Home
User Manual - Rockwell Automation
Contents
1. Table A 2 Maximum Motor Cable Length Restrictions in meters feet 500V 600V Drives No External Devices w 1204 TFB2 Terminator w 1204 TFA1 Terminator Reactor at Drive Motor w Insulation V p p Motor w Insulation V p p Motor w Insulation V p p Motor w Insulation V p p 1000V 1200V 1600v5 1000V 1200V 1600v6 1000V 1200V 1600 6 1000V 1200V 1600v 6 Drive kW Motor kW Any Any Any Any Any Any Any Any Any Any Any Any Drive Frame HP HP Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable A4 0 75 1 0 75 1 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 0 37 0 5 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 1 5 2 1 5 2 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 1 2 1 5 NR NR 152 NR 182 9 3353 61 0 182 9 50 600 1100 200 600 0 75 1 NR NR 152 NR 182 9 3353 61 0 182 9 50 600 1100 200 600 0 37 0 5 NR NR 152 NR 182 9 13353 61 0 182 9 50 600 1100 200 600 2 2 3 2 2 3 NR NR 152 NR 182 9 3353 61 0 182 9 50 600 1100 200 600 1 5 2 NR NR 152 NR 182 9 3353 61 0 182 9 Not 50 600 1100 200 600 Recommended 0 75 1 NR NR 152 NR 182 9 3353 61 0 182 9
2. UNIVERSAL 5 INVERTER TB1 Y Yen BOARD R 1 S 1 H T H r u mov Or IS V w BRIDGE TERMINAL BRIDGE SENSOR NIG E Sd EON RE lt To Main Control J1 GATE DRIVERS rim TB6 15 T AUXBUS MAIN BUS 1 24V FIN DG DC D DC 5V z AUXBUS CONVERTER CONVERTER 412V 12V TB TBA AUX 24V TP5 TP6 4 8 2 1 FY t J1 24V 15V 5 5V 412V 12V 7 EN MAIN CONTROL BOARD TB11 4L PWR RTN OTP19 VELOCITY CURRENT sl Hi PROC PROC CURRENT OTP20 B 10 O O O TB10 15 TP22 TP25 Fa SHUNT VAFF VBFF VCFF Hal CONTROL TP14 16 TPi8 TP23 1 TPO 1 TP4 TP5 TP26 TP27 B i b d Row pod bod og Te TE VBUS IA IC ID DACI DAC2 5V DGND 15V GND 15V 12V ISO 150 A 17 Appendix A Schematic Diagram 20 30 HP 230 VAC 40 60 HP 460 25 60 HP 575 VAC TB1 3 e C1 C2 o su seic SEE TABLE 1 F L1 TB1 5 on R2 p e FR S L2 TB1 6 2 1 c4 C5 C6 FT SCR4 1 4 pe DC CONV
3. Carrier Frequency in kHz 100 95 90 85 80 75 70 65 60 Carrier Frequency in kHz 100 95 90 85 80 7596 70 65 i I I I I 2 3 4 5 6 Carrier Frequency in kHz 100 95 90 85 80 75 70 65 60 55 50 45 I I 1 2 3 4 5 Carrier Frequency in kHz A 11 Appendix Figure 24 1336T C250 Figure 25 1336T C400 Figure 26 1336T C450 Figure 27 1336T C500 A 12 of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive 50 C Ambient Derating Factor for Enclosed Drive in Ambient between 41 amp 50 10096 95 90 85 8096 75 70 65 60 55 50 45 40 7 1 1 1 1 2 3 4 5 6 Carrier Frequency in kHz 100 95 90 85 80 75 70 65 7 I I 1 1 2 3 4 Carrier Frequency in kHz 100 95 9096 85 80 75 7096 65 I I 1 1 2 8 4 Carrier Frequency in kHz 100 95 90 85 80 75 70 65 7 I I I 1 2 3 4 Carrier Frequency in kHz
4. PCB SNUBBER STD E14 E13 E12 E15 STANDARD PRECHARGE BOARD Fi F2 A 18 Appendix A Schematic Diagram 20 30 HP 230 VAC 40 60 HP 460VAC 25 60 HP 575 VAC E12 UMI V M2 W M3 cio INV NTC1 TO CONTROL BOARD INTERFACE PCB MOUNT COMPONENT PCBARTWORK PCB SNUBBER STD 74101 101 XX ASS Y 74101 099 SCH 123 456 5 9 11 F1 GATE DRIVERS VA TB6 F1 24v Aey AUXBUS 9 eee dA E gt 3 AUXBUS 1 CONVERTER gt CONVERTER Ee _ gt Le 12V 82 AUX 24V TP5 6 TP4 8 11 Jt t FFF Ft 1 ji 24V 15V 15V 5V 12V 12V TO NTC gl J5 J1 INV P1 TB10 v
5. 4 p BB A 2 ae 1 b E 2 e N 5 KNOCKOUTS _ O 3 DUAL SIZE 6 FIXED 7 Mounting Holes 4 dl Y 7 0 0 28 lt gt 1 2 7 0 0 28 127050 Peus All Dimensions in Millimeters and Inches 12 7 0 50 All Weights in Kilograms and Pounds Frame 1 Knockouts Shipping Reference 3 Dual Size 6 Fixed Weight E Enclosed 5110 1498 6 4244 471 5 1447 8 16 8 40 1 1950 901 4 1519 88 9 101 6 12 7 186 kg 20 12 5900 16 71 18 80 57 00 0 66 1 61 7 68 35 49 5 98 3 50 4 00 0 50 410 Ibs E Open 511 0 1498 6 3726 471 5 14478 168 40 1 1384 680 0 126 3 163 kg 20 12 59 00 1467 18 80 57 00 0 66 1 61 5 45 26 77 4 97 360 Ibs Figure 2 5 IP 20 NEMA Type 1 Dimensions Frame F 762 0 30 00 Allen Bradley 274 8 gt 10 82 698 5 TQ 27 50 Conduit Access Area Bottom View Chapter 2 Installation Wiring 635 0 25 00 252 7 9 95 121 48 00 9 2 All Dimensions in Millimeters and Inches Shipping Weight 415 0 kg 915 Ibs Chapter 2 Installation Wiring emovable Lifting Angle 63 5 2 50 Y ALLEN BRADLEY I I I
6. PE Figure 2 8 Recommended 1336 FORCE Grounding 51 ALLENBRADLEY Mode sd lum Ue T V T2 IE ma oo W 3 ols e sec pE Gnd Shield DC Motor Frame DC 7 S Ground Ground Rod RIO DH Made Motor Local Codes Common Chokes Terminator Mode Core These are options that can be installed as needed 2 16 To Computer TE Ground Power Cabling Wire Size and Type Chapter 2 Installation Wiring Input and output power connections are performed through terminal block TBI on the Gate Driver Board for Frame Size 1 15 HP 240V 1 30 HP 380V 1 20 HP 600V drives For larger horsepower drives frame sizes C D E G and H TBI terminal blocks are located on the bottom of the drive where both the input and output power connections are to be made Important For maintenance and setup procedures the drive may be operated without a motor connected Table 2 B TB1 Signals Terminal Description PE Power Earth Ground R L1 S L2 T L3 AC Line Input Terminals 3DC DC DC Bus Terminals U T1 V T2 W T3 Motor Connection ATTENTION The National Codes and standards NEC VDE BSA etc and local codes outline provisions for safely installing electrical equipment Installation must comply with s
