Home

K151/-K152/-K153 Avionics Standards GBAS

image

Contents

1. 50 lt gt 8 1 5 CLOCK MUL TPIEN rirerire en S ER ENE DE MASE Eais SOURcCeshws EBB ES GEOGCK SOURCO recette rte tte 3 lt gt E 192 SOURce hw BB ILS CLOCKk SYNChronization MODE eese 193 SOURce lt hw gt BBiILS LOCalizer COMId GODE carter tee ttp rette rtt 145 SOURce lt hw gt BB ILS LOCalizer COMid DASH SOURce hw BB ILS LOCalizer COMid DEPTh sees nennen nennen nnne 145 SOURceshws EBB IES EOCalizer COMid DQT 2cc ttt ete teet eate ret cea 146 5 lt gt 146 5 lt gt 11 5 1 gt 5 cp tet t SOURce lt hw gt BB ILS LOCalizer COMid SYMBOl 22 1 cuoi it eite err SOURce hw BB ILS LOCalizer COMid TSCHema SOURce shw BB ILS LOCalizer COMid S TATe irren cte tene t ttp SOURce sliwS EBB IES EOCalizer DDM COUPlimng s aci lt gt nen
2. 63 General 63 System Configuration 65 65 65 Position 66 cosets 67 DME Configuration and 70 General ee fied cote cee Sect sen 70 System Configuration Settings nnns 72 Signal SEMINGS EE 72 Pulse errori eet Pent 75 RECEIVE EE 76 EE 77 COM ID Settings EE 79 Adjustiment FACIONS onsec rp esee 82 Trigger Marker Clock 85 Trigger Settings oriente 85 Marker Settings GBAGS 90 Marker Settings DME irent 92 Clock S n 94 CIGPEI DSBunc 96 How to Work with the GBAS 97 Generating GBAS Signals with Several Frequency Channels 97 Generating a GBAS Si
3. 7 Typographical nnne nnne nnne nnns 9 Notes on Screenshots 9 Welcome to the Avionics 5 10 Accessing the Avionics 11 prop e EE 12 About the Avionics 13 The Ground Based Augmentation System 13 The Instrument Landing System ILS 19 VHF Omni Directional Radio Range VOR eese 21 Distance Measurement Equipment DME eene 22 GBAS Configuration and 24 General Settings oiii rente etta re nk a 24 VDB Transmitters Configuration Settings eene 27 Scheduling 5 30 Message Configuration 30 Message Type 2 Parameter Sis ccc 31 Message 4 Parameters iiss 33 Differential GNSS Parameters enne 41 Filter Clipping Settings
4. Configure and enable standard marker signal KEK K KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK ck ck KKK KKK SOURCe1 BB GBAS TRIGger OUTPut1 MODE RATio SOURCe1 BB GBAS TRIGger OUTPutl ONTime 40 SOURCe1 BB GBAS TRIGger OUTPutl OFFTime 20 GBAS Settings 77 ck ck ck ck ck ck ck Ck 0k Ck 0k 00k 0k 0k 0k 00k 0k 00k ck ck ck ck ck kk ko ko ck ko ck ck ck ck ck ck ck ck ck ck ck ck ck kk k ko ko ko Configure and enable signal generation SOURce1 BB GBAS TRIGger SOURce INTernal SOURce1 BB GBAS T SOURCe1 BB GBAS STAT SOURce1 BB GBAS T SOURce1 BB GBAS T SOURce1 BB GBAS T Stopped 500 1 500 1 Run IGger SEQuence ARETrigger Gger EXECute IGger ARM EXECute vs Gger RMODe IGger EXECute i Gger RMODe Example Quering the default filter clipping and modulation settings The follwoing is a general example on working with these settings SOURce1 BB GBAS PRESet SOURce1 BB GBAS SRINfo Response 10 5 kHz SOURcel1 BB GBAS FILTer TYPE Response COS SOURCe1 BB GBAS FILTer PARameter COSine Response 0 6 SOURCe1 BB GBAS FILTer PARameter COSine COFS Response 0 SOURce1 BB GBAS MSET M
5. 175 eren eee rhe 175 5 gt OK rei acier np ie Eee 176 500 lt gt 175 5 gt 5 5 ora ine tian 177 SOURceshw BB DME ANALysis RDIStance ien ela hd exea 176 SOURceshw BB DME ANALysis STA Te ennt n tnr 176 SOURceshw BB DME ANALysis TIME OK ee ront 177 SOURceshw BB DME ANALysis UAFaCctor ternera ohne rho ore nte dg 178 SOURceshw BB IDME CGLOGCIMODBE be RR rei 191 SOURceshw BB DME CLOCK MULTiplier iu incon 191 SOURceshw BB DME GEOCK SOUR6e iir n rete E e at 192 SOURce hw BB DME CLOCKk SYNChronization EXEQCute sess 192 SOURce hw BB DME CLOCKk SYNChronization MODE 193
6. SOURce lt hw BB DME SETTING S SOURce lt hw gt BB DME SETTing STORe FAST SOURceshiwP BB DME SHADe ent eterne a SOURc shw EBB DME SINGIe renean tir DME 2 cort rette atem eden esty lt gt ne a rn e tene n drea ke Dn ed lt gt t t prr rr enero DER REX e eee SOURce hw BB DME TRIGger ARM EXEQUte eese 182 SOURceshw BB DME TRIGger EXEQUte ttn nr ener n terr neenon 183 SOURce hw BB DME TRIGger EXTernal SYNChronize OUTPut essent 183 SOURce hw BB DME TRIGger OBASeband DELay eese 184 SOURce hw BB DME TRIGger OBASeband INHibit essent 184 50 lt gt Ra kn 184 SOURceshws BB DME TRIGger SLENGU eerren eren nrbi rtr ee censeat ere ku enu RR 184 SOURceshw BB DME TRIGger SOURCe rtp 185 lt gt lt gt 185 5 lt gt lt
7. 193 5 lt gt 193 lt gt 9 193 lt gt 8 193 SOURce lt hw gt BB DME CLOCk MODE lt MOde gt SOURce lt hw gt BB GBAS CLOCk MODE lt Mode gt SOURce lt hw gt BB ILS CLOCk MODE lt MOde gt SOURce lt hw gt BB VOR CLOCk MODE lt MOde gt Sets the type of externally supplied clock Parameters lt MOde gt CHIP MCHip RST CHIP Manual operation See Clock Mode on page 95 SOURce lt hw gt BB DME CLOCk MULTiplier lt Multiplier gt SOURce lt hw gt BB GBAS CLOCk MULTiplier lt Multiplier gt Clock Settings SOURce lt hw gt BB ILS CLOCk MULTiplier lt Multiplier gt SOURce lt hw gt BB VOR CLOCk MULTiplier lt Multiplier gt Note This command is available for clock source External and in clock mode Multi ple Sample only The command specifies the multiplier for clock type Multiplied BB xxx CLOCk MODE MSAMple in the case of an external clock source where xxx stands for ILS VOR DME Parameters lt Multiplier gt integer Range 1 to 64 R
8. 185 lt gt lt gt 185 50 lt gt 88 1 5 lt gt 185 lt gt lt gt 185 5 lt gt lt gt 2 2 0 186 5 lt gt lt gt 1 186 50 lt gt 88 1 5 lt gt 1 186 5 lt gt lt gt 1 2 186 lt gt 186 5 lt gt 5 2 1 4 4201 4141 000 6 6 186 SOURcexhw EBB IESETRIGger SEQuUence 186 SOURce hw BB VOR TRIGger SEQuence essen 186 SOURce lt hw gt BB DME TRIGger ARM
9. 42 Filter SOtiInG E 43 Modulation 45 Clipping Settings 45 Global 0 46 ILS Configuration and 47 General Sein S arseen ana aS Ennai 47 System Configuration Settings Glide 5 49 Signal SENGS 49 5 2 2 5 3 5 3 1 5 3 2 5 3 3 5 4 5 4 1 5 4 2 6 1 6 2 6 2 1 6 2 2 6 2 3 7 1 7 2 7 2 1 7 2 2 7 2 3 7 2 4 L235 7 2 6 8 1 8 2 8 3 8 4 8 5 9 1 9 2 Amiplitude Settings 51 System Configuration Settings 53 lensis 54 Amplitude Settings urere te 55 COMI ID M 58 System Configuration Settings Marker 60 Signal caseo eec v ec eve de P x dec 60 COM ID Ld cid 61 VOR Configuration and
10. vu Vago 108 PSOURCEShW gt VOR er rtr cds 108 lt s bsystem PRE 108 gt 108 5 0 gt 108 SOURceshw pBBULES PRESl 108 ESOURceshw gt BB VOR 108 lt subsystem SET 108 fSOURce lt hw gt BB DME SETTing GAValOG 108 5 lt gt 00 nennen 108 5 108 SOURce lt hw gt BB VOR SET TiIng CA Val0g 2 108 lt s bsysteme Ting 108 SOURcCeshw BB DME SET 108 SOURcCe hw EBB GBAS SET Ting DELete 2 1 rre ance c 109 ESOURceshw TBBHJES SET Ting DELETE 109 5 lt gt 5 ia ia 109 s bsystem iSET LOAD is 109 ESOURceshw EBBIDME SETTiIBO cr tret ipeo teen ere an e 109 SOURCeshw BB GBAS S
11. SOURce lt hw gt BB GBAS TRIGger EXTernal lt ch gt DELay on page 185 SOURce lt hw gt BB ILS TRIGger EXTernal lt ch gt DELay on page 185 SOURce lt hw gt BB VOR TRIGger EXTernal lt ch gt DELay page 185 SOURce lt hw gt DME TRIGger EXTernal lt ch gt DELay page 185 SOURce lt hw gt BB GBAS TRIGger OBASeband DELay page 184 SOURce lt hw gt BB ILS TRIGger OBASeband DELay on page 184 SOURce lt hw gt BB VOR TRIGger OBASeband DELay page 184 SOURce lt hw gt DME TRIGger OBASeband DELay on page 184 Marker Settings GBAS Trigger Inhibit For external trigger signal or trigger signal from the other path sets the duration a new trigger event subsequent to triggering is suppressed In Retrigger mode for example a new trigger event will not cause a restart of the signal generation until the specified inhibit duration does not expire Remote command SOURce lt hw gt BB GBAS TRIGger EXTernal lt ch gt INHibit page 186 SOURce lt hw gt BB ILS TRIGger EXTernal lt ch gt INHibit 186 SOURce lt hw gt BB VOR TRIGger EXTernal ch INHibit page 186 SOURce lt hw gt BB DME TRIGger EXTernal ch INHibit page 186 SOURce lt hw gt BB GBAS TRIGger OBASeband INHibit on 184 SOURce lt hw gt ILS TRIGger OBASeband INHib
12. SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RFINdex lt Refldx gt Sets the refractivity index Parameters lt Refldx gt integer Range 16 to 781 RST 16 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Refractivity Index on page 32 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RLETter lt Rlet gt Sets the runway letter Parameters lt Rlet gt NLETter LETR LETL LETC RST NLETter Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Runway Letter on page 37 GBAS Settings SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RNUMber lt Rnum gt Sets the runway number Parameters lt Rnum gt integer Range 1 to 36 RST 1 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Runway Number on page 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPDF lt Rpdf gt Sets the reference path data selector for FAS Parameters lt Rpdf gt integer Range 0 to 48 RST 1 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Reference Path Data Selector on page 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPDT lt Rpdt gt Se
13. lt gt 165 SOURce lt hw gt BB EFFICIENCY 165 SOURCGSlIW BB IDME EAEL 7 irn eR ER ra E iret 165 SOUBRceshw BB DME FREQUGnCy ttr roo th ete 166 SOURceshw T BB DME CAO CHANnel i oc tn Epor ph hit tec eee abt 166 SOURceshw5 BB DME ID GOBDE 21r rer rnt rt irre x nere 178 SOURce lt hw gt BB DME ID DASH SOURCeshw EBB DME ID IDOT 21 tra SOURCeslW BB IDME ID EET coerente eio EE D ico SOURceshiw2 BB DME DB PER IOG 2 eene ai ue n ERR EI gt TATE htt eee I lt 2 lt gt gt Be E SOURce lt hw gt BB DMESID SY MBO i iere ch ioni lt gt l BB DME IDE esee itr cn SOURce lt hw gt BB DME MARKer lt ch gt DELay 50 lt gt
14. gt BB 108 ESOURGeshiw BB IES S DAT cte tme tette ertt rete seemed trennen rene teme 139 SOURce shw BB ILS TRIGger ARM EXEQOUte eese 182 SOURceshw EBB IES LRIGSer EXE QUI encontre tti etienne E ENERE ENESE 183 500 lt gt 5 183 SOURce lt hw gt BB ILS TRIGger 0BASeband DELay lt lt gt 1 6 21 0 184 ESOURceshw gt BBiILS TRIGGErPRMODG tee trt tete 184 SOURce lt hw gt BB ILS TRIGGER SLENGU ESOURcE lt hw gt BBilLS TRIGGER SOURCE pareren t rr nere E ATANN TE SOURce lt hw gt BB ILS TRIGger EXTernal lt ch gt DELay SOURce lt hw gt BB ILS TRIGger EXTernal lt ch gt INHibit SOURce lt hw gt BB ILS TYPE SOURce shw BB ILS GS GSLope DDM COUPling erei eterne SOURce shw BB ILS GS GSLope DDM CURRSent essent ennemi 5 lt gt 115 55 651 0
15. 165 5 lt gt 166 ESOURce lt hw BBDMEICAO CHANING et treten eene tne 166 DME E EEE 167 lt BB DME PPS E 168 SOURCE rabo pea rte 168 ESOURGe hwPEBBIDME RDISEGO ta tg en ro 168 ESOURcexshw EFBB DME RDlIStance UNIT 169 Sogublceshw rBEDMEISE tenete hates e pte tee e Rapt rano aiian 169 E SOURCe chwPI BBIDME SHADPSO ceret kate atq eet 169 SOURceshw EBB DME SINGIe 170 FSOURCe lt hW gt BB DME Aa 170 lt gt 1 11 111111116 170 FSOURceshw gt t EB DME IPINPUED ELA t m ane ceto era 171 5 lt gt 1 40 124 4011 4 171 lt gt 0010 00010 172 BR ME VIDT ceii ee 172
16. 184 lt gt 184 lt gt 184 ESOURcGCe hwPEBB GBAS TRIGSerIRMOJBDG 2 184 ESOURceshw EBBHAES TRIGger RMODe aoo eoe 184 lt gt 184 5 lt gt 5 0 0000 eene nnne 184 SOURce lt hw gt BB GBAS 184 gt 185 SOURce hw BB VOR TRIGger SLENGQIth sse nennen 185 SOURce hw BE GBAS TRIGSer SL peut 185 SOURcexshw EBB DME TRIGger SO Rte 1 185 9 lt gt 500 ana nnne 185 5 lt gt 115 5 1 1 1002000 0 1 nennen rnnt 185 5 lt gt 185 lt gt lt gt
17. SOURce hw BB ILS GS GSLope DDM DlRection eese lt gt 65 681 141 lt gt 6 ener nennen 141 SOURce hw BB ILS GS GSLope DDM POLarity esee eene nnne 141 SOURce lt hw gt BB ILS GS GSLope DDM STEP inset iot ec eere neri ei i eR 141 SOURceshws BB IES GS GSLope FREQUeTFICy exerit ent nent ert 142 SOURce shw BB ILS GS GSLope FREQuency MODE esee neret enne 142 lt gt _85 65 651 1 142 SOURce hw BB ILS GS GSLope LLOBe FREQuency eese 143 SOURce lt hw BB ILS GS GSLope e ttftt atre 143 SOURce lt hw gt BB ILS GS GSLopel PHAS Si 143 3 0 lt gt 6 0 144 5 lt gt 115 55 651 1 144 SOURceshw BB IES TRIGger SEQuUeriCe tnt rines 186 SOURce lt hw
18. 199 cera 199 a 199 pl r 201 yel com reer 201 Supported File Formats 202 Waypoint Fil roc ntu ete rnnt ta cte er nee 202 GBAS Differential File 203 Glossary Specifications and 206 List tt 207 j 214 About this Manual 1 Preface 1 1 About this Manual This operating manual provides all the information specific to the Avionics options All general instrument functions and settings common to all applications and operating modes are described in the main R amp S SMBV operating manual The main focus in this manual is on the provided settings and the tasks required to generate a signal The following topics are included Welcome to the Avionics options R amp S SMBV K111 K151 K152 K1153 Introduction to and getting familiar with the options About the Avionics options Background information on basic terms and principles in the context of the signal generation GBAS ILS VOR DME Configuration and Settings A concise description of all functions and settings available
19. 55 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig FLAA 500 lt gt lt gt SOURceshw EBB GBAS VDBsch MCONflg F VAA naeh tenete t ttn enn tabes SOURce hw BB GBAS VDB ch MCONfig GCID eese nennen nnne 0 2 5 lt gt 6 5 lt gt 6 lt 5 126 500 lt gt lt gt 55 126 SOURce hw BB GBAS VDB ch MCONfig LFLocation COORdinates DECimal 126 5 lt gt lt gt 127 5 lt gt lt gt _ 128 500 lt gt lt gt 128 SOURce hw BB GBAS VDB ch MCONfig LOCation COORdinates DECimal 129 5 lt gt lt gt
20. lt gt 22 2222 146 SOURce hw BB ILS LOCalizer COMid PERiod eese 146 SOURce hw BB ILS LOCalizer COMid S YMBol sess 147 SOURce hw BB ILS LOCalizer COMid TSCHema eese essen nan 010 147 50 lt gt 5 5 147 SOURce hw BB ILS LOCalizer DDM COUPling essen 147 SOURce shw BB IES LOCalizer DDM CURRent iieri ie esa case apa sanant 148 50 lt gt 8 5 148 ILS Settings lt gt 148 lt gt 5 DDM entr tette Rr E 149 85 lt gt 9 1 149 LSOURce lt shw gt tBBILS LOCalizer DDM DEP TR creda ta eet t ea 149 lt gt 1 150 5 lt gt 1151 1 4 12 44 41 150
21. 2 140 50 lt gt 88 1 51 65 65 00 0 0 00 140 SOURce hw BB ILS GS GSLope DDM LOGarithmic sese 141 50 lt gt 88 1 51 65 65 141 SOURcexhw BB ILSEGS GSLope FDDM POLarity iier ta ecce ina ecce 141 ESOURce hw TEBBIESEGS GSEope DDM S TEP icono trc 141 SOURce hw BB ILS GS GSLope DDM DEPTh eee 142 SOURCe shw BBHIES GS GSEope F REQURG nn 142 50 lt gt 88 1 51 65 65 142 50 lt gt 88 1 51 65 65 142 ILS Settings SOURce hw BB ILS GS GSLope LLOBe FREQuency sse 143 SOURce hw EBB IESE GS GSLope MODE 143 SOURce hw BB ILS GS GSLope PHASe sse 143 ESOURce lt hw gt BB IES GSIGSLome 144 LSOURce lt hw gt BB ILS GS GSLope 01 144 SOURce lt hw gt BB ILS GS GSLope DDM COUPling Coupling Selects if the DDM value is fixed or is changed with a change of su
22. _ 5 129 5 lt gt 5 lt gt 25 2 s 500 lt gt lt gt 5 es 500 lt gt lt gt SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RFINdex E lt gt lt gt nennen SOURce hw BB GBAS VDB ch MCONfig RNUMber esses SOURce hw BB GBAS VDB ch MCONfig RPDF essen 5 lt gt 6 5 lt gt SOURce hw BB GBAS VDB ch MCONfig RPIF esee eiee 500 lt gt lt gt 200 0 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RUINdicator s SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RUNCertainty essen 133 lt gt lt gt 1 133 500 lt gt lt gt 5 134 SOURce hw BB GBAS VDB ch MCONfig TDSSta
23. 3 4 VOR The default settings for the VOR standard are Table 1 9 VOR default settings Parameter Value State Not affected by Set to default Carrier Frequency Mode User Defined Supported File Formats Parameter Value Carrier Frequency 108 000 000 000 MHz Mode Norm VAR REF Frequency 30 0 Hz VAR Depth 30 0 Subcarrier Frequency 9 960 0 kHz Subcarrier Depth 30 0 REF Deviation 480 Hz Bearing Angle 0 00 deg Direction From COMIID State Off A 4 Supported File Formats A 4 1 The R amp S SMBV supports the following file formats waypoint files see chapter A 4 1 Waypoint File Format page 202 e files with GBAS differential data see chapter A 4 2 GBAS Differential File For mat on page 203 These files use predefined file extensions and file structure Waypoint File Format The waypoint files use the file extension txt The file format is a list of coordinates longitude latitude altitude and a respective resolution in milliseconds see exam ple Contents of the predefined waypoint file Braunschweig txt on page 202 Example Contents of the predefined waypoint file Braunschweig txt The resolution command at the beginning of the format specifies the sampling interval to be used for the WGS84 geodetic coordinates list The resolution gives the time in ms between two consecutive waypoints RESOLUTION 10000 0 48270840370976 52 32054
24. Parameters lt DelLenOff gt float Range 0 to 2032 Increment 8 RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Delta_Length Offset on page 39 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig FDSState lt Fdss gt Enables the configuration of Final Approach Segment FAS data set Parameters lt Fdss gt 0 1 OFF ON RST 1 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See FAS Data Set on page 35 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig FLAA lt FasVt gt Sets the value of the broadcast lateral alert limit GBAS Settings Parameters FasVt float Range 0 to 50 8 Increment 0 2 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See FAS Lateral Alert Limit Approach Status page 39 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig FRCLink lt gt Sets the FAS RPDS or continuation link Parameters lt gt 0 255 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See FAS RPDS or Continuation Link page 41 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig FVAA lt Fvaa gt Sets the value of the broadcas
25. 85 86 iet 87 Trigger delay g cce 89 ILS 89 VOR q E 89 Trigger paramelels etico ci a eie 26 Trigger Marker a c 48 64 71 48 64 71 VOR M 48 64 71 U Up frequency JES Glide Slope pn eite 51 Up Down phase IES Glide Slope e 51 V VAR depth VOR EE 66 VAR REF frequency wes 66 State Settings ioter 28 VDB power per TS nent 30 VHF Data Broadcast transmitter State Setting eo reet 28 Waveform file Greate asure N 25 Waypoint flle err rm n nein 40 WGS84 coordinates Delta FRAP ui teet 38 LTP FTP 52 Reference location 33
26. rei 90 Input source DME 74 Insert new VDB transmitter 29 InstallatiODi 11 ej 204 L Landing systems M Landing Threshold Point Fictitious Threshold Point Latitude Delta 38 37 Reference location 33 Left frequency IES 55 Left Right phase 55 Letter length IES 59 Letter space DME Modulation 82 Local magnetic variation e rre 32 Longitude Delta e ert teta dn 38 LH cz RD 37 Reference 33 LTP FTP height es LTP FTP location configuration 37 M Marker delay DME O 93 94 Marker depth ILS rette otn e eerie 60 Marker frequency IES Marker Beacotis ucc c eerte oni erede 60 Marker mode DME 92 Marker width lp PM Master slave mode 5 Measured external clock un co nr entree 95 Measurement count PME an AlySIS
27. 5 189 5 0 lt gt lt gt 189 SOURceshw BB GBAS TRIGGER RMODSO ern tme nee en eti ey eb 184 SOURceshw BB GBAS TRIGger SLENGgth rettet tcr tn een teh eran 184 SOURceshw BB GBAS TRIGger SLUNIL etna re nr SOURce lt hw gt BB GBAS TRIGger SOURce lt gt 6 5 lt gt 185 lt gt 6 5 lt gt 2 186 ESOURce lt hw gt BB GBASWVDBIARREING 116 SOURceshw BB GBAS VDB Ch DATA ettet rente ne reb 118 SOURce hw BB GBAS VDB ch DATA DSELection 118 SOURce lt hw gt BB GBAS VDB lt ch gt DATA PAT TEM arsenate ose anaE ATENENT 119 SOURce lt hw gt BB GBAS VDB lt ch gt DELete SOURceshw BB GBAS VDBch DEENglth tht rn 118 5098 gt omne reiner inn uae y xu ere 118 SOURceshw BB GBAS VDB ch GID cr tenor ttr t trt teh ne
28. SOURce lt hw gt BB GBAS VDB lt ch gt FNUMber lt FNum gt Sets the frequency number the corresponding VDB is using Parameters lt FNum gt integer Range 5 to 5 RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Num on page 28 SOURce lt hw gt BB GBAS VDB lt ch gt DLENgth lt DataLen gt Sets the application data length Parameters lt DataLen gt integer Range 1 to 65495 RST 222 Manual operation See App Data Length bytes on page 29 SOURce lt hw gt BB GBAS VDB lt ch gt DATA lt Data gt Selects the data source e g a sequence of or 1 a pseudo random sequence with different lenght a pattern or a data list DLISt Parameters lt Data gt ZERO ONE PATTern PN11 PN15 PN16 20 PN21 PN23 DLISt RGData RST PN9 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Data Data Config on page 28 SOURce lt hw gt BB GBAS VDB lt ch gt DATA DSELection lt DSelection gt Selects the data list for the data source Parameters lt DSelection gt string Example SOURCe1 BB GBAS VDB2 DATA DLISt SOURce1 BB GBAS VDB2 DATA DSELection var user gbas dl dm iqd Manual operation See Data Data Config on page 28 GBAS Settings SOURce lt hw gt BB GBAS VDB lt ch gt DATA PATTer
29. 5 lt gt gt 2 188 2500 lt gt gt WIDTH 188 SOURce lt hw gt BB DME MODB e tea t Pede c 164 SOURce lt hw gt BB DME PINPUUD EL ays dae tek a un ke Re Lege 171 ESOURce lt hw gt BB DME PINPUESOW mance SOURce lt hw gt BB DME PINPut TRIGger LEVel lt gt 5 202 172 BB DME PRS HR ESOURce lt hw gt BB DME PPS SOURceshw BB DME PRESS Lt nre SOURceshw BB DME RATE err tr tre nett SOURce lt hw gt BB DME RDIStance SOURceshws BB DME RDIStanee 169 SOURce lt hw gt BB DME RISES 169 SOURceshw BB DME SET Ting CATalog rtt rnt tenente th trt erret 108 SOURceshwslBB DME SETTirig DEbel e n lt gt LOAD
30. SOURce lt hw gt BB DME CSUFfix lt CSuffix gt Sets the channel that is simulated Standard compliant X and Y channels differ in the spacing between the two pulses of the pulse pair and the delay of the ground station Parameters lt CSuffix gt X Y ICAO RST X Manual operation See Channel Mode on page 72 SOURce lt hw gt BB DME EFFiciency Efficiency Sets the relation between reply pulse pairs and received trigger signals e g with a set efficiency of 50 only every second trigger event leads to the generation of a reply pulse pair Parameters lt Efficiency gt integer Range O to 100 RST 100 SOURce lt hw gt BB DME FALL Fall Sets the fall time of the pulse 90 to 10 of peak voltage DME Settings Parameters lt Fall gt float Range 0 5E 6 to 20E 6 Increment 10E 9 RST 2E 6 Manual operation See Pulse Fall on page 76 SOURce lt hw gt BB DME FREQuency lt CarreierFreq gt Sets the carrier frequency of the signal Parameters lt CarreierFreq gt float Range 100E3 to 6E9 Increment 0 01 RST 1025E6 Manual operation See Carrier Frequency on page 73 SOURce lt hw gt BB DME ICAO CHANnel Channel Sets the ICAO channel i e DME transmitting frequency The RFfrequency is set to the value selected here Avionics Standards Remote Control Commands See eee eee ee ee Parameters lt Channel gt CH1X CH1Y
31. Sets the length of a symbol space in milliseconds Remote command SOURce lt hw gt BB ILS LOCalizer COMid SYMBol on 147 Dash Length Available only for Time Schema gt User Sets the length of a Morse dash in milliseconds Remote command SOURce lt hw gt BB ILS LOCalizer COMid DASH on page 145 Letter Space Available only for Time Schema gt User Sets the length of a letter space in milliseconds Remote command SOURce lt hw gt BB ILS LOCalizer COMid LETTer 146 System Configuration Settings Marker Beacons 5 4 System Configuration Settings Marker Beacons To access this dialog 1 Select ILS gt ILS Component gt Marker Beacons 2 Select System Configuration 5 4 1 Signal Settings This section covers the different signal settings available for the marker beacons mod ulation User Defined 75 000 000 000 MHz 0 I Carrier Frequency Mode Sets the mode for the carrier frequency of the signal User Defined Activates user defined variation of the carrier frequency Predefined Activates variation in predefined steps according to the standardized ILS transmitting frequencies Remote command SOURce lt hw gt BB ILS MBEacon MODE page 155 Carrier Frequency Available only for Carrier Frequency Mode gt User Defined Sets the carrier frequency of the signal Remote command SOURce lt hw g
32. access this dialog select Baseband Block gt VOR This section contains information about the VOR configuration settings 61 General Settings This dialog provides access to the general settings of the VOR standard Changing a parameter in the VOR standard will cause an instant signal change in the R amp S SMBV without a measurement cylcle to calculate the RMS value of the baseband signal in order to set the correct RF level If the standard is switched ON for the first time or after every subsequent ON OFF sequence the measurement cycle will take place to determine the correct RF level Every subsequent parameter change in the VOR standard will be performed without another measurement cycle in order to pro vide a continous signal output State Activates the standard and deactivates all the other digital standards and digital modu lation modes in the same path Remote command lt subsystem gt STATe page 108 Set To Default Calls the default settings The values of the main parameters are listed in chapter A 3 Default Settings on page 199 Remote command lt subsystem gt PRESet page 108 Save Recall Accesses the Save Recall dialog i e the standard instrument function for storing and recalling the complete dialog related settings in a file The provided navigation possibil ities in the dialog are self explanatory General Settings The file name and the directory it is stored in are user definab
33. gt 186 SOURceshw BB DME WIDTh prt rtr rrr ette rrr 172 SOURce lt hw gt BB DME TRIGger SEQhuence retener euet teneri 186 SOURce lt hw gt BB GBAS CLIPping LEVel SOURce lt hw gt BB GBAS CLIPPING MODE tnnt trt en tet tnr i reete en 138 SOURceshw BB GBAS CLIPping S TAT Erissa rainen EN e SENET 137 ESOURceshw gt BB GBAS CEO CKIMOD Erase 191 50 lt gt 191 SOURce lt hw BB GBAS CLOCK SOURCC iis 192 lt gt 5 avanoa 192 lt gt 5 193 lt gt 25 0 136 500 lt gt 5 2 136 500 lt gt 5 5 136 SOURce lt hw gt BB GBAS FILTer PARameter GAUSs 5 lt gt 5 lt g
34. lt gt 1 4 0066 173 5 lt gt 1 0 0 0000 173 5 lt gt 1 1 141 200006 173 lt gt 5 sees 174 5 lt gt 15 nennen nennen 174 SOURce hw BB DME ANALysis NORMalize ccs 174 SOURce hw BB DME ANALysis POWer cessent 175 SOURce hw BB DME ANALysis POWer OK esses 175 SOURce shw BB DME ANALysis PRRate enisi eesieieis 175 SOURce hw BB DME ANALysis PRRate OK sse 176 5 lt gt 15 176 SOURce hw BB DME ANALysis STATe rennen nnns 176 gt 224 ai 176 5 lt gt 0 4 00 404040 a a aai 177 5 lt gt 5 4
35. 19X 108 20 47 111 00 76X 112 90 90X 19 108 25 47Y 111 05 76Y 112 95 90 21X 108 40 49 111 20 77X 113 00 91X 21 108 45 49Y 111 25 777 113 05 91 23X 108 60 51X 111 40 78X 113 10 92 237 108 65 51 111 45 787 113 15 927 25 108 80 53 111 60 79X 113 20 93X 25Y 108 85 53Y 111 65 79 113 25 93 27X 109 00 55 111 80 80X 113 30 94 27Y 109 05 55Y 111 85 80Y 113 35 94Y 29X 109 20 57X 112 00 81X 113 40 95X 29 109 25 57 112 05 81 113 45 95 31X 109 40 58 112 10 82X 113 50 96X 31Y 109 45 58Y 112 15 82Y 113 55 96Y 33X 109 60 59X 112 20 83X 113 60 97X 33Y 109 65 59Y 112 25 83Y 113 65 97Y 35X 109 80 70X 112 30 84X 113 70 98X 35Y 109 85 70Y 112 35 84Y 113 75 98Y 37X 110 00 71 112 40 85 113 80 99X 37Y 110 05 71Y 112 45 85Y 113 85 99Y 39X 110 20 72X 112 50 86X 113 90 100X 39Y 110 25 727 112 55 86Y 113 95 100Y 41X 110 40 73X 112 60 87Y 114 00 101 115 40 115 116 80 417 110 45 737 112 65 877 114 05 101 115 45 115Y 116 85 43X 110 60 74 112 70 88X 114 10 102 115 50 116 116 90 4 110 65 74 112 75 88 114 15 1027 115 55 116Y 116 95 2 3 DME Channel Frequencies The individual values in the table are Ch No ICAO channel number VOR Freq VOR interrogation frequency DME Interrog Freq DME interrogation frequency MHz DME Reply Freq DME reply frequency MHz
36. BB ILS TRIGger ARM EXECute on 182 SOURce lt hw gt BB VOR TRIGger ARM EXECute on page 182 SOURce hw BB DME TRIGger ARM EXECute on page 182 Clock Accesses the dialog for selecting the clock source see chapter 8 4 Clock Settings on page 94 System Configuration Settings 6 2 System Configuration Settings 6 2 1 To access this dialog Select VOR gt System Configuration Signal Settings The dialog comprises the settings necessary to configure the VOR modulation signal User Defined Si 108 000 000 000 MHz 30 0 7 9 960 Q0 kHz 30 0 480 Hz 7 Carrier Frequency Mode Sets the mode for the carrier frequency of the signal User Defined Activates user defined variation of the carrier frequency ICAO Activates variation in predefined steps according to the standardized VOR transmitting frequencies see chapter A 2 2 VOR Channel Fre quencies on page 195 The start value can be selected in the field ICAO Channel Remote command SOURce lt hw gt BB VOR FREQuency on page 158 Carrier Frequency Available only for Carrier Frequency Mode gt User Defined Sets the carrier frequency of the signal Remote command SOURce lt hw gt BB VOR FREQuency 158 ICAO Channel Available only for Carrier Frequency Mode gt ICAO Selects the ICAO channel and the corresponding transmitting fre
37. BB ILS LOCalizer PHASe page 151 Amplitude Settings The dialog comprises the settings necessary to configure the ILS LOC amplitude System Configuration Settings Localizer 0 000 0 0 000 O dB 0 00 7 Fixed DDM Sum of Depth Sets the arithmetic sum of the modulation depths of the left lobe 90Hz and right lobe 150Hz ILS LOC signal contents The RMS modulation depth of the sum signal depends on the phase setting of both modulation tones The sum of Sum of Depth on page 56 and Depth on page 59 must be smaller than 100 PCT Remote command SOURce lt hw gt BB ILS LOCalizer SDM page 152 Fly Selects the simulation mode for the ILS LOC modulation signal A change of the set ting automatically changes the sign of the DDM value This setting simulates the direction in which the pilot has to correct the course Left The 150 Hz modulation signal is predominant the DDM value is neg ative the airplane is too far to the right it must turn to the left Right The 90 Hz modulation signal is predominant the DDM value is posi tive the airplane is too far to the left it must turn to the right Remote command SOURce lt hw gt BB ILS LOCalizer DDM DIRection page 148 DDM Step Selects the variation of the DDM values Decimal Decimal variation according to the current cursor position Predifined Variation in predefined steps according to the standardized DDM val ues Re
38. GNSS reference receivers number Ground station Accuracy desigrialor eerte Continuity integrity designator Reference trennt e Ground station accuracy designator 32 Ground station continuity integrity designator 32 Ground station reference receivers jer pM GSBR nde de lee H jo 32 Header byte LAAS GBAS 25 SCAT 25 ICAO channel WS P 50 Eoee AE E E E A 54 WOR 65 ICAO Channel DME coii 73 ID code DME reply 81 DME reply Mode c ohne troi patri i rst them rts 81 ID dash length DME reply MOG n teer ttn neas 82 ID frequency DME modulatlorni eii obiret eom 81 DME reply niai 81 ID letter space DME reply chi rt ia b tii cota 82 ID period de terii 81 DME reply Mode 81 ID state DME reply 80 DME reply MOG 80 ID symbol space DME modulation DME reply mode ID time schema DME modulation 81 DME reply mode 81 IES COMPON SM 48 Inhibit
39. Operating Manual 1176 8600 02 05 196 Avionics Standards Annex eee eee eee ee ere Table 1 4 Standardized DME transmitting frequencies MHz and the associated ICAO channels for interrogation and reply Ch VOR DME DME Ch VOR DME DME Ch VOR DME DME No Freq Interrog Reply No Freq Interrog Reply No Freq Interrog Reply Freq Freq Freq Freq Freq Freq 1X 1025 962 43X 110 60 1067 1004 85 113 80 1109 1172 1Y 1025 1088 43Y 110 65 1067 1130 85Y 113 85 1109 1046 2X 1026 963 44X 110 70 1068 1005 86X 113 90 1110 1173 2Y 1026 1089 44Y 110 75 1068 1131 867 113 95 1110 1047 3X 1027 964 45 110 80 1069 1106 87 114 00 1111 1174 1027 1090 45 110 85 1069 1132 877 114 05 1111 1048 4X 1028 965 46X 110 90 1070 1007 88X 114 10 1112 1175 4Y 1028 1091 46Y 110 95 1070 1133 88Y 114 15 1112 1049 5X 1029 966 47X 111 00 1071 1008 89X 114 20 1113 1176 5Y 1029 1092 47Y 111 05 1071 1134 89Y 114 25 1113 1050 6X 1030 967 48 111 10 1072 1009 90X 114 30 1114 1177 6Y 1030 1093 48Y 111 15 1072 1135 90 114 35 1114 1051 7X 1031 968 49X 111 20 1073 1010 91X 114 40 1115 1178 1031 1094 497 111 25 1073 1136 91 114 45 1115 1052 8X 1032 969 50X 111 30 1074 1011 92X 114 50 1116 1179 8Y 1032 1095 50Y 111 35 1074 1137 927 114 55 1116 1053 9 1033 970 51 111 40 1075 1012 93X 114 60 1117 1180 9Y 1033 1096 51Y 111 45 1075 113
40. SOURce1 BB GBAS GPOW SOURCe1 BB GBAS VDB1 SCH TS1 STATe ON SOURCe1 BB GBAS VDB1 SCH TS1 POWer 0 SOURCe1 BB GBAS VDB1 SCH TS3 STATe ON SOURCe1 BB GBAS VDB1 SCH TS3 POWer 15 SOURce1 BB GBAS STATe OUTputl STATe ON GBAS Settings vary reduce the relative power of TS3 SOURce1 BB GBAS VDB1 SCH TS3 POWer 45 Example Generating a GBAS signal for VDB slot detection The following is an example on how to configure transmission of two VDBs on a com mon carrier frequency of 100 MHz VDB 1 and VDB 2 use different time slots RST SOURcel FREQuency CW 110MHz SOURCe1 BB GBAS MFCHannels OFF enable 2 VDBs SOURce1 BB GBAS SOURce1 BB GBAS SOURce1 BB GBAS VDB APPend VDB1 SCH TS1 STATe ON VDB1 SCH TS1 POWer 0 SOURCe1 BB GBAS VDB1 SCH TS8 STATe ON SOURCe1 BB GBAS VDB1 SCH TS8 POWer 0 SOURCe1 BB GBAS VDB2 SCH TS2 STATe ON SOURCe1 BB GBAS VDB2 SCH TS2 POWer 0 SOURCe1 BB GBAS VDB2 SCH TS5 STATe ON SOURCe1 BB GBAS VDB2 SCH TS5 POWer 0 SOURCe1 BB GBAS VDB2 SCH TS7 STATe ON SOURCe1 BB GBAS VDB2 SCH TS7 POWer 0 SOURCe1 BB GBAS VDB2 STATe Response 1 SOURce1 BB GBAS STATe OUTputl STATe ON generate a waveform and store it in the default directory SOURce1 BB GBAS WAVeform CREate slot detection store the settings in a file in the default directory SOURce1 BB GBAS SETTing STORe FAST Respone 1 SOURce1 BB GBAS SETTing STORe gbas slot detection Exa
41. ta test mete en EN 78 Measurement count analysis DME o rec irt tir re eet Oe Rex oat 78 Message configuration E 30 Message 204 Message type 2 State 31 Message type 2 4 a 30 Message type 4 GN 34 Minimum signal in space 32 IS Glide SIO DO 50 ILS Localizer ips VOR Modulation ty De Multiple frequnecy Advantages 15 MUI ONG D TEE 95 INR mw 32 Normalize setup DME 83 Normalize setup analysis DME Number of frames Number of pathpoints INyquist filler tet ee i P Pair of pulse pairs DME 80 Peak level DME 5 15 nter hr ere nere 78 Peak level analysis DME interrogatio 2 erre nne 78 Period ILS Localizer ILS Marker Beacons m T Position Format Delta FPAP Reference location sie edente recen Pulse fall DME 2 2 bnt t er de 76 Pulse pair spacing tolerance DMB ea Ud e e 76 Pulse repet
42. BB DME STATe State Activate deactivate DME modulation Parameters State 0 1 5 0 SOURce lt hw gt BB DME PRESet Sets the DME default settings SOURce lt hw gt BB DME MODE Mode Selects the mode of the DME modulation The mode determines the signal type that is simulated The exact timing of the signal for each mode is determined by the channel selected with SOURce lt hw gt BB DME CSUFfix Parameters lt Mode gt INTerrogation REPLy INTerrogation The interrogation signal of the airborne transmitter is simulated REPLy The reply signal of the ground based transponder is simulated The trigger is automatically set to external and the default trigger delay either to 50 us channel X or 56 us channel Y depending on the selected channel SOURce lt hw gt BB DME CSUFfix The interval between the pulse pairs can be set to a fixed value repetition rate SOURce lt hw gt BB DME RATE or to random generation pulse squitter SOURce hw BB DME SQUitter The trigger signal is input via the PULSE EXT con nector RST INTerrogation Manual operation See DME Mode on page 71 DME Settings 10 5 2 DME System Configuration Settings PSOURCe lt hw gt BBD ME 165 ESOURce lt hw gt BBDMEIEFPICIENCY 165 ucc iota tore
43. BB ILS MBEacon COMA LETTE srpa aeara SOURce lt hw gt BB ILS MBEacon COMIG PERIOG ia SOURce hw BB ILS MBEacon COMid SYMBoOl essen nennen SOURce lt hw gt BB ILS MBEacon COMid TSCHema SOURce shw BB IES MBEacon COMIG S TATE siririna ESOURce lt hw BBiILS MBE ACOn FRE QUENCY iriran SOURce lt hw gt BB ILS MBEacon FREQuency MODE SOURce lt hw gt BB ILS MBEacon MARKer FREQuency SOURce hw BB ILS MBEacon MARKer DEPTh estt 5 0 lt gt 5 5 0 lt gt 1 5 5 0 lt gt 58 5 108 SOURce hw BB ILS SETTing DELete stet totis 109 SOURCeshw EBB IES SET Eng EORD t ttc rh epit trennen ree chi 109 SOURce lt hw gt BB ILS SETTing STORe 109 SOURceshw E BB IES SETTing STORS FAST cies eite rct reete btt denter ice 110
44. CH2X CH2Y CH3X CH3Y CH4X CH4Y CH5X CH5Y 6 CH6Y CH7X CH7Y CH8X CH8Y CH9X CH9Y CH10X CH10Y CH11X CH11Y CH12X CH12Y CH13X CH13Y CH14X CH14Y CH15X CH15Y CH16X CH16Y CH17X CH17Y CH18X CH18Y CH19X CH19Y CH20X CH20Y CH21X CH21Y CH22X CH22Y CH23X CH23Y CH24X CH24Y CH25X CH25Y CH26X CH26Y CH27X CH27Y CH28X CH28Y CH29X CH29Y CH30X CH30Y CH31X CH31Y CH32X CH32Y CH33X CH33Y CH34X CH34Y CH35X CH35Y CH36X CH36Y CH37X CH37Y CH38X CH38Y CH39X CH39Y 40 CH41X CH41Y CH42X CH42Y CH44X CH44Y CH45X CH45Y CH46X CH46Y CH47Y CH48X CH48Y CH49X CH49Y CH50X CH50Y 51 CH51Y CH52X CH52Y CH53X CH53Y CH54X CH54Y CH55X CH55Y CH56X CH56Y CH57X CH57Y CH58X CH58Y CH59X CH59Y CH60X CH60Y CH61X CH61Y CH62X CH62Y CH63X CH63Y CH64X CH64Y CH65X CH65Y CH66X CH66Y CH67X CH67Y CH68X CH68Y CH69X CH69Y CH70X CH70Y CH71X CH71Y CH72X CH72Y CH73X CH73Y CH74X CH74Y CH75X CH75Y CH76X CH76Y CH77X CH77Y CH78X CH78Y CH79X CH79Y CH80X CH80Y CH81X CH81Y CH82X CH82Y CH83X CH83Y CH84X CH84Y CH85X CH85Y CH86X CH86Y CH87X CH87Y CH88X CH88Y CH89X CH89Y CH90X CH90Y CH91X CH91Y CH92X CH92Y CH
