Home

Electronic Control Transmission (ECT)

image

Contents

1. Pattern PWR Terminal Voltage nonmas O wy Page 1 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION The ECU has a PWR terminal but does not have a Normal terminal When Power is selected 12 volts are applied to the PWR terminal of the ECU and the power light illuminates When Normal is selected the voltage at PWR is 0 volts When the ECU senses 0 volts at the terminal it recognizes that Normal has been selected Beginning with the 1990 MR2 and Celica and the 1991 Previa the pattern select switch was discontinued In the Celica and Previa systems several shift patterns are stored in the ECU memory Utilizing sensory inputs the ECU selects the appropriate shift pattern and operates the shift solenoids accordingly The MR2 and 1993 Corolla have only one shift pattern stored in the ECU memory Neutral Start Switch The ECT ECU receives information on the gear range into which the transmission has been shifted from the shift position sensor located in the neutral start switch and determines the appropriate shift pattern The neutral start switch is actuated by the manual valve shaft in response to gear selector movement Neutral Start Switch Neutral Start Switch ECT ECU ECU monitors gear position through the neutral start switch Ignition Switch Shift Lever Position Indicator Lights The ECT ECU only monitors positions T and L If
2. depressed it sends a signal to the STP terminal of the ECT ECU informing it that the brakes have been applied Stop Light Switch From PES Stop Light Switch The ECU cancels torque converter lock up and Neutral to Drive squat control based on the stop light switch Brake Pedal STP Terminal Voltage The ECU cancels torque converter lock up when the brake pedal is depressed and it cancels N to D squat control when the brake pedal is not depressed and the gear selector is shifted from neutral to drive Overdrive Main Switch The overdrive main switch is located on the gear selector It allows the driver to manually control overdrive When it is turned on the ECT can shift into overdrive When it is turned off the ECT is prevented from shifting into overdrive Overdrive Main Switch Allows driver to manually control overdrive Contacts of O D Dorr Main Switch O D Gear Enabied Disabled O D OFF Indicator Light Page 9 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION O D Main Switch ON When the O D switch is in the ON position the electrical contacts are actually open and current from the battery flows to the OD2 terminal of the ECT ECU as shown below Overdrive 0 D E Main Switch ON Battery ECT ECU When O D main switch is X O D OFF on OD2 terminal has 12 v o gt Indicator O D Main Swit
3. pulled up allowing line pressure fluid to drain The operation of these solenoids by the ECT ECU is described on pages 16 19 No 3 Solenoid Valve This solenoid valve is mounted on the transmission exterior or valve body It controls line pressure which affects the operation of the torque converter lock up system This solenoid is either a normally open or normally closed solenoid The A340E A340H A540E and A540H transmissions use the normally open solenoid No 4 Solenoid Valve This solenoid is found exclusively on the A340H transfer unit described on page 152 of this book This solenoid is a normally closed solenoid which controls the shift to low 4 wheel drive It is controlled by the ECT ECU when low 4 wheel drive has been selected at vehicle speeds below 18 mph with light throttle opening Page 11 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Functions of ECT ECU Control of Shift Timing The components which make up this system include e OD main switch e OD Off indicator light e ECT ECU e Water temperature sensor e Cruise control ECU e No 1 and No 2 solenoid valves shift solenoids Overdrive Control System ECT ECT ECU Overdrive Main Switch OD2 S No 1 Solenoid Valve S2 No 2 Solenoid Vaive Lose SO ANE Cruise Control ECU Water Engine Temp ECU OD1 Sensor The ECU controls No 1 and No 2 solenoid valves based on vehicle speed th
4. received no mandatory lock up system cancellation signal The ECU controls lock up timing in order to reduce shift shock If the transmission up shifts or down shifts while the lock up is in operation the ECU deactivates the lock up clutch Lock Up Control System ECT Neutral Start Switch Shift Position Signal Selection of Lock Up Pattern y Control of Lock Up Timing Driving Pattern Select Switch Driving Mode Signal Throttle Position Sensor Throttie Opening Small No 3 Solenoid Vaive Vehicle Speed Sensor Wenere Space Sarat Brake Signa Brake Signal Lock Up Clutch l Engine ECU Coolant Temperature Signal Throttle Position Sensor IDL Signal Cruise Control ECU Lock Up Cancellation Signal Page 13 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION The ECU will cancel lock up if any of the following conditions occur e The stop light switch comes on e The coolant temperature is below 122 F to 145 F depending on the model Consult the vehicle repair manual or the ECT Diagnostic Information Technician Reference Card e The IDL contact points of the throttle position sensor close e The vehicle speed drops about 6 mph or more below the set speed while the cruise control system is operating The stop light switch and IDL contacts are monitored in order to prevent the engine from stalling
