Home
製品・技術紹介
Contents
1.
2. 36
3. 2 1
4. Cylimder Fiston lst Stage Piston 2nd Stage Ron Paclona oihectummg Rod fuiric Beanng Cranlkslnall Crankcase Flywheel 14 2
5. 2
6. 152 5 6 amp 4
7. UWC UWC 91 4 4
8. 2014 26 4 2
9. 20 42 1 Spencer D B et al Metallurgical Transactions 3 1972 1925 2 Flemings M C Materials Science and Engineering 25 1976 103 3 http magnesium orjp property use 4
10. 130C
11. 1 C Rauwendaal PolymerExtrusion p 416 HANSER PUBLISHERS 1986 2 W D Mohr R L Saxton and C H epson Ind Eng Chem Vol 49 No 11 1957 p 1855 1856 3 p 222 228 2011 4 p 152 157 1996 115
12. 2 50C 0 4 mm
13. Synopsis We have been developing a simulation on single screw plasticating for the estimation of plasticating capacity of an injection molding machine In the previous plasticating simulations the plasticating capacity was determined first and then the amount of molten resin and the solid bed ratio were calculated However for resins with high enthalpy of melting like polypropylene the calculated plasticating capacity did not agree with the experimental result In this research a new approach is examined in which the amount of molten resin and the solid bed ratio are calculated first by the heat flux and shear energy appl
14. Department of Systems Innovation School of Engineering The University of Tokyo 57 MPS 2 MPS 2 1
15. 2 4 2 4 1 25 2006 18 2007 2006 18 11 JSW 1969 44
16. 6
17. DGC RSB RSB DRSB
18. ELA 6 300mm 6
19. SCADA Supervisory Control And Data Acquisition HMI Human Machine Interface HD PLC
20. 1 SPP surface plasmon polariton SPP P Si 1 Si
21. 2020 5 1 No 64 2013 p93 94 2 No 64 2013 p75 78 3 2009 2 p 75 78 33 Techmcal Development of Thrxomoldmg Machme and its Future Prospects sep Akihiro Maehara Sc D Ken Saito Kiyohide Kari
22. 5 2 5 1 9
23. 4 2 4 16 4 5 4 No 66 2015 10
24. Mg 1 IT 2020 2013 2 5OO at 400 5 300 8 A 3 a 200 5 8 1 RR noo sy 1 1 A yy A a a i Pe Sy 1 Mg
25. DBPF YBCO MOD ELA ELAMOD Excimer Laser Assisted Metal Organic Deposition r 300nm YBCO 2 0MAcm
26. 5 6
27. 3 en PCW TNCW Nikko Pellet Conveying Water system Sb NE UWC
28. 132 R2 R10 5 b 2 Heat amp Cool Heat amp Cool 8 Heat amp
29. SCREWFLOW MULTI 10 113 10
30. HP A 134 0081 1 17 22 Tel 03 3680 2131 Fax 03 3686 3439 Tahara Machinery Ltd 164 _ No 66 2015 10 en 1 4 1
31. 200 300C 600C
32. 180 2 1 2 SN 6 2 4 J ADS 5 5 ADS 5 ADS 4 2015 3 ADS SYSCOM5000i
33. ILGP180HP 2 LGP180HPJ LGP180HP 4 1 4 PC 3 1
34. 2 2 5 J AD USM 26 800mm sec J AD 60H USM 2008
35. 70 50 3 3 JSW TiC JSW TiC H
36. CO 4 4 2 2 4 J AD 4 4 AD J AD 2006 11 40tt 70tf 2009 220tf
37. 1 LAMOD 62 2011 2 ISBN 978 4 254 13725 C3342 3 ISBN 978 4 7536 5610 C3042 4 ISBN 4 339 00635 1 5 IA SHEN G HONG MLANCASTER Microstrip Filters for RE Microwave Applications ISBN 0471221619 9780471221616 6 WSChang et al Analytical Design of Microstrp Short Circult Terminated Stepped Impedance Resonator Dual Band Filters IEEE Trans Microw Theory Tech Vol 59 No 7 2011 pp 1730 1739 7 Chen E C et al Novel Multistub Loaded Resonator and Its Application to High Order DualLBand Filters IEEE Trans Microw Theory Tech Vol 58 2010 pp 1551 1556 81 CIM
38. CF CFRTP 3 No 66 2015 10 CFRTP 2 3 CFRTP CFRTP CF CFRTP CFRTP 2 CF 6 PA6
39. AD ADS 10 16 SYSCOMS5000i 6 2004 10 4 2015 3 ADS SYSCOM5000i
40. rs i 7 MuCel 8 3 4 MuCell 1 1 1 20 30 2 3 7 9 2 3
41. STU UH AZ91D Al
42. 12 12 TEX 1988 63 TEX TEX No 66 2015 10
43. 1 1925 14
44. VACMELTOR 4 1
45. DSI CFRTP rg CF 15st 6 PA Fl 13 CFRTP 6 Dl CFRTP CF CF CFRTP CFRTP CFRTP
46. 1000t 3kg LED NG 9 2002 4 280t 1
47. 31 EXANET 21 3 Dl 60 5 RoHS
48. No 66 2015 10 UHMWPE V 0 20 40 60 80 100 120 140 160 mAh gl i UHMWPE 4 2 V w 0 20 40 60 80 100 120 140 160 mAh g ii CeNF 120 C 100 V 0 20 40 60 80 100 120 140 160 mAh gl iii CeNF 13 200 UHIWTWPE CeNF 150 Ds CeNF d EE 100 a 50 DO 2C DO sC A i 1 0 50 100 150 200 14 5 lll CeNF
49. 78 2 CeNF CeNF CeNF CeNF CeNF CeNF 2032 CeNF
50. 2 BOG 104 1 1 J2R140 J2R160 J3R140 J3R160 etc 165C lt 5MPaG 165 C JIS G5510 FCDA Ni35 55 C JIS G5504 FCD300LT FCDA Ni35 FCD300LT
51. MPS Moving Particle Simulation method MPS Hiroshima Research Laboratory
52. 2 CIM 2 3 CIM 3 2 50 100Ton h 70 9 ad 0 lo t h ClM OciMt A 0 1950 1960 1970 1980 1990 2000 2010 2020 1 1 2 1 CIM
53. 1 1 9 2 RR LE EE gt RO 4 gt i 5 97 3 3 1 1
54. 6 4 2005 280t 650t 12 1 0 45mm 7 38 _ No 66 2015 10
55. J 100 2 15 20 MW 3 1 NEW MW 5 HAW Co hE 4 Li mi ER 2 wk PP HDPE L LDPE LDPE 4 li PP CMP XI lt HDPE L LDPE
56. 2 2 Class NK Lloyd s Register No 66 2015 10 3 LBB Leak Before Break
57. CF 131 CFRTP 3 2 PA6 Vf 60
58. 1990 2 TEX 4 TEX 2 2 3 1993 5 TEX NIC 5
59. 1995 7 15 30Ton NEB NEB80 2 4 4
60. JSW JSW AFTY Corporation 142 JSW ECR No 66 2015 10 ECR 2 ECR
61. 6 gt No 66 2015 10 3 3 MuCell MuCell 10 200um ADCA 6 MuCell
62. Hiroshima Research laboratory 122 MD TD 20 um 2 5 Research am
63. 7 Mg Zn LED MGP LED AZ91D AZ91D ADC12 Mg Zn ADC12
64. The end The starl af meltmg The starl ofmelting of fullness Ts Pl Lrwnsirearm 8 DO LImslream 3 4 9 P3 P5 P6 4 P14 119 Powder Pellet Fressure NPal LnwmslrEim1 8 Lnslreamm IAA 9 4 Resin
65. SYSCOMS000 1 SYSCOM3000 2 em es Cs EEC Fi ni mm 13 3 mm Eh th nd 2m 1m UM WW 300 250 200 2500 SS 10 0 FR 100 2aD EUIFPS 5 00 mm qih rd My 00 Fl 3 3 i100MPa EE Ea En Te ETIE Ts We Kr 1
66. 4 BOPP 5 a 1 MD 3 5 a 5 b MD 1 3 TD MD 140 mm TD 80 mm 80 925 8 F 1 en 3 b
67. 10 FCDA Ni35 DD FCD300LT 10 FCDA Ni35 5 2 11 FCDA Ni35 1 5 30 10
68. 140ton 22 0sec MEIKI LGP 70ton 9 0sec PC 1 4 LGP180HP 163 ee N SNN N NN lt N SO NN SS NR lt N ey pp CN NN RS ep SN S N 1 AAS SAN RSSSS Ra NB AL 1 IPE International Plastic Fair 2014 2 1 2 HE 1
69. 630C 3 3 1 JLM MG 1995
70. 90 CAE No 66 2015 10 1
71. 2 MT MT ni EEP 2 MT 4 3 TypeI
72. 1 1963 2 44 3 61 2010 p84 4 4955795 2010 5 3224931 2001 6 3746996 2005 7 3768210 2006 8 55 2004 p198 9 64 2013 p56 55 2004 p32 57 2006 p62 2007 p565 14 2014 p45
73. Rotary Slot Bar RSB RSB 2 RSB RSB Rotary Slot Bar RSB 2 RSB 1 RSB 2
74. CMP HDPE amp L LDPE CIMI P 3 5 2 2 TEX 2 2 1 Welding Kr
75. SynODS1S For the changing energy market caused by shale gas digging technology the demand for the liquefied gas carrier transportation has become higher We have obtained the certifications of the low temperature labyrinth compressor for re hquefaction use from two Classification Society ie Class NK and Lloyd s Register And we can offer the minimum 165 C designed compressors including LNG boil off gas use We applied the cast irons for low temperature cylinder material ie Austenitic cast iron FCDA Ni35 and Heavy walled ferritic spheroidal graphite cast iron for low temperature service FCD300LT These two cast irons ensure the reliability and the economical design of the compressor On the manufacturing process approval examninations by Classification SOcleties the material test at low temperature and the reliabihty evaluation by nondestructive test pressure and airtightness test for the cyhnder were carried out And also in order to estimate the effect of vibration from the compressor to the hull construction we made numerical vibration analysis and measured the actual vibration on the ground The analysis result were confirmed closely to the meas
76. 3 3 1 DSI Die Slide Injection 4 DSI DSI 1 1
77. 1 04mm 5 1 24h0 4h No 66 2015 10 6 2 24 h JSW TiC 6 JSW TiC
78. a nm zm ASP 20 1 100um 5mm 90s
79. 1 j 2 3 No1 1959 4 No 2 1959 5 No4 1960 6 No6 1961 49 A Research of a Smele Screw Plasticatng Usmg a Flow Analysis Kazuma Nakagawa Katsuyuki Araki Akira Yasue EE
80. 120 100 m 80 60 pe 40 20 5 NIC TKD 9 13
81. JADS 220tf 450tf 2 1 J ADS T ADS FEM 55 J450AD NE NN RN S SS 2
82. I gt 1 41 2 3 BCS 1957 BCS Bardeen Cooper Schrieffer Cooper Pair g 2 E 4 E E 2 s BCS 4 E 7 aE am ep OF 7 2
83. Co 2 1
84. 37kW x2 SL hs 0 1 ad AN sf 14 4 No 66 2015 10 15 AD SYSCOM3000 2004 SYSCOM5000i 2015 J ADS 160 OS
85. ASME Section VIIL Division 3 KD 10 2 3
86. 80 75 rr E70 a S_ 65 60 55 se 50 0 5U 100 150 200 250 m min 12 3 3 1 BOPP
87. TEX EXANET 31 EXANET PL DCS i PLC FE 52S P L D cs mm He LL et ET mm HE _ 6 1995 3003 2 5 2
88. 25C No 2 0 5 No 3 7 1 4 CeNF 4 1 CeNF CeNF 3 CeNF 4 STF25 UHMWPE
89. 2 3 2 3 1 1959 34 PVC 1962 37 1970 45 PP 2001 13 2006 18 BOPP
90. 2 2 VT PE 5 C 7 1 2 11 m In 2 A PC mm 12 6 7 7 6 No 66 2015 10 MPS
91. Patankar L 2 2 2 2 Fortran IA 32 version 14 0 0 103 3 3 3 3 1 Tadmor 3
92. 308nm 2J 4J x 600Hz 1S lt 0 45 2J 1E8 24ns 5 LTPS TFT EL TFT ELA ELA 8 161 ee 1 1 13
93. 2005 2015 3 2 23 TEX CAST MDO 1 1YTDO 2 2 TDO MDO 1 TDO 2 1 PE PP PP
94. 1987 62 TEX120 1983 58 TEX No 66 2015 10 IV PET 15 PET TEX30 TEX180 15 PET 2 3 3 BOPP BOPP
95. CFRTP CFRTP 134 1 2008 2 Vol 2 No 3 1991 p 165 3 WO2012111674 A1 4 P21 NiAl No65 2014 p 30 35 5 VolL13
96. Q Quality Factor U P Q wU P P P R U eg Q Q Q Q Q P P R R 3500 400 0 8 3 5GHzZ Q 300 500 Q 120000 3 5GHz
97. 2 50 mm L D 11 max 300 rpm 110 3 3
98. TiC O aa 4 5
99. FCDA Ni35 9 FCDA Ni35 200 0 2 Tensile Strength Ted Teigthi Welld Strength Tensile Strength Nm 50 100 150 200 250 Test Temperature deg Cl 9 FCDA Ni35 No 66 2015 10 5 5 1
100. 4 l 1 lf nN a 2m lal a ao 5 8 Ps cl 1 0546E 34T s H YBCO uoH 1Tesla 91K T 70K 4 5 2 2 3 5nm HH H H 6 GL 1 2 uoH T G G
101. 2003 3 3 JLM MG II e 2006 MG II MG IIe 2006 2 JLM650MGIe 6370 kN 2 JLM650MGIe 4 4 1