45. The R amp S SMBV K111 option enables you to define and configure the very high fre quency VHF Data Broadcast VDB Signal in Space transmitted from the Ground Based Augmentation System GBAS ground subsystem to the airbone subsystem This implementation is in line with the specification RTCA DO 246D The instrument generates the GBAS signal at the physical layer and includes configuration of the application data The GBAS is a ground based augmentation system that could among other things enhance satellite navigation to provide a position estimation of less than one meter The GBAS is intended to improve aircraft safety and to enhance satellite navigation and the full range of precision approach and landing procedures as well as the termi nal area operations GBAS could replace the Instrument Landing System ILS and the Microwave Landing System MLS in many applications GBAS components The illustration on figure 3 1 is a simplified representation of the GBAS three main components e the GNSS satellite subsystem Operating Manual 1176 8600 02 05 13 Ground Based Augmentation System GBAS e the airborne subsystem the GBAS ground subsystem The ground equipment consists of four reference GNSS receivers at exactly defined positions around the airport GBAS ground station and a VHF data broadcast transmit ter VDB GNSS Satellites 9 v Glonass AS GBAS Reference V
46. The localizer transmitter is located near the end of the runway nearest to the start of the aircraft approach Typically horizontally aligned antennas transmit two intersecting main beams beside one another at carrier frequencies between 108 MHz and 112 MHz As seen from the approaching aircraft coming in for a landing the left beam is usually modulated at 90 Hz and the right beam at 150 Hz 1MA193 The information on position is provided after demodulation of the beam signals by eval uating the difference in depth of modulation DDM The following scenarios are possi ble Predominance of the 90 Hz beam the aircraft is too far to the left and must turn to the right Predominance of the 150 Hz beam the aircraft is too far to the right and must turn to the left The singal strength from both beams is equal the aircraft is in the center on the right course Marker Beacons Marker beacon MB receivers are used for a rough distance measurement They are available only for some ILS installations 1MA 193 3 3 VHF Omni Directional Radio Range VOR 75 m to 450 m Ideal 7 2 km Operational 6 5 km to 11 1 km Runway centerline Inner marker 3000 Hz Middle marker 1300 Hz threshold lt 30m Fig 3 5 Marker beacon placement with respect to runway Marker beacon receivers decode audio and provide signaling output to identify one of three marker beacons installed
47. 0 1 RST 0 Example SOURCe1 BB GBAS SCATi 0 Manual operation See 25 SOURce lt hw gt BB GBAS MFCHannels lt MFCh gt Enables the configuration of multiple frequency channels Parameters lt MFCh gt 0 1 OFF ON RST 0 GBAS Settings Example see example Generating a GBAS signal for VDB slot detection on page 111 Manual operation See Multiple Frequency Channels on page 26 SOURce lt hw gt BB GBAS GPOW lt GPow gt Enables gated power mode Parameters lt GPow gt 0 1 1 Example see example Generating a GBAS signal for sensitivity tests on page 110 Manual operation See Gated Power Mode on page 26 SOURce lt hw gt BB GBAS SRINfo Queries the used sample rate Return values lt SRInfo gt string Example see example Quering the default filter clipping and modulation settings on page 114 Usage Query only Manual operation See Sample Rate Variation Sample Rate Info on page 26 10 2 3 VDB Transmission Configuration Settings SOURce lt hw gt BB GBAS VDB APPend Appends a new VDB to the end of the VDB list Example see example Generating a GBAS signal for VDB slot detection on page 111 Usage Event Manual operation See Append Insert Delete on page 29 SOURce lt hw gt BB GBAS VDB lt ch gt INSert Inserts a new VDB before the selected one Example see example Generat
48. 0 15 2 5 0 01 2 Parameters lt SPhase gt float Range 0 15 to 2 5 Increment 0 01 RST 2 Example see example Quering the default filter clipping and modulation settings on page 114 Manual operation See Roll Off Factor or on page 43 SOURce lt hw gt BB GBAS CLIPping STATe State Enables disable clipping Parameters State 0 1 OFF RST 0 Example see example Quering the default filter clipping and modulation settings on page 114 Manual operation See Clipping State on page 45 SOURce lt hw gt BB GBAS CLIPping LEVel lt Level gt Sets the limit for clipping Parameters lt Level gt integer Range 1 to 100 RST 100 GBAS Settings Example see example Quering the default filter clipping and modulation settings on page 114 Manual operation See Clipping Level on page 46 SOURce lt hw gt BB GBAS CLIPping MODE Mode Sets the clipping mode Parameters Mode VECTor SCALar RST VECTor Example see example Quering the default filter clipping and modulation settings on page 114 Manual operation See Clipping Mode on page 46 SOURce lt hw gt BB GBAS MSET MTYPe Queries the used modulation Return values lt MType gt string RST D8PSK Example see example Quering the default filter clipping and modulation settings on page 114 Usage Query only Manual operation See Modulation Type on page 45 SOURce lt hw gt BB GBAS MS
49. 10 3 3 ILS Settings Parameters lt Phase gt float Range 60 to 120 Increment 0 01 RST 0 0 Manual operation See Up Down Phase on page 51 SOURce lt hw gt BB ILS GS GSLope SDM lt Sdm gt Sets the arithmetic sum of the modulation depths of the upper lobe 90Hz and lower lobe 150 2 for the ILS GS signal contents The RMS modulation depth of the sum signal depends on the phase setting of both modulation tones Parameters lt Sdm gt float Range 0 to 100 Increment 0 1 RST 80 Manual operation See Sum of Depth SDM on page 52 SOURce lt hw gt BB ILS GS GSLope ULOBe FREQuency Frequency Sets the modulation frequency of the antenna lobe arranged at the top viewed from the air plane up frequency Parameters Frequency float Range 60 to 120 Increment 0 03 RST 90 Manual operation See Up Frequency on page 51 ILS Localizer Settings SOURce hw BB ILS LOCalizer COMid CODE eese 145 SOURce shw BB ILS LOCalizer COMid DASH 211 etie 145 SOURce hw BB ILS LOCalizer 1 1100 0 145 500 lt gt 5 146 5 lt gt 1151 2 141 1 146
50. 38 Delta 39 Depth IESHLOCAIIZOR 59 ILS Marker Beacons 61 VOR Wt 68 Depth of modulation polarity IES Glide Slope 50 Differential GNSS 30 42 67 DME rtr ertet te ten 76 Pulse Pair Spacing Tolerance mr trenes Pulse shap e xcti Pulse spacing Pulse width eingle pulse DME analysis rrr erret Expected reply delay Gate Measurement count X Normialize setup intere Peak level nhe ere tice Pulse repetition frequency 79 Range distance 78 Reply delay 79 e p 79 State 77 DME interrogation Expected reply delay analysis 78 Gate length analysis retener 78 Measurement count analysis 78 Normalize setup analysis 63 Peak level analysis 176 Pulse repetition frequency analysis 79 Pulse repetition neret 74 Pulse repetition rate trigger 74 Range distance 78 Repetition rate 74 Repetition
51. BB VOR COMid SYMBol Symbol Sets the length of the symbol space in seconds Available only if SOURce lt hw gt BB VOR COMid TSCHema is set to USER Parameters Symbol float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Symbol Space on page 69 SOURce lt hw gt BB VOR COMid TSCHema lt Tschema gt Sets the time schema the COM ID signal In the standard time schema STD the set dot length determines the dash length three times the dot length whereas in the user time schema USER all length param eters can be set independently Parameters lt gt STD USER RST STD Manual operation See Time Schema on page 68 SOURce lt hw gt BB VOR COMid STATe State Switches on off the addittional COM ID signal Parameters State 0 1 OFF ON RST 0 Manual operation See State on page 67 DME Settings 10 5 DME Settings 10 5 1 The BB DME subsystem contains all commands for configuring a DME signal See also chapter 10 6 Trigger Settings on page 181 and chapter 10 9 Clock Set tings on page 191 for a description of the trigger and clock settings DME General Settings LSOURceshw BB DOMES TANG cuia eas 164 SOURcexshw EBBIDME PRESet 1 2 2 164 ESOURCe hw TBBIDME eerta tun trance ra nonni Re 164 SOURce lt hw gt
52. CH58X CH58Y CH59X CH59Y CH70X CH70Y CH71X CH71Y CH72X CH72Y CH73X CH73Y CH74X CH74Y CH75X CH75Y CH76X CH76Y CH77X CH77Y CH78X CH78Y CH79X CH79Y CH80X CH80Y CH81X CH81Y 82 CH82Y CH83X CH83Y CH84X CH84Y 85 CH85Y CH86X CH86Y CH87X CH87Y CH88X CH88Y CH89X CH89Y CH90X CH90Y CH91X CH91Y CH92X CH92Y CH93X CH93Y CH94X CH94Y CH95X CH95Y CH96X CH96Y CH97X CH97Y CH98X CH98Y CH99X CH99Y 100 CH100Y CH101X CH101Y CH102X CH102Y CH103X CH103Y CH104X CH104Y CH105X CH105Y CH106X CH106Y CH107X CH107Y CH108X CH108Y CH109X CH109Y CH110X CH110Y 111 CH111Y CH112X CH112Y CH113X CH113Y CH114X CH114Y CH115X CH115Y CH116X CH116Y CH117X CH117Y CH118X CH118Y CH119X CH119Y CH120X CH120Y CH121X CH121Y CH122X CH122Y CH123X CH123Y CH124X CH124Y CH125X CH125Y CH126X CH126Y RST CH17X See ICAO Channel on page 65 SOURce lt hw gt BB VOR REFerence DEViation Deviation Sets the frequency deviation of the reference signal on the FM carrier Parameters Deviation integer Range 0 to 960 RST 480 Default unit Hz SOURce lt hw gt BB VOR SUBCarrier DEPTh Depth Sets the AM modulation depth of the FM carrier Parameters Depth float Range 0 to 100 Increment 0 1 RST 30 VOR Set
53. Depth Sets the AM modulation depth of the of the COM ID signal Parameters lt Depth gt float Range 0 to 100 Increment 0 1 RST 10 Manual operation See Depth on page 59 ILS Settings SOURce lt hw gt BB ILS LOCalizer COMid DOT Dot Sets the length of a morse dot in seconds If the time schema is set to STD the length of the dash 3xdot symbol space dot and letter space 3xdot is also determined by this entry Parameters lt Dot gt float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Dot Length on page 59 SOURce lt hw gt BB ILS LOCalizer COMid FREQuency Frequency Sets the frequency of the COM ID signal Parameters Frequency float Range 0 1 to 20E3 Increment 0 01 RST 1020 Manual operation See Frequency page 58 SOURce lt hw gt BB ILS LOCalizer COMid LETTer Letter Sets the length of a letter space in seconds Available only if SOURce hw BB ILS LOCalizer COMid TSCHema is set to USER Parameters Letter float Range 0 05 to 1 Increment 1E 4 RST 0 3 Manual operation See Letter Space on page 59 SOURce lt hw gt BB ILS LOCalizer COMid PERiod Period Sets the period of the COM ID signal in seconds Parameters Period float Range 0 to 120 Increment 1E 3 RST 9 Manual operation See Period on page 59 ILS Settings SOURce lt hw gt BB ILS LOCalizer COMid SYMBol Symbol Set
54. Marker Beacon modulation 62 69 Continuation Wink 41 Conventions commands eem cer 106 Course width at threshold 39 Crest factor dia 45 Current Range without Recalculation a 91 Cut Off Frequency Factor 44 Cut Frequency Shift 44 D Dash length DME Modulation 82 ILS Localizer 59 Data list management D ta SOUCO RE 28 DDM SDM coupling IES Glide Slope orte rtr ee aR 53 IES LEOC IIZOF iet orb raa rnnt tentes 57 DDM current IES GIUS SIOPE 52 WES LOCANIZOR s 56 DDM depth IES 516 52 IES LOCAIIZOR REO 57 DDM logarithmic IES Glide Slope 53 IES 57 DDM percent 53 IES LOCAIIZOR 57 DDM polarity TOCA 54 DDM step IES Glide SIO PO 52 IES E oCc aliZer tette iere ra 56 Default settings 24 47 63 70 Delay Marker 91 Delay external trigger DME modulation Delete VDB transmitter Delta_FPAP location configuration
55. SOURce lt hw gt SOURce hw SOURce lt hw gt SOURce lt hw gt B GBAS TRIGger SEQuence page 186 B ILS TRIGger SEQuence on page 186 B VOR TRIGger SEQuence on 186 BB DME TRIGger SEQuence 186 Signal Duration Unit Available only for R amp S SMBV K111 GBAS option Defines the unit for describing the length of the signal sequence to be output in the Single trigger mode Remote command SOURce lt hw gt BB GBAS TRIGger SLUNit page 185 Trigger Signal Duration Enters the length of the signal sequence to be output in the Single trigger mode Use this parameter to deliberately output part of the signal an exact sequence of the signal or a defined number of repetitions of the signal Remote command SOURce lt hw gt BB GBAS TRIGger SLENgth on page 184 SOURce lt hw gt BB ILS TRIGger SLENgth on page 185 SOURce lt hw gt BB VOR TRIGger SLENgth on page 185 SOURce lt hw gt BB DME TRIGger SLENgth on page 184 Arm For trigger modes Armed Auto and Armed stops the signal generation until subsequent trigger event occurs Remote command SOURce lt hw gt BB GBAS TRIGger ARM EXECute 182 SOURce lt hw gt BB ILS TRIGger ARM EXECute on 182 SOURce lt hw gt BB VOR TRIGger ARM EXECute on 182 SOURce lt
56. STATe 179 Pulse Pair Spacing Sets the value for the pulse pair spacing when Pair of Pulse Pairs is enabled Remote command SOURCe lt hw gt BB DME ID PPS on page 180 Code Sets the coding of the COM ID signal by the international short name of the airport e g MUC for the Munich airport If no coding is entered the COM ID tone is sent uncoded key down Remote command SOURce lt hw gt BB DME ID CODE on 178 Rate Sets the pulse repetition rate of the ID sequence Remote command SOURce hw BB ID RATE on page 180 Period Sets the period of the COM ID signal in seconds Remote command SOURce hw BB DME ID PERiod on page 180 Time Schema Sets the time schema for the COM ID signal e Standard The set dot length determines the length of the dash the symbol space and letter Space User You can set each length value seperately Remote command SOURce hw BB DME ID TSCHema page 181 Dot Length Sets the length of a Morse dot in seconds 7 2 6 System Configuration Settings For Time Schema gt Standard this value determines also the length of the dash 3xDot length symbol space Dot length and letter space 3xDot length Remote command SOURce hw BB DME ID DOT page 179 Dash Length Available only for Time Schema U
57. The most important R amp S SMBV K151 features at a glance Generation of glide slope localizer and marker beacons signals Configuration of user definable carrier frequencies or selection of carrier frequen cies as defined by ICAO Adjustable COM ID settings The VOR Option The R amp S SMBV K152 is a firmware application that adds functionality to generate sig nals in accordance with the VHF Omni Directional Radio Range radio navigation sys 2 1 Accessing the Avionics Dialog tem It is used to determine the aircraft position by receiving radio signals from a net work of ground beacons The most important R amp S SMBV K152 features at a glance Configuration of user definable carrier frequencies or selection of carrier frequen cies as defined by ICAO e User defined position settings Adjustable COM ID settings The DME Option The R amp S SMBV K153 is a firmware application that adds functionality to generate sig nals in accordance with the distance measuring equipment DME for aircraft It is used to measure the slant range distance between the vessel and a fixed ground based sta tion The most important R amp S SMBV K153 features at a glance Generation of DME interrogation and reply signals Configuration of user definable carrier frequencies or selection of carrier frequen cies as defined by ICAO Adjustable COM ID settings This operating manual contains a description of the functional
58. Usage Event Manual operation See Set Synchronization Settings on page 95 SOURce lt hw gt BB DME CLOCk SYNChronization MODE lt Mode gt SOURce lt hw gt BB GBAS CLOCk SYNChronization MODE lt gt SOURce hw BB ILS CLOCk SYNChronization MODE Mode SOURce hw BB VOR CLOCk SYNChronization MODE Mode Selects the synchronization mode This parameter is used to enable generation of very precise synchronous signal of sev eral connected R amp S SMBVs Note If several instruments are connected the connecting cables from the master instrument to the slave one and between each two consecutive slave instruments must have the same length and type Avoid unnecessary cable length and branching points Parameters Mode NONE MASTer SLAVe NONE The instrument is working in stand alone mode MASTer The instrument provides all connected instrument with its syn chronization including the trigger signal and reference clock signal SLAVe The instrument receives the synchronization and reference clock signal from another instrument working in a master mode RST NONE Manual operation See Sync Mode on page 94 Morse Code Settings A Annex A 1 Morse Code Settings The COMIID tone is sent according to the selected code see table 1 1 The length of the Morse code can be varied For selected standard time scheme the selected dot length determines the setting of all other length parameters o
59. lt FastSave gt SOURce lt hw gt BB VOR SETTing STORe FAST lt FastSave gt Determines whether the instrument performs an absolute or a differential storing of the settings Enable this function to accelerate the saving process by saving only the settings with values different to the default ones Note This function is not affected by the Preset function Parameters lt FastSave gt 0 1 OFF ON RST 1 GBAS Settings Programming Examples This description provides simple programming examples The purpose of the examples is to present all commands for a given task In real applications one would rather reduce the examples to an appropriate subset of commands The programming examples have been tested with a software tool which provides an environment for the development and execution of remote tests To keep the example as simple as possible only the clean SCPI syntax elements are reported Non exe cutable command lines e g comments start with two characters At the beginning of the most remote control program an instrument p reset is recom mended to set the instrument to a definite state The commands RST and SYSTem PRESet are equivalent for this purpose CLS also resets the status registers and clears the output buffer Example Generating a GBAS signal for sensitivity tests The following example uses the gated power mode RST SOURcel FREQuency CW 108 4MHz SOURce1 POWer LEVel IMMediate AMPLitude 10
60. on page 73 SOURce lt hw gt BB DME RDIStance UNIT Unit Sets the unit for the range distance that can be defined with the SOURce lt hw gt BB DME RDIStance The distance can be given in nautic miles NM or us 1 nm is 1852 01 meters and cor responds to a run time of 12 359 us Parameters Unit US NM RST NM Manual operation See Range Distance on page 73 SOURce lt hw gt BB DME RISE Rise Sets the rise time of the pulse 1096 to 9096 of peak voltage Parameters Rise float Range 0 5E 6 to 20E 6 Increment 10E 9 RST 2E 6 Manual operation See Pulse Rise on page 76 m m SOURce lt hw gt BB DME SHAPe lt Shape gt Sets the pulse shape DME Settings Parameters lt Shape gt 52 LIN COS GAUSs COS2 The rising edge is cos shaped and the falling edge is cos 2 sha ped LIN The falling and the rising edge of the pulse are shaped linear COS The falling and the rising edge of the pulse are cos 2 shaped RST COS2 Manual operation See Pulse Shape on page 75 SOURce hw BB DME SINGIe Single Activates deactivates generation of a single test pulse Parameters Single 0 1 OFF RST 0 Manual operation See Single Pulse on page 76 SOURce lt hw gt BB DME SQuitter lt Squitter gt Activates deactivates the random pulse repetition rate The average repetition rate is 2700 pp
61. page 108 e Entry Standard DME SOURce BB DME STATe Entry Standard GBAS SOURce BB GBAS STATe Entry Standard ILS SOURce BB ILS STATe Entry Standard VOR SOURce BB VOR STATe e invalid command lt Subsystem gt STAT Common Suffixes The following common suffixes are used in remote commands 10 1 Primary Settings Suffix Value range Description SOURce lt hw gt 1 available baseband signals OUTPut lt ch gt 12 available markers R amp S SMBV supports two markers EXTernal lt ch gt 14 2 external trigger connectors The following commands specific to the Avionics standards are described here Primary 107 e BAS SUNS ndi be c dee des 110 Do 139 VOR 156 DME 164 e Tigger ette ue cete ctr 181 e Marker Settings DME 187 Marker Seluhgs GBAS 188 e lock rrt cete ttt e n ceo tgo 191 Primary Settings E 108 5 lt gt enr 108 2 STA UG 108 gt
62. quency allocation mode GBAS gt Multiple Frequency Channels and use the VDB transmitter configuration settings see Freq Num on page 28 For step by step instruction refer to chapter 9 1 Generating GBAS Signals with Sev eral Frequency Channels on page 97 Broadcast timing structure The broadcast is a Time Division Multiple Access TDMA According to 1 the TDMA timing structure uses a two level hierarchy composed of 500 ms long frames each divided into 8 VDB time slots A H see figure 3 2 Ground Based Augmentation System GBAS 500ms Frames E N 8 VDB time slots Tt _TS8 Fig 3 2 TDMA timing structure simplified representation A time slot is the minimum resource that an individual VDB transmitter can use During one time slot a VDB transmitter transmits exactly one bursts The GBAS specification RTCA DO 246D defines the TDMA timing structure including timing budget of the VDB bursts burst data contents and message encoding in great details The R amp S SMBV generates the required training sequence encodes the mes sage according to RTCA DO 246D and applies the D8PSK modulation automatically so that you can concentrate on the configuration of the mandatory application data Optional application data defined in RTCA DO 246D is beyond the scope of this imple mentation To allocate the VDB in the time domain use the scheduling setting
63. 0 SOURce1 BB GBAS STATe OUTputl STATe SOURCe1 BB GBAS SETTing STORe gbas msg fmt detection SOURce1 BB GBAS SETTing CATalog Response gbas msg fmt detection gbas slot detection Example Generating a GBAS signal containing message type 4 The following is an example on how to generate a VDB signal with real application data and enabled GBAS Message Type 4 RST SOURcel FREQuency CW 110MHz SOURce1 BB GBAS MFCHannels OFF SOURCe1 BB GBAS VDB1 DATA RGData SOURce1 BB GBAS VDB1 MCONfig MT4State SOURcel1 BB GBAS SOURcel1 BB GBAS 500 1 500 1 500 1 500 1 500 1 500 1 DB1 MCONfig FDSState ON DB1 MCONfig GPANgle 30 DB1 MCONfig ATUSelector MET DB1 MCONfig ATCHeight 1200 DB1 MCONfig LFLocation HEIGht 103 DB1 MCONfig AID DB1 MCONfig RNUMber 13 DB1 MCONfig RLETter LETL lt 4 lt 4 4 GBAS Settings SOURce1 BB GBAS VDB1 MCONfig APDesignator GC SOURce1 BB GBAS VDB1 MCONfig RUINdicator SOURce1 BB GBAS VDB1 MCONfig RPDF 3 SOURCe1 BB GBAS VDB1 MCONfig RPIF L13A SOURCe1 BB GBAS VDB1 MCONfig LFLocation COORdinates DECimal 0 012650 0 027897 SOURCe1 BB GBAS VDB1 MCONfig LFLocation COORdinates DMS Response 73 47 13 83 EAST 40 39 22 95 NORT SOURCe1 BB GBAS VDB1 MCONfig DFLocation COORdinates DECimal 0 012650 0 027897 SOURce1 BB GBAS VDB1 M
64. 0 Usage Query only Manual operation See Pulse Repetition Rate on page 79 DME Settings SOURce lt hw gt BB DME ANALysis PRRate OK Queries if there are valid pulse repetition measurement values available in the set measurement window Return values lt Ok gt 0 1 OFF ON RST 1 Usage Query only Manual operation See Pulse Repetition Rate on page 79 SOURce lt hw gt BB DME ANALysis RDIStance Queries the measured average range distance of all valid pulse pairs in a measure ment cycle Return values lt RangeDistance gt float Usage Query only Manual operation See Range Distance on page 78 SOURce lt hw gt BB DME ANALysis STATe lt State gt Activates deactivates the DME analysis The setting is only available after connecting the R amp S NRP Z81 power sensor Parameters lt State gt 0 1 OFF ON RST 0 Manual operation See State on page 77 SOURce lt hw gt BB DME ANALysis TIME Queries the measured average reply delay of all valid pulse pairs in a measurement cycle Return values lt Time gt float Range 1E 3 to 1E 3 Increment 10E 9 RST 0 Usage Query only Manual operation See Reply Delay on page 79 DME Settings SOURce lt hw gt BB DME ANALysis TIME OK Queries if there are valid measurement values available in the set measurement win dow Return values lt Ok gt 0 1 OFF ON Usage Query only Manual operation See Reply Delay on p
65. 05 to 1 Increment 1E 4 RST 0 3 VOR Settings SOURce lt hw gt BB VOR COMid DEPTh Depth Sets the AM modulation depth of the of the COM ID signal Parameters lt Depth gt float Range 0 to 100 Increment 0 1 RST 10 Manual operation See Depth on page 68 SOURce lt hw gt BB VOR COMid DOT Dot Sets the length of a morse dot in seconds If the time schema is set to STD the length of the dash 3xdot symbol space dot and letter space 3xdot is also determined by this entry Parameters lt Dot gt float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Dot Length on page 68 SOURce lt hw gt BB VOR COMid FREQuency lt Frequency gt Sets the frequency of the COM ID signal Parameters Frequency float Range 0 1 to 20E3 Increment 0 01 RST 1020 Manual operation See Frequency on page 68 SOURce lt hw gt BB VOR COMid LETTer Letter Sets the length of a letter space in seconds Available only if SOURce hw BB VOR COMid TSCHema is set to USER Parameters Letter float Range 0 05 to 1 Increment 1E 4 RST 0 3 Manual operation See Letter Space on page 69 VOR Settings SOURce lt hw gt BB VOR COMid PERiod Period Sets the period of the COM ID signal in seconds Parameters Period float Range 0 to 120 Increment 1 3 RST 9 Manual operation See Period on page 68 SOURce lt hw gt
66. 5 155 5 lt gt 115 1 155 SOURce hw BB ILS MBEacon FREQuency MODE eese 155 5 lt gt 1115 155 50 lt gt 88 5 4 0 2 6 155 SOURce lt hw gt BB ILS MBEacon COMid CODE Code Sets the coding of the COM ID signal by the international short name of the airport e g MUC for the Munich airport Parameters lt Code gt string Manual operation See Code on page 61 SOURce lt hw gt BB ILS MBEacon COMid DASH Dash Sets the length of a morse dash in seconds Available only if SOURce hw BB ILS MBEacon COMid TSCHema is set to USER ILS Settings Parameters lt Dash gt float Range 0 05 to 1 Increment 1E 4 RST 0 3 SOURce lt hw gt BB ILS MBEacon COMid DEPTh Depth Sets the AM modulation depth of the of the COM ID signal Parameters lt Depth gt float Range 0 to 100 Increment 0 1 RST 5 Manual operation See Depth on page 61 SOURce lt hw gt BB ILS MBEacon COMid DOT Dot Sets the length of a morse dot in seconds If the time s
67. CH26Y CH28X CH28Y CH30X CH30Y CH32X CH32Y CH34X CH34Y CH36X CH36Y CH38X CH38Y CH40X CH40Y CH42X CH42Y CH44X CH44Y CH46X CH46Y CH48X CH48Y CH50X CH50Y CH52X CH52Y CH54X CH54Y CH56X CH56Y RST CH18X Manual operation See Channel on page 50 SOURce lt hw gt BB ILS GS GSLope LLOBe FREQuency Frequency Sets the modulation frequency of the antenna lobe arranged at the bottom viewed from the air plane for the ILS GS modulation signal Parameters Frequency float Range 100 to 200 Increment 0 05 RST 150 Manual operation See Down Frequency on page 51 SOURce lt hw gt BB ILS GS GSLope MODE Mode Sets the operating mode for the ILS GS modulation signal Parameters Mode NORM ULOBe LLOBe NORM ILS GS modulation is active ULOBe Amplitude modulation of the output signal with the upper lobe 90Hz signal component of the ILS GS signal is active LLOBe Amplitude modulation of the output signal with the lower lobe 150Hz signal component of the ILS GS signal is active RST NORM Manual operation See Mode on page 50 SOURce lt hw gt BB ILS GS GSLope PHASe Phase Sets the phase between the modulation signals of the upper and lower antenna lobe of the ILS GS signal The zero crossing of the lower lobe 150 2 signal serves as a ref erence The angle refers to the period of the signal of the right antenna lobe
68. DELay etn rrt nn renun 184 SOURce hw BB VOR TRIGger OBASeband lNHibit eese 184 SOURceshws BB VOR TRIGger ecce rna nata ence epp 184 SOURcCeshw5EBB VOR TRIGgetr SLENgll tcrra tp at pi 185 SOURceshw BB VOR TRIGger SOURCGS iren RE 185 SOURce lt hw gt BB VOR TRIGger EXTernal lt ch gt DELay essen 185 5 0 lt gt lt gt 186 SOURce lt hw gt BB VOR VAR DEPTh SOURce lt hw gt BB VOR VAR FREQuency SOURce hw BB VOR TRIGger SEQuence rette tn rnt engeren 186 lt gt 108 FOR SER PEE DF MEE ELE 108 lt subsystem gt SETTing DELete subsystem SET Ting LOAD t erc ERE E EE EUER Cy HE eer lt subsystem gt SETTing STORe subsystem SETTing STORe EAST en n ert rr 109 ss bsyst m gt STAT t 108 Index A Add new VDB transmitter 29 Airport ID AID OTE WAS MIN CAUON 37 Allocating the VDB to the time domain PIM
69. DIRac ENPShape EWPShape LPASSEVM RST COSine Example see example Quering the default filter clipping and modulation settings on page 114 Manual operation See Filter on page 43 SOURce lt hw gt BB GBAS FILTer PARameter APCO25 lt Apco25 gt SOURce lt hw gt BB GBAS FILTer PARameter COSine lt Cosine gt SOURce lt hw gt BB GBAS FILTer PARameter COSine COFS lt CoFs gt SOURce lt hw gt BB GBAS FILTer PARameter GAUSs Gauss SOURce lt hw gt BB GBAS FILTer PARameter LPASs lt LPass gt SOURce lt hw gt BB GBAS FILTer PARameter LPASSEVM lt LPassevm gt SOURce lt hw gt BB GBAS FILTer PARameter PGAuss lt PGauss gt GBAS Settings SOURce lt hw gt BB GBAS FILTer PARameter RCOSine lt RCosine gt SOURce lt hw gt BB GBAS FILTer PARameter SPHase lt SPhase gt Sets the corresponding filter parameter Filter Type Parameter Parameter min max increment default APCO25 roll off factor lt Apco25 gt 0 05 0 99 0 01 0 2 roll off factor lt Cosine gt 0 05 1 00 0 01 0 35 cut off frequency shift lt CoFs gt 1 1 0 01 0 GAUSs roll off factor Gauss 0 15 2 5 0 01 0 3 LPASs cut off frequency lt LPass gt 0 05 2 0 01 0 5 LPASSEVM cut off frequency lt LPassEvm gt 0 05 2 0 01 0 5 PGAuss roll off factor lt PGauss gt 0 15 2 5 0 01 0 3 RCOSine roll off factor lt RCosine gt 0 05 1 00 0 01 0 35 SPHase BxT lt SPhase gt
70. EXECute SOURce lt hw gt BB GBAS TRIGger ARM EXECute SOURce lt hw gt BB ILS TRIGger ARM EXECute SOURce lt hw gt BB VOR TRIGger ARM EXECute Stops signal generation for trigger modes Armed Auto and Armed Retrigger subsequent internal or external trigger event restart signal generation Trigger Settings Example BB VOR TRIG SOUR INT sets internal triggering BB VOR TRIG SEQ ARET sets Armed_Retrigger mode i e every trigger event causes sig nal generation to restart BB VOR TRIG EXEC executes a trigger signal generation is started BB VOR TRIG ARM EXEC signal generation is stopped BB VOR TRIG EXEC executes a trigger signal generation is started again Usage Event Manual operation See Arm on page 27 SOURce lt hw gt BB DME TRIGger EXECute SOURce lt hw gt BB GBAS TRIGger EXECute SOURce lt hw gt BB ILS TRIGger EXECute SOURce lt hw gt BB VOR TRIGger EXECute Executes a trigger The internal trigger source must be selected using the command BB xxx TRIG SOUR INT where xxx stands for ILS VOR or DME and a trigger mode other than AUTO must be selected using the command BB xxx TRIG SEQ Usage Event Manual operation See Execute Trigger on page 26 SOURce lt hw gt BB DME TRIGger EXTernal SYNChronize OUTPut Output SOURce lt hw gt BB ILS TRIGger EXTernal SYNChronize OUTPut Output SOURce lt hw
71. FTP Longitude Delta_FPAP Location Configuration Delta FPAP Position Format DeimaDegee zl Delta FPAP Latitude 0012650 Degree Delta FPAP Longitude 0 027 897 Degree Course Width at Threshold Delta Length Offset FAS Vertical Alert Limit Approach Status FAS Lateral Alert Limit Approach Status Differential GNSS On Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig MT4State on 130 FAS Data Set Enables you to configure the parameters of the Final Approach Segment FAS data set Provided are the parameters necessary to configure a single precision approach The FAS path is a line in space that defines the path an airplane follows on its final approach This line is defined by the Landing Threshold Point Fictitious Threshold Point LTP FTP Flight Path Alignment Point FPAP Threshold Crossing Height TCH and the Glide Path Angle GPA The dialog displays also two graphs Plan View and a Profile View to visualize a typical final approach path Message Configuration Settings Plan View Earth s surface Profile View WGS84 ellipsoid Fig 4 1 Final Approach Segment FAS diagram according to RTCA DO 246D LTP FTP Landing Threshold Point Fictitious Threshold Point point at the center of the landing runway defined by its WGS84 coordinates GPIP Glide Path Intercept Point the point where the final approach path intercepts the
72. Frequency Channels gt Off 4 Select VDB Transmitters Configuration The graph confirms the selected center frequency 5 Use the Append function to enable three VDBs VDB 1 to VBD 3 6 Select VDB 1 gt Schedulling gt Config and allocate VDB 1 VDB 2 and VDB 3 as follwoing Generating GBAS Signal for Message Format Detection BH GBAS Scheduling 1 Frequency Number 0 Select GBAS gt State gt On Select RF gt State gt On The signal is generated at physical layer and the bursts carry arbitrary data Prove that the VDB receiver detects the correct time slots For example the trans mission of VDB 2 on frequency channel with 110 MHz carrier frequency and time slots TS2 TS5 and TS7 9 4 Generating a GBAS Signal for Message Format Detec tion Message format detection tests verify wheteher the VDB receiver receives and deco ded correctly parameters in the GBAS messages The generated VDB signal in this example contains real application data Enabled are GBAS Message Type 2 and Mes sage Type 1 To generate a GBAS signal for testing of correct message detection 1 2 3 Press PRESET to set the R amp S SMBV to a definite state Select Staus Bar gt Frequency 110 MHz Select Baseband gt Avionics gt GBAS and select Multiple Frequency Channels gt Off Select VDB Transmitters Configuration The graph confirms the selected center frequency Select VDB 1 gt Data gt Real
73. GI DIG eC 16 30 Altitude Delta 38 if REFERENCE location 33 App Data Length Dts eee cena 29 Append VDB transmitter 29 Approach performance designator 37 Arm Titlgger iiiter aee 27 49 64 72 86 Assigning a VDB to time slot SENGS 30 Avionics standards OVGIVIOW 13 R E 43 Baseband clipping x Baseband 43 Bearing angle NENE 67 Carrier frequency 73 ILS Glide slope 50 IES Localize CEU 54 ILS BEACONS iriiria aves 60 E 65 Carrier frequency mode ILS Glide Slope oret ILS Localizer ILS Marker Beacons VOR e EN Channel mode DME 72 Ele Mode 2 ts Multiplier Source VOR cc there 58 I S Marker Beaton Sisseneri 61 68 Letter Length Marker Beacon modulation 62 69 Symbol Space
74. RUNCertainty lt Runc gt Set the refractivity uncertainty Parameters lt Runc gt integer Range 0 to 255 RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Refractivity Uncertainty on page 32 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig SHEight lt SHeight gt Sets the scale height Parameters lt SHeight gt float Range 0 to 25500 Increment 100 RST 0 Default unit m GBAS Settings Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Scale Height on page 32 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig SVIGradient lt Svig gt Sets the Sigma_vert_iono_gradient Parameters lt Svig gt float Range 0 to 2 54999999356187e 05 Increment 0 1e 6 RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Sigma vert iono gradient on page 32 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig TDSState lt Tdss gt Enables the configuration of the Terminal Area Path TAP data set Parameters lt Tdss gt 0 1 OFF ON RST 1 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See TAP Data Set on page 39 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig TLAS lt Tlas gt Sets the value of the
75. Remote command to enter the coordinates in Degree Minute Second format SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DFLocation COORdinates DMS on page 121 to enter the coordinates in decimal degree format SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DFLocation COORdinates DECimal on page 121 Course Width at Threshold FAS Data Set Sets the lateral displacement from the path defined by the FAS at the LTP FTP at which full scale course deviation indicator CDI deflection is attained Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig CWAThreshold on 121 Delta_Length Offset FAS Data Set Sets the parameter delta length ALength offset that is the distance from the stop end of the runway to the FPAP Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DLOFfset on page 124 FAS Vertical Alert Limit Approach Status FAS Data Set Sets the value of the broadcast vertical alert limit Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig FVAA on page 125 FAS Lateral Alert Limit Approach Status FAS Data Set Sets the value of the broadcast lateral alert limit Remote command SOURce lt hw gt VDB lt ch gt MCONfig FLAA on page 124 TAP Data Set Enables you to configure the parameters of the Terminal Area Path TAP data set Message Configuration Settings A TAP defines the initial fix IF
