Home
概要 - 関東経済産業局
Contents
1.
2. 120 2 4 1 RE
3. 1 2 F 119
4. FBG fag 3 3 1 Ne HH 460 x 300mm
5. 1 2 0 1 E E FE
6. 2 4 5 2 4 C 3 4 2 5 um 3um 9 3 9 4 um 9 4 9 5 m 9 5 9 5 4 a 3 K Ss a K i um 2 1 ae 0 0 5 10 15 20 25 mm 3 4 2 SM 50m SM 900m X
7. 2 7 SPR X 2 7 1 85 ap O X 2 7 1 SPR SPR 0 8 oO mn oO Normalized Light Intensity oO bo
8. 125 um 2 5 1 nm i we N A i X 2 5 2 Kretschmann 2 6 SPR Surface Plasmon Resonance SPR SPR 2 5 2 SPR Kretschmann Kretschmann nm
9. 15 B elas ee a ne C
10. 2 8 SPR SPR Ag Au CFS 4ES 231 2 8 1 a b 8
11. KEDA 18 1 10 7
12. EZAR EZAR FY BE RB 3
13. 13 4 2002 14 Hy F 9 2003 TAMA TLO FP
14. MMF 6 59 pm 55nm Au 50nm Cr 5nm aX 4 4 3 en AN SMF 63 um MMF 6 59 gm X 4 4 3 101 E 4 4 4 4 4 7 4 4 4 No 1 Cr50 W 100lsec Au50 W 200 sec 4 4 5 No 2 Cr50 W 100lsecl Au50 W 400 secl 4 4 6 No 3 Cr50 W 100lsecl Au50 W 700 secl 4 4 7 No 4 Cr50 W 100 sec Au25 W 400 sec 4 4 4 4 4 6 4 4 5 No 2 Au 4 4 4
15. 2 4 1 2 4 2 2 yr MEE 2 2 9 5 9 35mm 80mm 9 5 9
16. Imm 3mm 1mm 2 4 6 dB a A dB 0 1 2 3 4 5 6 mm 24 6 1 2 2mm 0 1 2 3 4 5 6 mm 2 46 2 1 9mm dB mm 2 4 6 3 1 8mm
17. a 100m 100m 2 4 8 ef io ml FA pee gt 3 p a _ 2 4 4 OTDR GP IB OTDR 100m 5m 100m SC
18. E 2 MED Mode Field Diametor MFD 8 4 1 2 2w w i J 3 4 1 w w TIT w wm ED ww OTDR 1 8 um w 1 3 um NA
19. UV 1 51 1 53 UV 85 POE ADH 2 4 5 20 2 4 6 15 2 4 7 X 2 4 9 2 4 5 85 lmm 0 1 2 3 4 5 dB dB dB 00045 00054 OOO18 0 0020 00029 0 107 0 128 0 083 0 043 0 049 0 068 0145 SY 96FS
20. 3 5 4 1o ES 0 449 0 637 0 592 0 446 0 416 0 360 0 329 0 320 0 285 0 298 0 257 0 325 0 296 0 424 0 469 0 039 0 048 0 140 0 130 0 013 0 019 0 353 0 328 0 231 0 214 0 037 0 047 0 141 0 185 0 022 0 018 0 352 0 349 0 204 0 200 0 074 0 079 0 137 0 140 0 029 0 026 0 388 0 218 0 070 0 140 0 037 0 310 0 274 0 818 0 266 0 055 0 051 0 186 0 128 0 025 0 021 F S 0 0 2 0 4 0 6 0 8 1 1 2 kgf cm2 1 E 1 2 X 2 X 3 3 4 4 5 5 83 5 9 3 5 10 8 5 11 0 4666 26 5 0 4668 26 0 467 25 5 z E
21. D 4 2 4 2 I AE TI F S 0 1 9 5 9 5mm 0 1 dB 0 691 1 278 2 071 2 871 4 241 4 668 dB 0 69
22. X 4 3 2 X 4 3 3 A D A D HIGH1 3 32bit CPU 16bit CPU 2 GP IB CPU2 R A
23. 1 1 2 1 1 1 OTDR A z F ee 1 1 1 PRIS D EE SS Se DD RA
24. 1 o 1 o 3 4 48 100ns 8 4 44 8 4 45 1 co 215 30 215 3 4 46 XI 3 4 45 3 4 46 09 OTDR OTDR 100ns
25. Ag Au B fF an AYA 50nm ae ae aes Ax 1 gt Je 4 P E5 FERIE
26. 20mm 30nm pis 7E 2 15 A 1dB OTDR
27. 1 4 1 H E E 8 2 1
28. j FBG FBG Fiber Bragg Grating E FBG OTDR H
29. H E Au SPR ET Fiber Bragg Grating BOTDR FBG
30. APOC Automatic Power Control LED085 n gt No 2 A LED085 LED H LED LED 4 5 1 LED HH Au SPR H CWICHOP ON ON OF
31. MFD MFD MFD 3 4 38 oct Loss 10x Log Mode Profile SM Fujikura 1 308 um No 1 Mode Profile SM Fujikura 1 308 urn No 1 Intensity W Axis um 0 400 300 200 100 0 100 200 300 400 W Axis um 500 500 V Axis um V Axis um a b 500 Mode Profile F SV 1 308 um No 1 Mode Profile F SV 1 308 um No 1 400 80 awe ae 90 3 70 TO eo 80 aai 60 ge ee 70 a PR E eod ow be gob F De 7 40 S Alf pani a 1
32. 1 0 2 2 8 3 20bit 2000msec X 2 3 3 b 2 4 A
33. 25mm dB 0 20 40 60 80 100 120 140 160 180 200 um 20mm 25mm 30mm FS 0 5 0 4 0 3 0 2 0 1 0 0 mm 0 O 50 A 100 O 50 35 3 4 24 2 12 20mm 3 4 25 1o 3 4 26
34. X 2 4 7 E 1 2 4 3 2 4 8 mm f of l 2 3 ao dB sB dB 00142 00121 00137 0 0197 00055 00095 00109 0015
35. 145mm 8 2 9 fee RIE SEM b a Yo Pa 1 kU X15 6090 lam BOAI BS NO x18 6090 tum 1 N UI X Thickness nm 1000 2 8 3 SEM a b c 900 800 700 600 500 400
36. X 4 5 2 AAQ2748 AQ2730 OPM PD CHOP aes BPMH T L AoH H OH PEL i 1 EEPROM K i EEPROM LED mio gt DC 5V 15V 12V A 2140 45 2 OPM X 109 C X 4 5 3 LED085 LED SC FC F C FC SC SC Au SPR
37. 1 od 1 5 1 5 1 192 0083 9 1 11 PE 192 0083 1 236 180 8750 2 9 32 TF 257 8502 Hem 500 236 0004 1 1 1 6 3 1 8 162179
38. 0 1 4 4 1 SPR Surface Plasmon Resonance
39. Ag SPR PRET Tr Pa Ar SCCM Ar Pal RFE secl A E Ave H E WJ FI 350nm 1750nm Au Au Cr D 4 5 850nm LED
40. 3 1 D Dy Ww FY ER PE E 2 w H
41. 3 8 um 9 4 9 9 5 9 1mm 9 4 9 5mm 9 5 9 5mm ELK FOC 9 5 9 35mm 30mm 9 5 9 dB 9 5 9
42. 4 4 6 No 2 4 4 7 Au 4 4 5 X No 1 Cr50 W 100 sec Au50 W 200 sec 096 10 2096 8096 40 qB 200__400 __600 __800__1000 1200 1400 16001800 nm 4 4 4 Anu EPR No DSK 102 B dB dE No 2 Cr50 W 100 sec Au50 W 400 secl nm 4 4 5 Au SPR To No
43. f 1 Au OTDR A 42 Au SPR W H 4 3 400nm 1800nm 4 4 Au Au 2