102. 130 100 SU F 60 4 6 9 10 mm 8 3 1 3 4 2 9 5mm 1mm 5mm s 20C 200C 130C 0 3W m K 2800J kg K 18 19 9 a 8 ar exp C T 170 RY ar C 7 C 0 02 7 150C z 0 6 10
103. APC AD t 7 126 1 0 71584 2 SYSCOM3000 2 2 2 J AD AD 2006 6 350tf J350AD 2007 3 AD 4 AD J AD FEM
104. SUS 316 SUS 316L 99MPa 300mm 300mm 45MPa SCM435 99MPa 149 ge SCM435 SA 723M Gr 3 C12 SA 723M ASME Boiler and Pressure Vessel Code Secton VIIL Division 2 HIP SA 723M
105. ri 23 34 43 llnn 50 MPS 57
106. EN 120 i a D DLL v D O The stmrt of The start of melung Fullness Powder MWL Pellet lO Powder Pellml Bulk density kgim
107. HMI WiHi 2 4 3 1965 40 1980 1995 IBC 450L 3 000L 19
108. 7 890um HDPE CIM90 280rpm RSB 30 22 8 De gassing Cylinder DGC DGC 9 CIM90 30
109. HP CI HP 1 HP HP 2 1 HPS 35D 05AJ E2 2 HP 2 HP CD ae 3 1 HP
110. 5 2011 23 4 1 3 3
111. 2006 18 2 TEX FAN 12 2014 26 3D TEX FAN TET 11 Turn Key mm LE Hi am Cm LMT IL 1 mmm IE i Pi CETSEEETEDLEEEETTD LDPE n C10wt TEX65a 250kg h 300rpm sol ID D0 266 hm z93
112. V u 0 1 Du PRET RR RD I u t p 1 g Power law 3 y2D D Nd p 1 Vu 05 Kr YW Power law index D MPS Oy 6 AO IE V V9 i 7 7 V9 jd sD Ny j i ry 2d a Wy 7 2 Se jxi 58 2 z
113. 2011 23 TEX o 15 TEX a TEX gII 36 TEX25a TT TEX120g 8 i 10 15 TEX g 54 afl TEX a GR CR 0 TPV SF 10 SFD Side Feed Deaerator TEX
114. 79 1011 131415 2015 8 4 TEX 13 TKD 1994 6 1997 9 TEX 6 TEX XCT 7 TEX a 2 2 3 1 TEX TEX 1979 54 8 TEX gl 2000 12 1000 TEX400
115. FE 1 1 pe a sm mm220E JHT i Ei aa Ei Lit MH II Pl 5 3 AZ91D JIS MD1D Al 9 Zn 07 Mn 0 2 3 AZ91D 40
116. 3 TPV TEX Ff 14 TEX
117. 532nm 138 2 1200W 200W 100W W 4 1 532nm GO v 2 3 SLS Directional SLS directional MR PA 5 2 3 m 4 6 m
118. 55 1 5 10 ISYSCOM5000i
119. 1 L 2 mm 10 mm 13 a b 126 2 2 2 mm 10 mm Tf ll b L 10mm ms i a L 2mm 13 2 3 1 1
120. 4 2004 AD J AD MmT D PC CL
121. UWC UWC UWC UWC 2 PCW UWC
122. Hiroshima Research Laboratory 116 a i No 66 2015 10 2
123. 45 4 4 NPA NPB 1960 35 NPA NPB NPA NPB 5 6 4 5 NPB 46 5 1979 54 5
124. 3 Type IL NEDO 150 No 66 2015 10 ee 1 UWC UWC UWC SDC PCW NCW 2 UWC amp PCW 1 6 UWC SDC 3 SDC 5 SDC 10
125. 2000 12 wl Pe 7 8 1993 5 JR E217 JR 9 JR
126. CeNF 2 CeNF CeNF CeNF UHMWPE CeNF 3
127. h T q T 20 C 3 6 mm T q h 2 11 h FT H20 Ts PP 0 9 25 50 75 100 m min
128. 1C 1 CeNF UHMWPE 3 UHWMPE PE UHMWPE 030S 145M CeNF 1 6 PP PE 200 60C 0 2 O 5C 3V 1 mw Goc3y ii 8 4 4 4 4 1 CeNF UHMWPE
129. ELAMOD Excimer Laser Assisted Metal Organic Deposition YBCO HTS DBPF HTS DBPF YBCO HTS 2 DBPF SynODS1S The expanded use of smartphones tablets and cloud services have brought about an explosive increase In mobile and data communications resulting in lacks of both radio frequency resources and capacity of data traffic Therefore not only the effective use of frequency resources but also the data traffic systems with high speed high capacity communication capabilhties are urgently requlred Carrier aggregation technology has been proposed as a method to realize high speed high capacity communication An elemental device for the method is the dual band bandpass filter DBPF which enables dual band frequencies to pass in a single filter device In particular a DBPF utilizing a high temperature superconductor HTS has lower insertion loss large ba
130. K Kic FCD300LT 3
131. Practcal Use Technology Development of the InnovatrVe Separator for Next Greneration Lithium Ion Battery Ryo Ishiguro Satoru Nakamura T Dr Mariko Yoshioka Dr Tetsuo Sakal Takashi Mukai a CeNE
132. BOPP 500 m min 10 m js EH ti 1 TD 2 2 2 1 3 2 4
133. 9 W m7 T 7T Q2 mm 2 7 54 W ga 9 Ww d Aml 7 C 1 Tg CC 4d6 ml qs 0 QO E w 6 dx di Pi CT Wd W m eg C1 8 1 d6 i 16 Im
134. 14 14 E t 3 E cck Ce sp ny kg 4 Y Y 2 t sec k 4 t E CIM RSB CIM
135. HMDSO UV OEM UV 11 8 300 1 000 11 UV No 66 2015 10 3 5 i 3 PCwPBT PCrBs ln SUS316 fnm 8 i Wt
136. 20 s 100 mm s 2 mm 0 2 mm PC Tg 144 MFR 63 g 10min ISO1133 300 C 1 2 kg 300 150 C 9 a Ti vy T T T 8 mm 1 exp w 2k 1P m 4 R Ta T mf k 0 2k 11 t RE k 8 PP Ta pi cp2 Na Ty Vp tpi M yp cp b c Pr STAINLESS WImrKI A 0 26 210 C A 20 0 200 py 1 13 x 1 Pa 7 75 X10 P 207 1 C 0 1 MPa 200 C 0 1 MPa kp 2039 10 cp 0 46 x 10 Ch 1 205 CC 20 C w Mip cPI 10
137. 2 2 157 gen 2 2
138. Ship s Classification and Development of BOG Labyrinth Compressor for Liquefied Gas Carrier with Re hquefacton PE Jp Hiroyuki Togo Hiroshi Miyamoto Yasufumi Saito Keita Hihara Toshiya Taira LNG 165 C FCDA Ni35 FCD300LT
139. JSW TiC UWC Synopsis Responding to a demand of long Ife of the under water cutter die plate JSW has developed new hard material for the under water cutter die plate using powder sintering technique The new material has been evaluated by cavitation eroslon tests and wear tests using not only equipment in labs but also the plastic pelletizing machine According to the results cavitation eroslon resistance and wear resistance of new material were superior and or similar to the properties of the JSW standard material JSW TiC In addition the developed material decreases wear rate of cutter knives Consequently the new material is expected to make die plates and cutter knives have longer life 1
140. SLS SLS directional 4 SLS SLS directional 3 3 1 1 308nm 355nm 532nm gt a Si c Si 87 1 Si O 30 50nm 355nm 532nm
141. 56 6 2 12 PP PE kg h kg h kg h 12 7
142. 3 PFT No 1 2 5 2 5 1 1985 60 LSI
143. 3 2 JLM MG 1 2002 MG MG HI 2002 3 8m s 5 0m s FF FEF FEM 40
144. 11 Ball aaring 2 Cylinder Fmten Stop Plate 1 cs Sllison Rubber Cover 12 NRWS100 RD19 200t Max100mm s
145. EVOH 10um SC a b c 17 28 0 2mm
146. ZIW m 2 W m Our W 7 C Im gz m 7 W m pe pa Sn 9 dg W 1 Ta C C 0 0 d 1 1 Ff fold Pm WE 6 dx i 11 plkg m C J kg K Zls
147. 1 2000 12 400m min 500m min 2 2006 18 TEX TEX 16 3
148. MPS SynODS1S Numerical analysis program of polymer fluid flow is newly developed using the MPS Moving Particle Simulation method which is one of the particle methods In this program the temperature calculation is considered the effect of solid liquid transition In addition the wall boundary is modeled using polygon wall instead of wall particle in the original MPS method The temperature of the basic shear flow field in a cyhndrical Couette flow are predicted and the polymer behavior from filling to solhdification in the mold are analyzed In both cases good results are obtained In this paper we present the improvement of the MPS method and the verification of calculation method 1 Dl FEM Finite Element Method FAN Flow Analysis Network method
149. 4 1 MI D MI D MMT G 5 9 M D 4 2 PC 10
150. HDPE PP 1980 55 P305 3 P700 2007 2 1 2 1970 45 10 CIM Continuous Intensive Mixer 4 CIM PP HDPE 4 10 CIM
151. NCC CFRTP LFT D TEX CFRTP 8 LFT D 9 8 LFT D gt 7 2 2 4 TEX o 9 TEX65 1997 9 2000 12 TEX 10
152. etc 3 ete SS lll 6 52 il ED Eo EH z gt 7 2 2 No 66 2015 10 4 4 1 Patankar T Pa s kg m z m s Pal gy z 0 ins x 2 div puu div I gradu eo 2 Ci
153. DCS PC PC SCAD AA 1997 9 No 66 2015 10 PLC 2 PLC 30
154. SW CRA JSW TiC 60 x 6 mm 2 5 SW TiC 2 7 22
155. 1 UT 48mm 16mm 6 5 x 10 2 4 8mm 1 6mm G5MPa 82MPa mmy 1 4
156. D 20 mm L h 2 2 2 3 14 L D L D 0 1 0 5 2 0 L D 0 1 10 X 14 mm L D 0 5 X 18 mm L D 0 1 1 3 L D 2 0 m s 10 0 5 0 10 0
157. LTPS FPD FPD 2 ELA 1 VYPER 1 308nm 600Hz 2 2J 600H 1200W 1 g Ave 100 lt 0 45 ELA 8 2400W TwinVYPER ELA 750mm 6 1500 x 1850mm 2
158. MuCell MuCell 1 7 IPF2014 MuCel MuCell SCF 04mm ABS MuCell 8 IPF2014 MuCell
159. CeNF 2mass IO Lm 3mass 9 4 6 2 CeNF CeNF SII E sweep CeNF Si N Au TD CeNF 1
160. 147 ECR 1 WL CSP 119 2007 1 p 13 17 2 2013 9 18 1 http WwWww sangyO times D Scn headindex aspx ID 419 2015 4 20 3 Vol 68 No 1 2014 p 32 34 4 ECR VoL73 No 9 2007 p 975 979 5 126 Vol1 2014 p 11 16 6 PE CVD No 32 2013 p 31 32 7 EL R 105 434 2005 11 18 p 7 12 8 p 69 71
161. 7 R2 R10 15mm CL 7 R2 5 mu 15mm 1 R10 Rg 7 4 Heat amp Cool 4 1 Heat amp Cool 5 5 a
162. CIM P HDPE CIM280 P 1997 9 CIM460 P 1999 11 CIM510 P 2015 27 9 P 9 CITM460 1999 2 1 4 1 1960 35 1970 45 CIM 1980 55 CGC 76e 1 1 4 No 66 2015 10 1 2010
163. 1990 23 15 PP PP PE PE PP 3 16
164. 7 8 PS 166 C 130 C 90 s 75 s 9 8 14 0 4 mm 14 99 gt 99 Pt me ms bi RANGE 1 4 II i 0 104 lt 109 lt 102 101 WwW ri 100 NW YY Pr 99 I 98 MAX 100 1 TT 97 MIN 98 7 NN 3 ee 1 2 3 4 6 7 8 9 10 11 12 13 14
165. ELA 100 LTPS 40 60nm ELA CMOS 0 1 1 m LA LA Yokohama Research Laboratory 135 i 0 1um 50nm a Si
166. 17 30 2 2 3 J AD 3 J AD 2009 10 850tf 2011 1 1300tf 2012 1 3000tf O A 25
167. NSC460DBW C 23 000cm 150Ton h F ei WW 17 NSC 5 3 UWC UWC 100Ton h 18 UWC TiC 19 UWC 88 20
168. 1965 40 9 1 9 47 50
169. 4 5 CeNF UHMWPE UHMWPE a CN EL CeNF CeNF CeNF 1 5 SEM 3 EDX 10 CeNF 1
170. 2 3 1994 4410kN LM450 MG MG I el 600 630
171. 4 2 4 4 4 2 5 3 2 0 5mm 37 50 62rpm 3
172. 2 3 5 HPM 1960 PP 2000 2005 24 16 24 25Hm 4 5 V 30 LarEe CT ns ns dr CallymtageiV 0 ma a HO 109 120 146 1650 Discharge capacityl NOM mAhye LO 33M0 33Co0 3903 AB_WGOF PVDF 9 2 50t Guraphite AB VOGF Acrylic 92 ltt
173. 7 4 4 4 4 2 2 NV 7 4 2 2 4 4 4
174. 5mass CeNF 64 UHMWPE CeNF 2 CeNF
175. 27 17 SynODS1S Bi axially oriented Polypropylene BOPP film is usually produced under the high line Speed High heat transfer coefficient between heat air and film and the uniformity of temperature that along the transverse direction TD is need for the transVerse stretching machine for BOPP film We develop the new nozzle to optimized that hole arrangement and flow channel near the air outlet by using ar flow analysis The heat transfer coefficient of new nozzle is 27 higher than conventional nozzle The bowing distortion is 17 less than conventional nozzle 1 40 BOPP 2013 647 10 20 BOPP 1
