Home

"取扱説明書"

image

Contents

1. 3
2. HECHO
3. SmYTH HITCHCOCK e e e
4. ee SKAAR C2 WN i HEARMoN R F S BURCHAM J N Trapp W Punes L20 BE R
5. A DEBYE P Nur eee 5 1 WM my BOLTZMANN 7 MORITA CHL Ze ChB AER
6. 6 Corg CorE 61 e
7. 3 8 RASS COS BRO ARM SDCR 3 e e s
8. 6 RA Fig 13 el e IDE
9. CLARK J D WILLIAMs J W Von HIPPEL A R Dietz A G H 39 ED 6 214 0 200 800 Z
10. Fig 5 gt co 10 80 s Von HrppEL A R Drerz A G H 1942 u 7 O mahogany 100c s 122 HEARMON R F S BuRcHAM J N D sitka spruce oak tan 2 103c s
11. 20 C HE HE
12. OH Sroops 1934 2 0 60c s 10 c s tan 6 tan 6 tan 8 WH STOOPS
13. OH e le 2
14. IE 30c s 2 5 10 s
15. e LE STAMM A OD T ER 10 CUT Hee Did
16. s e 2 2 e
17. e el OF eg COM 2
18. 162 5 BE 10 c s
19. sg E 2 3 MAxwErr WAGNER 2 5 AA e
20. D UML Table 1 0 Core R H 929 300 5 3 lt 106c s oe Q 10 10 s 10 10 s ae A tr dol me CARR Trapp W PuNes LL
21. IEO s e T Uh Corg Corg Fig 33 40 C SAKURA wood Fig 33 30 C 157 158 COoLE COLE DE OV Cai UTE DIT E
22. FAL 1930 103c s 101 s 445 102 1080 s 104 10 c s
23. BH HA BERRE OED
24. 3 2 SKAAR CT 3 OK ak 3 gt 10 Trapp W Punas L2 5 DORA OEKE 5 20 3 ERT VENKATESWARAN A TIWARI SHIVA Yost 142
25. tan 9 6 6 tan 0 e l Mc e e
26. u 2 9 4 7 6 5 1 5 e se Fig 5 amp Le ELT x 2 9 FCC e u 0 6 2 9 ro 1 6 10 8 sec to 1
27. AO 114 DiC OUT PUT SS 5102 L 70C 200 C Fig 1 30c s 1 10 c s 0 3z
28. 30c s 2 5 10 s e le 132 4 2 Fig 13 400 gs sg 10 s 10 s 10 10 c s 100 10 s 1 5 108 s 5 292299999 KEE g tan 0 Fig 13 Fig 13 e e e 20
29. TAME OR BEX DEBYE f0 27 6 o 2rf 61 HEBER e e ES aa ee 6 2 7 OT e eo eo Ts q vo 6 3 155 DEBYE
30. 10 lt Fig 7 o 60 C a 5 5 10 o tees Og o AI 90 89 BR BBB gt n E 0 10 10 10 10 10 10 10 f Cs 10 10 w ki ae 8 ee O 99 AAA O 10 124 10 10 103 10 10 10 f Fig 8 100 C eg e e 10 10 c S Trapp W PuNos L Fichte 100 C 40c s tan 8 el 40c s 10 s e tan 9 tan 0
31. TEX u 15 e tan8 Fig 2 EH u 15 e tan 8 Fig 3 tan FLL Fig 2 a ec ES E y O 0 lt 25 C 0 O s40PC o 118 Fig 3 a u 15 119 AM 4 tan 8 Fig 4
32. E 4mm KW 8 9cm RRA CM SHR mE 3 1 Salix spp 2 7 7 Prunus spp 3 7 Fagus spp 116 15
33. Fig 2 Fig 4 Er JE BRAKE SCHUTIZED AY tan 9 103c s 10 c s tan HEARMON R F S Burcuam J N P 108c s 10 c s Trapp W PDNos L yx 10 s 10 s COC 10 70C lt 100C e le E 3 2 Fig 5 40C
34. 13 30C 0C 20 C 40 C 4 Cor COLE Fig 33 Corg Corg AME e 2 se Fig 31 YANAGI wood BQ 10 eo OC 30 C 80 Fig 31 Fig 32 so 100 so co eo g su
35. 4 ro 123 EA 60C Fig 7 60C C4 u 0 5 40 C 40C z 0 6 fm 10 10 s 60C u 0 5 Gli fm gt 10 10 s 60C AD
36. 1 DIS 70C 100 C 8 UR 9 EE 0 Ek 1 00 5 106c s 2 5 106c s 1 5 106c s 800 103 c s 400 10 s 200 10 s 100 103c s 40 10 c s 10 10 s 3 10 c s 1 10 s 300c s 100c s 50c s 30c s 15 ROE
37. 30c s 2 5 10 s OC 30c S WAC 13 163 13 5 70 C 100 C
38. 2 4 NM E 4 0 CC 10320 T 3 TEDL E ORF K 0 5 3
39. 3 3 OH OH BA re 1 Table 2 ro Table 2 0 cia 6 1 0 3 i g3 13 TEMP C 40 1 6X 10 8 1 6 10 8 0 3 2X10 7 3 2X10 7 2 1X10 7 8 0X10 8 20 8 0 10 7 8 0 10 7 1 1X10 7 3 2x10 8 40 1 6Xx10 8 1 6Xx10 5 4 0X10 1 1X10 4 8 0X10 6 16103 Unit sec Y SK 19 43 4 C
40. 60C 100c S 1 es 25 L 100 10 s 4 Fig 13 E 135 o 10 P ie 100 103 4 SA 5 108 6 1 10 U TE 10 Ys 60 C Ys 10 Ed 10 10 9s E 100 107 Gs 7 41510 ds LA 10 gt g i U h 136 9 40 C Ek Fig 14
41. Chit e r s 40C OYA f 1 5 10 s 9 DARTIR RDO DA 100c S g 2