5. to how they connect to the ECT ECU The first is the indirect type because it is connected directly to the engine ECU and the engine ECU then relays throttle position information to the ECT ECU The second type is the direct type which is connected directly to the ECT ECU Throttle Position Sensor indirect Type Throttle sensor signals converted in Engine ECU are relayed to the ECT ECU Throttle Position Sensor Engine ECU ECT ECU Page 3 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Indirect Type This throttle position sensor converts the throttle valve opening angle into voltage signals It has four terminals VC VTA IDL and E A constant 5 volts is applied to terminal VC from the engine ECU As the contact point slides along the resistor with throttle opening voltage is applied to the VTA terminal This voltage increases linearly from 0 volts at closed throttle to 5 volts at wide open throttle Throttle Position Resistor Contacts for Sensor Throttie Opening Signals A linear voltage signal indicates throttle open Jng position and idle contacts indicate when the throttie is closed Contacts for IDL Signals The engine ECU converts the VTA voltage into one of eight different throttle opening angle signals to inform the ECT ECU of the throttle opening These signals consist of various combinations of high and low voltages a
6. ANCE Resistance K0 ee ne AE 4 32 68 104 140 176 212 248 Temperature F When the engine coolant is below a predetermined temperature the engine performance and the vehicle s drivability would suffer if the transmission were shifted into overdrive or the converter clutch were locked up The engine ECU monitors coolant temperature and sends a signal to terminal OD1 of the ECT ECU The ECU prevents the transmission from upshifting into overdrive and lock up until the coolant has reached a predetermined temperature This temperature will vary from 122 F to 162 F depending on the transmission and vehicle model For specific temperatures refer to the ECT Diagnostic Information chart in the appendix of this book Some models depending on the model year cancel upshifts to third gear at lower temperatures This information is found in the appendix and is indicated in the heading of the OD Cancel Temp column of the ECT Diagnostic Information chart by listing in parenthesis the temperature for restricting third gear Page 6 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Speed Sensors To ensure that the ECT ECU is kept informed of the correct vehicle speed at all times vehicle speed signals are input into it by two speed sensors For further accuracy the ECT ECU constantly compares these two signals to see whether they are the same The speed sensor is used in place of governor
7. TOYOTA ELECTRONIC CONTROL TRANSMISSION Electronic Control Transmission ECT The Electronic Control Transmission is an automatic transmission which uses modern electronic control technologies to control the transmission The transmission itself except for the valve body and speed sensor is virtually the same as a full hydraulically controlled transmission but it also consists of electronic parts sensors an electronic control unit and actuators The electronic sensors monitor the speed of the vehicle gear position selection and throttle Opening sending this information to the ECU The ECU then controls the operation of the clutches and brakes based on this data and controls the timing of shift points and torque converter lock up Driving Pattern Select Switch The pattern select switch is controlled by the driver to select the desired driving mode either Normal or Power Based on the position of the switch the ECT ECU selects the shift pattern and lock up accordingly The upshift in the power mode will occur later at a higher speed depending on the throttle opening For example an upshift to third gear at 50 throttle will occur at about 37 mph in normal mode and about 47 mph in power mode Drive Pattern Select Switch When the ECU does not receive 12 volts at the PWR terminal it determines that normal has been selected Driving Pattern Select Switch Driving Pattern Indicator Lights Driving
8. ation solenoid No 1 and No 2 are on Solenoid No 1 has the same effect that it had in first gear with the 2 3 shift valve being held up by the spring at its base Pressure from the manual valve flows through the 2 3 shift valve and holds the 3 4 shift valve up With solenoid No 2 on line pressure from the top of the 1 2 shift valve bleeds through the solenoid Spring tension at the base of the 1 2 shift valve pushes it upward Line pressure which was blocked now is directed to the second brake 132 causing second gean The 3 4 shift valve maintains its position with line pressure from the 2 3 shift valve holding it up Second Gear Solenoid Valve Solenoid Valve Line Pressure A lt aLine Pressure trom on Pump Line gt To 2nd Brake i gt To OD Direct Pressure gt mmf B2 and Lock Up Clutch Co Signal Valve 2 3 Shift Valve 1 2 Shift Valve 3 4 Shift Valve Page 17 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Third Gear During third gear operation solenoid No 1 is off and solenoid No 2 is on When solenoid No 1 is off it closes its drain and line pressure from the manual valve pushes the 2 3 shift valve down Line pressure from the manual valve is directed to the direct clutch C2 and to the base of the 1 2 shift valve With solenoid No 2 on it has the same effect that is had in second gear pressure is bled at the top of the 1 2 shift valve a