176. RSB CIM90 RSB RSB MI 0 34 5kg 190C HDPE 400rpm E E RSB 0 170 0 200kWh kg AE 0 030kWh kg RSB 0 170 0 260kWh kg AE 0 090kWh kg 86 3 11 RSB RSB E 12 0 280 RS CIM90 0 260 HS8 U
177. 11 Vf 56 1217MPa 67GPa wf i 1217 MiPa 567 Pa 11 5 CFRTP CFRTP
178. YBCO O Q 100 000 3 Jc 2MAcmY Rs 1 55mQ 70K 21 8GHz YBCO 4 800MHz 2GHz 6 2 2GHz 3 5GHz 23 PAN CD 7
179. 3 1 7 29 9 3 5 3
180. 1 4 6 50 6
181. lt gt EX XY gt RTE TaN 10 4 3 CL Contact Less Screw CL 11 CL 12 CL CL 2 mm CL 31 RS SN 11
182. 35 SF6 SF6 2 SF6 2 2
183. 9 2C 2 7 El 3 DD PONTT POINT POINT POINT 1 0 i190 1 Fa el ET see 10 Heat amp Cool 4 3 Heat amp Cool 8 Heat amp Cool
184. 0 2 2 3 TAssist 3 3 Assist 2 4 1 O a tt BR 1 O 158
185. 156 No 66 2015 10 ee a NN 1 ADS 4 2015 3 ADS SYSCOM5000i 2 SYSCOM50001 OS 1 15 LCD 2 1 1
186. 5 a CF TFL 5 5 ye Ee EE am
187. CeNF 4 7 2 60C 14 200 CeNF UHMWPE 2 2 1 4 CeNF UHMVW PE
188. ED 8 9 9 2 8 JSW TiC 9 TSW TiC 1 3 JSW CRA JSW TiC JSW CRA 93 _ 50 40 30 0 MK 10 0 JSW CRA vs JSW CRA vs JSW TiC 8 15 fe 10 EN 5 0 JSW CRA vs JSW CRA vs JSW TiC 9 7
189. 4 Sa 1 UU LTss 1 2 YL26 CSRLYO YCMCL Bb Ya b ek PE J LEEEEEEE 9 0 ED 22 E27 UU DD L L LcsRu LU cs20 avg CSAX1 J J 3 a ll 3 KE KE DO HH _ Ke 4 I O 2 5 a 5 En
190. 600rpm 13 13 Pressure Reservoir_ seharge Piping PE Testing Ecqitpment a Load Cel Base Plate 12 10 2 8 E Dd E 3 PEx perimental Result NTTlericHl Resiilt Time 13 6 2 2 2R160 14 15
191. 61 MPS eh i i i EE a a a 1 ia a 1 PR an 163 1 3 10 5 MPS DD D 1 Koshizuka S and Oka Y Moving particle semiimplicit method for fragmentation of incompressible fuid Nucl Sci Eng Vol123 1996 p 421 434 2 MPS
192. E N E NE a b 2 75 YBCO 2 4 2 T 0 T 0 lt T lt T E 9 exp jwt f lt 10 Hz 2zf 10 Hz Opev Ow WD E ees ea or V DO Oo v m e n
193. CPP 2015 27 4 HPM 2 3 2 PET 1970 45 5 m gt 150m min PET 1980 55 7m 350 400m min LCD PET 200um 8m PET
194. SPP LT Si SPP Si No 66 2015 10 Si 2 3 SLS SLS Sequential Lateral Solidification 4 SLS SLS 50
195. 10 7 s 14 8 s he r a a a Ps WA A FF 1 a 11 160 140 120 100 0 5 10 15 20 5 30 s 12 114 1 I ET y gt 7D ER lin f 1 S 7 Ss 13
196. 11 11 3 12 1600 O
197. 128 1 http www meti go jp statistics tyo Seldou Tesult ichiran 06_kamri html 2 2002 p 34 44 3 Martin H Advances Heat Transf Vol 13 1977 p 1 4 a 4 37 5 J N B Livingood and P Hrycak A literature survey NASA TM X 2778 1973 6 Msayoshi Tokihisa Yoshiyuki Kushizaki Hideki Tomiyama Yousuke Yamamoto Toshiro Yamada ournal of Polymer Engineering Vol 30 2010 Nos 3 4 p 245 274 7 2003 p 64 108 8 Msayoshi Tokihisa Yoshiyuki Kushizaki Hideki Tomiyama Yousuke Yamamoto International Polymer Processing Vol 26 2011 No 5 p 498 507 No 66 2015 10 CFRTP CFRTP Development of Innovative Molding Processes for Carbon Fiber Reinforced Thermoplastics Using Semi preg Akio Ohno Akira Yasue Shigeki Inoue
198. CeNF 4 6 CeNF CeNF CeNF CeNF 1mass CeNF CeNF 2mass 3mass 200C 10 1mm 4 1 4 2 36 6 CeNF 4 6 1 TOF SIMS CeNF TOF SIMS ULVAC PHI
199. TSW CRA 1 2005 p 11 2 2006 p 9 2008 p 1 2008 p 142 Vol61 No 3 1990 pp 208 218
200. 1 1950 25 1968 43 2 2
201. 1shot 1shot 0 2shot 0 5 m 6m yy_ 9c 1 oo 9a b ei a Si c Si 0 ny Si aie 9c 532nm 140 Si ELA 1shot
202. 79 YBCO 8 4 20 S21 S21 70dB ME pi NW 0 6 Ds 1 4 LE 3 3 GHz 9 4 4 2 3 6 4G 3 5GHz 6 2 2GHz 3 5GHz 10 2 2GHz 0 3dB 3 5GHz 0 6dB 6 24GHz 3 5GHz 2 4GHz 2 8dB
203. No 45 1991 p 40 46 2 No 48 1993 p 80 84 3 Hyun K S and Spalding M A Bulk density of solid polymer resins as a function of temperature and pressure Polym Eng Sci No 30 1990 p 571 576 121 BOPP BOPP Development of the Nozzle of Transverse Drectuon Stretchmg for BOPP Film Improvement of Heat Performance and Film Quahty II Dr Masayoshi Tokihisa T Dr Yoshiyuki Kushizaki a BOPP BOPP
204. UHMWPE JSW 30 a UHMWPE b c d UHMWPE
205. 94 a mm sm 3 7 2 10 4 JSW TiC JSW TiC
206. mm UWC RS i ee PP a 1 1 MT L me Ed 8 Fal a en Ed CG 4 CIM 3 2 a 1 1 2 5
207. 18 BU F E BOO Td00 a T 200 0 1 D D5 TD 18 18 19 B 19 9 TD P 19 17
208. CIM CMP Continuous Mixer Pump System CMP400 5 32 60 CMP 20 5 CMP400 1986 1980 55 CMP CMP X 1987 62 20 CMP305X CMP X
209. MPS 6 7 Vo VP ua Va jy Wr 14 2d 2d Vg Vb V bn 3 ku Ee jwr 15 60 ma 7 i 11 4 4 1 6 7 0C 100C 0 5S 5mm s non slip slip 2 6
210. ImageIR5300 InfraTec GmbH 7 a Bs Bs Es Pl0 Bs EE Eh Pli A A Downstream Upstream 6 Wisualization harrel Observation Using a thermography 200 100 Wisualization glass 7 3 3 I 8
211. Ni Mn Co_O 7 2032 5 LNugMrm ConsO 90 5 5 mass 45 2 5 4 mass 3 1 5mAh cel N P 1 13 1 5mAh cm 1 7nuAh cm LiPF 1mo L EC DEC 50 5Ovol96 VC 1masst 8G 46V Graphite 3 30C 140 1 0 2C 3V 8i 3 60C 3V C 80 0 2C 0 5C 200
212. 10dB 13 10dB 60dB 11 No 66 2015 10 YBCO 12 GHz 18 20 22 24 26 23 30 32 34 3 6 3 8 dB 13 _ LNA 6 YBCO 1 YBCO 66 104nm 300nm
213. 1970 60 120 CD DVD OHP PC
214. HDPE 1 HDPE 950kg m 0 16mm 427kg m 3 41mm 583kg m 1 Particle ity N f Material MY Maker RE dameter mml article HDPE Powder Mitsui HI ZEX Pellet Chemicals Inc 5000S Under the room and the atmospbere DTCSSUTC 2 2 1
215. 2 CFRTP 2 1 1 CFRTP CFRTP TT 1 CFRTP 130 2 2
216. Turn Key 11 Turn Key 10 SFD Side Eeed Deaerator No 66 2015 10 2 2 5 CAE Computer Aided Engineering 1990 2 2000 12 G 2003 15 TEX FAN
217. Vol64 2013 p 22 27 3 MPS No 20140007 2014 4 Amsden A A and Harlow F H The SMAC method A numerical technique for calculating incompressible 62 fluid flows LA 4370 1970 5 Sun X Sakai M Shibata K Tochigi Y Fujiwara H Numerical modeling on the discharged fluid flow from a glass melter by a Lagrangian approach Nuclear Engineering and Design Vol 248 2012 p 14 21 6 SPH Vol 48 No4 2007 pl838 1846 7 MPS No 20080006 2008 8 Shigeto Y and Sakai M Arbitrary shaped wall boundary based on signed distance functions for granular flow simulations Chemical Engineering Journal Vol 231 2013 p464 476 9 Demirel Y Thermodynamic analysis of thermomechanical coupling in Couette flow International Journal of Heat and Mass Transfer Vol 43 2000 p 4205 4212 No 66 2015 10
218. L 0 7 0 O SynODS1S The rolling stock is common Vehicle in the world and is mass transportation means of passengers and goods in safety For many years JSW has produced and sold the couplers and the draft gears which are the important parts of the rolling shock Now JSW is the leading manufacture of these products in japan Especially for the draft gear we developed the Double Construction Rubber Draft gear which can absorb the impact in anteroposterior direction and improve passengers comfort while vehicle is moving This double construction rubber draft gears are now adopted for all newly manufactured trains of the domestic railroad companies As for the Tokyo metropolitan area most of all the trains are equipped with these draft gears We describe here the history of our products the rolhng stock parts
219. 2mm V 165 FCDA Ni35 4 196 5 196 C SEM T IS Ductile Iron Society 14 9 FCDA Ni35 196 20 196
220. CMP XI CMP XII 8 XII CMP335 XI 2000 12 CMP362 XID 2006 18 CMP387 XI 2007 19 PP 70 8 CMP362XI 2006 1990 2 CIM P CIM P fil 0 so 1 Fill iG OO CIlM
221. 1 3 80 3 FCD300LT 4 4 1
222. 1992 1994 4410kN 1 1 8
223. 6 6 7 2 1 50 111 Ft Fa g F PP
224. CIM Technology Development to Increase the Throughput of Counter Rotating Twin screw Extruderkakko CIM Series Takayuki Yamazawa Makoto Ishikawa Naoki Takamoto Takeshi Ushio Jun Kakizaki a CIM Continuous Intens
225. Injaction Mold Iaction Meld Pin Blow Molding Mold TY Core 1a _ Center Pin Ring Piston ng The Injection Molding he Molding Parisoa he Resin FI Drocese he Blow Molding The Cutting 1 HP 165 5 6 IPF 2014 HPS 35D 05AT E2 1 1
226. Mg 5mass Zn Mg 10mass Zn 2 100 x 200 x 2mm Mg 10mass Zn 3 Mg Zn AZ91D 2 ADC12 LED KK 3 No 66 2015 10
227. 4 Si CVD O03 TEOS NSG O tetraethoxysilane base non doped silicate glass ECR SiN TEOS NSG TDS Thermal Desorption Spectroscopy 11 12 1E O7 1 ECR SIN OHTEOS NSG Si sub 1 gt 1E 08 1E 09 CS O 1E10 1E 11 0 100 200 300 400 500 600 700 800 Temperature C 11 TDS 1E 08 ECR SiN O3 TEOS NSG Si sub lt 1E 09 CC 1E 10 Tr ECRSiN Si sub 1E 11 0 100 200 300 40 500 600 700 800 Temperature 12 TDS TEOS SiN 100 ECR SiN 350 No 66 2015 10 ECR
228. 13 5 J2500AD 24 600kN 14 15 4 13
229. IT Zero to One 1 n 1 lt
230. U V 10um 10 SiPCS SiPCS S iPCS P BB 10 SiPCS 30 10 15
231. 103 109 ee 116 BODPP emesis 122 CFRTP PR 129 0 NG NN NN 135 ECH
232. 9 2n 3n 1 6 COS pe 1 V2 nti Q wL 1 x n 1 z 2 n 1 2V lt 1 1 20 1 2 Se 5 sm 3 Ti i m ss 0 TD lu sa 1 a b 9 No 66 2015 10 BOPP 3 10 MM K e Solidworks Flow simulation 20 m s MD 200 m min
233. Hiroshima Research Laboratory 1 109 1 2 1 2
234. AD SYSCOM3000 2 TAD 62 5 s 15 AD JSW IWCS
235. 2 No 66 2015 10 I 2 2 1958 33 se NCA NCB 3 3 4
236. 80 10 7 CIM90 1000 CIM90 280rpm RSB 30 300 HDPE 890 um 22 400 2 2 2 8 Ikghl WP mm ET 9 DGC De Gassing Cylinder 85 CIM 30 CIM90 RSB 30 HDPE 130 um 20 15 10 HI DC DGC 10 DGC 4 2 RSB 1
237. y m sS dV v 8 dx dt 6 ml Mew Ww dx 3 18 No 66 2015 10 4 4 2 9 0 1mm 0 2mm
238. ELAMOD 300nm YBCO 6 Jc 77K 21 8GHz 78 10K 70K 77K Rs 77K jc 5 Jc 1 1 2 0MA cm Rs c 1 1MA cm Rs Rs 2 5 2 f 21 8GHz Rs Rs 29 0 8 3 5GHz Rs R RL 29 lo 5 70K jc 1 1MA cm Rss 2mQ 29