7. INV e Driver Board RECHARGE Driver Board To Gate Driver Board 00 Fl F2 15V To Precharge Board A10 AUXBUS MAIN BUS A 15 DC DC DC DC 5V AUXBUS CONVERTER 412V 12V TP5 TP6 4 TPB AUX 24V 9 7 9 2 240 150 15 5V 412V 12V MAIN CONTROL BOARD SYNCH ENCODER CURRENT VF REG VELOCITY CURRENT PROC PROC 0 15 22 25 SHUNT VAFF VBFF VCFF CONTROL TP14 TP16 TP18 TP23 TP9 TP1 4 TPS 26 77 VBUS lA IC ID DAC1 DAC2 15V GND 21 Appendix DC DC CUSTOMER FUSING CF1 TO BLOWER CIRCUIT SEE SHEET 4 Schematic Diagram X250 650 HP CONV SNUBBER A13 DC R L1 AC S 12 INPUT T L3 SEE TABLE 1 SHEET 2 PE 22 CNV STANDARD PRECHARGE BOARD Fi F2 Appendix A Schematic Diagram X250 650 HP PE PE PE THS1 R22 R23 A23 A25 A27
8. Filter Filter Selection Filter Catalog Three Phase Frame Number Volts Used with Reference 1336 RFB 30 A 200 240V 1336T A001 A003 A 380 480V 1336T B001 B003 B 1336 RFB 27 B 200 240V 1336T A007 B 380 480V 1336T B007 B015 B 1336 RFB 48 B 200 240V 1336T A010 A015 B 380 480V 1336T B020 B030 B 1336 RFB 80 C 200 240V 1336T A020 A030 C 380 480V 1336T BX040 BX060 C 1336 RFB 150 D 200 240V 1336T A040 A050 D 380 480V 1336T B060 B100 D 1336 RFB 180 D 200 240V 1336 060 D 380 480V 1336T B125 BX150 D 1336 RFB 340 E 200 240V 1336T A075 125 E 380 480V 1336T B150 B250 E 1336 RFB 475 G 380 480V 1336T BX250 B350 G 1336 RFB 590 G 380 480V 1336T B400 B450 G 1336 RFB 670 G 380 480V 1336T B500 B600 G Not Available 380 480V 1336T B700 B800 H EMC Enclosure Kit Selection Frame Enclosure Kit Catalog Number Reference 200 240V Rating 380 480V Rating 500 600V Rating B 1336 AE4 1336 AE4 1336 AE4 C 1336 AE5 1336 AE5 1336 AE5 D 1336 AE6 1336 AE6 1336 1336 AE7 1336 AE7 1336 AE7 F H Not Available RFI Filter Installation ATTENTION To prevent electrical shock disconnect the power source before installing or servicing Important Refer to the instructions supplied with the filter for details The RFI filter must be connected between the incoming AC supply line and the drive input terminals RFI Filter Leakage
9. 9 r ex M 03 To Motor located at bottom of drive W 1 User supplied 2 24 Chapter 2 Installation Wiring Control Wiring with an insulation rating of less than 600V is used this wiring must be routed inside the drive enclosure so that it is separated from any other wiring and uninsulated live parts Failure to do so could result in equipment damage or unsatisfactory Drive performance ATTENTION When user installed control and signal wiring Encoder Brake and Drive to Drive interface connections are performed on the Main Control Board Fig 2 11 The maximum and minimum wire size accepted by TB10 and TB11 on the Main Control Board is 3 3 and 0 06 mm 12 and 30 AWG Maximum torque for both terminal blocks is 0 79 N m 7 Ib in Use copper wire only Figure 2 11 Terminal Block Locations Main Control Board 15V AGND 15V Enable VP Indicator CP Indicator u D1 02 03 04 05 DGND 5V 1 2 TP3 TP4 TP5 DC Bus FDBK TP14 co TP16 FDBK C TP17 C5 Driver Board J5 Control Encoder Feedback Signals J3 amp J4 must be set for same voltage TP23 TP24 D2D 12150 150 COM um a Dri
10. Figure 2 6 IP 20 NEMA Type 1 Dimensions Frame G 23241 91 50 635 0 25 00 All Dimensions in Millimeters and Inches All Weights in Kilograms and Pounds 660 4 50 8 26 00 2 00 431 8 17 00 Conduit Access Area 431 8 x 29 0 17 00 y 114 Conduit 254 0 547 6 Access Area 10 00 21 56 Bottom 298 5 Bottom T Y P 381 0 429 15 9 0 63 Dia 1 69 2 Mtg Holes Shipping Weight 453 6 kg 1000 Ib Chapter 2 Installation Wiring Figure 2 7 IP 20 NEMA Type 1 Dimensions Frame H Top Mounted Fan 635 0 25 00 4 Manufacturer dependent 25 00 may be shorter EBORE EA Y Removable Lifting Angle H 2324 1 91 50 Y 762 0 508 0 635 0 30 qo tU 1270 0 1270 0 7 50 u 50 Conduit Access 635 0 Area 25 Conduit Access Area Y Bottom View Top View All Dimensions in Millimeters and Inches 2 7 Chapter 2 Installation Wiring Input Output Ratings 200 240V Input Input A001 2 5 A003 4 5 12 A007 10 12 28 A010 0 4 55 A015 17 20 49 A020 23 8 67 A025 25 30
11. ya 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 T Common Fuse User Supplied 115V AC 115V AC Fuse Contacts shown are general refer to Figure 2 24 for Input Mode selection and recommended contact types Option L6 L6E 115V AC Interface Board Requirements Circuits used with Option L6 L6E must be capable of operating with high true logic In the low state circuits must generate a voltage of no more than 30V AC Leakage current must be less than 10 mA into a 6 5k ohm load In the high state circuits must generate a voltage of 90 115V 10 and source a current of approximately 20 mA for each input The L6 L6E option is compatible with these Allen Bradley PLC modules e 1771 1771 OA 9 1771 e 1771 OAD contact factory for recommended series rev level 2 41 Chapter 2 Installation Wiring PLC Communication Adapter Board Control and Signal Wiring When installing and wiring the PLC Communication Adapter Board you need to deal with the following issues e Control and Signal Wiring e Jumper Settings for I O Circuits If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board terminal blocks TB20 amp TB21 located at the bottom center of the PLC Comm Board Figure 2 29 are used for control and signal wiring Drive Permissives Connector TB21 provides the interface for Analo
12. CONV SNUBBER CONV SNUBBER CONV SNUBBER GATE INTERFACE N GATE INTERFACE GATE INTERFACE INVERTER SNUBBER INVERTER SNUBBER INVERTER SNUBBER gt gt gt INV ll To Gate Driver Board A1 Driver Board A Driver Board 1 STD PRECHARGE BD DRIVERS To Precharge Board A10 F ce MAIN BUS A 15 DC DC DC DC 45V AUXBUS CONVERTER CONVERTE AN 12V AUXBUS TP3 TPS TP6 TP4 TP8 TP11 E pe ee eS 24V 150 1l5V 5V 412V 12V MAIN CONTROL BOARD VELOCITY CURRENT PROC PROC CURRENT REG TP15 TP22 TP25 VAFF VBFF VCFF CONTROL 14 16 TP18 TP23 TP9 TP TP4 TP5 26 LLL L 77 VBUS lA DAC1 DAC2 15V GND 15V 12V ISO A 24 Appendix A Schematic Diagram 700 800 HP PE PE i INV CUSTOMER FUSING 1003 77777577 fo Bip R10 R12 1 PS V PS
