Home

"偏極 .伶線を用いたMott散乱によるparityの破れの検証" (pdf:5.3MB)

image

Contents

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19. 4 2 4 2 Lat UA Lat laxl 2 77 Das l
20. AN N VE NJ SS LN ees Ne Ne Ne NN UN CEN D 6 Ni Ne Na Nex Ni
21. 9 5 y ye dy a 66 0 5 f y MB ye dy 1 12 B a 15 a 33 1 63 9 3 0 000000000 f 0 q a 0 T k 1 ig f 0 lim 2 eh De ai Fig k
22. 0 065 2 4 0 06 T i E 0055 0 05 0 045 i 0 04 i 3 0 035 0 03 0 025 0 02 L 120 140 160 180 200 220 1 bill gil LEI BANI BU energy of electron keV
23. Threshold PMT SCALAR 2 PMT HV Threshold HV Threshold HV Threshold PMT No Threshold mV HV V 1 35 1350 2 35 1260 3 700 1700 4 2 PMT Threshold HV 3 PMT PMT No 1 PMT No 2 PMT No 3 PMT No 3 AMP Threshold 4 2 PMT
24. 63 Asymmetry 0 007 Asymmetry 1 Target Asymmetry 2 Asymmetry 3 Asymmetry 4 count rate 5 6 1 2 3 4 5 3 rate 20 6 Asymmetry H Asymmetry Acknowledgments
25. 1 14 3 A by Pr 150 A dy ys gur A QA p Jop S pa P 4 4 P W x gt Py z P 24 2 1 16 P S lt p p P P 0 P 1P 1 95 d 0 P Pjn p1 gt 1 17 lt p p u 0 5 4 4 d 0 n p1 gt lt PP2 HP 45d 0 n 1 g
26. 7 iy 84 mc 49y 0 2 21 Z v cosh O sinh 0 1 0 0 2 22 0 0 1 0 sinh 0 O cosh y cosh y8 sinh C 1 guy e E t 2 23 0001 A 0000 0000 1000 S exp 4 wyw 2 24 2 1 0 03 exp w p 2103 0 03 cosh iC 0 sinh ZC 0 0 co
27. Au 6 3 threshold 100000 6300000 6 1 0000 y 3350 3 200 po Graph 200 ee 199 Long gate me 109 1200 HO 150 180 SS e Data of PMT No 1 Narrow gate 6 4 2D
28. P2 50 50 10 9 11 P2 4 hi h Volt age
29. is Plastic Scintillatar 1 0mm 1mm Light Guide Scintillatar wide 2 18 2 17 Target keV 0 2mm 1 100keV 220 T T Beta Ray Energy keV 200 H 180 160 L 1 140 L 4 120 i 100 80 60 b 40 L 10 15 20 25 30 HV kV 2 19 noise Ka Y 5mm PMT 10 150 noise Y 2 18 0 2mm Y Y Y HHHHHHHHHHHHH
30. d A rf o f Ng lg r g t kg 0 2 48 d B rg og Ar flf r 0 r 22 A W mB m Wa e r hc a 0541 Ab l 8 1 k bs41 2 49 B b 00 41 Ads l s 1 bjasri 0 a_ b_1 0 s 1 px k2 a As bs A s bat A B B s 1 posa Aza 1 s 1 k ast 0 2 50 Gs b B b l s k ques 2 51 BA as aA p l s
31. e kzPk k 1 2P 1 i 4 baa z ze T Ti ig 6059 a 13 1 1 sir inq T 10 E 2ixr dz Va gi ee G da a 2ixr 1 z e a a 14 V da a 2 a 14 x 0 1 a 14 x x 0 1 Pg a F z F z gt kati k 1 2 9 P cos B a 15 0 lt 1 e a 16 y v y exp p 1 y 1 9 a 17 p y lt 1 e a 18 o 1 zP z expla log z 0 D 1 a 19 zh NG Y fr alog z 2 z
32. Target 3 O ring O ring O ring Asymmetry 196 Target O ring Target e slit 2 33 8 4 Target 4 4 Target Target U 15 10 2 2 10 000 2 34 PMT No l 2 Divider 2 1 2 Discriminator threshold PMT No 3 AMP Discriminator threshold 40
33. 14 s helicit gt Us s Valla 1 34 sam helicity phy ey pe yp 0 Wa Dich m 1 34 1 syse Para me RE 1 35 Tr k yo Yv 1 15 pg Ya me 1 sysef z 1 25 1 36 x Tr k Y p Yu 1 75 Tr k yzys e ya 1 75 k k a l 75 oe Tr y k Y p ms e 1 37 xk D ky Dy gu k D D p mse gt Tr x 1 3 a k p mse 1 a k D 1 38 1 26 dp 0 k OL k 1 38 2 1 38 H p mse x 1 s8 1 26 w
34. 65 F I sh 1 a y z TD eki at a 1 zu y z u au 0 a 2 u zu zu 2 y z u a y 1 u 0 a 3 a 2 u poe t 1 dt a 4 a 2 V t ete t 1 779 a 2 2 er 1 dt a 5 iz t u 195 1 dt a 6 V Vid oz a 7 a 6 t 0 t z C Ret 00 V C z 0 F a vy 2 et dt ES a 8 20i c T y F a 7 0 1 F a y 2 AD e t z 70
35. HHHHHH 1 500000000000000 orHHHHHHHHHHHHH Discriminator O U D ADC D Gate Signal 000000 Narrow Gat D D or E D D E Gate Generator HHHHHH nHHHHHHHHHHHHHHHADCH Gate SignalHHHHHHH Long Gate ll U D O Discriminator D D D H 0 H Gate Signal D D D D U U U OO Dera D 00000000000 ADCH channel counts U U L L HHHHHHHHHHHHHHHHH Gate Signal 00000 ADCTI D B U D D D HHHHHHHHHHHHHHHHHHHHH Discriminator HH 00000 8channel Scalar counts H EH 00 0 000 CAMACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH U U U 0000 0 U U U UD U U 0 U U 2 35 CAMAC I 3000000000 High Pass Filter D D O DD D D D D D 0 du 00000 Gate U O DI
36. Target electrode JUD 100 IOD 100 100 IL source Target Asymmetry 00000 0 0 electrode Asymmetry HHHI 100 source 1370800000 D count rate noise noise 1000 U source LI noise 2 7 2 8 000 7 noise 2 7 2 8 2 9 ol IYUL o U tem 100 E t E t Ege et 2 1 INQ 1000 IDO 1MeV Y 1 76cm 1000 1 26000001 Y 2mm 2 8 lem ul Target lem 1MeV Y 1 e 2 54em 1MeV 70000000 noise 00101 U 4 1 l U U U U U U U T 24 4 Y Lead Z 82 ou e experimental Otot
37. 64 9 Apendix 91 000000000000 az a a 1 2
38. 2 30 2 31 Gauss Gauss 1 3 0 0 5 2 3 0 0 8 3 4 0 1 0 4 6 0 0 6 5 4 0 0 4 6 3 0 0 2 7 2 8 0 2 8 2 5 0 2 9 4 0 0 8 10 2 9 0 6 11 2 8 1 8 2 31 3D 40 20 22 8 0000000000 Z 10um 2 5um 2 3 um 38
39. polz k2 k DP elci a 23 z 1 z 1 cos 0 1 2z cos 6 22 n Pn 1 bn a 24 la lt Fa z gt a fn alog z 2 a 25 z a 24 a 23 a 22 D Fa 2 Y z f a 26 ZU 1 2 2 exp if a 27 l o 2 z 000 r M 40 2 2 lt M a 28 r l o 2 4z 2 a 29 lt o z z dz lt MI l 1 z r 30 1 1 ra 1 a 31 41 2 lt Mr Io Mlz r a 25 Falz z exp if a 32 n do Pi Fa z fodo 2 1161 2 G z o z 4101 2 G 2 a 33 68
40. PMT 1000000000000000000000000000 300 PMT OO PMTHHHHHH AHBHCHHHHHH 0000000000000 0 1000 10000 300 PMTH Scintillator ooo 4 1 HHHHHHHHHH 00 PMT B HVHHHH ABC AC ABC 3 0001 AC AH CH 2 ELECTRON source 0 D c l 100 01 PMT BI PMT A BDI PMT 1500V 0 1500 0 PMT An DD C IDU 00000 4 2 D IL 1000000 PMTHHHHHHHHHH HV HV Vo D 00V V 100 V ELECTRON mg 48 emo NN Vo V of PMT B V AND SCALAR 1 SCALAR 2 42 HV 4 1 U IHHHDHHHH3 PMT
41. P Pia k 1 P Pr 1 cos 0 sin 0 2 70 Phi k 1 P Pe 1 1 cos0 sin Y Ca kH1 k 1 ig Pa A k iq Pa 1 2 71 0 0 veya kc 1 k 1 iq Phaa 71 5 Cyk k 14 1 0 0 2 68 SET p Sg e W m E Va TSE 2 72 Sge we Ww EU S f W m V S ge I Sf Jf g f 0 5 k 1 Br41 1 P cos 0 2 73 9 0 5 CIR Be 1 Pl cos 8 0 PAL f le 2 quie zm ge mk f cos o sinde Ge E dei cos ES 2 73 f g O 2 68 2 68 A fog mus Abat Bin EW r 7 Lu 2 76 2 Ko A Af Bge i B Age Bf
42. Pi cos B a 59 Kui mn cu 700 a 59 zPk 1 Pl cos g Pow Tarna PO z B k_122 1 P cos I pen Y x 5 1 exp i8 0 z l 8 0 1 V 50 cos0 IG a 60 1 V 3 cos 0 IG 1 Vem x sin HIG War anc I G I exp r cos qlogr 1 cos 0 a 61 A Ga 1 Br T G 0 z 1 V Wa r Wy Va x 0 pa T 2ir 1 x y a 62 a 58 UE ead 8 5 y 1 y e dy a 63 0 S r exp ir iq log2r a 64 a 59 1 Pa 50 cos0 IG a 65 1 V su cos 7G Sf 0 Wer sin TG 1 Vac 5 sin 0160 Sg 0 72