76. Use this to hide the detailed setting options display again Code Sets the coding of the COM ID signal by the international short name of the airport e g MUC for the Munich airport If no coding is entered the COM ID tone is sent uncoded key down Remote command SOURce hw BB ILS LOCalizer COMid CODE on page 145 Frequency Sets the frequency of the COM ID signal Remote command SOURce hw ILS LOCalizer COMid FREQuency on page 146 System Configuration Settings Localizer Period Sets the period of the COM ID signal in seconds Remote command SOURce lt hw gt BB ILS LOCalizer COMid PERiod on page 146 Depth Sets the AM modulation depth of the COM ID signal Remote command SOURce lt hw gt BB ILS LOCalizer COMid DEPTh on page 145 Time Schema Sets the time schema for the COM ID signal e Standard The set dot length determines the length of the dash the symbol space and letter space User You can set each length value seperately Remote command SOURce lt hw gt BB ILS LOCalizer COMid TSCHema on page 147 Dot Length Sets the length of a Morse dot in seconds For Time Schema gt Standard this value determines also the length of the dash 3xDot length symbol space Dot length and letter space 3xDot length Remote command SOURce lt hw gt BB ILS LOCalizer COMid DOT on 146 Symbol Space Available only for Time Schema gt User
77. VAR depth and COM ID gt Depth must be smaller than 100 96 Remote command SOURce hw BB VOR VAR DEPTh on page 160 Subcarrier Frequency Sets the frequency of the FM carrier Remote command SOURce lt hw gt BB VOR SUBCarrier FREQuency on page 160 Subcarrier Depth Sets the AM modulation depth of the FM carrier Note The sum of Subcarrier depth VAR depth and COM ID gt Depth must be smaller than 100 96 Remote command SOURce lt hw gt BB VOR SUBCarrier DEPTh on page 159 Position Settings The dialog comprises the settings necessary to configure the different position settings available for the VOR modulation System Configuration Settings 0 00 deg 7 Bearing Angle Sets the phase angle between the 30Hz VAR signal and the 30Hz reference signal The orientation of the angle depends on the selected Direction Remote command SOURce lt hw gt BB VOR 1 page 160 Direction Sets the reference position of the phase information The angle set under Bearing Angle corresponds to the angle between the geographic north and the connection line from beacon to airplane From Selection of the beacon as a reference position To Selection of the airplane position as a reference position Remote command SOURce lt hw gt BB VOR BANGle DIRection page 161 6 2 3 Settings The dialog comprises the settings necessary to
78. according to Delay X Y mode delay range distance 12 359 nm us X mode delay 50 us Y mode delay is 56 us Changing one value automatically changes the other value Parameters Delay float Range 4E 6 to 5E 3 Increment 20 9 RST 50E 6 Manual operation See Reply Delay on page 75 SOURce lt hw gt BB DME PINPut TRIGger LEVel Queries the measured trigger treshold Return values lt TriggerLevel gt float Range 200 to 200 Increment 0 01 RST 0 Usage Query only 10 5 3 DME Settings SOURce lt hw gt BB DME PINPut TRIGger SEARch Determines the trigger level 50 voltage point of first pulse of the external DME interrogation signal This command determines the trigger point after connecting the R amp S NRP Z81 power sensor to the external interrogation signal source The search function has to be exe cuted with each change of the level of the external DME signal Return values lt Search gt 0 1 OFF RST 0 Usage Query only Manual operation See Search Trigger Level on page 75 SOURce lt hw gt BB DME WIDTh Width Sets the pulse width 50 to 50 of peak voltage Parameters lt Width gt float Range 1E 6 to 100E 6 Increment 20E 9 RST 3 5E 6 Manual operation See Pulse Width on page 76 DME Analysis Settings lt gt 15 nnne 173
79. ceat rper rrr en rere e 109 SOURceshw BB GBAS SRINfoO rnt t er ni ete 116 SOURceshw BB GBAS STA Te nicotine irte SOURce lt hw gt BB GBAS TRIGger ARM EXECute SOURce lt hw gt BB GBAS TRIG Ger EXECU eis trente neenon ee oerte SOURce lt hw gt BB GBAS TRIGger EXTernal SYNChronize OUTPut SOURce hw BB GBAS TRIGger OBASeband DELay essen emen SOURce hw BB GBAS TRIGger OBASeband INHibit esee SOURce hw BB GBAS TRIGger OUTPut DELay FIXed aiaa lt gt 5 lt gt lt gt 6 5 lt gt 2 190 lt gt 6 5 lt gt 190 5 lt gt 5 lt gt 2 188 lt gt 6 5 lt gt 190 lt gt 6 5 gt rennen 190 5 lt gt 6 5 lt gt 189 lt gt 6 5 lt gt
80. clock e External The external clock reference is fed in as the symbol clock or multiple thereof via the CLOCK connector The symbol rate must be correctly set to an accuracy of 2 see data sheet The polarity of the clock input can be changed with the aid of Global Trigger Clock Settings Remote command SOURce hw BB GBAS CLOCk SOURce on 192 SOURce hw BB ILS CLOCk SOURce on page 192 SOURce hw BB VOR CLOCk SOURce on 192 SOURce lt hw gt BB DME CLOCk SOURce on page 192 Clock Mode Enters the type of externally supplied clock Remote command SOURce lt hw gt BB ILS CLOCk MODE page 191 SOURce hw BB VOR CLOCk MODE on page 191 SOURce lt hw gt BB DME CLOCk MODE on page 191 SOURce hw BB GBAS CLOCk MODE on page 191 Clock Multiplier Enters the multiplication factor for clock type Multiple Remote command SOURce hw BB GBAS CLOCk MULTiplier page 191 SOURce lt hw gt BB ILS CLOCk MULTiplier on page 192 SOURce hw BB VOR CLOCk MULTiplier page 192 SOURce lt hw gt BB DHE CLOCk MULTiplier page 191 Measured External Clock Provided for permanent monitoring of the enabled and externally supplied clock signal Remote command CLOCk INPut FREQuency Global Settings 8 5 Global Settings The buttons in this section lead to dialogs for
81. depth of modulation between the signal of the upper left lobe 90 Hz and the lower right lobe 150 Hz The maximum value equals the sum of the mod ulation depths of the 90 Hz and the 150 Hz tone The following is true ILS GS GSL DDM DEPTh AM 90Hz AM 150Hz 100 A variation of the DDM value automatically leads to a variation of the DDM value in dB and the value of the instrument current Parameters Depth float Range 0 8 to 0 8 Increment 1E 4 RST 0 Manual operation See DDM Depth on page 52 SOURce lt hw gt BB ILS GS GSLope FREQuency lt CarrierFreq gt Sets the carrier frequency if SOURce lt hw gt BB ILS GS GSLope FREQuency MODE is set to USER Parameters lt CarrierFreq gt float Range 100E3 to 6E9 Increment 0 01 RST 334 7e6 Manual operation See Carrier Frequency on page 50 SOURce hw BB ILS GS GSLope FREQuency MODE Mode Sets the carrier frequency mode for the ILS GS modulation signal Parameters Mode USER ICAO RST USER Manual operation See Carrier Frequency Mode on 49 SOURce hw BB ILS GS GSLope ICAO CHANnel Channel Selects the ICAO channel i e the ILS GS transmitting frequency The RF frequency is set to the value selected here The ICAO channel settings for ILS GS and ILS LOC are coupled ILS Settings Parameters lt Channel gt CH18X CH18Y CH20X CH20Y CH22X CH22Y 24 CH24Y CH26X
82. general trigger clock and mapping set tings Global Trigger Clock Settings Calls the Global Trigger Clock Input Settings dialog This dialog is used among other things for setting the trigger threshold the input impe dance and the polarity of the clock and trigger inputs The parameters in this dialog affect all digital modulations and standards and are described in chapter Global Trigger Clock Input Settings in the Operating Manual Generating GBAS Signals with Several Frequency Channels 9 How to Work with the GBAS Option 9 1 Testing GBAS receivers can be a challenging task The main error sources that influ ence the performance of a GBAS airborne device are typically caused by distortion on the VHF link or mismatch in the application data The former could be caused by inter ference multipath effects as well as ground and or surface reflections The latter is usually related to a bias in the differential corrections message type 1 and 11 and or mismatch between the TAP FAS data transmited on the link and the actually wanted flight path by the air traffic control ATC message type 4 The following step by step instructions demonstrate how to perform some signal gen eration tasks with the GBAS option and generate signals suitable for GBAS testing The following sections focus on the R amp S SMBV configuration Necessary configuration in VDB receivers devices under test DUT or other test equipment are beyond the scope
83. gt BB DME MODE is set to REPLy indicates the mean pulse repeti tion rate in squitter mode Parameters Rate integer Range 10 to 6000 RST 48 Manual operation See Pulse Repetition Rate on page 74 SOURce hw BB DME RDIStance lt RDistance gt Sets the simulated distance between the interrogator and the transponder for reply mode BB DME MODE REPLy The distance can be given in nautic miles NM or us with the command SOURce lt hw gt BB DME RDIStance UNIT If the unit is not provided next to the value the value is considered to be in the current unit last unit set via GUI or the SCPI The query always provide the value in the unit set with SOURce hw BB DME RDIStance UNIT The range distance and the external trigger delay are interdependent according to range distance trigger delay X Y mode delay 12 359 us nm X mode delay 50 us Y mode delay is 56 us Changing one value automatically changes the other value DME Settings Parameters lt RDistance gt float Range 4 046 X 4 531 to 400 Increment 0 001 RST 0 Example SOURce1 BB DME RDIS UNIT NM sets the unit to NM SOURce1 BB DME RDIS 1 5NM sets the range distance to 1 5 NM SOURCe1 BB DME RDIS Response 1 5 SOURCe1 BB DME RDIS 2005 sets the range distance to 20 us SOURCe1 BB DME RDIS Response 1 618 Manual operation See Range Distance
84. gt BB VOR BANGle SOURceshw5EBB VOR BANGIe DIReCtIOT 161 SOURce lt hw gt BB VOR GLOCK MODE pet 191 lt gt 192 SOURcCeshw5EBB VOR CEOCK SOURCGO onerat ertt eed tp tee c nece 192 SOURce hw BB VOR CLOCKk SYNChronization EXECute eese 192 SOURce lt hw gt BB VOR CLOCk SYNChronization enne 193 SOURce lt hw gt BB VOR COMid CODE a SOURce lt hw gt BB VOR COMIG DAS Fh SOURcesliwSEBBIVOR COMIGBEP Tli cuc ANNEE NENE ADEN NiE SOURce lt hw gt BB VOR COMIG IDOT dere tet e te Rte SOURce lt hw gt BB VOR COMid FREQuency ESOURceshw gt BBiVOR COMIC s oae ron inia inti ege neo ee SOURceshws BB VOR GOMId PER IGGd 22 i SOURC shw EBB VOR COMIdISYMBOL cm eoe docui Ee E SOURce shw BB VOR COMid TSCHema eese nennen nns SOURceshw BB VOR COMIG 5 SOURce lt hw g
85. gt MCONfig LOCation COORdinates DMS SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LOCation COORdinates ECimal on page 129 4 4 2 Message 4 Parameters To access this settings 1 2 3 4 5 6 Select GBAS gt Main dialog gt VDB Transmitters Configuration Select VDB Transmitters Configuration gt VDB gt Data gt Real GBAS Data Select Data Config gt Msg Config Select Message Configuration gt Message Type 4 gt On Enable FAS Data Set gt On Enable TAP Data Set gt On The dialog comprises the parameters of message type 4 according to RTCA DO 246D Table 2 14 According to the RTCA DO 246D the Message Type 4 contains one or more data sets that contain approach data associated vertical lateral alert limits and or the Terminal Area Path TAP With the settings provided in this dialog you can config ure the Final Approach Segment FAS data set the TAP data set or both Message Configuration Settings Message Type 4 Enables you to configure the parameters of message type 4 according to RTCA DO 246D Table 2 18 GBAS DB 1 Message Configuration Profile View Ellipsoid Message Configuration Settings Airport ID Runway Number Runway Letter Approach Performance Designator Route Indicator Reference Path Data Selector Reference Path ID i 3A LTP FTP Location Configuration LTP FTP Position Format DEG MIN SEC LTP FTP Latitude LTP
86. hw gt BB GBAS VDB ch MCON ig GSADesignator on 126 Ground Station Continuity Integrity Designator Selects the numerical designator that indicates the operational status of GBAS Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig GCID on 125 Local Magnetic Variation Sets the published local magnetic variation at the differential reference point A positive value represents an east variation clockwise from true north Remote command SOURce hw BB GBAS VDB lt ch gt MCONfig LMVariation on 128 Sigma vert iono gradient Sets the parameter Overt iono that is the standard deviation of a normal distribu tion associated with the residual ionospheric uncertainty due to spatial decorrelation Remote command SOURce lt hw gt BB GBAS VDB ch MCON ig SVIGradient on 134 Refractivity Index Sets the estimated tropospheric refractivity index Ng at the reference point Remote command SOURce lt hw gt BB GBAS VDB ch MCON ig RFINdex on page 131 Scale Height Sets the parameter scale height used for scaling the tropospheric refractivity as a function of differential altitude Remote command SOURce hw BB GBAS VDB ch MCON ig SHEight on page 133 Refractivity Uncertainty Sets the parameter oy that is the standard deviation of a normal distribution associ ated with the residual tropospheric uncert
87. lt gt 115 1 2 2 12 111 1 150 5 lt gt 1151 150 LSOURce lt hw gt t 223 151 5 lt gt 1151 2 00000 151 85 lt gt 5 151 5 152 SOURce lt hw gt BB ILS LOCalizer COMid CODE Code Sets the coding of the signal by the international short name of the airport e g MUC for the Munich airport Available only if SOURce lt hw gt BB ILS LOCalizer COMid TSCHema is set to USER Parameters lt Code gt string Manual operation See Code on page 58 SOURce lt hw gt BB ILS LOCalizer COMid DASH Dash Sets the length of a morse dash in seconds Available only if SOURce hw BB ILS LOCalizer COMid TSCHema is set to USER Parameters lt Dash gt float Range 0 05 to 1 Increment 1E 4 RST 0 3 Manual operation See Dash Length on page 59 SOURce lt hw gt BB ILS LOCalizer COMid DEPTh
88. near the runway They transmit a narrow beam width at 75 MHz carrier frequency in a vertical direction Each of them has a different distinct modulation code to allow the receiver to identify which one it is flying over 1MA193 Both visual color of the marker beacon and audio tone identification is supported for determining which marker has been flown over The audio visual pairing of marker beacons is as follows e Outer marker flashes BLUE in the cockpit at 400 Hz relaxed tone e Middle marker flashes AMBER in the cockpit at 1300 Hz hurried tone Inner marker flashes WHITE in the cockpit at 3000 Hz urgent tone VHF Omni Directional Radio Range VOR Very high frequency VHF omnidirectional radio range VOR is used for radio naviga tion and helps aircrafts to determine their position and stay on course A VOR system consists of a ground transmission station and a VOR receiver on the board of the aircraft The transmitter stations operate at VHF frequencies of 108 MHz to 118 MHz with the code identification COM ID transmitting on a modulation tone of 1 020 kHz It emitts two type of signals Distance Measurement Equipment DME An omnidirectional reference signal REF that can consist of two parts 30 Hz frequency modulated FM sine wave on subcarrier 9 96 kHz from ampli tude modulation AM carrier 1020 Hz AM modulated sine wave morse code Adirectional positioning signal variable VA
89. on how the parameter Gated Power Mode influence the calculation For step by step instruction refer to chapter 9 2 Generating a GBAS Signal for Receiver Sensitivity Tests on page 98 Example Calculating the power per time slot in Gated Power Mode gt Off Level 30 dBm TS1 gt State gt On relative power TS1 gt Pow dB 0 dB TS3 gt State gt On relative power TS3 gt Pow dB 0 dB e TS2 TS4 TS5 TS6 TS7 TS8 gt State gt Off TS2 TS4 TS5 TS6 TS7 TS8 gt Pow dB inf Power 24dBm Level 30dBm OdB OdB Se Se es Se vo lm ae inf inf inf inf inf inf gt 1 2 3 4 5 6 7 8 t time slots The absolute power of both scheduled time slots is Prg 24 dBm Ground Based Augmentation System GBAS Example Calculating the power per time slot in Gated Power Mode gt On Level 30 dBm TS1 gt State gt On relative power TS1 gt Pow dB 0 dB TS3 gt State gt On relative power TS3 gt Pow dB 3 dB e TS2 TS4 TS5 TS6 TS7 TS8 gt State gt Off TS2 TS4 TS5 TS6 TS7 TS8 gt Pow dB Power Level 30dBM 33dBm 1 2 3 4 5 6 7 8 t time slots absolute power of the scheduled time slots is Prs4 30 dBm 33 Supported message types The GBAS specification RTCA DO 246D defines the following man
90. page 127 to enter the coordinates in decimal degree format SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LFLocation COORdinates DECimal on page 126 Delta FPAP Location Configuration FAS Data Set The Delta FPAD AFPAD represents the difference of latitude longitude of the runway Flight Path Alignment Point FPAP from the LTP FTP The Delta FPAD coordinates are defined in WGS84 coordinates In this coordinate System a location is identified by three coordinates the altitude the latitude and the longitude The last two can be displayed in decimal or DMS format Use the parameter Position Format to select the display format Message Configuration Settings Table 4 4 Delta_FPAP location configuration Parameter Description Position Format Sets the format in which the Latitude and Longitude are displayed e DEG MIN SEC The display format is Degree Minute Second and Direction i e XX XX XX XX Direction where direction can be North South and East West e Decimal Degree The display format is decimal degree where indicates North and East and indicates South and West Latitude Sets the difference of latitude of the FPAP in arc seconds Positive values indicate the FPAP latitude north of LTP FTP latitude Longitude Sets the difference of longitude of the FPAP in arc seconds Positive values indicate the FPAP longitude east of LTP FTP longitude
91. parameters Filename string Only the file name is required Example see example Generating a GBAS signal for message format detection on page 111 Usage Setting only Manual operation See GBAS Differential File on page 42 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG USER FILE Filename Loads the selected user defined file extension Per default the instrument stores user defined files in the var user directory Use the command MMEM CDIRectory to change the default directory to the currently used one Setting parameters Filename string For files stored in the default directory only the file name is required Example SOURCe1 BB GBAS VDB3 MCON fig DG USER CATalog Response gbas correction SOURCe1 BB GBAS VDB3 MCONfig DG USER FILE gbas correction Usage Setting only GBAS Settings Manual operation See GBAS Differential File page 42 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG FILE Queries the currently selected GBAS differential file Return values lt Filename gt string filename with file extension rs_gbas Example see example Generating a GBAS signal for message format detection on page 111 Usage Query only Manual operation See GBAS Differential File page 42 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DLOFfset lt DelLenOff gt Sets the Delta_Length offset
92. rate trigger entere 74 Iseply delay neret erts 79 Reply efficiency analysis 79 State analysis ie 77 DME rit 71 DME modulation Dash length ueste 82 Delay extemal Wigger eet 75 Dot l ngtli roter ete 81 Channel on 73 ID frequency ttt mp eet 81 ID coit rentre ere et ts 81 ID symbol space ID CHIME SCHEMA rer trae 81 INPUE SOUICE T 74 Letter space 92 Search trigger level 275 Squitter 73 DME reply ID 81 ID 80 Range distante 73 effiClelioy 74 DME reply mode ID ID dash length ID dot length ID frequency rrr nrc rit repere ID letter orn rrt tamen ID period ID state ID symbol space ID time schema Documentation Overview enne 7 Dot length DME modulation 81 ILS Localizer fate ILS Marker Beacons 62 VOR 68 Down frequency IS Glide 51 Execute Trigger DME 26 48 64 71 87 GBAS 26 48 64 71 87 26 48 64 71 87 26 48 64 71 87 Expected r
93. the coordinates of the ground station reference location in decimal format Parameters lt Longitude gt float Range 180 to 180 Increment 1E 6 RST 0 lt Latitude gt float Range 90 to 90 Increment 1E 6 RST 0 lt Altitude gt float Range 83886 07 to 83886 07 Increment 0 01 RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Reference Location Configuration on page 33 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LOCation COORdinates DMS lt LongitudeDeg gt lt LongitudeMin gt lt LongitudeSec gt LongitudeDir lt LatitudeDeg gt lt LatitudeMin gt lt LatitudeSec gt lt LatitudeDir gt lt Altitude gt Defines the coordinates of the ground station reference location in degrees minutes and seconds Parameters lt LongitudeDeg gt integer Range 0 to 180 RST 0 lt LongitudeMin gt integer Defines the longitude minutes Range 0 to 59 RST 0 lt LongitudeSec gt float Defines the longitude seconds Range 0 to 59 999 Increment 0 001 RST 0 GBAS Settings lt LongitudeDir gt EAST WEST Defines the longitude direction RST EAST lt LatitudeDeg gt integer Defines the latitude degrees Range 0 to 90 RST 0 lt LatitudeMin gt integer Defines the latitude minutes Range 0 to 59 RST 0 lt LatitudeSec gt float Defines the latitude seconds Range 0 to 59 999 Increment 0 001 RST 0
94. to be adapted to the glide slope value which is coupled to the localizer setting see chapter A 2 1 ILS Channel Frequencies on page 195 Remote command SOURce lt hw gt BB ILS LOCalizer 150 SOURce lt hw gt BB ILS GS GSLope FREQuency MODE on page 142 Carrier Frequency Available only for Carrier Frequency Mode gt User Defined Sets the carrier frequency of the signal Remote command SOURce lt hw gt BB ILS GS GSLope FREQuency on 142 ICAO Channel Available only for Carrier Frequency Mode gt ICAO Selects the ICAO channel and sets the corresponding transmitting frequency The ICAO channel settings for ILS GS and ILS LOC are coupled Refer to chapter A 2 ICAO Channel Frequencies on page 195 for an overview of the standard defined ILS transmitting frequencies Remote command SOURce lt hw gt BB SOURce lt hw gt BB FH 5 LOCalizer ICAO CHANnel on 150 5 65 GSLope ICAO CHANnel on page 142 Al DDM Polarity Defines the polarity for DDM calculation see DDM Depth on page 52 Remote command SOURce lt hw gt BB ILS GS GSLope DDM POLarity page 141 Mode Selects the operating mode for the ILS ILS GS modulation signal Norm ILS GS modulation is active 90 Hz Amplitude modulation of the output signal with the upper lobe signal component 90Hz si
95. to configure signal gen eration with their corresponding remote control command for the specific standard Remote Control Commands Remote commands required to configure and perform signal generation in a remote environment sorted by tasks Commands required to set up the instrument or to perform common tasks on the instrument are provided in the main R amp S SMBV operating manual Programming examples demonstrate the use of many commands and can usually be executed directly for test purposes Annex Reference material List of remote commands Alphabetical list of all remote commands described in the manual Index 1 2 Documentation Overview The user documentation for the R amp S SMBV consists of the following parts Online Help system the instrument Quick Start Guide printed manual Documentation CD ROM with Online help system chm as a standalone help Operating Manuals for base unit and options Service Manual Data sheet and specifications Links to useful sites on the R amp S internet Avionics Standards Preface __ ______________________________________ Online Help The Online Help is embedded in the instrument s firmware It offers quick context sen sitive access to the complete information needed for operation and programming The online help contains help on operating the R amp S SMBV and all available options Quick Start Gu
96. 084253119 1200 0 48782531447518 52 32057768227161 1100 0 49064540739393 52 32038679250167 1000 0 49541991083499 52 32019512664971 900 0 50027587576012 52 32000536916035 800 0 50535314978533 52 3200431506525 700 0 50926768002483 52 32002989881414 600 0 51213496693413 52 31984142364868 500 0 51596247360969 52 31963813345246 400 Supported File Formats 10 52023872584375 52 31964325051492 300 10 52435479286515 52 31930292486343 200 10 52746875803649 52 31913528562811 100 4 2 GBAS Differential File Format The GBAS differential files are proprietary files with file extension rs_gbas The file contains the required information for message type 1 as defined in the GBAS specifi cation RTCA DO 246D See example Contents of the predefined GBAS differential file Correction1 rs_gbas on page 204 for an example of the file format Supported File Formats Example Contents of the predefined GBAS differential file Correction1 rs_gbas lt referencel gt lt general gt lt property refcoord 11 5833 48 15 110 gt lt general gt lt dgnssrecord gt lt property modifiedzcount 215 1 gt lt property measurementtype 0 gt lt property ephemeriscrc OxECF0 lt dgnssvector data G1 4 311 49 1 20 gt lt dgnssvector data G3 16 81 6 3 41 gt lt dgnssvector data G4 110 65 1 1 gt lt dgnssvector data G10 21 6 31 0 51 gt lt dgnssvector data R6 61 5 85 0 41 gt lt dgnssvector data S125 126 212
97. 1 177 5 lt gt 1 1 12 414 177 5 lt gt 0 0 0 0 0 nne 177 SOURce hw BB DME ANALysis UAFactor esses nennen nennen 178 DME Settings SOURce lt hw gt BB DME ANALysis EFFiciency Queries the measured reply efficiency in percent The measurement is the ratio of the number of measured valid reply pulse pairs to transmitted pulse pairs in a measure ment cycle Return values lt Efficiency gt float Range 0 to 100 Increment 0 1 RST 100 Usage Query only Manual operation See Reply Efficiency on page 74 SOURce lt hw gt BB DME ANALysis EFFiciency OK Queries if there are valid reply efficiency measurement values available in the set mea surement window Return values lt Ok gt 0 1 OFF ON RST 1 Usage Query only Manual operation See Reply Efficiency on page 79 SOURce lt hw gt BB DME ANALysis GATE COUNt Count Sets the number of pulse pairs which are sent from the R amp S SMBV interrogator to the ground station in one measurement cycle Only reply pulses for which the 50 voltage point of the rising edge of the first pulse is within the measurement window are used to evaluate the delay time and reply efficiency Parameters l
98. 113 30 1104 1167 122 117 50 1146 1209 38Y 110 15 1062 1125 80Y 113 35 1104 1041 122Y 117 55 1146 1083 39X 110 20 1063 1000 81X 113 40 1105 1168 123 117 60 1147 1210 39Y 110 25 1063 1126 81Y 113 45 1105 1042 123Y 117 65 1147 1084 40X 110 30 1064 1001 82X 113 50 1106 1169 124X 117 70 1148 1211 40Y 110 35 1064 1127 82Y 113 55 1106 1043 124Y 117 75 1148 1085 41X 110 40 1065 1002 83X 113 60 1107 1170 125X 117 80 1149 1212 41Y 110 45 1065 1128 83Y 113 65 1107 1044 125Y 117 85 1149 1086 42X 110 50 1066 1003 84X 113 70 1108 1171 126X 117 90 1150 1213 42Y 110 55 1066 1129 84Y 113 75 1108 1045 126Y 117 95 1150 1087 A 3 Default Settings A 3 1 A 3 2 In the following chapter the standard default settings for the Avionic standards are lis ted The preset value of each parameter is specified also in the description of the cor responding remote command GBAS The default settings for the GBAS standard are Parameter Value State Not affected by Set to Default Filter Clipping Cosine Clipping Off Trigger Internal Auto Clock Internal Multiple Frequency Channels Off Sample Rate 10 5 KHz ILS The default settings for the ILS standard are Table 1 5 Glide slope default settings Default Settings Parameter Value State Not affected by Set to default Sum of Depth 80 Percent Fly Up DDM 0 Mode
99. 134 TAP Lateral Alert Limit Status TAP Data Set Sets the value of the broadcast lateral alert limit Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig TLAS on page 134 443 Differential GNSS Parameters Differential GNSS is an approach that uses known GNSS reference locations to deter mine channel correction parameters The retrieved information is transmitted to other GNSS receivers to increase the accuracy of their position information To access this settings 1 Select GBAS gt Main dialog gt VDB Transmitters Configuration 2 Select VDB Transmitters Configuration gt VDB gt Data gt Real GBAS Data 3 Select Data Config gt Msg Config 4 Select Message Configuration gt Differential GNSS gt On Filter Clipping Settings Differential GNSS On Differential GNSS parameters GBAS Differential File Correction1 The dialog enables you to load a file with GBAS differential data Per default the Correctionl rs_gbas file is used 5 Select GBAS Differential File and load your user defined file Refer to chapter A 4 2 GBAS Differential File Format on page 203 for descrip tion of the required file format Differential GNSS Enables the use of differential GNSS data Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG STATe on page 122 GBAS Differential File Accesses the Select Proprietary File dialog to select a file containing dif
100. 142 Parameters lt Logarithmic gt float Range 999 9 to 999 9 Increment 1E 4 RST 0 Manual operation See DDM Logarithmic on page 53 SOURce lt hw gt BB ILS GS GSLope DDM PCT Pct Sets the difference in depth of modulation between the signal of the upper lobe 90 Hz and the lower lobe 150 Hz The maximum value equals the sum of the modulation depths of the 90 Hz and the 150 Hz tone See also SOURce lt hw gt ILS GS GSLope DEPTh on page 142 Parameters Pct float Range 80 0 to 80 0 Increment 0 01 RST 0 Manual operation See DDM Percent on page 53 SOURce lt hw gt BB ILS GS GSLope DDM POLarity lt Polarity gt Sets the polarity for DDM calculation see SOURce lt hw gt BB ILS GS GSLope DDM DEPTh The DDM depth calculation depends on the selected polarity e Polarity 90 Hz 150 Hz default setting DDM AM 90 Hz AM 150 Hz 100 Polarity 150 Hz 90 Hz DDM AM 150 Hz AM 90 Hz 100 Parameters lt Polarity gt P90 150 P150 90 RST P90 150 Manual operation See DDM Polarity on page 50 SOURce lt hw gt BB ILS GS GSLope DDM STEP lt DdmStep gt Sets the variation of the difference in depth of modulation via the rotary knob ILS Settings Parameters lt DdmStep gt DECimal PREDefined RST DECimal SOURce lt hw gt BB ILS GS GSLope DDM DEPTh lt Depth gt Sets the difference in
101. 15 9 41 gt lt dgnssrecord gt lt dgnssrecord gt lt property modifiedzcount 225 1 gt lt property measurementtype 0 gt lt property ephemeriscrc 0xEFF0 gt lt dgnssvector data G1 4 311 49 1 20 gt dgnssvector data G3 16 81 6 3 41 gt lt dgnssvector data G4 110 65 1 1 gt lt dgnssvector data G10 21 6 31 0 51 gt lt dgnssvector data R6 61 5 85 0 41 gt lt dgnssvector data S125 126 212 15 9 41 gt lt dgnssrecord gt lt dgnssrecord gt lt property modifiedzcount 235 1 gt lt property measurementtype 0 gt lt property ephemeriscrc OxBCF0 lt dgnssvector data G1 4 311 49 1 20 gt lt dgnssvector data G3 16 81 6 3 41 gt lt dgnssvector data G4 110 65 1 1 gt lt dgnssvector data G10 21 6 31 0 51 gt lt dgnssvector data R6 61 5 85 0 41 gt dgnssvector data S125 126 212 15 9 41 gt lt dgnssrecord gt lt referencel gt The table 1 10 describes the used tags and parameters Table 1 10 Format of rs_gbas file lt dgnssrecord gt Container Tag name Parameter Description lt reference1 gt lt general gt lt property gt lt refcoord gt longitude latitude and altitude of the reference point one lt dgnssrecord gt per measurements Supported File Formats Container Tag name Parameter Description lt property gt lt modifiedzcount gt modified z count for the record s lt mea
102. 2 for the ILS LOC signal contents The RMS modulation depth of the sum signal depends on the phase setting of both modulation tones Parameters lt Sdm gt float Range 0 to 100 Increment 0 1 RST 40 Manual operation See Sum of Depth on page 56 ILS Marker Beacon Settings lt gt 115 1 1 040006 152 9 lt gt 5 152 85 lt gt 5 153 lt gt 5 153 5 lt gt 115 2 4144 153 SOURce hw EBB IES MBEacon COMIG LET Ter aiio eicere atio tane zr cna so 153 5 lt gt 115 1 1 1 1 77 144414444040006 154 5 lt gt 1115 2 1 404414 11400 154 5 lt gt 115 2 0 999 154 5 lt gt 115
103. 2 359 nm us where X mode delay 50 us Y mode delay 56 us Changing one value automatically changes the other value Remote command SOURce hw BB DHE PINPut DELay on page 171 Search Trigger Level Pulse Input Available only for Trigger Mode Ext Power Sensor Determines the trigger level 5096 voltage point of first pulse of the external DME interrogation signal After connecting the R amp S NRP Z81 sensor to the external interrogation signal source Search Trigger Level determines the trigger point The search function has to be exe cuted with each change of the level of the external DME signal Remote command SOURce lt hw gt BB DME PINPut TRIGger SEARch on 172 Pulse Settings The dialog comprises the settings necessary to configure the pulse settings available for DME interrogation Pulse Settings Pulse Shape x Pulse Rise 20 Pulse Width 357 Pulse Fall 207 Pulse Spacing 120 On Single Pulse Pulse Shape Selects the pulse shape Cos 2 The falling and the rising edge of the pulse are cos 2 shaped Cos Cos 2 The rising edge is cos shaped and the falling edge is cos 2 shaped Linear The falling and the rising edge of the pulse are linear shaped Gauss The pulse has a gaussian form Remote command SOURce hw BB DME SHAPe on page 169 7 2 3 System Configuration Settings Pulse Rise Sets the ri
104. 30X 109 30 1054 991 72X 112 50 1096 1159 114 116 70 1138 1201 30 109 35 1054 1117 727 112 55 1096 1033 1147 116 75 1138 1075 31X 109 40 1055 992 73X 112 60 1097 1160 115 116 80 1139 1202 SAY 109 45 1055 1118 737 112 65 1097 1034 1157 116 85 1139 1076 32X 109 50 1056 993 74 112 70 1098 1161 116 116 90 1140 1203 327 109 55 1056 1119 74 112 75 1098 1035 116 116 95 1140 1077 33X 109 60 1057 994 75 112 80 1099 1162 117X 117 00 1141 1204 33Y 109 65 1057 1120 75Y 112 85 1099 1036 117Y 117 05 1141 1078 34X 109 70 1058 995 76X 112 90 1100 1163 118X 117 10 1142 1205 34Y 109 75 1058 1121 76Y 112 95 1100 1037 118Y 117 15 1142 1079 35X 109 80 1059 996 77X 113 00 1101 1164 119X 117 20 1143 1206 35Y 109 85 1059 1122 77Y 113 05 1101 1038 119Y 117 25 1143 1080 36X 109 90 1060 997 78X 113 10 1102 1165 120X 117 30 1144 1207 36Y 109 95 1060 1123 78Y 113 15 1102 1039 120 117 35 1144 1081 Operating Manual 1176 8600 02 05 198 Default Settings Ch VOR DME DME Ch VOR DME DME Ch VOR DME DME No Freq Interrog Reply No Freq Interrog Reply No Freq Interrog Reply Freq Freq Freq Freq Freq Freq 37X 110 00 1061 998 79X 113 20 1103 1166 121 117 40 1145 1208 37Y 110 05 1061 1124 79Y 113 25 1103 1040 121Y 117 45 1145 1082 38X 110 10 1062 999 80X
105. 32 Reference Path ID FAS Data Set Sets the reference path identifier as three or four alphanumeric characters used to des ignate the reference path Remote command SOURce lt hw gt VDB lt ch gt MCONfig RPIF on page 132 LTP FTP Location Configuration FAS Data Set The coordinates of the LTP FTP are defined in WGS84 coordinates In this coordinate system a location is identified by three coordinates the altitude the latitude and the longitude The last two can be displayed in decimal or DMS format Use the parameter Position Format to select the display format Message Configuration Settings Use the parameter LTP FTP Height to define the altitude Table 4 3 LTP FTP location configuration Parameter Description Position Format Sets the format in which the Latitude and Longitude are displayed e DEG MIN SEC The display format is Degree Minute Second and Direction i e XX XX XX XX Direction where direction can be North South and East West Decimal Degree The display format is decimal degree i e where indicates North and East and indicates South and West Latitude Sets the latitude of the LTP FTP in arc seconds Longitude Sets the longitude of the LTP FTP in arc seconds Remote command to enter the coordinates in Degree Minute Second format SOURce lt hw gt BB GBAS VDB ch MCONfig LFLocation COORdinates DMS on
106. 4 on page 112 Manual operation See Course Width at Threshold on page 39 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DFLocation COORdinates DECimal lt Longitude gt lt Latitude gt Defines the coordinates of the Delta FPAD location in decimal format Parameters lt Longitude gt float Range 1 0 to 1 0 Increment 1E 6 RST 0 lt Latitude gt float Range 1 0 to 1 0 Increment 1E 6 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Delta FPAP Location Configuration on page 38 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DFLocation COORdinates DMS lt LongitudeDeg gt lt LongitudeMin gt lt LongitudeSec gt lt LongitudeDir gt lt LatitudeDeg gt lt LatitudeMin gt lt LatitudeSec gt lt LatitudeDir gt Defines the coordinates of the Delta FPAD location in degrees minutes and seconds Parameters lt LongitudeDeg gt integer Range 0 to 1 0 RST 0 GBAS Settings lt LongitudeMin gt integer Defines the longitude minutes Range 0 to 59 RST 0 lt LongitudeSec gt float Defines the longitude seconds Range 0 to 59 999 Increment 0 001 RST 0 lt LongitudeDir gt EAST WEST Defines the longitude direction RST EAST lt LatitudeDeg gt integer Defines the latitude degrees Range 0 to 1 0 RST 0 lt LatitudeMin gt integer Defines the latitude minutes Range 0 to 59 RST 0 lt LatitudeSec gt