13. D o PE PE DC DC R T U V W GRD GRD LI 2 3 T T2 73 Dynamic Brake 4 Required 1 Input Fusing To Motor Required Branch To Motor Circuit Disconnect AC Input Line 200 240V 30 45 kW 40 60 HP Terminal Designations 380 480 45 112 kW 60 150 HP Terminal Designations 380 480V 224 448 kW 300 600 HP Terminal Designations 500 600V 56 112 kW 75 150 HP Terminal Designations 500 600V 187 485 kW 250 650 HP Terminal Designations ec m ue ie ll L3 L2 DC4 DC PES PES TES A Brake Brake Y Required Pis z Input Fusin o Motor U V W R S T U W 1 Required Branch LS M1 M2 M3 1 42 3 CU C2 3 Circuit Disconnect AC Input Line 2 A Brake terminals are located 2 I E ccess terminals A A A from side of chassis To Motor 2 AL R 1 Required typical terminal layout located at top of drive located at bottom of drive AC Input Line 2 22 Chapter 2 Installation Wiring Figure 2 10 cont Terminal Block TB1 200 240V 56 75 kW 75 100 HP Terminal Designations 380 480 112 187 kW 150 250 HP Terminal Designations 500 600 112 149 kW 150 2
14. 200 nax NOTE Terminals 31 thru 36 not used with 1336 FORCE applications The following table defines the input state of the Speed Select inputs for a desired frequency source Table 2 E Speed Select Input State vs Frequency Source Speed Select 3 Speed Select 2 Speed Select 1 Velocity Reference Source TB3 Terminal 26 Terminal 27 Terminal 28 Interface Option MOD L4 L5 L6 ExtRefl Para 101 Preset Speed Ref 1 P 119 Preset Speed Ref 2 P 120 Preset Speed Ref 3 P 121 Preset Speed Ref 4 P 122 Preset Speed Ref 5 P 123 External Reference 2 P 104 x gt gt gt O O O O gt gt O O gt gt O O x O gt O gt O gt O Last State Equivalent truth table implemented in Parameter 52 Logic Command Word Para 52 Bit 14 Bit 13 Bit 12 Velocity Reference Source Bits Ext Ref 1 P 101 Preset Speed Ref 1 P 119 Preset Speed Ref 2 P 120 Preset Speed Ref 3 P 121 Preset Speed Ref 4 P 122 Preset Speed Ref 5 P 123 External Reference 2 P 104 O 2 lt 2 lt 2 lt O gt x O oj x x O oOx gt No Reference Last State 0 Open input removed X Closed input present Unless otherwise configured this will default to the HIM speed reference input 2 36 Chapter 2 Installation Wiring Figure 2 24 Input Mode Selection amp Typica
15. 4096 100 0 current 100 0 0 0 100 0 5 45 Chapter 5 Programming Parameters Fault Testpoint Data Fault TP This parameter contains the fault control testpoint data that has been selected by the Fault TP Sel parameter P99 See the description for the Fault TP Sel parameter 99 for a list of possible testpoints Fault Testpoint Select Fault TP Sel This parameter selects which internal loca tion in the fault control software will be come the testpoint value The value based upon the selection will be stored in the Fault TP parameter 98 The internal loca tions of the logic control software that are accessible based on the selected value are listed below Select Value Zero Zero VELOCITY Feedback Error Conditions Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Velocity Reference Access Point Adapter Processor Faulted Actual Velocity when Overspeed occurred Motor Overload Calibration Constant K Heatsink NTC Analog Input Voltage Heatsink NTC Foldback Current Limit Negative Analog Supply and or input voltage Positive Analog Supply and or input Voltage Motor Overload Integrator I T level Dynamic Brake Resistor Temperature Degrees C Parameter Limit Status Word 1 Para
16. AB0270A LE gp E EB This menu provides means to view warning queue and clear it when desired From the Control Status menu press the Increment or Decrement key until Warning Queue is displayed Press Enter Press the Increment or Decrement key until View Queue is displayed Press Enter The warning queue will be displayed Use the Increment or Decrement key to scroll through the list If you wish to view the time and date of the warning occurrence press the Enter key To clear the warning queue press ESCape Then use the Increment Decre ment keys to select Clear Queue Press Enter Please note that Clear Queue will not clear active warnings Control Status Warning Queue Warning Queue View Queue Vel Fdbk Lvl F 5048 5 1 20 22 1 1 Warning Queue Clear Queue Reset Sequence gg m reset sequence is available Series HIMs with 1 06 or later software From the Startup Completed display press the Enter key Press the Increment or Decrement key until Startup Reset Sequence is displayed Press Enter Press the Enter key again to relaunch the Startup sequence Start Up Completed Start Up Reset Sequence Entering Start U Press ENTER Chapter 3 Programming Terminals Password Mode or or or Et Ld or or The factory default password is 0 which disables pa
17. NTC w GATE GATE TOGATE DRIVER DRIVER DRIVER DRIVER DRIVER DRIVER BOARD GATE DRIVERS F1 MAIN BUS 24N 15V 1 AUXBUS JANN BU P did 3 AUXBUS 1A CONVERTE GONE DES O TP1 6 2 iov 104 AUX 24V 5 TP6 4 TP8 11 J1 24 151 15V 5V 121 12V TONTC B Pi T 5 0 Nc MAIN CONTROL BOARD NL Ma ESS D D VE VP CP EN RIN te 839 1806 ICOM Y PWR 7 4 ENCA RIN DRIVE IQS TP12e ENCA ENCODER 6 HI DRIVE VELOCITY CURRENT SYNCH DS 9 TP176 NCB ENCBF 210 PROC KY PROC CURRENT O 1 1 T 4 15 TP22 TP25 1810 13 sent BRAKE VAFF VBFF VCFF RTDl p CONTROL 14 TP16 TP18 23 TP11 9 2 1 4 5 TP26 TP27 1 RTD SHD VBUS IA IC ID DACIDAC2 5V DGND 15V GND 15V 12V COM 8 ISO ISO 23 Appendix Schematic Diagram 300 400 HP TO BLOWER CIRCUIT CFI Ru D TTA CF2 LY POWER s 2 CHI 50 60HZ E O Le m TABLE 1 SHEET2 Woe
