarm Active Function 1 From the configuration menu steady state rotate the knob until 9 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 2 ON or OFF is displayed in the HEART PULSE RATE display To change the default setting rotate the knob until the desired settin
68. ctable error code a code beginning with O is displayed while in the service mode press the LOWER ALARM LIMIT button to clear the error SEr stops flashing and is continuously displayed e The number 1 is indicated in the SpO2 display e The PATIENT MOTION indicator is lit indicating that you are in the service mode steady state with access to the main menu as indicated in Table 4 3 anf 4 11 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 12 Use the knob to move from one main menu item to the next While in service mode the UPPER and LOWER ALARM LIMIT buttons are used as enter and exit buttons respectively You must press the UPPER ALARM LIMIT button to select a main menu item and move to the submenu level When you have scrolled to the desired menu item press the UPPER ALARM LIMIT button The PATIENT MOTION indicator goes out and the PULSE SEARCH indicator illuminates QB This indicates that you are now in a submenu of the selected main menu item Use the knob to move from one submenu item to the next Not all menu items have submenu selections To return to the service mode steady state from a menu item press the LOWER ALARM LIMIT button Menu item 3 Button Test is an exception it is exited by rotating the knob To exit the service mode power down the monitor by pressing the ON STANDBY button The N 3000 is automatically powered down if no action is taken f
69. d TXD pin 3 lines of the communication cable Once the alarm active function has been enabled during power on an alarm will toggle the DTR line pin 1 from a logic LOW of 7 volts to a HIGH of 7 volts As long as the alarm is sounding this line will remain HIGH When the alarm is silenced or becomes inactive the line will return to its LOW logic level If a continuous 3 3 volt signal on pin 6 is desired as when using the Nelicor Puritan Bennett SOC 3 adapter change the dip switch settings on the Communications PCB as instructed in paragraph 6 5 1 SECTION 5 TROUBLESHOOTING 5 1 5 2 5 3 5 4 5 5 5 1 Introduction 5 2 Howto Use this Section 5 3 Who Should Perform Repairs 5 4 Replacement Level Supported 5 5 Obtaining Replacement Parts 5 6 Troubleshooting Guide INTRODUCTION This section explains how to troubleshoot the N 3000 if problems arise Tables are supplied that list possible monitor difficulties along with probable causes and recommended actions to correct the difficulty HOW TO USE THIS SECTION Use this section in conjunction with Section 3 Performance Verification and Section 7 Spare Parts To remove and replace a part you suspect is defective follow the instructions in Section 6 Disassembly Guide The circuit analysis section in the Technical Supplement offers information on how the monitor functions WHO SHOULD PERFORM REPAIRS Only qualified service personnel should open the monitor housing r
70. display Press the UPPER ALARM LIMIT button Verify that the SpO2 IR LED drive value 170 is displayed in the HEART PULSE RATE display and the IR indicator on the SRC 2 is illuminated Rotate the control knob to adjust the IR LED drive level indicated in the HEART PULSE RATE display to 255 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Section 3 Performance Verification While watching the IR indicator on the SRC 2 press the UPPER ALARM LIMIT button and verify that the LED intensity increases Rotate the knob to adjust the IR LED drive level to 0 Press the UPPER ALARM LIMIT button Verify that the IR LED turns off Rotate the knob to adjust the IR LED drive level to 170 Press the UPPER ALARM LIMIT button and verify that the LED intensity increases Press the LOWER ALARM LIMIT button to return to the service mode steady state Select menu item 34 by rotating the knob until 34 appears in the Sp02 display Press the UPPER ALARM LIMIT button Verify that the SpO2 red LED drive value 170 is displayed in the HEART PULSE RATE display and that the IR indicator on the SRC 2 is illuminated Rotate the control knob to adjust the red LED drive level to 255 Press the UPPER ALARM LIMIT button and verify that the LED intensity increases Rotate the knob to adjust the red LED drive level to 0 Press the UPPER ALARM LIMIT button and ve
71. e SRC 2 to the N 3000 and turn the N 3000 on 2 Place the SRC 2 in the RCAL 63 LOCAL mode 3 Set the SRC 2 as indicated in Table 3 1 Verify that the N 3000 readings are within the indicated tolerances Allow the monitor several seconds to stabilize the readings Note A indicates values that produce an alarm Press the AUDIBLE ALARM OFF button to silence the alarm Table 3 1 Dynamic Operating Range SRC 2 Settings N 3000 Indications RATE LIGHT MODULATION Sp02 Pulse Rate 4 Turn the monitor off 3 3 4 1 5 RCAL Determination 1 Ensure that the N 3000 is turned off and connected to AC power via an external power supply 2 Connect the SRC 2 pulse oximeter tester to the sensor input cable and connect the cable to the monitor Set the SRC 2 as follows SWITCH POSITION RATE 38 LIGHT LOW MODULATION OFF RCAL MODE RCAL 63 LOCAL 3 Enter the service mode as follows a While simultaneously holding down the UPPER and LOWER ALARM LIMIT buttons and the PRINT button press and release the ON STANDBY button Continue to press and hold the UPPER and LOWER ALARM LIMIT and PRINT buttons while the monitor performs the power on test b When SEr begins flashing in the AUXILIARY display release the UPPER and LOWER ALARM LIMIT and PRINT buttons 3 9 Section 3 Performance Verification 3 10 8 c Press the PRINT button within 15 seconds or the monitor will turn off automatically The number 1 a
72. e battery fails to hold a charge replace as indicated in the Disassembly Guide section The N 3000 battery and N 3200 batteries may be discharged To recharge the batteries keep the N 3200 connected to AC power Confirm that the BATTERY CHARGING indicator lights The monitors may be used with a less than fully charged battery but with a corresponding decrease in operating time from that charge If the battery fails to hold a charge replace as indicated in the Disassembly Guide section Ensure that a good docking connection exists between the N 3000 and N 3100 If the condition persists recharge the battery The battery may have enough power left to operate the N 3000 but not the N 3100 5 11 Section 5 Troubleshooting 5 6 7 Serial Port Table 5 8 lists symptoms of problems relating to the serial port and recommended actions If the action requires replacement of a PCB or module refer to Section 6 Disassembly Guide Table 5 8 Serial Port Problems 1 The measured voltages Ensure the Communications PCB switch at the serial port settings are as described in paragraph 6 5 1 paragraph 3 3 4 4 3 are incorrect If the condition persists replace the Communications PCB If the condition still persists replace the UIF PCB The measured voltages Perform the serial port loop back menu item at the serial port 61 and serial port transmit menu item 62 paragraph 3 3 5 3 are tests in the
73. e if necessary Ensure that the N 3200 power cord is plugged into an operational AC outlet and the N 3200 AC receptacle Ensure that the AC power switch on the rear panel of the N 3200 is ON Check the N 3200 fuse and replace if necessary If the condition persists replace the N 3200 power supply as instructed in the N 3200 service manual Ensure that a good docking connection exists between the N 3000 and N 3100 N 3200 Check the N 3000 fuse and replace it if necessary as indicated in the Disassembly Guide section Check the N 3100 and N 3200 fuses and replace if necessary as indicated in the Disassembly Guide section of the N 3100 or N 3200 service manual Section 5 Troubleshooting Table 5 7 Stack Problems Continued Condition 5 The N 3000 and N 3100 do not operate when disconnected from the external power supply The N 3000 and N 3200 do not operate when disconnected from AC power While operating on battery power the N 3000 operates with BATTERY IN USE BATTERY LOW indicator lighting steadily but N 3100 does not operate Recommended Action The N 3000 battery may be discharged To recharge the battery keep the N 3000 connected to its external power supply Confirm that the BATTERY CHARGING indicator lights The monitors may be used with a less than fully charged battery but with a corresponding decrease in operating time from that charge If th
74. e monitor off then on again 211 2 If the error code still appears power down the monitor and replace the SpO2 Controller PCB 204 205 1 Turn the monitor off then on again 2 If the error code still appears power down the monitor and replace the SpO2 PCB 3 If the error code still appears power down the monitor and replace the SpO2 Controller PCB 5 6 5 6 3 Buttons Knob Section 5 Troubleshooting Table 5 3 N 3000 Failure Error Codes Continued Error Code 275 276 Recommended Action Turn the monitor off then on again If the error code still appears power down and verify that the SpO2 Controller PCB is securely seated If the error code still appears replace the SpO2 Controller PCB If the error code still appears power down the monitor and replace the UIF PCB Turn the monitor off then on again If the error code still appears power down the monitor and replace the ECG PCB Table 5 4 lists symptoms of problems relating to nonresponsive buttons or the Nellcor Puritan Bennett knob and recommended actions If the action requires replacement of a PCB refer to Section 6 Disassembly Guide Table 5 4 Buttons Knob Problems Condition The N 3000 turns on but does not respond to the knob buttons are operational The N 3000 responds to some but not all buttons The N 3000 turns on but does not respond to either the knob or any of the buttons Recommended
75. e steady state select menu item 20 As soon as you press the UPPER ALARM LIMIT button the default settings are reset Any preset configurable alarms are now lost When the default settings are reset the monitor will beep three times and automatically return to the service mode steady state If the reset was not successful an error code will be displayed 4 3 12 Menu Item 21 Initial Cluster Instrument Number Report This report displays a hexadecimal number corresponding to the initial internal stack address when the instrument is being used in a stack configuration with an address conflict Such a conflict may occur when identical instrument types for example two N 3100s are in the same stack 1 From the service mode steady state select menu item 21 by rotating the knob until 21 appears in the SpO2 display Press the UPPER ALARM LIMIT button The two left most digits in the HEART PULSE RATE display are the hexadecimal representation of the cluster instrument number H for hexadecimal is displayed as the right most digit of the HEART PULSE RATE display 2 If the displayed value is different than the EEPROM value the display will flash Rotate the knob to adjust the cluster instrument number to the desired value 3 Press the UPPER ALARM LIMIT button to accept the displayed value as the default value The display stops flashing 4 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 13
76. ears power down the monitor and replace the UIF PCB 114 183 Turn the monitor off then on again 283 151 175 Turn the monitor off then on again 176 If the error code still appears turn off the monitor Verify that the SpO2 Module ROM is securely seated in the socket 3 Verify that the SpO2 Controller PCB is securely seated 4 Turn the monitor on If the error code still appears replace the SpO2 Controller PCB If the error code still appears power down the monitor and replace the UIF PCB 159 Use the service mode menu item 20 to reset the default values to factory default values as discussed in Section 4 Configuration and Service Modes If the error code still appears power down the monitor and replace the UIF PCB If the error code still appears power down the monitor and replace the SpO2 Controller PCB Turn the monitor off then on again If the error code still appears and the N 3000 is stacked with another instrument turn all stacked instruments off and then on again 5 5 Section 5 Troubleshooting Table 5 3 N 3000 Failure Error Codes Continued Recommended Action 178 191 1 Turn the monitor off then on again 2 If the error code still appears use the service mode menu item 20 to reset the default values to factory default values as discussed in Section 4 Configuration and Service Modes 3 If the error code still appears replace the UIF PCB 179 1 Turn the monitor of
77. ection Class Class I per I E C 601 1 clause 2 2 4 Degree of Protection Type CF per I E C 601 1 clause 2 2 26 Defibrillation protected on ECG input port but not SpO2 input port Mode of Operation Continuous Battery Type Operating time blood pressure monitor Recharge period Input Voltage Fuses External Power Supply Model SPS N1 Model PSS 1 Rechargeable sealed lead acid internal 4 hours minimum on full charge when operating standalone 2 hours minimum when attached to an N 3100 14 hours for full charge 6 hours for 1 hour of operating time 15V DC F1 1 0 A 250V Slo Blow F2 2 5 A 250V Slo Blow AC input 100 120 VAC 500 mA maximum 50 60 Hz AC input 100 240 VAC 1 3 amps 50 60 Hz 9 1 Section 9 Specifications Patient Applied Waveforms Leads Off Sensing DC Active Noise Suppression None 9 3 PHYSICAL CHARACTERISTICS Dimensions 6 8 cm x 23 9 cm x 14 7 cm 2 65 in x 9 41 in x 5 79 in Note When operating without the docking pedestal docked the height is 5 4 cm 2 13 in instead of 6 8 cm 2 65 in Weight 1 8 kg 3 96 lb 9 4 ENVIRONMENTAL Operating Temperature 5 to 40 C 41 F to 104 F Storage Temperature 40 to 70 C 40 F to 158 F Operating Altitude 390m to 3 048m 1 280 ft to 10 000 ft Relative Humidity 15 RH to 95 RH noncondensing 9 5 ALARMS Alarm Limit Range Saturation 20 100 Heart Pulse Rate 30 250 bpm Respir
78. eeeeeceeeeeeeeeeeeeeenaeeeeeees 5 2 5 6 1 POWE T Mead ane inada nen eaten ena AAA A EA ARA Aa 5 3 5 6 2 Error C des nananana ae ee 5 4 5 6 2 1 User Correctable Error Codes eeceeeetteeeeees 5 4 5 6 2 2 Failure Error Codes cccccccceeeeeeeeeceeeeeeeeeeeeeeeeaees 5 4 5 6 3 ButtOns KnOD 0 cccceceeeeccceeeeeeeeeeeeeecaeeeeeeeeeeeentaaaes 5 7 5 6 4 Display AlarM Siia a E a 5 8 5 6 5 Operational Performance sseesessseeeereesseserrrrnnsssses 5 9 5 6 6 Stacked Operation seseeesseeeeeeeeeeeserrreressererrrnnesseee 5 10 5 6 7 Serial POrt cc ceeeccscceeeeeeeeeeeeeaeceeeeeeeeeeeeaeaeeeeeeeeeenae 5 12 Section 6 Disassembly Guide 00n eee 6 1 6k Jintroductio Nesia eae EEK ttc errr irer erect tr rrr rete 6 1 6 2 Removing the Battery cceceeeeeeeeeeeeectneeeeeeeeeeeeeseeeeeees 6 2 6 3 Battery Replacement cccccececeseeeeeeeeeeeceneeeeeeeeeeeeeesseeeeees 6 3 6 4 Fuse Replacement ccccccccccecceccceeeeeeeeeeecneeeeeeeeteeesasaeeeeeees 6 4 6 5 Monitor Disassembly ccccceccceeeeeeeeeeeeeeeceeeeeeeeeeeeeestaeeeeeees 6 4 6 5 1 Communications Board Switch Settings 6 5 6 6 Removing the Alarm Speakel 0 cccccccceeseceeeeeeeeeeeeeeteneeeeees 6 6 6 7 Removing the SpO2 PCB and SpO2 Controller PCB 6 6 6 8 Removing the Communications PCB 6 7 6 9 Removing the ECG PCB and ECG Controller PCB 6 8 6 10 Removing the UIF PCB and Di
79. eeeeeeeeeeeeeeeeeeeeneeess 5 3 N 3000 Failure Error Code S ccccccccccccseeeeeeeeeeeeeneaeeeeeeeeeeesaaaes 5 5 Buttons Knob Problems iiini niinniin iaaiiai ania 5 7 Display Alarms Problems ssseeeeeeeseeeessseerresesssrrrrnrrsssssrrrrrnnsssses 5 8 Operational Performance ProblemSs sseeesssseeeeeeeeserrreesssseseens 5 9 Stack ProblemS sesneeeeessesssesrresssssssrrnntssssrrrnnnnnsssernnennnnsssestnenn 5 10 Seral Port Problems ine a a aaa aaa aaa 5 12 Error Types ccccceceeeeeeeeeeecceeeeeeeeeeeeecaaaeeeeeeeeseeecaaaeeeeeeeeeeeeeaaaaes A 1 N 3000 User Correctable Error Codes A 2 N 3000 Failure Error Code S ccccccccceeeeeeeeeeeeeeeccneeeeeeeeeeeeeeaaaes A 2 N 3000 Internally Corrected Error CodeS ssssssssssssssseesseseeeee A 3 J13 Inter Stack Connector eeseeeseeeessserrisesssrrrrrrsssssrrrrrnnesssnnt S 9 J8 CONNMECION essesi inn aaae a aieiai diaii S 14 J12 J22 Inter Module COnnector cccccccsceseecseceeeeeeeeaeeeeeneaeeses S 15 J5Display Gonnector as ieta aa aa aa S 16 J2 Speaker COnnector essesesesseeeieesserriirrttesstrrirnrnssssrrrnnnnenesnt S 16 J3 Knob Goniec a aa S 16 vii SECTION 1 INTRODUCTION 1 1 Manual Overview 1 2 N 3000 Patient Monitor Description 1 3 Related Documents 1 1 MANUAL OVERVIEW This manual contains information for servicing the Nellcor Symphony model N 3000 patient monitor Only qualified service personnel should service this produ