107. 5 Increment 0 01 RST 0 Example BB VOR TRIG SOUR EXT selects an external trigger BB VOR TRIG EXT DEL 50 sets a delay of 50 symbols for the trigger Manual operation See Trigger Delay on page 89 SOURce lt hw gt BB DME TRIGger EXTernal lt ch gt INHibit lt Inhibit gt SOURce lt hw gt BB GBAS TRIGger EXTernal lt ch gt INHibit lt Inhibit gt SOURce hw BB ILS TRIGger EXTernal ch INHibit lt Inhibit gt SOURce lt hw gt BB VOR TRIGger EXTernal lt ch gt INHibit lt Inhibit gt Specifies the number of samples by which a restart is to be inhibited following an exter nal trigger event Parameters lt Inhibit gt integer Range 0 to 67108863 RST 0 Example BB VOR TRIG SOUR EXT selects an external trigger BB VOR TRIG EXT INH 200 sets a restart inhibit for 200 samples following a trigger event Manual operation See Trigger Inhibit on page 90 SOURce lt hw gt BB DME TRIGger SEQuence lt TriggerMode gt SOURce lt hw gt BB GBAS TRIGger SEQuence Sequence SOURce lt hw gt BB ILS TRIGger SEQuence lt TriggerMode gt SOURce lt hw gt BB VOR TRIGger SEQuence lt TriggerMode gt Selects the trigger mode Marker Settings DME Parameters lt TriggerMode gt AUTO RETRigger AAUTo ARETrigger SINGle AUTO The modulation signal is generated continuously RETRigger The modulation signal is generated continuously A trigger event in
108. 5 2 2 Amplitude Settings The dialog comprises the settings necessary to configure the ILS GS amplitude 80 0 v 0 0000 0 000 0 dB 7 0 00 Fixed ii System Configuration Settings Glide Slope Sum of Depth SDM Sets the arithmetic sum of the modulation depths of the upper lobe 90 2 and lower lobe 150Hz ILS GS signal contents The RMS modulation depth of the sum signal depends on the phase setting of both modulation tones Remote command SOURce lt hw gt BB ILS GS GSLope SDM on 144 Fly Selects the simulation mode for the ILS GS modulation signal A change of the setting automatically changes the sign of the DDM value This setting simulates the direction in which the pilot has to correct the course Up The 150 Hz modulation signal is predominant the DDM value is neg ative the airplane is too low it must climb Down The 90 Hz modulation signal is predominant the DDM value is posi tive the airplane is too high it must descend Remote command SOURce lt hw gt BB ILS GS GSLope DDM DIRection on page 140 DDM Step Selects the variation of the DDM values Decimal Decimal variation according to the current cursor position Predifined Variation in predefined steps according to the standardized DDM val ues Remote command DDM Current Sets the current of the ILS indicating the instrument corresponding to the DDM value The i
109. 52 VOR Stein e 156 VOR General nennen 156 VOR System Configuration 157 VOR COM ID Settings ee ae tae 161 DME Setting K 164 DME General 164 DME System Configuration 165 DME Analysis 5 ener nnne 172 DME COM ID Settings uc ore tereti sr tek etre Ea ee RE 178 Trigger Settings eren 181 Marker Settings DME nre reiten 187 Marker Settings GBAS nien ttim 188 Clock Setting sees 191 P lp 194 Morse Code Settings ie nie te Ri ie IN Ria Ge deux 194 ICAO Channel 40 195 2 1 2 2 2 3 3 1 3 2 A 3 3 A 3 4 4 4 1 4 2 ILS Channel 195 VOR Channel Frequencies 1 nennen nnn senes 195 DME Channel Frequenties eere eia eaa da d d e 196 BEND fce
110. 79 Reply efficiency DME rosea ebat pue es ae 79 idet cx xe he Sexe 74 Reply efficiency analysis nere rete 79 Right frequency ILS Localizer RPDS yc eR 37 S once tenet iere tonus ders 40 204 R tiway letter 37 RUNWAY 37 5 26 45 Save Recall 25 48 63 70 m 25 48 63 70 cc 25 48 63 70 25 48 63 70 Scalehelglib s on ier 32 SCMEQUIING eer 29 Search trigger level PME modulation cort nott ene tin eben 15 Set synchronbzaltlOn 95 default arre cniin 24 47 63 70 Show Hide details DME MO ILS Localizer ILS Marker BEACONS ci rac 61 VOR 67 Sigma Sigma vertical ionospheric gradient 32 Signal duration Unit 86 Signal generation status t ner d 86 Single pulse p m SIS accuracy minimum Speed vs interference suppression 15 Squitter DME IDferrogatlOrt ree ets enter 73 SSID 28 Standard deviation of a normal distr
111. 8 93Y 114 65 1117 1054 10X 1034 971 52X 111 50 1076 1013 94X 114 70 1118 1181 10Y 1034 1097 52Y 111 55 1076 1139 94Y 114 75 1118 1055 11X 1035 972 53X 111 60 1077 1014 95X 114 80 1119 1182 11Y 1035 1098 53Y 111 65 1077 1140 95Y 114 85 1119 1056 12X 1036 973 54 111 70 1078 1015 96X 114 90 1120 1183 12Y 1036 1099 54 111 75 1078 1141 967 114 95 1120 1057 13 1037 974 55 111 80 1079 1016 97 115 00 1121 1184 13 1037 1100 55Y 111 85 1079 1142 97 115 05 1121 1058 14X 1038 975 56 111 90 1080 1017 98X 115 10 1122 1185 14Y 1038 1101 56Y 111 95 1080 1143 98Y 115 15 1122 1059 15 1039 976 57 112 00 1081 1018 99X 115 20 1123 1186 15Y 1039 1102 57Y 112 05 1081 1144 99 115 25 1123 1060 16 1040 977 58 112 10 1082 1019 100 115 30 1124 1187 16 1040 1103 58 112 15 1082 1145 100 115 35 1124 1061 17 108 00 1041 978 59 112 20 1083 1020 101 115 40 1125 1188 17 108 05 1041 1104 597 112 25 1083 1146 1017 115 45 1125 1062 18 108 10 1042 979 60X 1084 1021 102 115 50 1126 1189 18 108 15 1042 1105 60 1084 1147 1027 115 55 1126 1063 Operating Manual 1176 8600 02 05 197 Avionics Standards Annex H a u IMMI ee ee eee Ch VOR DME DME Ch VOR DME DME Ch VOR DME DME No Freq Interrog Reply No Freq Interrog Reply No Freq Interrog Reply F
112. 93X CH93Y CH94X CH94Y CH95X CH95Y CH96X CH96Y CH97X CH97Y CH98X CH98Y CH99X CH99Y CH100X CH100Y CH101X CH101Y CH102X CH102Y CH103X CH103Y CH104X CH104Y CH105X CH105Y CH106X CH106Y CH107X CH107Y CH108X CH108Y CH109X CH109Y CH110X CH110Y CH111X CH111Y CH112X CH112Y CH113X CH113Y CH114X CH114Y CH115X CH115Y CH116X CH116Y CH117X CH117Y CH118X CH118Y CH119X CH119Y CH120X CH120Y CH121X CH121Y CH122X CH122Y CH123X CH123Y CH124X CH124Y CH125X CH125Y CH126X CH126Y RST CH1X Manual operation See Channel on 73 SOURce lt hw gt BB DME PPS lt 5 gt Sets the spacing between the first and second pulse of a pulse pair time between half voltage points on the leading edge of each pulse Available only for SOURce hw BB DME SING1eOFF Operating Manual 1176 8600 02 05 167 DME Settings Parameters lt Pps gt float Range 1E 6 to 200E 6 Increment 20E 9 RST 12E 6 Manual operation See Pulse Spacing on page 76 SOURce lt hw gt BB DME PPST lt SpacTolerance gt Sets the pulse pair spacing tolerance Parameters lt SpacTolerance gt float Range 0 to 200E 6 2 Increment 20E 9 RST 5E 6 SOURce lt hw gt BB DME RATE lt Rate gt If SOURce lt hw gt DME MODE is set to NTerrogation sets the pulse repetition rate If SOURce lt hw
113. AD on page 109 SETTing DELete on page 108 subsystem ILS Component Selects the ILS component Glide slope Enables the glide slope Localizer Enables the localizer Marker Beacons Enables the marker beacons Remote command SOURce hw BB ILS TYPE on page 139 System Configuration Accesses the System Configuration dialog see chapter 5 2 System Configuration Settings Glide Slope on page 49 for the glide slope settings chapter 5 3 System Configuration Settings Localizer on page 53 for the local izer settings chapter 5 4 System Configuration Settings Marker Beacons on page 60 for the marker beacons settings Trigger Marker Accesses the dialog for selecting the trigger source for configuring the marker signals and for setting the time delay of an external trigger signal see chapter 8 1 Trigger Settings on page 85 The currently selected trigger source is displayed to the right of the button Execute Trigger Executes trigger manually You can execute the trigger manually only if you select an internal trigger source and a trigger mode other than Auto Remote command SOURce hw BB GBAS TRIGger EXECute on page 183 SOURce lt hw gt BB ILS TRIGger EXECute on page 183 SOURce hw BB VOR TRIGger EXECute on page 183 SOURce hw BB DME TRIGger EXECute on page 183 System Configuration Settings Glide Slope Arm For trig
114. Avionics Standards Digital Standards for R amp S9SMBV Operating Manual 1176 8600 02 05 5 gt o a 2 35 o This document describes the avionics software options Described are the following software options R amp S SMBV K111 1419 2396 xx R amp S SMBV K151 1419 2621 xx R amp S SMBV K152 1419 2664 xx R amp S SMBV K153 1419 2667 xx This manual describes firmware version FW 3 20 281 xx and later of the R amp S SMBV100A 2015 Rohde amp Schwarz GmbH amp Co KG M hldorfstr 15 81671 M nchen Germany Phone 49 89 41 29 0 Fax 49 89 41 29 12 164 Email info rohde schwarz com Internet www rohde schwarz com Subject to change Data without tolerance limits is not binding R amp S is a registered trademark of Rohde amp Schwarz GmbH 4 KG Trade names are trademarks of the owners The following abbreviations are used throughout this manual R amp S SMBV100A is abbreviated as R amp S SMBV R amp S WinIQSIM2 is abbreviated as R amp S WinIQSIM2 1 1 1 2 1 3 1 4 21 2 2 3 1 3 2 3 3 3 4 4 1 4 2 4 3 4 4 4 4 1 4 4 2 4 4 3 4 5 4 5 1 4 5 2 4 5 3 4 6 5 1 5 2 5 2 1 Contents 7 7 Documentation 5
115. BV without a measurement cylcle to calculate the RMS value of the baseband signal in order to set the correct RF level If the standard is switched ON for the first time or after every subsequent ON OFF sequence the measurement cycle will take place to determine the correct RF level Every subsequent parameter change in the DME standard will be performed without another measurement cycle in order to pro vide a continous signal output State Activates the standard and deactivates all the other digital standards and digital modu lation modes in the same path Remote command lt subsystem gt STATe on page 108 Set To Default Calls the default settings The values of the main parameters are listed in chapter A 3 Default Settings on page 199 Remote command subsystem PRESet on page 108 Save Recall Accesses the Save Recall dialog i e the standard instrument function for storing and recalling the complete dialog related settings in a file The provided navigation possibil ities in the dialog are self explanatory General Settings The file name and the directory it is stored in are user definable the file extension is however predefined Remote command lt subsystem gt SETTing CATalog on page 108 subsystem SETTing STORe on 109 lt subsystem gt SETTing STORe FAST on page 109 lt subsystem gt SETTing LOAD on page 109 lt subsystem gt SETTing DELete on page 108 DME Mode Selects the DME modul
116. CONfig DFLocation COORdinates DMS Response 0 0 45 54 WEST 0 1 40 429 NORT SOURce1 BB GBAS VDB1 MCONfig CWAThreshold 105 SOURce1 BB GBAS VDB1 MCONfig DLOFfset 0 SOURce1 BB GBAS VDB1 MCONfig FVAA 0 SOURce1 BB GBAS VDB1 MCONfig FLAA 40 SOURCe1 BB GBAS VDB1 MCONfig TDSState ON SOURCe1 BB GBAS VDB1 MCONfig RPDT 21 SOURCe1 BB GBAS VDB1 MCONfig RPIT GTN SOURce1 BB GBAS VDB1 MCONfig WAYPoint PREDefined CATalog Response Braunschweig SOURce1 BB GBAS VDB1 MCONfig WAYPoint PREDefined FILE Braunschweig SOURce1 BB GBAS VDB1 MCONfig WAYPoint FILE Response Braunschweig txt SOURce1 BB GBAS VDB1 MCONfig NOPPoint Response 11 to query user waypoint files in the default directory SOURce1 BB GBAS VDB1 MCONfig WAYPoint USER CATalog Response gbas waypoint SOURce1 BB GBAS VDB1 MCONfig FRCLink 3 SOURce1 BB GBAS VDB1 MCONfig TVAS 50 SOURCe1 BB GBAS VDB1 MCONfig TLAS 2 SOURCe1 BB GBAS STATe ON OUTput1 STATe ON Example Adjusting clock marker and trigger settings The following example lists the provided commands KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK Clock settings SOURCe1 BB GBAS CLOCk SOURce INTernal
117. DB Transmitter Receiver GBAS Ground Station Fig 3 1 GBAS components and signals simplified representation 1 GNSS reference receiver 2 GBAS ground station 3 VHF data broadcast VDB transmitter a GNSS navigation message b Pseudorange c GBAS Correction message d VDB signal The GBAS GNSS reference receivers receive the GNSS navigation message perform pseudorange measurements and transmits this information to the GBAS ground sta tion The GBAS ground station determines errors in the calculated positions adds additional parameters and approach path information produces a GBAS correction message and sends it the VDB transmitter The VDB transmitter modulates and enco des this message and broadcasts it to the GBAS equipment for example a GBAS receiver in the airplane The GBAS equipment in the airplane is a high precision multimode receiver that evaluates the message and applies corrections parameters to improve the navigation algorithms from GPS This list outlines the three signals transmitted between the components and are refer red as GBAS Signal in Space GNSS satellite to GBAS ground subsystem navigation signal GNSS satellite to GBAS airbone subsystem navigation signal GBAS ground subsystem to GBAS airbone subsystem VHF data broadcast Ground Based Augmentation System GBAS This firmware option enables you to generate the VHF data broadcast Carrier frequencies and frequ
118. ESet SOURce lt hw gt BB ILS PRESet SOURce lt hw gt BB VOR PRESet Sets all parameters to their default values RST values specified for the commands lt subsystem gt SETTing CATalog SOURce lt hw gt BB DME SETTing CATalog SOURce lt hw gt BB GBAS SETTing CATalog SOURce lt hw gt BB ILS SETTing CATalog SOURce lt hw gt BB VOR SETTing CATalog Queries the files with the standard settings in the default directory Listed are files with the file extension dme gbas ils vor Refer to section MMEM Subsystem in the R amp S SMBV manual for general information on file handling in the default and a specific directories Return values Catalog lt filename1 gt lt filename2 gt Returns a string of file names separated by commas Usage Query only lt subsystem gt SETTing DELete SOURce lt hw gt BB DME SETTing DELete Filename Avionics Standards Remote Control Commands E SOURce lt hw gt BB GBAS SETTing DELete Filename SOURce lt hw gt BB ILS SETTing DELete Filename SOURce lt hw gt BB VOR SETTing DELete Filename Deletes the selected file from the default or specified directory Deleted are files with the file extension dme gbas ils vor Refer to section MMEM Subsystem in the R amp S SMBV manual for general information on file handling in the default and a specific directories Setting parameters Filename string Usage Setting only l
119. ET SRATe Queries the used sample rate Return values lt SRate gt float Range 10 49E3 to 10 51E3 Increment 1E 3 RST 10 5E3 Example see example Quering the default filter clipping and modulation settings on page 114 Usage Query only Manual operation See Sample Rate Variation Sample Rate Info on page 26 10 3 10 3 1 10 3 2 ILS Settings ILS Settings The BB ILS subsystem contains all commands for configuring a ILS signal See also chapter 10 6 Trigger Settings on page 181 and chapter 10 9 Clock Set tings on page 191 for a description of the trigger and clock settings General Settings ESOURceshw gt 139 PSOURCeshw gt BB STATO 139 espe Biz Teal ed EE 139 SOURce lt hw gt BB ILS PRESet Sets the ILS default settings SOURce lt hw gt BB ILS STATe State Activates deactivates the ILS modulation Parameters lt State gt 0 1 OFF ON RST 0 SOURce lt hw gt BB ILS TYPE lt gt Selects the ILS modulation type Parameters lt Type gt GS LOCalize GSLope MBEacon RST GS Manual operation See ILS Component on page 48 ILS Glide Slope Settings 500 lt gt 88 1 51 65 65 140 50 lt gt 88 1 51 65 65
120. ETTing EORAD ce paar ke 109 SOURCe hw BBHIES SETTIngEORBD cione tetro late 109 SOURceshw pEBBE NVOR SET Ting LOAD uiii Loris eto cn E eu Deci 109 SSUDSYSIENIAISET Ting S TOR eate en terae sie eter he eque 109 Primary Settings ESOURce lt hw gt BB DME SETTING e tete ere Pene 109 SOURce lt hw gt BB GBAS SET Ting S TOR cane entere 109 SOURceshw EBBHUES SET Ting S TOR nuez iuum tete tarte 109 ESOURce lt hw BB VOR SET Ming TOR i ern Ll ei aie cn dnce 109 subsystem SETTihg STOReJ AST 109 lt gt 1 109 lt gt 5 109 SOURce lt hw gt BBiLS SETTing S TORE FAS I 110 ESOURce hw E BB VOR SETTiRng S TOReIFAST iicet titre Rede 110 lt subsystem gt STATe SOURce lt hw gt BB DME STATe State SOURce lt hw gt BB GBAS STATe State SOURce lt hw gt BB ILS STATe State SOURce lt hw gt BB VOR STATe State Activates deactivates the VOR modulation Parameters lt State gt 0 1 OFF ON RST 0 lt subsystem gt PRESet SOURce lt hw gt BB DME PRESet SOURce lt hw gt BB GBAS PR
121. GBAS Data and select Data Config gt Message Config Enable Message Type 2 On Configre the settings as required For this example enable a reference location with coorrdinates Altitude 110m Latitude 48 150 deg and Longitude 11 5833 deg Enable Differantial GNSS On ans select GBAS Differential File Predefined Files Correction1 9 5 Generating a GPS a GBAS Signal for Multi Mode Receiver Tests BE GBAS VDB 1 Message Configuration Message Type 2 Message Type 2 parameters Ground Station Reference Receivers 3 ref receivers Ground Station Accuracy Designator Ground Station Continuity Integrity Designator Local Magnetic Variation 5 99 Sigma_vert_iono_gradient 00000000 2 Refractivity Index 379 Scale Height 100 Refractivity Uncertainty 20 Reference Location Configuration Position Format DecimalDegree Altitude Latitude 8 160 000 dea Longitude 11 583 300 9 9 gt Message 4 Differential GNSS Differential GNSS parameters 8 Select GBAS gt State gt On 9 Select RF gt State gt On 10 At the VDB receiver verify that e the received values of each parameter are within the allowed value range e the received parameters are decoded correctly e the VDB messages are discarded if they do not comply to the standards Generating a GPS and a GBAS Signal for Multi Mod
122. ILS GS transmitting frequencies see chapter A 2 1 ILS Channel Frequencies on page 195 The start value can be selected in the field CAO Channel below The selection is effective on both ILS modulations A change to mod ulation ILS GS automatically causes the RF frequency to be adapted to the glide slope value which is coupled to the localizer setting see chapter A 2 1 ILS Channel Frequencies on page 195 Remote command SOURce lt hw gt BB ILS LOCalizer FREQuency MODE 150 SOURce lt hw gt BB ILS GS GSLope FREQuency MODE page 142 Carrier Frequency Available only for Carrier Frequency Mode gt User Defined Sets the carrier frequency of the signal Remote command SOURce lt hw gt BB ILS LOCalizer FREQuency page 150 ICAO Channel Available only for Carrier Frequency Mode gt ICAO Selects the ICAO channel and sets the corresponding transmitting frequency The ICAO channel settings for ILS GS and ILS LOC are coupled Remote command SOURce hw BB ILS LOCalizer ICAO CHANnel on 150 DDM polarity Defines the polarity for DDM calculation see DDM Depth on page 57 Remote command SOURce hw BB ILS LOCalizer DDM POLarity on page 149 5 3 2 System Configuration Settings Localizer Mode Selects the operating mode for the ILS LOC modulation signal Norm ILS LOC modulation is active 90 Hz Amplitude modulation of the outpu
123. ME ANALysis TIME OK on 177 Reply Efficiency Indicates the measured reply efficiency in percent The measurement is the ratio of the number of measured valid reply pulse pairs to transmitted pulse pairs in a measure ment cycle If there are no valid measurements available in the set measurement win dow invalid is indicated Remote command SOURce lt hw gt BB DME ANALysis EFFiciency page 173 SOURce hw BB DME ANALysis EFFiciency OK page 173 Pulse Repetition Rate Indicates the measured mean pulse repetition rate of the DME ground station If there are no valid measurements available the set measurement window invalid is indicated Remote command SOURce lt hw gt BB DME ANALysis PRRate on page 175 SOURce hw BB DME ANALysis PRRate OK page 176 7 2 5 Settings To access this dialog 1 Select DME gt DME Mode gt Reply 2 Select DME gt System Configuration The dialog comprises the settings necessary to configure the COM ID settings availa ble for the DME reply modulation System Configuration Settings 100 0 300 0 v 100 0 300 0 7 COMIID State Enables disables an additional communication identification COM ID signal The ID signal consists of a regular group of pulses that generates Morse code dots and dashes The transmission of the ground signal is interru
124. Norm Up Frequency 90 Hz Down Frequency 150 Hz Up Down Phase 0 deg COMIID State Off COWM ID Frequency 1020 kHz COWM ID Depth 10 percent Table 1 6 Localizer default settings Parameter Value State Not affected by Set to default Sum of Depth 40 Percent Fly Up DDM 0 Mode Norm Left frequency 90 Hz Right Frequency 150 Hz Left Right Phase 0 deg COMIID State Off COWM ID Frequency 1020 kHz Period 9s COWM ID Depth 10 percent Table 1 7 Marker Beacon default settings Parameter Value State Not affected by Set to default Marker frequency 400 Hz Marker Depth 95 96 COMIID State Off Frequency 1020 kHz Default Settings Parameter Value COMIID Period 9s COM ID Depth 10 percent Rf frequency 75 MHz 3 3 DME The default settings for the DME standard are Table 1 8 Default settings for the DME standard Parameter Value General Parameters State Not affected by Set to default DME Mode Interrogation Signal Settings Channel Mode X Channel Carrier Frequency 1 025 000 000 000 GHz Pulse Squitter Off Pulse Repetition Rate 48 Hz Pulse Settings Pulse Shape Cos 2 Pulse Rise 2 00 us Pulse Width 3 50 us Pulse Fall 2 00 us Pulse Spacing 12 00 us Single Pulse Off Receive Settings Pulse Pair Spacing Tolerance 1 00 us
125. Path to be followed TAP and FAS the second R amp S SMBV simulates a real time errors in the actual path followed by the airplane when compared to the TAP path the Air Traffic Controller ATC is ask ing for Generating a GPS and GBAS Signal for Multi Mode Receiver Tests Consider a hadrware in the loop HIL setup with the second R amp S SMBV 10 Remote Control Commands The following commands are required to perform signal generation with the Avionics option in a remote environment We assume that the R amp S SMBV has already been set up for remote operation in a network as described in the R amp S SMBV documentation A knowledge about the remote control operation and the SCPI command syntax are assumed For a description of the conventions used in the remote command descriptions see section Remote Control Commands in the R amp S SMBV operating manual o Conventions used in SCPI command descriptions Placeholder lt Subsystem gt To simplify the description of the remote control commands the placeholder Subsystem is introduced Depending on the avionic standard used as an entry standard replace this placeholder lt Subsystem gt with for example SOURce BB GBAS for GBAS commands containing this placeholder are not recognized and accepted by the instru ment o The replacement of the place holder lt Subsystem gt is mandatory i e remote control Example SCPI command subsystem
126. R 30 Hz AM modulated sine waves with variable phase shift The position of the aircraft is determined by measuring azimuth as the difference in phase of those two signals The magnetic north is defined as the reference point for which both signals are exactly in phase 3 4 Distance Measurement Equipment DME DME is a radar system used to determine the slant distance of an aircraft DME inter rogator to a ground station DME transponder For this purpose shaped RF double pulses are transmitted by the aircraft to the ground station and after a defined delay reply delay the ground station sends the pulses back again The receiver in the air craft uses the round trip time of the double pulses to determine the distance to the ground station E Ground Fig 3 6 DME principle Most DME ground stations are combined with a VOR system in order to allow an air craft to determine its precise position relative to this station The DME channels are paired with the VOR channels and range from 1025 MHz to 1150 MHz for the aircraft transmitter and 962 MHz to 1213 MHz for the ground stations The frequency delta between received and transmitted signal is always 63 MHz The channel spacing between the various DME channels is always 1 MHz Each channel has two different codings X and Y that differ with regard to their pulse spacing The assignment of a channel and coding to a ground station always remains the same during operation and i
127. SMBV for the slave instruments Sync Output to External Trigger OFF Corresponds to the default state of this parameter The signal calculation starts simultaneously with the external trigger event but because of the instrument s processing time the first sam ples are cut off and no signal is output After elapsing of the internal processing time the output signal is synchronous to the trigger event Ext Calculated signal Signal at the output Processing time Trigger Settings Off The signal output begins after elapsing of the processing time and starts with sample O i e the complete signal is output This mode is recommended for triggering of short signal sequences with signal duration comparable with the processing time of the instrument Ext Trigger Event Calculated signal Signal at the output Remote command SOURce hw BB GBAS TRIGger EXTernal SYNChronize OUTPut on page 183 SOURce hw BB ILS TRIGger EXTernal SYNChronize OUTPut on page 183 SOURce hw BB VOR TRIGger EXTernal SYNChronize OUTPut on page 183 SOURce lt hw gt BB DME TRIGger EXTernal SYNChronize OUTPut on page 183 Trigger Delay Delays the trigger event of the signal from the external trigger source Use this setting to synchronize the instrument with the device under test DUT or other external devi ces Remote command
128. ST 4 Example BB xxx CLOCk SOURce EXTernal selects the external clock source BB xxx CLOCk MODE MSAMple selects clock type Multiplied i e the supplied clock has a rate which is a multiple of the sample rate BB xxx CLOCk MULTiplier 12 the multiplier for the external clock rate is 12 Manual operation See Clock Multiplier on page 95 SOURce lt hw gt BB DME CLOCk SOURce Source SOURce lt hw gt BB GBAS CLOCk SOURce Source SOURce lt hw gt BB ILS CLOCk SOURce Source SOURce lt hw gt BB VOR CLOCk SOURCce Source Parameters lt Source gt INTernal EXTernal INTernal The internal clock reference is used EXTernal The external clock reference is supplied to the CLOCK connec tor RST INTernal Manual operation See Clock Source on page 95 SOURce lt hw gt BB DME CLOCk SYNChronization EXECute SOURce lt hw gt BB GBAS CLOCk SYNChronization EXECute SOURce lt hw gt BB ILS CLOCk SYNChronization EXECute SOURce lt hw gt BB VOR CLOCk SYNChronization EXECute Performs automatically adjustment of the instrument s settings required for the syn chronization mode set with the command BB xxx SYNC where xxx stands for 11 5 VOR or DME Clock Settings Example BB xxx CLOC SYNC MODE MAST the instrument is configured to work as a master one BB xxx CLOC SYNC EXEC all synchronization s settings are adjusted accordingly
129. TYPe Response D8PSK SOURCe1 BB GBAS MSET SRATe Response 10500 SOURCe1 BB GBAS MFCHannels ON SOURce1 BB GBAS MSET SRATe Response 525000 SOURCe1 BB GBAS SRINfo Response 525 kHz SOURCe1 BB GBAS CLIPping STATe Response 0 SOURCe1 BB GBAS CLIPping LEVel Response 100 SOURce1 BB GBAS CLIPping MODE Response VECTor GBAS Settings 10 2 2 General Settings SOURce lt hw gt BB GBAS VERSion Queries the specification according to that the settings are implement Return values lt Version gt string Example SOURce1 BB GBAS VERSion Response RTCA DO 246D Usage Query only SOURce lt hw gt BB GBAS WAVeform CREate Filename With enabled signal generation triggers the instrument to store the current settings as an ARB signal in a waveform file Waveform files can be further processed by the ARB and or as a multi carrier or a multi segment signal The file name and the directory it is stored in are user definable the predefined file extension for waveform files is wv Setting parameters lt Filename gt string Example see example Generating a GBAS signal for VDB slot detection on page 111 Usage Setting only Manual operation See Generate Waveform File on page 25 SOURce lt hw gt BB GBAS SCATIi lt 5 gt Enables using of SCAT I header information instead of the default LAAS GBAS header Parameters lt SCAT gt
130. VOR TRIGger EXECute on page 183 SOURce lt hw gt BB DME TRIGger EXECute on page 183 Transmitters Configuration Settings Arm For trigger modes Armed Auto and Armed Retrigger stops the signal generation until subsequent trigger event occurs Remote command SOURce lt hw gt BB GBAS TRIGger ARM EXECute 182 SOURce lt hw gt BB ILS TRIGger ARM EXECute page 182 SOURce lt hw gt BB VOR TRIGger ARM EXECute on page 182 SOURce lt hw gt BB DME TRIGger ARM EXECute page 182 Clock Accesses the dialog for selecting the clock source see Clock on page 27 4 2 VDB Transmitters Configuration Settings To access this dialog 1 Select GBAS gt Main dialog gt VDB Transmitters Configuration EH GBAS VDB Transmitters Configuration Center frequency MHz 999 875 999 900 999 925 999 950 999 975 1000 000 1000 025 1000 050 1000 075 1000 100 1000 125 dialog comprises the settings necessary to configure the VHF Data Broadcast VDB signals The graph visualizes 11 adjacent frequency channels symmetrically located around the current central frequency To define the central frequency set the parameter Status Bar gt Frequency In the graph the central frequency is referred as frequency number 0 The frequency channel of the selected VDB is highlighted 2 Select VDB Transmitters Configuration gt Appe
131. age 79 SOURce lt hw gt BB DME ANALysis TRIGger SEARch Determines the trigger level 50 voltage point of first pulse of the external DME interrogation signal This command determines the trigger point after connecting the R amp S NRP Z81 power sensor to the external interrogation signal source The search function has to be exe cuted with each change of the level of the external DME signal Return values lt Search gt 0 1 RST 0 Usage Query only SOURce lt hw gt BB DME ANALysis lAFactor Queries the internal adjustment factor the mathematically calculated value of the time when the pulse reaches its 50 level Return values lt InternalAdjFact gt float Range 0 to 200 Increment 10E 9 RST 0 Query only Manual operation See Internal Adjustment Factor on page 84 SOURce lt hw gt BB DME ANALysis PSAFactor Queries the power sensor adjustment factor determined during a normalization of the setup You can normalize the setup with SOURce lt hw gt BB DHE ANALysis NORMalize Return values PowSensAdjFact float Range 0 to 200 Increment 10E 9 RST 0 10 5 4 DME Settings Usage Query only Manual operation See Power Sensor Adjustment Factor on page 83 SOURce lt hw gt BB DME ANALysis UAFactor lt UsedFactor gt Sets which internal adjustment factor should be used Parameters lt UsedFactor gt INTernal PSENsor INTernal The math
132. ainty Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RUNCertainty on 133 Message Configuration Settings Reference Location Configuration The coordinates of the ground station reference point are defined WGS84 coordi nates In this coordinate system a location is identified by three coordinates the alti tude the latitude and the longitude The last two can be displayed in decimal or DMS format Use the parameter Position Format to select the display format Table 4 2 Reference location configuration Parameter Description Position Format Sets the format in which the Latitude and Longitude are displayed e DEG MIN SEC The display format is Degree Minute Second and Direction i e XX XX XX XX Direction where direction can be North South and East West e Decimal Degree The display format is decimal degree where indicates North and East and indicates South and West Altitude Sets the altitude of the ground station reference point that is the height above the ellipsoid HAE altitude Latitude Sets the latitude of the ground station reference point Longitude Sets the longitude of the ground station reference point Remote command to enter the coordinates in Degree Minute Second format on page 129 to enter the coordinates in decimal degree format DI SOURce lt hw gt BB GBAS VDB lt ch
133. and letter space e User You can set each length value seperately Remote command SOURce lt hw gt BB VOR COMid TSCHema on page 163 Dot Length Sets the length of a Morse dot in seconds For Time Schema Standard this value determines also the length of the dash 3xDot length symbol space Dot length and letter space 3xDot length Remote command SOURce hw BB VOR COMid DOT page 162 Dash Length Available only for Time Schema User Sets the length of a Morse dash in milliseconds System Configuration Settings Symbol Space Available only for Time Schema gt User Sets the length of a symbol space in milliseconds Remote command SOURce lt hw gt BB VOR COMid SYMBo1 on 163 Letter Space Available only for Time Schema User Sets the length of a letter space in milliseconds Remote command SOURce hw BB VOR COMid LETTer page 162 General Settings 7 DME Configuration and Settings gt access this dialog select Baseband Block gt DME 7 1 General Settings This dialog provides access to the general settings of the DME standard like enabling the standard and selecting the DME mode Set To Default Save Recall Interrogation m System Configuration Trigger Marker Auto Clock Internal Changing a parameter in the DME standard will cause an instant signal change in the R amp S SM
134. and the associated ICAO channels Ch No LOC GS Freq Ch LOC GS Freq Ch LOC GS Freq Freq No Freq No Freq 18X 108 10 334 70 32X 109 50 332 60 46X 110 90 330 80 18Y 108 15 334 55 32Y 109 55 332 45 46Y 110 95 330 65 20X 108 30 334 10 34 109 70 333 20 48 111 10 331 70 20 108 35 333 95 34Y 109 75 333 05 48 111 15 331 55 22 108 50 329 90 36X 109 90 333 80 50X 111 30 332 30 22X 108 55 329 75 36Y 109 95 333 65 50Y 111 35 332 15 24X 108 70 330 50 38X 110 10 334 40 52X 111 50 332 90 24Y 108 75 330 35 38Y 110 15 334 25 52Y 111 55 332 75 26X 108 90 329 30 40X 110 30 335 00 54X 111 70 333 50 26Y 108 95 329 15 40Y 110 35 334 85 54Y 111 75 333 35 28X 109 10 331 40 42X 110 50 329 60 56X 111 90 331 10 28Y 109 15 331 25 42Y 110 55 329 45 56Y 111 95 330 95 30X 109 30 332 00 44X 110 70 330 20 30Y 109 35 331 85 44 110 75 330 05 2 2 Channel Frequencies The individual values the table cells are Ch No ICAO channel number VOR Freq VOR Interrogation frequency MHz Avionics Standards Annex I IMIM MMM Table 1 3 Standardized VOR transmitting frequencies MHz and the associated ICAO channels Ch VOR Ch VOR Ch VOR Ch VOR Ch VOR Ch VOR No Freq No Freq No Freq No Freq No Freq No Freq 17X 108 00 45 110 80 75X 112 80 89X 17Y 108 05 45Y 110 85 757 112 85 89
135. anual operation See Airport ID on page 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig APDesignator lt ApPerDes gt Sets the approach performance designator Parameters lt ApPerDes gt GAB GC GCD RST GAB Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Approach Performance Designator on 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig ATCHeight lt Tch gt Sets the approach threshold crossing height Parameters lt Tch gt float Range 0 to 1638 35 Increment 0 05 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Plan View Profile View Parameters on page 36 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig ATUSelector lt TchUnit gt Sets the units the approach TCH is experssed in see SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig ATCHeight Parameters lt TchUnit gt FEET MET RST FEET GBAS Settings Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Plan View Profile View Parameters on page 36 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig CWAThreshold lt CrWdAtTh gt Sets the course width at threshold Parameters lt CrWdAtTh gt float Range 80 to 143 75 Increment 0 01 RST 80 Example see example Generating a GBAS signal containing message type
136. ariable but is automatically set and calculated Remote command SOURce hw BB GBAS VDB ch DLENgth on page 118 No of Frames Displays the automatically calculated number of frames of the selected VDB Remote command SOURce hw BB GBAS NOFRames on page 119 Scheduling Accesses the dialog for configuring the scheduling in the time domain see chapter 4 3 Scheduling Settings on page 30 Append Insert Delete You can configure up to 8 VDB transmitters Use the appropriate general functions Append Adds a new row in the table of VDB transmitters Remote command SOURce hw BB GBAS VDB APPend on page 116 Insert Adds a new row above the currently selected one Remote command SOURce lt hw gt BB GBAS VDB ch INSert on page 116 Delete Deletes the selected row Remote command SOURce lt hw gt BB GBAS VDB ch DELete on page 117 Scheduling Settings 4 3 Scheduling Settings To access this dialog 1 Select GBAS gt Main dialog gt VDB Transmitters Configuration 2 Select VDB Transmitters Configuration gt VDB gt Scheduling gt Config GBAS Scheduling 1 Frequency Number 0 xl em 0 3 00 ort ort nr nr nF 5 0 00 ort The dialog comprises the settings necessary to configure th