18. A23 A28 23 28 Contactor Interface Interface Interface 5 12 IN 1 4 7542 s 9 se J10 J6 J7 J8 J5 TB5 15V 6 GATE 7 A1 DRIVER 6 e BOARD 2 ACLINE 4 J13 24V AUX TB4 J1 TB7 24V AUX 1 26 Control Board Appendix Gate Driver Board Connections The connections on 1336 FORCE Gate Driver Boards vary by frame size as indicated in the following illustrations Frame Size B Gate Driver Board Connections Main Control Board BUS Motor Interface E16 E14 i 9 O O 1 E15 E13 Ef Bus Switcher Fuse Precharge E6 E5 Resistor O O O gt E25 E19 E20 E21 l TB1 0 0 0 10 0 1 pp DC DC GNDGND Required Input Fusing Required Branch Circuit Disconnect To Motor l l AC Input Line 27 Appendix A Frame Size C Gate Driver Board Connections J2 me Ground Fault C T Main Control Board Interface Bus Discharge Fuse Current Feedback Interface Connection to Lower IGBT s Main Switcher Bus Volts gt 24Vdc Connection to Upper Bus IGBT s Switcher Fuse Ext 24V Supply Input Bus Input Standalone or Commonbus Precharge Board Interface 28 Appendix
19. EN MAIN CONTROL BOARD OF D fel ie R G G us A N m G 18 T COMM ICOM Ia 4 105 1 1 BIN prive VELOCITY CURRENT SYNCH ps TP19 TPi2 ENCA_ ENCODER ENCA 1 s Ll DRIVE PROC gt proc I CURRENT 20 ENCB Ben REG 9 TP10 ENCB i E sup m 1 2 2 1 L SHUNT P15 TP22 TP25 TDI TB1 SHUNT VBFF VCFF 2 SHD CONTROL TP14 TP16 TP23 1 TP9 TP2 1 TP4 TPS 26 TP27 13 pus ms Y ME T OTT Fee t vr v t a VBUS IC ID DACI DAC2 5V DGND 15V GND 15V 12V COM ISO ISO 19 Appendix A Schematic Diagram 75 amp 100 HP 230 VAC DC DC CUSTOMER TO BLOWER FUSING CIRCUIT T CFI Fi M2 ir SEE TABLE 2 POWER M3 50 60HZ CONV SNUBBER CONV SNUBBER CONV SNUBBER GATE INTERFACE 1 INTERFACE T t GATE INTERFACE 77 1 C Ck J1 A25 4 G G1 1 C Ck J1 A24 4 G G1 1 C Ck J1 A23 4 G G1 m 5 Ek 5 E Ek m pu uu oo i tran 5 ui GATE 22 GATE 25 25 7 INTERFACE INTERFACE 0 INTERFACE gt gt N gt 1 J1 A28 4 G G1 5 E Ek 1 C Ck Ck J1 A26 4 G G1 5 E Ek 1 C Ck J1 A27 4 G
20. 100 95 90 85 80 75 70 75 pow c e Carrier Frequency in kHz 100 95 90 85 80 7596 70 1 I I 1 2 3 4 5 6 Carrier Frequency in kHz 100 95 90 85 80 75 70 65 60 Carrier Frequency in kHz 100 95 90 85 80 75 70 65 60 55 I I I I 1 2 3 4 Carrier Frequency in kHz 100 9596 9096 8596 8096 75 70 Carrier Frequency in kHz AS Figure 19 1336T C075 Figure 20 1336T C100 Figure 21 1336T C125 Figure 22 1336T C150 Figure 23 1336T C200 of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps Appendix Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive in 50 C Ambient Derating Factor for Enclosed Drive in Ambien between 41 C amp 50 C 100 95 90 85 80 7596 70 6596 d I I I 1 2 3 4 5 6 Carrier Frequency in kHz 100 9596 90 85 80 75 70
21. 125 ms FILTER Alt Encoder Motor Sim EXTERNAL FEEDBACK ENCODERLESS INTERNAL FEEDBACK FILTER SELECT Notch Filter TO MOTOR Lead Lag FILTER OVERLOAD ELTER 153 FUNCTION TO VELOCITY PI REGULATOR ABSOLUTE OVERSPEED FEEDBACK 67 DEVICE 159 TYPE FEEDBACK DEVICE SELECT 39 Appendix 36T Firmware Function Velocity PI Regulator Overview VELOCITY PI REGULATOR lt i gt Kf TERM Kf ERROR VELOCITY REFERENCE An QS PASS TEC FILTER TRIM Gain CONTROL 65 535 FEED FORWARD Kf Velocity Loop Auto Tune Active SELECT VELOCITY ERROR FAULT TESTPOINT lt gt 09 DROOPED VELOCITY REFERENCE HOLD Ve E RS 146 gt VELOCITY FEEDBACK N FROM FEEDBACK CONTROL A FROM FEEDBACK CONTROL DROOP PERCENT X X PARAMETER LIMIT A 40 Appendix 36T Firmware Function Velocity PI Regulator Overview LOGIC CONTROL WORD AN VELOCITY REGULATOR OUTPUT lt 134 gt PROPORTIONAL e GAIN TORQUE REFERENCE CONTROL N REGULATOR ENABLE OUTPUT LIMITED LIMIT STATUS TORQUE A C183 gt 0 LIMITER x K 8 Gain FAULT TESTPOINT Kp VELOCITY Cos gt 51 2 LOOP INTEGRAL MATH LIMIT GAIN AUTO TUNE ACTIVE SELECT A 41 Appendix A 36 Firmware F
22. 6 x Base Speed 6 x Base Speed 5 49 Chapter 5 Programming Parameters Maximum Forward Speed Trim Fwd Spd Trim This parameter limits the maximum value of the velocity reference after the process trim Droop Percent Droop Percent This parameter specifies the percent of base speed that the velocity reference will be reduced when at full load torque This feature can be used to cause motor veloc ity to droop with an increase in load Velocity Reference Output LOW Vel Ref Out Low This is the low word portion of a 32 bit velocity reference quantity It is the input term for the Velocity PI Regulator Velocity Reference Output HI 32 bit Vel Ref Out High This is the high word portion of a 32 bit ve locity reference quantity It is the input term for the Velocity PI Regulator Velocity Regulator Output Vel Reg Output This parameter represents the torque refer ence value that appears at the output of the Velocity PI Regulator It is the input to the torque mode selector and is used as the drive s torque reference value when in torque mode 1 Velocity Regulator Testpoint Data LOW Vel Reg TP Low This parameter indicates the value of the internal location selected by the Velocity Regulator Testpoint Select parameter P137 The select allows this parameter to be used as a testpoint for the velocity regulator Velocity Regulator Testpoint Data HI 32 bit Vel Re