43. appendix 1 Pa 50 cos 0 IG 2 63 a cos 0 IG S 0 N 910 610 1 4 Vac sin 01Ga Sg 0 26 I exp i r cos 0 0108 2r sin 3 2 64 S r expi r 0108 27 A B Galt Et at 103 Wa bs IG Sf 0 2 65 Wa Sg 0 e hg 0 5 3 Bi 4 UR DP 2 66 9 9 3 B BD P 2 62 outgoing Ck 2 66 2 66 fol d Cy e ig T 1 p ig 2 67 F 6 2 k Uva Pk G 0 5 ZC k 1 CH Pr ea REG 2 68 g iq 1 cos 0 F 1 cos 0 G sin 0 f g g 5 Mk iqf Ck k 1 id C a 1 PR 2 69 Y k 1 ig Ca 71 PL k 14 iq C i 1 P m OCC 1 Pi PL id Pi Ph 17
44. u p vp m 1 24 prim x 0 p Vp m P m 1 25 102 2 E AE De Pe v a mm 1 m Ee k et k 1 2 k Trl T S i 27 6 Tri ocu P2 7 ovy s us pi s p CY a y s up pa Te p3 Yu 1 Y5 Wre pa Ov Pa Yw 1 75 de ps 1 27 Tr ununy 1 o Y5 upupy 1 a vs Tr vu Tv Ww 1 ys usu y 1 75 5 10792 Unso PAYA T My Mp Y 1 28 so 5 Uns 00852 PRYA Mn Mal 1 29 si 1 27 x lt C osea g Ja 1 30 2 1 ye 0 Visier 1 31 2 1 5 Vals 0 0 1 32 Me D 0 H helicity Y a 15 Pe Yu 1 33 o A pel pepe me MelPel
45. 2mm Source electrode 1mm 22 7 00000 Target 3 O 180 180 x 180 0 90 270 Ay A A Z z 5 V x 2 24 2 25 2 24 a Jo 2 25 0 x Jo lo gt 0 1 r 0 losing 2 8 Fe B 2 0 0 2 9 2 27 x 0 U U U vs Vy v4 vsin8 0 vcos 2 v 0 0 0
46. 2 31 2 30 val Q 2 30 Y Va V1 Wo QE QE Qk 1 Va V3 oe imF rMQE Va iaaF r QE11 2 41 Va a3G r Q Va 7 1 2 30 u dG k M dG kti P W eV m aiFQE 57 T Gl Oka k u 1 k u Ak 7 dG kon dG k l e o KET r Ir k u k u SS G Qk 1 0 2 42 aa k u 1 a3 k u Qu 2 geti 2 1 az t Ye iFkQkl 2 43 Vs k u 1 G Qk kt u GA QET Fk Gk d k W tog 2 44 dr T Wien An dr T 2 42 2 1 br Qk Ori NG dG k l W eV m F 4 6 0 2 45 vene E e dr T 2 44 k k 1 B t i k u F_ _ Qu Va i k u 1 F AQU 2 46 dha Gri Q Va 2 45 m W lt 1 po it ee a 2 47 r 2 Ast e oo GESTI g bar s 0 14 2 45
47. gta mod kja 0 2 4 g 0 P 2 7 Dr g 2 33 fa q 0 P P dz 507 2 gautg 1 2yu qu fe 1 90 1 a2 9 P dz 2 34 g k l f 1 9dz z k u pm pro d k 1 2k 1 2 1 k u O 0 k u ktl 2k 3 k u 2 2 k u 2 kl 2k 1 k u pete Pag 1 i VI te Qk Qu k lk u QE 2 36 2 32 2 k IN KEA 0 1 z OP u 1 a PABO 2 37 e 1 a TOP 2uz 1 2 9 P z 1 42 E utp pw ua a ge PO P OM PX 1 a P z 1 z 8 P de 2 38 m Ju 1 VI PIC PU Prdg 1 1 22 r m 2 7 k u 2 k u Dk x ni g k 1 2 39 k u ktu 1 1 k k AU 1 k js 2 37 1 k l auc Fi k u k u 1 0 1 2 40 13
48. Target e e 8 Asymmetry sin 8 1 ADC 2 Target Target 3 25kV 4 ADC 5 6 2 Target 25kV e e GROUND GROUND 1MQ 44 411 Preliminary Experiment 41 PMT D D HV I
49. do 0 _ T where n doy dQ and Sn 6 8 n OC On On then f 1 d 1 16 1 1 en for lag l l ag gt gt an E Hagl lt lt 6 9 On 00 0 An 9 2 sind PS cos do sin o nl cos PS sin do cos 6 10 7 Z Counter Axis of Rotation Beam _ 577 y Y X For 8 Small d a 8 8 Spin Direction 6 8 P sin x 5 1 o 6 5 00000 3 8 0 9 x 6 9 6 10 6 11 Target Parity Asymmetry null asymmetry null 0 di x 0 47 123 3 88 1 5 165 4 59 0 87 154 3 29 Parity Asymmetry 58 asymmetry Front 0 05 0 04 0 03 0 02 0 01 0 01 0 02 asym
50. electrode channel channel kV High Voltage KV Energy of Electron keV error 0 0 0 15 0 89 6 2 27 17 5 105 2 59 20 0 129 3 20 22 5 141 3 60 25 0 165 4 26 4 3 electrode electron enrgy PEAK Gaussian FTT PEAK error FIT 4 6 4 7 channel 48 Energy keV PMT No 1 error PMT No 2 error PMT No 3 error 0 45 453 3 62 x1073 55 038 4 09 x1073 64 162 5 47 102 89 6 79 993 5 21 x10 1 99 484 9 64 x10 1 no data 105 86 294 7 12 x1071 105 87 7 76 x1
51. 2 1 1 QQ electrode target Mott Scattering Target electrode 5 0 x 10 Pa 2 1 GVD 050A 6 7 x 10 2 Pa 1 0 4 0 x 1071 Pal kv F ET x N x ei d 2 54mm 5 Ex x ag ge lt P lt H 40 E 5 0 514 E N pok 0 25 E 013 aM ed um 10 10 10 10 10 10 10 FEA mbar
52. 20200 9 2 74 94 HHHHHHHHHHHHHHHHH Thomas ECG A Lande l g B 0 9 2 a 75 T US Tra 2x a E Da a 76 1 Z a 76 dE x 28 3 a 77 20 z a 77 Z ws el 2 2 78 ame ek a 79 yme eE 5 a 80
53. 61 0000 CAMAC dat PAW Physics Analysis Worksta tion Histgram Target GAUSSIAN FTT 20 Histgram electron PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 7884 2594 7574 2386 7821 1929 7455 1727 45 7720 2810 7467 2346 7650 2105 7368 1599 90 7538 2865 7783 2401 7596 2048 7791 1625 135 7577 2686 8079 2510 7518 1945 8047 1717 180 7068 2755 7768 2406 6999 1985 7677 1758 225 7397 2590 8150 2431 7363 1851 8127 1740 270 7718 2487 7819 2685 7687 1748 7833 1857 315 7783 2486 8153 2590 7768 1773 8091 1839 6 1 20 Au Target Uu empty PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 6395 1727 6130 1474 6299 1044 5966 882 45 6333 1849 6028 1413 6111 1123 5837 792 90 6134 1862 6244 1503 6064 1121 6194 830 135 6133 1737 6549 1570 6029 1070 6368 829 180 5676 1774 6173 1496 5558 1080 6092 975 225 6106 1640 6537 1523 6004 973 6407 904 270 6291 1559 6285 1731 6120 901 6237 971 315 6180 1560 6613 1641 6189 921 6462 930 6 2 Au Target O
54. B 0 B 0 F e d x B 2 10 x F evB 0 0 2 11 20cm 0 2 26 me p MeV mu 2 12 mm 2 12 L 2 27 Zz 0 p tan0 L 2 13 2 12 2 13 Be Mev tand 2 14 eL 2 9 2mev tand Ig 241 HoeL v cx 0 7 0 2 z 90rad L 3cm m 0 511MeV uo 47 x 1077 10 750 2 16 5mm 1mm 10 I jo x 0 52 x10 67 p x 0 5 x 1073 117A 2 17 36 H 228 00000000000 0 2 29 0000000000 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHH 2 28 00 000000000000000000000 HHHHHHHHHHHHHHH 40000000000000 HHH
55. s 1 V 1M T 1 GeV 100 GeV Photon Energy 2 9 22 0000 2 2 1 DDD electrode electrode electrode 2 10 electrode Target Asymmetry 0 electrode simulation 2 2 2 Target Target 2 14 Target e Target 30mm 22 5 e PMT No 3 25
56. M 320XG 21 d x ST A t CH hand B 0 22 0000 000 2 3 GVD 0504 0 2 4 000 0 00 0 U 25000000 00 1 0 x10Pa 0000000000000000000000 24 2 DDD 0000000 electrode 0 D 0 D 0 D D D D D D D D D D D D D D DUU electron D spin l Oooo 9HHHHHHHHHHHHHHHUHULELULU mm
57. 2 1 L S 6 p ia P ihV p 2 1 p p a p B p apr 0 2 2 p 991 p me 0 2 3 p p A p p 4 A AH cf Jackson pP V Vr p lt A Ymey 0 2 4 2 3 2 4 H 2 2 CPT 1 v p p 7 mc 2 5 hyd moy SY 95 ifi 8 me ys y W ih y me 2 6 v yep t gt t V A V A 2 8 cf V A gt V CA 2 3 122 00000000050 0 0000 2 3 h 1 pa Use Pr 2 7 Ap Bfp ip me W Ag ip 2 me W 3 A u4 B A B