239. 9 10 No 66 2015 10 CFRTP 9 300 ID 250 1 j POINT 200 POINT 2 re a FONNT 150 POINT ee i00 5 50 350 300 380 150 300 see 9 Heat amp Cool 10 260C 100C
240. No 1 1 Re 1 2 No 66 2015 10 110C 250rpm 3 3 3 2 JIS K2501
241. 55 5 66mm L D 19 64 CR 2 0 120rpm 200C 5MPa PP J105G PE G701 6 6 1 PP PE LZX_ 11 140 12 20 103 100 R 80 40 SEE Er 20 0 PP PE kg h kg h kg h 11 9 lu dx O m s e m m Wlrps Pa s Pa
242. CF CF CF CFRTP 2 CF CF 3 TL oo 9898 9 9 2 CF mm CEF UD CF CF
243. UHMWPE 130 PE 130 CeNF CeNF PP 160
244. 4 AZ91D AZ91D UH 2mm 5 AM60B AM60B UH EBSD Electron Back Scatter Diffraction Patterns 6 AZ91D AZ91D UH PC UH An91D 6 UH UH 8 180 170 1680 0 296Yield Stress MP g 140 AZg1D 1 AZg1D 1UH AzZ91D 2 AZ91D 2UH 4 AZ91D AZ91D UH 41
245. Fr WE J Ss WE 3 hk _ E S J li 28 A CARB PZEV Partial Zero Emission Vehicle 4 6
246. Ta 0 ECR RN COD Catastrophic Optical Damage 5 SiN SiN EL SAW SiN PECVD
247. p19 24 4 3 No 66 2015 10 History of Development of Injecton Moldmg Machme Technologies and Future Perspectuves P E Jp Hiromasa Uezono Takahide Omobayashi Katsuhiro Fujii Dr Kiyoshi Ochi a 1961 1963 2004 4 J AD J AD USM 2010 2015 3 5 J ADS
248. 2shot 2shot 5 2 Si 4 1030 1065nm 2 515 532nm 3 343 355nm 2 2 1 C1 2 532nm
249. 2shot Si 5 Si SEM 5 1shot 2shot 2shat mot Ps EE Te a ROSE Po Ch 5 137 tb eal 5 5 ee 1shot 2shot Wi 532nm a Si c Si 1 5 b 2shot 1shot
250. 3 LNG LPG 165 C 1 No 65 2014 p102 107 No 66 2015 10 Visual Analyss of the Maddock Screw a
251. 0 Ln LT 20 C 9 10 PP m s 0 0 1 0 2 0 3 0 4 0 5 10 A 15 10 PP 1 S n 72z dy m
252. 1 HP DS bj cj 9 4 DSI 1 4 D 3 t 5 HP DSI 28 hi C 9 1 2 1 2 1 HP DSI
253. 10 Ar Ar ECR ECR Ar Ar Ar Ar Ar 146 5 2 SiN ECR SiN PES JIS K7129 B 40C 90 RH 4 lt 4 SE 14 9 55E 14 50nm
254. 11 FCDA Ni35 6 Adams 6 1 12 2 2R160 BOG
255. 55 FCD300LT 6 60 7 60 SEM 5 60 C JIS 6 40 C 2mm U 15 60 C 2mm V FCD300LT 50 60 20 amp 105 ImiPaCt Ee I ImiPct EnerEW
256. Ta O 300nm ECR 6 ECR SN PE_CVD_SN Transmittance 200 300 400 500 600 700 800 Wave length nm 6 SiN PECVD SiN 400nm 6 CVD ECR SiN Si Ar N SiN Si lt 100 gt 5 50nm Atomic Force Microscopy AFM X X ray Reflectometer XRR 7 3
257. Visualization Experiment for Kneading Behavior of Polymer in Twin Screw Extruder Effect of Bulk Density on Plasticizing Phenomenon Takahide Takeuchi Takashi Shigeishi Dr Hideki Tomiyama Synopsis In order to observe the plasticizing behavior of the polymer resin in the twin screw extruder experiments were performed using the visualization barrel Further the bulk density of the polymer around the plasticization zone in the extruder was estimated by measured pressure and temperature of the polymer resin We considered the plasticizing behavior based on the esti
258. 16 Power law 2 1 A amp 7 Or 1 R z P RR y 3 z 0 6 10 Pa s 7 16 16 z 0 z No 66 2015 10 MPS
259. JSW TiC SW CRA 7 1 3 CMP69 MI 30 PP 200 kg h 1 4 JSW CRA JSW TiC
260. LA 10 1shot SEM 5 ll LTPS ELA ELA LA LA SLS directional TFT LA LTPS LA ELA ELA 1shot LA 1 LA
261. 7 CeNF 0 5mass lmass CeNF 1mass 1 5mass CeNF 1 5mass SEM CeNF 0 5mass 1mass 1 5mass 7 CeNF CeNF 1mass CeNF 4 5 1 CeNEF CeNF CeNF
262. 27 10 66 27 10 7 9 03 3615 6481 1 11 1 03 5745 2001 ll FAX NO 03 745 2049 FAX TEL FA X 66 1 1 1 141 0032 03 5745 2001 FAX 03 5745 2025 1 1 1 550 0004 06 6446 2480 FAX 06 6446 2488 1 3 816 0872 092 582 8111 FAX 092 582 8124
263. 3 3 CIM 83 CIM 3 CIM 3 1 CIM UWC 4 UWC
264. 1mm CFRTP 3 IIS K7074 4 CFRTP 1400 A 1200 vy 100U O 3 lt goo 400 PABN CF A PAGE CF B 200 FAR B PA6 0 0 10 20 30 0 5 BU 0 Vf 34 4 Vf 3 3 1 CF
265. 4 MPS WM 9 MPS W 10 1 lt W 7 9 0 HN gt Ws 10 Fw 21 41 MPS 2
266. PCW a 100 30m 300 Fm 500 ADCarrl 18 UWC ADC gt Si 19 No 66 2015 10 CIM 20 UWC ADC300S 6 lll
267. 1978 53 RD16 1987 62 RD210 2 1980 55 RD011 85 11 10 2
268. 030S TEX30g 3kg h P 350P PLSXPA3 014 STS UVX 3 7 65 1 2 1 2nd 1 st 4 4 2 2 2 36 6 mg g 0 5mass 1 5 mass 2 CeNF
269. 2032 CeNF TOF SIMS TEM CeNF SynODS1S In this study we have developed a continuous manufacturing System for obtaining the CeNFs Cellulose Nanofibers compounded separator having excellent characteristics First we tried to continuously produce the chemically modified cellulose The microcrystalhne cellulose material and succinic anhydride were kneading reacted in a twin Screw extruder Next the unreacted succinic anhydride in the mono esterified cellulose was removed by extracting with acetone and the purified product was dried by a thin film evaporator Then we tried to make the separator for Ithium ion battery with the wet method which use the mono esterified cellulose liquid paraffin and Ultra High Molecular Weight Polyethylene Finally we manufactured 2032 type LIBs equip
270. 4 Esp RSB 0 100 4Esp 0 03kWh kg RSB 42Esp 0 09kWh kg RSB 3 _ 0 260 0220 20m 2 0 180 0 160 O20 A 0 100 RSB 4 RSB RSB 154 5 1 100ton h RSB RSB No 66 2015 10 ee 1
271. 6 No 66 2015 10 YBCO YBCO Au Au YBCO YBCO Au YBCO
272. i F HE 3 8 S iPCS S iPCS S iPCS
273. 4 1 1 QcVNp kg min i 1 k Q V m3 N rpm p
274. 0 i00 SO Fm pt ETEY Percent Britle Fracture 5 1 0 2 00 100 TE Termperature ldeg Cl 4 FCDA Ni35 1 1 rm mact Energy 5 Percent Erittls Fracture i 120 0 0 Test Ternperature ldeg Cl 6 FCD300LT 1 1 nm 4 2 8 FCD300LT 60 0 2 FCD300LT Yelld Strengih Tensile Strempgih lymaml Torsile Strength Yeild Strengih 100 0 50 Test Temperature deg Cl 8 FCD300LT 4 3 BOG
275. 120 GP450T 1986 61 6 2010 22 100 GP630T M PP 70 GP560T M 2013 25 7 WE 6 GP450T 1986 7 GP560T M 2013 1990 2 3 30 60 L D 2
276. 6 MuCel MuCelW MuCellW
277. Development of the Superconducung Filter with a YBCO Thin Film Yasuo Sato Noritaka Kitada Kazuhito Kishida Katsuhiro Terao DBPF HTS DBPF
278. SDC amp NCW UWC No 66 2015 10 ee 1 1
279. 10 2 3 100 m min 17 27 AA 16 i pa a se 40 i 17 4 2 TD
280. 6 Thermally Assisted Magnetic Recording TAMR TAMR 800nm Zr0 Taz05 SiN 2 6 1 5 P 7G 13 34 33 32 1 ECR PE CVD ECR ECR SiN SiN ZrO02 ZrO2 Ta205 Ta205 13
281. ER LIB 4 LIB 5 DD CeNF UHM WPE CeNF
282. HP ee NN Ny N SN NN NS NNR NN OE gt ER TR RN SNONONNIVEIMEREE SES ANE JR WBN ND ae ER 0D Es 1 2015 100 2014 12 2016 3 2020 2008 70MPa
283. 0 2 mm 11 b 1 300 160 C 350 300 _ Do 150 250 SN 300 HH J 200 150 100 50 DD L 0 10 20 30 4 50 60 70 s a 2mm 350 T T _ _ _ _ 300 1 153 300 250 0 2mm tu 100 50 0 0 1 2 3 4 5 6 7 8 9 10 s b 0 2 mm 11 PC 2mm 300
284. 1996 MGP MGP 4 2 MGP MGP 0 65mm MD 2000
285. 2 bk EE i EL FiH Lt 8 iLliclii 2 1 1 5 2 0 14 2 3 2 3 2 3
286. 20 SynODS1S Thixomolding the injection molding technology for magnesium alloys was developed by The Dow Chemical Company USA The process is similar to the plastics injection molding By thixomolding chip material of magnesium alloy is melt and stirred with Screw in the barrel and the molten magnesium alloy is injected into the die to mold the parts JSW has built not only the thixomolding machine but also total production System for mass production of magnesium alloy parts since 1992 Up to today more than 400 molding machines have been shipped all over the world and are being used for mass Droduction of Various magnesium alloy products As the global warming has become evident year by year CO emissions will be restricted more strictly from now on Because of this background the weight reduction of automobiles becomes an urgent social need and magnesium alloy products are expected to be increasingly important as a means of weight saving Being superior in terms of safety and environmental protection Thixomolding will meet the social requirement better than the conventional die casting technology for producing magnesium alloy parts We describe a short history of the development of Thixomolding and its technical evolutions d
287. 800MHz 2GHz 8 4 9 800MHz 0 5dB 2 0GHz 0 2dB 9 6 900MHz 2 4GHz 900MHz 2 5dB 2 4GHz 2 8dB dB 800MHz 11 900MHz 44 1 4
288. A P 3 3 Ce Im a ds EH ed 13 No 66 2015 10 CIM Pal ue 2 7 Pa sec 5 DN 1 sec 60H 1 Sedl D mj N rpm H m _12 QL w H3 AP Pal Se 3 ty a Q m sec L ml wi ml 2 3 AP
289. oo gt we 76 exp az exp 1 8 17 0 5 8E 7S m 1GHz 2 2 1um 10GHz 2 661nm iB Y 7OL G oe JOHoG 6 2 OL O o j 16 o jo 12 15 16 o o jo y g j 18 20 o o on un NN Fr a si 7 jioho G Jono 18 AL 1 7 C OL OL 19 OL 0 lowrl1 ow XA 1 Cr tt 20 P 2G wi 2 vA 0 19
290. 2 SW TiC fa 1 6 JSWTiC LY mm3 oo 0 4 8 12 16 20 24 28 h 6 a JSW TiC b 2 24h 30 x 30 mm 6 2 7 2
291. 2 2 5 22 T 0 lt T lt T Lo7 9 2 2 wn vn 2 1 YBCO T 70K 4 66 104nm 661nm 10GHz 9 0 1 0 16 8 YBCO 3 9 t 300nm No 66 2015 10 YBCO 2 5
292. ELAMOD DBPF 2 YBCO quench Hc Tc Jc YBCO 2 1 1911 Onnes 4 2K
293. MA D gt SE 1 2 2 ELA 2 ER 8 90 95 10 20 10 20 a 3 tein 136 N sha Nl hm 4d00 2011400X 100 F956 20pm 3 ELA p Si
294. Pa s Carreau A a 1 0 rea a expl b T 7 Al Pas a l al b l C1 clsl C1 Carreau 7 C Pal 4 5 n Pa s 1 s W m 4 6 24V m3 7 W 2s727 iend x 7 EAV ee 24 i 15iart
295. No 66 2015 10 12 100kN 2000kN NRWS100 RD19 3 60 1
296. 0 CIM P LDPE P 3 PP CMP443 XI 2008 20 HDPE amp L LDPE CIM560 2010 22 LDPE P800 2008 20 2
297. MOD JSW Excimer Laser Assisted MOD ELAMOD ELAMOD YBCO YBa Cu 0 0 9 0 2 1 4 4 ELAMOD YBCO 3 2 YBCO Jc Rs 2 5 Rs Q Rs Jc
298. PB BP UWC 70 Hiroshima Research Laboratory Hiroshima Plant NIKKO TECHNO CO LTD 90 No 66 2015 10 2 UWC 1 2 3 5mm
299. 10 1 3 60H No 66 2015 10 2 3 2 JM1600AD MR 2010 2 2 2012 7