44. MW B yy it RIKST 7 A NO BEDIED DANTA MM
45. 1 1 1 1 1 OTDR AQ7250 850nm X 2 14 1 20 30mm 40 50nm A 5nm 4 40nm 50nm
46. 1 TP R P too mm Erp 4 2 1 B Au SPR OTDR X 4 2 2 16cm G25 um 3m 10mm F 160mm AD e gt 10mm 4 2 2 Au SPR
47. 2 4 9 5 9 Tuy A B 3 4 E C OTDR 0 001dB
48. 3 5mm BE C 10 it m 05 9 yr 00 i a x 0 5 A EK 10 0 1 2 3 4 5 6 7 8 mm o0 A 100 8 4 18 OTDR 1 o 9 4 9 1
49. 1 333 1 749 3 3 1 3 2 1 1 3 3 A VTA E
50. OTDR 8 4 14 a OTDR 3 4 14 b 8 4 14 3 um 230mm 1 5mm 4 um 230mm 2mm 5 um 85mm 5mm 0 1 OTDR 1 4 um OTDR 3 4 15
51. PEO RA 21T 9 JR 1 2 Zs JRD RA IE A LAL EE denis 8 2 WI 2 LED sec H AX 3 N LED E Ag Au Ag Ag
52. Hi LBL H D X C 4 4 1 4 4 2 FC FC FC SC SC Au SPR AQ 6312A AQ 4303B 442 100 Fie 400nm 1750nm 0 05dB
53. F TLO tH gt AN Eg 1 2 IP Wes Besa nee AAD Efi f
54. A D 2 CY At z CPU2 GP IB 1 2 D CPU1 RIA 4 3 3 C Ag 4 3 4 Ag SPR d 4 3 5 L FC 3 FC SFR 4 3 4 4 1096 x 20 3 26 30 a 40 x 2 50 FR 0 5 0 400 600 800 1000 1200 1400 1600 Inml 4 8 5
55. D617 HERE 1 10 C 0 509 2 13 3 1 20 ae 0 9 ee gt _ 08 2 a i wera g ra 20 7 he To eo ft Pa A na 2 S Oil te oe S ued Ss Pa o5 i ww NN gt a xe S a x 0 4 N 30 40 EA 0 3 0 2 L L 1 400 500 600 700 800 900 1000 Wavelength nm X 2 13 3 0 50 18 16 gt Air m Water 14 n m HA 4 Suc 10 R aay x Suc 20 242 Se XX x Suc 30 f x Suc 40 E x xX Suc 50 10 e 4 6 18 20 22 24 26 Temperature C X 2 13 4 D 2 13 4
56. J 3 4 13 X X 3 4 6 9 3 9 9 5 9 AY 3 4 2 8 4 7 3 48 4 12dB 1 3 FS 9 3 9 1 396 0 1 FS 0 100 0 50 100 50 0 5 Wal TIT 1 co
57. Normalized Intensity arb o co RIL 1 398 1 385 1 371 0 4 ie 0 4 1 357 1345 1 345 1 333 1 333 0 2 0 2 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000 Wavelength nm Wavelength nm a b 2 11 1 SPR a 31 7nm b 34 6nm 660 600 640 r 580 E 620 E g ee lt 50 3 A 580 oe CM nm s 7 2nm S 560 lum eae e 340 Ra 520 520 500 2 500 0 5 10 15 0 5 10 15 Time hour Time hour a b X 2 11 2 a 31 7nm b 84 6nm SPR f 1 838 20
58. xX o B 1 OTDR OTDR 2
59. B 3 4 32 B A 3 4 33 6 4 0 8 0 6 0 4 dB 100um 0 2 0 0 OdB M 3dB M 5dB 6dB FS 16 14 12 10 8 6 4 2 0 0dB 3dB 5dB 6dB A dB 0 50 100 50 X B 1 OTDR 3 4 32 A X 3 4 33 A B 1o X 3 4 32 33 B A
60. K 4 4 2 850nm No 1 0 10 20 30 40 MAX 0 277 dBm 0 313dBm 0 352dBm 0 414 dBm 0 519 dBm MIN 0 238 dBm 0 277dBm 0 317dBm 0 378dBm 0 478 dBm Average 0 265 dBm 0 300dBm 0 339dBm 0 398dBm 0 501 dBm SD 0 014 dBm 0 012dBm 0 012 dBm 0 014dBm 0 015dBm FS 5 789 5 111 4 917 5 791 6 422 N FS 0 0023 0 0020 0 0020 0 0023 0 026 4 4 3 7 850nm No 2 0 10 20 30 40 MAX 0 191 dBm 0 235dBm 0 318dBm 0 432 dBm 0 680 dBm MIN 0 150 dBm 0 196dBm 0 276dBm 0 382 dBm 0 608 dBm Average 0 180 dBm 0 224dBm 0 294dBm 0 410 dBm 0 656 dBm SD 0 014 dBm 0 014dBm 0 017 dBm 0 018dBm 0 025 dBm FS 2 869 3 018 3 601 3 788 5 168 N FS 0 0011 0 0012 0 0014 0 0015 0 0021 4 4 4 850nm No 3 0 10 20 80 40 MAX 0 153 dBm 0 176dBm 0 208dBm 0 259dBm 0 351 dBm MIN 0 122 dBm 0 154dBm 0 188dBm 0 239dBm 0 330 dBm Average 0 143 dBm 0 168 dBm 0 203 dBm 0 253 dBm 0 340 dBm
61. 1 H RE E OTDR 24 2 32 6nm 1 398 BLUT 4 4nm 850nm 8X10 4 RIU 2 5nm 50nm B
62. 3 SPW SPW SPW 2 SPR SPW
63. AQ2140 AQ4215 085 OPM AQ2780 4 5 3 LED085 0 005dB 0 01dB 0 015dB 0 35dB 4 5 1 LED085 4 5 1 LED085 LED085 850nm 15 AQ4215 085 0 005dB GE 5 20 80 1 OPM 700nm 1800nm AQ2140 0 01dB AQ2730 OPM AQ2743 110 D X 4 5 4 No 2 0 409 40 0
64. 0 2mm 3dB 0 5mm 1 10m 8 5 4 0 5mm 35mm 0 3mm 40mm
65. EZAR A RE F 1 4 2 sh A BE 1 4 3
66. 1 33 1 4 1 32dB N png HTR10mm Cr4 4nm Au16 3nm 1 4 m HTR10mm Cr4 4nm Au32 7nm HTR10mm Cr4 4nm Au57 0nm 5 0 8 m x 8 06 4 0 4 Ad se E 0 2 m 0 A K a 0 2 1 I 1 1 1 1 1 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 4 Refractive Index arb 2 12 2 850nm 16 3 32 7 57 0nm SPR 32 7nm 2 13 LED PD 850nm
67. 2 13 1 10mm Au 32 6nm Cr 4 4nm 50 3 50 0 10 20 30 40 50 LED fe 850nm 50m 2 18 2 82 6nm 4 4nm poset Stretching Support Optical Multimeter Wavelength 850nm Hetero Core Portion Liquid X 2 13 1 09 F ms 1 333 08 J 807 WX 1 345 oe 1 371 1 383 0 6 ne 1 398 05 450 550 650 750 850 950 Wavelength nm X 2 13 2 SPR Au
68. 0 3mm Type B 0 8mm Type A 3 4 Type A esi FA g K 0 0 125 A 0 25 A 0 3 A 0 3 B mm 3 5 6 E 0 125 A 0 25 A 00 3 A E 0 3 B AE SO et ey gt L E EF h X 3 5 7 3 0 3mm 5 K 3 5 3 3 5 8 10m 0 5mm
69. dB A b c b 2 4 1 X 2 4 2 B 2 4 3 2 4 4 ao