80. eeeeeeeeeeeeeeetteeeeeees 3 19 3 4 2 1 Chassis Source Current sssssssrrrrrrrrrnnnnnnnnnnnnnn na 3 20 3 4 2 2 Patient Source Current sssssssssrnnrrrrrnrnnnnnnnnnnnnnn na 3 21 3 4 2 3 Patient Sink Current ssssssssssrnnrrnnrrrnnnnnnnnnnnnnnnn nnna 3 22 Section 4 Configuration Mode Service Mode and Alarm Active FUNCOM eee E E KER N nn iiaae 4 1 4 1 Introduction 0 0 iii nnnnnannannnnnnnnnnnn nannan nananana 4 1 4 2 Configuration Mode sseessseeeeeeeeseserrrsssssrrirrrrssssrrrrrnnnssssnt 4 1 4 2 1 Adult Neonatal Mode Default c cccccceeeeeeeeeeeees 4 2 4 2 2 Default SpO2 Upper Alarm Limit eee 4 2 4 2 3 Default SpO2 Lower Alarm Limit 0 eceeeeeeeeeees 4 3 4 2 4 Default Heart Pulse Rate Upper Alarm Limit 4 3 4 2 5 Default Heart Pulse Rate Lower Alarm Limit 4 3 4 2 6 Default Respiration Rate Upper Alarm Limit 4 4 4 2 7 Default Respiration Rate Lower Alarm Limit 4 4 4 2 8 Default Alarm VOIUMEG ccccccccccccccceeeeeeeeeeeeeeeeeeeeess 4 4 4 2 9 Default Alarm Silence Duration cccccccccecceeeeeeees 4 4 4 2 10 Configuration MeNu cece ceeeeeeeeeeeeeeeeeteeeeeeeeettees 4 5 4 2 10 1 Pulse Tone VolUMe snnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nenna 4 6 4 2 10 2 UIF Software Version Report 4 6 4 2 10 3 SpO2 Software Version Report n 4 6 4 2 10 4 Serial Port Baud Rate ceesessssssssssssss
81. emove and replace components or make adjustments If your medical facility does not have qualified service personnel contact Nellcor Puritan Bennett Technical Services or your local Nellcor Puritan Bennett representative REPLACEMENT LEVEL SUPPORTED The replacement level supported for this product is to the printed circuit board PCB and major subassembly level Once you isolate a suspected PCB follow the procedures in Section 6 Disassembly Guide to replace the PCB with a known good PCB Check to see if the trouble symptom disappears and that the monitor passes all performance tests If the trouble symptom persists swap back the replacement PCB with the suspected malfunctioning PCB the original PCB that was installed when you started troubleshooting and continue troubleshooting as directed in this section OBTAINING REPLACEMENT PARTS Nellcor Puritan Bennett Technical Services provides technical assistance information and replacement parts To obtain replacement parts contact Nellcor Puritan Bennett or your local Nellcor Puritan Bennett representative Refer to parts by the part names and part numbers listed in Section 7 Spare Parts 5 1 Section 5 Troubleshooting 5 6 TROUBLESHOOTING GUIDE Problems with the N 3000 are separated into the categories indicated in Table 5 1 Refer to the paragraph indicated for further troubleshooting instructions Note Taking the recommended actions discussed in this section will correct the ma
82. enu items 8 through 16 1 From the service mode steady state select menu item 7 by rotating the knob until 7 appears in the SpO2 display Press the UPPER ALARM LIMIT button The number 7 0 appears in the SpO2 display 2 Read the error code in the HEART PULSE RATE display A value of 000 indicates that the menu item contains no error code If dashes are displayed the error log contents cannot be determined 3 Rotate the control knob CW to display 7 1 in the SpO2 display 4 Read the number of occurrences of this particular error code in the HEART PULSE RATE display If 256 is displayed there have been 256 or more occurrences 5 Continue to rotate the control knob CW The total number of operating hours when the last instance of the error occurred is displayed in the SpOQ2 and HEART PULSE RATE displays 6 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 8 Menu Item 17 Instrument Identification IID Report This report displays a hexadecimal number corresponding to the instrument identifier This number should agree with the address label on the outside of the instrument However the label and the internal value may disagree if the monitor UIF module was replaced and the external label was not changed 1 From the service mode steady state select menu item 17 by rotating the knob until 17 appears in the SpO2 display Press the UPPER ALARM LIMIT button
83. ervice mode steady state 4 3 36 Menu Item 49 ECG Enable Automatic Operation 4 30 This function allows you to enable or disable the ECG module automatic operation mode It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 From the service mode steady state select menu item 49 by rotating the knob until 49 appears in the SpO2 display Press the UPPER ALARM LIMIT button The HEART PULSE RATE display indicates whether or not the ECG module is in automatic operation OFF not in automatic operation ON in automatic operation Rotate the knob to change the setting Press the UPPER ALARM LIMIT button to change the setting 4 Section 4 Configuration Mode Service Mode and Alarm Active Function Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 37 Menu Item 51 Set Respiration Baseline Reset This function allows you to control the respiration reset switch for service mode testing The power on default setting is not changed It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 From the service mode steady state select menu item 51 by rotating the knob until 51 appears in the SpO2 display Press the UPPER ALARM LIMIT button The currently selected reset position OFF or ON is displayed in the HEART PULSE RATE display The normal posit
84. f then on again 2 If the error code is occurring while powering on after the replacement of the UIF PCB perform the procedure in paragraph 6 10 1 If the error code still appears verify compatibility of UIF Module SW ROM and SpO2 Module SW ROM part numbers by using service mode menu item 17 If the error code still appears contact Nellcor Puritan Bennett Technical Services or your local representative 3 If the error code still appears verify compatibility of UIF Module SW ROM and SpO2 Module SW ROM part numbers by using service mode menu item 17 If the error code still appears contact Nellcor Puritan Bennett Technical Services or your local representative to ensure the numbers are compatible 4 If the numbers are compatible power down and verify that the SpO2 Module ROM is securely seated 5 Verify that the SpO2 Controller PCB and SpO2 module are securely seated 6 Turn the monitor on If the error code still appears replace the SpO2 Controller PCB 7 If the error code still appears replace the UIF PCB 189 376 1 Turn the monitor off then on again 2 If the error code still appears replace the UIF PCB 192 195 1 Turn the monitor off then on again 196 2 Use the service mode menu item 29 to verify the compatibility of your software 3 If the error code still appears verify compatibility of the ROMs by calling Nellcor Puritan Bennett Technical Services or your local representative 203 206 1 Turn th
85. f new stations is implemented in the N 3000 s UIF and SpO2 modules and in the N 3100 by specialized devices and system software S4 CIRCUIT ANALYSIS This section provides a descriptive overview of the N 3000 modular design as well as a circuit description 4 1 Functional Overview The monitor functional block diagram is shown in Figure S4 1 Central to the PCB modules is the UIF module This module receives power from an external AC source or battery via the docking connector It supplies power to the other modules connected to it while also communicating with them via the stackbus It controls user interface and network gateway functions Connected to the UIF module is the SpO2 module which consists of two PCBs the SpO2 Controller and the SpO2 PCB The SpO2 Controller board contains the micro controller memory system internal stackbus interface and other control logic The SpO2 PCB contains all the analog signal conditioning and control hardware necessary to measure SpO2 The two boards are electrically connected by a single interface connector Also connected to the UIF module is the ECG module There are two PCBs that comprise the ECG module the ECG PCB and the ECG controller The ECG leads from the patient are connected to this PCB where the analog ECG signals are conditioned for further processing by the ECG Controller PCB Patient connections and initial conditioning circuits are electrically isolated from the N 3000 on this
86. figuration If the displayed ICC value differs from the value stored in the EEPROM then the displayed value will flash If the displayed value is flashing press the UPPER ALARM LIMIT button to save the value as the default Press the LOWER ALARM LIMIT button to return to the service mode steady state Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 6 Menu Item 6 Total Operating Hours Report This report displays the total number of operating hours logged by the unit since it was produced 1 From the service mode steady state select menu item 6 by rotating the knob until 6 appears in the SpO2 display Press the UPPER ALARM LIMIT button The total number of operating hours is displayed in the SpO2 and HEART PULSE RATE displays Possible values are from 0 to 999 999 hours 2 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 7 Menu Items 7 16 Error Log Record Report This report provides information regarding the last ten error codes recorded by the monitor the number of occurrences of that particular error and the number of operating hours at the last time the error occurred The error log has ten entries menu items 7 16 as indicated below Refer to Section 5 Troubleshooting and the Appendix for an explanation of error codes The following procedure is for Error Log Record 1 menu item 7 Use the same procedure to access Error Log Records 2 through 10 m
87. frequency 5MHz 1 TIME where TIME is the 8 bit number output by the CPU TIME has a valid range of 1 255 The circuit provides an adjustment range of 19 531 kHz to 2 5 MHz The CTRL_CLK signal is input back to U1 Pin 16 During the POST routine this pin is used to monitor the programmable clock hardware output to verify performance f Intermodule Connector The SpOz controller board is connected to the UIF board via the J1 intermodule connector The UIF board provides power to the SpO2 controller Stackbus and module synchronization lines are also routed through J1 The ECG Controller processes and controls the ECG lead inputs to the N 3000 through the ECG PCB The central processing unit CPU for the ECG Controller PCB is microprocessor U1 a CPU Reset Voltage monitor U2 shown in the upper left hand corner of the schematic diagram generates the reset for U1 and other circuits on the PCB Reset is held low until Vcc raises above 4 6 volts After Vdd is above 4 6 volts reset is tri stated and pulled high by R10 Note L1 L2 and L3 provide filtering for Vdd b Program Memory EPROM The program memory chip U4 provides the ECG controller board with 128K bytes of memory This program boot ROM memory can be expanded up to 256K bytes The CSBOOT signal from U1 which is configured for 16 bit memory access provides the enable signal for U4 on the ROMEN L line After system software comes on or is booted up CSBOOT is config
88. g is displayed 3 Press the LOWER ALARM LIMIT button to return to the configuration menu steady state 4 2 10 11 ECG Low Frequency Filter Status Menu item number 10 allows you to select ON or OFF as the low frequency filter default Selecting ON enables a 05 Hz ECG channel high pass filter providing better ST segment resolution When OFF is selected a 0 5 Hz filter is used 1 From the configuration menu steady state rotate the knob until 10 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 2 ON or OFF is displayed in the HEART PULSE RATE display To change the default setting rotate the knob until the desired setting is displayed 3 Press the LOWER ALARM LIMIT button to return to the configuration menu steady state 4 2 10 12 ECG Software Version Report 1 From the configuration menu steady state rotate the knob until 11 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 2 The ECG software version number is the six digit number in the Sp02 and HEART PULSE RATE displays 3 Press the LOWER ALARM LIMIT BUTTON to return to the configuration menu steady state 4 2 10 13 Respiration Noise Timeout Menu item number 12 allows you to select 5 10 15 20 25 or 30 seconds as the default adult mode setting for the amount of time before a low priority alarm is sounded when respiration noise
89. he LOWER ALARM LIMIT button to return to the service mode steady state 4 3 10 Menu Item 19 Persistent Time Sense Report 4 18 This report allows you to determine if the internal persistent time circuit is keeping time correctly 1 From the service mode steady state select menu item 19 by rotating the knob until 19 appears in the SpO2 display Press the UPPER ALARM LIMIT button The persistent time in seconds is displayed in the SpO2 and HEART PULSE RATE displays For example 001 688 indicates that the monitor has been powered on for 1 688 seconds 28 minutes 8 seconds Make a note of the displayed time If the display reads 999 999 this indicates that persistent time is greater than or equal to 999 999 seconds If dashes are displayed the contents of the memory of the persistent time circuit are lost This can occur when the backup lithium battery has been replaced Using a watch or other timepiece wait 3 minutes Subtract the first figure you noted from the figure now displayed on the N 3000 The difference should equal approximately 3 minutes 180 seconds Press the LOWER ALARM LIMIT button to return to the service mode steady state Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 11 Menu Item 20 Reset to Factory Defaults This function allows you to reset the monitor to the factory default settings see the Specifications section of this manual From the service mod
90. he SpO2 module is set for automatic operation using menu item 39 paragraph 4 3 27 Press the LOWER ALARM LIMIT button to return to the service mode steady state From the service mode steady state select menu item 33 by rotating the knob until 33 appears in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 IR drive value between 0 255 is displayed in the HEART PULSE RATE display To adjust the drive value rotate the knob The HEART PULSE RATE display will flash Pressing the UPPER ALARM LIMIT button will set the displayed value in the SpO2 module which will cease its automatic operation The HEART PULSE RATE display will stop flashing Press and hold the PRINT button to display the SpO2 corrected IR and red output signals as described in menu item 32 Release the PRINT button Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 22 Menu Item 34 SpO2 Red LED Drive Test This function allows you to validate sensors and or the operation of the SpO2 module It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 2 Connect the sensor to the N 3000 Verify that the SpO2 module is set for automatic operation using menu item 39 paragraph 4 3 27 Press the LOWER ALARM LIMIT button to return to the service mode steady state From the service mode steady state select menu item 34 by rotating the knob until 34
91. he sensor extension cable If the condition does not change replace the SpO2 PCB If the condition still persists replace the ECG PCB If the condition still persists replace the UIF PCB Verify the problem with the service mode menu item 2 knob and lamp test Check the connection between the UIF PCB and the Display PCB If the condition does not change replace the Display PCB If the condition still persists replace the UIF PCB Replace the cable with a known serviceable cable Ensure there is a good connection between the ECG PCB and UIF PCB If the condition still persists replace the ECG PCB Moisture or spilled liquids can cause an alarm to sound Allow the monitor to dry thoroughly before using If the condition persists replace the UIF PCB Verify the problem with the service mode menu item 4 speaker test Replace the speaker as described in Section 6 Disassembly Guide If the condition persists replace the UIF PCB Section 5 Troubleshooting 5 6 5 Operational Performance Table 5 6 lists symptoms of problems relating to operational performance no error codes displayed and recommended actions If the action requires replacement of a PCB or module refer to Section 6 Disassembly Guide Table 5 6 Operational Performance Problems 1 The PULSE AMPLITUDE 1 The sensor may be damaged replace it indicator Seems to 2 If the