23. N SP Analog In 2 Par 368 SP Analog Out Par 379 Filtered 269 gt Vel Fdbk C5 N 4 22 Chapter 4 Startup Analog I O Parameter Configuration When you have accomplished the hard wiring of the Analog I O to the Standard Adapter Board terminals as was detailed in Chapter 2 it is still necessary to set up the parameters in the Drive to allow for data flow between the Adapter Board and the Drive Each Input Output has parameters associated with it as shown in Figure 4 7 Set Up parameters are used to program the Standard Adapter Board functions such as Scale and Offset Configuration parameters allow the Standard Adapter Board to communicate with the Drive and must be linked to analog inputs and outputs Each analog input and output is associated with a scaling and offset set up parameter These parameters must be adjusted for each analog device The Drive works with internal drive units Each parameter is a 16 bit word which allows a range of 32767 internal units The Drive is scaled so that 4096 is equal to one unit of the quantity being regulated A 10V DC signal applied to an analog input is converted to a digital value of 2048 providing a total range of 4096 When calibrating analog inputs a scale factor is applied to this value to provide an effective range of 32767 16 x 2048 The offset parameter determines the offset in volts applied to the raw analo
24. 123 4 5 6 7 8 _ If using Source potentiometer User Supplied Analog Device External to Drive reference 2 5K minimum Analog Outputs Terminal Block 0 to 10V 4 to 20ma Pulse SH Terminal Signal 0 to 10V 4 20 ma 0 to 10V TB5 SH Shield Ground 1 2 3 DC Power Supply 10VDC 50 mA per voltage 4567 Oto 10V DC Input _ Input Impedance 20K Ohms program 10 11 4 20ma Input Input Impedance 130 Ohms mable Run Fault Alarm PTT PTT OT 13 14 Pulse Input for 5V DC J umper xx Set to xx Frequency Ref 12V DC Jumper xx Set Scale Factor Pulse PPR must be set 123 4 5 6 7 8 9 10 11 12 TB6 SH Shield Ground 124 5 Oto 10V Output Impedance 100 Ohms DC Output Output Impedance 100 Ohms ana n 232 3232 3 hh 7 8 4 20 ma DC Output Output Impedance 20 Ohms S S S S S S S S S TB7 TE Logic Earth Ground Shield Ground 4 56 FaultContact Resistive Rating 115VAC 30VDC 5 0A tt Inductive Rating 115VAC 30VDC 2 0A Programmable Run Fault Alim 78 9 Alarm Contact Resistive Rating 115VAC 30VDC 5 0A SUY Relay Relay Inductive Rating 115VAC 30VDC 2 0 Note This output is programmable through P 384 2 29 Chapter 2 Installation Wiring Analog Inputs There are 2 analog inputs to the Standard Adapter Board Figure 2 18 that have a range of 10V 1 4 20 mA analog
25. 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 404 405 406 407 408 Pot Scale Milli Amp Input Milli Amp Input Offset Milli Amp Input Scale SP Analog Sel SP Analog In SP Analog 1 Scale SP Analog 2 Select SP Analog 2 In SP Analog 2 Scale Analog Output 1 Analog Output 1 Offset Analog Output 1 Scale Analog Output 2 Analog Output 2 Offset Analog Output 2 Scale mA Output mA Output Offset mA Output Scale SB Analog Out Output Select Input Mode Input Status Stop Select 1 Stop Select 2 Accel Rate 1 Accel Rate 2 Decel Rate 1 Decel Rate 2 Mop Increment Mop Value Pulse PPR Pulse Edge Pulse Scale Pulse Offset Pulse Value SP Comm Retries Fault Select Warning Select Fault Status Warning Status Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Output Analog Output Analog Output Analog Output Analog Output Analog Output Analog Output Analog Output Analog Output Analog Output Logic Logic Logic Logic Drive Data Monitor Monitor Logic Logic Logic Logic Velocity Ref Limits Velocity Ref Limits Velocity Ref Limits Velocity Ref Limits Velocity Ref Monitor Monitor Velocity Fdbk Velocity Fdbk Velocity Fdbk Velocity Fdbk
26. Analog Signals Reference Feedback Shielded Cable Belden 8735 2 3 4 Signal DC Signal 5 to 24V DC 8737 8404 A Me ae Process Ua OW speed m Digital 1 0 Encoder Counter Shielded Cable Belden 9728 high speed Pulse Tach 9730 Serial RS 232 422 to Terminals Shielded Cable Belden Communication Printers RS 232 8735 8737 Signal Note 6 1 3 Serial Communication greater PLC Remote I 0 Twinaxial Cable A B than 20k baud PLC Data Highway 1770 CD Example Spacing relationship between 480V AC incoming power leads and 24V DC logic leads 480V AC leads are Class 2 24V DC leads are Class 6 Forseparate steel conduits the conduits must be 3 inches 76 mm apart Ina cable tray the two groups of leads are to be 6 inches 152 mm apart Spacing Notes 1 Both outgoing and return current carrying conductors are to be pulled in same 6 Spacing of communication cables classes 2 thru 6 is conduit or laid adjacent in tray CONDUIT SPACING THRU AIR 115 Volts 1 inch 115 Volts 2 inches 2 Cables of the following classes can be grouped together 230 Volts 1 5 inches 230 Volls 4 inches u damen 460 575 Volts 3 inches 460 575 Volts 8 inches B Classes 2 3 and 4 may have their respective circuits pulled in the 575 volts proportional to 6 575 volts proportional to 12 same conduit or layered in the same tray per 1000 volts per 1000 volts C Classes 5 and 6 may have the
27. B 1 lul p D B 2 Electrical Configuration B 3 PEL B 3 Mechanical Configuration usis B 4 Required Knockout Assignments 7 Appendix Value Tale PIU PP eS 1 Appendix Information D 1 Manual Objectives Who Should Use This Manual Terminology Chapter Introduction The purpose of this manual is to provide the user with the necessary information to install program start up and maintain the 1336 FORCE Digital AC Drive This manual should be read in its entirety before operating servicing or initializing the 1336 FORCE Drive This manual is intended for qualified service personnel responsible for setting up and servicing the 1336 FORCE AC Drive You must have previous experience with and a basic understanding of electrical terminology programming procedures required equipment and safety precautions before attempting any service on the 1336 FORCE Drive FORCE Drive and the associated machinery should plan or implement the installation start up and subsequent maintenance of the Drive Failure to comply may result in personal injury and or equipment damage ATTENTION An incorrectly applied or installed Drive ATTENTION Only personnel familiar with the 1336 can result in component