70. 7 2nm xl 2 12 X 2 12 1 ab 4 4nm 32 6nm 57 0nm SRL EOE H
71. B 3 6 1 3 6 2 MERR PC 8 6 1 8 6 2 1 8 6 2 3 6 3 0 10m on 30 60 3 6 2 z 0 0 2 0 4 0 6 0 8 1 1 2 eran
72. 2 3 OTDR 4 OTDR 6 1 2 10m 10mm 1 00 1 30 1 30 1 60 3 10 20 4 1km 5 20 1 T D if TA jez X 1 1 3 IN
73. 1 102 pp22 25 2 E 3 5 3 4 SBR ti 2 Bee 2 JR Le E 2 3 X 3 5 1 A 1 3 5 1 3 5 2
74. 3 5 5 3 5 2 3mm 30mm ER 670nm 0 2um 0 05 of FS 5C 0 03 of FS O 200k Pa 0 01kPa MC100 WE 0 05 of FS 0 003 of FS C 0 002 of FS C 0 130k Pa 0 02 of rdg soas MT220 ZS fie BE 0 001 kPa 0 001 of FS C 0 001 ofFS C 2 X 3 5 6 0 3mm 0 5mm
75. 4 um 50 80 236mm 100mm 150 am 20 25 30mm 25mm 100 m tes 12 20mm 20mm 2 2mm 500 um 2 um 0 56 FS SM DSM SM DSM 100m OTDR 10ns 4 us 100ns 212 217 A 215 2 2 4 FS
76. 3 5 1 No2 3 5 3 6 6 8 0 018 4 0 011 5 0 007 5 5 0 1 0 08 0 06 0 04 0 02 0 02 0 04 0 06 0 08 0 1 kgf cm 7 0 4 0 6 0 8 1 kg cm2 N 3 04k A 5 8 6 6 8 6 7 10 1 9 0 9 8 0 8 at 07 5 m 6 0 6 G5 0 5 a x 4 04 gt 3 TE 2 0 2 H 1 0 1 0 0 0 0 2 0 4 0 6 0 8 1
77. 4B BDAC y A RPI amp ja SPR EM SND SE REE amp yl 125 um 2 8 30b c nm 1000 2 10 2 10 1 400 1800nm FF PC 2 10 1
78. FAS NCTE Og PEARED 2 4 8 2 4 8 A 3 4 5 OT dB dB IXcMIN 0OO 0Oigl oos ora oon oon relma 00036 00064 0 0112 00055 0O0067 00028 00013 00O15 00O13 00O16 FS 0OO17 00019 00O15 00026 0094 0O 166 0O291 0144 0175 0072 0034 oog 0034 ooaj 60043 ooo 0039 ooer n a EE ae 2 5
79. 0O 1O 20 30 40 50 dB dB 100 0 10 20 30 40 50 dB dB C 2 13 1 Cr 4 4nm Au 32 6nm 10mm GEY ANDO AQ2140A LED ANDO AQ4215 850nm ANDO AQ2730 BE 0 50 1 3330 1 4200 A 1
80. Ag 1 AQ 4303B 2 AQ 6315A B 3 2002 6 4 4 Au 2 my OE p lt LED Se A
81. X 1 1 2 m 2 Ww 3 4 5 1
82. 6 5 KE DEFI Hoy 2002 13249 TAMA TLO 15 1 7 1 2 3 4 5 6 7 8 Ee PR Tu Tu p 63 H 14 11 H 12 13
83. HH B LTF 3 3 1
84. OTDR 3 4 1 ral a7 38 4 5 um 9 5mm gt gt OTDR 10ns 4 ps 212 217E
85. Te X 2 11 1 a b 31 7nm OF LES 34 7nm 0 10 20 30 40 50 R I 1 333 1 398 1 0008 SPR Normalized Intensity a u oO O co
86. 3 4 39 output1 output2 3 4 40 8 4 41 3 4 42 3 4 40 42 SM _ DSM 800m 850m a SM output1 output2 b X 3 4 39 5 1 2 4 _ 10 a na 23 3 0
87. 0 5dB 9 5 9 dB 2 N 2 0 9mm 0 0 3 0mm 5 4mm i 6 9mm 6 8 6mm Ly 2 Lr se Lco el a on 0 0 5 1 1 5 2 2 5 3 mm 2 4 5 4 5
88. OTDR SN E 3 4 1 dB A B SM SM SM DSM DSM SM DSM DSM A B 850m 3 4 30 E 1 OTDR 2 H 3 4 31 1 AA OTDR A 2 B A B B A A
89. GPIB PC ot Th AQ 4808EI 400 1800nm 45dBm 10nm GI50 125 CW 850 1300nm 0 05dB 20 C 1 FC AQ 6815Al MERRE 350 1750nm 0 5nm 2545 10 125 SM 0 005nm 1 0 05 10nm 0 3dB 633 131071550 FC 2 11 SPR
90. 2 10 2 400 2 10 3 e OA g 1 1800nm 2 10 30 1 g e
91. 350nm 1750nm 4 3 2 a 2 2
92. Au 50 W 400lsecl Au Cr 50 W 100 sec Au B LED085 Au SPR Brix 0 1 0 0003 0 7 Brix 0 0003 El Mt C
93. IR H 7 Ly O OTDR TAMA TLO 2 ayy ELV 9 tak IB ES 4 N 2 8 9
94. B Overview of Research Results This research project has been carried out by the consortium which consists of the faculty of engineering of SOKA university Yokogawa denshikiki Co Ltd and Inter Action Co under the management corporation TAMA TLO Inc and has been fully funded by the Ministry of Economy Trade and Industry of Japan for the period of Mar 26 2002 Mar 31 2003 The project group has developed a water level gauge for the sake of monitoring water level at rivers and dams and a refractive index meter which has an additional function of water or oil leakage detection using a novel newly developed fiber sensing technology named hetero core structure The project spent 4 months at the beginning in setting up various experimental environments and in the course of technology transfer from the university to the other two companies mentioned above The transfer of technology was started under the supervise by Prof K Watanabe s laboratory at the faculty of engineering of SOKA university soon after getting ready for the usage of a fiber cleaver optical fiber splice machines cleaners re coating machines and any other measurement instruments with covering the many detailed aspects such as the operational principle and fabrication technique general sensing properties measurement tips and handling manner of hetero core optical fiber sensing elements Yokogawa denshikiki C
95. 9 gm OTDR Optical Time Domain Reflectometer OTDR OTDR 9 um 5 um 9 5 9 2 3 _
96. 38 Ee a b 2 8 1 a 2 8 2