92. he unit should be turned off and signals the BQ2001 to disable Q10 Other sources of interrupt from the BQ2001 are a low voltage from lithium battery BT1 the application or removal of CHARGEBUS power and the lead acid battery voltage falling below a threshold preset by the processor When the SPS or PSS power supply is connected to the lower docking connector and connected to AC CHARGEBUS has a voltage of 15V 0 75V This powers the battery charge overcurrent and overtemperature circuitry The BQ2001 controls battery charging When the processor senses that the battery needs charging it tells the BQ2001 to turn on transistor Q5 for a programmed length of time The BQ2001 will continue charging the battery as long as there is CHARGEBUS available and its internal charge time register has not expired regardless of the mode of the N3000 unless it is told to stop by the processor or it senses that the over temperature circuit has tripped The battery charging circuitry is a constant voltage charger When the battery is discharged its output voltage is low about 10V and the maximum charge rate approximately 350mA is applied to it As the battery charges its output voltage rises reducing the amount of current delivered to it by CHARGEBUS When the battery is fully charged about 14V the charge rate decreases to 0 mA The over temperature cutoff circuitry is physically located close to the power transistor used to charge the battery by the
93. hnician 1 Inspect the exterior of the N 3000 for damage 2 Inspect safety labels for legibility If the labels are not legible contact Nellcor Puritan Bennett s Technical Services Department or your local Nellcor Puritan Bennett representative 3 Verify that the unit performs properly as described in paragraph 3 3 4 Perform the electrical safety tests detailed in paragraph 3 4 If the unit fails these electrical safety tests do not attempt to repair Contact Nellcor Puritan Bennett s Technical Services Department or your local Nellcor Puritan Bennett representative 5 Inspect the fuses for proper value and rating F1 1 0 Amp 250 Volt Slo Blow and F2 2 5 Amp 250 Volt Slo Blow as discussed in paragraph 6 4 Nellcor Puritan Bennett recommends replacing instrument batteries at least every 2 years To replace the batteries refer to Section 6 Disassembly Guide If the N 3000 has been stored for more than 30 days charge the battery as described in paragraph 3 3 1 A fully discharged battery requires 14 hours of charging time for a full charge A 6 hour charge is required for 1 hour of operating time 2 1 SECTION 3 PERFORMANCE VERIFICATION 3 1 Introduction 3 2 Equipment Needed 3 3 Performance Tests 3 4 Safety Tests 3 1 INTRODUCTION This section discusses the tests used to verify performance following repairs or during routine maintenance All tests can be performed without removing the N 3000 cover All tes
94. hould be as follows refer to Figure 6 5 SW1 Positions 1 3 5 and 7 ON Positions 2 4 and 6 OFF SW2 Positions 2 4 and 6 ON Positions 1 3 5 and 7 OFF SW3 Position 1 ON Position 2 3 and 4 OFF Jumper J6 in IGND position 6 5 Section 6 Disassembly Guide If a continuous 3 3 volt signal at pin 6 of the serial port Figure 3 3 is required as when using the SOC 3 adapter change the SW3 settings as follows SW3 Position 1 OFF Position 2 3 and 4 ON If RS 422 settings are required change SW1 and SW2 as follows SW1 Positions 1 3 5 and 7 OFF Positions 2 4 and 6 ON SW2 Positions 2 4 and 6 OFF Positions 1 3 5 and 7 ON SW3 Position 1 ON Position 2 3 and 4 OFF 6 6 REMOVING THE ALARM SPEAKER 1 Complete the procedure in paragraph 6 5 2 Remove the handle and spring assembly on the right side of the unit as illustrated in Figure 6 6 lifting it up out of the molded chassis cradle Figure 6 6 Handle Left Side Panel and Speaker Disassembly 3 Remove the left side panel this is on your right as illustrated above by pulling straight up be careful not to damage speakers 4 Remove the alarm speaker cable by lifting up from connector J2 on the UIF PCB 6 7 REMOVING THE SPO2 PCB AND SPO2 CONTROLLER PCB 1 Complete the procedure in paragraph 6 5 6 6 Section 6 Disassembly Guide 6 7 Section 6 Disassembly Guide 2 Remove the rear panel rear pane
95. ifies that when the N 3000 is connected to a PC through the N 3000 serial port the serial port receive hardware is functional Note The N 3000 must be operating from AC power to perform this menu item 1 Turn the N 3000 off 4 33 Section 4 Configuration Mode Service Mode and Alarm Active Function 2 Connect the N 3000 to a PC through the serial port 4 34 Section 4 Configuration Mode Service Mode and Alarm Active Function 3 Execute your communication software application Port settings should be set as indicated below Baud Rate 19200 or as set using menu item 60 Parity N Data Bits 8 Stop Bits 1 4 Turn on the N 3000 and place it in the service mode 5 Select menu item 61 by rotating the knob until 61 appears in the SpO2 display SLT appears in the HEART PULSE RATE display Press the UPPER ALARM LIMIT button 6 Type any characters on your PC keyboard and verify that the characters are echoed on the PC screen This confirms that data received on the serial port receive line is transmitted on the transmit data line 7 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 44 Menu Item 62 Serial Port Transmit Test This test verifies that when the N 3000 is connected to a PC through the N 3000 serial port the serial port transmit hardware is functional Note The N 3000 must be operating from AC power to perform this menu item 1 Perform steps 1 through 4 a
96. ing diastole blood volume and light absorption reach their lowest point The monitor bases its SpoO2 measurements on the difference between maximum and minimum absorption that is measurements at systole and diastole By doing so it focuses on light absorption by pulsatile arterial blood eliminating the effects of nonpulsatile absorbers such as tissue bone and venous blood Automatic Calibration Because light absorption by hemoglobin is wavelength dependent and because the mean wavelength of LEDs varies an oximeter must know the mean wavelength of the sensor s red LED to accurately measure SpO2 During manufacturing a resistor in the sensor encodes the mean wavelength of the red LED During monitoring the instrument s software reads this resistor and selects coefficients that are appropriate for the wavelength of that sensor s red LED these coefficients are then used to determine SpO2 This resistor is read when the monitor is turned on periodically thereafter and each time a new sensor is connected Additionally to compensate for differences in tissue thickness the intensity of the sensor s LEDs is adjusted automatically S 1 Technical Supplement 2 2 Functional Versus Fractional Saturation This monitor measures functional saturation oxygenated hemoglobin expressed as a percentage of the hemoglobin that can transport oxygen It does not detect significant amounts of dysfunctional hemoglobin such as carboxyhemogl
97. ion allows you to test the ECG cable off circuitry 1 From the service mode steady state select menu item 45 by rotating the knob until 45 appears in the SpO2 display Press the UPPER ALARM LIMIT button The current ECG cable status is displayed in the HEART PULSE RATE display OFF cable off is detected ON no cable off is detected Press the LOWER ALARM LIMIT button to select the setting and return to the service mode steady state 4 3 34 Menu Item 46 Check ECG Lead Off Detection 4 28 This function allows you to test the ECG lead off circuitry 1 From the service mode steady state select menu item 46 by rotating the knob until 46 appears in the SpO2 display Press the UPPER ALARM LIMIT button The current ECG lead status is displayed in the HEART PULSE RATE display OFF lead off is detected ON no lead off is detected Section 4 Configuration Mode Service Mode and Alarm Active Function 3 Press the LOWER ALARM LIMIT button to select the setting and return to the service mode steady state 4 29 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 35 Menu Item 47 Display ECG Output Value This function allows you to test the ECG A D channel 1 From the service mode steady state select menu item 47 by rotating the knob until 47 appears in the SpO2 display Press the UPPER ALARM LIMIT button The PULSE SEARCH indicator is illuminated The number 47
98. ion is OFF Rotate the knob to the desired respiration reset The displayed reset position will flash if it is different than a previously set value or if the ECG module is currently in automatic operation menu item 49 Press the UPPER ALARM LIMIT button to change the setting Press the LOWER ALARM LIMIT button to select the setting and return to the service mode steady state 4 3 38 Menu Item 53 Display Respiration Output Value This function allows you to test the respiration A D circuitry It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 From the service mode steady state select menu item 53 by rotating the knob until 53 appears in the SpO2 display Press the UPPER ALARM LIMIT button The PULSE SEARCH indicator is illuminated The number 53 0 appears in the Sp02 display and the HEART PULSE RATE display flashes ON while the maximum minimum and average values for the respiration channel and maximum and minimum values for the respiration impedance channel are captured When ON stops flashing the maximum value in volts for the respiration signal during the capture period is indicated in the HEART PULSE RATE display Rotate the control knob CW until 53 1 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the average value in volts for the respiration signal during the capture period Rotate the c
99. is also controlled by the switch part of U18 by the GAIN2 signal from the ECG Controller The output of this second variable gain amplifier is CARD OUT which is applied to the ECG Controller as the ANALOG1 signal g Pacemaker Detection and Suppression Circuit The RAW_ECG signal from the servo amp circuit is AC coupled to the pacemaker detection and suppression circuit composed of three amplifiers from U10 and inverter buffer U17 The output of U17 is the PACER signal which is applied to the ECG Controller as the TPU15 signal This signal is used to reduce interference in the ECG signal caused by pacemakers h Non isolated Power Supply Power for the non isolated circuits on the ECG PCB is supplied on the ANALOGPWR line from the UIF PCB through the ECG Controller The ANALOGPWR voltage is filtered to produce the V_10V operating voltage ANALOGPWR is also applied to voltage converter U26 to produce VCC operating voltage VCC is then used to produce VEE in converter U27 and to produce V_10M in converter U22 Voltage regulator U29 produces a 2 5 volt reference voltage from VCC i Respiration Drive Circuit U16 creates the drive signal for the respiration circuit The 55 kHz RESP_CLOCK signal controls switching to alternately connect to the 5 volt reference or to ground R57 and C40 isolate the precision reference producing RESP_REF from the charge injection and transient loads produced by U16 when it switches This circuit drops approximatel
100. is detected The 25 second and 30 second selections are not available in the neonate mode 1 From the configuration menu steady state rotate the knob until 12 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 2 5 10 15 20 25 or 30 is displayed in the SpO2 display 25 and 30 are not displayed in the neonatal mode Rotate the knob to display the desired default respiration noise timeout 3 Press the LOWER ALARM LIMIT BUTTON to select the displayed setting and return to the configuration menu steady state 4 2 10 14 Respiration Sensitivity Selection Menu item number 13 allows you to adjust the sensitivity setting of the respiration detection circuitry Selectable settings are 1 2 3 or 4 with 1 being the least sensitive and 4 the most sensitive Decreasing the sensitivity setting 4 10 4 3 SERVICE MODE Section 4 Configuration Mode Service Mode and Alarm Active Function decreases the possibility that movement might be interpreted by the N 3000 as respiration but also decreases the capability of the N 3000 to pick up light breathing The default setting is 4 1 From the configuration menu steady state rotate the knob until 13 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 1 2 3 or 4 is displayed in the SpO2 display Rotate the knob to display the desired respiration sens
101. itivity Press the LOWER ALARM LIMIT BUTTON to select the displayed setting and return to the configuration menu steady state The service mode allows the technician to go through a series of tests to determine monitor functionality and to access the error log report The service modes cannot be accessed by the N 3000 while it is stacked with an active N 3100 or N 3200 If operating in the stacked configuration disconnect the N 3000 from other instruments or turn the other instruments off before entering the service mode Use the following procedures to place the monitor into the service mode 1 2 If the monitor is on turn it off While simultaneously holding down the UPPER and LOWER ALARM LIMIT buttons and the PRINT button press and release the ON STANDBY button Continue to press and hold the UPPER and LOWER ALARM LIMIT and PRINT buttons while the monitor performs the power on self test When SEr begins flashing in the AUXILIARY display release the UPPER and LOWER ALARM LIMIT and PRINT buttons Press the PRINT button You must press this button within 15 seconds or the monitor will turn off automatically You are now in service mode steady state Note Failure errors refer to Troubleshooting section for an explanation of failure errors and error codes may be encountered by the N 3000 upon entering the service mode The N 3000 will automatically access the menu item used to correct this situation If a user corre
102. jority of problems you will encounter However problems not covered here can be resolved by calling Nellcor Puritan Bennett Technical Services or your local representative Table 5 1 Problem Categories Problem Area Refer to Paragraph 1 Power 5 6 1 e No power up on AC and or DC e Fails power on self test e Powers down without apparent cause 3 Buttons Knob 5 6 3 e Monitor does not respond properly to buttons and or knob 4 Display Alarms e Displays do not respond properly e Alarms or other tones do not sound properly or are generated without apparent cause 6 Stacked Configuration e N 3000 operates properly when used alone but not when stacked 7 Serial Port N 3000 and PC not communicating properly 5 Operational Performance 5 6 5 e Displays appear to be operational but monitor shows no readings e Suspect readings All of the categories in Table 5 1 are discussed in the following paragraphs 5 2 Section 5 Troubleshooting 5 6 1 Power Power problems are related to AC and or DC Table 5 2 lists recommended actions to power problems Table 5 2 Power Problems Recommended Action 1 BATTERY IN 1 Ensure that the SPS or PSS power supply is plugged USE BATTERY LOW indicator lights steadily while N 3000 is connected to AC via the external power supply The N 3000 does not operate when disconnected from its external power supply or the power failure alarm sounds when AC power is disco
103. l insulator and NEW PATIENT NEONATAL button by lifting up and rotating out of the chassis channel guides as illustrated in Figure 6 7 Rear pard inadatto pie Poe Sple2 controler ACE Figure 6 7 Rear Panel and SpO2 Module Disassembly 3 Remove the SpO2 PCB and the SpO2 Controller PCB by disconnecting them from the Pemm studs on the UIF PCB Pull up on the top board from the right side to disconnect from the Pemm studs 4 To remove the SpO2 PCB from the SpO2 Controller PCB unsnap the SpO2 PCB from the Pemm studs on the SpO2 Controller PCB 6 8 REMOVING THE COMMUNICATIONS PCB 1 Complete the procedures in paragraph 6 6 and step 2 of paragraph 6 7 6 8 Section 6 Disassembly Guide Using a 1 4 inch socket or needle nose pliers remove the Communications PCB by removing the four 1 4 inch nuts that secure it to the UIF PCB Figure 6 8 After removing the nuts lift straight up Communications PoE Figure 6 8 Communications PCB Removal 6 9 REMOVING THE ECG PCB AND ECG CONTROLLER PCB Note The ECG PCB also contains the respiration circuitry 1 2 Complete the procedure in paragraph 6 5 Remove the rear panel rear panel insulator and NEW PATIENT NEONATAL button by lifting up and rotating out of the chassis channel guides as illustrated in Figure 6 7 Remove the ECG PCB and the ECG Controller PCB by disconnecting them from the Pemm studs on the UIF PCB Pull up on the top board from the right side to dis