300. 1 2014 2 we No 61 2010 P84 3 5190500 2010 4 2585280 1992 5 3004647 1999 6 4955795 2010 89 Development of a New Hard Material for the Under Water Cutter Die plate LT zy a Yusuke Watanabe Hideki Fukuhara Tadashi Chimura Tomonori Hashimoto Youhei Sawamura UWC UWC
301. 1970 45 1980 55 110 1974 49 CIM400 No 66 2015 10 1980 55 30 4 CIM320 1970 2 1 3 1 3 20MPa
302. 3zm 5 PC 0 22 mm 7 mm 10 um ke _ 0 130 J PP 0 125 m BS 0 120 2 ne S00 eT St WT pee 4U CS 0 103 HH 0 100 EE 0 095 ooo e _ 0 085 0 080 0 10 20 30 40 50 60 70 80 90 100110120 mm 4 PMMA 250 C 150 10 mm s 10 MPa pm mm 5 FC 250 175 0 22 mm 22 8 mm s 3 3
303. 2 AFTEX 9600 3 ECR ECR ECR 20 30V ECR RF Vacuum chamber Process gas Torget Coil Microwave _74 2 3 AFTEX 9600
304. 1g mg 100ml lg 10ml 400rpm 10 200rpm 0 1N KOH 3 3 1 No 1 3 No 4 1 5
305. 8 9 LED MGP 5 2007 3 1995 JLM MG 2007 5 1 MG I e MG I PC IT MG Ie 2750kN
306. Q Q Q 9 10 Q 77 YBCO 3 YBCO 3 1 YBCO Metal Organic Decomposition MOD MOD
307. 700W Ar 5 145 ECR g ah hr 15 20 25 30 35 40 45 Ar Flow rate nm min 9 Ar 9 Ar Rutherford Backscattering Spectrometry RBS X X ray Reflectometer XRR 1 31 Ar 10 Ar Ar atoms 15 20 3U J 40 45 Ar Flow rate nm min 10 Ar Ar Ar Ar
308. h 4 PP C V Q 6 5 Q t Tv 7 h 6 11 125 BOPP Q o VC Tou Tin ss sy h 7 5 t A Tser Tm Tse 7s ia Tset Tin 3 h 12 25 100 m min h 12
309. ls r s 5 mmi s 10 6 8 mml 7 17 0 DD El nn In sm m lnm AR 4 m nlU 7 1 17 R m R 1 m Br 10 Pa s Br 0 10 20 3 Br 0 D 0O 8 y
310. S iPCS 10 x 10 Pa SiPCS 3 1 0 x 10 Pa 2
311. a Si LTPS a Si SynODS1S The excimer laser annealing ELA System has been widely used for the crystallization of amorphous silicon a Si on the manufacture of low temperature polycrystalhne silicon LTPS Excimer laser which uses special halogen gaseS requires Skills to stabilize the operating conditions and high maintenance cost Therefore more economrical solid state laser is desired for excimer laser Although the solid state laser system is developed for the a Si crystallization it has not been adopted for the actual manufacture of LTPS Since the polycrystalline silicon D Si structure produced by the a Si cryStallization process depends on the laser wavelength the laser pulse width and the spatial beam profile solid state laser can hardly provide the annealed p Si grains with as good uniformity as those made by excimer laser This is the reason why solid state laser is not used for the ELA system This report describes the current situation and problems of the a Si crystallization by solid state laser and foresees the possibility of creating an appropriate polycrystalline structure for LTPS by solid state laser 1 1995 LTPS Low Temperature Polycrystalline Silicon
312. 25 m 100ml TJIS P8117 4 mm 58 03 01 ULVAC PHI TOF SIMS TRIFT nano TOF SI ee 2 JEM 2010 RM 7 2032 aa4 2 LiNi aMn sCo ssO No 66 2015 10 LiPF 5
313. MGP 2 2 1 1971 MIT MIT D Spencer thixotropy Flemings 1970
314. CeNF CeNF RR YD 7 y a 2 KW NN 0 0 5 1 1 5 2 unm UHMWPE 0 0 5 1 1 5 2 nm ii CeNF 10 1 5 5o 0 0 0 5 1 5 2 im i UHMWPE 150 E100 50 9 0 5 1 1 5 Im ii CeNF 11 69 4 6 3 CeNF CeNF TEM JEM 2010 ULTRACUTS CeNF TEM TD MD
315. LFT D Direct Long Fiber Thermoplastic LFT D GF CF 1 TEX 8 1 2 3 4 5 8 HET AET TE ULTRA HIGHH 2 HIGHAE 2 No 66 2015 10 ABS POM SEH SIS MER F PMMAFG EF LE Le Pe rl A PET OPET DPA COPS EPT LLOPE FPSJLDPE EV oh FE CFRTP 7 Ti LE 1 lgt il Crisis 5227fn ffn X X 4 a 7 xfy TEX 2013
316. Patankar WW DPD 7 5 2
317. Ss 9 2um lum 0 5um SEM a b 3 lm c 0 5 m 9 139 6um 9a WE 2 m 0 5um ka sere 2 C ee D lum A Si i SPP SPP
318. Takayuki Yamazawa Yoshitaka Kimura Jun Kakizaki Masaki Kaneyama gt Eh Takeshi Fukushima Yukio Fujiwara Toshio Kagitani Shigeki Inoue a 1951 26 1959 34 1962 37 1970 45 1979 54 TEX SynODS1S The history of plastic machinery in JSW goes back to 1951 when we started domestic production of single screw extruders We expanded into the market of film amp sheet processing equipment in 1959 and blow molding equpment in 1962 The single screw extruder Was developed into the large sized twin screw mrxer in 1970 leading to the development of twin Screw extruder TEX for plastic compounding Im 1979 We describe here the history of our technology
319. 2006 40Ton PFT Plastic Fuel Tank 40Ton JSW 2007 PFT 2 4 2 PFT 70 PFT PFT 4 6 EVOH SW
320. 3 280t 2 4 37 2011 5 8 650t
321. 3 4 2018 2018 Plastic Machinery Dept Hiroshima Plant 82 No 66 2015 10 CIM 1
322. FTKD F Forward disk angle and Forward flight lead type Twist Kneading Disk FK Forward disk angle type Kneading disk CK Cross disk angle type Kneading disk BK Backward disk angle type Kneading disk Polymer Wisualizalion Bamrel _ BRKIBackward Kmeading disk FRIForw Kemlimg tsk FTIKD FrForward Twist Kncading Disk Forward CECross Kmeading disk 5 3 HDPE 5 No 66 2015 10 3 The rate of Screw Barrel Ihroughput wder ellet Speed temperature kg h 0 6 220 3 2 1 2 6 15mm Pl P14 14
323. 1 1 2 27 a 1 8 2 fj 2 Ii 3 2 HP DSI Hot Plate DSI DSI 2 HP DS 5 HP DS HP DSI 1 1
324. 1970 JSW L L 1950 O DZx_iz amp 3x20a 65mm 1952 4 160mm 1960 1990 PC
325. 11 a 2 mm 300 C 60 s 150 C 5 s 20 C 100 50 10 mm s 13 s 14 s s 214 209 182 C 100 mm s 9 MPa m 99 377 s 3 145 C
326. STL 2 3 2 4 3 1 MPS DEM Discrete Element Method Signed Distance Function SDF STL Standard Triangulated Language 1 3
327. UWC 5 1 N60 100Ton h GP630TM 15 2000 50Ton h PE GP500TM
328. No 66 2015 10 1 7 0 8 Fr 0 6 0 4 0 0 005 Q05 0075 Cl Q125 0 ml 14 2 2 EE mm mh sae 6 2
329. MD TD 3 3 1 1 Ceolus FD101 95 5 4 5 2 5kg h TEX30g TEX30 1
330. Meaiurement Calculation I Load Pressure I 2 i Pistoi positron Bulk density Ee i pujl 1 Universal teatine machine Heater Powder mmlnr pellet 1 2 3 5 2 100 HDPE 950kg m vieasurement temperalure 30 800 True solid density 950 kgim 750 700 ce 1 Lu 0 En Fnwder Pellet 600 10096 096 550 7596 2596 99 096 lO096 4 OC 0 2 3 5 Pressure MPal 2 HDPE Hyun p Jexp7
331. 1993 9 M Takahashi H Yamada and T Amazawa Barrier Effect of Electron Cyclotron Resonance Sputtered Films Against Water and Hydrogen Molecules Permeation journal of The Electrochemical Sci 149 11 2002 p B487 B490 10 K Osawa K Sekine M Saka N Nishida and H Hatano Optical TAMR Head Design for Placing a Heating Spot Close to a Magnetic Pole KONICA MINOLTA TECHNOLOGY REPORT VOL 7 2010 p 122 125 11 VolL83 No4 2010 p 257 260 12 32 357 1983 06 15 p 683 689 13 p411 427 2002 9 25 148 No 66 2015 10 300 UWC amp PCW SDC amp NCW Rotary Slot Bar RSB J ADS SYSCOM5000i 5 6 LGP180HP
332. Be 2zm 4 2 SLS directional SLS directional SEM Scanning Electron Microscope EBSD Electron Back Scatter Diffraction 6 7 6 SLS directional p Si SEM No 66 2015 10 1 nl hl 8 SLS p Si EBSD SLS directional 001 SLS 2shot EBSD 8 SLS 2shot SLS directional 7 8 SLS dir
333. O m q n m 2m qd 2e s E gq J gE gq o jo 9 go jo E o 12 co 14 n n o 3 2 ED peV _ pe _ We 12 V WV vm VL A 2 in a aS 13 HE 2 2 2 3 0 D0 CD no G E 5 sd 14 0 V 0 Om LA 15 Mion g z EE y a jp E E exp jwt yz Bi ga g e uu 16
334. RF ECR Ar ECR 2 AFTEX 9600 3 SiN 4 6 3 4 1 0 1 120 Filmm SIN 100 RF peveer 5UWWW 2 3 80 2 2 60 2 1 40 20 2 CC 0 Ei 1 9 80 60 40 20 0 20 40 60 80 Position mm 4 SiN
335. 6 20 3
336. MF MP Tadmor 8 3 8 8 gy W m gs W m 7 W m 9 W m 7 IW m 53
337. ee 142 JSW Jsw 2 3 SO0DUaUL 149 SUUWWD SN BCW ED SR NGC 151 EG SOE Ba IEEERGE I EN es 153 i BS A gD ey ST A Cd A RE 155 9YBDOMSOO Os 157 S vo 159 LCPTS0HBP la 162 est 164 1907 1949 1950 1960
338. 58 2007 59 5 125 2013 87 6 127 2014 15 7 128 2015 265 8 Foerster G S 33rd IMA 1976 36 9 2000 238 10 65 2015 118 No 66 2015 10 History and Future Prospects of Rolling Stock Parts Teruyuki Aida Yusuke Nishimi Michio Kaminishi Atsunori Yamaguchi Tsuyoshi Yamamoto 0 L
339. L CIM 5 7 TEX 30 2 1984 59 L LDPE TEX305S 32 O 3V 10 11 6 ti 11 TEX305S 32 O 3V 2 2 2 1985 60 TEX
340. 1 4 3 3 6 125 m 30m 3 4 Si 750mm 50ppm 1300mm 5 160 3 5 ELA
341. Etching rate nm min P 7G ECR SiN Zr0 PECVD AFM ECR PECVD 6 2 AFM Si 40uN 14 Wear depth nm a Fm hi Ww Wn mm ECR PE CVD ECR ECR
342. Mg PC 2000g 2 JLM650 MG I e 1 8340kN JLM850 MG MGIIe 8340kN JLM850 MG I e 1 PC LGD 15 gt IT 9 mm 1 1 mm 230 x 340 200 x 380 290 x 420 g 13 0 5 Kr 500 TO 2 2000g LED
343. 1 PE PE PP 1 PE LP LP PE LP 60 70wt PE TEX Tieln Serew Exirmder s r Ps 1 2004
344. JADS 10 3 ADS 100mm 4 200MP
345. 2 2 1 3 4
346. IGC RESOLUTION MSC 370 93 0 C 165 C The requirements for forgings and castings may be Sub ect to speclal consideration by the Admninistration Table 64 NOTES2 N N6 4 2 N6 2 4 2 2 K K FCD300LT FCDA Ni35 K 111 2
347. 100Ton h CIM 1960 CIM CIM 2 CIM 1960 1 4Ton h 1 1970 10Ton h 1 CIM Continuous Intensive Mixer 2
348. 145 100 mmy s 9 MPa 3 PC 101 3 5 12 PC um 0 150 C 200 180 160 PC PC Ey 0 2mm 120 Tg 144 C 100 Weta fet 300 1 2kg
349. 20 21 15 14 F EH 1 Ti ET EFF i Pal 20 Ca P SN 6 og X 70 55 Weo 1 9 5 50 0 5 100 150 egUU a50 m min 21 20m s
350. 3 NCA5 NCB2 1 1 1 i Tr i 1 Ee ds WMC as th L 3 RN A NS SN 4 NK 1 0D 4 3 1975 50
351. 74 1933 MeiBner Ochsenfeld 1935 Fritz and Heinz London B Bu 1 4 4 2 4 4 GL 3 1 4 p y Bep re i gt 1 41 2 m q n
352. No 66 2015 10 3 4 300 C 150 C GA a ena 0 1 mm K CT TE FOM 10 a b c
353. 143 ECR ECR 24 4 4 ECR ECR Ar O Ar N SiN AIN Ar N O AION SiON
354. 6 CeNF UHMWPE SEM UHMWPE CeNF 1 5 CeNF UHMWPE 13 1 2 LIB 6 UHMWPE CeNF i ne lse100ml 14 ef s sw 5 7 PR 67 4 4 2 CeNF 36 6mg g CeNF
355. 1 1 2 2 4 2 O 3 x y z zhm sl r m s w m s x lm s ml w m Q Im s y ny zz y g m O kg h He O 3600 4 3