137. arrier phase shifts Remote command SOURce hw BB GBAS MSET MTYPe on page 138 Sample Rate Variation Sample Rate Info Sets displays the used sample rate variation You can set the sample rate value in the Filter Clipping Settings dialog This setting can be used for testing the symbol rate tolerance The RTCA DO 246D specification defines a symbol rate of the GBAS data broadcast as 10500 symbols sec Because of the used modulation see Modulation Type each symbol defines one of eight states This results in a nominal bit rate of 31500 bits s Remote command SOURce lt hw gt BB GBAS MSET SRATe on page 138 SOURce hw BB GBAS SRIN o 116 4 5 3 Clipping Settings Provided are the following settings Clipping State Switches baseband clipping on and off Global Settings Baseband clipping is a very simple and effective way of reducing the crest factor of the signal Since clipping is done prior to filtering the procedure does not influence the spectrum The EVM however increases Remote command SOURce lt hw gt BB GBAS CLIPping STATe on 137 Clipping Level Sets the limit for clipping This value indicates at what point the signal is clipped It is specified as a percentage relative to the highest level 100 indicates that clipping does not take place Remote command SOURce lt hw gt BB GBAS CLIPping LEVel on 137 Clipping Mode Selec
138. ation mode The mode determines the signal type that is simu lated The exact timing of the signal for each mode is determined by the selected X or Y channel The timing and shape of the pulses can be freely selected By default these values are set according to the standard Interrogation The interrogation signal of the airborne transmitter is simulated Reply The reply signal of the ground based transponder is simulated The trigger is automatically set to external and the default trigger delay either to 50 us channel X or 56 us channel Y depending on the selected channel The interval between the pulse pairs can be set to a fixed value rep etition rate or to random generation pulse squitter Remote command SOURce lt hw gt BB DME MODE on page 164 System Configuration Accesses the System Configuration dialog for configuration of the interrogation or reply modulation see chapter 7 2 System Configuration Settings on page 72 Trigger Marker Accesses the dialog for selecting the trigger source for configuring the marker signals and for setting the time delay of an external trigger signal see chapter 8 1 Trigger Settings on page 85 The currently selected trigger source is displayed to the right of the button Execute Trigger Executes trigger manually You can execute the trigger manually only if you select an internal trigger source and a trigger mode other than Auto Remote command SOUR
139. broadcast lateral alert limit Parameters lt Tlas gt float Range 0 to 2 54 Increment 0 01 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Lateral Alert Limit Status on page 41 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig TVAS lt Tvas gt Sets the value of the broadcast vertical alert limit GBAS Settings Parameters lt Tvas gt float Range 0 to 127 Increment 0 5 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Vertical Alert Limit Status on page 41 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint PREDefined CATalog SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint USER CATalog Queries the names of the existing user defined predefined waypoint files Per default the instrument stores user defined files in the var user directory Use the command MMEM CDIRectory to change the default directory to the currently used one Only files with extension t xt are listed Example see example Generating a GBAS signal containing message type 4 on page 112 Usage Query only Manual operation See Waypoint File on page 40 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint PREDefined FILE lt WpFile gt Loads the selected predeifned file extension txt Setting parameters lt WpFile gt string Only
140. ce lt hw gt SOURce lt hw gt SOURce lt hw gt SOURce lt hw gt B GBAS TRIGger EXECute on page 183 B ILS TRIGger EXECute on page 183 B VOR TRIGger EXECute on page 183 B DME TRIGger EXECute on page 183 tU UU UU System Configuration Settings Arm For trigger modes Armed Auto and Armed Retrigger stops the signal generation until subsequent trigger event occurs Remote command SOURce lt hw gt BB GBAS TRIGger ARM EXECute 182 SOURce lt hw gt BB ILS TRIGger ARM EXECute page 182 SOURce lt hw gt BB VOR TRIGger ARM EXECute 182 SOURce lt hw gt BB DME TRIGger ARM EXECute on page 182 Clock Accesses the dialog for selecting the clock source see chapter 8 4 Clock Settings on page 94 7 2 System Configuration Settings To access this dialog 1 Select DME gt DME Mode gt Interrogation 2 Select System Configuration 7 2 4 Signal Settings The dialog comprises the settings necessary to configure the DME modulation signal ignal Settings Mode X Channel E 1 025 000 000 o0 GHz 1 025 000 000 00 GHz 0 00 NM 2 700 2 2700 100 7 Signal settings for DME Mode gt Interrogation Ext Triggered 50 00 ps Signal settings for DME Mode gt Reply Channel Mode Selects
141. ch spectrum mask requirements Remote command SOURce lt hw gt BB GBAS FILTer PARameter LPASs on page 136 SOURce lt hw gt BB GBAS FILTer PARameter LPASSEVM 136 Cut Off Frequency Shift available for filter parameter Cosine only The cut off frequency is a filter characteristic that defines the frequency at the 3 dB down point The Cut Off Frequency Shift affects this frequency in the way that the fil ter flanks are moved and the transition band increases by Cut Off Frequency Shift Sample Rate e A Cut Off Frequency Shift 1 results in a very narrow band filter Increasing the value up to 1 makes the filter more broad band e By Cut Off Frequency Shift 0 the 3 dB point is at the frequency determined by the half of the selected Sample Rate Tip Use this parameter to adjust the cut off frequency and reach spectrum mask requirements Filter Clipping Settings m Cut Off Frequency Shift 1 5 Cut Off Frequency Shift 0 Cut Off Frequency Shift 1 2 3 f H Cut Off Frequency Fig 4 3 Example of the frequency response of a filter with different Cut Off Frequency Shift Remote command SOURce lt hw gt BB GBAS FILTer PARameter COSine COFS page 136 4 5 2 Modulation Settings Provided are the following settings Modulation Type According to the GBAS standard symbols are converted to differentially encoded 8 phase shift keyed D8PSK c
142. chema is set to STD the length of the dash 3xdot symbol space dot and letter space 3xdot is also determined by this entry Parameters lt Dot gt float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Dot Length on page 62 SOURce lt hw gt BB ILS MBEacon COMid FREQuency Frequency Sets the frequency of the COM ID signal Parameters lt Frequency gt float Range 0 1 to 20E3 Increment 0 01 RST 1020 Manual operation See Frequency on page 61 SOURce lt hw gt BB ILS MBEacon COMid LETTer Letter Sets the length of a letter space in seconds Available only if SOURce hw BB ILS MBEacon COMid TSCHema is set to USER ILS Settings Parameters lt Letter gt float Range 0 05 to 1 Increment 1E 4 RST 0 3 Manual operation See Letter Space on page 62 SOURce lt hw gt BB ILS MBEacon COMid PERiod Period Sets the period of the COM ID signal in seconds Parameters Period float Range 0 to 120 Increment 1E 3 RST 9 Manual operation See Period page 61 SOURce lt hw gt BB ILS MBEacon COMid SYMBol Symbol Sets the length of the symbol space in seconds Available only if SOURce lt hw gt BB ILS MBEacon COMid TSCHema is set to USER Parameters Symbol float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Symbol Space on 62 SOURce lt hw gt BB ILS MBEacon COM
143. configure the COM ID settings availa ble for the VOR modulation 10 0 3 Y State Enables disables an additional communication identification COM ID signal Remote command SOURce lt hw gt BB VOR COMid STATe 163 Show Hide Details Reveals the detailed setting options for the COM ID signal Once the details are revealed the labeling on the button changes to Hide Details Use this to hide the detailed setting options display again System Configuration Settings Code Sets the coding of the COM ID signal by the international short name of the airport e g MUC for the Munich airport If no coding is entered the COM ID tone is sent uncoded key down Remote command SOURce lt hw gt BB VOR COMid CODE on page 161 Frequency Sets the frequency of the COM ID signal Remote command SOURce lt hw gt BB VOR COMid FREQuency 162 Period Sets the period of the COM ID signal in seconds Remote command SOURce hw BB VOR COMid PERiod on page 163 Depth Sets the AM modulation depth of the COM ID signal Note The sum of Subcarrier depth VAR depth and COM ID gt Depth must be smaller than 100 96 Remote command SOURce lt hw gt BB VOR COMid on page 162 Time Schema Sets the time schema for the COM ID signal e Standard The set dot length determines the length of the dash the symbol space
144. d as follows e DDM Polarity gt 90 Hz 150 Hz default setting DDM AM 90 Hz AM 150 Hz e DDM Polarity gt 150 Hz 90 Hz DDM AM 150 Hz 90 Hz A variation of the DDM value automatically leads to a variation of the value of the instrument current and the DDM value in dB Remote command SOURce hw BB ILS GS GSLope DDM PCT on page 141 DDM SDM Coupling Selects if the DDM value is fixed or is changed with a change of sum of modulation depths SDM see below Fixed DDM The absolute DDM values stays constant when the SDM is changed Coupled to SDM The absolute DDM values changes when the SDM is changed The DDM value expressed in dB stays constant Remote command SOURce lt hw gt BB ILS GS GSLope DDM COUPling on page 140 System Configuration Settings Localizer To access this dialog 1 Select ILS gt ILS Component gt Localizer 2 Select ILS gt System Configuration System Configuration Settings Localizer 5 3 1 Signal Settings The dialog comprises the settings necessary to configure the ILS localizer ILS LOC modulation signal User Defined 108 100 000 000 MHz 90 Hz 150 Hz hd 0 00 deg Sets the mode for the carrier frequency of the signal User Defined Activates user defined variation of the carrier frequency ICAO Activates variation in predefined steps according to the standardized
145. dards Trigger Marker Clock Settings pes poc ee ee 8 3 Fix marker delay to current range Restricts the marker delay setting range to the dynamic range Remote command SOURce lt hw gt BB GBAS TRIGger OUTPut DELay FIXed on page 190 Marker Settings DME The marker settings are available only for options R amp S SMBV K111 K153 DME This dialog provides access to the settings necessary to select and configure the marker output signal like the marker mode or marker delay settings Marker Mode Marker 1 First Pulse 50 Level Marker Width 10 chips 0 05 ps Marker Delay 0 chips 0 05 ps Marker 2 Received Pulse Marker Width 10 chips 0 05 us 7 Marker Delay 0 chips 0 05 ps Processing Delay 0 00 us 5 Selects a marker signal for the associated marker channel The settings used to select the marker mode defining the shape and periodicity of the markers The con tents of the dialog change with the selected marker mode First Pulse Start Pulse Start Sets the marker at the begining of the pulse Operating Manual 1176 8600 02 05 92 Avionics Standards Trigger Marker Clock Settings First Pulse 50 Level Pulse 50 Level Sets the markers to the point where the level of the pulse has reached 50 Received Pulse Sets Marker 2 on the received pulse Remote command SOURce lt hw gt BB DME MARK
146. datory message types This implementation supports all required message types Refer totable 3 1 for information on where to find the related settings Table 3 1 Overview of the required message types Message Type Description Related settings 1 Differential Corrections chapter 4 4 3 Differential GNSS Parame 100 sec smoothed pseudor ters on page 41 anges 2 GBAS Related Data chapter 4 4 1 Message Type 2 Parame ters on page 31 4 Final Approach Segment FAS Data Set on page 35 FAS Construction Data Terminal Area Path TAP TAP Data Set on page 39 Construction Data 11 Differential Corrections chapter 4 4 3 Differential GNSS Parame 30 sec smoothed pseudor ters on page 41 anges For step by step instruction refer to chapter 9 4 Generating a GBAS Signal for Mes sage Format Detection on page 100 The Instrument Landing System ILS If your task requires verifications and measurements of GBAS installations on the ground and in the air consider to use the R amp S EVS300 ILS VOR analyzer This instrument is a portable level and modulation analyzer If equipped with the required options it is capable to performe VHF data link measurements on GBAS as well as measurements on conventional ILS ground systems and VOR systems Rohde amp Schwarz solution for radio analysis 3 2 The Instrument Landing System ILS The instrument landing system is used during the landing appr
147. dre ae ttn Lippe rry ue 191 ESOURCe lt hw gt BBILS CLOCK MODE prit torpe nee thu x ruit 191 SOUBceshw rBEVORIDEOCKMODE boni eue 191 SOURce hw BB DME CLOCK MUL nennt nennen 191 SOURce hw BB GBAS CLOCK MULTiplier ecciesie 191 SOURGe hwerFBBIES CLOGCIEMULTIplIer rotate 192 ESOURce shiw FBB VOR GEOGEKMULTplier 192 SOURGeshw rBB IDME CEOCKSQOUEGO 1 192 SOURGe hw EBBIGBAS OLOCKSODR GA 2 2 192 SOURceshw EBBHAES CLOGIKSOUR CGe cct 192 ESOURce hw EBB IVOR OEOGCIKSO UNRG 192 lt gt 192 5 lt gt 192 lt gt 9 192 lt gt 8 192 lt gt
148. e GBAS Differential File message type 1 containing ephemeris as well as ionospheric corrections Select GBAS gt State gt On Select RF gt State gt On In the instrument 1 trigger the signal generation At the multi mode receiver measure the resulting bias Is the augmentation improved The multi mode receiver should calculate the plane position with ideally less error than in the case of a standalone GPS The differential GPS correction parameters transmited by the VHF link message types 1 and 11 enhance the navigation algorithm and should lead to a better posi tion fix Possible extensions With this test setup you can simulated different conditions and perform a number of measurement like e Use the AWGN generator of the R amp S SMBV and superimpose noise on the gener ated GBAS signal e Simulate the GNSS signal in multipath environment e Use the ephemeris parameters in the navigation message to simulate satellite fail ure e Simulate the effects caused by obscuration and multipath on the GNSS signal like reflections and absorption from different surfaces Use the clock correction parameters to simulate satellite clock errors Change the ionospheric parameters the atmospheric message The full range of GBAS test include flight testing Consider a test setup with two R amp S SMBVs where the first R amp S SMBV simulates GBAS signal with message type 4 corresponding to the
149. e Receiver Tests GBAS airborne receivers are based on the multi mode receiver MMR technology A multi mode receiver consists of a GPS antenna a VHF antenna and processing equip ment and supports simultaneous signal reception of different landing and precision navigation systems like GPS GBAS and ILS In this example we use two R amp S SMBV to generate a GPS signal and a GBAS signal for MMR testing The aim of this GBAS test is to measure the resulting improved aug mentation Generating a GPS GBAS Signal for Multi Mode Receiver Tests Overview of required relevant options Instrument 1 option GPS R amp S SMBV K44 GNSS global option R amp S SMBV K91 Extension to 12 Satellites generation of more than 12 satellites requires additionally GNSS global option R amp S SMBV K96 Extension to 24 Satellites GNSS Extension for Obscuration Simulation and Automatic Multipath R amp S SMBV K101 Instrument 2 option GBAS R amp S SMBV K111 Connecting and configuring the two R amp S SMBV instruments for synchronous signal generation In this following only the related settings are discussed For detailed information on cabling and required configuration refer to R amp S SMBV Operating Manual section Synchronous Signal Generation e Application Note 1GP84 Time Synchronous Signals with Multiple R amp S SMBV100A Vector Signal Generators Connect the instruments to work in master slave mode se
150. e carrier frequency if SOURce lt hw gt BB ILS LOCalizer FREQuency MODE is set to USER Parameters CarrierFreq float Range 100 to 6E9 Increment 0 01 RST 108 1e6 Manual operation See Carrier Frequency on page 54 SOURce hw BB ILS LOCalizer FREQuency MODE Mode Sets the carrier frequency mode for the ILS LOC modulation signal Parameters Mode USER ICAO RST USER Manual operation See Carrier Frequency Mode on page 49 SOURce hw BB ILS LOCalizer ICAO CHANnel Channel Selects the ICAO channel i e the ILS LOC transmitting frequency The RF frequency is set to the value selected here The ICAO channel settings for ILS GS and ILS LOC are coupled Parameters Channel CH18X CH18Y CH20X CH20Y CH22X CH22Y CH24X CH24Y CH26X CH26Y CH28X CH28Y CH30X CH30Y CH32X CH32Y CH34X CH34Y CH36X CH36Y CH38X CH38Y CH40X CH40Y CH42X CH42Y CH44X CH44Y CH46X CH46Y CH48X CH48Y CH50X CH50Y CH52X CH52Y CH54X CH54Y CH56X CH56Y RST CH18X Manual operation See Channel on page 50 SOURce hw BB ILS LOCalizer LLOBe FREQuency Frequency Sets the modulation frequency of the antenna lobe arranged at the bottom viewed from the air plane for the ILS LOC modulation signal Parameters Frequency float Range 60 to 120 Increment 0 03 RST 90 ILS Settings Manual operation See Left Frequency on
151. e figure 9 1 Generating a GPS and GBAS Signal for Multi Mode Receiver Tests Fig 9 1 Example of test setup The required steps are beyong the scope of this description For details see the proposed reference descriptions The first R amp S SMBV provides the second one with its system clock trigger and fre quency reference signals Generating a GPS signal To configure the instrument 1 to generate a GPS signal with 12 or more satellites fol low these general guidelines For details see R amp S SMBV Satellite Navigation operating manual 1 2 3 4 Select Baseband gt GPS Select GPS gt Simulation Mode gt Auto Localization Select User Environment gt Vehicle Type gt Aircraft Select Localization Data select Waypoint Attitude File and load a suitable xtd file describing the movement of airplane the DUT is installed in Select GPS Navigation Data Almanac and select a suitable file Generating a GPS a GBAS Signal for Multi Mode Receiver Tests Open the GPS gt Real Time 5 to observe the current satellites constella tion 7 Select GPS gt State gt On 8 Select RF gt State gt On Generating a GBAS signal To configure the instrument 2 to generate a GBAS signal follow the steps described To generate a GBAS signal for testing of correct message detection on page 100 1 Configure the required reference location 2 Select suitabl
152. e geographic north and the connection line from beacon to airplane TO The bearing angle is measured between the geographic north and the connection line from airplane to beacon RST FROM Manual operation See Direction on page 67 10 4 3 VOR COMIID Settings ESOURCe hw gt BBVOR COMIC CODE erro beet teet 161 ESOURGE lt hwe BB VOR COMIT DASE ces inte th 161 ESOURCe lt hw gt BB VOR COMIG DEP UM 162 BB VOR COMIDO pru eot cette 162 SOURce lt hw gt BB VOR COMId FREQUENCY 162 162 5 lt gt 0 nnne ener 163 FSOURce lt shw gt BB VOR COMI SYMB 163 SOURce hw E BB VOR COMid TSCHema 163 SOURce hw BB VOR COMId STATe eccentric 163 SOURce lt hw gt BB VOR COMid CODE Code Sets the coding of the COM ID signal by the international short name of the airport e g MUC for the Munich airport Parameters Code string Manual operation See Code on page 68 SOURce lt hw gt BB VOR COMid DASH Dash Sets the length of a morse dash in seconds Available only if SOURce hw BB VOR COMid TSCHema is set to USER Parameters Dash float Range 0
153. e marker signal at the marker outputs relative to the signal generation start Parameters lt Delay gt integer Range 0 to 127 RST 0 Manual operation See Marker Delay on page 93 Marker Settings GBAS SOURce lt hw gt BB DME MARKer lt ch gt MODE Mode Sets the mode for the selected marker Parameters lt Mode gt FPSTart FP50P PSTart PRECeived FPSTart first pulse start FP50 first pulse 50 PSTart pulse start P50 pulse 50 PRECeived received pulse RST PSTart Manual operation See Marker x on page 92 SOURce lt hw gt BB DME MARKer lt ch gt PDELay Queries the marker processing delay internally measured value This command is avaliable only for Marker 2 Return values lt ProcessedDelay gt float Range 0 to 1 Increment 10E 9 RST 0 Usage Query only Manual operation See Processing Delay on page 94 SOURce lt hw gt BB DME MARKer lt ch gt WIDTh Width Sets the width of the corresponding marker in chips 0 05us Parameters Width integer Range 1 to 127 RST 10 Manual operation See Marker Width on page 93 10 8 Marker Settings GBAS Provided are the following commands SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt MODE Mode Defines the signal for the selected marker output Marker Settings GBAS Parameters lt Mode gt PULSe RESTart PATTern RATio TRIGger PPS RST PPS Example see example Adjusting cl
154. e output signal with the frequencymo dulated FM carrier 9960Hz of the VOR signal The modulation depth of the 30 Hz signal can be set with SOURce lt hw gt BB VOR SUBCarrier DEPTh The frequency deviation can be set with SOURce hw BB VOR REFerence DEViation RST NORM Manual operation See Mode on page 66 SOURce lt hw gt BB VOR PRESet Sets all parameters to their default values RST values specified for the commands SOURce lt hw gt BB VOR STATe State Activates deactivates the VOR modulation Parameters lt State gt 0 1 OFF ON RST 0 VOR System Configuration Settings SOURCe lt hw gt BBiVOR FREQUCRGCY 158 lt gt 41 4 ener rerit 158 6 VOR 158 5 lt gt 159 ESOURce shw EBB IVOR SUBCartrer DEPT uiui teer ture ita rne esed nc auras 159 5 lt gt 160 SOURce hw E BBIVORIVAR PREQUGRGY 160 VOR Settings ESOURce lt hw gt VOR VAR DEP ra e e
155. e signal of the left lobe 90 Hz and the right lobe 150 Hz The DDM value in percent is calculated to formula e DDM Polarity gt 90 Hz 150 Hz default setting DDM AM 90 Hz AM 150 Hz e DDM Polarity gt 150 Hz 90 Hz DDM AM 150 Hz AM 90 Hz A variation of the DDM value automatically leads to a variation of the DDM value in dB and the value of the instrument current Remote command SOURce lt hw gt BB ILS LOCalizer PCT on page 149 DDM SDM Coupling Selects if the DDM value is fixed or is changed with a change of sum of modulation depths SDM see below Fixed DDM The absolute DDM values stays constant when the SDM is changed System Configuration Settings Localizer Coupled to The absolute DDM values changes when the SDM is changed The SDM DDM value expressed in dB stays constant Remote command SOURce lt hw gt BB ILS LOCalizer DDM COUPling on page 147 5 3 3 Settings The dialog comprises the settings necessary to configure the COM ID settings availa ble for the ILS LOC modulation 1 020 ofktz z State Enables disables an additional communication identification COM ID signal Remote command SOURce lt hw gt BB ILS LOCalizer COMid STATe on 147 Show Hide Details Reveals the detailed setting options for the COM ID signal Once the details are revealed the labeling on the button changes to Hide Details
156. e time domain sched uling of the VDB transmitters on the selected frequency The transmisson is based on TDMA and hence on one particular frequency you can allocate only one VDB transmitter per one time slot TS For more information see Broadcast timing structure on page 15 TSO TS7 Enables the VDB in the corresponding time slot TS Remote command SOURce lt hw gt BB GBAS VDB lt ch gt SCH TS lt st gt STATe on page 119 Pow dB Sets the relative power of a VDB per time slot TS See Power settings on page 17 for more information Remote command SOURce lt hw gt BB GBAS VDB lt ch gt SCH TS lt st gt POWer on page 119 4 4 Message Configuration Settings To access this dialog 1 Select GBAS gt Main dialog gt VDB Transmitters Configuration 2 Select VDB Transmitters Configuration VDB Data Real GBAS Data 3 Select Data Config Msg Config Message Type 2 On Message Type 4 On Differential GNSS On Message Configuration Settings The dialog comprises the settings necessary to configure the messages of each of the VDB transmitters 4 Select Message Configuration gt Message Type 2 4 gt On to enable configuration of the particular message 5 Select Message Configuration gt Differential GNSS gt On to enable the load of a file containing differential GBAS settings 4 4 1 Message Type 2 Parameters The dialog comprises the parameters of messag
157. e type 2 according to RTCA DO 246D Table 2 14 Message type 2 carries information on the exact location for which the are referenced as well as other GBAS related parameters BE GBAS YDB 1 Message Configuration mife es Message Type 2 Message Type 2 parameters Ground Station Reference Receivers ref receivers 7 Ground Station Accuracy Designator Ground Station Continuity Integrity Designator Local Magnetic Variation 1000 Degree Sigma_vert_iono_gradient 0000 0000 gt Refractivity Index Scale Height Refractivity Uncertainty 0 Reference Location Configuration Position Format DEG MIN SEC Altitude Latitude Longitude Message Type 4 On Differential GNSS On Provided are the following settings Message Type 2 Enables you to configure the parameters of message type 2 according to RTCA DO 246D Table 2 14 Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig MT2State 130 Message Configuration Settings Ground Station Reference Receivers Selects the number of the GNSS reference receivers installed in this system Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig GSRReceivers on 126 Ground Station Accuracy Designator Selects the letter designator indicating the minimum signal in space accuracy perform ance provided by the ground station Remote command SOURce lt
158. each other the R amp S SMBV has to start the reply pulse before the 50us reply delay period has elapsed Using the Normalize Setup calibration an adjustment factor t is measured This adjustment factor is taken into account when generating the reply pulses The signal output is started earlier to compensate for the trigger point of the sensor This calibra tion works best when both stations use the same pulse shape with the same timing characteristics Adjustment Factor t gt Interrogation Reply Pulse Pulse Pair Adjustment Factor t Start of Pulse Output 1st Sample Fig 7 3 Normalize setup Normalize Setup Available only if an R amp S NRP Z81 power sensor is connected to the R amp S SMBV Performs a normalization of the test setup The delay due to the test setup is measured and subsequently considered in the reply measurements Remote command SOURce lt hw gt BB DME ANALysis NORMalize 174 Power Sensor Adjustment Factor Displays the power sensor adjustment factor determined during a normalization of the setup Remote command SOURce lt hw gt BB DME ANALysis PSAFactor page 177 System Configuration Settings Internal Adjustment Factor Displays the internal adjustment factor the mathematically calculated value of the time when the pulse reaches its 50 level Remote command SOURce lt hw g
159. eduling 1 dialog enable TS1 gt State gt On relative power TS1 gt Pow dB 0 dB b TS3 gt State gt On relative power TS3 gt Pow dB 15 dB TS2 TS4 TS5 TS6 TS7 TS8 gt State gt Off d TS2 TS4 TS5 TS6 TS7 TS8 gt Pow dB inf 8 Select GBAS gt State gt On 9 Select RF State On The R amp S SMBV generates a single frequency signal the VDB transmission is allo cated on two time slots 51 and with different relative power see also exam ple Calculating the power per time slot in Gated Power Mode gt On on page 18 The signal is generated at physical layer and the bursts carry arbitrary data PN9 10 In the R amp S SMBV vary the relative power of TS3 and measure the received power level at the VDB receiver For example to simulate conditions of weak signal reduce the relative power down to 60 dBm 11 Check whether the received signal is correcty decodded The sensitvity level of the receiver is the level at that the receiver does not detect any signal on TS3 9 3 Generating a GBAS Signal for VDB Slot Detection The goal of VDB slot detection tests is to prove correct detection of all time slots from which each VDB message was received To generate a GBAS signal for slot detection tests 1 Press PRESET to set the R amp S SMBV to a definite state 2 Select Staus Bar gt Frequency 110 MHz 3 Select Baseband gt Avionics gt GBAS and select Multiple
160. ee naa ere ettet 160 FSOURCe lt hw gt BB VOR BANGE 2t loe naut 160 5 lt gt 1 1 1 1244 44 161 SOURce lt hw gt BB VOR FREQuency lt CarrierFreq gt Sets the carrier frequency of the signal if SOURce hw VOR FREQuency MODE is set to USER Parameters lt CarrierFreq gt float Range 100E3 to 6E9 Increment 0 01 RST 108e6 Manual operation See Carrier Frequency on page 65 SOURce lt hw gt BB VOR FREQuency MODE Mode Sets the frequency mode for the VOR modulation signal Parameters Mode USER ICAO RST USER Manual operation See Carrier Frequency Mode on page 65 SOURce lt hw gt BB VOR ICAO CHANnel Channel Sets the ICAO channel i e the VOR transmitting frequency if SOURce hw BB VOR is set to CAO The RF frequency is set to the value selected here Parameters lt Channel gt Manual operation VOR Settings CH17X CH17Y CH19X CH19Y 21 CH21Y CH23X CH23Y 25 CH25Y CH27X CH27Y 29 CH29Y CH31X CH31Y CH33Y CH35X CH35Y CH37X CH37Y CH39X CH39Y CH41X CH41Y CH43Y 5 CH45Y CH47X CH47Y CH49X CH49Y CH51X CH51Y CH53X CH53Y CH55X CH55Y CH57X CH57Y
161. ematically calculated value of the time when the pulse reaches its 50 level Query the internal adjustment factor with SOURce lt hw gt BB DME ANALysis IAFactor PSENsor The during a normalization setup measured adjustment factor Query the power sensor adjustment factor with SOURce lt hw gt BB DME ANALysis PSAFactor RST INTernal Manual operation See Used Adjustment Factor on page 84 DME COMIID Settings LSOURce lt shw gt BB DME ID CODE 178 ESOURCe shwP BB DME ID DASH tone iare aA 178 300 gt err 179 SOURceshw EBB DMEB EETTer 179 ESOURce shw t DME ID PPPESTAT 6 179 SOURceshw rBBIDME ID BPBS fionar 180 SOURCES W BR ID PEROU 180 SOURCe lt hw gt BB DMEAD PRES tic 180 ESOURceshw TBBIDME3DIRAEE ctia ka 180 SOURce lt hw gt BBIDMEND SYMBOl 180 SOURce hw EBBIDMEZJB TSGCH6m3a 2 22 2 181 FSOURCeshwWe STATE 181 SOURce lt hw gt BB DME ID CODE Code Sets the coding of the COM ID signal by the international short name of the airport e g MUC for the Munich airport Parameters Code string Manua
162. ement window tus SOURce lt hw gt BB DME ANALysis STATe on 176 Expected Reply Delay Sets the expected reply delay Remote command SOURce lt hw gt BB DME ANALysis GATE EDELay page 173 Gate Length Sets the gate length for the measurement window Remote command SOURce lt hw gt BB DME ANALysis GATE LENGth on 174 Measurement Time Sets the time for the measurement cycle Remote command SOURce lt hw gt BB DME ANALysis GATE COUNt on page 173 Peak Level Indicates the measured average peak level of all pulse pairs in a measurement cycle Remote command SOURce lt hw gt BB DHE ANALysis page 175 SOURce lt hw gt BB DME ANALysis POWer OK on page 175 Range Distance Indicates the measured average range distance of all valid pulse pairs in a measure ment cycle If there are no valid measurements available in the set measurement win dow invalid is indicated Remote command SOURce lt hw gt BB DME ANALysis RDIStance 176 System Configuration Settings Reply Delay Indicates the measured average reply delay of all valid pulse pairs measurement cycle If there are no valid measurements available in the set measurement window invalid is indicated Remote command SO0URce hw BB DME ANALysis TIME 176 SOURce hw BB D
163. ency channels The VHF data broadcast is defined for carrier frequencies within the range of 108 025 MHz to 117 975 MHz and carrier spacing of 25 0 kHz The R amp S SMBV supports the whole requred frequency range you can modulate the VHF signal on any one of these carrier frequencies Moreover this firmware option supports two frequency allocation modes a single frequency and a multiple frequency transmission Wenn you chose the frequency allocation mode consider the follwoing Single frequency mode is suitable to simulate the signal of up to eight VDB trans mitters modulated on the same carrier frequency The signal calculation is fast and optimized for time sensitive applications This mode is also the choice if the DUT or the analyzing equipment supports single band decoding Multiple frequency channels mode is suitable to allocate the VDB transmitters to up to 8 out of 11 adjacent frequency channels The generated signal is optimized for reduced adjacent and co channel interfer ence to neighboring systems The setting time however increase significantly compared to the single frequency mode Center frequency MHz 109 875 109 900 109 925 109 950 109 975 110 000 110 025 110 050 110 075 110 100 110 125 25 4 3 2 A 0 1 2 3 4 5 Frequency Number The frequency related settings are split into several dialogs To allocate the VDB in the frequency domain set the central frequency Status Bar gt Frequency define the fre
164. ent 100E 9 RST 10E 6 Manual operation See Gate Length on 78 SOURce lt hw gt BB DME ANALysis GATE TIME lt MeasurementTime gt Sets the DME analysis measurement time Parameters lt MeasurementTime gt float Range 0 1 to 20 Increment 0 1 RST 1 SOURce lt hw gt BB DME ANALysis NORMalize Performs a normalization of the test setup The delay due to the test setup is measured and subsequently considered in the reply measurements DME Settings Return values lt Normalize gt 0 1 OFF Query only Manual operation See Normalize Setup on page 83 SOURce lt hw gt BB DME ANALysis POWer Queries the measured average peak level of all valid pulse pairs in a measurement cycle Return values lt Power gt float Range 200 to 200 Increment 0 01 RST 0 Usage Query only Manual operation See Peak Level on page 78 SOURce lt hw gt BB DME ANALysis POWer 0K Queries if there are peak level measurement values available in the set measurement window Return values lt Ok gt 0 1 OFF RST 1 Usage Query only Manual operation See Peak Level on page 78 SOURce lt hw gt BB DME ANALysis PRRate Queries the measured mean pulse repetition rate of the DME ground station All received pulses of the DME ground station are considered Return values lt Rate gt float Range 0 to 10000 Increment 0 1 RST
165. eply delay DME 15 ei eaa 78 Expected Reply delay analysis DME IDterrogatlor 78 PAS data ET Mee PER 35 FAS lateral alert limit approach status 39 FAS RPDS or continuation link Pes FAS vertical alert limit approach status 39 FASLAL nie 39 FASVAL 39 Filter Parameter Filter Type Filtering Clipping Settings 42 Final approach segment FAS s 39 Fix marker delay to current range 91 Flight Path Alignment Point FPAP 38 Fly ILS Glide slope ILS Localizer Frequency IES EOC ANZ OR ered EP 58 ILS Marker BEACONS n t rhe 61 VOR em 68 Frequency venere 28 Frequency single multiple Advantages IR 15 G Gate length rcr 78 Gate length analysis interrogatiort 78 GBAS differential file 42 Settings vastis 4 30 GBAS 2 28 32 Generate Waveform Glide rrr rrr rrr mr es Global Trigger Clock Settings
166. er lt ch gt MODE on page 188 Marker Width Sets the width of the corresponding marker Remote command SOURce lt hw gt BB DME MARKer lt ch gt WIDTh on page 188 Marker Delay Defines the delay between the marker signal at the marker outputs relative to the sig nal generation start Remote command SOURce lt hw gt BB DME MARKer ch DELay 187 Operating Manual 1176 8600 02 05 93 Clock Settings Processing Delay Displays the processing delay the delay between the position of the markers for the interrogation pulse and the corresponding marker positions for the reply pulse when Marker 2 is set to Received Pulse Remote command SOURce lt hw gt BB DME MARKer lt ch gt PDELay on page 188 8 4 Clock Settings To access this dialog select GBAS gt Clock ILS gt Clock VOR gt Clock DME gt Clock This dialog provides access to the settings necessary to select and configure the clock signal like the clock source and clock mode Clock Settings Multiple Sample j 4 Measured External Clock 6 for R amp S SMBV only Selects the synchronization mode This parameter is used to enable generation of very precise synchronous signals of several connected R amp S SMBVs Note If several instruments are connected the connecting cables from the master instrument to the slave one and between each two consec