104. larm Limit SpO2 Lower Alarm Limit Heart Pulse Rate Upper Alarm Limit Heart Pulse Rate Lower Alarm Limit Respiration Rate Upper Alarm Limit Respiration Rate Lower Alarm Limit Alarm Volume Alarm Silence Duration Configuration Menu Button Press Procedure from Paragrap Configuration Mode Steady State h Described NEW PATIENT NEONATAL button twice UPPER ALARM LIMIT button LOWER ALARM LIMIT button LOWER ALARM LIMIT button twice UPPER ALARM LIMIT button three times LOWER ALARM LIMIT button three times ALARM SILENCE button press and hold for 3 seconds before turning knob ALARM SILENCE button press and 4 2 9 hold turn knob within 3 seconds UPPER LOWER ALARM LIMIT buttons simultaneously Note To change neonate default limits enter the neonatal mode from configuration mode steady state by pressing the NEW PATIENT NEONATAL button twice within 2 seconds Change the desired limit using the same method as adult default limits When an SpOz2 or heart pulse rate default limit has been changed a decimal point will appear after the displayed limit until the configuration mode is exited 4 2 1 Adult Neonatal Mode Default The mode adult or neonatal that the monitor is in when exiting the configuration mode becomes the power on default To change from a power on default of adult mode to a power on default of neonatal mode enter the configuration mode steady state Press the NEW PATIENT NEONATAL button
105. lock frequency is chosen by software c Processor Peripheral ICs Processor U3 uses serial and parallel peripheral ICs The serial peripheral ICs communicate with the processor through the 68331 Queued Serial Module QSM These ICs are the Real Time Clock RTC the Electrically Erasable Read Only Memory EEROM and the display controllers located on the Display PCB The parallel peripheral ICs communicate with the processor through a non multiplexed data bus The ICs are processor code PROM U10 processor RAMs U13 and U23 Arcnet communications IC U6 digital to analog converter U5 analog to digital converter U27 stackbus adapter U14 BQ2001 power management chip U20 and UART Universal Asynchronous Receiver Transmitter U24 Real Time Clock N The clock is a continuously running IC used by the processor to maintain time and date information When the N 3000 is not on the RTC is maintained by lithium backup battery BT1 Electrically Erasable Read Only Memory N The EEROM is used by the processor to store institutional defaults and system error code data Display Controllers N These controllers are used by the processor to display data on the display board Processor Code PROM U10 N The PROM contains the program that the processor uses to perform the user interface and gateway functions for the N 3000 Processor U3 address lines A1 through A17 are connected to PROM addresses AO through A16 allowing even word address access to the PR
106. m 46 Check ECG Lead Off Detection 4 27 4 3 35 Menu Item 47 Display ECG Output Value 4 28 4 3 36 Menu Item 49 ECG Enable Automatic Operation 4 28 4 3 37 Menu Item 51 Set Respiration Baseline Reset 4 29 4 3 38 Menu Item 53 Display Respiration Output Value 4 29 4 3 39 Menu Item 54 Enable Disable Respiration MOMItOFING 2 eee eeeeeeeee eect eeeeccteeeeeeeeeeeeeeaaeeeeeeeeeteeeaaaes 4 30 Table of Contents 4 3 40 Menu Item 55 Enable Disable Breath Pulses 4 30 4 3 41 Menu Item 56 Respiration Enable Automatic Operations c 36 6 eae et ae a iene 4 31 4 3 42 Menu ltem 60 Set Serial Port Baud Rate 4 31 4 3 43 Menu Item 61 Serial Port Loop Back Test 4 31 4 3 44 Menu Item 62 Serial Port Transmit Test 0 4 32 4 4 Alarm Active Function 0 cccceccccecceeeeeeeeeeeeeeeetaeeeeeeeeeeeeeeaaaes 4 32 Section 5 Troubleshooting cccccccccccccceeeeeeeeeeeeeecsaeeeeeeeeeeeenaaaes 5 1 Sil Introductions atonta ear AA E AAAA AAA A 5 1 5 2 Howto Use this Section cceecceeeeeeeeeeeeeeeenneeeeeeeeeeeesnseeeeeees 5 1 5 3 Who Should Perform Repair S ccccccccecceeseeeeeeeeeteesssneeeeees 5 1 5 4 Replacement Level Supported ccccccseseeeeeeeeeeeeettneeeeeees 5 1 5 5 Obtaining Replacement Parts ccccccecceeeeeeeeeeeteeeeteeeeeees 5 1 5 6 Troubleshooting guide cceececeeeeeeeee
107. m Active Function 3 Return to the configuration mode steady state 4 4 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 2 6 Default Respiration Rate Upper Alarm Limit 1 3 From the configuration mode steady state press the UPPER ALARM LIMIT button three times within 3 seconds The current default value is displayed in the RESPIRATION RATE display To change the default upper alarm limit value rotate the control knob on top of the monitor CW to increase or CCW to decrease You cannot decrease the value lower than the current respiration rate lower limit setting The respiration rate upper alarm limit cannot be set higher than 150 Return to the configuration mode steady state 4 2 7 Default Respiration Rate Lower Alarm Limit 1 3 From the configuration mode steady state press the LOWER ALARM LIMIT button three times within three seconds The current default value is displayed in the RESPIRATION RATE display To change the default lower alarm limit value rotate the knob CW to increase or CCW to decrease You cannot increase the value higher than the current respiration rate upper limit setting The respiration rate lower alarm limit cannot be set lower than 3 To set the default respiration setting to OFF rotate the knob CCW past 3 OFF is displayed in the RESPIRATION RATE display and respiration monitoring is disabled in the current mode adult or neonatal Return to the configuration
108. monitor to an AC power source using an external power supply 2 Verify that the monitor is off and that the BATTERY CHARGING indicator is lit ral 3 Charge the battery for at least 14 hours Note The BATTERY CHARGING indicator is programmed to go out when the N 3000 has been connected to AC power for approximately 14 hours with no power interruptions If there are any power interruptions the 14 hour charging period begins again when power is restored An illuminated BATTERY CHARGING indicator is not necessarily an indication that the battery contains less than a full charge It is merely used as a timer to indicate that the battery has been continuously charging for less than 14 hours 4 The only way to check for a full charge is to perform the procedure in paragraph 3 3 2 Battery Performance Test 3 3 2 Battery Performance Test 3 2 The monitor is specified to operate on battery power a minimum of 4 hours This time may decrease if the N 3000 is operating in the stacked configuration with an N 3100 or N 3200 Before performing this test ensure that the battery is fully charged paragraph 3 3 1 1 Connect the Nelicor Puritan Bennett SRC 2 pulse oximeter tester to the monitor via the SCP 10 sensor cable 2 Set the SRC 2 switches as follows SWITCH POSITION RATE 38 LIGHT LOW MODULATION LOW RCAL MODE RCAL 63 LOC 3 Ensure that the monitor is not connected to AC power Section 3 Performance Verification
109. n the service mode as described in paragraph 4 3 The number 5 in the SpO2 display indicates that menu item 5 paragraph 4 3 5 has been accessed The number 07 flashes in the HEART PULSE RATE display 6 10 Section 6 Disassembly Guide 2 Press the UPPER ALARM LIMIT button to accept the ICC value of 07 indicating that the unit is an SpO2 unit with ECG capabilities 3 Turn the unit off The N 3000 is ready for normal operation 4 Replace the Instrument Identification label by attaching it to the enclosure on the bottom of the unit Confirm the IID number using the service mode menu item 17 6 11 CONTROL KNOB ASSEMBLY REPLACEMENT 1 Complete the procedure in paragraph 6 10 The top cover appears as illustrated in Figure 6 10 Heat shield Figure 6 10 Knob Encoder Disassembly 2 Turn the cover right side up and use a small flat blade to gently pry the knob off the shaft Figure 6 11 Use caution to avoid nicking or denting the surrounding top cover 6 11 Section 6 Disassembly Guide Figure 6 11 Knob Disassembly 3 Using a 7 16 inch socket remove the nut securing the shaft and knob assembly to the chassis 4 Replace the control knob assembly with the elastomeric washer closest to the plastic chassis Torque nut to 10 inch pounds Replace the heat shield and white plastic insulator as illustrated in Figure 6 10 6 12 LITHIUM BATTERY REPLACEMENT 6 13 REASSEMBLY 6 12 1 Disconne
110. nfigurable options of serial data interface are RS 232 and EIA 422 The N 3000 is shipped with the RS 232 setting To change the settings refer to paragraph 6 5 1 Perform the following procedure to test the serial port voltages The test is qualitative and will only verify that the serial interface port is powered correctly 1 Connect the monitor to an AC power source through the SPS N1 or PSS 1 power supply and turn the monitor on 2 Connect a 6 pin miniature connector adapter to the serial interface port 3 Set up the DMM with the function set to VDC at a range of 10 volts 4 Connect the DMM negative lead to connector pin 4 GND 3 15 Section 3 Performance Verification 5 Connect the DMM positive lead to the following pins and verify the voltage values listed in Table 3 2 If the voltages are not as indicated follow the procedures in paragraph 5 6 7 1 2 3 5 5 Figure 3 3 Serial Port Connector External Pin Locations Table 3 2 Serial Port Voltages Pin Line Vona 0 0 0 4 0 0 0 4 Alarm Active 0 0 0 4 or 3 3 0 4 3 3 4 4 4 Piezo Speaker Test The following test verifies that the Piezo power loss alarm speaker sounds when the N 3000 loses power WARNING Before attempting to open or disassemble the N 3000 disconnect the power cord from the N 3000 Caution Observe ESD electrostatic discharge precautions when working within the monitor 3 16 Section 3 Performance Verification 1
111. ngs 1 2 Connect the SRC 2 tester or a compatible sensor to the N 3000 Select menu item 30 by rotating the knob until 380 appears in the SpO2 display Press the UPPER ALARM LIMIT button Read the RCAL standard representation of the nominal sensor resistance in the HEART PULSE RATE display If connected to an SRC 2 tester set the SRC 2 RCAL Mode switch to 63 The RCAL value 63 is displayed in the HEART PULSE RATE display Set the SRC 2 RCAL Mode switch to 64 The RCAL value 64 is displayed in the HEART PULSE RATE display Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 21 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 19 Menu Item 31 SpO2 IR and Red Offset Report This function allows you to validate the operation of the SoO2 module The values represent the DC voltage offset for the current amplifier gain when the amplifier inputs are zeroed It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 Connect the sensor cable and SRC 2 to the N 3000 2 Set the SRC 2 as follows SWITCH POSITION RATE 38 LIGHT LOW MODULATION OFF RCAL MODE RCAL 63 LOCAL 3 From the service mode steady state select menu item 31 by rotating the knob until 31 appears in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 IR offset appears in the SpO2 display and the SpO2 red offset a
112. ning lead off conditions C50 and R82 form a high pass filter with a 3dB frequency of 160 MHz for blocking slow variations and DC drift in the respiration signal R118 and R119 reference the signal to a 4 01 millivolt reference which when multiplied by the following circuit gain of 249 gives a DC value of 1 0 volt at pin 11 of U30 The output is filtered and multiplied by 2 so that the total signal gain is 996 with a nominal DC value of 2 0 volts The gain of 2 in the filter keeps U30 in its specified input range of 0 2 5 volts R64 and Q3 are used to quickly charge C50 to its operating potential when the respiration signal is enabled or when large changes in DC value occur The user interface UIF network gateway and battery charge functions are controlled by the UIF module This module provides power to the other modules within the N 3000 controls communication between each module via the stackbus and provides charge control for the lead acid battery a Power and Battery Charging Power from the lead acid battery or the lower docking connector is delivered via the lower docking board ribbon cable connected to J13 Pin 1 of J13 is BATTPLUS1 and Pin 6 of J13 is CHARGEBUS Pin 2 of J13 is earth ground and Pin 5 is system ground These pins are defined in table S4 1 Both CHARGEBUS and BATTPLUS1 are connected using diode isolation and then connected through the drain of power transistor Q10 and Pin 7 of J13 BATTBUS to other stacked instr
113. nnected BATTERY IN USE BATTERY LOW indicator flashes during DC operation The microproces sor failure alarm sounds and no error code is displayed into an operational AC outlet If using the SPS power supply and the power supply indicator light is not lit replace the power supply If using the PSS power supply refer to the PSS 1 technical manual Ensure that the power supply is properly plugged into the N 3000 Check the fuse The fuse is located on the lower docking connector as indicated in paragraph 6 3 and Figure 6 3 of the Disassembly Guide section Replace if necessary Check the ribbon connection from the bottom enclosure to the UIF PCB as instructed in paragraph 6 5 of the Disassembly Guide section If the connection is good replace the UIF PCB The battery may be discharged To recharge the battery refer to paragraph 3 3 1 Battery Charge The monitor may be used with a less than fully charged battery but with a corresponding decrease in operating time from that charge If the battery fails to hold a charge replace the battery as indicated in Section 6 Disassembly Guide There are 15 minutes or less of usable charge left on the N 3000 battery At this point if possible cease use of the N 3000 on battery power connect it to its external power source and allow it to recharge approximately 14 hours The N 3000 may continue to be used while it is recharging Replace the UIF PCB
114. nob on the top of the N 3000 to adjust the default alarm silence duration Alarm silence duration choices are 30 SEC 60 SEC 90 SEC and 120 SEC 4 2 10 Configuration Menu The configuration menu allows you to configure the functions listed in Table 4 2 After accessing a menu item by pressing the UPPER ALARM LIMIT button if the knob is not turned and no button is pressed for a period of time equal to the timeout as listed in the table you will automatically return to the configuration menu steady state The last setting displayed for the menu item will become the default setting Table 4 2 Configuration Menu Menu Paragraph Number Configurable Setting Described Timeout 0 Pulse tone volume 4 2 10 1 3 seconds 1 UIF software version report 4 2 10 2 10 seconds 2 SpO2 software version report 4 2 10 3 10 seconds 3 Serial port baud rate 4 2 10 4 3 seconds 4 Trend type 4 2 10 5 3 seconds 5 Reset to factory defaults 4 2 10 6 N A 6 Primary heart pulse rate source 4 2 10 7 3 seconds ri Primary pulse tone source 4 2 10 8 3 seconds 8 ECG lead selection 4 2 10 9 3 seconds 9 ECG pacer filter status 4 2 10 10 3 seconds 10 ECG low frequency filter status 4 2 10 11 3 seconds 11 ECG software version report 4 2 10 12 10 seconds 12 Respiration noise timeout 4 2 10 13 3 seconds 13 Respiration sensitivity selection 4 2 10 14 3 seconds To access the configuration menu from the configuration mode steady state press the UPPER and LOWER ALARM LIMIT but
115. nts with the returned goods authorization number 8 2 REPACKING IN ORIGINAL CARTON If available use the original carton and packing materials Pack the monitor as follows 1 Place the monitor and if necessary accessory items in original packaging Figure 8 1 Repacking the N 3000 2 Place in shipping carton and seal carton with packaging tape 8 1 Section 8 Packing for Shipment 8 3 8 2 3 Label carton with shipping address return address and RGA number if applicable REPACKING IN A DIFFERENT CARTON If the original carton is not available use the following procedure to pack the N 3000 1 2 Place the monitor in a plastic bag Locate a corrugated cardboard shipping carton with at least 200 pounds per square inch psi bursting strength Fill the bottom of the carton with at least 2 inches of packing material Place the bagged unit on the layer of packing material and fill the box completely with packing material Seal the carton with packing tape Label the carton with the shipping address return address and RGA number if applicable SECTION 9 SPECIFICATIONS 9 1 9 2 GENERAL ELECTRICAL 9 1 General 9 2 Electrical 9 3 Physical Characteristics 9 4 Environmental 9 5 Alarms 9 6 Factory Default Settings 9 7 Performance Designed to meet safety requirements of UL 2601 1 CSA C22 2 No 601 1 M90 IEC 601 1 Class I type CF ISO 9919 EMC per EN 601 1 2 Prot