42. 0H g 0 9 2 7 u 2 1 amp g 10 gz 2 7 eg Pig 23 10 f 10 c s 30C SmYTH HITCHCOCK f 30c s 20C Fig 22 Fig 23 SmYTH HITCHCOCK
43. 2 a MAXWELL WAGNER b
44. 100 3 9 3 e El x 5 ee tan
45. MORGAN S O g 8 eo 100 a 50 2 MORGAN S O Corg CorE OPA RARA 10 103c s eo Eo ELT go Eo Mc
46. 4 3 100c s 10 s 10 10 c s 100 10 c s 1 5 10 s EKE L e g 4 5 1 LTS
47. 50mm 38 mm 25mm 3 Fig 1 Thermometer Heat insulation 2 M6 E TR 1B CA CB R GC ES EL R Ro 66 G G CB Co 115 F C4 CB amp R
48. so es 10 5 W 3 2 Ek Fig 35 _ TOO Om 160 AL COSA C Corg CorE S amp T Fig 36 1 CorEg CorE 10 BO 5 70 C so E 1 e 3 4 EXE 10 1 2 2 go Fig 34 Fig 35 Fig 36 Fig 36 0 4 W
49. HHO e 4 A 100c s Fig 19 100 10 c s Fig 20 Fig 19 e 0 40C 9 70C f 100 10 c s Fig 20 0 40C 0 70C 100c s 20C 407C
50. 9 0C 0 20C D el be 40C 70C 10 wW 10 100 10 10 f 9s 102 Fig 11 b 40 10 13 o sa 10 PR en a ee A ee 10 99 0 A O AB CO A e gt ET INEA a a ee 15 8 TE x Oo 10 e o 8 FG A 0 _ 9 0 Eo E O Ez Sa A 06 l 10 1 2 3 gt ere 6 10 10 10 10 10 10 f s 128 102 A 10 TO 0 0 __0 888 10 10 102 Fig 12 b 70 C 10 100 a 13 O is TEN o oO lt Oa 6 E aa a 8 a o o 1 0 1 0 o30 oo 0 en EEEN o a AS OO _O TON SN 0 Q 107 1 2 3 i 10 10 10 10 10 10 f Us Fig 11 Fig 12 0 40C u 7 5 z 10 amp
51. 0 01 3 lt e 3 1 e 117 e 30c s 5 108 c s K S0 10 s 20 1050 s
52. T el g 102 Fig 10 a 20 C Fig 10 b o o OO 10 102 103 4 10 106 127 0C 50 C TOC 70C ES 20C OF Fig 10 ur 0 6 x 3 0 EA e 4 7 890 bie DES
53. MR Ad b Photo 1 TR 1B BDA 1C SE 1 113 Table 1 c s E E AR 7 Y y Y 0 1 10 7 25 104 25 108 2 E F Y wv Y 30 3X106 El WB hw F Vv FY 108 105 oe 2X102 105 tt 105 107 R 104 108 Q a 5xl0 10 Hi 2108 2X107 Photo 1 Measuring apparatus TR 111D
54. d 3 4 DEBYE FALKENHAGEN END g e 3 1 e 0 OH 2 e BRAKE SCHUTZE 1935 10c s e
55. DEBYE T 3 2 T r 91 amp e Fig 14 i 60 C eg eg eg Fig 13 u 5 3 u 8 FORDE RE 40C
56. Fig 34 Fig 35 Fig 36 a 6 3 2 e e Corg Corg 2 Corg Corg go Eo 602100 e 10 eo gw eo Eo 10 db eo swe 5 2 so co
57. 70C u 8 10 10 E 107 10 149 Fig 26 a 10 10 Ys 50 0 50 100 C Fig 26 b 1010 Ys OT Y O O O O eere Oe o ME 1 50 0 50 100 Q C 150 10 10 107 10 Fig 27 o 100 10 Ys 50 0 50 100 QO C Fig 27 b 100 103 Y 50 0 50 100 O C 10 10 10 E 10 151 Fig 28 a 15 16 Ys 50 0 50 100 O Fig 28 b 1 5 10 Y o 2 9 o o E Vap o 0 0 50 100 O c 152 g 10 u 5 u 8 g 10 eg Fig 24 Fig 25 ZHEN f 100 10 s f 1 5 10 s e Fig 27 Fig 28 zg 1 100 10 s SC 1 5 106c s 40 C u 5 u 8 ag 10
58. Fichte MC tan 9 45 C 107c s 0 100 C 109c s ro 125 TRAPP Punos u 6 5 0 Fichte 100C 10 s tan 6 10 Yc s ET Fig 9 OC OLX e
59. 2 TOR 112 3 10Mc ORIG 300 s 2
60. 9 tan 9 153 tan LT 3 OH 5 2 OH OH b 5 1000 s 60 10 s 19 30C SC 7 HDL X 100 C tan 8
61. 6 7 so ee AMO co HE Te dH 20C 40 C 70 C T 6006 59 50 61 5 E Es 5 OC 40C 70C CoLE CoLE Fig 35 1 60C 30 C OC 20C 40 C 70C Corg Cor OHM Fig 36 5 OC T e5 1 66030 eo ew 10 eo ee
62. CB R R OO 2 1 R Ro KEE EE e G G 00 2 2 e tan 8 ct a 2 3 G Lal 6 e 1 0 w 2nf RAER 2 5 E a 2 6 e e tand ee 2 7 EROMET RTCO DAS el tan 0 e 23 HH se SKAAR