58. lt so B e H b Al empty Au 2 22 Target Holder Target 3 Asymmetry Parity Asymmetry Target 2 5um 24um 2 2 6 Source Source Holder B 13705 13705 200keV BO Flax conversion line PMT Energy Source Holder 2 23 source Source Holder 34
59. keV 70m 12um 2 4 3 6 PMT 5 noise 24 um LER 13 97 40 0275 t raan Aja ja lt O 200 400 600 800 Au Scatterer Thickness t u gms cm2 2 32 asymmetry and multiple scattering effect 2 32 2 5um 0 696 2 32 1 10 0 25um 4 noise N 1 2 1 VN noise noise 2 5um 39 0 6 229 000000
60. e Target 1 O z 350mm r 300mm D D U e PMT No 1 No 2 D l 250 IO PMT No 3 100 25 IRL II 2 12 1000000 115 D IL 0 65 0000 10000 doo dQ HHHHHH IHHHHHHH Asymmetry 10000000000 0 0000000 2 12 00000002 65 0000000000 noise D D HU PMT No 1 No 2 Scintillator URL uut 2 13 Target 100 0000 U 2 2 3 Photomultiplier Tube MENE O 00088 PMT scintillator 000000000 PMT Scintillator 10000 0 00 Photomultiplier 0000 01 10 01 PMT H 100 2 16 101 HHHHHHHHHHHHHHHI
61. 0 2mm 1 0mm EJ 212 plastic scintillator BC 444 plastic scintillator Rise time 0 9ns Rise time 19 5ns Decay time 2 4ns Decay time 179 7ns Pulth width 2 7ns Pulth width 171 9ns 2 1 scintillator noise ScatterPlot y like like Y ScatterPlot Scintillator Scintillator Landau GAUSSIAN FIT Back Ground Scintillator Gate 2 2 5 Target Target Holder 12 Target Target Holder Target Holder Target Holder Holder Target gage port Target Holder Holder Asymmetry Target simulation 33 Target Holder Target
62. 2 6 electrode 000000 25kV U U U U U U L U U U DO l U U U U U EL EL ET U U U U U U L U L U L LU HHHHHHHHHHHHHHHHHHHHH Asymmetry U U count rate E E E D E E E E EE U EE E LH LO count rate 010 L 00 U 0 U 0 0 L HHHHHHHHHHHHHH e 25kV I ILHLI 101 2 1 3 noise 0000 noise 0000 D 0 0 100 IR LU U U U 00 0 0 DU U electron ut count rate count rate source 23
63. a 9 t 0 t z C4 Ca A t z d A D Re 5 p a tz c t 0 c TO a B B t 0 os 9 1 9 2 C4 t tg tie 2 C t s z C 7 sa BO ata F a y 2 Ma 4 TG 2277 10 2a y 9 2 00000000 2 62 r oo V kG k 1 6 4 71 P cos 0 W BLOG k 1 ET P cos 0 V G Gu 71 P cos 0 Ya B G Bx a 7 1 Pg cos 6 a 11 V 0 0 4 p r Ck 1 do 1 1 R GE 3 are rin T p iq 1 z go 191 277 00 a 12 0 66 B z y V z T y V z y
64. N r gt oo appendix 1 m Gk 5 Qr e Jr 2 56 1 TD Gm Qr te fr G_k rl cos r 0108 27 n 441 k iq ox 1 iq exp 2in k 1 2 57 ig pr 1 ig Br P iN k in p P p1 y ke F Ge Wala 1 2 58 sin r qlog2r n k 2 29 m 1 m P 1 7 pm 2 59 1 n m I 2 43 2 46 u 0 u 1 4 Vi Ya Va Ya a k DE Pr 1 iFy Pa k 1 GyP G P Map sub a 2 60 y sif Pi k T 1 FkPk 1 Gi Pl k IGL Pk Pep a l GG Pb KG P al 8 yl eki Val iY em 7 eim 2 61 Yo 7 Va p pi pa 84 k DM Pe 7 GB k 3 0 Bea D P bo y Ga DP GB Get Bre FP kG Br k 1 6 43 B 1 1 PX Ga DF P GB Ce41B_x_1 1 Pye Vs Ber ba i IO k 1 6 41 16 a UPP lei 2 62 V3 Wa Vo Ya Vei Paet
65. G z dol a 23 1 z 1 1 2z cos B z2 2 e l 2 fo 1 f1 730 log z a 35 z amp xp i 2 z y exp 6 36 F z Ay By D y a 37 A B D y 0 y 0 A Ae 1 e 1 cos 6 e 1 ei a 38 Fa z q a z T a 13 a 15 04 2mi T n T t egt a 39 Bean g a 2 2m Je Fo 7 e dt a 40 CI C t gt z a 40 t 0 t zeti z eti cos a 9 a 8 0 7L zei ge i8 2 a 40 2 cos 3 t zle y a 41 site ge Jy lt a 39 0 F E Aly Bly Diy D y A B A w ll mi a 40 t ze zexpi er PEY ah 34 By Diy gt C t zei a 40 1 iq iBY iq
66. E E 15 Ej 100 TR e 100 150 2 100 150 200 Data PMT No 1 long Data PMT No 2 long Data PMT No 1 long Data PMT No 2 long A Target amp empty Target 0 225 A Target empty Taregt 0 225 11 Target Al 0 225 E 25C E 250 20 L E 20 L L 15 188 Hi 1 L 100 100 H EE a ble HH Le 9 EE eI 100 120 140 160 80 100 120 140 8 100 120 140 160 Data PMT No 1 narrow Data PMT No 2 narrow Data PMT No 1 narrow Data PMT No 2 narrow Ei 250 El 200 E 15 E L Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 225 12 Target Au 0 225 100 150 200 Data PMT No 1 long 100 150 200 Data PMT No 2 long Au Target empty Taregt 0 225 Lil 150 ker aere elle ESI m 100 120 140 160 Data PMT No 1 narrow Data PMT No 2 narrow 250 200 Data PMT No 1 long 100 Data PMT No 2 long 100 Data PMT No 1 narrow 140 160 180 Data PMT No 1 long ipa a pol y pi gg L 80
67. n2 2ir exp i 2 exp ir 1 cos B a 53 l 2 1 a 52 xo 20 1 A I Pa 50 cos 8 1 B r exp ir cos 8 iq log r 1 cos 8 a 54 r A B r a 14 z 0 z 1 V 0 1 Im z lt 0 x 1 Saddle Point Rex 0 1 9 3 2ir 1 x y a 55 x 1 x 0 2irx y a 56 a 14 x 0 T gt oo Guo she any 2 57 0 0 x 0x 1 Lie Wy Ue etc a 14 DER gi 1 i Vsa St E e 1j e Y 4 a 2irx 1 x dx x a 58 0 V a 14 O z a z O L z 71 kByz ae ue
68. 6 2 Scatter Plot Target Au Scatter plot hannel Data of PMT No 1 b a alli et 1 l l 1 80 40 0 hannel Data of PMT No 2 6 1 2D Scatter Plot Target A1 Scatter plot A 4 9 180 200 220 hannel narrow Data of PMT No 1 250 L ms L 7 ani et 1 1 1 1 o 106 aR ET 206 hannel narrow Data of PMT No 2 6 2 2D Scatter Plot Target empty Scatter plot Data of PMT No 1 Data of PMT No 2 6 3 2D Scatter Pl ot Scatter Plot 6 1 threshold 50mV 6 1 54
69. do 91 cos 0 2 e Folle me Me 1 cos 0 OThomson a r 5 7 2 3 2 3 OThomson 6 65 x 10 25 om CioHs Ci4Hio C14H 2 1 0g cm 1 1 12 01 1 008 lem 4 6x lem 40 Y lem Y Imm 200keV 1mm Y Y Y 0 2mm noise 10 6 1 36 noise source noise 1 600 noise 600 700 1 4000 1596 noise lem 2MeV 200keV Bethe Bloch dE 2 2 Z 2meY v Wmas 2 21 Narzmec PA in T2 28 2 4 30 dE Z le 2n Nar mec pz C Z 2mey V Wax I 29 5 2 2 5 classical electron radius 2 817 x 10 Bem electron mass AVOGADORO s number 6 022x 1023 mol mean excitation potential atomic number of absorbing material atomic weight of absorbing material density of absorbing material charge of incident particle in units of e BHR KM m gt 9 2 v c of the incident particle 1 1 8 density correction D shell correction AN SE 8 maximum energy transfer in a single collision 27 Nar mec 0 1535 MeVem g 2mecin 1 254 1 72 s sz m M n By Wmaz 2 6 M gt m
70. H 10 0 e 0 1 v V vY Y p ZA ty mov Fu F 2 8 O A 2 8 AH V A Euler Langrange O OL je OL 0 0 AP DA T 0 pa LY f 2 9 dr eyta y p afa 1 2 3 a AB AP pa a gp OK Av u eab 0 j ey p 2 10 cepi yw p 1 2 8 Maxwell V D 47p 2 11 47 10D 1 B EE c t V B u H B j pv B H dru 2 12 2 11 3 U OE VxB An p D 2 13 c 2 10 2 7 D q r lt MC Y 2 14 p q ps r 2 206 70 C W mc S ipiz p