116. o put DC voltage offsets on the left and right arm and left leg signals These signals are then filtered and level limited before being applied to three unity gain amplifiers parts of U1 The outputs of the unity gain amplifiers are passed through solid state switch U2 The SO and S1 lines which are the isolated SELO and SEL1 lines from the ECG Controller control the lead signals that are applied from the U2 DA and DB outputs to differential amplifier U4 Switch U3 is used with U2 to selectively ground the inputs to the unity gain amplifiers d Lead Off Detector Circuit The outputs of the three unity gain amplifiers parts of U1 are applied to a summing amplifier another part of U1 When one or more of the ECG leads come off the summing amplifier causes a phototransistor part of U7 to conduct and pull the LEAD_OFF line low to provide the ECG controller with an indication that an ECG lead has come off the patient e Servo Amp Circuit The servo amp circuit provides the final conditioning of the electrically isolated ECG signal that is optically coupled to U19 to produce RAW_ECG The output of solid state switch U2 is connected to differential amplifier U4 which produces a combined signal from the individual ECG lead signals The combined signal is AC coupled to an amplifier in U5 which drives part of photocoupler U8 The output of this amplifier is then applied to another amplifier in U5 which drives transistor Q2 which drives another pa
117. obin or methemoglobin In contrast hemoximeters such as the IL482 report fractional saturation oxygenated hemoglobin expressed as a percentage of all measured hemoglobin including measured dysfunctional hemoglobins To compare functional saturation measurements to those from an instrument that measures fractional saturation fractional measurements must be converted as follows r fractional saturation functional saturation sss x 100 100 carboxyhemoglobin methemoglobin S2 3 Measured Versus Calculated Saturation When saturation is calculated from a blood gas partial pressure of oxygen PO2 the calculated value may differ from the SoO2 measurement of a pulse oximeter This usually occurs because the calculated saturation was not appropriately corrected for the effects of variables that shift the relationship between PO2 and saturation Figure S2 1 pH temperature the partial pressure of carbon dioxide PCO2 2 3 DPG and fetal hemoglobin 100 t 7 ft hise Pode 2 50PG Feiel Hb A ve 50 100 PO amt Figure S2 1 Oxyhemoglobin Dissociation Curve S3 STACKBUS INTERCONNECT S 2 Stackbus is the general term for the communication interconnect between the N 3000 modules and also between the N 3000 N 3100 and N 3200 instruments The internal stackbus is used for communications between the UIF PCB and the SpO2 module Information is transmitted over a single PCB trace using the Arcnet discus
118. ocking Connector PCB must be removed before disconnecting the docking connector cable from connector J13 as indicated in paragraph 6 5 Failure to remove the fuse may result in damage to the Lower Docking Connector PCB or UIF PCB 6 5 MONITOR DISASSEMBLY 1 Complete the procedure in paragraph 6 2 2 Remove the four corner screws that hold the monitor together Figure 6 4 Sore Sores Figure 6 4 N 3000 Corner Screws 6 4 Section 6 Disassembly Guide 3 Pull the carrying handle down to the right 4 Pull the unit apart swinging the bottom half to your left as illustrated in Figure 6 5 Connects H2 AF Docking connector es abl Con nuncio PEE Figure 6 5 Opening the N 3000 Monitor Caution The battery fuse F2 on the Docking Connector PCB must be removed as indicated in paragraph 6 4 before disconnecting the docking connector cable from connector J13 Failure to remove the fuse may result in damage to the Lower Docking Connector PCB or UIF PCB 5 The docking connector cable is plugged into connector J13 on the UIF PCB Disconnect the docking connector cable from connector J13 by gently pushing the top of the connector down while pulling straight up on the cable 6 5 1 Communications Board Switch Settings 1 To change the switch settings on the Communications PCB complete steps 1 through 4 in paragraph 6 5 2 The switch settings on the Communications PCB are shipped for RS 232 communications and s
119. ode Rejection gt 90 dB at 50 or 60 Hz Ratio Frequency Response bandwidth of 0 5 to 40 Hz 1 to 1 5 dB at 0 5 Hz 1 to 3 dB at 40 Hz Input Impedance 2 5 megohms at 10 Hz Defibrillator Discharge Recovery lt 8 seconds lt 5 seconds to 80 recovery Calibration 1 millivolt reference indicator available for N 3200 ECG waveform display Tall T wave Rejection Meets AAMI EC 13 section 3 1 2 1 for 1 2 mV T wave and 1 mV QRS using AAMI test waveform Response to Irregular Rhythm a Ventricular bigeminy 80 bpm AAMI EC 13 3 1 2 1 Figure 3 b Slow alternating ventricular bigeminy 60 bpm c Rapid alternating ventricular bigeminy 120 bpm d Bi directional systoles 88 to 93 bpm Heart Rate Response Time Minimum response time 7 sec Change in Heart Rate from 80 Maximum response time 8 sec bpm to 120 bpm Average response time 7 5 sec Change in Heart Rate from 80 bpm to 30 bpm Minimum response time 7 sec Maximum response time 9 sec Average response time 8 sec Time to Alarm for Tachycardia The following are the times to alarm for tachycardia for the test waveforms of AAMI EC13 Figure 4 a Ventricular Tachycardia Average Time Amplitude to Alarm 9 5 Section 9 Specifications 9 6 The following are the times to alarm for tachycardia for the test waveforms of AAMI EC13 Figure 4 b Ventricular Tachycardia Average Time Amplitude to Alarm Pacemaker Pulse Rejection Capability
120. of 40 for 3 seconds From the normal mode steady state press the LOWER ALARM LIMIT button two times rapidly Rotate the control knob CCW Verify that the HEART PULSE RATE display reduces to a minimum of 30 Press the LOWER ALARM LIMIT button three times rapidly Verify that the RESPIRATION RATE display indicates an alarm limit of 4 for 3 seconds From the normal mode steady state press the LOWER ALARM LIMIT button three times rapidly Begin rotating the control knob CW within 3 seconds Verify the RESPIRATION RATE display increases to a maximum of 40 Press the UPPER ALARM LIMIT button three times rapidly Verify the RESPIRATION RATE display indicates an alarm limit of 40 for 3 seconds Press the UPPER ALARM LIMIT button three times rapidly Begin rotating the control knob CW within 3 seconds Verify that the RESPIRATION RATE display increases to a maximum of 150 Press the ON STANDBY button to turn the monitor off Verify that the monitor emits three decreasing pitch beeps Press the ON STANDBY button to turn the N 3000 back on Press and release the UPPER ALARM LIMIT button Verify that the Sp02 display indicates an alarm limit of 100 Press and release the LOWER ALARM LIMIT button Verify that the SpO2 display indicates an alarm limit of 85 Press the UPPER ALARM LIMIT button two times rapidly Verify that the HEART PULSE RATE display indicates an alarm limit of 170 Pre
121. ollows Function Ground resistance test Range Millionms 2 Connect the monitor s AC plug to the analyzer as recommended by the analyzer operating instructions 3 Connect the analyzer resistance input lead to the grounding lug on the rear panel of the external power supply Verify that the analyzer indicates 150 millionms or less 3 4 2 Electrical Leakage The following tests verify the electrical leakage of the monitor e Chassis Source Current e Patient Source Current e Patient Sink Current 3 4 2 1 Chassis Source Current 3 20 Section 3 Performance Verification This test is in compliance with IEC 601 1 and AAMI Standard ES1 paragraph 3 3 1 Chassis Source Current between the power ground and part b exposed conductive hardware 1 Configure the electrical safety analyzer as follows Function Leakage Range Microamps 2 Connect the monitor AC plug to the electrical safety analyzer as recommended by the analyzer operating instructions 3 Connect the electrical safety analyzer leakage input lead to the monitor s external power supply grounding lug The analyzer leakage indication must not exceed 100 microamps at 100 120 VAC or 500 microamps at 220 240 VAC for the following AC power configurations while the monitor is turned on and while turned off AC LINE POLARITY Normal Reverse Reverse Normal 3 4 2 2 Patient Source Current POWER LINE GROUND CABLE Normal Normal Open O
122. ontrol knob CW until 53 2 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the minimum value in volts for the respiration signal during the capture period Rotate the control knob CW until 53 3 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the maximum value in volts for the respiration impedance signal during the capture period 4 31 Section 4 Configuration Mode Service Mode and Alarm Active Function 6 7 Rotate the control knob CW until 53 4 appears in the SpO2 display The number shown in the HEART PULSE RATE display is the minimum value in volts for the respiration impedance signal during the capture period Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 39 Menu Item 54 Enable Disable Respiration Monitoring This function allows you to disable the respiration system for service mode testing The setting does not affect normal mode operation The power on default setting is not changed It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 From the service mode steady state select menu item 54 by rotating the knob until 54 appears in the SpO2 display Press the UPPER ALARM LIMIT button The currently selected setting is displayed in the HEART PULSE RATE display OFF disabled ON enabled Rotate the knob to the desired se
123. ontroller board also communicates with other boards within the N 3000 via the stackbus The stackbus is controlled by the COM 20020 Arcnet controller chip U6 which is enabled by U1 CS1 CS1 must be configured as a chip select with a start address of 60000h block length of 2k 8 bit port both bytes access both read and write access and gated with AS This configuration maps the stackbus in the memory range of 60000h through 607FFh The number of wait states to generate depends on the U1 clock speed The number of wait states for CS1 must be set to 2 based upon a CPU clock speed of 16 0 MHz S 17 Technical Supplement 4 2 5 ECG Controller S 18 e Programmable Clock The clock frequency on the SpO2 controller board is programmed via software The clock signal is labeled CTRL_CLK The clock circuitry consists of U7 and U10 One half of U7 takes a 20 MHz input and produces three output frequencies 10 MHz 2 5 MHz and 1 25 MHz The 10 MHz frequency is the clock rate of the programmable down counter U10 The second half of U7 takes the terminal count TC output of U10 and converts it to a 50 duty cycle square wave The frequency of CTRL_CLK is controlled by an 8 bit number The bits of this number are split between two output ports The lower 5 bits of the number are programmed on the lower 5 bits of port C The upper 3 bits of the number are programmed on the upper 3 bits of port E The formula for the CTRL_CLK frequency is
124. or approximately 5 minutes Main menu items available from the service mode steady state are discussed in numerical order as indicated in Table 4 3 Section 4 Configuration Mode Service Mode and Alarm Active Function Table 4 3 Service Mode Steady State Main Menu Paragraph Type of Report Test Described Software Version Report 4 3 1 2 4 3 2 4 3 3 4 Speaker Test 4 3 4 4 3 5 4 3 6 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 9 Latching Alarms 4 3 13 Enable Disable Alarm Silence Reminder 4 3 14 4 3 15 4 3 17 30 4 3 18 4 3 21 35 4 3 23 4 3 24 Set SpO2 Analog Test Mode 4 3 25 4 13 Section 4 Configuration Mode Service Mode and Alarm Active Function Table 4 3 Service Mode Steady State Main Menu Continued Type of Report Test Described 4 3 29 42 43 44 46 47 49 53 54 Respiration Enable Automatic Operation 4 3 41 60 Set Serial Port Baud Rate 70 Nellcor Puritan Bennett Internal Test DO NOT USE 4 3 1 Menu Item 1 Software Version Report This report identifies the software versions of the UIF and SpO2 modules 1 From the service mode steady state select menu item 1 by rotating the Nellcor Puritan Bennett knob until 1 appears in the SpO2 display Press the UPPER ALARM LIMIT button A 1 0 appears in the SpO2 display The UIF software version number is the six digit number in the HEART PULSE RATE and RESPIRATION RATE displays 2 Ro
125. orque wrench 10 inch pounds 1 13 newton meters required only when replacing knob WARNING Before attempting to open or disassemble the N 3000 disconnect the power cord from the N 3000 Caution Observe ESD electrostatic discharge precautions when working within the unit Caution Remove the battery before disassembling the unit Note Some spare parts have a business reply card attached When you receive these spare parts please fill out and return the card 6 1 Section 6 Disassembly Guide 6 2 REMOVING THE BATTERY Caution If it is necessary to apply AC power while the battery cover is removed do not connect the SPS or PSS power supply to the monitor while the power supply is plugged into AC power Instead first connect the power supply to the monitor then connect the power supply to AC power Misalignment of the power supply cord connector with the lower docking connector may result in damage to the monitor This caution does not apply when the battery cover is attached to the N 3000 Perform the following steps to replace the battery 1 Turn the N 3000 OFF by pressing the ON STANDBY button 2 Disconnect the monitor from the SPS or PSS power supply 3 Set the N 3000 upside down facing you as shown in Figure 6 1 Eatery comer Figure 6 1 Battery Replacement 4 Loosen the two battery cover retaining fasteners securing the battery compartment cover 5 Gently squeeze the battery cover sides in the middle a
126. p of the monitor You cannot increase the value higher than the current SpO2 upper alarm limit setting The SpO2 default lower alarm limit cannot be set lower than 80 Return to the configuration mode steady state 4 2 4 Default Heart Pulse Rate Upper Alarm Limit 1 3 From the configuration mode steady state press the UPPER ALARM LIMIT button twice within 3 seconds The current default value is displayed in the HEART PULSE RATE display Dashes appear in the SpO2 display the upper horizontal segments of the display indicating that the monitor is in the set pulse rate upper alarm limit mode To change the upper alarm limit default value rotate the control knob on top of the monitor You cannot decrease the value lower than the current pulse rate lower alarm limit default setting The pulse rate default upper alarm limit cannot be set higher than 250 Return to configuration mode steady state 4 2 5 Default Heart Pulse Rate Lower Alarm Limit 1 From the configuration mode steady state press the LOWER ALARM LIMIT button twice within 3 seconds The current default value is displayed in the HEART PULSE RATE display To change the default lower alarm limit value rotate the knob CW to increase or CCW to decrease You cannot increase the value higher than the current pulse rate upper limit setting The pulse rate lower alarm limit cannot be set lower than 30 4 3 Section 4 Configuration Mode Service Mode and Alar
127. pen This test is in compliance with AAMI Standard ES1 paragraph 3 3 2 Patient Source Current is measured between any individual patient connection and power earth ground 1 Configure the electrical safety analyzer as follows Function Leakage Range Microamps 2 Connect the monitor AC plug to the electrical safety analyzer as recommended by the analyzer operating instructions for patient source current 3 Connect the electrical safety analyzer leakage input lead to the monitor s sensor input connector The analyzer leakage indication must not exceed 10 microamps for all of the following AC power configurations with the monitor on AC LINE POLARITY Normal Reverse Reverse POWER LINE GROUND CABLE Normal Normal Open 3 21 Section 3 Performance Verification Normal Open 3 4 2 3 Patient Sink Current 3 22 This test is in compliance with AAMI Standard ES1 paragraph 4 4 Patient sink current is measured in a patient connection if a source of 240 volts 50 Hz or 120 volts 60 Hz with respect to power earth ground is connected to that patient connection 1 Configure the electrical safety analyzer as follows Function Leakage Range uA Connect the monitor AC plug to the electrical safety analyzer as recommended by the operating instructions for patient sink current Connect the electrical safety analyzer leakage input lead to the monitor s sensor input The analyzer leakage