63. Electrical Engineering Materials 1961 6 FR BLICH H Theory of Dielectrics 1960 7 HEARwoN R F S and BURCHAM J N The dielectric properties of wood Forest Products Research Special Report No 8 1954 8 No 10 1913 9 JAVORSKY J M A reriew of electrical properties of wood N Y State College of Forestry Technical Publication No 73 1951 10 AFEK 1963 11 KEYLWERTH RUDOLF und Noack DETLEF Uber den Einflu8 h herer Temperaturem auf die elektrische Holzfeuchtigkeitsmessung nach dem Widerstandsprinzip Holz als Roh und Werkstoff 14 162 1956 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 165 KOLLMANN FRANZ Technologie des Holzes und der Holzwerkstoffe Zweite Auflage Springer Verlag Berlin 1951 KRONER K und PUNGS L Uber das Verhalten des dielektrischen Verlustfaktors von Naturholz im groBen Frequenzbereich Holzforschung 7 12 1953 4 73 606 1952 KUROSAKI SHIGEHIKO The dielectric behavio
64. e Trapp W Punas L 3 Fichte 20 C tan 2 f 108c s u 4 T f 100 10 s u 9 f 10 108c s u 20 Camis tan Trapp W PuNos L tan ENO fH 108c s x 6 TT 200 108c s 20 10 c s US MAS e HEARMON R F S BurcHam J N tan 100 3 4 10 tan
65. 14 1963 166 Studies on Dielectric Properties of Wood Effects of Frequency Moisture Content and Temperature on Dielectric Constant and Dielectric Loss Factor Juichi TSUTSUMI R sum Studies were made on the dielectric behavior of wood in relation to three factors moisture content of wood frequency of electric field and temperature the test piece is subjected to and also on the behavior of adsorbed water In this studies the dielectric constant e and the dielectric loss factor e were used as the indexes expressing the dielectric properties of wood The methods of measuring the dielectric constant e and the dielectric loss factor e are classified into two the bridge methods and the resonant methods In the present studies the transformer bridge method one of the former classification was adopted for accuracy and ease of measurement The frequency range covered in the measurements was 302 5x10 c s This covers much lower frequency region than the reports by many workers in the past and this wide frequency range could be covered with a single measuring apparatus With such substance as wood especially the dielectric dispersion due to interfacial polarization can be expected and such dispersion is expected to be in the lower frequency region Therefore it is of high significance that the measurement could be made with fair accuracy down to 30 c s
66. OH 4 e 0 4 1 B BC hot 131 STAMM A J 2 g 7 30 5 HASSELBLATT
67. 4 af 1 E 1915 COR STAMM A J 2 2 KEYLWERTH R Noack D
68. 0 20C z 0 6 fi 200 10 s ro 8 0 10 7 sec 0 40C u 0 6 fin 100 10 s to 1 6 10 sec 9 40C gz 0 fm 3 1080 s to 5 3 1075 sec ro 9 20C gz 13 fai 5 10 s tp 3 2 10 8 sec 9 70C u 13 C 100 10 c s 1 6 10 6 sec ro lt DEBYE ORP DII EE ree 3 2 n a BOLTZMANN OFF T 7 n n r
69. f 100 10 s 70 C 30 C OAH f 1 5 106c s 40C1SC f 1 5 10 s Fig 27 Fig 28 e e Ek e 5 EK e JUE ce
70. 100 103c s 1 5 10 s 100c s 103c s 10 103c s AHO e e WAS HF
71. to Ev Ek e 30c S WIL Corg Corg L 2 7
72. sg z 1 50C 100 C 2 e 100c S e 100c S u 5 u 8 10 100c s e f 10 0 s e 10 10 c s Fig 26 e e e u 1 7b u 10 g 1 2 C
73. e REAM e AIET BAW 30C e g 1 70 100 C 2 5 60 e 100c s Fig 24 u 1 g 5
74. 2 100c s 0 001c S L space charge layer Fig 5 zx 0 6 4 7
75. 1 o e 3 2 3 4 5
76. AM 111 h CLARK J D WILLIAMS J W 2 MuRpmy Lowsy 2 O O Bett OF
77. 10 120 10 100 e f 6 6 104 o sa 2 8 8 10 8 8 o 106 121 1 W 10 103c s 30c s 10 10 s K 30c s To 2 3 gt 5 3 10 3 sec ro 0 6 9 0