71. 2 myc mc r ee 6 11 163 7keV 21 8 sin 90 21 8 sin 90 0 93 2 32 194keV Au 2 5um 0 006 6 6 Asymmetry x x O Observed E Expected Ox Ex k 1 8 2 Asymmetry n 8 2 4 n 40 x n 2 2 2 1 2 X 12 fa 02 Ir 6 13 2 2 2 xev fa x2 LE 6 14 x2 x2 oo 2 x fa d 1 x e 6 15 x X2 U 1 6 15 6 16 20 0 74396 Asymmetry 91 7896 Asymmetry 77 16 61 chi square Kal f n 4 chi square 0 0 0 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 009 ASYMMETRY 0 6 15 sin 6 16 n 4 X 62 10 chi square n x 20 7 Disccation and Results
72. Sh iVn Or S p ps pa pi p p 0 0 2 1 ys d 0 n pi gt Te p3 1 Ys vv pa 1 9 4 21 46 9 m Mp 1 29MeV 1 10 pi EP
73. 45 HV 2 PMT 6 error bar 2 PMT HV PMT Threshold Threshold 4 2 Threshold PMT Thershold 0 2mm 1 0mm Threshold T
74. 2 20 2 20 Bethe Bloch keV 31
75. 11 BOO 1 1 1 SI p p n p1 gt p p2 te ps ve pa 1 1 p d d u 1 1 B Lofft PS Vita diss 1 2 S S 1 i ago 1 3 1 3 do Eun D d 4 W 4 fermion 1 3 S Sti uu lt p p la rs b pa m 1 28 daa 1 ys veln p1 gt 1 4 Y s 0 ya Pi 1 5 _G D Za S si Vu dae P592 lt pfp TYM ys d n pi gt Spas 75 0 1 6 v pr px x gt P al p pal p 1 7 P as p pyas p ea je a p e P 1 8 e P al p e FX bi p bs p 1 7
76. 26 Eg 194 kev 6 0 6 c 2 2 5 0 5 0 5 3 s 5 s 2 4 _ 0 4 94 5 5 5 1 0 3 n o o o W 2 0 2 0 2 els SE jo 1 0 1 1 2 9 ETT 100 150 8 doo 2 12 0000000 da Asymmetry S 0 00 2 13 Target 2 2 100 PMT Scintillator Scintillation Counting r U l DU DD 10 U
77. Targetifi 2 33 PMT No 1 DIVIDER Disc D C PMT OR No2 DIVIDER Gate No 1 Generator 7 Disc A D Disc PS PMT No 2 No 3 Bm Disc gt 2 34 3 AMP 1 2 Divider Mott AMP Discriminator or PMT No 3 preset scalar 1 50 41
78. else write illeg arg arg end if return end 83 000 J S GREENBERG D P MALONE R L GLUCKSTERN V W HUGHES Mott Scattering Analysis of Longitudinal Polarization of Electron from Co I II H A TOLHOEK Electron Polarization Theory and Experiment PHYSICS 28 3 July 1956 D F NELON R W PIDD Elements Phys Rev 114 3 May 1959 D C SIMM R M STEFFEN Transverse Polarization of the Beta Particles C S Wu Parity Experiments in Beta Decays July 1959 Phys Rev 120 4 November 1960 REVIEWS OF MODERN Mesurement of the Mott Asymmetry in Double Scattering of Beta Gamma Angular Correlation Measurements on Au198 11 Phys Rev 118 3 May 1960 REVIEWS OF MODERN PHYSICS 31 3 P2 beta parity P2 B Mott Parity 84 2003 2004
79. 150 200 Data PMT No 2 long A Target amp empty Target 0 315 15 Target Al 0 315 Al Target empty Taregt 0 315 L 200 F 150 H 100 i NP a Es een et S Sos a 100 120 140 160 80 100 120 140 60 Data PMT No 1 narrow Data PMT No 2 narrow 250 Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 315 16 Target Au 0 315 100 120 140 160 Data PMT No 1 narrow 180 100 150 200 Data PMT No 1 long 80 100 120 140 160 Data PMT No 2 narrow e 150 200 Data PMT No 2 long Au Target empty Taregt 9 315 6 Analysis
80. Es 0 0 00 8 a 80 d gt e eE gt gt ae e m b x B Bx do a 81 a 81 Z saj EE wc 47069 8 2 90 T I TEE a 83 0s 0s WST EBE men me 1 2eE _ J m 1 4 2 _ V dob r 144 y 2 ymc me q gt a 84 ymc 2 0s 9 5 0000 9 5 1 00000000000000 program asym implicit none real 8 pi parameter pi 3 141592654 complex 16 i parameter i 0 0D 00 1 0D 00 real 8 alpha beta b_in parameter alpha 1 0D 00 137 035989 parameter b_in 6 5D 01 integer z parameter z 13 real 8 mc2 parameter mc2 0 511 real 8 hbarc parameter hbarc 197 2 real 8 q real 8 thetad 75 real 8 thetar real 8 sigma0 integer l t m u real 8 P 0 10000 complex 16 D 0 10000 A 1 10000 0 3 B 1 10000 0 3 complex 16 F0 0 180 F1 0 180 G0 0 180 G1 0 180 complex 16 F 0 180 G 0 180 realx8 difc0 0 180 S 0 180 realx8 r error realx8 abc integer V W x parameter v 1 w 3 x 4 integer phi real 8 phidash thetadash deltheta parameter deltheta 1 0D 08 real 8 phirad pdrad tdrad delrad integer diff real 8 difci 0 10 realx8 adifcOdash real 8 asymmetry real 8 pola parameter pola 0
81. Scintillator PMT 100 U 100 100 100 10 U 27 ven u 1 225 PMT No 3 270 e 90 315 45 m 2 15 Target O00000 0 UL l U U U U U U U U 01 2 14 Target 2 16 Photomultiplier 0000 IHHHHHHHHHHHHHHHHHHHH 00000 PMT
82. Data PMT No 2 long Data PMT No 1 long 100 120 140 160 Data PMT No 2 narrow 100 150 200 Data PMT No 2 long A Target amp empty Target 0 90 5 Target Al Al Target empty Taregt 0 90 250 200 o Bes p 80 100 120 140 Data PMT No 2 narrow 100 120 140 160 180 Try KANAN rr LANAN HARA NANA Data PMT No 1 narrow Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 90 6 Target Au 100 150 200 Data PMT No 1 long 100 120 140 160 Data PMT No 2 narrow 100 150 200 Data PMT No 2 long Au Target empty Taregt 0 90 250 P so wg ai 50 H o I bias AA o bh 100 120 140 160 100 Data PMT No 1 narrow Data PMT No 2 narrow L 22 TE NGANGA IP nr Data PMT No 1 long Data PMT No 2 long 200 F 100 120 140 160 180 Data PMT No 1 narrow Data PMT No 1 long 100 120 140 16
83. 63 64 1 Theory
84. 2 28 1 23 0000 4 T WA 1 uxS r oo 2 29 I S outgoing h c 1 0 9 _ W eV mm L Ta Ta Taa 0 2 30 0 9 IW eV me Tin ys gota 0 UW eV m v3 9 9 ig gz 0 KW eV m ba gr Fa 0 cos 0 1 1 Qk k u sin AG ER DER elt u Pte 9 1 d EE df kL tig OE ED 4 n E north 231 e s r 1 dk df kL EA CF NOA e ql E NED d 1 d k d k l IQ LAG DO k E La
85. SG WS Br 21 ZALA 2 2222222 BUREN 26 5 ue E A 22 2 12 MOSE o HERE Q q DEE 75 23 eline a dao bes m don te died 77 25 221 EHE pas a Bb And 25 212 2 su 25 2 2 3 Photomultiplier Tube 26 22 4 Scin llatoE X mi Ke ioe BAe a Bye Beld ebe k b O e de OS 28 2 2 5 Target Target Holder 42 5 a ER R A pn 33 2 2 6 Source Source Holder u a ur a ey lk dk bok ee a 34 F RAN E as OS p A 555 35 228 EOE E SEDE a PING DA e em t rte etes 38 2 2 9 MO p e 2 Ma A ak ge de s d gehe 40 ZIR 6007000 A mn 40 Experimental Method 44 Preliminary Experiment 45 PMT EMO PD Sass E r AL DURS B NER 45 Threshold 4 umm eb EAE Ee pd eeu vi s 46 OO 47 Mott Scattering E i a se me e nme ae l ABA a 47 Results of Experiments 50 6 1 6 2 6 3 6 4 6 5 6 6 9 1 9 2 9 3 9 4 9 5 Disccation and Results Acknowledgments Apendix 9 5 1 9 5 2 51 51 54 55 56 56 58 61