128. personnel 1 From the service mode steady state select menu item 56 by rotating the knob until 56 appears in the SpO2 display Press the UPPER ALARM LIMIT button 2 The HEART PULSE RATE display indicates whether or not the respiration circuit is in automatic operation OFF not in automatic operation ON in automatic operation 3 Rotate the knob to view the settings If the displayed value is different than the current setting the display will flash 4 Press the UPPER ALARM LIMIT button to accept the displayed value 5 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 42 Menu Item 60 Set Serial Port Baud Rate This function allows you to set the default serial port baud rate 1 From the service mode steady state select menu item 60 by rotating the knob until 60 appears in the SpO2 display Press the UPPER ALARM LIMIT button 2 The current baud rate in hundreds is displayed in the HEART PULSE RATE display Rotate the knob to view the settings If the displayed value is different than the current setting the display will flash Note When the N 3000 is connected to a PC in the RS 232 format a baud rate above 19 200 should not be used 3 Press the UPPER ALARM LIMIT button to store the displayed value as the default setting 4 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 43 Menu Item 61 Serial Port Loop Back Test This test ver
129. ppears in the HEART PULSE RATE display The values are displayed in millivolts 4 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 20 Menu Item 32 SpO2 Corrected IR and Red Signals Report This function allows you to validate the operation of the SoO2 module The values represent the outputs of the IR and red sensor channels after the amplifier offset values have been applied 1 Connect the sensor to the N 3000 2 Verify that the SpO2 module is set for automatic operation using menu item 39 paragraph 4 3 27 3 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 From the service mode steady state select menu item 32 by rotating the knob until 32 appears in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 corrected IR output signal is displayed in the SpO2 display in hundredths of volts The SpO2 corrected red output signal is displayed in the HEART PULSE RATE display in hundredths of volts 5 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 21 Menu Item 33 SpO2 IR LED Drive Test This function allows you to validate sensors and or the operation of the SpO2 module It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service personnel 1 Connect the sensor to the N 3000 4 22 Section 4 Configuration Mode Service Mode and Alarm Active Function Verify that t
130. ppears in the SpO2 display You are now in the service mode steady state Select menu item 30 by rotating the knob until 30 appears in the SpO2 display Press the UPPER ALARM LIMIT button Verify the RCAL index number 63 is displayed in the HEART PULSE RATE display Set the SRC 2 RCAL Mode switch to 64 LOCAL and verify that 64 is displayed in the HEART PULSE RATE display Press the ON STANDBY button to turn the monitor off 3 3 4 1 6 LED Drive Test 1 Ensure that the N 3000 is turned off and connected to AC power via an external power supply Connect the SRC 2 pulse oximeter tester to the sensor input cable and connect the cable to the monitor Set the SRC 2 as follows SWITCH POSITION RATE 38 LIGHT LOW MODULATION OFF RCAL MODE RCAL 63 LOCAL Enter the service mode as follows a While simultaneously holding down the UPPER and LOWER ALARM LIMIT buttons and the PRINT button press and release the ON STANDBY button Continue to press and hold the UPPER and LOWER ALARM LIMIT and PRINT buttons while the monitor performs the power on test b When SEr begins flashing in the AUXILIARY display release the UPPER and LOWER ALARM LIMIT and PRINT buttons c Press the PRINT button within 15 seconds or the monitor will turn off automatically The number 1 appears in the SpO2 display You are now in the service mode Select menu item 33 by rotating the knob until 83 appears in the SpO2
131. r beeps three times and will continue to do so at 3 minute intervals 3 3 4 1 2 Alarm Volume Control After completing the procedure in paragraph 3 3 4 1 1 1 4 Press and hold the AUDIBLE ALARM OFF button on the top of the monitor Verify the following a OFF is displayed for approximately 3 seconds b After 3 seconds a steady tone is heard at the default alarm volume setting the HEART PULSE RATE display indicates VOL and the RESPIRATION RATE display indicates the default setting of 5 While continuing to hold the AUDIBLE ALARM OFF button rotate the control knob CCW to decrease the alarm volume setting to a minimum value of 1 The alarm tone should decrease but still be audible Rotate the control knob CW to increase the alarm volume setting to a maximum value of 10 Verify the volume increases Rotate the knob CCW until a comfortable audio level is attained Release the AUDIBLE ALARM OFF button The tone will stop 3 3 4 1 3 Pulse Tone Volume Control 1 Rotate the control knob CW and verify that the beeping pulse tone sound level increases Section 3 Performance Verification 2 Rotate the control knob CCW and verify that the beeping pulse tone decreases until it is no longer audible Rotate the knob CW to return the beep volume to a comfortable level 3 3 4 1 4 Dynamic Operating Range The following test sequence verifies proper monitor operation over a range of input signals 1 Connect th
132. ress and release the UPPER ALARM LIMIT button Begin rotating the control knob counterclockwise CCW within 3 seconds Verify that the SpO2 display reduces to a minimum of 85 Note Adecimal point in the display indicates that the alarm limits have changed Press and release the LOWER ALARM LIMIT button Verify that the monitor emits a single beep and the SpO2 display indicates an alarm limit of 85 for 3 seconds Verify that the other displays indicate a single bar at the bottom of each window Press and hold the LOWER ALARM LIMIT button Rotate the control knob CCW and verify that the SpO2 display reduces to a minimum of 20 Rotate the control knob clockwise CW and verify that the SoO2 display cannot be raised past the upper alarm limit setting of 85 Press the UPPER ALARM LIMIT button two times rapidly twice within 3 seconds Verify that the monitor emits two beeps and the HEART PULSE RATE display indicates an alarm limit of 170 for about 3 seconds 10 11 12 13 14 15 16 17 18 19 20 21 Section 3 Performance Verification From the normal mode steady state press the UPPER ALARM LIMIT button two times rapidly Begin rotating the control knob CCW within 3 seconds Verify that the HEART PULSE RATE display reduces to a minimum of 40 Press the LOWER ALARM LIMIT button two times rapidly Verify that the HEART PULSE RATE display indicates an alarm limit
133. rify that the RED indicator turns off Rotate the knob to adjust the red LED drive level back to 170 Press the UPPER ALARM LIMIT button and verify that the RED indicator intensity increases Press the LOWER ALARM LIMIT button to return to the service mode steady state Press the ON STANDBY button to turn the N 3000 off 3 3 4 2 Operation with an ECG Simulator 1 With the monitor off connect the ECG leads RA LA and LL to the appropriate jacks on the ECG tester Nellcor Puritan Bennett ECG leads are color coded as follows Right arm RA white Left arm LA Black Left leg LL Red 3 11 Section 3 Performance Verification 3 12 2 Connect the leads to the SCE 10 ECG cable Connect the SCE 10 to the ECG input port on the N 3000 Set the ECG tester as follows PARAMETER SETTING HEART RATE 30 bpm AMPLITUDE 1 millivolt LEAD SELECT SINUS RHYTHM Normal RCAL MODE Adult Note The accuracy of N 3000 ECG measurements is 5 bpm In the 10 11 procedure below add the tolerance of the simulator to the acceptable range of readings Ensure that the monitor is connected to an AC power source Press the ON STANDBY button to turn the monitor on After the normal power up sequence verify the following monitor reactions a The heart rate beep will be heard b After at least five heartbeats the monitor displays a heart rate of 30 5 bpm c The audible alarm will sound and the HEART PU
134. ring attached to one side After all PCBs and side panels have been properly seated in the top chassis install the handle into the cradle in a vertical position Guide the spring into the molded channel located at the rear of the top chassis while leaning the handle to the inside of the unit When properly seated the handle will rotate out with a small amount of spring tension and naturally return to the vertical resting position Depending upon the level of repairs you may have to reconfigure the monitor s Internal Configuration Code ICC in order to get the monitor to operate properly Refer to the service mode section menu item 21 of this manual 6 13 Section 7 Spare Parts SECTION 7 SPARE PARTS 7 1 Introduction 7 1 INTRODUCTION Spare parts along with part numbers are shown below Item numbers in parentheses correspond to the callout numbers in Figure 7 1 Item No Description O O ParNo 1 Cover battery J087 e 2 Battery lead acid 12V 2Ah 640115 3 Bracket battery 080487 4 Cover bottom monitor 081646 5 Handle carrying 030783 6 Parel left speaker mount 030067 8 Speaker with lead connector andinsulator 033115 __ PCB communications EPP PCB SpO2 controller SP033274 PCB UIF SP034971 030065 PCB SpO2 SP030063 031517 Button audible alarm off 031853 023301 PCB docking connector SP030221 g not pictured _ Insulator ECG PCB ECG
135. rnal stackbus It also decodes the knob movement as well as providing a 32 679kHz source clock It is an 8 bit memory mapped peripheral connected to the upper 8 bits D15 through D8 of the processor data bus The internal stackbus provides the communications for the UIF module and the SpO2 module The external stackbus is used to communicate with other instruments when the unit is used in the stack configuration The chip select for U14 is processor pin CS3 Universal Asynchronous Receiver Transmitter UART U24 is an industry standard 16C550 It is an 8 bit memory mapped peripheral connected to the upper 8 bits D15 through D8 of the processor data bus It contains two 8 byte FIFOs one for transmit and one for receive a baud rate generator and several programmable I Os for enabling isolated power on the communications module serial communication handshaking and alarm active signaling The chip select for U24 is processor Pin CS6 Figure S4 3 Internal External Stackbus Connections d Processor Support ICs The processor support ICs are used to monitor the processor and its power supply resetting U3 when necessary and to sound an alarm using piezo speaker Y1 when the processor appears to be inoperative or when the unit has had an unexpected power loss The processor support ICs are watchdog timer U21 and the processor power fail circuitry consisting of U16 U1 U2 U11 U22 and U29 Watchdog Timer Timer U21 ensures that p
136. rocessor U3 does not operate and switches the backup battery power from U20 to the RAMPWR supply when the 5 volt supply is below its lower regulation limit This chip holds U3 in reset until the power supply is above its lower regulation limit S 13 Technical Supplement S 14 The watchdog timer also resets the processor if the processor input signal CLRWD is not toggled within a timeout period controlled by the watchdog oscillator circuitry When the watchdog times out it generates a signal that causes the piezo power loss alarm speaker to emit a tone The timeout also causes the display to go blank and generates a reset to U3 The tone continues until the watchdog is cleared by activity on the CLRWD signal line pressing the ALARM SILENCE button removing power from the circuit Timer U21 also switches the backup battery power from U20 to RAMs U13 and U23 the processor power fail circuitry when the 5V supply is below its lower limit Processor Power Fail Circuitry This circuitry sounds the piezo speaker if the processor fails to operate or the 5V power unexpectedly falls below its lower regulation limit e Connectors This section describes UIF connectors and pinouts other than the docking connector J13 J8 J8 is a 40 pin daughter board connector that interfaces the UIF module to the communications board This board uses only the first 16 pins on the connector Table 4 2 J8 Connector Pin No Pin
137. rough Repeat steps 11 and 12 for the LA and RA leads Turn the monitor off 3 3 4 3 Operation with a Respiration Simulator 1 8 3 3 4 4 General Operation With the monitor off connect the Nelicor Puritan Bennett ECG leads to the appropriate jacks on the respiration simulator Connect the leads to the SCE 10 ECG cable Connect the SCE 10 to the ECG input port on the N 3000 Note The accuracy of N 3000 ECG measurements is 3 breaths per minute In the procedure below add the tolerance of the simulator to the acceptable range of readings Set the simulator for a respiration rate of 100 breaths per minute Ensure that the monitor is connected to an AC power source Press the ON STANDBY button to turn the monitor on After the normal power up sequence verify the following monitor reactions a After about 20 25 seconds the monitor displays a respiration rate of 100 3 breaths per minute b The audible alarm will sound and the RESPIRATION RATE display will flash indicating the respiration rate is above the default upper alarm limit Press the AUDIBLE ALARM OFF BUTTON Verify that the alarm is silenced Decrease the respiration rate setting on the respiration simulator to 20 breaths per minute After at least 5 breaths verify that the monitor displays a respiration rate of 20 3 breaths per minute Power down the monitor and disconnect it from the simulator The following tests are an overall performance che
138. rt of photocoupler U8 The output of U8 is amplified by an amplifier in U19 the output of which is the RAW_ECG signal which is applied to the ECG lead I III display and the pacemaker detection and suppression circuits S 7 Technical Supplement S 8 f ECG Lead V II III Display Circuit The RAW_ECG signal from the servo amp circuit is connected to an amplifier in U19 When the ECG_REST line goes low a 2 5 volt DC reference signal is applied through two switches in U14 to the RAW_ECG signal input to U19 The output of U19 is applied to variable offset amplifier U13 When the GAIN1 signal from the ECG Controller is high the gain of the servo amplifier and U19 is 4 33 dB When the GAIN1 signal is low the gain of U13 is 13 dB An ECG offset voltage on the ECG_OFFSET line from U28 The value of this offset voltage is set in U28 by the ECG Controller ECG_OFFSET is applied through amplifier U10 as the reference for U13 The output of U13 is then applied to variable gain amplifier part of U23 When the GAIN2 signal for the ECG Controller is high the gain of this amplifier is 7 87 dB and when GAIN2 is high the gain is 15 73 dB controlled by the switch part of U14 The output of this amplifier is ECG OUT which is applied to the ECG Controller as the ANALOGO signal The output of U13 is also applied to another amplifier circuit with the same variable gain composed of two amplifiers part of U13 and part of U23 The gain of this amplifier circuit
139. rting amplifier depending on the state of switch U26 U3 samples the output to demodulate the two channels This sample and hold is then amplified by U5 or U6 The gain is 1 or 16 depending upon the state of DM2 from the U10 controller The other half of U5 or U6 drives the linear opto isolator to create a current output proportional to the input voltage This current has an effective gain of 1 2 4 or 8 controlled by DMO and DM1 U13 converts the current output of the linear opto isolator U6 to a voltage and then to a digital value g Auto Calibration Switch U26 selects either the differential amplifier U21 output or the internal calibration signals as an input to the U27 based filter If the calibration input is selected U24 can select either a zero or test input The zero input connects the filter input to ground so the system can calibrate the no signal output of the two channels The test input connects the LED current waveform to the filter so the demodulator has an output proportional to the programmed LED current h Nonisolated Power Supply The power supply creates 5 volt from the system battery supply The input voltage is 8 16 volts which is filtered and regulated by U19 to create the 5 volts U20 converts this input to a regulated 7 volt output that is regulated to 5 volts by U18 4 2 2 ECG Respiration Module S 6 Technical Supplement The following paragraphs describe the functional areas of the ECG