28. Bypass Contactors AN ATTENTION An incorrectly applied or installed system can result in component damage or reduction in product life The most common causes are Wiring AC line to drive output or control terminals mproper bypass or output circuits not approved by Allen Bradley Output circuits which do not connect directly to the motor ncorrect or inadequate AC supply Excessive ambient temperature Contact Allen Bradley for assistance with application or wiring Drive Output Disconnection Input Power Conditioning Input Fusing Chapter 2 Installation Wiring Any disconnecting means wired to Drive output terminals M1 M2 and M3 must be capable of disabling the Drive if opened during Drive operation If opened during Drive operation the Drive will fault It is recommended that the Drive Enable be removed before the contactor is opened When the Drive Enable is removed the Drive will stop modulating Typically the 1336 FORCE is suitable for direct connection to a three phase AC power line There are however certain power line conditions which may introduce the possibility of drive input power component malfunction To reduce the possibility of these malfunctions a line reactor or isolation type transformer may be required The basic rules for determining if a line reactor or isolation type transformer is required are as follows 1 If the AC line supplying the drive has power factor corre
29. lt Configure Input Mode M Configure Pulse Input 5 Configure Configure Analog Input Configure Analog Output Y Startup Complete Press ENTER Startup Completed Startup Reset Sequence uw UU M Bal If you wish to return to the Startup sequence to make additional changes this can be accomplished from the Startup Completed display After pressing the Enter key use the INC or DEC key to toggle to Reset Sequence Press the Enter key again and you can now re enter the Startup routine Startup Completed Reset Sequence IN l 9 Chapter 4 Startup Manual Startup Mode Drive Mode Menu a SEL AB0282A Sensorless Press the ESC key to access the Drive Mode Menu The Choose Mode display should appear as shown below Use the INC DEC keys to scroll thru the Drive Mode menu selections until the PROGRAM selection is reached Press the ENTER key to enter the Program Mode The HIM display should appear as shown below Choose MODE Program Use the INC DEC keys to select the Startup File Choose File Press Enter The Choose Group Display will appear Press the INC or DEC key to reach LINEAR LIST Choose Group LINEAR LIST Press the ENTER key to access the Linear List menu The display should appear as shown below Drive SW Version 3 01 Use the INC DEC keys to scroll to Parameter 150 Parameter 150 is feedba
30. 323 Sink None 0 32767 32767 324 Sink x None 0 32767 32767 325 Sink x None 0 32767 32767 326 Sink None 0 32767 32767 327 Sink 0 32767 32767 330 Sink Bits None 0111 1111 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved SCANport Direction Mask Direction Mask This parameter selects which SCANport devices can issue a forward reverse command 1 Permit Control 0 Deny Control Bit 0 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Start Mask Start Mask This parameter selects which SCANport devices can issue a start command 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Jog Mask Jog Mask This parameter selects which SCANport devices can issue a Jog command 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Reference Mask Reference Mask This parameter selects which SCANport device can issue a reference command 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Clear Fault Mask Clear Fault Mask This parameter selects which SCANport devices can issue a Clear Faults command 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANpor
31. 50 2 4 6 Carrier Frequency in kHz 100 90 of Drive 80 Rated Amps 790 _ 60 50 2 4 6 Carrier Frequency in kHz Figure 36 BP 450 Figure 37 B700C amp B800C Figure 38 C700C amp C800C Appendix A 100 90 of Drive 80 Rated Amps gt 60 50 Carrier Frequency in kHz 100 90 80 of Drive 70 Rated Amps 60 50 40 30 20 10 0 I I 1 1 1 0 1000 2000 3000 4000 5000 6000 Carrier Frequency in Hz of Drive Rating 700 HP of Drive Rating 800 HP 100 90 80 of Drive 70 Rated Amps 60 50 40 30 20 10 0 E 1 1 1 1 1 1 0 1000 2000 3000 4000 5000 6000 Carrier Frequency in Hz of Drive Rating 700 HP of Drive Rating 800 HP A 15 Appendix A Drive Hardware Overview The following illustrations are functional block diagrams of the 1336 FORCE Drive detailing the difference in hardware between the various ratings These are basic overviews of the 1336 FORCE hardware and should be used as reference material only A 16 Appendix Schematic Diagram 3 15 HP 230V 3 15 HP 460V
32. Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 60 Sink 96 4096 100 0 setpoint 0 0 800 0 800 0 61 Sink x x 4096 100 0 setpoint 0 0 800 0 800 0 62 Sink x x 4096 100 setpoint 0 800 0 800 0 63 Sink x x 4096 100 setpoint 0 0 800 0 800 0 5 39 Chapter 5 Programming Parameters Over Setpoint 3 Over Setpoint 3 This parameter is used to specify the set point threshold for the Over Setpoint 3 bit in Logic Status Hi Over Setpoint 4 Over Setpoint 4 This parameter is used to specify the set point threshold for the Over Setpoint 4 bit in Logic Status Hi Setpoint Select Setpoint Select This parameter makes a selection between actual speed or internal Iq current refer ence for the At Over Setpoint parameters Each Setpoint Status bit can be set for ei ther option 0 Actual Speed 1 Iq Ref erence Bit 0 At Setpoint 1 Bit 1 At Setpoint 2 Bit 2 Over Setpoint 1 Bit 3 Over Setpoint 2 Speed Setpoint Tolerance Speed Setpnt Tol This parameter establishes a hysteresis band around the At Setpoints It will
33. puwaq Ph de RR ed 1 1 Standard Drive Features ies 1 2 Performance Specifications Control Specifications iss essa ex e a pls doe najas OptioBS MR 1 3 Protective Features ee eV IRE RR ER as 1 3 Environmental Specifications Electrical Specifications iis iiie ees ER Feedback Devices 2252 2 RR INIRE Yawk EUR Software Compatibility ced sso ec 1 6 Chapter 2 Chapter ODJECHVES IP SPON uer is YES Pepe Ud MOUNINO EI Pr amapas dda pte qos due a DIMENSIONS Input Output Ratmgs 2 7 AC Supply ie oes XE EG UP GP GU Sue 2 7 Input Devices ovd ree Sh UGG blag saq 2 9 Drive Output Disconnection 1 2 10 Input Power Conditioning Sale pagaq 2 10 Input Fusing dye ver ea Ee dus 2 10 Electrical Interference 2 12 REIFiltenng 522 ai e ew e 9 CERRAR OUR PA S RU es 2 1 a uA Power Cabling Re re 2 14 Wire Size and ua ev eere re pert n Pa a pl dee Ede 2 14 2 1 Power WINE 2 24 Control Winng 2 22299 m9 e RR LEE RE 2 2
34. 0 096 80096 80096 163 Sink x xx96 4096 1 0 gain 4 10096 20096 200 164 Sink x x 4096 rated torque 0 0 800 0 800 0 165 Sink x x 4096 1 0 gain 100 200 0 200 0 Current Limited Iq Reference Chapter 5 Programming Parameters External Torque Step Parameter Number 166 Ext Torque Step Parameter Type Sink This parameter supplies an external torque Display Units offset to the Drive The Ext Torque Stepis Drive Units 4096 rated motor torque summed with the Torque Mode Sel P53 Factory Default 0 096 output prior to the Torque Limiter Minimum Value 800 096 Maximum Value 800 096 Internal Torque Reference Parameter Number 167 Int Torque Ref Parameter Type Source This parameter shows the value of torque Display Units reference that is present at the output of Drive Units 4096 rated torque the torque limiter Factory Default 0 0 Minimum Value 800 0 Maximum Value 800 0 Internal Iq Reference Parameter Number 168 Internal Iq Ref Parameter Type Source This parameter shows the value of the lq Display Units x x reference that is present at the output of Drive Units 4096 rated torque the Iq rate limiter 4096 is 100 Iq motor Factory Default 40 0 96 current Minimum Value 800 096 Maximum Value 800 096 Torque Reference Testpoint Data Parameter Number 172 Torque Ref TP Parameter Type Source This parame
35. 131 Droop Percent 0 180 Neg MtrCurRefLim 100 132 Vel Ref Out LOW 0 181 Di Dt Limit 40 133 Vel Ref Out H 40 0 rpm 182 Computed Power 30 09 134 Vel Reg Out 0 183 Torque Limit Status 0000 0000 0000 0000 135 Vel Reg TP LOW 0 184 Torque Mode Status 0000 0000 0000 0000 136 Vel Reg TP HI 0 185 Perunit Motor Curr 0 096 137 Vel Reg TP Sel 0 186 Perunit Motor Volt 0 096 138 Velocity Error 40 0 rpm 220 Rtd Inv Out Amps 20 0 amps 139 KI Velocity Loop 32 0 221 Rtd Inv Input Volts 460 volt 140 KP Velocity Loop 8 0 222 Inverter Carrier Freq 4 000 Hz 141 KF Velocity Loop 1 00 223 Prech Rdthru Sel 0000 0000 0000 0000 143 VelFdbk TP LOW 0 224 Undervolt Setpoint 400 volt Appendix C User Parameter Values No Name Default No Name Default Value 225 Bus Prech Timeout 30 0 Sec 271 Lim Motor Flux 100 226 Bus Ridethru Timout 1 750 RPM 273 TP Sell 0 227 CP OperatOptions 0000 0000 0000 0000 274 TP Data 1 0 228 Base Motor HP 30 0 HP 275 TP Select 2 0 229 Base Motor Speed 1 750 RPM 273 TP Sel1 0 230 Base Motor Current 0 2 Amps 274 TP Data 1 0 231 Base Motor Volts 460 Volts 215 TP Select 2 0 232 Base Motor Freq 60 Hz 276 TP Data 2 0 233 Motor Poles 4 poles 277 TP Select 3 0 234 Mtr Inertia 0 60 sec 278 TP Data 3 0 235 Encoder PPR 1 024 PPR 279 TP Select 44 0 236 RS Tune 1 50 280 TP
36. 180 235 Table 6 F Velocity Loop Parameters Description Autotune Torque Limit Autotune Speed Torq Mode Select Reverse Speed Limit Forward Speed Limit Feedback Device Type Positive Torque Ref Limit Negative Torque Ref Limit Motoring Power Limit Regen Power Limit Positive Motor Current Ref Limit Negative Motor Current Ref Limit Encoder PPR Chapter 6 Troubleshooting Value Comments 7596 allows 7596 rated torque during accel 75 allows Autotune velocity to go to 75 Percent base motor velocity Set to Value of 1 for encoder fdbk Set this to the limit of the application if set to 0 the motor may not accelerate Set this to the limit of the application if set to 0 the motor may not accelerate Set to Value of 1 for encoder fdbk Set this to the limit of the application if set too low the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate If set too high may trip on a Bus Overvoltage fault Set this to the limit of the application if set too low the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate Pulses Per Revolution 6 33 Chapter 6 Troubleshooting Hardware Testpoints The Hardware Testpoints on the Series B 1336 FORCE Control Board are illustrated in Figure 6 11