167. es Range 0 to 90 RST 0 lt LatitudeMin gt integer Defines the latitude minutes Range 0 to 59 RST 0 GBAS Settings lt LatitudeSec gt float Defines the latitude seconds Range 0 to 59 999 Increment 0 001 RST 0 lt LatitudeDir gt NORTh SOUTh Defines the latitude direction RST NORT Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See L TP FTP Location Configuration page 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LFLocation HEIGht lt LfHeight gt Sets the LTP FTP height Parameters lt LfHeight gt float Range 512 to 6041 5 Increment 0 1 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Plan View Profile View Parameters on page 36 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LMVariation lt Lmv gt Sets the local magnetic variation Parameters lt Lmv gt float A positive value represents an east variation clockwise from true north Range 180 to 180 Increment 0 01 RST 0 Default unit deg Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Local Magnetic Variation on page 32 GBAS Settings SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LOCation COORdinates DECimal lt Longitude gt lt Latitude gt lt Altitude gt Defines
168. f the Morse code dash length symbol space and letter space For selected user time scheme all length parameters of the code can be set independently If no coding is entered the COM ID tone is sent uncoded key down The following values are default values o Adot hasa tone duration of 100 ms Adash has a tone duration of 300ms e The time between two tones is 100ms The time between two letters is 300ms After each word a word space is entered The word repetition rate is 7 words minute As the word length can vary between 900 ms and 4500 ms the word space between the words varies accordingly Example ID code The word length 300 100 300 300 100 100 100 100 300 300 300 100 100 100 300 100 1 00 3100 ms Table 1 1 Morse Code Letter Morse Code Letter Morse Code A N B E lt lt ICAO Channel Frequencies Morse Code Letter Morse Code Letter A 2 ICAO Channel Frequencies 2 1 the following chapter the standardized transmitting frequencies for the ILS DME VOR standards are listed ILS Channel Frequencies The individual values in the table are Ch No ICAO channel number LOC Freq ILS Localizer transmitting frequency MHz GS Freq ILS GS frequency MHz Table 1 2 Standardized ILS GS and ILS LOC transmitting frequencies MHz
169. ferential GBAS information The differential GBAS file must have the extension rs gbas and file format as described in chapter A 4 2 GBAS Differential File Format on page 203 Use the Predefined Files fuction to load a predefined file Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG PREDefined CATalog on page 123 SOURce hw BB GBAS VDB ch MCON ig DG USER CATalog on page 123 SOURce hw BB GBAS VDB lt ch gt MCONfig DG PREDefined FILE on page 123 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG USER FILE on page 123 SOURce hw BB GBAS VDB ch MCON ig DG FILE on page 124 Predefined Files Access a list with predefined files 4 5 Filter Clipping Settings To access this dialog 1 Select Main dialog Multiple Frequency Channels Off Filter Clipping Settings 2 Select Main dialog gt Filter Clipping Settings GBAS Filter Clipping Settings Modulation Settings Modulation Type D8PSK Sample Rate Variation 10 500 000 kHz Clipping On 100 Vector li jql S The dialog comprises the settings necessary to configure the baseband filter and to enable clipping as well as information on the applied modulation type and sam ple rate 4 5 1 Filter Settings Selection and configuration of baseband filter is enabled in single freqency mode i e Multi
170. float Defines the latitude seconds Range 0 to 59 999 Increment 0 001 RST 0 lt LatitudeDir gt NORTh SOUTh Defines the latitude direction RST NORT Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Delta FPAP Location Configuration page 38 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG STATe lt DiffGnssState gt Enables the use of differential GNSS data Parameters lt DiffGnssState gt 0 1 OFF ON RST 0 Example see example Generating a GBAS signal for message format detection on page 111 GBAS Settings Manual operation See Differential GNSS on page 42 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG PREDefined CATalog SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG USER CATalog Queries the names of the existing user defined predefined GBAS differential files Per default the instrument stores user defined files in the var user directory Use the command MMEM CDIRectory to change the default directory to the currently used one Only files with extension rs_gbas are listed Example see example Generating a GBAS signal for message format detection on page 111 Usage Query only Manual operation See Differential File on page 42 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DG PREDefined FILE Filename Loads the selected predeifned file extension xs Setting
171. for 60 us dead time to ensure that it does not trigger again to its own transmitted reply The receiver is there fore not ready to process new interrogation pulses until the reply double pulse has been fully transmitted All pulse interrogations that are received at the DME ground sta tion during the dead time are not answered This ensures that the gap between two consecutive pulses is always at least 60 us A reply pulse is sent after a defined delay time after a valid interrogation pulse has been received General Settings 4 GBAS Configuration and Settings gt access the GBAS settings select Baseband gt Avionics gt GBAS The remote commands required to define these settings are described in chapter 10 2 GBAS Settings on page 110 41 General Settings This dialog provides access to the default and the Save Recall settings as well as to the general settings of the option and the dialogs with further cinfiguration settings The dialog dispalys an indication of the selected key parameters GBAS ig xl Set To Default Save Recall Data List Management Generate Waveform File SCATI On Multiple Frequency Channels On Gated Power Mode On Sample Rate Variation 10 5 kHz VDB Transmitters Configuration Filter Clipping Settings Cosine Clip Off Trigger Marker Auto Clock Internal State Activates the standard and deactivates all the other digital s
172. ger modes Armed Auto and Armed Retrigger stops the signal generation until subsequent trigger event occurs Remote command SOURce lt hw gt BB GBAS TRIGger ARM EXECute 182 SOURce lt hw gt BB ILS TRIGger ARM EXECute page 182 SOURce lt hw gt BB VOR TRIGger ARM EXECute 182 SOURce lt hw gt BB DME TRIGger ARM EXECute on page 182 Clock Accesses the dialog for selecting the clock source see chapter 8 4 Clock Settings on page 94 5 2 System Configuration Settings Glide Slope To access this dialog 1 Select ILS Component Glide slope 2 Select ILS System Configuration 5 2 1 Signal Settings The dialog comprises the settings necessary to configure the ILS Glide slope ILS GS modulation signal User Defined 334 700 000 000 MHz 90 Hz 150 Hz 90 0 Hz 7 0 00 fdeg 7 Carrier Frequency Mode Sets the mode for the carrier frequency of the signal User Defined Activates user defined variation of the carrier frequency System Configuration Settings Glide Slope ICAO Activates variation in predefined steps according to the standardized ILS GS transmitting frequencies see chapter A 2 1 ILS Channel Frequencies on page 195 The start value can be selected in the field ICAO Channel below The selection is effective on both ILS modulations A change to mod ulation ILS GS automatically causes the RF frequency
173. gnal content of the ILS GS signal The modulation depth of the 90 Hz signal results from the settings of the parameters Sum of Depth SDM and DDM Depth according to e Fly gt Down AM 90 Hz 0 5 x SDM DDM x 100 e Fly gt Up AM 90 Hz 0 5 x SDM DDM x 100 System Configuration Settings Glide Slope 150 Hz Amplitude modulation of the output signal with the lower lobe signal component 150 Hz signal content of the ILS GS signal The modulation depth of the 150 Hz signal results from the settings of parameters Sum of Depth SDM and DDM Depth according to e Fly gt Down AM 150 Hz 0 5 x SDM DDM x 100 gt 150 Hz 0 5 x SDM DDM x 100 Remote command SOURce lt hw gt BB ILS GS GSLope MODE on 143 Up Frequency Sets the modulation frequency of the upper antenna lobe Remote command SOURce lt hw gt BB ILS GS GSLope ULOBe FREQuency on page 144 Down Frequency Sets the modulation frequency of the lower antenna lobe Remote command SOURce lt hw gt BB ILS GS GSLope LLOBe FREQuency page 143 Up Down Phase Sets the phase between the modulation signals of the upper and lower antenna lobe The zero crossing of the lower lobe 150 2 signal serves as a reference The angle refers to the period of the signal of the lower antenna lobe Remote command SOURce lt hw gt BB ILS GS GSLope PHASe on page 143
174. gnal for Receiver Sensitivity Tests 98 9 3 9 4 9 5 10 10 1 10 2 10 2 1 10 2 2 10 2 3 10 2 4 10 2 5 10 2 6 10 3 10 3 1 10 3 2 10 3 3 10 3 4 10 4 10 4 1 10 4 2 10 4 3 10 5 10 5 1 10 5 2 10 5 3 10 5 4 10 6 10 7 10 8 10 9 2 Generating GBAS Signal for VDB Slot 99 Generating GBAS Signal for Message Format Detection 100 Generating a GPS and a GBAS Signal for Multi Mode Receiver Tests 101 Remote Control 106 Primary Settings rene tima rait i kir cse 107 GBAS ESJdupoe 110 Programming nenne nenne 110 General Settings 115 VDB Transmission Configuration 116 Scheduling 119 Message 2 120 Filter Clipping Modulation 05 136 ILS 5 139 General 139 ILS Glide Slope nnne 139 IES Eocalizer Settings ise aeri cett 144 ILS Marker Beacon eene 1
175. gt BB GBAS TRIGger EXTernal SYNChronize OUTPut Output SOURce lt hw gt BB VOR TRIGger EXTernal SYNChronize OUTPut Output Enables disables output of the signal synchronous to the external trigger event Parameters lt Output gt 0 1 OFF The signal calculation starts simultaneously with the external trigger event but because of the instrument s processing time the first samples are cut off and no signal is outputted After elapsing of the internal processing time the output signal is syn chronous to the trigger event OFF The signal output begins after elapsing of the processing time and starts with sample 0 i e the complete signal is outputted This mode is recommended for triggering of short signal sequen ces with signal duration comparable with the processing time of the instrument RST 1 Avionics Standards Remote Control Commands _ ____ _ SSS eee eee eee Manual operation See Sync Output to External Trigger on page 87 SOURce lt hw gt BB DME TRIGger OBASeband DELay Delay SOURce lt hw gt BB GBAS TRIGger OBASeband DELay Delay SOURce lt hw gt BB ILS TRIGger OBASeband DELay Delay SOURce lt hw gt BB VOR TRIGger OBASeband DELay lt Delay gt The command specifies the trigger delay expressed as a number of samples for trig gering by the trigger signal from the second path Parameters lt Delay gt float Range 0 samples to 2432 1 samples Increment 1 sa
176. he screen such as ments dialog boxes menus options buttons and softkeys are enclosed by quotation marks KEYS Key names are written in capital letters File names commands File names commands coding samples and screen output are distin program code guished by their font Input Input to be entered by the user is displayed in italics Links Links that you can click are displayed in blue font References References to other parts of the documentation are enclosed by quota tion marks 1 4 Notes on Screenshots When describing the functions of the product we use sample screenshots These screenshots are meant to illustrate as much as possible of the provided functions and possible interdependencies between parameters The shown values may not represent realistic test situations The screenshots usually show a fully equipped product that is with all options instal led Thus some functions shown in the screenshots may not be available in your par ticular product configuration 2 Welcome to the Avionics Options The GBAS Option The R amp S SMBV K111 is a firmware application that adds functionality to generate sig nals in accordance with the Ground Based Augmentation System GBAS The most important R amp S SMBV K111 features at a glance e Generation of the VHF Data Broadcast VDB Signal in Space signal transmitted from the Ground Based Augmentation System GBAS ground subsystem to the ai
177. hw gt BB DME TRIGger ARM EXECute on 182 Running Stopped For enabled modulation displays the status of signal generation for all trigger modes Trigger Settings e Running The signal is generated a trigger was internally or externally initiated in triggered mode e Stopped The signal is not generated and the instrument waits for a trigger event Remote command SOURce lt hw gt BB GBAS TRIGger RMODe on page 184 SOURce lt hw gt BB ILS TRIGger RMODe on page 184 SOURce lt hw gt BB VOR TRIGger RMODe on page 184 SOURce hw BB DME TRIGger RMODe on page 184 Execute Trigger Executes trigger manually You can execute the trigger manually only if you select an internal trigger source and a trigger mode other than Auto Remote command SOURce lt hw gt SOURce lt hw gt SOURce lt hw gt SOURce lt hw gt B GBAS TRIGger EXECute page 183 B ILS TRIGger EXECute on page 183 B VOR TRIGger EXECute on page 183 B DME TRIGger EXECute on page 183 UJ UJ Trigger Source Selects trigger source This setting is effective when a trigger mode other than Auto has been selected Internal The trigger event is executed by Execute Trigger External The trigger event is the active edge of an external trigger signal supplied at the TRIGGER connector Use the Global Trigger Clock Settings dialog to define the pola
178. ibution 32 Standard settings State DME D DME analysis ILS Localizer ILS Marker BEACONS 61 VDB settings 28 VOR 24 47 63 67 70 State analysis DME IDtferrogatlOri encre eet 77 Station Slot Identifier 28 Subcarrier depth VOR modulation 66 Subcarrier frequency VOR 66 Sum of depth ILS Glide Slope inris aa s 52 ILS 56 Symbol space WES HOCANIZOR ien pt hii eerte na e 59 Sync output to external trigger 87 Synchronization mode 94 Synchronous signal generation 102 System configuration DME Goebel ash 71 T TAP data set State 39 TAP lateral alert limit status 41 TAP vertical alert limit status 41 2 41 TAPVAL 41 gre 36 TDMA timing PHIM GI p ES 16 Settings as Threshold crossing height rrt enne 36 Time domain allocation Principle 2 ug ib 16 fuper 30 Time schema IES LocaliZer 59 IES Marker Beacons 62 68 30 Trigger 90 E
179. ics Standards About the Avionics Options 3 About the Avionics Options The following topics summarize some background information on the related avionics standards The provided overview information is intended as explanation of the used terms and does not aim to be comprehensive Brief overview of the avionics standards Landing systems ILS Instrument Landing System MLS Microwave Landing System Landing systems are ground based approach systems that provides precision guidance to an aircraft approaching and blind landing on a runway Radio Flight navigation systems VOR VHF Omnidirectional Radio DME Dis tance measuring equipment TACAN Tactical Air Navigation ADF Automatic Direction Finder The radio navigation systems are aircraft systems that support the pilots to deter mine the aircraft positions and stay on course These systems are more and more obsolete However due to security reasons these flight navigation systems are still in use e Radar systems RSR EnRoute Surveillance Radar ASR Airport Surveillance Radar PAR Precision Approach Radar ASDE Airport Surface Detection Equip ment SSR Secondary Surveillance Radar Radar systems are divided into two groups primary RSR ASR PAR and ASDE and secondary SSR The radar systems are used in air traffic control to mainly detects and measures the position of aircraft i e its range and bearing 3 1 The Ground Based Augmentation System GBAS
180. id TSCHema lt Tschema gt Sets the time schema for the COM ID signal In the standard time schema STD the set dot length determines the dash length three times the dot length whereas in the user time schema USER all length param eters can be set independently Parameters lt Tschema gt STD USER RST STD Manual operation See Time Schema on page 62 ILS Settings SOURce lt hw gt BB ILS MBEacon COMid STATe State Switches on off the addittional COM ID signal Parameters lt State gt 0 1 OFF ON RST 0 Manual operation See State on page 61 SOURce lt hw gt BB ILS MBEacon FREQuency lt CarrierFreq gt Sets the carrier frequency for the ILS MB modulation signal Parameters lt CarrierFreq gt float Range 100E3 to 6E9 Increment 0 01 RST 75E6 Manual operation See Carrier Frequency on page 60 SOURce lt hw gt BB ILS MBEacon FREQuency MODE Mode Sets the carrier frequency mode of the ILS MB modulation signal Parameters lt Mode gt USER PREDefined RST USER Manual operation See Carrier Frequency Mode on page 60 SOURce lt hw gt BB ILS MBEacon MARKer FREQuency Frequency Sets the modulation frequency of the marker signal for the ILS MB modulation signal Parameters lt Frequency gt integer Range 400 to 3000 RST 0 Manual operation See Marker Frequency on page 60 SOURce lt hw gt BB ILS MBEacon MARKer DEPTh Depth Sets the modulat
181. ide The Quick Start Guide is delivered with the instrument in printed form and in PDF for mat on the Documentation CD ROM It provides the information needed to set up and start working with the instrument Basic operations and an example of setup are descri bed The manual includes also general information Safety Instructions Operating Manuals The Operating Manuals are a supplement to the Quick Start Guide Operating Manuals are provided for the base unit and each additional software option These manuals are available in PDF format in printable form on the Documentation CD ROM delivered with the instrument In the Operating Manual for the base unit all instrument functions are described in detail Furthermore it provides an introduction to remote control and a complete description of the remote control commands with pro gramming examples Information on maintenance instrument interfaces and error messages is also given In the individual option manuals the specific functions of the option are described in detail For additional information on default settings and parameters refer to the data sheets Basic information on operating the R amp S 5 is not included in the option manuals Service Manual The Service Manual is available in PDF format in printable form on the Documenta tion CD ROM delivered with the instrument It describes how to check compliance with rated specifications on instrument function
182. iguration Settings 7 2 4 DME Analysis The settings in this dialog are available only if an R amp S NRP Z81 power sensor is con nected to the R amp S SMBV 1 access this dialog 2 Select DME gt DME Mode gt Interrogation 3 Select System Configuration gt DME Analysis DME Analysis xl Measurement Gate Settings The DME Analyisis dialog comprises the settings to configure the parameters of the reply signal of the ground station transponder State Activates the DME analysis The R amp S SMBV generates interrogation pulse pairs and starts an internal counter for time measurement The measurement gate settings determine the measurement window expected reply delay gate length 2 Only reply pulses for which the 50 voltage point of the rising edge of the first pulse is within the measurement window are used to evaluate the delay time and reply efficiency The delay measurement is averaged within the mea surement cycle The reply efficiency is calculated once for each measurement cycle System Configuration Settings Example The gate length is 1 us and the expected reply delay is 50 us The measurement win dow lies in the range between 49 5 and 50 5 us Only pulse pairs are used for the mea surement whose 50 voltage point of the rising edge of the first pulse is within this range Gate length 2 Expected reply delay 50us 0 5us gt te Dus 49 508 50 Sus Measur
183. ing a GBAS signal for VDB slot detection on page 111 Usage Event GBAS Settings Manual operation See Append Insert Delete on page 29 SOURce lt hw gt BB GBAS VDB lt ch gt DELete Deletes the selected VDB Example see example Generating a GBAS signal for VDB slot detection on page 111 Usage Event Manual operation See Append Insert Delete on page 29 SOURce lt hw gt BB GBAS VDB lt ch gt STATe lt VState gt Enables the selected VHF Data Broadcast VDB transmiter Parameters lt VState gt 0 1 OFF ON RST 1 Example see example Generating a GBAS signal for VDB slot detection on page 111 Manual operation See State on page 28 SOURce lt hw gt BB GBAS VDB lt ch gt GID lt Gld gt Sets the GBAS ID Parameters lt Gld gt string A four character 24 bit alphanumeric field that identifies the ground station broadcasting the message Permited are capital letter numbers and space Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See GBAS ID on page 28 SOURce lt hw gt BB GBAS VDB lt ch gt SSID lt Ssid gt Sets the Station Slot Identifier SSID of the of the ground station Parameters lt Ssid gt A B C D JE F G H RST A Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See SSID on page 28 GBAS Settings
184. ings dialog This setting can be used for testing the symbol rate tolerance The RTCA DO 246D specification defines a symbol rate of the GBAS data broadcast as 10500 symbols sec Because of the used modulation see Modulation Type each symbol defines one of eight states This results in a nominal bit rate of 31500 bits s Remote command SOURce lt hw gt BB GBAS MSET SRATe on page 138 SOURce lt hw gt BB GBAS SRIN o on 116 VDB Transmitters Configuration Access the VDB Transmitters Configuration dialog see chapter 4 2 VDB Transmit ters Configuration Settings on page 27 Filter Clipping Access to the dialog for setting baseband filtering clipping and modulation see chap ter 4 5 Filter Clipping Settings on page 42 Trigger Marker Accesses the dialog for selecting the trigger source for configuring the marker signals and for setting the time delay of an external trigger signal see chapter 8 1 Trigger Settings page 85 and chapter 8 2 Marker Settings GBAS on page 90 The currently selected trigger source is displayed to the right of the button Execute Trigger Executes trigger manually You can execute the trigger manually only if you select an internal trigger source and a trigger mode other than Auto Remote command SOURce lt hw gt BB GBAS TRIGger EXECute on 183 SOURce lt hw gt BB ILS TRIGger EXECute on page 183 SOURce lt hw gt BB
185. ion depth of the marker signal for the ILS MB signal VOR Settings Parameters lt Depth gt float Range 0 to 100 Increment 0 1 RST 95 Manual operation See Marker Depth on page 60 10 4 VOR Settings The BB VOR subsystem contains all commands for configuring a VOR signal See also chapter 10 6 Trigger Settings on page 181 and chapter 10 9 Clock Set tings on page 191 for a description of the trigger and clock settings 10 4 1 VOR General Settings ESOURCO hiwe BB VOR MODE 156 SOURce shw BB VOR PRESSL eire hace cede rie tarot aene a nep 157 ESOURGeshwerBBNOR S DAT tcc oe tarte ett ctt 157 SOURce lt hw gt BB VOR MODE Mode Sets the operating mode for the VOR modulation signal 10 4 2 VOR Settings Parameters lt Mode gt NORM VAR SUBCarrier FMSubcarrier NORM VOR modulation is active VAR Amplitude modulation of the output signal with the variable sig nal component 30Hz signal content of the VOR signal The modulation depth of the 30 Hz signal can be set with SOURce lt hw gt BB VOR VAR DEPTH SUBCarrier Amplitude modulation of the output signal with the unmodulated FM carrier 9960Hz of the VOR signal The modulation depth of the 30 Hz signal can be set with SOURce lt hw gt BB VOR SUBCarrier DEPTh FMSubcarrier Amplitude modulation of th
186. it on page 184 SOURce lt hw gt BB VOR TRIGger OBASeband INHibit on 184 SOURce lt hw gt BB DME TRIGger OBASeband INHibit on 184 8 2 Marker Settings GBAS The marker settings are available only for option R amp S SMBV K111 GBAS This dialog provides access to the settings necessary to select and configure the marker output signal like the marker mode or marker delay settings On Off Ratio Off Time 1 Samples Marker Delay Current Range Without Recalculation 1 300 0 2000 Samples 2 2000 Samples 0 2000 Samples Fix Marker Delay To Current Range Marker Mode Marker configuration for up to two marker channels The settings are used to select the marker mode defining the shape and periodicity of the markers The contents of the dialog change with the selected marker mode the settings are self explanatory PPS Marker signal for every start of second Marker Settings GBAS Pulse Regular marker signal Enter a divider to define the clock frequency The software derives the frequency by dividing the sample rate by this divider the dialog indicates the resulting pulse frequency Remote command SOURce lt hw gt BB GBAS TRIGger OUTPut ch PULSe DIVider on page 189 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt PULSe FREQuency on
187. ition frequency DME analysis rerit remettre 79 Pulse Repetition Frequency DME Modulation 79 Pulse repetition frequency analysis DME interrogatiort 79 Pulse repetition rate DME interrogation ne rrr 74 Pulse repetition rate trigger DME interrogatio 2 err rrr nn teen 74 Pulse rise DME T 76 Pulse shape od te cee 75 Pulse spacing pe 76 Pulse squitter DME interrogation 73 Pulse width prre 76 R Radar systems OVEIVICW xcci cient e 13 Radio navigation systems dock oaths 13 Range distance DME mere rena 78 78 73 Real Data COMIQUT ATION 28 Reference location configuration 33 Reference path data selector 37 M 40 Reference path ID e 40 Reference path identifier 37 IRefractivity Index uc Dd a etia renes 32 Refractivity uncertainty 32 Repetition rate DME interrogation 74 Repetition rate trigger DME interrogation tem tees 74 Reply delay 79 DMEnterrogatiom tne e ote
188. ity that the application provides including remote control operation All functions not discussed in this manual are the same as in the base software and are described in the R amp S SMBV operating manual The latest version is available for download at the product homepage Installation You can find detailed installation instructions in the delivery of the option or in the R amp S SMBV Service Manual Accessing the Avionics Dialog To open the dialog with Avionics settings Inthe block diagram of the R amp S SMBV select Baseband gt Avionic Standards gt GBAS ILS DME VOR A dialog box opens that displays the provided general settings of the selected standard The signal generation is not started immediately To start signal generation with the default settings select State gt On Scope 2 2 Scope Tasks in manual or remote operation that are also performed in the base unit in the same way are not described here In particular this includes Managing settings and data lists i e storing and loading settings creating and accessing data lists accessing files in a particular directory etc Information on regular trigger marker and clock signals as well as filter settings if appropriate General instrument configuration such as configuring networks and remote opera tion Using the common status registers For a description of such tasks see the R amp S SMBV operating manual Avion
189. l operation See Code on page 81 SOURce lt hw gt BB DME ID DASH Dash Sets the length of a morse dash in seconds DME Settings Available only if SOURce lt hw gt DME ID TSCHema is set to USER Parameters lt Dash gt float Range 0 05 to 1 Increment 1E 4 RST 0 3 Manual operation See Dash Length on page 82 SOURce lt hw gt BB DME ID DOT Dot Sets the length of a morse dot in seconds If the time schema is set to STD the length of the dash 3xdot symbol space dot and letter space 3xdot is also determined by this entry Parameters lt Dot gt float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Dot Length on page 81 SOURce lt hw gt BB DME ID LETTer Letter Sets the length of a letter space in seconds Available only if SOURce lt hw gt BB DME ID TSCHema is set to USER Parameters Letter float Range 0 05 to 1 Increment 1E 4 RST 0 3 Manual operation See Letter Space page 82 SOURce lt hw gt BB DME ID PPP STATe lt PairOfPulsePair gt Sets the state of the pair of pulse pairs for the ID signal generation When enabled a pair of pulse pairs is transmitted during the set SOURce lt hw gt BB DME ID RATE Parameters PairOfPulsePair 0 1 OFF ON 5 0 Manual operation See Pair of Pulse Pairs 80 DME Set
190. le the file extension is however predefined Remote command subsystem SETTing CATalog page 108 lt subsystem gt 1 page 109 lt subsystem gt SETTing FAST on page 109 lt subsystem gt SETTing LOAD 109 subsystem SETTing DELete on 108 System Configuration Accesses the System Configuration dialog for configuration of the VOR modulation see chapter 6 2 System Configuration Settings on page 65 Trigger Marker Accesses the dialog for selecting the trigger source for configuring the marker signals and for setting the time delay of an external trigger signal see chapter 8 1 Trigger Settings on page 85 The currently selected trigger source is displayed to the right of the button Execute Trigger Executes trigger manually You can execute the trigger manually only if you select an internal trigger source and a trigger mode other than Auto Remote command SOURce lt hw gt BB GBAS TRIGger EXECute on page 183 SOURce lt hw gt BB ILS TRIGger EXECute on page 183 SOURce hw BB VOR TRIGger EXECute 183 SOURce hw BB DME TRIGger EXECute on page 183 Arm For trigger modes Armed Auto and Armed stops the signal generation until subsequent trigger event occurs Remote command SOURce lt hw gt BB GBAS TRIGger ARM EXECute page 182 SOURce lt hw gt
191. lect the data source for the VDB The following standard data sources are available All O All 1 An internally generated sequence containing 0 data or 1 data e An internally generated pseudo random noise sequence Pattern An internally generated sequence according to a bit pattern Use the Pattern box to define the bit pattern e Data List Select DList A binary data from a data list internally or externally generated Select Select DList to access the standard Select List dialog Select the Select Data List gt navigate to the list file dm gt Select to select an existing data list Transmitters Configuration Settings Use the New and Edit functions to create internally new data list or to edit an existing one Use the standard File Manager function to transfer external data lists to the instrument See also Main Dialog gt Data List Management Real GBAS Data Enables you to configure the content of the GBAS messages Select Data Config gt Config to access the provided settings Remote command SOURce hw BB GBAS VDB lt ch gt DATA on page 118 SOURce hw BB GBAS VDB lt ch gt DATA DSELection on page 118 SOURce hw BB GBAS VDB ch DATA PATTern on 119 App Data Length bytes Sets the application data length For Data Data Config Real GBAS Data the value of the application data length is not v
192. local level plane FPAP Flight Path Alignment Point point at the end of the runway that in conjunction with the LTP FTP defines the geodesic plane of the precision final approach landing and flight path TCH 7 Threshold Crossing Height GAP Glide Path Angle angle at the that describes the intended angle of descent at the final approach path Remote command SOURce hw BB GBAS VDB ch MCON ig FDSState on page 124 Plan View Profile View Parameters FAS Data Set The following parameters define the approach path see also figure 4 1 Glide Path Angle Sets the angle of the FAS path glide path with respect to the hori zontal plane tangent to the WGS84 ellipsoid at the LTP FTP Remote command SOURce hw BB GBAS VDB ch MCON ig GPANgl1e on page 126 TCH Sets the threshold crossing height TCH that is the height of the FAS path above the LTP FTP defined in either feet or meters Remote command SOURce hw BB GBAS VDB lt ch gt MCONfig ATCHeight on page 120 SOURce hw BB GBAS VDB lt ch gt MCONfig ATUSelector on page 120 LTP FTP Height Sets the height of the LTP FTP above the WGS84 ellipsoid Remote command SOURce lt hw gt BB GBAS VDB ch MCON fig LFLocation HEIGht on page 128 Message Configuration Settings Airport ID FAS Data Set Sets the airport identification as three or four alphanumeric characters used to desig nate air
193. ls in a period ON time OFF time for marker RATio Parameters lt OffTime gt integer Range 1 to 16777215 RST 1 Example see example Adjusting clock marker and trigger settings on page 113 Manual operation See Marker Mode on page 90 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt DELay lt Delay gt Sets the marker delay Parameters lt Delay gt float Range 0 to 16777215 Increment 1E 3 RST 0 Example SOURce1 BB GBAS TRIGger OUTPut1 DELay Manual operation See Marker x Delay on page 91 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt DELay MINimum SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt DELay MAXimum Queries the minimum maximum marker delay for fixed marker delay setting Return values lt Maximum gt float Range 0 to max Increment 1E 3 RST 2000 Example SOURce1 BB GBAS TRIGger OUTPut1 DELay 1 Usage Query only Manual operation See Marker x Delay on page 91 SOURce lt hw gt BB GBAS TRIGger OUTPut DELay FlXed Fixed Restricts the marker delay setting range to the dynamic range 10 9 Clock Settings Parameters lt Fixed gt 0 1 OFF 0 SOURce1 BB GBAS TRIGger OUTPut1 DELay FIXed Manual operation See Marker x Delay on page 91 Clock Settings SOURceshw BEI DME CLOCK MODE 191 SOURcCe lt hw gt BB GBAS CLOCKIMODE
194. lt LatitudeDir gt NORTh SOUTh Defines the latitude direction RST NORT Altitude float Defines the height above the ellipsoid HAE altitude Range 83886 07 to 83886 07 Increment 0 01 RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Reference Location Configuration on page 33 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig MT2State lt Mt2State gt Enables the message type 2 configuration Parameters lt Mt2State gt 0 1 OFF ON RST 0 Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Message Type 2 on page 31 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig MT4State lt Mt4State gt Enables the configuration of message type 4 GBAS Settings Parameters lt Mt4State gt 0 1 OFF ON RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Message Type 4 on page 34 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig NOPPoint lt Nofp gt Queries the number of path points N Parameters lt Nofp gt integer Range 2 to 11 RST 2 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Number of Path Points N on page 40
195. m of modulation depths SDM see SOURce lt hw gt BB ILS GS GSLope SDM page 144 Parameters lt Coupling gt FIXed SDM RST FIXed Manual operation See DDM SDM Coupling on page 53 SOURce lt hw gt BB ILS GS GSLope DDM CURRent Current Sets the DDM value alternatively as a current by means of the ILS indicating instru ment The instrument current is calculated according to DDM uA DDM x 857 1 uA A variation of the instrument current automatically leads to a variation of the DDM value and the DDM value in dB Parameters Current float Range 8 57125E 4 to 8 57125E 4 Increment 1E 7 RST 0 Manual operation See DDM Current page 52 SOURce lt hw gt BB ILS GS GSLope DDM DIRection Direction Sets the simulation mode for the ILS GS modulation signal A change of the setting automatically changes the sign of the DDM value Parameters Direction UP DOWN UP The 150 Hz modulation signal is predominant the DDM value is negative the airplane is too low it must climb DOWN The 90 Hz modulation signal is predominant the DDM value is positive the airplane is too high it must descend RST UP Manual operation See Fly on page 52 ILS Settings SOURce lt hw gt BB ILS GS GSLope DDM LOGarithmic lt Logarithmic gt Sets the depth of modulation value for the ILS GS in dB See also SOURce lt hw gt BB ILS GS GSLope DDM DEPTh on
196. mote command tbd DDM Current Sets the current of the ILS indicating instrument corresponding to the DDM value The instrument current is calculated according to DDM uA DDM x 967 75 uA System Configuration Settings Localizer A variation of the instrument current automatically leads to a variation of the DDM value and the DDM value dB Remote command SOURce lt hw gt BB ILS LOCalizer DDM CURRent on 148 DDM Depth Sets the difference in depth of modulation DDM between the signal of the left lobe 90 Hz and the right lobe 150 Hz of the ILS LOC modulation signal The DDM value in percent is calculated as follows e DDM Polarity gt 90 Hz 150 Hz default setting DDM AM 90 Hz AM 150 Hz 100 e DDM Polarity gt 150 Hz 90 Hz DDM AM 150 Hz AM 90 Hz 100 A variation of the DDM value automatically leads to a variation of the DDM value in dB and the value of the instrument current Remote command SOURce lt hw gt BB ILS LOCalizer DEPTh on page 149 DDM Logarithmic Sets the DDM value in dB The dB value is calculated according to DDM dB 20 x LOG SDM DDMx100 SDM DDMx100 A variation of the value automatically leads to a variation of the DDM value and the instrument current Remote command SOURce lt hw gt BB ILS LOCalizer DDM LOGarithmic 148 Sets the difference depth of modulation between th