97. Au SPR 7 25 um 16cm 3cm V Au Cr Au 4 2 1 4 2 1 Pal 6 65 X 104 Ar Pal 4 9 10 Cr W 50 Cr sec 100 Au W 25 50 Au sec 200 400 700 4 2 2 4 2 8 SC 4 2 4 4 2 2
98. f 26a ZH 25 p 1061 63 26a ZH 27 p 1062 1 63 f 26a ZH 28 p 1062 14 9 2002 11 A RRL ay E 2002 11 L E 9 HA 1442 9 ELSA TH HA 1442 9 GA ME S TH 9 A Seki M Iga K Hirama T Nakazawa and K Watanabe Application of hetero core fiber optic to chemical and biological sensing Th
99. Imm 9 4 9 2 9 5 9 3 5 1 FBR HORS 5 Ci b JJ a c X 8 5
100. 50 3nm 16 H 2S Ps E YQ SP R 16 2 11 2 LT Bl a ARO
101. 0 3dB 0 35dB 4 4 1 4 4 1 400nm 1800nm AQ 4303B 0 05dB 20 C1 T E w E AQ 6312A 400nm 1750nm 0 3dB 25 5 C 1nm D l Au
102. SPR 2002 4 pp56 60 2002 2002 4 p51 56 2002 14 4 f 26a ZH 23 p 1061 63 HS E144 26a ZH 24 p 1061 E E 9 rye GAIT BES MEARE POL SPR 63
103. 215 3 0 2 5 2 0 1 5 FS 1 0 be 0 5 0 0 10 20 100 200 500 ns 1000 4000 100 80 60 40 20 s 2 12 2 13 2714 2 15 2 16 2 17 3 4 43 o 3 4 44 10 0 5 P 8 D 0 4 LL LL 6 03 Mm H WE 4 ME 0 2 s s m2 HE 01 0 0 0 2712 2713 2714 2715 2715 2716 2717 E0 B 100 0 3 4 45 1 o X 3 4 46 o H 3 4 3 OTDR R 3 4 8
104. H H 20C 25C 0 0005 TFS CH 0 8 HTR20 Cr5nm Au50nm 0 9 O HTR30 Cr5nm Au50nm A HTR20 Cr5nm Au40nm x HTR30 Cr5nm Au40nm 0 5 Loss dB 1 33 134 135 136 137 138 1 39 1 4 RIU arb X 2 14 1 OTDR 2 14 OTDR OTDR Optical Time Domain Reflecotmeter
105. R it 2 JA w 2 ZR 2 AZ D 4 1 4 4 1 4 4 eyed g i ed oa
106. LED850nm 1 BS TIEE Japan Vol 122 C No4 2000 TIEE Japan Vol 122 C No4 2000 4 TIRE Japan Vol 122 C No4 2000 Ii 107 4 5 LED085 E 5 E
107. OTDR 0 001dB OTDR 0 001 0 002dB 22 4 1 20mm a SB 2 4 1 1 0 5m 2 m 5 um
108. 100 09 3 9 4 9 9 3 9 9 5 9 4 um 9 3 9 9 3 9 9 5 9 9 8 9 9 5 9 3 4 B Mm 4
109. 41 P823 324 8 102 Beas P241 4 3 A 400nm 1800nm CW 270Hz CW 4 8 1 D X 4 8 1 B 5 10 um 800 um
110. LED LED085 9 FS N96FS E 4 6 F 4 7 fi Cla Au Du 1 2002 6 9 16 2 K Watanabe K Tajima Y Kubota IEICE TRANS ELECTRON VOL E83 C NO 3 MARCH2000 3 1 354 1 1999 co St 4 2
111. R 3 5 38 mm 0 203 0 285 0 295 0 339 0 355 0 381 0 401 0 448 0 473 0 476 0 502 0 501 0 527 0 524 0 551 0 417 0 440 0 333 0 609 mm 0 0 2 0 4 0 6 0 8 1 1 2 kgicm No 1 1 No 1 1 No 2 2 No 2 2 3K No 3 3 No 3 3 No 4 4 No 4 4 No 5 5 No 5 5 X 3 5 8 HI A 4 3 5 4 3 5 9 0 10m 1 go 0 1 No 3 0 067 No 5 0 027 0 1
112. TLO H 1 4 A 1 1 4 1 1 1 2 DAZ
113. D 6 3 O 1mm T a Z 4 4x 24 K2 5a E as 0 0 3 4 5 3 4 5 um um a b 1 0 3 4 14 OTDR 9 4 9 7 9 5 97 9 3 9 9 4 9 0 1 FS 1mm 1 1mm 9 3 9 AM T 5dB 2dB 0 3dB E 9 4 9DSM 9 4 9DSM DSM M m if ou Ald 3 4D 1g 9 3 9 OTDR 9 4 9 9 4 9DSM 0 001dB 9 5 97 0 0 1 2 2dB 2 1 3 0 2 0 7 U 0 1 0 3 1 0 7 9 4 9DSM
114. 3 UV 15 E E 4 5nm 200nm 13cm
115. 2 4 1 D 2 5mm 0 19 5 um 5 um 0 5 x10 6C 1m 1 0 5 um 35mm 10C 0 2xm 23 X10 6C 10C 8 um
116. OTDR 3 4 2 3 4 2 8153A 7 81554SM CW i 1310 1550nm 81533B 81524A AE 3dBm 100dBm 800 1650nm OTDR 3 4 34 3 4 35 A OTDR B OTDR B 2 OTDR 3 4 A GBH 3 4 36
117. A HB 1 13 56MHz 4 2 1 lk 108 102Pa D
118. AQ27300PM 4 AS 61821 AQ 9335 FC 5 Ki WAT RE RMR 6 21 COE 1 P57 P66 7 8 9 xr A a A S M 115 4 6 SPR 4 6 1 a b
119. JE min dBm 0 0 64 28 6 1 3679 10 0 66 29 6 1 0 1 3692 0 0013 20 0 68 30 4 0 8 1 3702 0 0010 30 0 69 30 6 0 2 1 3705 0 0003 40 0 71 31 1 0 5 1 3711 0 0006 50 0 72 31 4 0 3 1 3715 0 0004 60 0 73 31 6 0 2 1 3718 0 0003 70 0 74 31 9 0 3 1 3722 0 0004 80 0 75 32 2 0 3 1 3726 0 0004 LED085 Au SPR No 2 E 4 5 3 4 5 4 0 2 0 0003 0 7 0 0003 TT mp E Au 1 AQ4215 085 LRD 2 AQ2140 3
120. dB 0 500 1000 1500 2000 2500 3000 um dB corr oo 14 12 10 1 2 3 4 5 6 mm gt ON Ff dB 3 4 6 3 4 7 H FS o 45 5 0 5 5 mm 0 A 100 X 3 4 8 13 4 9 3 4 10 NS A A OTDR X 3 4 11 SM DSM OTDR HHH X 8 4 12
121. i 3 BAZEN E BOF AINA 1 4 1 X iu gt ah M142 BIZ Eke 2 1 Ley Os eee pY F X 1 4 2
122. A OTDR 3 6 1 No 1 No 2 3 No 4 5 No 1 3 No 4 5 K 8 6 1 dB dB No mm No 1 3 00 3 30 3 06 No 2 2 94 3 22 3 29 No 3 3 04 3 23 3 26 No 4 3 05 3 15 3 78 No 5 4 02 2 80 3 75 No 1
123. 10 8 6 4 2 0 2 4 6 8 10 um 0 O 30 O 60 A 100 X 3 4 29 D DSM 3 4 80 3 4 1 SM DSM HAT SI LICE A 1 3 um SM SM
124. 37 A 3dB 5dB 6dB X 3 4 33 OTDR 65 OTDR X 3 4 34 SM DSM Sy HHIH 9 i 3 4 35 12 16 m E 14 T 3 S 0 8 R 8 gt 06 K 6 amp i 4 PN 0 4 2 8 an 0 2 0dB 3dB 5dB 6dB 00 A dB E 0dB 3dB E 5dB E 6dB E 0 E 5096 100 E 50 X 3 4 36 A 3 4 37 A B B 1 2