86. ks s 1 2 3 s 0 2 49 Cs 2AB l 4 s 1 4 Zo s s 2 51 EP CSC T 2291 a a a 1 F 1 5 a B 1 t ng aan gt car F p ig 2p 1 2ir 2 52 s 0 co 1 p Vk a 2 53 _ oW a B As p 21A B q k2 492 2 ig e T cp ed k G k 1 N 2 54 E Ft ig I p 1 ia T p 1 g 1 ev 1 1 I 2r 6 F p 1 1q 2p 1 2 2 13731 aE expla gio FO 1 ig 29 1 2ir 255 T p 1 ig l e i 1 l TGp4 1j 5 217 exp 574 stip F p ig 2p 1 2ir ck c k iq p iq 15
87. real 8 kai 0 10 kai4 a kai kai5 minkai open 10 file kaimin f status unknown kai 5 1 0D 10 thetadash 0 88D 00 do while thetadash 1e 0 91 phidash 1 52D 02 do while phidash 1e 158 write thetadash thetadash write phidash phidash phi 0 do while phi 1e 180 do diff 0 1 thetad 7 0D 01 diff deltheta beta b_in thetar thetad pi 1 8D 02 pdrad phidash pi 1 8D 02 tdrad thetadash pi 1 8D 02 phirad phi pi 1 8D 02 delrad deltheta pi 1 8D 02 q z alpha beta call calcsigma0 q sigma0 FO thetad i 2 0D 00 exp 2 0D 00 i sigma0 exp i q 1og sin thetar 2 0D 00 2 0D 00 GO thetad i q 1 0D 00 tan thetar 2 0D 00 2 0D 00 FO thetad call calcdk q D do 1 0 1000 A 1 0 1 2 0D 00 1 D 1 1 1 0D 00 D 1 1 1 0D 00 1 B 1 0 i 2 0D 00 1X2 0D400 xD 1 1 1 0D 00 2 0D 00 D 1 1 1 0D 00 1 76 e e Se Se e e end do do m 1 3 do u 0 990 A 1 m 1 1 A u m A u m 1 u 1 0D 00 2 0D 00 u 3 0D 00 A u 1 m 1 u 2 0D 00 u 1 0D 00 A u 1 m 1 B 1 m 1 1 B u m B u m 1 u 1 0D 00 2 0D 00 u 3 0D 00 B u 1 m 1 u 2 0D 00 u 1 0D 00 B u 1 m 1 end do end do F1 thetad 0 0D 00 G1 thetad 0 0D 00 call calcpk thetad P do t 0 980 Fi thetad F1 thetad A t 3 P t G1 thetad G1 thetad B t 3 x
88. 0 006 Li i i 0 20 40 60 80 100 120 140 160 180 0 2040 60 80 100 120 140 160 180 6 12 Au asymmetry Au Null asymmetry front and back 6 13 Au asymmetry Au Null asymmetry front back Asymmetry Front Back FWHM 0 02 0 015 0 01 0 005 0 005 0 01 sin ASYMMETRY fit ASYMMETRY 20 40 60 80 100 120 140 160 180 6 14 Au asymmetry Au Null asymmetry front back FWHM 60 Asymmetry 2
89. 0 1 1 0 10 100 1000 10 000 By pi Me 0 1 1 0 10 100 1000 2 21 Muon momentum GeV c 2 20 Bethe Bloch 200keV Bethe Bloch Imm PMT ADC Scintillator Scintillator GAUSSIAN 5mm PMT noise 150 10 150 900 4000 5mm Y noise noise 200keV 0 5mm Imm noise 2 17 noise Threshold Y 32
90. Ne 64 00000000000 N Nn Aphoto N N 6 5 Aphoto 64 1 HHHHHHHHHHHHH 1 Na Nn 1 4 FIN 6 6 N Ni ti 56 PMT Asymmetry Front PMT Asymmetry Back 0 04 T T T T T T 0 1 m T T T Target Au Target Au Target Al Target Al 0 02 gt i sin fitTarget Au 7 sin fit Target Au gt Se sin fit Target Al NL sin fit Target Al ol 0 054 gt i ig 0 02 y I OF x i 4 0 04 L 1 I J 1 1 dwl 7 m 1 i 0 05 1 I 0 08 i T 1 5 1 1 1 1 0 1 L x 4 4 1 i 1 1 k 0 12 3 i 4 x 0 14 L i i i ud po 0 15 Li i i i 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 6 5 pmt asymmetry front 6 6 pmt asymmetry back PMT Asymmetry Front Back 0 06 T T Target AU nong arg
91. TA 100 120 40 160 80 100 120 140 160 Data PMT No 1 narrow Data PMT No 2 narrow H 150 H SL 10 23 H o B SAP PAS Data PMT No 1 long Data PMT No 2 long 300 100 120 140 160 Data PMT No 1 narrow 180 Data PMT No 1 long 80 100 120 140 160 Data PMT No 2 narrow 100 150 200 Data PMT No 2 long A Target amp empty Target 0 0 1 Target Al A Target empty Taregt 0 0 250 aFTTETTTTTTTTTT Data PMT No 1 narrow LEEREN mr ELTTTTTTTTTTTTTTTTTTTTTTT Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 0 2 Target Au 40 100 120 140 160 Data PMT No 1 narrow 180 100 150 200 Data PMT No 1 long 80 100 120 140 160 Data PMT No 2 narrow Data PMT No 2 long Au Target empty Taregt 0 0 250 200 20 50 50 oo Hi 10 a z d LU 50 o Loa bara dE raa Loa Tene o El La Ea ra Lara kao e las na rasha 100 120 140 160 80 100 12
92. al Fa laal Aa outgoing A2 B2 1 P Jus Jus f lgl fg f g AB e A Bet f lgl i fg f g sin x sin w 2 78 Xu XX 0 1 2 4 00000000 fg FG 1 2 2 A 262 A pias a8 If lgl 52 a 1 BUFI ese G sec z 2 79 27 2 2 PO 20 cess x i fg f g F G FG sin 0 q q a 0 i T k 1 iq Ze VR p 2 jor riri 2 80 g 0 appendix 26 f Resc 2 2 81 1 T 1 ig ig exp diglogsin R 39FG Ta exp 2iq log sin 3 2 68 a q q 0 iq Fo Go Resc 5 2 82 0 igFo 1 cos 0 Go 1 cos 0 Fo Go iqFy R 2 83 0 Go R cot 0 CO 2 19 F F F 2 84 0 Gj G Go 20 2 Experimental Apparatus 2 1 000
93. empty 51 PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 7755 3012 9154 3089 7530 2683 8775 2590 45 5999 2921 6782 2527 5975 2269 6778 1774 90 5874 3045 6971 2518 6027 2273 7019 1786 135 5570 2754 6678 2575 5431 2048 6643 1850 180 5133 2990 6584 2623 5084 2136 6588 1978 225 5845 2615 7563 2702 5821 2043 7513 1986 270 5770 2665 6956 2856 5763 1883 7061 2133 315 5443 2583 6329 2766 5390 1914 6286 2109 6 3 20 A Target u empty PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 6284 1895 1321 1821 6148 1235 7144 1226 45 4798 1878 5505 1561 4893 1245 5432 926 90 4744 1964 5599 1560 4938 1290 5662 937 135 4363 1774 5407 1657 4366 1160 5429 954 180 4131 1909 5234 1652 4081 1146 5323 1123 225 4812 1632 6129 1712 4792 1099 6019 1079 270 4643 1667 5574 1826 4674 984 5696 1118 315 4336 1656 5094 1780 4351 1046 5144 1120 6 4 A
94. mm 22 L l U U U U U U U U U U U U U U U U U U U U U U U U U U 000000 L HHHHHHHHHHHHHHHspinHHHHHHHH HHHHHHHHHHHH LU Spin 01 9000 00000 spin 0 setting spin 21 8 1 4 l U 0 U U UU UU UU UU U D 0 U uu 801 D 00 HHHHHHHHHHHHHHHHHHHHHH 0 IHHHHHHHHHHHHHHHHH IHHHHHHHHHHHHHHHH
95. 141592654 real 8 alpha2 parameter alpha2 1 0D 00 137 035989 integer z1 parameter z1 13 integer k real 8 q real 8 rho 0 10000 real 8 tau 0 10000 taurho 0 10000 complex 16 D 0 10000 do k 1 10000 rho k sqrt k 2 0D 00 z1 alpha2 2 0D 00 tau k q 2 0D 00 1og k 2 0D 00 2 0D 00 q 2 0D 00 k 1 5D 00 atan q k 2 0D 00 q 1 0D 00 1 0D 00 1 2D 01 k 2 0D 00 2 0D 00 q 2 0D 00 3 0D 00 k 2 0D 00 2 0D 00 q 2 0D 00 3 6D 02 k 2 0D 00 2 0D 00 q 2 0D 00 3 0D 00 5 0D 00 L 2 0D 00 4 0D 00 1 0D 01 q 2 0D 00 x k 2 0D 00 2 0D 00 q 4 0D 00 1 26D 03 k 2 0D 00 2 0D 00 q 2 0D 00 5 0D 00 taurho k q 2 0D 00 1og rho k 2 0D 00 2 0D 00 q 2 0D 00 rho k 1 5D 00 atan q rho k 2 0D 00 q 1 0D 00 1 0D 00 1 2D 01 rho k 2 0D 00 2 0D 00 q 2 0D 00 3 0D 00 rho k 2 0D 00 2 0D 00 q 2 0D 00 3 6D 02 rho k 2 0D 00 2 0D 00 q 2 0D 00 3 0D 00 5 0D 00 rho k 2 0D 00 4 0D 00 79 1 0D 01 q 2 0D 00 rho k 2 0D 00 2 0D 00 q 4 0D 00 1 26D 03 rho k 2 0D 00 2 0D 00 q 2 0D 00 5 0D 00 e D 0 0 D k 1 0D 00 k k 1 0D400 i2 q exp 2 0D 00 i2 tau k k 12 q k 1 0D 00 12 q exp i2 pi2 rho k rho k 1 0D 00 i2 q exp 2 0D