197. mple RST 0 samples Manual operation See Trigger Delay page 89 SOURce lt hw gt BB DME TRIGger OBASeband INHibit lt Inhibit gt SOURce lt hw gt BB GBAS TRIGger OBASeband INHibit lt Inhibit gt SOURce lt hw gt BB ILS TRIGger 0BASeband INHibit lt Inhibit gt SOURce lt hw gt BB VOR TRIGger 0BASeband INHibit lt Inhibit gt Specifies the number of samples by which a restart is to be inhibited following a trigger event This command applies only for triggering by the second path Parameters lt Inhibit gt integer Range 0 to 67108863 RST 0 Manual operation See Trigger Inhibit on page 90 SOURce lt hw gt BB DME TRIGger RMODe SOURce lt hw gt BB GBAS TRIGger RMODe SOURce lt hw gt BB ILS TRIGger RMODe SOURce lt hw gt BB VOR TRIGger RMODe Queries the current status of signal generation for all trigger modes modulation on Return values lt RunMode gt STOP RUN RST STOP Usage Query only Manual operation See Running Stopped on page 86 SOURce lt hw gt BB DME TRIGger SLENgth lt SeqLength gt SOURce lt hw gt BB GBAS TRIGger SLENgth lt Slength gt Operating Manual 1176 8600 02 05 184 Trigger Settings SOURce lt hw gt BB ILS TRIGger SLENgth lt SeqLength gt SOURce lt hw gt BB VOR TRIGger SLENgth lt SeqLength gt The command defines the length of the signal sequence to be output in the Single trigger mode SOUR SING where xx
198. mple Generating a GBAS signal for message format detection The following is an example on how to generate a VDB signal with real application data and enabled GBAS Message Type 2 and Message Type 1 RST SOURcel FREQuency CW 110MHz SOURce1 BB GBAS MFCHannels OFF SOURce1 BB GBAS VDB1 DATA RGData SOURCe1 BB GBAS VDB1 MCONfig MT2State SOURce1 BB GBAS VDB1 MCONfig GSRReceivers SOURce1 BB GBAS VDB1 MCONfig GSADesignator SOURCe1 BB GBAS VDB1 MCONfig GCID FC SOURce1 BB GBAS VDB1 MCONfig LMVariation 58 GBAS Settings 500 1 500 1 500 1 500 1 DB1 MCONfig SVIGradient 0 DB1 MCONfig RFINdex 379 DB1 MCONfig SHEight 100 DB1 MCONfig RUNCertainty 20 SOURCe1 BB GBAS VDB1 MCONfig LOCation COORdinates DECimal 11 5833 48 150 110 SOURce1 BB GBAS VDB1 MCONfig LOCation COORdinates DMS Response 11 34 59 88 EAST 48 9 0 NORT 110 lt lt lt SOURce1 BB GBAS VDB1 MCONfig DG STATe ON SOURce1 BB GBAS VDB1 MCONfig DG 1 CATalog Response Correctionl SOURce1 BB GBAS VDB1 MCONfig DG PREDefined FILE Correctionl SOURce1 BB GBAS VDB1 MCONfig DG FILE Response Correctionl rs gbas SOURCe1 BB GBAS VDB1 SSID Response A SOURce1 BB GBAS VDB1 GID REsponse TRO SOURcel1 BB GBAS VDB1 NOFRames Response 20 SOURce1 BB GBAS VDB1 FNUMber Response
199. n Pattern Selects the bit pattern for the data source Parameters lt Pattern gt integer Example SOURce1 BB GBAS VDB2 DATA PATTern SOURce1 BB GBAS VDB2 DATA PATTern HB8A 12 Manual operation See Data Data Config on page 28 SOURce lt hw gt BB GBAS NOFRames Queries the number of VD frames Return values lt NOFrame gt integer Range 1 to 12500 RST 1 Usage Query only Manual operation See of Frames 29 10 2 4 Scheduling Settings SOURce lt hw gt BB GBAS VDB lt ch gt SCH TS lt st gt STATe lt State gt Enables the VDB in the corresponding time slot TS Parameters lt State gt 0 1 RST 0 Example see example Generating a GBAS signal for sensitivity tests on page 110 Manual operation See 50 57 page 30 SOURce lt hw gt BB GBAS VDB lt ch gt SCH TS lt st gt POWer Power Sets the relative power of a VDB per time slot TS Parameters lt Power gt float Range 21 to 0 Increment 0 01 RST 0 Example see example Generating a GBAS signal for sensitivity tests on page 110 10 2 5 GBAS Settings Manual operation See Pow dB on page 30 Message Configuration SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig AID Ald Sets the airport ID Parameters lt Ald gt string Example see example Generating a GBAS signal containing message type 4 on page 112 M
200. nal Changing a parameter in the ILS standard will cause an instant signal change in the R amp S SMBV without a measurement cylcle to calculate the RMS value of the baseband signal in order to set the correct RF level If the standard is switched ON for the first time or after every subsequent ON OFF sequence the measurement cycle will take place to determine the correct RF level Every subsequent parameter change in the ILS standard will be performed without another measurement cycle in order to provide a continous signal output State Activates the standard and deactivates all the other digital standards and digital modu lation modes in the same path Remote command lt subsystem gt STATe page 108 Set To Default Calls the default settings The values of the main parameters are listed in chapter A 3 Default Settings on page 199 Remote command lt subsystem gt PRESet on page 108 General Settings Save Recall Accesses the Save Recall dialog i e the standard instrument function for storing and recalling the complete dialog related settings in a file The provided navigation possibil ities in the dialog are self explanatory The file name and the directory it is stored in are user definable the file extension is however predefined Remote command lt subsystem gt SETTing CATalog on page 108 subsystem SETTing STORe on page 109 subsystem SETTing STORe FAST on page 109 subsystem SETTing LO
201. nd to add new VDB transmitter Transmitters Configuration Settings State Enables the selected VHF Data Broadcast VDB transmitter Remote command SOURce lt hw gt BB GBAS VDB ch STATe on 117 GBAS ID Sets the GBAS ID that is a four character 24 bit alphanumeric field that identifies the ground station broadcasting the message Permitted are capital letter numbers and space To identify a ground station the airbone receive examine the combination of the GBAS ID and the SSID Remote command SOURce hw BB GBAS VDB ch on page 117 SSID Sets the Station Slot Identifier SSID of the of the ground station According to RTCA DO 246D the SSID is a numeric value from 0 to 7 corresponding to the letter designation A through H of the first time slot assigned to a particular ground reference station where slot A 0 and slot 7 All messages in all time slots employed by a particular ground station use the same SSID To identify a ground station the airbone receive examine the combination of the GBAS ID on page 28 and the SSID Remote command SOURce hw BB GBAS VDB ch SSID on page 117 Freq Num Sets the frequency number and defines the frequency band the corresponding VDB is using see Carrier frequencies and frequency channels on page 15 Remote command SOURce hw BB GBAS VDB lt ch gt FNUMber page 118 Data Data Config Se
202. nen nennen SOURceshws E BB ES EOCalizer rrt rd SOURceshw BB IES EOCalizer DDM DIRection rennen 5 lt gt 11 5 1 148 SOURce lt hw BBiILS LOCalizer DDMiP CT eunte ttt Ee d 149 SOURce lt hw gt BB ILS LOCalizer DDM POWality 149 SOURceshws BB IES EOCalizer FREQUENCY oer nee 150 SOURce hw BB ILS LOCalizer FREQuency MODE esses ra nnns 150 SOURce hw BB ILS LOCalizer ICAO CHANnel SOURce lt hw gt BB ILS LOCalizer _LLOBe F REQuency 50 lt gt SOURCe shw E 5 SOURce hw BB ILS LOCalizer RLOBe FREQuency essent enne 151 SOURce lt hw gt BBiILS eet tte cete cet etae ea d pt 152 5 aoi c Ere het eir ien to FO e a Pr 152 SOURce lt hw gt BB ILS MBEacon COMid DASH SOURce lt hw gt BBiILS MBEacon COMId DEP TR teu ntt a SOURce lt hw gt BB ILS MBEacon COMId EX SOURce lt hw gt BB ILS MBEacon COMid FREQuency SOURce lt hw gt
203. nstrument current is calculated according to DDM uA DDM 857 125 uA A variation of the instrument current automatically leads to a variation of the DDM value and the DDM value in Remote command SOURce lt hw gt BB ILS GS GSLope DDM CURRent page 140 DDM Depth Sets the difference in depth of modulation between the upper lobe 90Hz and the lower lobe 150 2 tone of the ILS GS modulation signal The DDM value is calculated with the formula DDM Polarity gt 90 Hz 150 Hz default setting DDM AM 90 Hz 150 Hz 100 e DDM Polarity gt 150 Hz 90 Hz DDM AM 150 Hz AM 90 Hz 100 5 3 System Configuration Settings Localizer A variation of the DDM value automatically leads to a variation of the value of the instrument current and the DDM value dB Remote command SOURce lt hw gt BB ILS GS GSLope DEPTh on page 142 DDM Logarithmic Sets the DDM value in dB The dB value is calculated according to DDM 20 x LOG SDM DDMx 10096 SDM DDMx100 A variation of the value automatically leads to a variation of the DDM value and the instrument current Remote command SOURce lt hw gt BB ILS GS GSLope DDM LOGarithmic on page 141 DDM Percent Sets the difference in depth of modulation between the upper lobe 90Hz and the lower lobe 150Hz tone of the ILS GS modulation signal The DDM value in percent is calculate
204. nter frequency MHz 108 925 108 950 108 975 109 000 109 025 109 050 109 075 109 100 109 125 109 150 109 175 8 Select gt State gt On 9 Select gt State gt R amp S SMBV generates GBAS signal composed of seven adjicent frequency channels The generated GBAS signal is suitable for unwanted emissions measurements adja cent and co channels rejections masurements and carrier frequency stability measure ments Generating a GBAS Signal for Receiver Sensitivity Tests Sensitivity tests are very essential for the performance of VDB receivers and used to measure their ability to demodulate GBAS signal at low power level To perform a sen sitivity test it is suffisient to generate a single frequency signal We use the advantages of the gated power mode and vary the level of the generated GBAS signal The goal of the test is to find out the signal with the minimum level that the DUT requires to cor rectly detect the GBAS signal To generate a GBAS signal for sensitivity tests 1 Press PRESET to set the R amp S SMBV to a definite state 2 Select Staus Bar gt Frequency 108 4 MHz 3 Select Staus Bar gt Level 10 dBm 4 Select Baseband gt Avionics gt GBAS Generating a GBAS Signal for VDB Slot Detection 5 Select Gated Power Mode On 6 Select VDB Transmitter Configuration use the default configuration and select VDB 1 gt Schedulling gt Config 7 the GBAS Sch
205. o a run time of 12 359 us The range distance and the external trigger delay are dependent according to Range Distance Trigger Delay X Y mode delay 12 359 us nm where X mode delay 50 us Y mode delay 56 us Changing one value automatically changes the other value Remote command SOURce hw BB DHE RDIStance on page 168 SOURce hw BB RDIStance UNIT on 169 Pulse Squitter Enables disables squitter pulses System Configuration Settings Squitter pulses are random pulse pairs sent by a ground station if the average transmit pulse rate drops to values between 700 pulse pairs per second pp s The squitter pul ses ensure that a minimum pulse rate is provided which is cruical for the proper moni toring and adjustment of important pulse paramaters of the ground station Remote command SOURce lt hw gt BB DME SQUitter page 170 Pulse Repetition Rate Sets the number of DME pulse pairs per second Remote command SOURce lt hw gt BB DME RATE on 168 Reply Efficiency Available only for DME Mode gt Reply Sets the relation between reply pulse pairs and received trigger signals e g with a set efficiency of 50 only every second trigger event leads to the generation of a reply pulse pair Remote command SOURce lt hw gt BB DME ANALysis EFFiciency 173 Pulse Input Opens a dialog for configurati
206. oach and monitors the correct approach path to the runway ILS Glide Slope 90 Hz ILS Localizer ou jJ o yr 150 Hz Ideal ILS Glide Slope 150 Hz Landing Approach Fig 3 4 Approach navigation using instrument landing system ILS 1MA193 An ILS system consists of three independent subsystems A glide slope for vertical guidance A localizer for horizontal guidance optional marker beacons Glide Slope The glide slope transmitter is located near the end of the runway nearest to the start of the aircraft approach Typically vertically aligned antennas transmit two intersecting main beams on top of one another at carrier frequencies between 329 MHz and 335 MHz The top beam is usually modulated at 90 Hz and the beam below at 150 Hz 1MA193 The information on position is provided after demodulation of the beam signals by eval uating the difference in depth of modulation DDM The following scenarios are possi ble Predominance of the 90 Hz beam the aircraft is too high and must descend e Predominance of the 150 Hz beam the aircraft is too low and needs to climb The singal strength from both beams is equal the aircraft is in the center on the right course The Instrument Landing System ILS If there is a predominance of the 90 Hz beam then the aircraft is too high and must descend A predominant 150 Hz means that the aircraft is too low and needs to climb Localizer
207. ock marker and trigger settings on page 113 Manual operation See Marker Mode on page 90 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt PATTern Pattern Defines the bit pattern used to generate the marker signal PATTern Parameters lt Pattern gt integer Example SOURce1 BB GBAS TRIGger OUTPut1 MODE PATTern SOURce1 BB GBAS TRIGger OUTPut1 PATTern H5670 15 Manual operation See Marker Mode on page 90 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt PULSe DIVider lt Divider gt Sets the divider for Pulse marker mode PULSe Parameters lt Divider gt integer Range 2 to 1024 RST 2 Example SOURce1 BB GBAS MSET SRATe Response 10500 SOURce1 BB GBAS TRIGger OUTPut2 MODE PULSe SOURCe1 BB GBAS TRIGger OUTPut2 PULSe DIVider 4 SOURCe1 BB GBAS TRIGger OUTPut2 PULSe FREQuency Response 2625 2625 10500 4 Manual operation See Marker Mode on page 90 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt PULSe FREQuency Queries the pulse frequency of the pulsed marker signal PULSe Return values lt Frequency gt float Range 2 to 1024 Increment 1E 3 RST 2 Usage Query only Marker Settings GBAS Manual operation See Marker Mode on page 90 SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt ONTime lt OnTime gt SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt OFFTime lt gt Sets the number of symbo
208. of this description Generating GBAS Signals with Several Frequency Channels With the R amp S SMBV you can generate simulataneously multiple frequency GBAS sig nal Multiple frequency signals are suitable for testing the capability of VDB receivers of tuning frequencies in the frequency range as specified in RTCA DO 246D This example shows how to use the multiple frequency function to generate a GBAS signal containing GBAS Frequency Channels 39 to 45 To enable the generation of several frequency channels 1 Calculate the channel number of the central frequency 39 45 2 42 2 For frequency channel number 42 calculate the channel frequency Channel frequency 108 025 MHz 42 25 kHz 109 075 MHz 3 Select Status Bar gt Frequency 109 075 MHz to set the center frequency 4 Select Baseband gt Avionics gt GBAS and select Multiple Frequency Channels gt On 5 Select VDB Transmitters Configuration The graph confirms the selected center frequency The R amp S SMBV selects the 10 adjacent frequency channels symmetrically located around the central one The central frequency is referred as frequency number 0 6 Use the Append function to enable seven VDBs VDB 1 to VBD 7 7 Inthe VDB table for each VDB select different to allocated them to different frequency channels Generating GBAS Signal for Receiver Sensitivity Tests 9 2 GBAS VDB Transmitters Configuration Ce
209. on of the pulse input settings DME Pulse Input x Input Source Ext Triggered Reply Delay 50 00 us Input Source Pulse Input Selects the input of the DME pulses In case DME Mode gt Interrogation the setting selects the input for the reply pulses of a ground station while for DME Mode Reply the input of the interogation pulses of an airplane is choosen Ext Triggered The pulses are received via the backward TRIG connector Please make sure that only the demodulated pulse envelope is input at this connector If a modulated RF signal is applied use the Ext Power Sensor mode Ext Power Sensor The R amp S NRP Z81 power sensor as an input for modulated RF pul ses An external DME signal is fed into a sensor The 50 voltage point of this signal is used by the R amp S NRP Z81 power sensor sensor to generate the trigger for the R amp S SMBV Remote command SOURce lt hw gt BB DME PINPut SOURce on page 170 7 2 2 System Configuration Settings Reply Delay Pulse Input Sets the delay between the external trigger and the first DME output pulse 50 volt age point of first pulse For DME Reply mode this simulates the defined delay of the DME transponder and twice the run time of the signal from interrogator to transponder and back The delay is a measure of the range distance thus the two values are interdependent according to Delay X Y mode delay range distance 1
210. page 189 Pattern Marker signal that is defined by a 64 bit long pattern Remote command SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt PATTern on page 189 ON OFF Regular marker signal defined by an ON OFF ratio Ratio A marker period lasts one ON and OFF cycle The ON Time and OFF Time are each expressed as a number of samples ON time OFF time ON time OFF time Remote command SOURce lt hw gt BB GBAS TRIGger OUTPut lt ch gt ONTime page 190 SOURce lt hw gt BB GBAS TRIGger OUTPut ch OFFTime 190 Trigger A received internal or external trigger signal is output at the marker connector Remote command SOURce hw BB GBAS TRIGger OUTPut ch MODE on page 188 Marker x Delay Defines the delay between the marker signal at the marker outputs relative to the sig nal generation start Marker x For the corresponding marker sets the delay as a number of sam ples Remote command SOURce lt hw gt BB GBAS TRIGger OUTPut ch DELay on 190 Current Range without Recalculation Displays the dynamic range within which the delay of the marker sig nals can be set without restarting the marker and the signal Move the setting mark to define the delay Remote command SOURce lt hw gt BB GBAS TRIGger OUTPut ch DELay MINimum on page 190 SOURce hw BB GBAS TRIGger OUTPut ch DELay MAXimum on page 190 Avionics Stan
211. page 55 SOURce lt hw gt BB ILS LOCalizer MODE Mode Sets the operating mode for the ILS LOC modulation signal Parameters Mode NORM LLOBe RLOBe NORM ILS LOC modulation is active LLOBe Amplitude modulation of the output signal with the left lobe 90Hz signal component of the ILS LOC signal is active RLOBe Amplitude modulation of the output signal with the right lobe 150Hz signal component of the ILS LOC signal is active RST NORM Manual operation See Mode on page 55 SOURce lt hw gt BB ILS LOCalizer PHASe Phase Sets the phase between the modulation signals of the left and right antenna lobe of the ILS GS signal The zero crossing of the right lobe 150Hz signal serves as a refer ence The angle refers to the period of the signal of the right antenna lobe Parameters Phase float Range 60 to 120 Increment 0 01 RST 0 Manual operation See Left Right Phase 55 SOURce lt hw gt BB ILS LOCalizer RLOBe FREQuency Frequency Sets the modulation frequency of the antenna lobe arranged at the right viewed from the air plane Parameters lt Frequency gt float Range 100 to 200 Increment 0 05 RST 150 Manual operation See Right Frequency on page 55 10 3 4 ILS Settings SOURce lt hw gt BB ILS LOCalizer SDM lt Sdm gt Sets the arithmetic sum of the modulation depths of the left lobe 90 2 and right lobe 150
212. ping settings 8 1 Trigger Settings To access this dialog select GBAS gt ILS gt Trigger VOR gt Trig gt Trigger Marker This dialog provides access to the settings necessary to select and configure the trig ger Sequence Length SL 1 SL External Sync Output To Ext Trigger 50 00 Samples o Samples Trigger Mode Selects trigger mode i e determines the effect of a trigger event on the signal genera tion e Auto The signal is generated continuously e Retrigger The signal is generated continuously A trigger event internal or external causes a restart Armed Auto Trigger Settings The signal is generated only when a trigger event occurs Then the signal is gener ated continuously Arm stops the signal generation A subsequent trigger event internal with or external causes a restart Armed Retrigger The signal is generated only when a trigger event occurs Then the signal is gener ated continuously Every subsequent trigger event causes a restart An Arm stops signal generation A subsequent trigger event internal with or external causes a restart e Single The signal is generated only when a trigger event occurs Then the signal is gener ated once to the length specified at Signal Duration Every subsequent trigger event internal or external causes a restart Remote command
213. ple Frequency Channels Off Provided are the following settings for configuring the baseband filter Filter Selects the baseband filter Remote command SOURce lt hw gt BB GBAS FILTer page 136 Roll Off Factor or Sets the filter parameter The filter parameter offered Roll Off Factor or depends on the currently selected filter type This parameter is preset to the default for each of the predefined filters The Roll Off Factor affects the steepness of the filter flanks A Roll Off Factor 0 results in the steepest flanks values near to 1 make the flanks more flat Filter Clipping Settings Roll Off Factor 0 22 g Roll Off Factor 0 Roll Off Factor 1 f Hz Fig 4 2 Example of the frequency response of a filter with different Roll Off Factors Remote command SOURce lt hw gt SOURce lt hw gt BB GBAS FILTer PARameter APCO25 page 136 BI SOURce lt hw gt B B B GBAS FILTer PARameter COSine on page 136 B GBAS FILTer PARameter GAUSs on page 136 B B B SOURce lt hw gt SOURce lt hw gt SOURce lt hw gt GBAS FILTer PARameter PGAuss on 136 GBAS FILTer PARameter RCOSine page 137 GBAS FILTer PARameter SPHase on page 137 Cut Off Frequency Factor Sets the value for the cut off frequency factor The cut off frequency of the filter can be adjusted to rea
214. port facilities Permitted are upper letters numbers and space Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig AID on page 120 Runway Number FAS Data Set Sets the approach runway number Remote command SOURce lt hw gt BB GBAS VDB ch MCON ig RNUMber on page 132 Runway Letter FAS Data Set Sets the runway letter to distinguish between parallel runways The conventional des ignation is used Remote command SOURce hw BB GBAS VDB ch MCON ig RLETter on page 131 Approach Performance Designator FAS Data Set Sets the general information about the approach design The conventional designation is used Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig APDesignator on 120 Route Indicator FAS Data Set Sets the route indicator that is a single alphabetic character used to differentiate between multiple approaches to the same runway end Allowed are the upper case let ters excluding I and or the space character Remote command SOURce lt hw gt VDB lt ch gt MCONfig RUINdicator on 133 Reference Path Data Selector FAS Data Set Sets the reference path data selector RPDS that is a numerical identifier that is unique on a frequency in the broadcast region and used to select the FAS Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPDF on page 1
215. predefined or user defined way point files A waypoint file is description of a moving scenario like for example a sequence of positions A waypoint file must have the extension txt and file format as described in chapter A 4 1 Waypoint File Format on page 202 Message Configuration Settings Use the Predefined Files fuction to load a predefined file Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint PREDefined CATalog on page 135 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint USER CATalog on page 135 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint PREDefined FILE on page 135 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint USER FILE on page 135 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint FILE on page 136 Predefined Files Data Set Access a list with predefined files FAS RPDS or Continuation Link TAP Data Set Sets the FAS reference path data selector RPDS or the continuation link Continua tion link is the RPDS for the next segment that is a continuation of the previous seg ment Remote command SOURce hw BB GBAS VDB ch MCON ig FRCLink on page 125 TAP Vertical Alert Limit Status TAP Data Set Sets the value of the broadcast vertical alert limit Remote command SOURce lt hw gt BB GBAS VDB ch MCONf ig TVAS on page
216. pted every 40 seconds ID period and one ID sequence is transmitted instead The key down time of the ground signal cor responds to the period of transmission for a dot or dash in the Morse code ID sequence e g 100ms for a dot During the key down times reply pulses are not trans mitted however they are transmitted between the key down times Remote command SOURce lt hw gt BB DME ID STATe page 181 Show Hide Details Reveals the detailed setting options for the COM ID signal Once the details are revealed the labeling on the button changes to Hide Details Use this to hide the detailed setting options display again Pair of Pulse Pairs Enables the transmission of a pair of pulse pairs during the set Rate The ID signal consists of a regular group of pulses that generates Morse code dots and dashes To form the regular pulse groups two pulse pairs are separated by 100 us This is called a pair of pairs These pair combinations are transmitted at a regular rate of 1350 pairs of pairs see figure 7 1 This results in a repetition rate of 1350 Hz which is an audible tone for an ident a 740 8 Fig 7 1 Signal with enabled pair of puse pairs System Configuration Settings If the Pair of Pulse Pairs is disabled only a single pulse pair is transmitted in the selected Rate see figure 7 2 740 8 Fig 7 2 Signal with disabled pair of puse pairs Remote command SOURce hw BB DME ID PPP
217. quency Refer to chapter A 2 2 VOR Channel Frequencies on page 195 for an overview of the standard defined VOR transmitting frequencies Remote command SOURce lt hw gt BB VOR ICAO 1 158 6 2 2 System Configuration Settings Mode Selects the operating mode for the VOR modulation signal Norm VOR modulation is active Var Amplitude modulation of the output signal with the VAR signal com ponent 30Hz signal content of the VOR signal The modulation depth corresponds to the value set under VAR Depth Subcarrier Amplitude modulation of the output signal with the unmodulated FM carrier 9960Hz of the VOR signal The modulation depth corre sponds to the value set under Subcarrier Depth Subcarrier Amplitude modulation of the output signal with the frequency modula FM ted FM carrier 9960Hz of the VOR signal The frequency deviation corresponds to the value set under REF Deviation the modulation depth corresponds to the value set under Subcarrier Depth Remote command SOURce lt hw gt BB VOR MODE on 156 VAR REF Frequency Sets the frequency of the VAR signal and the REF signal As the two signals must have the same frequency the setting is valid for both signals Remote command SOURce lt hw gt BB VOR VAR FREQuency on page 160 VAR Depth Sets the AM modulation depth of the 30Hz VAR signal Note The sum of Subcarrier depth
218. rbone subsystem User definable transmission band and support of single and multiple frequency transmission up to 11 frequency channels simultaneously for example for adja cent channel emissions measurements Configuration of GBAS application data for example the parameters of message type 2 and 4 incl the Final Approach Segment FAS data definition and Terminal Area Path TAP data Import of differential Global Navigation Satellite System GNSS data message type 1 and 11 Encoding timing and power settings according to the specification RTCA DO 246D Realtime signal changes for the flight navigation standards ILS VOR and DME Changing a parameter in the standards will cause an instant signal change in the R amp S SMBV without a measurement cylcle to calculate the RMS value of the baseband signal in order to set the correct RF level If the standards are switched ON for the first time or after every subsequent ON OFF sequence the measurement cycle will take place to determine the correct RF level Every subsequent parameter change in the standards will be performed without another measurement cycle in order to provide a continous signal output The ILS Option The R amp S SMBV K151 is a firmware application that adds functionality to generate sig nals in accordance with the the ground based instrument landing system ILS It pro vides lateral and vertical guidance to an aircraft approaching and landing on a runway
219. rence receivers Parameters lt Gsrr gt GW3R GW4R GW2R RST GW2R Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Ground Station Reference Receivers on page 32 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LFLocation COORdinates DECimal lt Longitude gt lt Latitude gt Defines the coordinates of the LTP FTP in decimal format Parameters lt Longitude gt float Range 180 to 180 Increment 1E 6 RST 0 GBAS Settings lt Latitude gt float Range 90 to 90 Increment 1E 6 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See LTP FTP Location Configuration on page 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig LFLocation COORdinates DMS lt LongitudeDeg gt lt LongitudeMin gt lt LongitudeSec gt lt LongitudeDir gt lt LatitudeDeg gt lt LatitudeMin gt lt LatitudeSec gt lt LatitudeDir gt Defines the coordinates of the LTP FTP in degrees minutes and seconds Parameters lt LongitudeDeg gt integer Range 0 to 180 RST 0 lt LongitudeMin gt integer Defines the longitude minutes Range 0 to 59 RST 0 lt LongitudeSec gt float Defines the longitude seconds Range 0 to 59 999 Increment 0 001 RST 0 lt LongitudeDir gt EAST WEST Defines the longitude direction RST EAST lt LatitudeDeg gt integer Defines the latitude degre
220. repair troubleshooting and fault elimina tion It contains all information required for repairing the instrument by the replacement of modules This manual can also be orderd in printed form see ordering information in the data sheet Release Notes The release notes describe new and modified functions eliminated problems and last minute changes to the documentation The corresponding firmware version is indicated on the title page of the release notes The current release notes are provided in the Internet Web Help The web help provides online access to the complete information on operating the R amp S SMBV and all available options without downloading The content of the web help corresponds to the user manuals for the latest product version Operating Manual 1176 8600 02 05 8 Typographical Conventions The web help is available on the R amp S SMBV product page at the Downloads gt Web Help area Application Notes Application notes application cards white papers and educational notes are further publications that provide more comprehensive descriptions and background informa tion The latest versions are available for download from the Rohde amp Schwarz website at http www rohde schwarz com appnotes 1 3 Typographical Conventions The following text markers are used throughout this documentation Convention Description Graphical user interface ele All names of graphical user interface elements on t
221. req Freq Freq Freq Freq Freq 19X 108 20 1043 980 61X 1085 1022 103X 115 60 1127 1190 19Y 108 25 1043 1106 61Y 1085 1148 1037 115 65 1127 1064 20 108 30 1044 981 62 1086 1023 104 115 70 1128 1191 20 108 35 1044 1107 62 1086 1149 104 115 75 1128 1065 21 108 40 1045 982 63 1087 1024 105 115 80 1129 1192 217 108 45 1045 1108 6 1087 1150 1057 115 85 1129 1066 22 108 50 1046 983 64 1088 1151 106 115 90 1130 1193 22 108 55 1046 1109 64 1088 1025 106 115 95 1130 1067 23 108 60 1047 984 65 1089 1152 107 116 00 1131 1194 23 108 65 1047 1110 65Y 1089 1026 1077 116 05 1131 1068 24 108 70 1048 985 66 1090 1153 108 116 10 1132 1195 24 108 75 1048 1111 66Y 1090 1027 108Y 116 15 1132 1069 25X 108 80 1049 986 67X 1091 1154 109X 116 20 1133 1196 25Y 108 85 1049 1112 67Y 1091 1028 109Y 116 25 1133 1070 26X 108 90 1050 987 68X 1092 1155 110X 116 30 1134 1197 26Y 108 95 1050 1113 68Y 1092 1029 110Y 116 35 1134 1071 27 109 00 1051 988 69 1093 1156 111 116 40 1135 1198 277 109 05 1051 1114 69 1093 1030 111 116 45 1135 1072 28 109 10 1052 989 70X 112 30 1094 1157 112 116 50 1136 1199 287 109 15 1052 1115 70 112 35 1094 1031 1127 116 55 1136 1073 29 109 20 1053 990 71 112 40 1095 1158 113 116 60 1137 1200 29 109 25 1053 1116 71 112 45 1095 1032 113 116 65 1137 1074
222. rity the trigger threshold and the input impedance of the trigger signal Remote command SOURce hw BB GBAS TRIGger SOURce on page 185 SOURce lt hw gt BB ILS TRIGger SOURce on page 185 SOURce hw BB VOR TRIGger SOURce on page 185 SOURce lt hw gt BB DME TRIGger SOURce on page 185 Sync Output to External Trigger enabled for Trigger Source External Enables disables output of the signal synchronous to the external trigger event R amp S SMBV instruments For two or more R amp S SMBVs configured to work in a master slave mode for synchro nous signal generation configure this parameter depending on the provided system trigger event and the properties of the output signal See below for an overview of the required settings Trigger Settings pical Applications All instruments are synchronous to the external trigger event System Trigger common External Trigger event the master and the slave instruments Sync Output to External Trigger ON All instruments are synchronous among themselves but starting the signal from first symbol is more important than synchronicity with external trigger event System Trigger common External Trigger event for the master and the slave instruments Sync Output to External Trigger OFF All instruments are synchronous among themselves System Trigger internal trigger signal of the master R amp S
223. s The pulse spacing is distributed randomly in the range of 60 us to about 1500 us according to EUROCAE EN 54 6 2 12 The squit ter pulses are constantly sent by the ground station in order to ensure proper operation and in order to ease synchronization of the aircraft interrogator to the ground station Parameters lt Squitter gt 0 1 OFF RST 0 Manual operation See Pulse Squitter on page 73 SOURce lt hw gt BB DME PINPut SOURce lt InputSource gt Selects the trigger mode for DME modulation signals DME Settings Parameters lt InputSource gt EXTernal PSENsor EXTernal The signals are triggered by an external trigger event The trig ger signal is supplied via the PULSE EXT connector PSENsor The signals are triggered by an external power sensor This mode is only available if SOURce lt hw gt BB DME MODE on page 164 is set to NTerrogation RST EXTernal Manual operation See Input Source on page 74 SOURce lt hw gt BB DME PINPut DELay Delay Sets the delay between the external trigger and the first DME output pulse 50 volt age point of first pulse Available only if SOURce hw BB DME PINPut SOURce is set to EXTernal For DME Reply mode this simulates the defined delay of the DME transponder and twice the run time of the signal from interrogator to transponder and back The delay is a measure of the range distance thus the two values are interdependent
224. s see chapter 4 3 Scheduling Settings on page 30 Refer to figure 3 3 for illustration on how a multi frequency TDMA scheduling is per formed in this implementation Time slots L J 2 L Jf 1 Center frequency MHz 109 325 109950 109975 110 00 2 ESTRENA 5 Frequency Number Fig 3 3 Example of a multi frequency TDMA scheduling Ground Based Augmentation System GBAS For step by step instruction refer to chapter 9 3 Generating a GBAS Signal for VDB Slot Detection on page 99 Power settings In the R amp S SMBV the following parameters have impact on the signal power of the time slots e RF output power Status Bar gt Level Defines the RMS level of the generated signal Relative power per time slot GABS gt Transmitters Configuration gt VDB gt Scheduling gt Pow Sets the relative power of a VDB per time slot TS Power generation mode GBAS gt Gated Power Mode Defines the way the absolute power of a VDB per time slot is calculated The absolute power of a single time slot depends on the power settings of the remaining time slots See example Calculating the power per time slot in Gated Power Mode gt on page 17 and example Calculating the power per time slot in Gated Power Mode gt On on 18 for explanation
225. s determined by the respective national ATC authority Distance Measurement Equipment DME Fig 3 7 Time characteristic of DME signal envelope for X and Y channel DME Interrogator The aircraft s DME interrogator sends a sequence of pulses that are received at the ground station and after a defined delay time are returned at a different frequency The frequency offset between the sent and received signal is always 63 MHz The receiver in the aircraft filters its own pulse sequence out of all received pulses and in this way determines the time difference between the transmitted and received pulse It then uses this time to calculate the slant range to the ground station The distance is usually indicated in nautical miles NM where 1 NM corresponds to 1852 02 m and a signal round trip time of 12 359 us As a result by taking the flight altitude above ground as well as the azimuth angle between the aircraft and ground station VOR sys tem into consideration it is possible to determine the precise position of the aircraft DME Transponder In the receiver the validity of all received pulses i e the pulse spacing must be consis tent with the channel is checked in the decoder A single pulse for example is fil tered out as an invalid interrogation and no reply to this pulse is sent After a valid DME double pulse is received i e after the 2nd pulse is received the receiver at first does not react to any further interrogations