78. 103c s P 10107 Ys 10 Fig 15 b 100 Ys 0 C dl 10 10 gs 10 gs J a jf d 00 10010 F E 10 Ns o 10 gt 10 10 U 138 10 ou o 7 10 139 Fig 18 70 C 10 m pR 1 10 10 ds 0 O 100 103 4s i e 6 CAID o A A EO 7 10 1 10 10 u h 100 10 c S 40 C 70 C SC
79. D 9 70C E 4 10 u 13 6 100c s e BEKO 129
80. OC 10 10 s 100 10 s 1 5 10 s K 20C 40C 70C Fig 16 Fig 17 Fig 18 TLT 1 Fig 15 100 10 s 1 5 10 s
81. sg f 100c s 70 C 100C 2 e WS Ek f 100c s Fig 25 f 108c s THONE e f 100 c s
82. Fig 30 T COLE CoLE Fig 30 go gs iment 0 6 B 1 Dgmyg bt so ge L dielectric increment de eo ee u 2 156 de tes 3 2 BRE n 7 Eo co ERO Co
83. 140 MAXWELL WAGNER e SS Fig 13 Fig 15 Fig 13 Fig 18 e Fig 19 141 Wie c 3 D OH MERGED FORA CH a bd
84. 1 10 10 s e e kz 1 300 108c S To 3 2 10 sec 102 Fig 9 b 0 C 19 10 e EN 7 5 o o 100 EA W S e So Om y eii eee a 0 0 ere o o o o 107 A gt o om o O A o aa O10 0 mr 7 ES 10 10 10 10 10 16 f cs 126 OREA O REF ORDER 44 O TEL 40 C u 0 6 G to 1 6 10 8 sec To u 3 Th u 1 703 2 10 sec u 6 C fa 1 5 10 s To 2 1 107 sec u 1 5 fm 2 0 10 0 s rTo 8 0 10 8 sec u 9 4 CUL fm gt 3 10 s ro 3 10 8 sec To To ro
85. 10 CoLE CoLe Corg Corg 11 Corg Corg eo e e100 e 10 eo to 10 so ss 5 12 Corg CorE D 2 CLARK J D and WILLIAMS J W Electrical conductivity of dielectrics Journal Phys Chem 37 119 1933 3 Davipson R W The effect of temperature on the electrical resistance of wood Forest Products Journal 8 160 1938 4 DEBYE P CPolar Molecules 1952 5 DEKKER A J
86. 5 Davies MILLER BuUsse Koroseal e amp e 150 5 10 c s 20C 120C 13c s 25 C 10 s 40 C f 150 s 60 C f 600 s 70 f 10 s 100 C ce 15c S 10 s 14C SOC DAvrgs MILLER BUssE 5
87. Fig 13 Fig 15 0C e le TLT amp 100c s CH 3 100 108c s z 8 100 10 s 1 5 10 c s e Fig 13 Fig 14 e Fig 15
88. WALKER A C IA RO EME 3 MI6 LI 6 10 0 O10 23 0K BAG Brigas D R 10 Murray E J WALKER A C 1930
89. 5 1 E 3 4 BERE e 143 Fig 21 0 2 u 0 9 sige 2 NRE a is 4 S J u 0 1 a 0 103 6 Sa odo b o O A 0 A 0 O fj O 50 0 50 100 Fig 22 a 100 103 Ys 10 10 Ys 103 Y 00 50 0 50 100 10 o 1010 qs S 0010 Ta 2 Pe 50 0 50 100 G 10 C 100 C e le OT 13 30c s 2 106c s 5 2 eg OG Fig 21 u 0 9 Fig 22 u 2 7 Fig 23 10
90. r 1 tan 6 tan u 9 10 10 s u 15 100 10 s KRONER K PunGs L Rotbuche 200C 10 10 s tan Trapp W PuNos L 29 Fichte 40C OLX ERD tan gw 3 5 10 s tan u 6 5 100 10 s eg 2 7 tano 0 tan 8 HEARMON BURCHAM TRAPP PUNGS ro
91. Fig 21 Fig 23 Ge 146 Fig 24 a 100 Ys 10 Fig 24 b 10 100 Ys 10 E 10 10 100 100 10 10 10 10 147 Fig 25 a 10 gs 20a ee o 9 00 0 A i A o O C Fig 25 b 10 Ys y 50 100 50 0 Q C 148 es le Fig 21 Fig 23 100c s u 10 u 8 5 1 Fig 24 z 1 es 2 30 C g 5
92. Fig 21 Fig 28 Fig 21 Fig 22 Fig 29 0 9 Fig 29 50 O O u 0 9 ae o 0 ae 3 o in 5 a 50 JP O 10 10 10 y 107 10 10 154 mE 5 3 E 2
93. e 0 9 1 1 D79 2 7 0 9 sg z 10 u 2 7 E e 145 AG CIRO AICHE E ARA LKLX
94. 4 9 0 T to 5 3 10 sec ro Von Hrppgr A R DIBTzZ G H 1942 u 7 0 mahogany f 10 s birch f 10 s TAKEDA M 3 Tilia 15C OLX u 3 5 20 HT fF 108 c s 15C OLS TAKEDA M 109 1010c s 93 KRONER K Punas L Rotbuche Fichte Eiche Kiefernholzmehl Buchenholz mehl Buchenholzzellstoff 20 C tano 0 5 10 10 c s CBuchenholzzellstof DA 2 6
95. 10C 6 103c s EH tan tan 9 LA ro L 130 ME Table 2 DEC 3 3 DE AMO ge e
96. 161 2 1 ce 23 24 SKE 10 sw go Eo DE 1 so ss 1 eo ee e CorE Corg w