140. s indicated in paragraph 4 3 43 menu item 61 2 Select menu item 62 by rotating the knob until 62 appears in the SpO02 display STT appears in the HEART PULSE RATE display Press the UPPER ALARM LIMIT button 3 Verify that a fixed pattern of bytes 0 through 255 are repeatedly transmitted on the data line when menu item 62 is selected 4 Press the LOWER ALARM LIMIT button to return to the service mode steady state Caution Menu items 70 and above are for factory purposes only Adjustment of menu items 70 and above by other than qualified factory personnel may cause the N 3000 to malfunction 4 4 ALARM ACTIVE FUNCTION The N 3000 alarm active function allows low medium or high priority alarms to be monitored from a remote location via the N 3000 serial port This function allows use of a nurse call light Alarm monitoring also applies to an attached active N 3100 or N 3200 The monitoring remains active whether the monitor is operating on AC or DC power 4 35 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 36 Pin 6 on the serial port is open when no alarms are active Alarm activity results in pin 6 shorting to ground The pin will remain shorted to ground as long as the alarm is sounding 1 2 3 4 5 5 Figure 4 1 Serial Port Pin Locations If voltage levels of 7 volts on pin 1 are desired for remote alarm monitoring while in RS 232 mode short together the DSR pin 2 an
141. s you swing the cover open it is hinged on the right with three tabs that extend into slots on the chassis 6 2 Section 6 Disassembly Guide 6 Lift the battery out of the battery bracket as shown in Figure 6 2 It may be necessary to use the edge of a flat tip screwdriver to gently pry the battery loose Eatery cover Figure 6 2 Removing the Battery 7 Disconnect the power connector from the battery 6 3 BATTERY REPLACEMENT 1 Complete the procedure in paragraph 6 2 2 The lead acid battery is recyclable Do not dispose of battery by placing it in the regular trash Dispose of properly or return to Nellcor Puritan Bennett Technical Services for disposal 3 Connect the power connector to the new battery 4 Position the battery into the battery bracket 5 Replace the battery cover and tighten the retaining fasteners 6 Turn the monitor on and verify proper operation Note If the replacement battery is low on charge the BATTERY CHARGING indicator may not light if the monitor is off and connected to AC power If that is the case turn the N 3000 on to begin charging 6 3 Section 6 Disassembly Guide 6 4 FUSE REPLACEMENT 1 Complete the procedure in paragraph 6 2 2 Replace the fuses as shown in Figure 6 3 with equivalent replacements Fuse FE 2 9 amp Fuse Fi 1 amp S50 So Blow 0 So Blow Figure 6 3 N 3000 Fuses 3 Reinstall the battery and battery cover Caution The battery fuse F2 on the D
142. sed in paragraph S4 Circuit Analysis local area network standard as the message protocol The external stackbus is used for communications between the N 3000 N 3100 and the N 3200 Information is exchanged over two pins on the N 3000 docking connector and two sockets on the N 3100 or N 3200 upper docking connector As with the internal stackbus the Arcnet local area network standard is used as the protocol Technical Supplement RS 485 drivers and receivers are used for signaling A proximity sensor in the bottom of the N 3000 or N 3100 detects when the monitor is docked enabling the stackbus signals Access to the stackbus is accomplished through token passing A token designates which station module or instrument has control of the stackbus The token is passed in a circular manner from station to station The station holding the token has the exclusive right to transmit onto the stackbus but the right to transmit may be temporarily donated to another station to acknowledge a transmission by the token holder The token holder must relinquish control of the stackbus by passing the token to the next station on the loop within a specified period of time During normal operation the right to access the stackbus passes from station to station in a continuous consistent manner All instruments participate in the loop when stacked and powered on Maintenance of the token passing loop initialization lost token recovery and the addition o
143. service mode paragraphs 4 3 43 correct but messages are and 4 3 44 If the tests are successful not being transmitted or recheck the message formats you are received sending to the monitor ensure that a good cable connection exists between PC and N 3000 and verify the baud rate using the service mode menu item 60 When connected to a PC in the RS 232 format a baud rate above 19 200 should not be used If the test fails ensure the Communications PCB switch settings are as described in paragraph 6 8 If the condition persists replace the Communication PCB If the condition still persists replace the UIF PCB 5 12 SECTION 6 DISASSEMBLY GUIDE 6 1 Introduction 6 2 Removing the Battery 6 3 Battery Replacement 6 4 Fuse Replacement 6 5 Monitor Disassembly 6 6 Removing the Alarm Speaker 6 7 Removing the SpO2 PCB and SpO2 Controller PCB 6 8 Removing the Communications PCB 6 9 Removing the ECG PCB and ECG Controller PCB 6 10 Removing the UIF PCB and Display PCB 6 11 Control Knob Assembly Replacement 6 12 Lithium Battery Replacement 6 13 Reassembly 6 1 INTRODUCTION The N 3000 can be disassembled down to all major component parts including PCBs batteries cables function buttons chassis enclosures The following tools are required e small Phillips head screwdriver e medium Phillips head screwdriver e needle nose pliers or 1 4 inch socket e 7 16 inch socket 7 16 inch t
144. splay PCB eee 6 8 6 10 1 Installing a Replacement UIF PCB 6 9 6 11 Control Knob Assembly Replacement ccceecceeeseeeeeeees 6 10 6 12 Lithium Battery Replacement 0 cccccccseeeeeeeeeeeteesttneeeeeees 6 11 6 13 ReASSOMDIY cece eee eceeeee cece ee eeeeeaeeeeeeeeeeeeceaaaeeeeeeeeeteeetaaeeeeeees 6 11 Section 7 Spare Parts icc cect eee BO 7 1 FeAl MATRODUCU ON tit ee orate tate cee EEIE EAE TEE Aa EA 7 1 Section 8 Packing for Shipment 8 1 8 1 General Instructions 0 0 ccc eceetee cette ee eeeeteaeeeeeeeetteeteaeeeeeees 8 1 8 2 Repacking in Original Carton ccccceecceccceeeeeeeeeeeeeeesteeeeeees 8 1 8 3 Repacking in a Different Carton cecccseseeeeeeeeeeeetteeeeeees 8 2 Section 9 Specifications cccccccccccc eere 9 1 9 1 General rere 9 1 92 lt Electricarerna n R ee N 9 1 9 3 Physical CharacteristiCs cccccececeeeeeeeeeeeeeeeeeeeeeeeeeesnaeeeeeees 9 2 9 4 Environmental ccccecccceeeeeeeecceeeeeeeeeeeeccaaeeeeeeeeeeeensaaeeeeees 9 2 9 5 gt JAlarM Sita ns On a eRe We eee eee ees 9 2 9 6 Factory Default Settings 0 ec cece eeeeeeeeeeeeeeeeeeeeesaeeeeeees 9 2 9 7 P rfOPMANCEL 0a see ee eeeeettee cette eeteeeaaeeee eee eetteeaaaaeeeeeeeetesseaaaeeeeees 9 3 Table of Contents Appendix insmeert de EEE eer etre AE KEE A EPEC AAE E EAEE AEE A 1 A1 Error Types 2 2 2 nie ea a a E ES A 1 A2 User Correctable Error Codes
145. splays d After about 10 to 20 seconds the monitor displays a saturation and pulse rate as specified by the tester Verify that the values are within the following tolerances Oxygen Saturation Range 79 to 83 Pulse Rate Range 37 to 39 bpm 3 7 Section 3 Performance Verification 3 8 e The audible alarm sounds and both the SpO2 and HEART PULSE RATE displays will flash indicating both parameters have violated the default alarm limits Press and momentarily hold the AUDIBLE ALARM OFF button on the top of the monitor Verify that the HEART PULSE RATE display indicates 60 and the RESPIRATION RATE display indicates SEC while the AUDIBLE ALARM OFF button is pressed The alarm is silenced Release the AUDIBLE ALARM OFF button Verify the following a The alarm remains silenced b The AUDIBLE ALARM OFF indicator lights c The SpO2 and HEART PULSE RATE displays resume flashing d The pulse tone is still audible e The audible alarm returns in approximately 60 seconds Press and hold the AUDIBLE ALARM OFF button Rotate the control knob CCW until the HEART PULSE RATE display indicates 30 Rotate the control knob CW and verify that the displays indicate 60 SEC 90 SEC 120 SEC and OFF Release the button when the display indicates OFF Verify that the AUDIBLE ALARM OFF indicator flashes Wait approximately 3 minutes Verify that the alarm does not return After 3 minutes the alarm silence reminde
146. ss the LOWER ALARM LIMIT button two times rapidly Verify that the HEART PULSE RATE display indicates an alarm limit of 40 Press the UPPER ALARM LIMIT button three times rapidly Verify that the RESPIRATION RATE display indicates an alarm limit of 40 Press the LOWER ALARM LIMIT button three times rapidly Verify that the RESPIRATION RATE display indicates an alarm limit of 4 Press the ON STANDBY button to turn the monitor off 3 5 Section 3 Performance Verification 3 3 3 3 Neonate Power On Defaults and Alarm Limit Ranges 3 6 Note When observing or changing default limits a 3 second timeout is in 10 11 12 13 14 15 16 effect that is if no action is taken within 3 seconds the monitor automatically returns to the normal mode steady state Turn the monitor on Press the NEW PATIENT NEONATAL button on the rear panel twice within 2 seconds Verify that there is an audible beep each time the button is pressed Verify that the NEONATAL MODE indicator on the front panel is lit Press and release the UPPER ALARM LIMIT button Verify that the Spo02 display indicates an alarm limit of 95 for 3 seconds Verify that the other displays indicate a single bar at the top of each window while the 95 is displayed Press and release the UPPER ALARM LIMIT button Begin rotating the control knob CCW within 3 seconds Verify that the SoO2 display reduces to a minimum of 80
147. sssesseeeeees 4 6 4 2 10 5 Trend Type ccccceseeeeeeeeeeeecceeeeeeeeeeeeecceeeeeeeeeenees 4 7 Table of Contents 4 2 10 6 Reset to Factory Defaults cceceecceeeeeeeeeeeeeetees 4 7 4 2 10 7 Primary Heart Pulse Rate Source eceeeeeeeee 4 7 4 2 10 8 Primary Pulse Tone Source 4 8 4 2 10 9 ECG Lead Selection ccceeeceeeeeeeeeeceteeeeeeeeetes 4 8 4 2 10 10 ECG Pacer Filter Status ceeeeeeceeeeeeeeeteees 4 8 4 2 10 11 ECG Low Frequency Filter Status 0 eee 4 9 4 2 10 12 ECG Software Version Report s s s 4 9 4 2 10 13 Respiration Noise Timeout 4 9 4 2 10 14 Respiration Sensitivity Selection cee 4 10 4 3 Service Mode uo eee ee eeccceee cece eee eeecaaeeeeeeeeeeeeaaaeeeeeeeeeeeeeaaaes 4 10 4 3 1 Menu Item 1 Software Version Report 008 4 13 4 3 2 Menu Item 2 Knob and Lamp TeSt ceeeeeeee 4 14 4 3 3 Menu Item 3 Button Test 4 14 4 3 4 Menu Item 4 Speaker Test 4 15 4 3 5 Menu Item 5 Internal Configuration Code ICC Reporta aa aa i eae AE 4 15 4 3 6 Menu Item 6 Total Operating Hours Report 4 16 4 3 7 Menu Items 7 16 Error Log Record Report 4 16 4 3 8 Menu Item 17 Instrument Identification IID Report 4 16 4 3 9 Menu Item 18 Power Status cc ceeeseeeeeteeeeees 4 17 4 3 10 Menu Item 19 Persistent Time Sense Report 4 17 4 3 11 Menu Item 20 Reset to Factory Defaults
148. startup problem missing resource or unexpected state during module initialization 159 Unable to complete operation Institutional parameters are in unknown state UIF unable to send data over internal stack bus UIF unable to receive data over internal stack bus UIF unable to communicate with stacked instruments EEPROM CRC failure configuration EEPROM Missing or non responding module A 2 Appendix 183 Illegal operating mode change A 3 Appendix Table A 3 N 3000 Failure Error Codes Continued Error Explanation Code SpO2 controller clock failure check SpO2 digital board clock select jumper and digital board to analog board connection The firmware and ECG PCB do not match or the PCB board presence is not recognized PROM on ECG board may be wrong version ECG module ECG circuit self test failure ECG module Respiration circuit self test failure A4 INTERNALLY CORRECTED ERROR CODES A 4 Internally corrected error codes are not normally displayed These errors are logged on the internal Error Log then the N 3000 watchdog circuitry resets the monitor They can be accessed only by using the Service Mode menu items 7 through 16 as indicated in Paragraph 4 3 Service Mode Table A 4 lists the internally corrected error codes in numerical order It is not normally necessary for service personnel to access the Error Log However if you find it necessary to contact Nellcor Puritan Bennett Techni
149. t of the pulse width modulation and inductive transient changes b Timing The ISO CLK is divided by U29 and decoded by U1 and U30 to create the timing signals used throughout the isolated section of the circuit The timing diagram Figure S4 2 shows the result of this decoding One complete cycle of the front end takes 16 ISO CLK cycles Figure S4 2 Timing Diagram c Microprocessor Control of Isolated Circuitry Controller U10 sheet 1 of schematic is an Octal 8 bit DAC The reference voltage for U10 is 5 volts created by U39 Two U10 outputs VOUTA and VOUTB are used to program the LED outputs for the IR and RED channels The other six signal lines are used as logic lines Five control amplifier gain PDO and PD1 select the predemodulation gain while DMO DM1 and DM2 control the demodulated gain The remaining signal line CAL U10 pin 18 selects the calibration setting d LED Drive The LED drive circuitry is shown in the lower left corner of the schematic diagram sheet 2 Signal outputs from U10 RED LED and IR LED are used to control LED brightness These signals are multiplexed by U31 and buffered by one half of U32 A voltage divider circuit consisting of R101 and R102 divide the multiplexed signal down to the proper voltage to use as a reference for the other half of U32 Additionally R92 provides a path for stray current during the off period to ensure that the LEDs are truly off Components R97 R98 and Q
150. t the displayed value in the SpO2 module which will cease its automatic operation The HEART PULSE RATE display will stop flashing Press and hold the PRINT button to display the SpO2 corrected IR and red output signals as described in menu item 32 Release the PRINT button Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 24 Menu Item 36 SpO2 P Gain Test 4 24 This function allows you to validate sensors and or the operation of the SpO2 module 1 2 Connect the sensor to the N 3000 Verify that the SpO2 module is set for automatic operation using menu item 39 paragraph 4 3 27 Press the LOWER ALARM LIMIT button to return to the service mode steady state From the service mode steady state select menu item 36 by rotating the knob until 36 appears in the SpO2 display Press the UPPER ALARM LIMIT button The SpO2 preamp gain from 0 to 3 is displayed in the HEART PULSE RATE display To adjust the gain value rotate the knob The HEART PULSE RATE display will flash Pressing the UPPER ALARM LIMIT button will set the displayed value in the SpO2 module which will cease its automatic operation The HEART PULSE RATE display will stop flashing Press and hold the PRINT button to display the SpO2 corrected IR and red output signals as described in menu item 32 Release the PRINT button 8 Section 4 Configuration Mode Service Mode and Alarm Active Function Press the LOWE
151. tate the knob to change the number in the SpO2 display to 1 1 The SpO2 software version number is the six digit number in the HEART PULSE RATE and RESPIRATION RATE displays 3 Rotate the knob to change the number in the SpO2 display to 1 2 The ECG software version number is the six digit number in the HEART PULSE RATE and RESPIRATION RATE displays Note Respiration software is a component of the ECG software 4 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 14 Section 4 Configuration Mode Service Mode and Alarm Active Function 4 3 2 Menu Item 2 Knob and Lamp Test This test verifies that indicators front panel lamps and the control knob are functional 1 From the service mode steady state select menu item 2 by rotating the knob until 2 appears in the SpO2 display Press the UPPER ALARM LIMIT button All indicators light Rotate the knob CW to light each display segment decimal indicator and blip bar in a scanning pattern to verify that each lamp works Note The POWER ON indicator is not tested with this procedure It can be verified by turning the monitor on and off The BATTERY CHARGING indicator is also not tested Rotate the knob CCW to reverse the firefly pattern Knob functionality is verified by the even movement through the firefly pattern as the knob is turned Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 3