9. ch OFF O D Main Switch OFF When the O D switch is in the OFF position the electrical contacts are actually closed and current from the battery flows to ground and 0 volts is present at the OD2 terminal as shown below At the same time the O D OFF indicator is illuminated Overdrive O D Efe Main Switch OFF ttery ECT ECU When O D main switch is off OD2 terminal has O v Switch ON Solenoid Valves Solenoid valves are electro mechanical devices which control hydraulic circuits by opening a drain for pressurized hydraulic fluid Of the solenoid valves No 1 and No 2 control gear shifting while No 3 controls torque converter lock up Page 10 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION No 1 and No 2 Solenoid Valves These solenoid valves are mounted on the valve body and are turned on and off by electrical signals from the ECU causing various hydraulic circuits to be switched as necessary By controlling the two solenoids on and off sequences we are able to provide four forward gears as well as prevent upshifts into third or fourth gear Solenoid Valves Solenoids provide electrical control over shifting and torque ee ee converter lock up N No 3 i Keve Body No 3 Solenoid Valve The No 1 and No 2 solenoids are normally closed The plunger is spring loaded to the closed position and when energized the plunger is
10. either of these terminals provides a 12 volt signal to the ECU it determines that the transmission is in neutral second gear or first gear If the ECU does not receive a 12 volt signal at terminals T or 1 the ECU determines that the transmission is in the D range Some neutral start switches have contacts for all gear ranges Each contact is attached to the gear position indicator lights if the vehicle is so equipped Page 2 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION In addition to sensing gear positions the neutral switch prevents the starter from cranking the engine unless it is in the park or neutral position In the park and neutral position continuity is established between terminals B and NB of the neutral start switch illustrated below Starter Control In Park and Neutral positions continuity exists between termi nals B and NB Throttle Position Sensor This sensor is mounted on the throttle body and electronically senses how far the throttle is open and then sends this data to the ECU The throttle position sensor takes the place of throttle pressure in a fully hydraulic control transmission By relaying the throttle position it gives the ECU an indication of engine load to control the shifting and lock up timing of the transmission There are two types of throttle sensors associated with ECT transmissions The type is related
11. erating the remaining solenoid to put the transmission in a gear that will allow the vehicle to continue to run The chart below identifies the gear position the ECU places the transmission if a given solenoid should fail Notice that if the ECU was not equipped with fail safe the items in parenthesis would be the normal operation But because the ECU senses the failure it modifies the shift pattern so the driver can still drive the vehicle For example if No 1 solenoid failed the transmission would normally go to overdrive in drive range first gear But instead No 2 solenoid turned it on to give 3rd gear MORAL l NO 1 SOLENOID NO 2 SOLENOID BOTH SOLENOIDS Solenoid MALFUNCTIONING MALFUNCTIONING MALFUNCTIONING l R Valve Back Up Solenoid valve Solenoid vaive Solenoid vaive oe va i Function Chart NO 1 NO 2 NO 1 NO 2 operated If no fail safe function were provided x Malfunctions O D in the A540E A540H Should both solenoids malfunction the driver can still safely drive the vehicle by operating the shift lever manually Page 15 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION ECT Shift Valve Operation Two electrically operated solenoids control the shifting of all forward gears in the Toyota electronic control four speed automatic transmission These solenoids are controlled by an ECU which uses th
12. in the event that the rear wheels lock up during braking Coolant temperature is monitored to enhance drivability and transmission warm up The cruise control monitoring allows the engine to run at higher rpm and gain torque multiplication through the torque converter Neutral to Drive Squat Control When the transmission is shifted from the neutral to the drive range the ECU prevents it from shifting directly into first gear by causing it to shift into second or third gear before it shifts to first gear It does this in order to reduce shift shock and squatting of the vehicle Engine Torque Control To prevent shifting shock on some models the ignition timing is retarded temporarily during gear shifting in order to reduce the engine s torque The TCCS and ECT ECU monitors engine speed signals Ne and transmission output shaft speed No 2 speed sensor then determines how much to retard the ignition timing based on shift pattern selection and throttle opening angle Page 14 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Fail Safe Operation The ECT ECU has several fail safe functions to allow the vehicle to continue operating even if a malfunction occurs in the electrical system during driving The speed sensor fail safe has already been discussed on page 8 Solenoid Valve Back Up Function In the event that the shift solenoids malfunction the ECU can still control the transmission by op