97. Generally the physical and mechanical properties of wood change markedly with the change of moisture content Therefore the measurements were made over the moisture content range of from the oven dry condition to the air dried condition As it had been known well from various angles that the effect of moisture content on the properties of wood changes at around 5 of moisture content measurements were made epsecially carefully near 5 of moisture content The temperature ranged from 70 C to 100 C However as it was impossible to hold the moisture content constant under high moisture and high temperature condi tions the measurements were not made under those conditions Special care was exer cised to keep the conditions constant during the preparation and the measurement and especially the frequency was watched with an electronic counter for accuracy With respect to the relation between the frquency and e and e the dielectric dispersion was observed at a low frequency and at a high frequency with specimens of moisture content of a certain value and over but the dielectric dispersion in the lower frequency region could not be observed with the oven dry specimen It may be concluded that as has been observed with other dielectrics the dielectric dispersion 167 in the lower frequency region is the conductive dispersion due to interfacial polari zation and that in the higher frequency region due to dipole or orientation polari
98. 164 6 3 7 ED 8 2 9
99. 105 c s tol 6 10 38 sec tand ro ro1 6 10 8 see Trapp W Punas 30 Fichte 45 C 107c s 40C u 3 f 10 s 40C 4 6 566 f 5 10 s tan 8 DREKI OH lt OH r
100. 300 82 5 10 s g 0 6 EX e e e WS Fig 6 eg Fig 5 eg to _ gt a 3 1 Te Fig 5 u 0 6 DLE fa 10c s ro 2 3 0 6 10 sec 9 E
101. 5 10 s 70C 100C 2 Ce ee ete 21 7
102. DEBYE ka T ctxt Coen fede ee 6 4 Hee AN l e i gr E 6 5 Core K S COLE R H se k e Of l El e DEBYE COB 2 eo to CHS
103. 109 i E Juichi TSUTSUMI Studies on dielectric properties of wood Effects of frequency moisture content and temperature on dielectric constant and dielectric loss factor 4 2 1 43 2 5 2 1 2 2 A 51 H 2 3 E X 5 2 24 5 3 3 6 CoLg CoLE 6 1 H 3 1 H 6 2 3 2 6 3 3 3 7 4 DAKE 8 x 4 1 HB R sum b Symbols e Dielectric constant e Dielectric loss factor tan 0 HE Loss tangent 2138 Moisture content in CC Temperature in C f c s Frequency in c s Fea Frequency at which the dispersion exists 110
104. 9 10 10 c s 100 10 c s En u 6 u 10 T tan tan 6 tan HEARMoN R F S BURCHAM J N VENKATESWARAN A TIWARI SHIVA Yoo e tano tano 133 Fig 13 a 40 C 1039s o J d F A 00 10 Ys oD15108 qs O Fig 13 b 40 C 134 10 10 s 5 tan9 Fig 13
105. 95 7 gt y EKAR 19 99 1955 31 1960 17 82 1947 18 21 1948 a TAKEDA M Studies on dielectric behavior of bound water in timber in the high frequen cy region Bulletin Chemical Society of Japan 24 169 1951 Trapp W und PUNGS L Einflu8 von Temperatur und Feuchte auf das dielektrische Verhalten von Naturholz im gro en Frequenzbereich Holzforschung 10 144 1956 13 2 12 115 1966 16 7 5201939 1 7 208 1939 EN A No 119 95 1960 VENKATESWARAN A and TiwARI SHIVA YoGI Dielectric properties of wood Tappi 47 25 1964