96. E nora 2 z cos 0 6 sd f Qu f 90 xal Qi SE 2 32 79 pu fi VI PEP da ER de
97. No 3 Threshold PMT No 3 AMP 43 0000000 PMT No 3 channel 1949 Conversion Line source source y B B y Cs 625 ke V Normalize 8 PEAK Pedestal GATE channel PMT No 1 No 2 PMT No 1 No 2 0 2mm 1 0mm 625keV PEAK electron PEAK channel Mott Scattering 4 4 Mott Scattering PEAK 47 Pedestal PMT No 3 Mear Data PMT No 3 4 4 PMT No 3 Pedestal Conversion Line nat 17 84 Mear Data PMT No 3 4 5 Conversion Line
98. kai 3 write kai kai 4 if kai 5 ge kai 4 then kai 5 kai 4 write 10 thetadash thetadash write 10 phidash phidash write kaimin kai 5 write 10 kaimin kai 5 end if phidash phidash 1 end do thetadash thetadash 0 01 end do close 10 write kaimin kai 5 stop end subroutine calcsigma0 to sigma0 implicit none integer n real 8 q real 8 sigma0 sigma1 sigma2 seg sigma0 q 2 log 1 q 2 B 0D 01 atan q q 1 1 1 2D 01 1 q 2 3 g 2 3 6D 02 1 q 2 3 5 10 q 2 q 4 1260 1 q 2 5 sigmai q g 2 log q 2 16 3 5 atan q 4 atan q atan q 2 atan q 3 q 12 q 2 16 1 q 2 48 30 q 2 16 2 q 4 160 q 2 1280 105 q 2 16 4 seg 0 do n 1 1000 seg seg acos 1 sqrt 1 g float n 2 g float n end do sigma2 0 57722 q seg return end subroutine calcpk thetad P implicit none 78 Se 2 RP Se Se RP integer k real 8 pil parameter pil 3 141592654 real 8 x thetad real 8 P 0 10000 x cos pil thetad 1 8D 02 P 0 1 P 1 x do k 1 9999 P k 1 2 0D 00 k 1 0D 00 x P k k P k 1 k 1 0D 00 end do return end subroutine calcdk q D implicit none complex 16 i2 parameter i2 0 0D 00 1 0D 00 real 8 pi2 parameter pi2 3
99. p 1 11 QCD up p un p bilinear Up p M p un p 1 12 M Lat ot pars La 16 S MO 0 257 AN SEA 8 A S A My 1 13 S exp ot wu 1 14 V i V Sht bz gt S A p x S A 0 A el 1 15
100. x implicit none real step real x 1 4 real k x 1 4 real diff eq real Ex 0 600 0 600 Ey 0 600 0 600 k_x 1 step diff_eq X x Ex Ey k x 2 stepxdiff eq C Y x Ex Ey k x 3 stepxdiff eq V X x Ex Ey k x 4 stepxdiff eq V Y x Ex Ey return end real function diff eq arg x Ex Ey implicit none character arg real x 1 4 real ci parameter c1 2 9979E 11 unit mm s real m e parameter m e 9 1093897E 31 unit kg real e parameter e 1 60218925E 19 unit Coulomb real Ex 0 600 0 600 Ey 0 600 0 600 if arg eq X then diff eq x 3 else if arg eq Y then diff eq x 4 else if arg eq V X then diff eq e m e sqrt 1 x 3 2 x 4 2 82 c1 2 x 1 int x 1 x 2 int x 2 Ex int x 1 1 int x 2 1 1 x 1 int x 1 x 2 int x 2 Ex int x 1 int x 2 1 x 1 int x 1 1 x 2 int x 2 Ex int x 1 1 int x 2 1 x 1 int x 1 1 x 2 int x 2 Ex int x 1 int x 2 1 0E 05 Se RP Se else if arg eg V Y then diff eq e m e sqrt 1 x 3 2 x 4 2 c1 2 x 1 int x 1 x 2 int x 2 Ey int x 1 1 int x 2 1 1 x 1 int x 1 x x 2 int x 2 Ey int x 1 int x 2 1 x 1 int x 1 1 x 2 int x 2 Ey int x 1 1 int x 2 1 x 1 int x 1 1 x 2 int x 2 Ey int x 1 int x 2 1 08705
101. 0 Data PMT No 2 narrow 150 200 Data PMT No 2 long A Target amp empty Target 0 135 7 Target Al 0 135 A Target empty Taregt 0 135 o bolo tii L il Lu SESS 1 100 120 140 16 Data PMT No 1 narrow WE h Ann 80 00 120 140 Data PMT No 2 narrow Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 135 8 Target Au 0 135 pepe 180 pm yor 100 120 140 160 Data PMT No 1 narrow 100 150 200 Data PMT No 1 long 100 120 140 160 Data PMT No 2 narrow 100 150 200 Data PMT No 2 long Au Target empty Taregt 0 135 100 H so D o bolo d L B o Polonia 100 120 140 160 180 80 100 Data PMT No 1 narrow Data PMT No 2 narrow 100 120 140 160 180 Data PMT No 1 narrow Data PMT No 1 long Data PMT No 2 long 80 100 120 140 Data PMT No 2 narrow Data P
102. 0 100 120 140 160 180 100 120 140 160 Data PMT No 1 narrow Data PMT No 2 narrow Data PMT No 1 narrow Data PMT No 2 narrow 120 100 150 200 Data PMT No 1 long Data PMT No 2 long Data PMT No 1 long Data PMT No 2 long Al Target amp empty Target 0 45 Al Target empty Taregt 0 45 3 Target Al 0 45 250 2 10 50 GAB Sea esip K p e of ene Ter Ey p ST 80 100 120 140 160 100 120 140 160 180 80 100 120 140 160 Data PMT No 1 narrow Data PMT No 2 narrow Data PMT No 1 narrow Data PMT No 2 narrow 100 150 200 100 150 200 Data PMT No 1 long Data PMT No 2 long Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 45 Au Target empty Taregt 0 45 4 Target Au 0 45 la las ls 1414 120 40 160 Data PMT No 1 narrow 80 100 120 140 Data PMT No 2 narrow Data PMT No 1 long
103. 00 i2 taurho k rho k 12 q rho k 1 0D 00 12 q end do return end 9 5 2 00000000000000 program elecdeflec implicit none real 8 pi parameter pi 3 141592654D 00 real x_min y_min x_max y_max unit mm parameter x min 0 0 y min 0 0 parameter x_max 560 0 y_max 400 0 real x in y in parameter x in 152 y in 78 real x g y g parameter x g 361 0 y g 324 7 real c parameter c 2 9979E 11 unit mm s real 8 b maxy b miny b step parameter b_maxy 0 75 b_miny 2 0D 01 amp b step 5 0D 03 real step parameter step 1 0E 11 real b iny integer lunout 2 err 1 real slit parameter slit 30 2 real thetad real 8 thetan thetax thetah parameter thetan 1 5D 01 thetax 1 5D 01 amp thetah 2 5D 00 real x 1 4 real x_next 1 4 integer loop 0 logical complete false real a1 a2 a3 a4 a5 a6 real Ex 0 600 0 600 Ey 0 600 0 600 integer i j k open 10 file datax xls status unknown open 11 i1e datay x1s status unknown open 12 fi1e sf7 Bkv f status o1d do i 0 560 80 100 do j 0 560 read 12 al a2 a3 a4 a5 a6 Ex j i a3 Ey j i a4 end do end do close 12 b_iny b_miny do while b_iny le b_maxy write b_iny b_iny thetad thetan do while thetad le thetax x 1 x_in x 2 y_in x 3 b_iny sin thetad pi 180 c x 4 b_iny cos thetad pi 180 c loop loop 1 do while x 1 ge x_min and x 1 l