125. OTDR Optical Time Domain Reflectometer LAN n X 1 1 3 1 2 A 14 4 3 H 31 RARE E H IW 1 B T N MFZ 1 ie N E3 26 E ZAM 1 Hl HAR 1 2mm ORV CH fo
126. 2 2 3 3 EEE xX 3 6 3 2 3 6 2 BRA Kiet dB dB mm 1 99 1 33 0 573 2 3 6 3 8 6 4 No 2 0 05 0 119 0 1 0 2 3 4 OTDR 0 001dB 1dB OTDR 3 6 3
127. 4 6 2 Tes 2 4 6 2 60X 15X1 mm 4 6 2 b 140 X 20 X 24 mm a b 4 6 1 116 Ea 250 u m 60 x15 x1lmm a 2mm 140 x 20 x 24mm b 46 2 4 6 1 4 6 1 SPR SPR 1 3303 1 333 1 32200 EIK oo 1 3906 1 520 1 36500 0 0 1 4 0 000 Brix as 26 0 90 20 000 eg ee 0 0003 0 001 0 00001
128. 5m 0 5dB 2dB C OTDR 5 um
129. Hy KE 12 20mm ay RE 20mm 500 m eee xX 3 4 21 Sub amp b X 3 4 22 m S dn mi X 3 4 23 30mm 3 4 24 8 4 25 1 cg 3 4 24 20mm 25mm 30mm 8 4 25
130. _ 1 dB dB dB nE TE 0 0016 00013 0013 018 086 6034 0029 0028 0034 lmmll o 1 2 e dB dB dB 0073 0083 0 031 0 033 UV UV 20 15 H ra ve ul Yi hi 0 1 0 1 UV 15 ZAK E UV UV IL EIR
131. 0 1 2 3 4 5 6 um 2 46 4 1 5mm 9 5 9 1 8mm D 10m lem 0 1 9 5 9 0 1 ke Buh D 1 FS x100 Leo ye 7 Ta Ee Lg GEO mm Py TE 9 FS 0 19
132. 2 118 5 9 1997 T ERAS
133. 38 X 237mm 5 7K ein He 60 5 X 240mm 460 X 343mm FBG 5 120 X 380mm eed F FBG 114 x 203mm Ae a20X682mm 060mm 1 2 10m 10mm 3 10 20 4 1km 5 20 1 3 4
134. Au SPR AK y BR ED WEI E TRAZ n Cr Au 2 EYES 3cm
135. Lik z
136. min 4 5 7 80 No 2 112 0 365 0 36 0 355 dBm 0 35 E 0 845 0 34 0 335 20 40 60 80 100 min 4 5 8 209 No 2 0 355 0 335 0 38 0 825 0 20 40 60 80 100 min 4 5 9 10 No 2 113 0 275 0 27 0 265 0 26 x WK 0 255 0 25 0 245 0 20 40 60 80 100 min 4 5 10 09 No 2 K 4 5 3 No 2 40 min dBm 0 1 04 39 6 1 3822 10 1 08 40 7 1 1 1 38836 0 0014 20 1 11 41 4 0 7 1 3845 0 0009 30 1 14 42 2 1 0 1 3856 0 0011 40 1 17 43 0 0 8 1 3866 0 0010 50 1 20 43 8 0 8 1 38876 0 0010 60 1 23 44 5 0 7 1 3886 0 0010 70 1 26 45 3 0 8 1 38896 0 0010 80 1 29 46 1 0 8 1 38906 0 0010 114 4 5 4 No 2 30
137. 1 o 3 4 27 X 3 4 28 3 4 26 20mm 12mm 3 4 27 3 4 28 100 12mm 20mm 120 um J 500 um FS 0 8 0 6 0 4 0 2 0 0 m o T A a i A 12 20
138. 250mm 3 4 19 ck Det it 3 4 20 gt as 50 80 230mm A 3 4 20 HATE ya Fe 50mm 80mm 230mm 3 E 3 AY As LI
139. dBm 23 lt 24 C 0 28dBm 0 99dBm 0 71dBm LED085 4 5 2 FS N9 FS E LED Zz al K IK 0 1 1 1 1 0 10 20 80 40 50 9 4 5 4 Au BPR K 4 5 2 No 2 LED085 No 2 Cr50 W 100 sec Au50 W 400 secl 0 10 20 80 40 MAX 0 28 dBm 0 34 dBm 0 45 dBm 0 63 dBm 0 99 dBm MIN 0 27 dBm 0 34 d
140. 15 2 E HATA IZ RK 0 1 UV i FOE MAR E 0 1 50 8 50
141. 0 1 1C D 3 OTDR HEV OED TAA OTDR
142. dB dB Se az go 4 return 00016 00032 0 0044 00045 FS gol 0181 0117 0 09 0280 return 0042 0083 0113 0 117 0 19 0 1 E 3 2 4 8 UV 280 um UV 24 9 UV UV 2 4 8 UV
143. b 3 4 16 3 05mm 3 44mm 9 5 9 fe 5mm 2 4 C 83 44mm 3 05mm 8 4 17 Mode Profile Displacement 0 um Mode Profile 9 4 9 Displacement O um 90 300 80 200 70 100 ia 5 50 2 2 0 40 i 100 30 200 20 10 300 300 200 A1 0 200 300 300 200 100 0 0 200 300 V Axis um V Axis um vt EL FE vt EL 3 44mm Ahr 0 um 3 05mm
144. 4cm 4 2 8 SC Au SPR 4 2 4 4m 250 um 5cm mm X 4 2 2 Au SPR M424 Au SPR 1 2 Vo187 No 6 1986 3 4 100 2HE P155 5 A 101 BEE P178 6 2000 P397 7
145. EOE g ir HH 1 121 048 600 0237 Fax 048 601 1287 ul
146. 11 BIRB Tel 0426 31 1325 192 0088 1 286 Tel 0426 91 9421 257 8502 500 Tel 0463 81 1400 236 0004 1 1 Tel 045 788 8373 2 2 1 2 1 pH 2 2 a7 9 um 9 gm
147. mm 0 O 50 O 50 A 100 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 20 40 60 80 100 120 um 12mm 20mm 140 X 3 4 26 1 3 4 27 10 1 oO K 1 5 om 2 0 2 5 2000 1000 0 1000 2000 um Left Right 12mm 20mm X 3 4 28 O Bult X 3 4 29 1 2 um 0 56 FS FS
148. 0 ES No 5 2 2 3 3 4 4 5 0 174 0 118 0 091 0 131 0 159 0 153 0 203 0 133 0 357 0 142 0 066 0 172 0 199 0 266 0 181 0 165 0 153 0 215 0 153 0 251 0 5 0 45 0 4 0 35 0 3 0 25 0 2 0 15 0 1 0 05 F S 1 0 000 0 200 0 400 0 600 0 800 1 000 kgf cm 2 E 2 A 3 X 3 X 4 4 5 5 M3 6 4 No 4 0 0 1kgfcm2 R 3 6 4 No4 5 3 6 4 No2 No3 No4 No5 0
149. 9 5 9 0 19 5mm 1 8mm 1 eee EN GLE Cab D 0 1 0 5dB B SPR 1 KEDERE
150. F Brix 0 1 0 5 0 005 EIK 0 0003 0 001 0 00006 Brix 0 7 0 5 0 01 117 4 7 Au SPR GREE Au SPR A Au SPR Au 500nm 700nm LED 850nm 850nm
151. mm 2 5 1 9
152. 8 5 5 Sot mm 2 5 a 0 5 20 25 30 35 40 45 50 mm 0 25 03 0 35 3 5 4 b Type B 3 5 5 C Oem 10m 8 5 1 W k W 3 5 1 Wp kgfcm2 0 1 W m 1 3 5 5 0 125 0 25 0 8mm OW 1 kg flem 8 5 2 PC