106. In the case of very low moisture content less than approximately 3 the cellulose and water are combined fast and there can exist only the orientation polar ization due to rotation of dipoles 7 As the moisture content rises water is adsorbed on more points on the cellulose chain and if the moisture content increases still more adsorption on the water molecules adsorbed on the wood condensation becomes possible Namely the relaxation time of the orientation of the adsorbed water molecules becomes smaller as the moisture content rises As a result the relation between moisture content and e and e shows completely different behavior below and above a certain value of moisture content And the boundary value of moisture content varies with frequency 8 There exists the temperature dispersion with the dielectric properties of wood and in the present studies two types of temperature dispersion were observed namely the temperature dispersion in the lower temperature region and that in the higher temperature region The latter is closely related to the adsorbed water on the wood and the former was found to be related to orientation polarization from the fact that it could be observed even in the oven dry condition 9 The temperature at which the temperature dispersion exists varies with frequency 10 Generally the dispersions due to rotation of dipoles and interfacial polari zation satisfy the Corg Corg circle diagram B
107. ge LAL Eo Evo TAKEDA M Tilia Corg CorE 299 40 Fig 34 9 e Fig 34 10 20C 40C 70C CoLE CoLE 159 Fig 34 20C OLX g 3 0 96 5 40C OLX e 2 7 6 2 70C g 2 6 056 0 so so co eo s so so
108. of the dielectric behavior of wood with due attention paid to the foregoing considerations led to the following results 1 The dielectric constant e and the dielectric loss factor e show a variety of behavior influenced by the three factors moisture content temperature and frequency of the electric field 2 The frequency dispersions of the dielectric properties of wood are observed in both the lower frequency region including the ultralow frequency region and the higher frequency region micro wave region The former is the dispersion due to interfacial polarization and the latter the dispersion due to rotation of dipoles or orientation polarization 3 The dielectric dispersion in the lower frequency region is difficult to observe when the temperature is low enough even if the moisture content is high After all the interfacial polarization is suppressed greatly by low temperature The dielectric dispersion in the higher frequency region is not affected so much by low temperature as that in the lower frequency region 4 Both with the dispersion in the lower frequency region and that in the higher frequency region the higher the moisture content or the temperature the smaller the relaxation time and vice versa 5 The dielectric dispersion in the lower frequency region is related to the conductivity and consequently is affected more by water contained in wood substance 168 than that in the higher frequency region 6