13. nd spring tension pushes it up Line pressure is directed to the second brake B2 However in third gear the second brake B2 has no effect since it holds the one way clutch No 1 FI and freewheels in the clockwise direction The second coast brake is ready in the event of a downshift when the OD direct clutch C2 is released Third Gear Solenoid Vaive Solenoid Valve Line lt Line Pressure Line Pressure gt umf i To 2nd Brake B2 and Lock Up a Clutch Co Signal Valve 2 3 Shift Valve Y 1 2 Shift Valve 3 4 Shift Valve To Direct Clutch C2 Page 18 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Fourth Gear During fourth gear operation both solenoids are off When solenoid No 1 is off its operation is the same as in second and third gears A third solenoid controls lock up operation Fourth Gear Solenoid Valve Solenoid Valve No 1 OFF No 2 OFF it z lt gt Line Pressure L Line Pressurec gt i iia To 2nd Brake if gt To OD Direct B2 Not Active Clutch Co 2 3 Shift Valve y 1 2 Shift Vaive 3 4 Shift Vaive To Direct Clutch C2 Reprinted with permission by Toyota Motor Sales USA Inc from the Automatic Transmission Course 262 textbook Page 19 Toyota Motor Sales U S A Inc All Rights Reserved
14. o the ECT ECU indicate throttle position just as they did in the indirect type of sensor If the idle contact or its circuit on either throttle sensor malfunctions certain symptoms occur If it is shorted to ground lock up of the torque converter will not occur If the circuit is open neutral to drive squat control does not occur and a harsh engagement may be the result If the L1 L2 L3 signals are abnormal shift timing will be incorrect Throttle Position Sensor Direct Type Throttie Body Throttle sensor printed circuit board and contact points provide the ECT ECU with the same signal pattern for throttle open ing as the indirect type of throttle sensor e 7 15 25 35 100 Throttie Vatve Angis gt Page 5 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Water Temperature Sensor The water temperature sensor monitors engine coolant temperature and is typically located near the cylinder head water outlet A thermistor is mounted within the temperature sensor and its resistance value decreases as the temperature increases Therefore when the engine temperature is low resistance will be high Water Temperature Cruise Control ECU ECT ECU Sensor Water Temperature Engine ECU Coolant temperature is monitored by the engine ECU which controls the signal to OD1 of the ECT ECU to cancel overdrive Water Temperature Sensor THW RESIST
15. pressure in the conventional hydraulically controlled transmission 1 t Speed Sensors pack Ere ECT ECU Po ea No 1 Speed Sensor used in place of the aioe governor feed done in Combination Meter ECT transmissions No 2 Speed Sensor in Transmission Main Speed Sensor No 2 Speed Sensor The main speed sensor is located in the transmission housing A rotor with built in magnet is mounted on the drive pinion shaft or output shaft Every time the shaft makes one complete revolution the magnet activates the reed switch causing it to generate a signal This signal is sent to the ECU which uses it in controlling the shift point and the operation of the lock up clutch This sensor outputs one pulse for every one revolution of the output shaft Beginning with the 1993 Corolla A245E the No 2 speed sensor has been discontinued and only the No 1 speed sensor is monitored for shift timing Main and Back Up Speed Sensors No 2 Speed Sensor Reed Switch Page 7 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Back Up Speed Sensor No 1 Speed Sensor The back up speed sensor is built into the combination meter assembly and is operated by the speedometer cable The sensor consists of an electrical reed switch and a multiple pole permanent magnet assembly As the speedometer cable turns the permanent magnet rotates past the reed switch The magne