152. tion can be accessed by attaching the N 3000 to an N 3200 It is also available for a PC via the serial port Menu item number 4 allows you to select 5 10 or 20 displayed in the SpO2 display as the default trend format Selecting 20 causes patient trend data to be recorded every 20 seconds Each patient parameter value will be both the maximum and minimum data for each parameter during the sample period Data is stored for the most recent 32 hours of patient monitoring during the last five days This selection is described as Format 2 in the N 3000 operator s manual Selecting 10 causes patient trend data to be recorded every 10 seconds Each patient parameter value will be the average of all data samples for each parameter during the sample period Data is stored for the most recent 24 hours of patient monitoring during the last five days This selection is described as Format 1 in the N 3000 operator s manual Selecting 5 causes patient trend data to be recorded every 5 seconds Each patient parameter value will be the most recent data sample for each parameter during the sample period Data is stored for the most recent 12 hours of patient monitoring during the last five days This selection is described as Format 3 in the N 3000 operator s manual 1 From the configuration menu steady state rotate the knob until 4 is displayed in the SpO2 display Press the UPPER ALARM LIMI
153. tons simultaneously The SpO2 display indicates the menu number 0 through 13 and the PATIENT MOTION indicator is illuminated to indicate the monitor is in the configuration menu steady state Rotate the knob on top of the N 3000 to access the desired menu number Press the UPPER ALARM LIMIT button to configure the displayed item using the procedures listed in paragraphs 4 2 10 1 through 4 2 10 14 4 6 Section 4 Configuration Mode Service Mode and Alarm Active Function To exit the configuration menu steady state and return to the configuration mode steady state press the LOWER ALARM LIMIT button or if there is no knob or button activity for 15 seconds you will automatically return to the configuration mode steady state You may also exit by turning the monitor off 4 2 10 1 Pulse Tone Volume Menu item number 0 allows you to set the default volume 1 through 10 for the pulse tone 1 From the configuration menu steady state rotate the knob until 0 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button The current default pulse tone volume setting is displayed in the HEART PULSE RATE display An audio tone sounds at the current volume setting Rotate the knob CW or CCW to set the desired power on default volume level 1 through 10 Press the LOWER ALARM LIMIT BUTTON to return to the configuration menu steady state 4 2 10 2 UIF Software Version Report 1 From the configuration menu ste
154. tons until CFG begins flashing in the RESPIRATION RATE display 3 Release the UPPER and LOWER ALARM LIMIT buttons 4 Press the PRINT button CFG stops flashing and remains displayed in the RESPIRATION RATE display If the PRINT button is not pressed within 15 seconds after CFG begins flashing the monitor will turn off automatically You are now in configuration mode steady state The N 3000 automatically powers down if no action is taken for approximately 2 minutes After changing or viewing a default setting you can return to the configuration mode steady state by allowing the display to timeout 3 seconds To exit the configuration mode turn the monitor off by pressing the ON STANDBY button Default settings take place when the monitor is turned off Default settings also take place if the N 3000 powers down due to the 2 minute timeout Note While changing default limits there must be some user interaction with the monitor within a 3 second period or the monitor will return to configuration mode steady state operation 4 1 Section 4 Configuration Mode Service Mode and Alarm Active Function Table 4 1 lists the default settings that can be configured and the respective entry procedures to access the settings Methods used to change the default settings are detailed in paragraphs 4 2 1 through 4 2 10 Table 4 1 Configuration Mode Menu Power on Default Setting Adult Neonatal Mode SpO2 Upper A
155. ts except the battery charge and battery performance tests must be performed as the last operation before the monitor is returned to the user If the N 3000 fails to perform as specified in any test repairs must correct the problem before the monitor is returned to the user 3 2 EQUIPMENT NEEDED Description AC power adapter Use an appropriate Nellcor Symphony SPS N1 or PSS 1 power supply Digital multimeter DMM Fluke Model 87 or equivalent Durasensor oxygen transducer DS 100A ECG cable SCE 10 ECG electrodes standard ECG simulator Dynatech Nevada medSim 300 or equivalent Pulse oximeter tester SRC 2 Respiration simulator Dynatech Nevada medSim 300 or equivalent Safety analyzer Must meet current AAMI specifications Serial interface cable EIA 232 cable optional Stopwatch Manual or electronic 3 3 PERFORMANCE TESTS The battery charge procedure should be performed before monitor repairs whenever possible It should also be performed before and after performing the battery performance test paragraph 3 3 2 3 1 Section 3 Performance Verification 3 3 1 Battery Charge This section is written using Nellcor Puritan Bennett factory set defaults If your institution has preconfigured custom defaults those values will be displayed Factory defaults can be reset using the configuration mode procedure described in paragraph 4 2 10 6 Perform the following procedure to fully charge the battery 1 Connect the
156. tting If the displayed value is different from the current setting it will flash Press the UPPER ALARM LIMIT button to change the setting Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 40 Menu Item 55 Enable Disable Breath Pulses 4 32 This function allows you to enable or disable breath pulses from the serial port When a setting is changed using this function the power on default setting is also changed When breath pulses are enabled a pulse for each detected breath is sent out via the serial port DTR output 1 From the service mode steady state select menu item 55 by rotating the knob until 55 appears in the Sp02 display Press the UPPER ALARM LIMIT button The currently selected setting is displayed in the HEART PULSE RATE display OFF disabled ON enabled Rotate the knob to the desired setting If the displayed value is different from the current setting it will flash Press the UPPER ALARM LIMIT button to change the setting and store it as the default setting Section 4 Configuration Mode Service Mode and Alarm Active Function 5 Press the LOWER ALARM LIMIT button to return to the service mode steady state 4 3 41 Menu Item 56 Respiration Enable Automatic Operation This function allows you to enable or disable the respiration automatic operation mode It is not necessary to use this feature unless instructed to do so by Nellcor Puritan Bennett service
157. twice within 2 seconds and then power down by pressing the ON STANDBY button 4 2 2 Default SpO2 Upper Alarm Limit 4 2 Section 4 Configuration Mode Service Mode and Alarm Active Function From the configuration mode steady state press and release the UPPER ALARM LIMIT button The current default value is displayed in the Sp02 display Dashes appear in the HEART PULSE RATE display the upper horizontal segments of the display indicating that the monitor is in the set SpO2 upper alarm limit mode To change the upper alarm limit default value rotate the knob on top of the monitor or if stacked with an N 3200 in the configuration mode the knob on the N 3200 You cannot decrease the value lower than the current SpO2 lower alarm limit default setting The SpO2 upper alarm limit cannot be set higher than 100 Return to configuration mode steady state Note If you press the LOWER ALARM LIMIT button before the 3 second timeout you can then change the SpO2 lower alarm limit default If you press the UPPER ALARM LIMIT button you can then change the pulse rate upper alarm limit default This method can also be used while setting the other default alarm limits 4 2 3 Default SpO2 Lower Alarm Limit 1 3 From the configuration mode steady state press and release the LOWER ALARM LIMIT button The current default value is displayed in the SpO2 display To change the lower alarm limit default value rotate the knob on to
158. uments Power switching and battery charging are controlled by U20 a BQ2001 power monitor IC The BQ2001 power monitor IC has three sources of power input CHARGEBUS from the SPS or PSS power supply the N 3000 lead acid battery or lithium battery BT1 The ON STANDBY button is connected to BQ2001 which controls the gate of power transistor Q10 Processor U3 is also connected to BQ2001 receiving interrupts and reading data from the BQ2001 status registers when the N 3000 is on When the N 3000 is OFF standby mode and the ON STANDBY button is pressed the BQ2001 enables transistor Q10 and analog power from either the CHARGEBUS or the lead acid battery is supplied to the 5V regulator U17 and U18 and the SpO2 module It also signals the processor with an interrupt that S 9 Technical Supplement S 10 there is new data in its status registers for the processor to read As soon as the processor powers up and clears reset it will process the interrupt from the BQ2001 and begin to execute its program Table S4 1 J13 Inter Stack Connector PinNo Pin Description inpuvOutpuvPower Positive battery terminal fused Chassis case ground 5 Cistal ground SSSCS s Per SSSSC d 6 Charge bus 150 re romysoa mt When the N3000 is on and the ON STANDBY button is pressed the BQ2001 signals the processor via interrupt that there is data for the processor to read When the processor reads the status it determines that t
159. ured for a start address of 0 a block length of 256K bytes both read and write access and is gated with AS This configuration provides a program memory range of 00000h through 3FFFFh The number of wait states needed before the CSBOOT signal is generated depends upon the U1 clock speed and the speed at which U4 can successfully perform its functions With the N 3000 the number of wait states must be set to 1 based upon a CPU clock speed of 16 0 MHz maximum and the U4 access time of 150ns maximum Technical Supplement Resistor R22 pulls the U4 OE signal state to low during normal operation If this signal state is high the U4 output is disabled c RAM Memory RAM chips U5 and U8 provide the ECG Controller board with 256K bytes of memory The 16 bit RAM data bus is split into a high byte and a low byte for RAM chips U5 and U8 respectively High byte RAM U5 is output enabled when the R W L lines from U1 is set high and the HRAMEN L line from U1 CS0 is set low Low byte RAM U8 is output enabled when the R W L line from U1 is set high and the LRAMEN L line from U1 CS2 is set low Both RAM chips are write enabled when the R W L line from U1 is set low d Stackbus The SpO2 controller board also communicates with other boards within the N 3000 via the stackbus The stackbus is controlled by the COM 20020 Arcnet controller chip U6 which is enabled by U1 CS1 CS1 must be configured as a chip select with a start address of 60000h
160. utton twice to display the heart rate alarm limit This resets all limits to their power on defaults 5 6 2 2 Failure Error Codes Failure error codes are those that are displayed by the monitor with a leading digit other than 0 In some cases these codes can be cleared by simply turning the monitor off and then on again Table 5 3 lists the possible failure error codes and the recommended action to take If the action requires replacement of a PCB refer to Section 6 Disassembly Guide f the recommended action fails to solve the problem notify Nellcor Puritan Bennett Technical Services or your local representative Refer to the Appendix for a further explanation of the codes 5 4 Section 5 Troubleshooting Table 5 3 N 3000 Failure Error Codes Recommended Action 1 Turn the monitor off then on again 2 If the error code still appears power down the monitor and verify that the UIF PCB ROM U3 is securely seated in its socket Turn the monitor on again If the error code still appears power down the monitor and replace the UIF PCB 108 109 Turn the monitor off then on again MWS If the error code still appears power down the monitor and replace the UIF PCB 110 Turn the monitor off then on again Use service mode menu item number 18 to evaluate the status of the lithium backup battery If necessary power down the monitor and replace the lithium backup battery If the error code still app
161. y 0 5 volts of the 5 volt reference The resulting 4 5 volt squarewave is AC coupled through C39 and applied to R56 producing a proportional current into the virtual ground of U5 pin 6 This current produces the output at pin 7 of U5 The resulting voltage is multiplied by the impedance reflected through transformer T1 The second half of U5 forms a summing junction that subtracts a portion of the drive signal from the impedance measurement which compensates for the 8 6K ohms of resistive impedance that is on the ECG PCB and cable This second stage also amplifies the remaining signal by 2 and helps isolate the load transients caused by the sampling circuitry from the output signal at pin 7 of U5 4 2 3 UIF Module Technical Supplement j Respiration Circuit When enabled U26 produces the RESP_CLOCK and RESP_SAMPLE signals are produced RESP_CLOCK is a 55 kHz square wave and the RESP_SAMPLE signal is a normally high signal that is low for one fourth of the 55 kHz cycle The RESP_SAMPLE and RAW_RESP signals are transmitted to pins 9 10 and 11 of U3 which passes only part of the positive peaks of the RAW_RESP signal the switch turns on when pin 9 is low The sampled output is filtered by R91 and C52 U25 and R90 buffer the measured impedance to isolate the load of the A D converter The AC and remaining DC are both present but because the AC portion is small this value can be used as a measurement of the total impedance for determi
162. yed in the SpO2 display Press the UPPER ALARM LIMIT button 2 The current primary heart pulse rate source is displayed in the HEART PULSE RATE ECG indicates that the primary source is the heart rate as measured with the ECG leads SPO indicates that the primary source is the pulse rate as measured by the SpO2 sensor To change the default setting rotate the knob until the desired setting is displayed 3 Press the LOWER ALARM LIMIT button to return to the configuration menu steady state 4 2 10 8 Primary Pulse Tone Source Menu item number 7 allows you to select the default heart pulse tone source Selecting SPO causes the pulse rate measured by an SpO2 sensor to provide the pulse tone Selecting ECG causes the heart rate measured by ECG leads to provide the pulse tone 1 From the configuration menu steady state rotate the knob until 7 is displayed in the SpO2 display Press the UPPER ALARM LIMIT button 2 The current pulse tone source is displayed in the HEART PULSE RATE display ECG indicates that the source is the heart beat as measured with the ECG leads SPO indicates that the source is the pulse beat as measured by the SpO2 sensor To change the default setting rotate the knob until the desired setting is displayed 3 Press the LOWER ALARM LIMIT button to return to the configuration menu steady state 4 2 10 9 ECG Lead Selection Menu item number 8 allows you to sele
Download Pdf Manuals
Related Search
Related Contents
Melissa 670-015 User's Manual Virginia Immunization Information System HP Deskjet 9800 操作説明書 - 日本イーライリリー株式会社 AOC I2770PQ/BK 120/148 T24 Systemhandbuch Teil 1: Montage 取扱説明書 - IPネットワークカメラ"Viewla" Harbor Freight Tools 92917 User's Manual Copyright © All rights reserved.
Failed to retrieve file