153. a 0 9 pi Normalized Intensity arb 0 6 0 5 450 550 650 750 850 950 Wavelength nm b 0 9 iS gt 0 8 3 JA 7 RL S07 F J 8 1 398 5 1 385 9 J 1 371 0 6 i ame 1 357 1 345 1 333 0 5 1 1 1 1 450 550 650 750 850 950 Wavelength nm X 2 12 1 SPR a Cr 4 4nm Au 32 6nm b Cr 4 4nm Au 57 0nm LED LD PD 1 2 12 2 850nm CO 3 3 82 7nm
154. kgf cm2 38k 4 A 5 3 6 7 4 OTDR OTDR 0 1 3 7 A
155. 0Ozm Mode Profile Displacement 550 um Mode Profile 9 4 9 Displacement550 um 90 300 80 200 70 100 50 4 T 50 g 2 0 a 40 100 30 200 20 10 300 0 300 200 100 0 Vase ae V Axis um aa Zj EL 5 E 3 44mm 550m 3 05mm 550m Mode Profile Displacement 950 um Mode Profile 9 4 9 Displacement950 um 300 90 200 200 amp 70 400 X uy SS 60 ol 50 lt n 40 100 30 200 20 10 lt 300 1 1 1 1 1 1 f 0 200 300 0 W Axis um W Axis um 8 S a S amp S 300 200 100 0 100 UR um V Axis um 3 44mm 950m 3 05mm 950m 3 4 17 X 3 4 18 9 4 9 1 oc 3 5mm 3 5mm 0 5mm
156. 1 13 4 2 PCT H E 4 3180959 5 PCT JP97 01766 F o 3 2001 114597 TAMA TLO 1 4 SPR 2001 159618 TAMA TLO 1 SPR
157. 1Inm eS ABZ 1 nm oa 2 nm 3 nm 100 4Inm 0 2000 4000 6000 8000 10000 12000 Sputtering time sec 2 8 4 Ar Ar E JB 2 8 3 127 8 um i 4 0X 104 Pa LAF 21 SCCM 5 0 105 Pal 35 rpm 50 WI amp Au SEM 2 8 8 a 2 3 4 wad 2 8 4
158. 2 3 LRDPD OTDR 0 1 1 OTDR 0 0008
159. 1 4 1 1 4 8 RL AIA 1 B 141
160. KE RA 3 4 9 5 9 9 um 5m 2 5mm Imm EU RT OF 5mm 1 E E HF X AR 0 5db fE
161. paa EZ 80mm 3 4 19 100mm 150 zm Pe OBE wo 35 _ 25 Ss T aD 20 w15 R 10 10 05 05 fe 00 oo 50 80 230 50 80 230 mm mm BAA cB BW dB 0 50 100 509 X 3 4 19 8 4 20 1g 2 8 4 21 3 4 22 FEO FA 3 4 23 Z 20 25 30mm 25mm
162. 0 041 0 035 0 014 0 032 0 082 0 8 0 039 0 045 0 053 0 067 0 010 0 081 0 9 0 037 0 043 0 063 0 067 0 016 0 078 M FS kgf cm2 3 E 3 4 4 X5 WE 5 X 3 5 12 Tey 5 0 3 No 1 5 3 5 6 3 5 18 0 59 RS 3 5 6 0 253 ES 0 117 0 339 0 089 Je e 0 073 0 000 0 036 0 063 0 082_ 0 075 0 5 0 4 0 3 0 2 ae 0 1 HO el 0 2 SN 0 3 0 4 0 5 0 0 2 0 4 0
163. 0 4672 2 Oo W 04674 24 5 Fa g R 0 4676 24 0 4678 23 5 0 468 23 No 1 No2 No3 No4 No5 1 3 5 7 3 5 10 8 5 11 No 2 3 5 5 3 5 12 No 1 No 2 0 1 3 5 5 1 o ES8S Nos eeeen 0 0051 0O O10 0068 06 0 026
164. 32 6nm Cr 4 4nm 0 ae A AFS 100 TOR 0 N N FS 0 50 ene 50 Cy we gt iA gt we AE ft 5 ao sae SD n Ga 50 09 50 G 0 Nag 50 FS N 0 0 50 1 3830 1 3980 2 13 1 NAFS CHS B 2 13 1 WES 0 0264 0 4382 N FS 0 00002 0 0003 E Ee OR ene 0 2 3 a b 2 13 1
165. H HME Bo H 3 H 4 PR 15 y E HA JED ao lt H
166. 2 2 3 4 3 5 3 a Type A b Type B 8 5 8 B 2 0 5mm
167. 3 Cr50 W 100 sec Au50 W 700 secl nm 4 4 6 FOIT AuR SPRI 7T Se Y No 8 No 4 Cr50 W 100 sec Au25 W 400 sec nm 4 4 7 Au EPR No OM 103 850nm LED LED 850nm 1330nm 1550nm 4 4 4 4 4 7 500nm 700nm 850nm 850nm 0 8 0 7 0 6 dBml i 0 5 10 15 20 25 30 35 40 45 4 4 8 850nm No 1 SUEUR ERR dBml 0 5 10 15 20 25 30 35 40 45 4 4 9 A 850nm No 2 104 dBm dBm o D co i a a A 850nm pr to N 0 1 0 5 10 15 20 25 30 35 40 45 4 4 10 A 850
168. 6 0 8 1 kgf cm2 eNo 1 No 2 X No 3 No 4 No 5 3 5 18 ES 6 0 5mm H 3 6 9 4 9
169. A O o 8 4 15 OTDR B 3 4 A 1 8 4 11 8 5mm 3 4 16 a 3 5mm 6dB 3 4 16 3 05 3 44mm 3 0 12 a 25 10 ig 20 3 g X 15 om K 6 R aK K 10 S 4 o5 2 0 0 0 0 1 2 3 4 5 6 7 8 0 0 0 2 0 4 0 6 0 8 1 0 mm mm o 3 05mm 3 44mm a
170. Oe R11 43 2 Miele TYR EE Ef Aa a lan deat saan sets a wala EE 47 2 IS ED On Pee RTO RACE Oe MERE COREE TERN ET aE wen 48 3 TR Me RR er a eee ee 49 Sa L ARCO TG AA NE So helena 49 3 2 creeren 49 33 3 1 E EE BIRR EE EE EE TTE EEE 49 3 4 kk 51 3 5 1 ae2Cb5adsos6 73 3 OB RE I RER E Oeo a Sidi E S 83 S E e D ATE e E E E E E E 89 4 XN Oo fF 90 ERO fae APE Ie ARDY PO BELET ROE ARE PE RES CAS RAY Ae OSE EIT RET PR A AE a TY 90 Au SPR 92 96 Au 99 LED085 108 Tae Ea VO ID Re
171. SD 0 011 dBm 0 008dBm 0 007dBm 0 007dBm 0 006 dBm FS 5 379 3 908 3 417 3 392 3 280 N FS 0 0022 0 0016 0 0014 0 0014 0 0013 106 K 4 4 5 850nm No 4 0 10 20 80 40 MAX 0 403 dBm 0 469dBm 0 538dBm 0 634 dBm 0 824 dBm MIN 0 371 dBm 0 434dBm 0 505dBm 0 602 dBm 0 785 dBm Average 0 386 dBm 0 452dBm 0 518dBm 0 615dBm 0 802 dBm SD 0 012 dBm 0 012dBm 0 014dBm 0 012 dBm 0 014 dBm FS 2 810 3 005 3 383 2 796 3 356 N FS 0 0011 0 0012 0 0014 0 0011 0 0013 Au SPR 77 4 SEV OWESABE SH No 2 0 35dB No 2 0 40 0 476dBm
172. a TAL eee nai eral alee 116 Eek CUR SET Cro E A OM CTD CR See oT CTC ar ter 118 1 1 1 A 2 21