104. 071 365 60 6 08 129 98 365 7 23 x1071 110 72 8 61 x1071 480 76 3 54 141 106 99 5 75 x1071 125 85 7 69 1071 580 35 2 77 165 113 57 7 06 x1071 131 55 7 12 x1071 672 75 2 27 4 4 Electron Energy keV PMT PEAK channel uM y AA m e Ta 500 100 AT ra do P s sa E P d E 300 5 80 Ps 5 2 70 zu XI 4 ol 40 a 100 Electron energy keV 4 6 Cariblation PMT No 1 2 49 Electron energy keV 4 7 Cariblation PMT No 3 50 Results of Experiments 3 Target x Target x3 x 144 50 250 b U 200 H 150 FR L 1 H o bol h u o h
105. 100 120 140 160 Data PMT No 2 narrow TT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTT 200 Data PMT No 2 long A Target amp empty Target 0 270 13 Target Al 0 270 AI Target empty Taregt 0 270 200 A onustus Ek 100 120 140 160 80 100 120 140 160 Data PMT No 1 narrow Data PMT No 2 narrow 250 o N Gi o Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 270 14 Target Au 0 270 140 160 180 100 120 Data PMT No 1 narrow 80 100 120 140 160 Data PMT No 2 narrow 100 150 200 Data PMT No 1 long 100 150 200 Data PMT No 2 long Au Target empty Taregt 0 270 wn 1 120 40 Data PMT No 1 narrow Data PMT No 2 narrow Data PMT No 1 long Data PMT No 2 long 100 120 140 160 Data PMT No 1 narrow 180 Data PMT No 1 long 80 100 120 140 160 Data PMT No 2 narrow
106. D D BO D U CI D Mott 0000 Parity D D B BLU 0 0 U 200500 D D D D P2 Mot 100 HRH UO 000 THEE EHE 20060 70 70 U U Party D LI D D D D D D N 19500 D D 0 0 0 0 D D 0 D D D D D 0 D 0 0 0 UD U U U DUD 0 0000 0 DD 0 DU DD 0 0 D 0 0 0 U 000 Mor D 000000 Party D D DOON 0 D D 0 D D 0 0 D 0 0 0 0 U 0000000000000 0 0 0 74 Asymmetry U 0000 1 1 1 2 2 2 4 1 4 2 4 3 4 4 Theory 3 BINI a an RE A en te e s a a 3 PLL CR 1 Do e Sele a c ba ede e meh EE 3 A DU ERE et o m moe dels 000 5 x 777 i KG SD AS 7 1591 DEDA v ot kst r bold basa Sa h ee db ee es T 1 2 2 sas E bs EU E hs vs RR eet e 8 12 9 Bip 0 Uo t aad t e EUR Rehd c v t wu aa at c pa 4 s t 12 1 2 4 P DILE EWEN 255 ie SU Rom Ebr REA RES 19 Experimental Apparatus 21 7 N L o asy A o SE 21
107. E s I pje Wet B 1 39 12 00000 121 00000000 o 1 137 p p m c p 2 1
108. H 3000000000000300 PMTHHHHHH1HHHHHHHHHH HIHHHHHHHHHHHHHHHHHHHH 200 Target D D MottHHHHHHHHHHH 00010 10 2 2 4 Scintillator 0000000000 U D 000 D Scintillator I 80000000 2 17 IHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 000 720 96 100000000000000000000 1000000000 000 20 30kV electrode l U U U U U U U U 11 2 19 1 200keV ELECTRON Plastic Scintillatar 0 2mm Scintillatar narrow
109. HHHHHHHHHHH HHHHH IHHHHHHHHHHHHHHHHHHHHHHHHHHHH 2 29 HHHH 000 0000 1AHHHHHHHHHHH 6VHHHHHHHHHHHHHHHHHHH Uu 000000000000000000000000000000000000000 000000 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 00000 A HHHHHH V 0000 Gauss 0 5 2 4 1 2 0 6 2 8 1 4 0 7 3 3 1 7 0 8 3 7 1 8 0 9 4 2 2 4 1 0 4 7 2 9 1 1 5 1 2 7 1 2 5 8 2 8 1 3 6 2 3 2 HHH1AHHHHHHHHHHHHHHHHHHH 2 30 HHHH 37
110. HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHH 29 2 26
111. MT No 1 long 100 150 200 Data PMT No 2 long A Target amp empty Target 0 180 9 Target Al 0 180 A Target empty Taregt 0 180 Ar f o lala i o Me paqa a g P nyA 100 120 140 160 180 80 100 Data PMT No 1 narrow Data PMT No 2 narrow 250 120 140 160 180 Data PMT No 1 narrow TTENTTTT Data PMT No 1 long Data PMT No 2 long Au Target amp empty Target 0 180 80 100 120 140 Data PMT No 2 narrow 10 Target Au 0 180 100 150 200 Data PMT No 1 long e 150 200 Data PMT No 2 long Au Target empty Taregt 0 180 TLLTEEEHHLFRITLLTTETTTTTTTTTTTTTTTTTTT 1 120 140 Data PMT No 1 narrow Data PMT No 2 narrow 100 120 140 160 180 Data PMT No 1 narrow 80 100 120 140 160 Data PMT No 2 narrow
112. P t end do F thetad FO thetad F1 thetad 1 0D 00 cos thetar 3 0D 00 G thetad GO thetad G1 thetad 1 0D 00 cos thetar 3 0D 00 difc0 thetad hbarc mc2 beta 2 0D 00 1 0D 00 beta 2 0D 00 x q 2 0D 00 1 0D 00 beta 2 0D 00 abs F thetad 2 0D 00 sin thetar 2 0D 00 2 0D 00 abs G thetad 2 0D 00 cos thetar 2 0D 00 2 0D 00 1 0D 01 2 0D 00 difci diff edifcO thetad S thetad 2 0D 00 hbarc mc2 beta 2 0D 00 1 0D 00 beta 2 0D 00 q sqrt 1 0D 00 beta 2 0D 00 F thetad conjg G thetad conjg F thetad G thetad sin thetar difc0 thetad 1 0D 01 2 0D 00 r_error sqrt 1 0D 00 difcO thetad 1 0D 00 beta S thetad beta S thetad 2 0D 00 end do adifc0dash abs difc1 1 difc1 0 delrad asymmetry tdrad adifcOdash difci 0 sin pdrad pola S thetad sin phirad tdrad adifcOdash difci 0 cos pdrad cos phirad write asymmetry asymmetry if phi eq 0 then kai 0 asymmetry 0 0438836 0 0058709 42 77 Se Se else if phi eq 45 then kai 1 asymmetry 0 0091814 0 0061461 2 else if phi eq 90 then kai 2 asymmetry 0 011767 0 0057577 2 else if phi eq 135 then kai 3 asymmetry 0 050966 0 0058341 2 end if phi phi 45 end do kai 4 kai 0 kai 1 kai 2
113. Scatter Plot D 6 4 Long Gate Scatter Plot D 000000 Narrow Gate D D D D D D O 100 0 6 4 Narrow Gate PEAK Long Gate PEAK noise Mott U U U U 6 1 6 1 Y 6 3 00000 l U U U U U U L U U U L N N NO NIE m N N 2075 6 2 Nj N_ NGO 60000000 180 N N 55
114. Target O empty PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 8003 2521 7502 2485 7964 1810 7466 1685 45 8162 2739 7657 2491 8105 1943 7589 1811 90 8797 2684 7606 2408 8812 1808 7516 1629 135 8510 2478 8075 2406 8479 1778 7936 1712 180 7573 2446 7659 2384 7653 1773 7679 1669 225 7802 2526 8560 2445 7729 1779 8476 1737 270 7761 2580 8697 2428 7689 1886 8652 1714 315 8449 2590 8498 2403 8423 1860 8449 1734 6 5 20 Au Target O empty 52 PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 6397 1612 6159 1593 6342 989 6001 891 45 6634 1756 6225 1588 6570 1044 5969 942 90 7170 1733 6240 1451 6995 982 6043 813 135 6840 1531 6541 1495 6804 936 6356 880 180 6043 1565 6193 1447 6003 924 6161 860 225 6313 1598 6881 1584 6265 915 6773 863 270 6347 1689 7032 1533 6173 1021 6943 862 315 6738 1713 6843 1524 6702 940 6767 867 6 6 A