356. 6 9 PS 1 4 10m 50zm ASP 5 a TE b gt 7 197 _ 6 3 2 82 14 0 5 6 30 5 5 5 80 750 ss _ apals 5s 255s 356 625 A2s 4 0 100 0 mx KFC 467 7 3 0 60 0 8 2 0 8 0 20 0 8 0 0 1 0 20 0 8 0 0 50 0 S 8 PS 9 100
357. Mono modal Me Bi modal ee 84 a SS 1 237 NN EN b 5 3 3
358. BOG Se HN BOG BOG
359. 1 3 10 b 1 kPa 2 1 a 1 1 1 3 1 1W1 3 iH b 10 2 3 1 11 h 20 m s 50 200 m min
360. 14 443mm 17m 2005 17 100 2006 18 1500 at 14 TEX400 TEX 6 TEX 7
361. Hiroshima Research laboratory Injection Molding Machinery Engineering Department Hiroshima Plant Sun tectro Ltd 129 CFRTP CFRTP CFRTP CEFRTP
362. 1 2 3 4 2mm PC 145C 37 7s SynODS1S Thermoplastic devices with fine surface topography are unlimitedly applicable such as cell culture sensors of bio molecules hydrophilic hydrophobic surfaces and or optical devices To produce mricro and nano structures in high grade we developed a melt transcription molding MTM process It consists of plasticizing coating molten polymer on a mold stamp compressing and releasing from the mold We have shown that MTM is effective to mold thin products gt 100um with the fine patterns from nanometers to micrometers Scale with high aspect ratio ASP up to 20 However the issue was the cycle time is still long In this study we developed shortened cycle time while keeping high transcription performance using the following methods 1 A newly developed die 2 A thickness control of coated polymer 3 A new compression molding process 4 High speed coating These methods enabled to mold 2 mm thickness products of polycarbonate PC at the stamp temperature 145 C and it could be released at the same temperature As a result heat and cool of stamp was eliminated and the shortest cycle
363. 1 B 87 5mT 2 45GHz ECR Electron Cyclotron Resonance 0 1Pa 10mA cm2 1 ECR 3 ECR ECR
364. 10 DSI HP DSI MuCell 5 SynODS1S Over half of a century has passed since we began our 1njection molding machine business operations in technical collaboration with the German companies Ankerwerk in 1961 and Krauss Maffei in 1963 Injection moldmg machines have evolved from being hydraulically driven to become superior electrically driven energy saving machines that provide precise stable molding conditions In 2004 JSW introduced the AD series its 4th generation of alLelect
365. 62 2012 p81 12 2012 p387 16 13 2013 p257 64 2013 p22 No 20140007 2014 19 19 20 21 22 26 2014 p114 14 2014 p49 58 2007 p12 60 2009 p75 vol 61 6 2015 p62 14 2014 p373 4379310 2009 No 645 6 2004 p66 PFT 2014 4 p31 33 64 p101 102 5 p237 269
366. No 66 2015 10 ECR 0 8 0 6 0 4 0 2 Ra nm ECR PE CVD ECR ECR SiN SiN ZrO2 ZrO2 Ta205 Ta205 7 AFM ECR SiN Ta 0 Si PECVD ZrO ECR ECR 3 XRR er rom mm om SiN le ha bie 9 EZ ECR SiN ZrO Ta 0 AFM ECR Ta 0
367. Tg 144 MFR 63 g 10min 300 1 12 kg ISO1133 5 mm s 0 2 mm 7 2 144 C 130 Le 160 00 1057 12 mm 1 0 08 m 0 00 1057 12 mm b Ra 0 61 2 PC 130 0 2 mm 5 mm s 275 C No 66 2015 10 3 2 W m h m vx m s vs m lt
368. 1 000 8 2 2 3 1957 32 10 ra i A 2 4 a SS hl Pr _ 10 1
369. 1 RSB RSB 1 2 RSB 2 RSB 3 RSB RSB 2 RSB 3 RSB RSB 153 ee 2 RSB 3 RSB 4 RSB CIM90 RSB RSB HDPE MI 0 5 190 5kg 4
370. 1988 p 456 WE Co Me 1 ee So Me ul 95 The Melt Transcrrptuon Molding Process with Higher Precision and Producuvrty for Thm Thermoplasuc Products with Micro and Nano structured Surface Dr Kazutoshi Yakemoto Dr Hiroshi Ito Akihiro Naito Shota Ochi Kenichi Furuki Masaki Hara 100 m nm Um 1
371. LD LDPE go on 42x2 cm hp 2 3 to a 35 50 kN 250 mm 166 _ No 66 2015 10 66 66 JSW JSW FAX
372. 2013 p 151 13 2013 p 87 88 7 2015 Yoshioka M Nishio Y Nakamura S Kushizaki Y Ishiguro R Kabutomori T Imanishi T Shiransh N 2013 Cellulose Nanofibers and Its Applications for Resin Reinforcements Chapter 14 in Cellulose Fundamental Aspects Edited by Theo van de Ven and Lous Godbout p 343 366 InTech Croata 2013 Vol64 2013 p 28 35 2004 p 101 109 WO2013 176276A1 2013 11 28 JST A STEP 72 No 66 2015 10 4 YBCO YBCO
373. 2R160 Discharge Fiping Prassure Reservoir Elecinc Motor and Silencers Are Lehmerl as a Virtual Mrss Ponl 15 108 13 2 J2R160 7 Dl 1 2
374. 5i SiN SiN Zr02 ZrO2 Ta205 Ta205 14 AFM ECR SiN ZrO Ta 0 ECR SiN ZrO 7 ni ECR ECR
375. Shoso Nishida Yoshihumi Hanyuu a CFRTP CFRTP Heat amp Cool CFRTP SynODS1S In the automotive industry Improvements in the fuel efficiency through reducing the body weights have been actively attempted and attention has been paid on CFRTP carbon fiber reinforced thermoplastic from aspects of productivity and recyclabilhty However it is Very difficult to impregnate the thermoplastic resin into carbon fiber preforms because the viscosity of the thermoplastic resin is higher than that of the thermoset resin We have developed the fab
376. 1998 10 60 10 50 PFT 2008 20 2 PFT 1 TE hi PL HI oi Te FE HLT IT HH EET Nh LN Eh 1 3 4 E i r FHTi 1 Ft BB PH Ll 1 kl ik vem Haim itm JE LN i EE 25 17
377. 3 MPS 8 1 3D CAD m 8 3 3 1 1 CAD
378. 3 4 3 S00005 0 pl SS 4 3 5 3 1 wi 5 51 3 2 v O 6 OD7 O O
379. P 9 1 5 460 0008 052 222 1271 FAX 052 222 1275 1 6 1 36 8602 082 822 0991 FAX 082 822 0997 9 060 0001 S 011 241 2271 FAX 011 241 2275 4 051 8505 S 0143 22 0143 FAX 0143 24 3440 1 6 T736 8602 S 082 822 3181 FAX 082 285 2038 1 236 0004 045 781 1111 FAX 045 787 7200 4 051 8505 0143 22 9226 FAX 0143 22 4180 1 6 1 736 8602 082 822 3231 FAX 082 822 4298 JAPAN STEEL WORKS EUROPE GMBH Friedrichstr 19 40217 Dusseldorf F R Germany TEL 49 211 3116660 FAX 49 21 1 31166640 JAPAN STEEL WORKS AMERICA INC NEW YORK OFFICE 122 East 42nd Street Suite 3810 New York NY 10168 USA TEL 1 212 490 2630 FAX 1 212 490 2575 DETROIT OFFICE 41135 Vincenti Court Novi MI 48375 U S A TEL 1 248 536 0288 FAX 1 248
380. TD TEM 12 CeNF CeNF A CeNF B CeNF CeNF OD 12 TEM 4 7 4 7 1 6 UHMWPE CeNF 13 1 i ii 60 140 1
381. ho BCS m e m 2m q 2e n 2 n 2 5E 27m m 9 1094E 31kg e 1 6022E 19C 1 2566E 6H m 4 53 84nm 3 T No 66 2015 10 YBCO YBCO YBCO T 91K T 70K 3 66 104nm 2 2 GL 1950 Ginzburg Landau GL GL
382. 11 RD011 2015 3 58 000 7 JR 48 3 2006 18 RD19 23k
383. 400 rpm HDPE 4 e 0 200 H EE R58 0 160 0 20 AO Oi 8OPW 100 RsB 11 RSB RSB SF machine EL SE EW Speed 400 rprm ED material HOPE 0350 RSB B 1 0 200 EE O150 09 ET rl kg h 12 RSB RSB 4 3 Bi modal Bi modal HDPE 13 2
384. PC 2 mm 100 200 um 102 BOOK OF ABSTRACTS 39th Intern Conf on Micro and Nano Eng London MNE2013 2013 2 Hiroshi Ito Isao Satoh Takushi Saito and Kazutoshi Yakemoto Intern J of Polym Proc XXII 2 2007 p 155 165 3 Vol 58 No 706 2012 p 91 99 Akihiro Naito Kenichi Furuki Shota Ochi Masaki Hara Hiroshi Ito and Kazutoshi Yakemoto A 4 Molding Process with Higher Productivity to Fabricate Nanostructured Surface of High Aspect Ratio by Coating Molten Polymer 39th Intern Conf on Micro and Nano Engineering London 2013 p 78 5 No 64 2013 p 95 98 No 66 2015 10
385. UHMWPE 20C 200 2 2 CeNF 10C 200 1 4 71 1 ex gt Ol gt J wa Vol 95 No 11 2013 p 758 762 CMEO 2010 p42 52 32 6 2010 p 10 12 NEC VoL65 No1 2012 p 53 56 No 104 2011 p 14 26 2007 p 85 62 Vol 62 2012 80
386. mm 14 No 66 2015 10 BOPP 15 L D 0 4 0 200 m min 15 L D 0 5 h h L D 65 55 h W m2 K 50 0 1 1 5 2 3 5 L D 15 L D 4 4 1 16 L D 0 5
387. 0 00 1 0 08 mm a Ra 7 01 98 2 RD um a Ra gt _ lyil PC 144 275 1 2 275 130 160 PC
388. 30C 60C 3V UHMWPE 130C 40 60C 140mAh g 3V 110mAh g 80 UHMWPE 120 70 130C CeNF 140C 90 CeNF UHMWPE 20C 10C 13 ii CeNF
389. Dr Masaru Shimada a JSW ECR SiN ZrO Ta O SynODS1S The increasing functionality and compactness of smartphones require higher package density of the electronic devices mounted inside them which accelerates the adoption of protection methods using thin films instead of conventional metals or resins Since barrier films are used in
390. 4 18 19 19
391. 6 NPA NPB 4 2 4 000 6 6 7 JR 7 7 1987 62 No 66 2015 10
392. 1950 25 1957 32 2 2 1 1872 5 44 Wikipedia 1
393. 2013 70Ton h PP GP560T M 1ED Pa li 300 Fi S00 B09 il PonmTIah 15 GPTM 87 CIM 5 2 3 16 17 4 1990
394. 3 MD 124 5 MD 8 MD TD TD x _ 1 1 9 2 TD 4 0 a MD 3 b MD 5 7 n 3 TE PD ag WL 2 MD rs ca 0 TD 8 MD n 1 WL x 2 1 2 x
395. As m Wh vx As vs vs 3 vx 0 m s vx a _ Wi W sp hmm pg As mi wl ml 3 4 PMMA Tg 90 C MFR 35 g 10min 230 C 37 3 N JIS K 7210 0 1 mm 80 mm x 100 mm
396. CIM 1 CIM 1 CIM 150 CIM 20Ton h 1990 1 CIM
397. S V Patankar p 82 1985 2 p 184 995 3 p 55 1983 4 Z Tadmor I Klein Engineering Princples of Plasticating Extrusion p 110 Van Nostrand Reinhold Book co 1970 5 p 93 2011 No 66 2015 10 4 MPS MPS Numercal Analysis of Polymer Flund Flow Usmg the MPS Method Dr Seiichi Koshizuka II Dr Kazuya Shibata T Dr Hideki Tomiyama Dr Yohei Fukuzawa MPS Moving Particle Simulation
398. 10 t0 5mm 20um 5 t0 3mm 10um LGP180HP Meiki Co Ltd 162 RNR SCAR 2 1
399. CIM RSB 6 RSB 6 RSB Rotary Slot Bar No 66 2015 10 CIM 4
400. NUNN 5 PE PE Ee ee 1 IT16 0 TS 43 l 12 CL 2 540 000 4 4 2 10 12 66mm 5 13 eas 12 66mm 32
401. TRIFT nano TOF 2 9 CeNF 2mass 7 CeNF _CeNF F 0 0 5massy CeNF Imass CeNF 1 1 CH A Ne re A gt A pe do a ET 5 Fill sos ha ww MPal 162 MD 177 TD 178 MD 182 TD 150 MD 155 TD 120C 24 14 MD 17 TD 13 MD 16 TD 21 MD 23 TD 68 No 66 2015 10 3mass 4 5
402. Tadmor Tadmor 27 wp dT i st k a VF T 7 a y ps mm 3 6 W m W m K 77 C Zy m 9 ml 7 C 7 C z Pas Im s kg m c kg K m s 7 C 8 Tadmor 5 6 SB
403. Toshio Toyoshima Michio Butani a 1992 400