109. oth the dispersion in the lower frequency region and that in the higher frequency region in the present studies satisfy the CorE Core circle diagram 11 eo and e were obtained from the Corg CorE plot With the dielectric dis persion in the lower frequency region ey was approximately 100 150 and e approx imately 10 and with the dielectric dispersion in the higher frequency region both eo and e were smaller than 10 The value of so e was fairly large with the dis persion in th lower frequency region but that in the higher frequency region was smaller than 5 12 From the CorE CorE circle diagram there was observed a tendency of the distribution of the dielectric relaxation time of wood increasing with the fall of temperature both in the case of dispersions in the lower frequency region and in the higher frequency region
110. r of sorbed water on silica gel J Phys Chem 58 320 1954 1962 Murpny E J and WALKER A C Electrical conduction in textile I The dependence of the resistivity of cotton silk and wool on relative humidity and moisture content J Phys Chem 32 1761 1928 1963 BNR 2 IDKARORMRITEO ARM 17 82 1947 1960 195 1962 PETERSON R W The dielectric properties of wood Ottawa Laboratory Forest Products Research Branch Department of Forestry of Canada Mimeograph 0 151 1953 11 5 93 1937 SKAAR C The dielectrical properties of wood at several radio frequencies N Y State College of Forestry Technical Publication No 69 1948 STAMM A J The electric resistance of wood as a measure of its moisture content Ind Eng Chem 19 1021 1927 STAMM A J The fiber saturation point of wood as obtained from electrical conductivity measurement Ind Chem Anal Ed 1 94 1929 OHM 1
111. rg CorEg e Corg Corg OAMA 7 ey FL eo Eo e Corg CorE e e 3go Gag Anny 6 7 6 2 OC BA Corg Corg Corg Corg Fig 31 1 Fig 32 1 6 A Corg Corg su 10 eo 100 A
112. zation In either of these two types of dielectric dispersions the point of inflection of the curve expressing the relation between e and frequency and the maximum value of the curve expressing the relation of e and frequency move either towards higher frequencies or towards lower frequencies according to the changes of temperature and moisture content In the case of the dispersion due to interfacial polarization the polarization is influenced by temperature and in the case of the dispersion ob served in the higher frequency region the orientation of dipoles is affected by temper ature and these cause the temperature effect of the relaxation time With respect to adsorbed water on the wood cellulose water is adsorbed fast very close to the surface of the micell in the case of low moisture content wood and as the moisture content rises the distribution of adsorbed water comes to be widened to locations farther apart from the micell surface and the force interacts among ions of the adsorbed water These are caused the difference of relaxation time between the case of low moisture content and the case of high moisture content From the foregoing considerations both the dispersion in the lower frequency region and that in the higher frequency region are influenced greatly by frequency moisture content and temperature and neither of these three factors could be neg lected in the treatment of the dielectric properties of wood The studies

Download Pdf Manuals

image

Related Search

Related Contents

Samsung AP-Q3030 User Manual  PDFダウンロード    Tiré à part de la Publication ŒEDIDAÇ) 38 BIEBER, CHABLOZ  Manual del propietario Serie GP  TRM300 - Urrea  Kenwood KMX50  Asrock E3C224-V+  

Copyright © All rights reserved.
Failed to retrieve file