173. 00 L ae 30 204 alee 30 20 300 500 3 400 10 cae 500 0 10 500 Fe e 0 i 500 400 300 200 100 0 100 200 300 400 500 W Axi 600 500 V Axis um xis um Y Axis um c d X 3 4 8388 9 2 zm 545 5 um 58 3 254 0 um 1810 um MFD 4 35 um 2 32dB 3dB F 1 OTDR 2
174. 2 0351 0299 0 338 0488 0135 0234 0269 0375 0 19 NN E 2 EME A 2 4 4 2 4 4 mm 0 o 2 3 4 5
175. 3 1 297 2 105 2 886 4 251 4 678 E ay 1 RRND Iv F oTOA 2 4 7 d 6 1 TARIR RSN S ENF aay heey tlt ZF vy PARISH 125 um 250um 1
176. 3 4 3 3 4 4 X 3 4 5 2 9 3 9 9 5 9 9 3 9 f X 8 4 6 9 3 9 X 3 4 9 8 4 13 EZ 3 4 8 ci 3 4 10 J L 7e Eki E 3 4 7 5mm LS Cot X 3 4 11 5mm 3 4 12
177. 303 0 350 0 187 0 126 0 111 e 0 096 0 045 0 052 0 088 0 044 8 6 5 3 6 5 No4 0 2 0 1 3 6 5 10 FS No5 AE HE 5 0 088 0 060 0 046 0 081 0 078 0 103 0 067 0 181 0 072 0 034 0 087 0 101 0 066 0 135 0 128 0 092 0 084 0 078 0 109 oO N Co 0 5 0 45 0 4 gt 0 35 0 3 0 25 0 2 0 15 0 1 0 05 1o F S 0 000 0 200 0 400 0 600 0 800 1 000 kg cm 2 2 A 3 X 3 X 4 4 5 5 3 6 5 X 3
178. 6 W 04 a 8 1 02 0 00 1 2 1 2 X 3 4 41 X 3 4 40 FS oO wo 1 A dB 2 Eo 5096 100 50 G OTDR OTDR Sul k A gt Bult 3 4 42 19 H 8dB OTDR 10 10 1r 3 4 43
179. Bm 0 45 dBm 0 63 dBm 0 98 dBm Average 0 28 dBm 0 34 dBm 0 45 dBm 0 63 dBm 0 99 dBm SD 0 005 dBm 0 000dBm 0 000dBm 0 000dBm 0 004 dBm FS 0 701 0 522 N FS 0 0003 0 0002 111 E No 2 LED085 PORTER EAR 2 RATE 40 30 20 10 0 4 5 6 2 4 5 10 40 30 20 4 5 3 4 5 4 4 5 4 LED 40 80 1 4 1 2 5 dBml a ia dBml K pus 1 0 9 0 8 0 20 40 60 80 100 min 4 5 6 40 No 2 0 76 0 74 0 72 B o7 iat dBm 0 68 dBml 0 66 0 64 0 62 0 20 40 60 80 100
180. Core A Cladding 4 2 3 1 Hetero Core Portion M231 Transmission Line Transmission Line cf 2 3 2 X 2 3 2
181. F DLQ 4 5 1 108 B OPM PD EEPROM PD Ge EEPROM OPM LPE BPF D A D A ERO
182. HHHHHUHUHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHUHUHHHHHHHHHHHHHHHHHHHH HHHHL 0000n U U 000 O UUU AO HOU HHHHHHUHHHHHL SN alae ile TLE E SY Oe CR Pe REE EI RE EET EE 1 1 1 3 1 1 2 RAMA Sih ett EN A 5 1 3 OO 9 RAG A at lt aces a latte A be tact 11 Je so c EA a eta a Mat la ahd AG tad NE eS 15 tecn TENO Pee ONIRA ue siete ere bese te Toe ssn babe NNE 15 Dg T RANE O ei a T E TR A RR E 16 E E E rE E a E E S E T 17 2 i 18 DO a 2833 18 23 2 a 18 ke eh BARES Ee aaa penne A hE 18 Daa A ARRA E A D ae E N E Ce a bh 20 Drea De e a N E e SAN PR RT ea a TROT OTC TRT A IEaTT ve Ce EONTD ee 33 2 6 SPR Surface Plasmon Resonance i 34 Bee he RSPR SF SN NR 34 2 8 ARGS VEGI EDS BRO Re yee Getetscnitinata dacdace 35 5 37 Bie OO eee He D ete hale atta atts aes a cere a tlt ee hear 38 De Ti RR le cee I wish oth eect ite es oe es Ul Seed aaa a 40 ir E ea E ETEA ata aces pac on aie aah suede oa sa doce lon ade 42 2 e a raaa a T A a RR
183. L 1
184. OTDR PVA SETAE 1 OTDR NL MM AM 3 4 1 X A 1 9 5 9 3 4 2 3 4 8 8 4 4 8 4 5 8 4 2 0 12mm
185. e Seventh World Congress on Biosensors 15 17 May 2002 Kyoto Japan Abstract book P1 2 05 10 M Iga K Hirama T Nakazawa A Seki K Watanabe and Y Kubota Hetero Core structured fiber optic sensor based on surface plasmon resonance International Conference on Application of Photonic Technology ICAPT 2002 Photonic North 2 6 June 2002 Quebec Canada M A2 FO 2 11 BABS GPR SAIS P 2002 69 14 4 Proceedings of the 34th chemical sensor symposium Chemical Sensors Vol 18 supplement A 2002 p 76 78 12 2003 2003 3 12 13 1 8 1 192 0083 9 1 F
186. ly sensitive to given precise change in its shape meaning an extremely high susceptibility as sensor elements Various try and error based attempts were made on re coating materials around hetero core portion for damage protection using UV resin silicone rubber and gold metal thin film The use of gold thin film coating was comparatively promising from the viewpoints of the reproducibility of the sensor property and the corrosion proof These detailed experimental results are timely provided for Yokogawa group as back up data to help them achieve a precision of 0 1 for the water leveling gauge to be developed In parallel with the above tasks there were an another group in the lab which were in charge of finding a good thin metal film coating condition suitable for surface plasmon resonance SPR phenomenon to develop refractive index measurement using 50 3 50 types of hetero cores A newly introduced RF sputtering machine has played a very important role Since the principle of refractive index measurement employs the SPR phenomenon which takes place in the boundary layer between outer cladding surface and metal thin film uniform metal coating had be made around the fiber cylindrical surface For that purpose a specially arranged rotating mechanism was devised which enabled 8 pieces of optic fiber samples at maximum to be uniformly coated and remarkably speeded the investigation consequently lead the whole research targets to be achieved in sho