404. a 5 123 BOPP 2 2 1 Martin g g g g 6 a 3 1 g 6 a 1 MD sg
405. ee 63 YBCO ese 73 CIM PN 82 90 5 l eo 96
406. 60H USM 2 5 800mm sec 13 5ms 3 1000mm s JAD 180H USM 2010 JAD 180H USM 60H 2
407. ECR ECR SiN 5 1 SiN ECR PR Ar So ECR Ar 8 500W 700W Ar E E g E ye EE 8 Eg i i N flow rate sccm 8 Ar 8 Ar
408. 3 PFT 7 PFT 4 6 NHB 120 2011 23 2009 21 26 27 2010 22 i CFE Th FT ml
409. W WM 7 WW z Ww Wr w Wh SS FE 59 MPS Er mi Wr 3 DD W 7y 7 4 5 3 1 W ry MW rw W 7y EE 1 TF Ei 2 r 0 05 1 1 5 25 3 d 5 3 3
410. in 152 C Re ee 4 00 Eppa eeJ En nm i gk ee Py ac as n 2nd gt IE BOT 9 141p5m 0 5wt 12 TEX FAN 11 13 FEM MUSING TN 20 13 2 2 6 TEX TEX TEX aT 9
411. mm 1 1 mm Fl Er Fi E 450 1200 g 800 1400 1000 5 2 39 C
412. 2 1962 37 HDPE PP P200 LDPE 3 2 2 P305 1961 36 P380 1969 44 P460 1974 49 50 600mm P600 2000 12 70 P700 2007 19 3
413. 4 JSW TiC JSW TiC Pl Ln on mm a oO JSW TiC 10 No 66 2015 10 a JSW TiC b 4 8 ll UWC J SW CRA
414. 5 00s 9999s 5 3 J ADS SYSCOM5000i No 66 2015 10 ge N NN A RN IN NR N ssssss SN SS SN SN RSN AS RY 9 AN NA SS y DZ 1 FPD LTPS TFT EL OLED 2011 5 6 ELA
415. CeNF EE 595 1 EE 05 366 L 15 3 TEX30g T 1mm CeNF 3 Le lmlslslzii 5 110C MD6 TD7 6 130C 10 66 5 6 4 3 CeNF 4
416. IoT 4 0 AT 2015 3 GP2017 JSW Group Growth Plan 5 History and Future Prospects of Plastics Machinery
417. LTPS ELA LA No 66 2015 10 1 No58 2007 p70 2 No61 2010 p64 3 No63 2012 p102 4 A B Limanov PCvan der Wilt S Im No57 2006 pl13 5 M He R Ishihara W Metselaar and K Beenaller Appl Phys vol100 083103 2006 6 ZGuosheng PM Fauchet and A E Siegman Physical Review B vol 26 No 10 15November1982 5366 7 TBense A Rosenfeld and Kruger J Appl Phys 106 104910 2009 8 E Pedik Handbook of optical constants of solid 9 A E Siegman and PH Fauchet IEEE Journal of quantum electroncs volL QE 22 No 8 August 1986 141 ECR ECR Apphcaton of the Sohd Source ECR Plasma System to Barrier Thin Films for Electromc Devices Hironori Torii I
418. 120C 5 22 22 No 66 2015 10 2 3 4
419. 25 65mm PVC 1 1 JSW 1950 2 1 2 PVC 1958 33 1960 35 PE PP 1960 35 LDPE P200 200mm
420. ELA 750mm 59 1300mm 100 Nt NN NR _ GHEED N NN SS SN Ss RT gt ANN N N RS NA NN LEBl3o0 KER La 1 TwinVYPER L LB1300 3 3 1 ELA um EE i a 159 3 2 6
421. I Tk 2 5 Th 4 5 5 1 5 F 0 5 2 F 0D 5 1 250mm 5 6 5 27 18 _ No 66 2015 10 4 6 PET 4 EVOH EVOH PFT
422. Q EE H Z 23 24 R cq eg g gt w ce oho OH WR 1 23 H Oo COE G 2G Z o 2 7 o jo 23 12 14 o o on vn 7 25 G G G 2G YO Lo 1 OL Lo 26 2 2 2 H C WL 0J Ho HE 27 2 2vm f OH 9 WH 1 0E 00 1 0E 01 1 0E 02 5 1 0E 03 oEo 1 0E 05 oe Rsn 1 0E 07 Rss Rsn 1 0E 08 0
423. SS 2 LGP180HP 2 474 8666 2 Tel 0562 48
424. 2008 20 2009 2 17 15 5 Ormm 9 200mm 16 DO0rmmrm OOOmmm TEX 16 6 000 kg h 2 IO Hybrid twpa 1 2 596 Convaantiong ITP 3 1 nnrentl nml trod Hr E tu i a N ll 9 5 Sh a Wh rr MDE Conwwnllonal ype 8 1 Hybrld tmpe 38 JI NN Conventlnal mp ls A ee a 10 5 Ei 0 With mml 17 13
425. BOPP 127 BOPP 0 B Pxtang B gt Pi 600 B mm TD 19 5 ni 27 17
426. 3 PCW NCW150 NCW250 NCW420 3 1 SDC amp NCW kg h Max 100 Max 1000 Max 2500 kW 3 7 5 5 11 1 UWC SDC 5 RN RN RY RRON CNN NY ON 3 UWC SDC Smart Direct drive Cutter 2
427. No 66 2015 10 1984 4 1988 TEL 1995 J EL II 2000 EL 2004 4 AD 2 2 J AD J AD 2 2 1 J AD 2 2 AD J AD
428. 0 a SI 117 0 000 2 2 30C 2 3 30C 100 50 0 2 0 3 O34 005 39 Powder Pellet 0032 O00 0030 00030 0 950 Solid density of HDPE nA Fitting parameter True solid density An The bulk density at the ahmospheric pressure Fnwrler Fellet i Ti Ta 50 50 0 300 730 700 3 Plat The measur
429. 2004 10 4 2 2 1 1 24 1 1961 1963 V 1 N NA NJ_B Il J S J S IL JHE JHE I JET 2012 9 YP14 3009
430. 3 6 Si PEX Pulse EXtender 7 PEX No 66 2015 10 gen 4 ELA 1 1 G5 5 G6 ELA 1500 x 1850mm 1 12mms Ns lt 50ppm 750 1300mm PEX
431. Au sm sr pat YBCO YBCO 6 4 2 Jc 2MAcm Rs 1 55m Q 70K 21 8GHz 2 4 2 1 2 5 Q 100 000 2 3
432. CFRTP CF CFRTP 12 CFRTP CFRTP 133 CFRTP PF 12 CFRTP 13 CFRTP
433. yi a Si NN a Si 50nm S we 532nm 7 1 ELA RE sn a Si c Si 308nm 3 355nm 2 532nm a Si c Si 1 a Si c Si MR 1lshot
434. 0 043 6 b g 1 R 25 mm 20 mm 1 g 0 050 1 2 1 BS lt Se 0se30 1 FF Tn ry A mm PP Pa al bl 6 1 sg a DD 9 0050 9 gt 2 6 7 a b MD
435. 1 SS CN CR CA LLL LLL A 7 a mm lt EE M ce NO Nd Go 1 Se 2 3 UWC
436. 1 JSW TIC TiC JSW TiC TiC TiC a JSW TiC ok b 1 JSW TiC 6 6 1 TIS R 1646 2002 5
437. 1shot 9 1shot 1shot 10 10 1shot 1shot Si 0 Si ELA LA 1 lum 9b 2um 9a et 532nm a Si c Si 2shot
438. 3 5GHz 4 5dB 3 5GHz 13 3 5GHz 65 1 5 80 dB S21 20 S21 0 40 NN 2 50 4 0 80dB 4 90 Re Jo 1 6 18 20 22 24 26 28 30 32 34 36 _ 3 _40 GHz 10 6 5 LNA 11 360 x 210 x 380mm 12 4 2 3 6
439. 9 5 0O CF 6 Heat amp Cool CF lt gt rm Haat amp Cool 6 1 DFALFT D
440. No 5 2001 p 298 305 No 66 2015 10 Development of Sohd State Laser Anneahmg Systems and the Future Perspectve Naoyuki Kobayashi Hideaki Kusama a LTPS Low Temperature Polycrystalline Silicon a Si amorphous silicon ELA Excimer Laser Annealing ELA p Si
441. Rs 0 05mQ 3 5GHz 15mQ 3 5GHz O Rs 2 70K 1 1MA cm YBCO jc Rs EN i 7 YBCO 300nmm 7 21 8GHz Qe i 10K 7OK Y t 1 77K i 1 3 7 7 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2 2 2 Jc MAcm2 5 4 4 1 YBCO
442. YY 29 a b c d 29 20 PFT
443. 1995 735kN 8330kN 6 1996 MD PC No 66 2015 10 4 1999
444. ISO1133 Ea 60 40 20 140 145 150 155 160 165 170 175 180 185 190 C 12 PC 4 ill 1 2 m 3 4 5 145
445. LTPS LA ELA LA LTPS LA a Si 2 2 1 I 0 BMW Pe 1
446. and future prospects as well 1 2 1 2 Industrial Machinery Dept Hiroshima Plant 43 1
447. 2111 Fax 0562 47 2316 No 66 2015 10 ee LGP180HP 0 1750kN 0 048sec 3 Clampmg force kN Time s 3 LGP180HP
448. 250 Type I 2012 450 NEDO 300 1 2 1 99MPa 8
449. 829 8264 JSW PLASTICS MACHINERY PHILIPPINES INC Unit 802 Alabang Business Tower 1216 Acacia Avenue Madrigal Business Park Alabang Muntinlupa city Metro Manila 1771 Philippines TEL 63 2 478 2533 FAX 63 2 809 6221 The Japan Steel Works Thailand Co LTD 78 6 JST Building 4th FI Moo 7 King Kaew Road Rachatewa Bangplee Samutprakarn 10540 Kingdom of Thailand TEL 66 2 738 5272 FAX 66 2 38 5277 JSW PLASTICS MACHINERY M SDN BHD D6 5 G Ground Floor Block D6 Pusat Perdagangan Dana 1 Jalan PJU 1A 46 47301 Petaling Jaya Selangor Darul Ehsan Malaysia TEL 60 3 7842 6076 6077 FAX 60 3 7842 6078 JSW PLASTICS MACHINERY VIETNAM LTD Thang Long Industrial Park Dong Anh District Hanoi Vietnam TEL 84 4 951 6383 FAX 84 4 951 6384 JSW PLASTICS MACHINERY H K CO LTD 11 9 907 Room 907 Corporation Park 11 On Lai Street Sha Tin N T Hong Kong TEL 852 2648 0720 FAX 852 2686 8204 JSW PLASTICS MACHINERY TAIWAN CORP HEAD OFFICE 33373 21 1F No 21 Da Hu 1st Road Guieshan Shiang Taoyuan Country 33373 Taiwan R 0 C TEL 886 3 396 2102 FAX 886 3 396 2104 TAINAIN BRAINCH 71052 689 78 15 7 15F 7 No 689 78 Xjaodong Road Yongkang City Tainai Country 71052 Taiwan R 0 C TEL 886 6 311 4192 FAX 886 6 31 1 4193 JSW INJECTION MACHINE MAINTEN
450. AE 3 52k T 5 o N 0 V 7 2g 2 b 21AE cr AE 2 IA 8 ka 1 3807E 23 K T o 0 2eV N 0 V 0 3 T 91K
451. ECR 1 1 ITO ITO ECR 1 ZrO Taz0 SiN PECVD SiN ZrO0 Taz0 2 2 a oe oie me ro 50nm V 650 5 6 100 Transmittance 200 300 400 500 600 Wave length nm 5 700 800 ZrO
452. JLM280 MG Ie 4410kN JLM450 MG Ie 6370kN JLM650 MG IIe 3 15 PC LM650 MG HI e 2 1993 1997 470 100 IT 17 LCD PC 1 PC LM650 MG IIe LED
453. from the beginnmg of each product and future prospects as well 1 ni 60 60 NO1 Plastics Machinery Dept Hiroshima Plant Electrical Engineering Dept Hiroshima Plant Plastics Processing Machinery Dept Hiroshima Plant Industrial Machinery Dept Yokohama Plant Hiroshima Research Laboratory Hiroshima Plant 1 2 2 1 2 1 1 1950
454. time 37 7 s was attained Hiroshima Research Laboratory 96 No 66 2015 10 1 ll nm Am nm nm gm mm nm nm EL
455. 0 UHMWPE CeNF 10 100 nm D MD i Ea CeNF Ph CeNF 11 10 AB i UHMWPE ps CeNF PE CeNF
456. 1 12 350 300 0 200 400 600 800 1 000 1 200 1 400 1 600 13 5 3 14 100
457. 1 1 0 10 0 100 0 IGHz 3 26 X kinetic inductance 25 R 27 R 2 4 3 28 YBCO T 70K 4 104nm 3 2E 11Hz 01 100GHz R R R R 3 R 5 8E 7S m 21 8GHz R 1 54mQ 1 55mQO 0 8 3 5GHz R R 1 3500 1 400
458. 1 ae 13 1 5 6 dr 1 19 a 9 JH 1 1 2 13 414 15 lsi 1 4 8 5 5 1 6 7 9 9 9
459. 2MPa 480mm 5 060mm 47ton KHK 10 10 KHK 1 300 3 1
460. 536 5615 HOUSTON OFFICE 9801 Westheimer Road Suite 220 Houston TX77042 TEL 1 713 588 1303 FAX 1 713 588 1322 JAPAN STEEL WORKS INDIA PRIVATE LTD 611 Time Tower MG Road Sector 28 Gurgaon Haryana 122001 India TEL 91 124 469 4444 FAX 91 124 469 4433 JSW MACHINERY TRADING SHANGHAI CO LTD HEAD OFFICE 600 4 28 28A Strength Plaza No 600 4 Tianshan Road Shanghai 200051 China TEL 86 21 6192 1022 FAX 86 21 6192 1023 BEIJIN BRANCH 3 B 622 Room 622 B Section Xingfu Plaza No 3 DongSanHuan North Road Chaoyang District Beijing 100027 China TEL 86 010 6590 8967 FAX 86 010 6590 8968 JSW PLASTICS MACHINERY INC HEAD OFFICE 555 South Promenade Ave Unit 104 Corona California 92879 U S A TEL 1 951 898 0934 FAX 1 951 898 0944 CHICAGO OFFICE 540 Capital Drive Suite 130 Lake Zurich IL 60047 U S A TEL 1 847 550 0704 FAX 1 847 550 0725 DETROIT OFFICE 24301 Catherine Industrial Drive Unit 118 Novi MI 48375 U S A TEL 1 248 449 5422 5424 FAX 1 248 449 6018 THE JAPAN STEEL WORKS SINGAPORE PTE LTD 17 Gul Lane Jurong Town Singapore 629413 RepubDlic of Singapore TEL 65 6861 4511 FAX 65 6862 3166 TLX RS26561 JSWPTE PT JSW PLASTICS MACHINERY INDONESIA Gajah Building Unit KK Jl Dr Saharjo No 111 Tebet Jakarta Selatan 12810 Indonesia TEL 62 21 8370 2536 FAX 62 21