16. rottle opening angle and mode select switch position The ECT ECU prevents an upshift to overdrive under the following conditions e Water temperature is below 122 F to 146 F e Cruise control speed is 6 mph below set speed e OD main switch is off contacts closed In addition to preventing the OD from engaging below a specific engine temperature upshift to third gear is also prevented in the Supra and Cressida below 96 F and the V6 Camry below 100 F Consult the specific repair manual or the ECT Diagnostic Information Technician Reference Card for the specific temperature at which overdrive is enabled Page 12 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Control of Lock Up The ECT ECU has lock up clutch operation pattern for each driving mode Normal and Power programmed in its memory The ECU turns the No 3 solenoid valve on or off according to vehicle speed and throttle opening signals The lock up control valve changes the fluid passages for the converter pressure acting on the torque converter piston to engage or disengage the lock up clutch In order to turn on solenoid valve No 3 to operate the lock up system the following three conditions must exist simultaneously e The vehicle is traveling in second third or overdrive D range e Vehicle speed is at or above the specified speed and the throttle opening is at or above the specified value e The ECU has
17. rottle position and speed sensor input to determine when the solenoids are turned on The solenoids normal position is closed but when it is turned on it opens to drain fluid from the hydraulic circuit Solenoid No 1 controls the 2 3 shift valve It is located between the manual valve and the top of the 2 3 shift valve Solenoid No 2 controls the 1 2 shift valve and the 3 4 shift valve Shift Solenoid Operation ECT meee Gear Solenoid Valve Solenoid Valve No 1 ON No 2 OFF Drain lt IE G Line Pressure grc From Pump Line irg i igi AA iia To OD Direct Valve in D 2 Pressure gt R el eae Range Clutch Co 2 3 Shift Valve 1 2 Shift Valve 3 4 Shift Valve First Gear During first gear operation solenoid No 1 is on and solenoid No 2 is off With line pressure drained from the top of the 2 3 shift valve by solenoid No 1 spring tension at the base of the valve pushes it upward With the shift valve up line pressure flows from the manual valve through the 2 3 shift valve and on to the base of the 3 4 shift valve With solenoid No 2 off line pressure pushes the 1 2 shift valve down In this position the 1 2 shift valve blocks line pressure from the manual valve Line pressure and spring tension at the base of the 3 4 shift valve push it upward Page 16 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Second Gear During second gear oper
18. t ECT ECU terminals as shown in the chart below The shaded areas of the chart represent low voltage about 0 volts The white areas represent high voltage L1 L2 U about 5 volts IDL about 12 volts Throttle Valve Angle Signal Chart Shaded area low voltage about O v Clear area high voltage about 5 v 6 7 1 25 35 50 65 85 100 Throttle Valve Angle Page 4 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION When the throttle valve is completely closed the contact points for the IDL signal connect the IDL and E terminals sending an IDL signal to the ECT ECU to inform it that the throttle is fully closed As the ECT ECU receives the L1 L2 and D signals it provides an output voltage from 1 to 8 volts at the TT or ECT terminal of the diagnostic check connector The voltage signal varies depending on the throttle opening angle and informs the technician whether or not the throttle opening signal is being input properly Direct Type With this type of throttle sensor signals are input directly to the ECT ECU from the throttle position sensor Three movable contact points rotate with the throttle valve causing contacts L1 L2 L3 and IDL to make and break the circuit with contact E ground The grid which the contact points slide across is laid out in such a way as to provide signals to the ECT ECU depicted in the chart below The voltage signals provided t
19. tic flux lines between the poles of the magnet cause the contacts to open and close as they pass The sensor outputs four pulses for every one revolution of the speedometer cable The sensor can also be a photocoupler type which uses a photo transistor and light emitting diode LED The LED is aimed at the phototransistor and separated by a slotted wheel The slotted wheel is driven by the speedometer cable As the slotted wheel rotates between the LED and photo diode it generates 20 light pulses for each rotation This signal is converted within the phototransistor to four pulses sent to the ECU Speed Sensor Failsafe If both vehicle speed signals are correct the signal from the main speed sensor is used in shift timing control after comparison with the output of the back up speed sensor If the signals from the main speed sensor fail the ECU immediately discontinues use of this signal and uses the signals from the back up speed sensor for shift timing Speed Sensor Failsafe ECT ECU compares the back up speed sensor with the main speed sensor for shift timing control No 1 Solenoid Vaive No 2 Solenoid Valve No 3 Solenoid Valve No 1 Solenoid Vaive No 2 Solenoid Vatve No 3 Solenoid Valve Page 8 Toyota Motor Sales U S A Inc All Rights Reserved TOYOTA ELECTRONIC CONTROL TRANSMISSION Stop Light Switch The stop light switch is mounted on the brake pedal bracket When the brake pedal is

Download Pdf Manuals

image

Related Search

Related Contents

SEG CR 116iROUND pk  Descargar  Máquina de Lavar Louça  ウルトララピット レザークリーナー  Safety Redbox - User Manual  Compucase TFX  Philips 608669 User's Manual  IS 13064 (1991): Power tillers - Installation and preventive  BigDataBench Simulator Version  i-TECH CUT40 User Manual  

Copyright © All rights reserved.
Failed to retrieve file