187. m resolution of 0 00003 refractive index This technology could put forth the ability not only in the refractive index monitoring but also in real time based leakage detection of such liquids as water oil acid and others 1 3 A 1 8 a ee ae Q OTDR OQ
188. nm No 3 0 85 0 75 0 65 0 5 10 15 20 25 30 35 40 45 ZVE E ELN 4 4 11 A 850nm No 4 ZVER EEA 4 4 8 No 1 0 236dBm 4 4 9 No 2 0 476dBm 4 4 10 No 3 0 197dBm 4 4 11 No 4 0 416dBm No 2 4 4 2 4 4 6 FS N9 TFS 4 4 2 No 1 4 4 3 No 2 4 4 4 No 3 7 105 4 4 5 No 4 No 2 4 4 2 4 4 5 FS N TFS 0 35dB
189. o Ltd and Inter Action Co have succeeded in developing the prototypes of a water leveling gauge and a refractive index meter respectively with the significant fulfillment of their project targets both of which could be commercially available in a few more year after brushing up their reliability as the final products The university group has continually provided the two companies with essential information and data necessary for the developments and has complete the mission with the following fruitful results Precise measurements were performed on the bending loss property with changing the insertion length of hetero core element in the range from 5 to 1mm for the case of the 9 5 9 types combination of 5 um hetero core and 9 um transmission optic fiber line An insertion length of 1 2 mm with an insertion loss of 0 5 db was found to be preferable to realize a suitable bending loss property for the purpose of the sensors to be developed Careful designing was attempt on a linear displacement bending conversion mechanism the mounting structure of optical fiber element and the maximum coverage displacement range so that a full scale error of less than 1 has been achieved for the full scale coverage range of 5mm This precision was surprisingly improve to be 0 1 by experiments considering heat transfer on the used displacement bending conversion mechanism A series of experiment verified that the hetero core structured sensing element was keen
190. rt time The experiment using SPR importantly yielded the optimum coating conditions and insertion length the design concept of fiber mounting and the related information which were all provided for the refractive index meter designing made by Inter Action Co Sizable coated sample needed by Inter Action Co were timely dispatched to them from the university laboratory This action by the university was greatly helpful for the prototype module to be succeeded The two type of sensors developed in this research project have been advantageous over the conventional optic fiber sensor schemes from the attractive viewpoints of 1 no need of temperature compensation to sensor elements 2 simple structure and easy fabrication and 3 cost effective system integration with the capable uses of both LED PD combinations or OTDR as optical measurement schemes The water level gauge developed by Yokogawa group has achieved a 0 1 of precision in a simple structure with an additional merit of OTDR based optical networks system because of the capable tandem arrangement in a single fiber line On the other hand the refractive index meter developed by Inter Action group has enabled in situ sampling which has been long impossible using conventional methods for the first time With this invention distribution of refractive index in a liquid tank will be realized The performance of the meter has exceeded conventional commercially available handy types in a minimu
Download Pdf Manuals
Related Search
Related Contents
VEN 10/5 O/U KNEE ACTION SHOCK ABSORBERS Annecy, le 13 janvier 2009 L`Inspecteur de l`Education nationale Manuale NEC PowerMate eco User's Manual Making and Using Masks in ImagesPlus Save As Then Copy Mask Copyright © All rights reserved.
Failed to retrieve file