461. ANCE SHENZHEN C0 LTD 1F YiBen Electronic amp Business Industrial Park No 1063 Chaguang Road Xili Town Nanshan District Shenzhen City Guangdong Province P R C TEL 86 55 8602 0930 FAX 86 55 8602 0934 JAVA THE JAPAN STEEL WORKS LTD
462. CR2O32Comr el 25m HE LP 1 1 mAhrcn Bm rem 5V W 0 3C rate 026 sc IC 3C SC 10C 16 _ No 66 2015 10 1 MD TD 2 1
463. Cool 150W m K CFRTP HRC40 UPD2 AISI P21 bX UPD2 8 Heat amp Cool 4 2 Heat amp Cool Heat amp Cool
464. Dept Hiroshima Plant Hiroshima Plant Hiroshima Plant 23 lll 1 2004 AD HP DSI MuCell 2008 2010 2M 2015 3 5 J ADS AD
465. FT a E 6 1 8 _ p gt Mg ee rpm s 2 No 66 2015 10 37rpm gt 5 6 17 1 3 7 Em i 4 15 35 17 1g 39 38 21 22 1 1
466. V 3200 TiC UWC
467. a ADS 1 5 10 20 30 10 30 J450ADS 155 AD 1400H 100 AD 1400H 100 120 100 B20 5 9 SHI L300H AD 1400H 100 AD 1400H 100 120 100 i 5 20 0 3 ADS SYSCOM5000i
468. aussmaffei DSM DSM PVC ABS 1965 40 1980 55 15 80 TEX 1978 53 1 65mm 10 TEX65 10 TEX65 TEX 1 CIM 2 L D D
469. e Bulk density kgr m Curved line The approximation 0 4 3 5 Pressure MPal 3 3 0 3 1 4 TEX30g EXILIM EX F1 WM 118 MPN MNO Feeder for pellet supply Feeder fo powder supply Co rotating twin SCI WW EXIIUUEr 1EAX3U a Tlie camera Hr ETIFIIFIITiil 4 5
470. ectional 001 SLS directional 2 2 2 3um 2 TFT 250cm2 V ELA TFT mm ELA LA ge ELA 4 3 ELA ELA 532nm a Si c Si
471. ied to the resin then the plasticating capacity is calculated using a flow analysis for the molten resin This new simulation method is found to provide calculated plasticating capacity Values in sufficient agreement with those exDerimentally obtained regardless of the type of resinS Ne ON ed 1 0O 1 nl 1 Hiroshima Research Laboratory 50 No 66 2015 10
472. il Eh 1 0 77 ll gt Hh TH MA HN HN 7 NN AN AAA N AAA LV LR RR Se wa wl mn mw A Am CNLNN Awa 4 7 1 LIL WN A Hh ya A 7 2 4 1 g g 7 7 27 A gt gh J as Bs ws 2 SN NN A FI IIg i i jl py S gt PA nl NAA 1 LN 1 A 1 1 1 2 N uh NN a ms a uw HN WW s i ll ug 3 eg a un NS NN 6 ss nm ss No 66 En DE Db Pb 1
473. ive Mixer 1960 CIM CIM SynODS1S In the market of polyolefin due to the recent trend of declne in ol prices after the fully in progress of shale gas production there is a demand to increase plant capacity and to produce high value added polymer in order to increase their competitiVveness Many polyolefin manufacturers build new massive Scale plants in the areas where inexpensive raw material is available There is close and or easily access to a big market demand in order to supply their products on demand and increase their market share The plant capacity has grown year after year therefore extruder has been expected to have a commensurate capacity with big plant Since CIM Continuous Intensive Mixer series launched in 1960s weve been developed the innovative technologies for CIM and offering them to the market for responding to the latest market demands This report describes the history and performance improvement of CIM which has responded to the market demand 1 ni 4 2
474. mated bulk density and the visualization analysis As the results it was suggested that the plasticizing was initiated when the bulk density exceed the threshold value 1 ni i RM BMW 3
475. n experiments and analyses concerning the flow pattern and the residence time The flow behavior around the Maddock screw was analyzed visually inside the transparent acrylic cylinder by tracking tracer particles in the silicon oil As the cylinder is rotating and the mixing elements is not rotating the flow around the mixing elements can be observed easily As a result the flow behavior was found visually using the visual cylinder and furthermore this flow behavior was close to flow analysis results It was proved this evaluation methods of the mixing performance is useful 2 1 ml
476. nd Evaluation of its Mixing Performance Akira Yasue Hideki Chiba Katsuyuki Araki Synopsis In this work we verified evaluation methods of the mixing performance of the Maddock screw based on the comparison betwee
477. nd edge steepness and higher out ot band attenuation than normal conducting filters It is the only physical device anticipated for the concurrent realization of both high speed high capacity communications and the effective use of frequency resources We fabricated and tested DBPFs utilizing HTS of YBCO thin films prepared by ELAMOD Excimer Laser Assisted Metal Organic Deposition method which was developed by JSW In this paper we describe the concept of HTS DBPF and its anticipated effects according to the superconductiVity theories then the evaluation of YBCO thin films and the test results on the characteristics of two types of the DBPF utilizing HTS film are reported Yokohama Research Laboratory Research amp Development Headquarters 73 YBCO 1
478. p Development Headquarters No 66 2015 10 BOPP MD TD
479. ped with the separator samples evaluated the battery characteristics The Samples were compared with the commercial separator samples As the result it became identified that the heat resistance and the cycle characteristics of the CeNF compounded samples were higher than those of the alumina coated separator Furthermore as the results of TOF SIMS CFM and TEM evaluations for the dispersed state of the CeNF in the CeNF compounded separator we have found that the CeNF dispersed state was well and the separator had the unique structure In which CeNF concentration increased as Its surface neared 1 Hiroshima Research Laboratory Graduate School of Agriculture Kyoto University Advanced Industrial Science And Technology 63 1 ni LIB
480. rically driven injection moldmg machmes Thereafter JSW continued to develop a number of specialty machines that met market needs such as the AD USM ultra high Speed injection Specification series of machines and machines in collaboration with subsidiary Meiki Co in 2010 Now in the present we have just released the 5th generation ADS series In March 2015 Over the past 10 years we have also poured our efforts into the development of process technologies We advanced our proprietary DSI process technology to create the HP DSI process acqured a commanding market share in Japan for the MuCell foammg molding process and developed an inhne plasma coating System that combines platng and other metal finishing processes together with Injection molding machine operations Screw and barrel technology and control technology are the core technologies of injection moldmg machines and we have continued to develop improve and bring to the market these technologies along with the releases of new machines to stand apart from our competitors In order to develop into a Global Top 5 company we must develop differentiated technologies that Impress Our customers and continue moving the progress of technological development forward Injection Molding Machinery Design Dept Injection Molding Machinery Engineering Dept Electrical Engineering
481. rication technology of CFRTP Semi preg where the resin impregnation has been dramatically improved and the direct molding technology for the primary forming of the Semi preg using a Heat amp Cool mold This report describes these technologies Moreover it introduces the latest CFRTP Hybrid Molding System which integrates the direct molded Semi preg with ribs and or frames as the secondary forming CFRP CO CO Cs CFRTP 1 Dl
482. temperature Powder Pellet C 100 0 75 25 50 50 25 75 0 100 Pl 113 3 105 7 122 5 129 1 132 4 129 1 132 4 129 1 132 4 133 9 133 3 148 2 141 3 150 9 145 6 154 2 150 8 PS 154 2 151 8 156 8 159 6 162 7 164 1 165 9 PIO 162 8 160 6 164 6 168 1 169 9 Pll 169 9 165 6 170 2 174 3 171 9 181 1 180 2 181 1 180 2 _P14 17801173 1 176 7 181 1 180 2 Pressure mesuring position 3 5 O 9 4 10 100 900kg m HDPE 950kg m 95 100 850kg m 90 850kg m 90 90
483. urement Hiroshima Research Laboratory Industrial Machinery Dept Hiroshima Plant 103 1 ni LNG BOG BOG
484. uring this 20 years as well as the future progress we foresee MG MG Design Group Injection Molding Machinery Engineering Dept Hiroshima Plant 34 No 66 2015 10 1 100 1992 470 JLM MG MGI MGIle PC IT
485. various electronic devices not only for the protection from moristure in the atmosphere but also for the protection from chemricals or from sliding wear demands for the deposition system for barrier film formation are expected to increase from now on For the purpose to expand the application of thin films deposited by the solid source ECR Electron Cyclotron Resonance plasma system which has been independently developed and sold by JSW AFTY Corporation to this field the evaluation of the characteristics of Silicon nitride films Zirconium oxide films and tantalum oxide films were carried out and excellent properties of these films as the barrier film were observed in comparison with those deposited by other methods 1 ni WL CSP SAW
Download Pdf Manuals
Related Search
Related Contents
Fantasy - Faber Hungary User Manual Samsung L170 Manual de Usuario MultiMAX EX Manual Programme radio CPR8 couralin et vitenville Fluke Impact Driver PN 650454 User's Manual Copyright © All rights reserved.
Failed to retrieve file