226. s the length of the symbol space in seconds Available only if SOoURce lt hw gt BR ILS LOCalizer COMid TSCHema is set to USER Parameters lt Symbol gt float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Symbol Space on 59 SOURce lt hw gt BB ILS LOCalizer COMid TSCHema lt TSchema gt Sets the time schema for the COM ID signal In the standard time schema STD the set dot length determines the dash length three times the dot length whereas in the user time schema USER all length param eters can be set independently Parameters lt TSchema gt STD USER RST STD Manual operation See Time Schema on page 59 SOURce lt hw gt BB ILS LOCalizer COMid STATe State Switches on off the addittional COM ID signal Parameters lt State gt 0 1 OFF ON RST 0 Manual operation See State on page 58 SOURce lt hw gt BB ILS LOCalizer DDM COUPling Coupling Selects if the DDM value is fixed or is changed with a change of sum of modulation depths SDM see SOURce lt hw gt 1LS LOCalizer SDM on page 152 Parameters lt Coupling gt FIXed SDM RST FIXed Manual operation See DDM SDM Coupling on page 57 ILS Settings SOURce lt hw gt BB ILS LOCalizer DDM CURRent Current Sets the DDM value alternatively as a current by means of the ILS indicating instru ment The instrument current is calculated according to DDM
227. se time of the pulse 10 to 90 of the peak voltage Remote command SOURce lt hw gt BB DME RISE on page 169 Pulse Width Sets the pulse width 5096 to 5096 of peak voltage Remote command SOURce hw BB DHE WIDTh on 172 Pulse Fall Sets the fall time of the pulse 90 to 1096 of peak voltage Remote command SOURce hw BB DME FALL on page 165 Pulse Spacing Sets the spacing between the first and second pulse of a pulse pair the time between the half voltage points on the leading edge of each pulse Remote command SOURce lt hw gt BB DME PPS on page 167 Single Pulse Activates deactivates generation of a single test pulse Remote command SOURce hw BB DME SINGl1e on page 170 DME Analysis Available only for DME Mode gt Interrogation Accesses the DME Analysis dialog For a description of the available settings refer to chapter 7 2 4 DME Analysis on page 77 Receive Settings The dialog comprises the settings necessary to configure the receiving of the pulse Pulse Pair Spacing Tolerance Determines the pulse pair spacing tolerance If the spacing is e g 12 us the reply station will see a pulse pair with a spacing of 11 5 to 12 5 us as a valid interrogation pair and will respond to it Otherwise no reply will be generated Remote command SOURce lt hw gt BB DME PPS page 167 System Conf
228. ser Sets the length of a Morse dash in milliseconds Remote command SOURce hw BB DME ID DASH on 178 Symbol Space Available only for Time Schema User Sets the length of a symbol space in milliseconds Remote command SOURce hw BB DHE ID SYMBo1 on page 180 Letter Space Available only for Time Schema User Sets the length of a letter space in milliseconds Remote command SOURce hw BB DME ID LETTer on 179 Adjustment Factors The dialog comprises the settings necessary to normalize the setup when triggering the instrument with a power sensor Normalize Setup Power Sensor Adjustment Factor Internal Adjustment Factor Used Adjustment Factor Internat m In order to calibrate measurement setup regarding external pulse input and internal processing delays the Normalize Setup functionality can be used For DME operation in combination with a power sensor as input channel the exact trig ger point has to be known to compensate for the pulse shape and the internal delay of the Sensor As shown in figure 7 3 the R amp S SMBV gets interrogation pulses from an external DUT using the same pulse shape According to the settings the R amp S SMBV should send a reply pulse pair 50us after receiving the interrogation pulse pair System Configuration Settings In order to to guarantee that the 50 edge levels are exactly 50us separated from
229. sh length three times the dot length whereas in the user time schema USER all length param eters can be set independently Parameters lt TSchema gt STD USER RST STD Manual operation See Time Schema on page 81 SOURce lt hw gt BB DME ID STATe State Switches on off the addittional COM ID signal Parameters lt State gt 0 1 RST 0 Manual operation See COM ID State on page 80 Trigger Settings EXTernal lt ch gt The numeric suffix to EXTernal lt ch gt distinguishes between the external trigger via the TRIGGER 1 suffix 1 and TRIGGER 2 suffix 2 connector 5 lt gt 00 00 arians 182 5 lt gt 2 2 1 212 44 140066 182 5 lt gt 115 0 0 nen eene 182 gt cra tdeo t terere 182 SOURce hw FBB DME TRIGger EXEGCUte 2 m tree reed 183 5 lt gt 183 SOURce lt hw BBILS T RIG0e EXECU 183 SOURce hw EBBIVOR TRIGger EXEQCu
230. surementtype gt measurement type lt gt ephemeris CRC lt dgnssvector gt lt data gt One lt dgnssvector gt per each of the N measurement blocks GNSS _Standard gt lt SVID gt lt Issue of Data IOD Pseudor ange Correction PRC in m gt lt Range Rate Correction RRC in m s gt GNSS Standard G for GPS R for Glonass and S for SBAS Glossary Specifications and References Symbols 1MA193 1 193 0 Application Note Aeronautical radio navigation measurement solutions RTCA DO 246D GNSS Based Precision Approach Local Area Augmentation System LAAS Signal in Space Interface Control Document ICD List of Commands lt gt 173 SOURce lt hw gt BB DME ANALYsis EFFICIGNCY 2 173 50 0 lt gt cece ee ce 5 lt gt 5 SOURce lt hw gt BB DME ANAL TIME SOURce lt hw gt BB DME ANALysis GATE LENGth lt gt t 177 5 lt gt 174 500 lt gt
231. t 55 136 lt gt 136 5 lt gt 2 137 SOURce hw BB GBAS FILTer PARameter SPHase aas 137 SOURces lt hw gt BB GBAS 136 SOURce lt hw gt BB GBAS GPOW SOURce lt hw gt BB GBAS MFCHannels SOURceshw gt BB GBAS MSEIMI MPG sti ccscinccscenesntssansscenses concen ceasensaenssviguticane con cos 138 SOURce lt hw BB GBAS MSEU SRATC eter rtp cen E n 138 SOURceshw BB GBAS NOFRamiIe87 cotone rrt rere ag RR EE CER EE ERR 119 SOURceshw gt BB GBAS RRE SC trocken p ERES Sp HY Hb eve ek EDI SOURceshw BB GBAS SGMTI rette teret ren ipee eroe i CX ERR SOURce lt hw gt BB GBAS SETTing CATalog ESOURceshw gt BB GBAS SE Ting lt gt th ta SOURce lt hw BB GBAS SET 5 SOURceshw BB GBAS SET Ting STORG EAST c
232. t BB ILS MBEacon FREQuency on page 155 Marker Frequency Sets the modulation frequency of the marker signal Remote command SOURce hw BB ILS MBEacon MARKer FREQuency on page 155 Marker Depth Sets the modulation depth of the marker signal Remote command SOURce hw BB ILS MBEacon MARKer DEPTh on page 155 System Configuration Settings Marker Beacons 5 4 2 Settings The dialog comprises the settings necessary to configure the COM ID settings availa ble for the ILS marker beacon modulation 1 020 0 kHz State Enables disables an additional communication identification COM ID signal Remote command SOURce hw BB ILS MBEacon COMid STATe page 155 Show Hide Details Reveals the detailed setting options for the COM ID signal Once the details are revealed the labeling on the button changes to Hide Details Use this to hide the detailed setting options display again Code Sets the coding of the COM ID signal by the international short name of the airport e g for the Munich airport If coding is entered the COM ID tone is sent uncoded key down Remote command SOURce lt hw gt BB ILS MBEacon COMid CODE page 152 Frequency Sets the frequency of the COM ID signal Remote command SOURce lt hw gt 115 1 FREQuency page 153 Sets
233. t BB DME ANALysis IAFactor page 177 Used Adjustment Factor Selects which internal adjustment factor should be used Internal The mathematically calculated value of the time when the pulse rea ches its 50 level The power sensor trigger hysteresis and the small delay from the power sensor trigger output to the R amp S SMBV are not considered by the calculation Power Sen The during a normalization setup measured adjustment factor sor Remote command SOURce lt hw gt BB DME ANALysis UAFactor on 178 Trigger Settings 8 Trigger Marker Clock Settings The Trigger In section is where the trigger for the signal is set Various parameters will be provided for the settings depending on which trigger source internal or exter nal is selected The current status of signal generation Running or Stopped is indicated for all trigger modes The Marker Mode section is where the marker signals at the MARKER output con nectors are configured The Marker Delay section is where a marker signal delay can be defined either with out restriction or restricted to the dynamic section i e the section in which it is possi ble to make settings without restarting signal and marker generation The Clock Settings section is where the clock source is selected and in the case of an external source the clock type The buttons in the last section lead to submenu for general trigger clock and map
234. t BB VOR FREQuency MODE ts SOURce lt hw gt BB VOR IGAO CHANG ESOURCeshw gt BBEV OR MODE gt E BB VORSPRESet rti recreo nace ied e Rt ete BB VOR PRESet sein renta rr A a RU EXEC ex PED gt DEVlatlon cacao to pietate re orna 159 SOURceshw BB VOR SET TING CA Lalog neon ttr trente rere 108 SOURce lt hw gt BB VOR SETTing DELete SOURceshw gt BBAVOR SE MING cecus seco oor rn SOURcCeshwsEBB VOR SETTitig S TORO eerta teet tet pen e tp tee de D tpe BB VOR SET Tirnig STORG FAST i reet te Eten i re Een d Ed eld 110 BB VOR STATO 108 SOURCeshws tco hee reet rt c 157 SOURceshw BB iuc ira er see aeter 159 SOURce lt hw gt BB VOR SUBCarrier FREQuency 160 SOURce lt hw gt BB VOR TRIGgerARMIEXECUtGC ce dee tr pt et aces eue eie 182 SOURce lt hw gt BB VOR TRIGgerEXEGCUIe re rrr ect aiden 183 SOURce hw BB VOR TRIGger EXTernal SYNChronize OUTPut essen 183 SOURce hw BB VOR TRIGger OBASeband
235. t Count gt integer Range 1 to 10000 Increment 1 RST 100 Manual operation See Measurement Time page 78 SOURce lt hw gt BB DME ANALysis GATE EDELay lt Edelay gt Sets the expected reply delay The expected reply delay and the gate length determine the measurement window expected reply delay gate length 2 DME Settings Parameters lt Edelay gt float Range 0 to 150E 6 Increment 1E 7 RST 50E 6 Manual operation See Expected Reply Delay on page 78 SOURce lt hw gt BB DME ANALysis GATE LENGth Length Sets the gate length for the measurement window The measurement gate settings determine the measurement window expected reply delay gate length 2 Only reply pulses for which the 50 voltage point of the rising edge of the first pulse is within the measurement window are used to evaluate the delay time and reply efficiency The delay measurement is averaged within the mea surement cycle The reply efficiency is calculated once for each measurement cycle The gate length is 1 us and the expected reply delay is 50 us The measurement win dow lies in the range between 49 5 and 50 5 us Only pulse pairs are used for the mea surement whose 50 voltage point of the rising edge of the first pulse is within this range Gate length 2 Expected reply delay 50us 0546 m gt gt oU 49 508 505 Measurement window 1us Parameters lt Length gt integer Range 100E 9 to 326E 6 Increm
236. t signal with the left lobe 90 2 signal component of the ILS LOC signal The modulation depth of the 90Hz signal results from the settings of parameters Sum of Depth and DDM Depth according to Fly gt Right AM 90 Hz 0 5 x SDM DDM 100 Fly gt Left AM 90 Hz 0 5 x SDM DDM x 100 150 Hz Amplitude modulation of the output signal with the right lobe 150Hz signal component of the ILS LOC signal The modulation depth of the 150Hz signal results from the settings of parameters Sum of Depth and DDM Depth according to parameter Fly Right AM 150 Hz 0 5 x SDM DDM x 100 parameter Fly Left AM 150 Hz 0 5 x SDM DDM x 100 Remote command SOURce lt hw gt BB ILS LOCalizer MODE on 151 Left Frequency Sets the modulation frequency of the antenna lobe arranged at the left viewed from the air plane Remote command SOURce lt hw gt BB ILS LOCalizer LLOBe FREQuency page 150 Right Frequency Sets the modulation frequency of the antenna lobe arranged at the right viewed from the air plane Remote command SOURce lt hw gt BB ILS LOCalizer RLOBe FREQuency page 151 Left Right Phase Sets the phase between the modulation signals of the left and right antenna lobe The zero crossing of the right 150Hz signal serves as a reference The angle refers to the period of the signal of the right antenna lobe Remote command SOURce hw
237. t subsystem gt SETTing LOAD SOURce lt hw gt BB DME SETTing LOAD Filename SOURce lt hw gt BB GBAS SETTing LOAD Filename SOURce lt hw gt BB ILS SETTing LOAD Filename SOURce lt hw gt BB VOR SETTing LOAD Filename Loads the selected file from the default or the sepcified directory Load are files with extension dme gbas ils vor Refer to section MMEM Subsystem in the R amp S SMBV manual for general information on file handling in the default and a specific directories Setting parameters Filename string Usage Setting only lt subsystem gt SETTing STORe SOURce lt hw gt BB DME SETTing STORe Filename SOURce lt hw gt BB GBAS SETTing STORe Filename SOURce lt hw gt BB ILS SETTing STORe Filename SOURce lt hw gt BB VOR SETTing STORe Filename Stores the current settings into the selected file the file extensions dme gbas ils vor is assined automatically Refer to section Subsystem in the R amp S SMBV operating manual for general information on file handling in the default and a specific directories Setting parameters Filename string Usage Setting only lt subsystem gt SETTing STORe FAST SOURce lt hw gt BB DME SETTing STORe FAST lt FastSave gt SOURce lt hw gt BB GBAS SETTing STORe FAST Fast Operating Manual 1176 8600 02 05 109 10 2 10 2 1 GBAS Settings SOURce lt hw gt BB ILS SETTing STORe FAST
238. t vertical alert limit Parameters lt Fvaa gt float Range 0 to 25 4 Increment 0 1 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See FAS Vertical Alert Limit Approach Status on page 39 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig GCID lt Gcid gt Sets the ground station continuity integrity designator Parameters lt Gcid gt FC FD RST FC Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Ground Station Continuity Integrity Designator on 32 GBAS Settings SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig GPANgle lt Gpa gt Sets the glide path angle Parameters lt Gpa gt float Range 0 to 90 Increment 0 01 RST 0 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Plan View Profile View Parameters on page 36 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig GSADesignator lt Gsad gt Sets the ground station accuracy designator Parameters lt Gsad gt GADA GADB GADC RST GADA Example see example Generating a GBAS signal for message format detection on page 111 Manual operation See Ground Station Accuracy Designator on page 32 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig GSRReceivers lt Gsrr gt Sets the number of ground station refe
239. tandards and digital modu lation modes in the same path Remote command lt subsystem gt STATe page 108 Set To Default Calls the default settings The values of the main parameters are listed in chapter A 3 Default Settings on page 199 Remote command lt subsystem gt PRESet on page 108 General Settings Save Recall Accesses the Save Recall dialog i e the standard instrument function for storing and recalling the complete dialog related settings in a file The provided navigation possibil ities in the dialog are self explanatory The file name and the directory it is stored in are user definable the file extension is however predefined Remote command lt subsystem gt SETTing CATalog on page 108 SETTing STORe on page 109 SETTing STORe FAST 109 lt subsystem gt SETTing LOAD on page 109 lt subsystem gt SETTing DELete page 108 lt subsystem gt lt subsystem gt Data List Management Accesses the Data List Management dialog In this dialog you can create and edit a data list The instrument stores all data lists as files with the predefined file extension dm iqd You can define the file name and the directory they are stored in To use an existing data list as a data source e select VDB Transmitters Configuration gt VDB gt Data Source gt Data List and select Data Config gt Select Data List gt navigate to the list file dm_iqd gt Select Genera
240. te inedia niaii 134 lt gt lt gt 134 lt lt gt 5 lt gt 8 0 044 20101 EEEn 134 500 lt gt lt gt 136 5 lt gt lt gt 135 SOURce hw BB GBAS VDB ch MCONfig WAYPoint PREDefined FILE esses 135 5 lt gt lt gt 135 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAY Point USER FILE 5 lt gt 6 5 lt gt 5 15 lt 50 lt gt lt gt 6 5 lt gt 5 00 SOURceshw E BB GBAS VDBSChP SSID ii tc teret SOURceshw EBB GBAS VDBSch S lAT6 acu ttti eren rcr ter Sen nate eher eese ESOURceshw EBB GBAS VERSIOnDP iarciet reiten tee id ere tae 115 SOURceshws BB GBAS WAVeform C REalte SOURce lt hw gt BB GBAS TRIGger SEQuence
241. te 1 doin 183 5 lt gt 183 lt gt 9 183 lt gt 183 Trigger Settings SOURce hw BB VOR TRIGger EXTernal SYNChronize OUTPut eese 183 SOURce hw BB DME TRIGger OBASeband DELay sse 184 lt gt 5 184 lt gt 9 184 lt gt 184 85 lt gt 184 5 lt gt 1 184 5 lt gt 115 2
242. te Waveform File With enabled signal generation triggers the instrument to store the current settings as an ARB signal in a waveform file Waveform files can be further processed by the ARB and or as a multi carrier or a multi segment signal The file name and the directory it is stored in are user definable the predefined file extension for waveform files is wv Remote command SOURce lt hw gt BB GBAS WAVe form CREate on page 115 Enables using of SCAT I header information instead of the default LAAS GBAS header The modulation and TDMA schemes of both systems are identical the header start byte is set as listed in table 4 1 Table 4 1 Header start byte Landing system Header start byte LAAS GBAS OxAAh 0x99h Remote command SOURce lt hw gt BB GBAS SCATi on 115 General Settings Multiple Frequency Channels Enables the configuration of VHF Data Broadcast VDB transmissions on more than one frequency channels See Carrier frequencies and frequency channels on page 15 Remote command SOURce lt hw gt BB GBAS MFCHannels page 115 Gated Power Mode Enables gated power mode see Power settings page 17 Remote command SOURce lt hw gt BB GBAS GPOW on page 116 Sample Rate Variation Sample Rate Info Sets displays the used sample rate variation You can set the sample rate value in the Filter Clipping Sett
243. ternal or external causes a restart AAUTo The modulation signal is generated only when a trigger event occurs After the trigger event the signal is generated continu ously Signal generation is stopped with command SOUR BB xxx TRIG ARM EXEC xxx stands for ILS VOR or DME and started again when a trigger event occurs ARETrigger The modulation signal is generated only when a trigger event occurs The device automatically toggles to RETRigger mode Every subsequent trigger event causes a restart Signal generation is stopped with command SOUR BB xxx TRIG ARM EXEC and started again when trig ger event occurs SINGIe The modulation signal is generated only when a trigger event occurs Then the signal is generated once to the length specified with command SOUR BB xxx TRIG SLEN Every subsequent trigger event causes a restart RST AUTO Manual operation See Trigger Mode on page 85 10 7 Marker Settings DME SOURce hw BB DME MARKer ch DELay sss nennen 187 ESOURce shw E BB DME MARKerscehP MODE riti petat 188 5 lt gt lt gt 188 5 lt gt lt gt 188 SOURce lt hw gt BB DME MARKer lt ch gt DELay lt Delay gt Sets the delay between th
244. tet rene 117 SOURceshw BB GBAS VDBsch INSert 1 roter rnm iib 116 SOURce hw BB GBAS VDB ch MCONfig AID esee nennen rennen 120 SOURce hw BB GBAS VDB ch MCONfig APDesignator eese 120 SOURce hw BB GBAS VDB ch MCONfig ATCHeight essent 120 SOURce hw BB GBAS VDB ch MCONfig ATUSelector esee 120 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig CWAThreshold essen 121 SOURce hw BB GBAS VDB ch MCONfig DFLocation COORdinates DECimal 121 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DFLocation COORdinates DMS 5 lt gt 6 5 lt gt 124 SOURce hw BB GBAS VDB ch MCONfig DG PREDefined CATalog see 123 lt gt lt gt 123 lt gt lt gt 122 SOURce hw BB GBAS VDB ch MCONfig DG USER CATalog sss 123 SOURce hw BB GBAS VDB ch MCONfig DG USER FILE seen 123 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig DLOFfset 5 lt gt 6 5 lt gt
245. the 90 Hz and the 150 Hz tone See also SOURce lt hw gt BB ILS LOCalizer DDM DEPTh page 149 Parameters lt Pct gt float Range 80 0 to 80 0 Increment 0 01 RST 0 Manual operation See DDM Percent page 57 SOURce lt hw gt BB ILS LOCalizer DDM POLarity lt Polarity gt Sets the polarity for DDM calculation see SOURce hw BB ILS LOCalizer DDM DEPTh on page 149 The DDM depth calculation depends on the selected polarity e Polarity 90 Hz 150 Hz default setting DDM AM 90 Hz AM 150 Hz 100 Polarity 150 Hz 90 Hz DDM AM 150 Hz AM 90 Hz 100 Parameters lt Polarity gt P90_150 150 90 RST P90_ 150 Manual operation See DDM polarity on page 54 SOURce lt hw gt BB ILS LOCalizer DDM DEPTh Depth Sets the difference in depth of modulation between the signal of the upper left lobe 90 Hz and the lower right lobe 150 Hz The maximum value equals the sum of the mod ulation depths of the 90 Hz and the 150 Hz tone The following is true ILS LOC DDM DEPTh AM 90Hz AM 150Hz 100 A variation of the DDM value automatically leads to a variation of the DDM value in dB and the value of the instrument current Parameters lt Depth gt float Range 0 4 to 0 4 Increment 1E 4 RST 0 Manual operation See DDM Depth on 57 ILS Settings SOURce lt hw gt BB ILS LOCalizer FREQuency lt CarrierFreq gt Sets th
246. the channel that is simulated Standard compliant X and Y channels differ in the spacing between the two pulses of the pulse pair and the reply delay of the ground station see chapter A 2 3 DME Channel Frequencies on page 196 ICAO indicates the ICAO channel parameters below for selecting the correct channel System Configuration Settings Table 7 1 Pulse spacing and reply delay Channel Pulse spacing Pulse spacing Reply delay Reply delay interrogation reply mode 1st pulse 2nd pulse mode X 12 5 12 5 50 us 50 us Y 36 us 30 us 56 us 50 us Remote command SOURce lt hw gt BB DME 1 on page 165 Carrier Frequency Available only for Channel Mode gt X Channel Channel Mode gt Y Channel Sets the carrier frequency of the signal Remote command SOURce lt hw gt BB DME FREQuency page 166 ICAO Channel Available only for Channel Mode gt ICAO Selects the corresponding channel as indicated by ICAO Refer to chapter A 2 3 DME Channel Frequencies on page 196 for an overview of the standard defined DME transmitting frequencies Remote command SOURce hw BB DME ICAO CHANnel on page 166 Range Distance Available only for DME Mode gt Reply Sets the simulated distance between the interrogator and the transponder for reply mode The distance can be given in nautic miles NM or us 1 nm is 1852 01 meters and corresponds t
247. the file name is required Example see example Generating a GBAS signal containing message type 4 on page 112 Usage Setting only Manual operation See Waypoint File on page 40 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint USER FILE Filename Loads the selected user defined file extension txt Per default the instrument stores user defined files in the var user directory Use the command MMEM CDIRectory to change the default directory to the currently used one 10 2 6 GBAS Settings Setting parameters lt Filename gt string For files stored in the default directory only the file name is required Example see example Generating a GBAS signal containing message type 4 on page 112 Usage Setting only Manual operation See Waypoint File on page 40 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig WAYPoint FILE Queries the currently selected waypoint file Return values lt Filename gt string filename with file extension txt Example see example Generating a GBAS signal containing message type 4 on page 112 Usage Query only Manual operation See Waypoint File on page 40 Filter Clipping Modulation Settings SOURce lt hw gt BB GBAS FILTer TYPE Type The command selects the filter type Parameters lt Type gt RCOSine COSine GAUSs LGAuss CONE COF705 COEQualizer COFequalizer C2K3x APCO25 SPHase RECTangle PGAuss LPASs
248. the period of the COM ID signal in seconds Remote command SOURce hw BB ILS MBEacon COMid PERiod on page 154 Depth Sets the AM modulation depth of the COM ID signal Remote command SOURce hw BB ILS MBEacon COMid DEPTh on page 153 System Configuration Settings Marker Beacons Time Schema Sets the time schema for the COM ID signal e Standard The set dot length determines the length of the dash the symbol space and letter Space User You can set each length value seperately Remote command SOURce hw BB ILS MBEacon COMid TSCHema on page 154 Dot Length Sets the length of a Morse dot in seconds For Time Schema Standard this value determines also the length of the dash 3xDot length symbol space Dot length and letter space 3xDot length Remote command SOURce lt hw gt BB ILS MBEacon COMid DOT on page 153 Dash Length Available only for Time Schema User Sets the length of a Morse dash in milliseconds Symbol Space Available only for Time Schema User Sets the length of a symbol space in milliseconds Remote command SOURce hw BB ILS MBEacon COMid SYMBol on page 154 Letter Space Available only for Time Schema User Sets the length of a letter space in milliseconds Remote command SOURce hw BB ILS MBEacon COMid LETTer on page 153 General Settings 6 VOR Configuration and Settings gt
249. tings SOURce lt hw gt BB DME ID PPS lt PulsePairSpacin gt Sets the morse pulse pair spacing Parameters lt PulsePairSpacin gt float Range 2 6 to 300E 6 Increment 20 9 RST 100E 6 Manual operation See Pulse Pair Spacing on page 81 SOURce lt hw gt BB DME ID PERiod Period Sets the period of the COM ID signal in seconds Parameters Period integer Range 10 to 120 RST 40 Manual operation See Period page 81 SOURce lt hw gt BB DME ID PRESet Sets the default settings for the ID signal Usage Event SOURce lt hw gt BB DME ID RATE Rate Sets the pulse repetition rate of the ID sequence Parameters lt Rate gt float Range 100 to 10E3 Increment 0 01 RST 1350 Manual operation See Rate on 81 SOURce lt hw gt BB DME ID SYMBol Symbol Sets the length of the symbol space in seconds Available only if SOURce lt hw gt BB DME ID is set to USER 10 6 Trigger Settings Parameters lt Symbol gt float Range 0 05 to 1 Increment 1E 4 RST 0 1 Manual operation See Symbol Space on page 82 SOURce lt hw gt BB DME ID TSCHema lt TSchema gt Sets the time schema for the COM ID signal In the standard time schema STD the set dot length determines the da
250. tings Manual operation See Subcarrier Depth on page 66 SOURce lt hw gt BB VOR SUBCarrier FREQuency Frequency Sets the frequency of the FM carrier Parameters lt Frequency gt float Range 5E3 to 15E3 Increment 0 01 RST 9 96E3 Manual operation See Subcarrier Frequency on page 66 SOURce lt hw gt BB VOR VAR FREQuency Frequency Sets the frequency of the variable and the reference signal As the two signals must have the same frequency the setting is valid for both signals Parameters lt Frequency gt float Range 10 to 60 Increment 0 01 RST 30 Manual operation See VAR REF Frequency on page 66 SOURce lt hw gt BB VOR VAR DEPTh Depth Sets the AM modulation depth of the 30Hz variable signal Parameters Depth float Range 0 to 100 Increment 0 1 RST 30 Manual operation See VAR Depth on page 66 SOURce lt hw gt BB VOR BANGle lt BAngle gt Sets the bearing angle between the VAR signal and the reference signal The orienta tion of the angle can be set with SOURce lt hw gt BB VOR BANGle DIRection Parameters lt BAngle gt float Range 0 to 360 Increment 0 01 RST 0 Manual operation See Bearing Angle on page 67 VOR Settings SOURce lt hw gt BB VOR BANGle DIRection lt Direction gt Sets the reference position of the phase information Parameters lt Direction gt FROM TO FROM The bearing angle is measured between th
251. track to fix TF and radius to fix RF legs and pro vides additional support for terminal area operations E GBAS YDB 1 Message Configuration xl Message 4 On al Message Type 4 parameters FAS Data Set AP Data Set On TAP Data Set Reference Path Data Selector Reference Path ID Number of Path Paints N Waypoint File Braunschweig FAS RPDS or Continuation Link 3 TAP Vertical Alert Limit Status 500 TAP Lateral Alert Limit Status 200 21 Differential GNSS On Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig TDSState on 134 Reference Path Data Selector TAP Data Set Sets the reference path data selector that is a numerical identifier that is unique on a frequency in the broadcast region and used to select the TAP Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPDT on page 132 Reference Path ID TAP Data Set Sets the reference path identifier as three or four alphanumeric characters used to des ignate the reference path Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPIT on page 133 Number of Path Points N TAP Data Set Indicates the total number of path points included in this TAP Remote command SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig NOPPoint 131 Waypoint File TAP Data Set Accesses the Select Waypoint File dialog to select
252. ts the clipping method A graphic illustration of the way in which these two meth ods work is given in the dialog Vector i The limit is related to the amplitude i The and components are mapped together the angle is retained Scalar i q The limit is related to the absolute maximum of all the and values i The and Q components are mapped separately the angle changes Remote command SOURce lt hw gt BB GBAS CLIPping MODE on 138 4 6 Global Settings The buttons in this section lead to dialogs for general trigger clock and mapping set tings Global Trigger Clock Settings Calls the Global Trigger Clock Input Settings dialog This dialog is used among other things for setting the trigger threshold the input impe dance and the polarity of the clock and trigger inputs The parameters in this dialog affect all digital modulations and standards and are described in chapter Global Trigger Clock Input Settings in the Operating Manual General Settings 5 ILS Configuration and Settings gt access this dialog select Baseband Block gt ILS 5 1 General Settings This dialog provides access to the general settings of the ILS standard like enabling the standard and selecting the ILS component Eix Set To Default Save Recall ILS Component Glidescope j System Configuration Trigger Marker Auto Clock Inter
253. ts the reference path data selector Parameters lt Rpdt gt integer Range 0 to 254 RST 1 Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Reference Path Data Selector on page 40 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPIF lt Rpif gt Sets the reference path identifier for FAS Parameters lt Rpif gt string three or four alphanumeric character Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Reference Path ID on page 37 GBAS Settings SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RPIT lt Rpit gt Sets the reference path identifier for TAP Parameters lt Rpit gt string three or four alphanumeric characters Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Reference Path ID on page 40 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig RUINdicator Ruin Sets the route indicator Parameters lt Ruin gt a single upper case alphabetic character Allowed are letters excluding and or the space charac ter Example see example Generating a GBAS signal containing message type 4 on page 112 Manual operation See Route Indicator on page 37 SOURce lt hw gt BB GBAS VDB lt ch gt MCONfig
254. uA DDM 857 1 uA A variation of the instrument current automatically leads to a variation of the DDM value and the DDM value in dB Parameters Current float Range 9 6775E 4 to 9 6775E 4 Increment 1E 7 RST 0 Manual operation See DDM Current on page 56 SOURce lt hw gt BB ILS LOCalizer DDM DIRection Direction Sets the simulation mode for the ILS LOC modulation signal A change of the setting automatically changes the sign of the DDM value Parameters lt Direction gt LEFT RIGHt LEFT The 150 Hz modulation signal is predominant the DDM value is negative the airplane is too far to the right it must turn to the left RIGHT The 90 Hz modulation signal is predominant the DDM value is positive the airplane is too far to the left it must turn to the right RST LEFT Manual operation See Fly on page 56 SOURce hw BB ILS LOCalizer DDM LOGarithmic lt Logarithmic gt Sets the depth of modulation value for the ILS LOC in dB See also SOURce lt hw gt BB ILS LOCalizer DDM DEPTh page 149 Parameters lt Logarithmic gt float Range 999 9 to 999 9 Increment 1E 4 RST 0 Manual operation See DDM Logarithmic on page 57 ILS Settings SOURce lt hw gt BB ILS LOCalizer DDM PCT Pct Sets the difference in depth of modulation between the signal of the left lobe 90 Hz and the right lobe 150 Hz The maximum value equals the sum of the modulation depths of
255. utive slave instruments must have the same length and type Avoid unnecessary cable length and branching points None The instrument is working in stand alone mode e Sync Master The instrument provides all connected instruments with its synchronisation includ ing the trigger signal and reference clock signal e Sync Slave The instrument receives the synchronisation and reference clock signal from another instrument working in a master mode Remote command SOURce lt hw gt BB GBAS CLOCk SYNChronization MODE on page 193 SOURce lt hw gt BB ILS CLOCk SYNChronization MODE page 193 B B SOURce lt hw gt BB VOR CLOCk SYNChronization MODE on 193 SOURce lt hw gt BB DME CLOCk SYNChronization MODE 193 Clock Settings Set Synchronization Settings for R amp S SMBV only Performs an automatic adjustment of the instrument s settings required for the synchro nization mode selected with the parameter Synchronization Mode Remote command SOURce lt hw gt BB GBAS CLOCk SYNChronization EXECute on page 192 SOURce lt hw gt BB ILS CLOCk SYNChronization EXECute on page 192 SOURce lt hw gt BB VOR CLOCk SYNChronization EXECute on page 192 SOURce lt hw gt BB DME CLOCk SYNChronization EXECute on page 192 Clock Source Selects the clock source Internal The internal clock reference is used to generate the symbol
256. x stands for ILS VOR or DME input is made in terms of samples It is possible to output deliberately just part of the frame an exact sequence of the frame or a defined number of repetitions of the frame Parameters lt SeqLength gt integer Range 1 samples to 2432 1 samples RST 100 Manual operation See Trigger Signal Duration on page 86 SOURce lt hw gt BB GBAS TRIGger SLUNit lt Slunit gt Sets the units the trigger sequence length is exprecced in Parameters lt Slunit gt SEQuence SAMPle RST SEQuence Manual operation See Signal Duration Unit on page 86 SOURce lt hw gt BB DME TRIGger SOURce lt TriggerSource gt SOURce lt hw gt BB GBAS TRIGger SOURce Source SOURce lt hw gt BB ILS TRIGger SOURce lt TriggerSource gt SOURce lt hw gt BB VOR TRIGger SOURce lt TriggerSource gt Selects the trigger source Parameters lt TriggerSource gt INTernal EXTernal INTernal manual trigger or TRG EXTernal trigger signal on the TRIGGER connector RST INTernal Manual operation See Trigger Source on page 87 SOURce lt hw gt BB DME TRIGger EXTernal lt ch gt DELay Delay SOURce lt hw gt BB GBAS TRIGger EXTernal lt ch gt DELay Delay SOURce hw BB ILS TRIGger EXTernal ch DELay Delay SOURce hw BB VOR TRIGger EXTernal ch DELay Delay Sets the trigger delay Trigger Settings Parameters lt Delay gt float Range 0 to 6553

Download Pdf Manuals

image

Related Search

Related Contents

Tel Scope™™™ - T3 Innovation  Anaphylaxie – informer peut sauver des vies  user manual for internet banking - Intesa Sanpaolo Bank Albania  OPERATING INSTRUCTIONS  DREAM Sidecar Installation and User Manual  Manuel installation plaque de cuisson in[...]  User Manual Carbo 1000  Configuration Guide For the Agilent TS-5500 Family of  AS M Owner`s Manual Italian  Les aides attribuées par l`Ircantec en 2015  

Copyright © All rights reserved.
Failed to retrieve file