115. VIDER 100000 1000 0 0 0 sin ut Back Ground 0 0 D D sa 00000000000000 PEAKHHHHHHHHHHHHHHH 00 H H Gate 0 Back Ground I O O O Gate 0000 PEAK D H Calibration GAUSSIAN FITD DD D PEAK H D O OD O B O D D O LU U U U 00 U 000000000 High Pass Fike 0000 2 35061 D 0000000000000 INPUT OUTPUT High Pass Filter 2 36 High Pass Filter Y OOOO 510 100nF 1kQ E GND High Pas Filter D 0 D D D 0 0 D 0 0 0 D 0 0 0 D DO 42 sin PEAK Back Ground 43 30 Experimental Method
116. e E 2mec n 2 7 Bethe Bloch 2 20 dx dE da 1000MeV lem 200keV lem 200keV 200keV 1mm Bethe Bloch 200keV 2 21 200keV D D 0 5mm
117. e x_max amp and x 2 ge y_min and x 2 1e y_max call solve Ex Ey step x x_next x 1 x_next 1 x 2 x_next 2 x 3 x_next 3 x 4 x_next 4 write 10 x 1 write 11 x 2 if x 2 ge 115 and amp x 1 le 361 and amp 220 2 le x 1 361 2 amp x 2 115 2 or 200 2 ge x 1 361 2 x 2 115 2 amp then goto 100 endif if x 1 1e 466 and x 1 ge 456 and amp x 2 1e 324 72 slit or x 2 ge 324 72 slit amp then goto 100 endif end do write x 1 x 1 write x 2 x 2 write betax x 3 c write betay x 4 c continue thetad thetad thetah end do b_iny b_iny b_step end do close 10 close 11 stop end subroutine solve Ex Ey step x x next implicit none real step real x 1 4 real x next 1 4 real Ex 0 600 0 600 Ey 0 600 0 600 81 integer i real x_local 1 4 real kl_x 1 4 k2_x 1 4 k3_x 1 4 k4_x 1 4 do i 1 4 x_local i x i end do call solve_lstep Ex Ey step x_local kl_x do i 1 4 x_local i x i 0 5 k1_x i end do call solve istep Ex Ey step x local k2 x do i 1 4 x local i ex i 0 5 k2 x i end do call solve istep Ex Ey step x local k3 x do i 1 4 x local i ex i k3 x i end do call solve istep Ex Ey step x local k4 x do i 1 4 x_next 1 x 1 k1_x amp 2 0 k2 x i k3 x i k4 x i 6 0 end do return end subroutine solve istep Ex Ey step x k
118. eos O a 67 g 0 0 100 mm 1 lg it F x dan 2 68 ies 2k 1 z P k 0 1 z 1 2x cos 0 z2 2 a 69 On 0 xy0000 Bey a 0 z z 1 1 2sin 5 oo 0 E 022 td 0 3120 sin 5 Qro a 70 2sin t x x 2 1 Liz SE 1 2 032 dz a 71 g r r ig 5 P 1 iq T q a 72 VTT 22 2 1T z T 2 2 T 2iq T 1 ig T ig a 73 73 T 1 iq 0
119. et Al m sin fit Target Au 002L F E sin fit Target Al 0 02 d x s 4 1 0041 x 0 06 L 1 1 4 0 08 1 0 1 i 4 0 12 i 1 H 0 14 1 1 1 1 1 1 d 0 50 100 150 200 250 300 350 6 7 pmt asymmetry front back 57 6 8
120. hreshold U 4 3 Threshold Threshold Threshold 7 Appropriate 4 3 Threshold Threshold PMT No Threshold mV 1 2 3 700 4 1 PMT Threshold 46
121. i p 2 ve 205 2 15 x exp pz 20 1 o o Ya AP 2 16 va BP cl Ain 52 B p 14 0 iy P 2mc o o 1 pa Bir 50 A p iq Zeie w P D tyr P exp D pz qy rz 2 16 2 10 c p e AA BB exp zx y z o 2 17 j e y BB ut y AB 1 24 ASB z exp z2 ky z 2 c m om om 2m Zur CUBE AA A B ET 2m Oy Oz Dar mu mv MW j pot LA B ABY BB AA exp 2 y 22 2 2 18 2m Oz r 3 pw iA B iAB 2 A B AB 2 exp z2 y 29 o 2m Ox Oy 2 13 Ha 5 A B AB exp z y 2 0 2 19 me i4B Jep UE BB AA exp z2 y 32 o anc 2 19 2 19 A B A B AB 2 20 iA B AB AA 10
122. lt 1 lt Falz 0 YU fa o1 YI fo Pa a 20 GP k 0 28 Y a f alog SD ROO 2641 1 k B a 21 n z O z 1 n 2 Yee 211 k T Pe a 22 k 67
123. metry Back T T T T T 0 08 T r T T T T Target Au Target Au T Target Al Target Al x L sin fitAu i 1 0 06 sin fit Au o ee EE sin fit AI sin fit Al ae null asymmetry null asymmetry sin fitnull 0 04 sin fitnul 1 oo2 E 1 L k i4 2 2 Z or 1 r 0 02 I LK s 1 2 0 04 ART 1 m 0 06 R oc s ucc b ya a dan SEEN 1 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 6 9 asymmetry front 6 10 asymmetry back Asymmetry Front Back 0 06 T T T T T T Target Au 1 Target Al e x sin fit Au 1 0 04 sin fit A 1 f 4 null asymmetry e sinfitnull E 22 0 02 J OF 0 02 J 0 04 d 0 06 L L L L L 1 L 1 1 0 20 40 60 80 100 120 140 160 180 6 11 asymmetry front back 59 Asymmetry Front Back Asymmetry Front Back 0 03 r r 1 r 0 016 7 ASYMMETRY Front ASYMMETRY 0 025 ASYMMETRY Back 0 014 L sin fi ASYMMETRY 1 sin fit Front 0 02 sin fit Back 0 012 0 015 L 0 01 1 7 0 008 7 0 01 1 Pa 0 006 0 005 Fl x 0 004 1 0 pa 2 I 0 002 4 0 005 x 0 01 1 0 002 1 0 015 0 004 1 0 02 Ci i i i i
124. sh 56 0 sinh 56 sinh EI 0 cosh 56 0 0 sinh ic 0 cosh ic 4987 iy me Sy ep 0 2 25 YS p Ha p me Sy PO PSPY v Cae V1 0 V2 V3 ASo Va BSo 2 26 So exp imc t zs s Y Asinh 569 yo B sinh 265 1 1 i3 cosh 36 5 Ya B cosh 365 2 27 S exp imc z sinh C ct cosh 0 11 Zz p mc A B u B iw A cot
125. t 1 18 P 1 18 1 1 1 1 1 1 1 1 gv Up p YUn p 1 19 947 p sus p p SS S Sp EN 27 6 p2 ps pa Pi Up pa ay ys un pi Jue ps ya 1 ys u pa 1 20 Gv 1 11 2 000 dirac 1 5 Ex uz p 25 1 21 prm op ng 0 p vp m 7 m J 1 22 N ik n Do 0 ii 0 j I P 0Xs 1 Xs 1 23
126. u Target Hr 4 empty PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 5969 3039 6503 2814 5902 2087 6477 2035 45 6405 2958 6064 2589 6429 2144 6054 1943 90 6135 2915 6032 2605 6018 2088 5978 1870 135 5862 3094 6030 2667 5864 2233 5934 1980 180 5733 2793 6715 2489 5672 2082 6724 1861 225 5797 2674 7134 2631 5743 2001 7089 2048 270 5580 2893 7152 2680 5504 2150 7143 2008 315 5312 2872 6271 2549 5354 2033 6296 1856 6 7 20 Al Target idos empty PMT No 1 PMT No 2 PMT No 1 PMT No 2 narrow empty narrow empty long empty long empty 0 4859 1806 5359 1808 4868 1139 5300 1132 45 5294 1793 4903 1656 5249 1213 4895 1055 90 5043 1829 4809 1583 4955 1121 4761 933 135 4805 1773 4930 1692 4837 1163 4909 1097 180 4775 1784 5339 1617 4722 1132 5414 1014 225 4732 1729 5799 1723 4647 1053 5728 1116 270 4610 1734 5784 1646 4490 1114 5796 1021 315 4339 1747 5060 1680 4358 1114 5053 1047 6 8 A Target 0 empty 53 Gate Gate empty
127. z exp i 1 zy A 3 p 255 2 271 Jo z 1 3 3 Yu B du T 271 a y dy 2 5 1 1 1 1 Yu 2 du 272 T 274 a y dU z 2 3 yalz EHER men PCB a LE a b c a 2A m 2 V 1 un x ige2ir 2 3 iq e7 XPD q b E sam 2 o 1 1 z 2 z 24rz 1 z exp 2ir x 1 x e z Z 1 z gire 1 Im z lt 0 Z 20 Yo a 48 L ir 1 Ing q To i 3 ig b 2 ip clie r e JE 1 exp 2ir x 1 z dz 1 20 20 0 70 42 43 44 45 45 46 47 48 49 50 51 52 a 52 r

Download Pdf Manuals

image

Related Search

Related Contents

Manual do Usuário  Samsung SGH-Z360 Manuel de l'utilisateur  NLD-W User Manual - almetithalat.com  μ METAL 取扱説明書  Tripp Lite WEXT3-SU5000HV    WebFOCUS InfoAssist User`s Manual Version 7 Release 6.10  設計書 - 羽咋市  

Copyright © All rights reserved.
Failed to retrieve file