37. 5 24 Channel Group CntriNet In 0 CntriNetIn 1 CntriN CntriN CntriN CntriN CntriN CntriN CntrlNet Out 0 CntriN CntriN CntriN CntriN CntriN CntrlNet Out 6 CntriN Drv Drv D2D Tsk Interval D2D Baud Rate D2D Xmit Addr 020 Xmit Ind 1 D2D Xmit Data 1 D2D Xmit Ind 2 D2D Xmit Data 2 D2D Rcv 1 Addr D2D Rev 1 Ind1 D2D 1 Data 1 020 Rev 1 Ind 2 D2D Rcv 2 Data 2 D2D Rcv 2 Addr D2D Rcv 2 Ind 1 D2D Rcv 2 Data 1 D2D Rcv 2 Ind 2 D2D Rcv 2 Data 2 9 Shaded parameters are Standard 1336 FORCE parameters 322 323 324 325 326 327 328 329 351 352 353 354 355 356 357 358 NY e Ne 3 O ps cor N Un Fault Sel Sts SP Fault Sts SP Warn Sts SP Fault Sel SP Warn Sel ICN Fault Sel ICN Warn Sel CP Fit Status VP Fit Status CP Warn Status VP Warn Status CP Fault Select CP Warn Select VP Fault Select VP Warn Select Ncfg Fit Status PwrUp FIt Status Max DB Power Max DB Temp DB Time Const Chapter 5 Programming Parameters File 2 Communications 1 0 442 443 440 441 425 426 82 83 84 85 86 87 88 89 81 80 71 78 79 Logic Group ChA Logic Cmd In Logic Command Logic Status Low Logic Status Hi Logic Options SCANport Owners Stop Owner Start Owner 091 Owner 092 Direction Owner SetRef Owner LocalOwner Flux Owner Trim Owner Ramp Owner
38. Common Run Reverse 4 6 Ext Fault 3 5 Common gt Speed Select 2 1 Speed Select 1 1 Common Enable 3 Figure 2 25 Input Mode Selection amp Typical TB3 Connections Not Stop Clear Fault 3 78 7 Reverse 4 Input Mode 7 11 Three Wire Control with Multi Source Reversing 8 6 Reverse 46 Forward 9 Forward 6 109 5 Speed Select 31 Speed Select2 1 Select2 Not Stop Clear Fault 37 8 12 Local Control 2 Speed Select 31 9 28 Digital PotUp Digital PotDn Speed Select 3 Speed Select 2 1 Mode 10 29 Reverse 46 Forward 9 Digital PotUp Digital PotDn Input Mode 12 16 Two Wire Control Single Source Control 13 Stop 2nd 1st Type Accel Speed 219 15 Dig Select31 Decel 1 See Table 2 E 2 Drive m ust be stopped to take Local Control 11 Accel Accel Decel Decel Parameter 53 Spa Trq Mode Sel becomes read only ode 14 15 30 16 23 Digital Local Proc PotUp Control2 Trim ital Stop Reset PotDn Type Control by all other adapters is disabled except Stop 3 These inputs must be present before drive will start 4 Bit 0 of Direction Mask must 1 to allow operation For Common Precharge Enable 6 Bit 12 of Para 59 Logic Options must 0 for reverse direction control 7S oft Fault Reset Only Must recycle power to drive to clear
39. Frame Size D Gate Driver Board Connections Ground Fault CT Logic Level Supply Main Control Board Interface Bus Discharge Fuse Current Feedback Interface Connection to Lower IGBT s Main Switcher Bus Volts gt 24Vdc Connection to Upper IGBT s Main Switcher Bus Fuse Ext 24V Supply Input Bus Standalone or Common Bus Input Precharge Board Interface 29 Appendix A Sensorless Application Notes A 30 Sensorless vs Encoder Application Guidelines Sensorless is applicable when Speed Regulation requirements are greater than 1 096 of base speed Sensorless may be applicable for regulation requirements between 0 296 and 1 096 with manual adjustments Encoder operation is recommended below 0 2 Sensorless is applicable when the minimum speed is greater than 1 40 of base speed i e 45 RPM on a 60 Hz 4 pole motor Sensorless may be applicable down to speeds of 1 60 of base speed 30 RPM if high bandwidth responses are not required Encoder operation is recommended for speeds 1 60 of base speed 30 RPM Maximum Speed is the same for sensorless and encoder operation The maximum velocity bandwidth achievable with sensorless is approximately twice the default bandwidth value Bandwidths higher than this may require an encoder because the velocity ripple may be intolerable or there may be stability problems The maximum bandwidth achievable with sensorless is half the bandwidt
40. TP13 IS0 GND TP24 10V Ref TP14 IGND TP25 10V Ref 6 35 Chapter 6 Troubleshooting This Page Intentionally Blank 6 36 Motor Cables Appendix Appendix A variety of cable types are acceptable for 1336 FORCE drive installations For many installations unshielded cable is adequate provided it can be separated from sensitive circuits As an approximate guide allow a spacing of 1 meter 3 3 feet for every 10 meters 33 feet of length In all cases long parallel runs must be avoided The cable should be 4 conductor with the ground lead being connected directly to the drive ground terminal PE and the motor frame ground terminal Shielded Cable Shielded cable is recommended if sensitive circuits or devices are connected or mounted to the machinery driven by the motor The shield must be connected to the drive ground terminal PE and the motor frame ground terminal It is important that the connection be made at both ends to minimize the external magnetic field If cable trays or large conduits are used to distribute the motor leads for multiple drives shielded cable is recommended to reduce or capture the noise from the motor leads and minimize cross coupling of noise between the leads of different drives The shield should be connected to the ground PE connections at both the motor and drive end Armored cable also provides effective shielding Ideally it should be grounded only
41. Testpoint Data 2 Testpoint Selection 3 Testpoint Data 3 Testpoint Selection 4 Testpoint Data 4 Testpoint Selection 5 Testpoint Data 5 Testpoint Selection 6 Testpoint Data 6 Selection for Test DAC 1 Selection for Test DAC 2 Ki Frequency Regulator Kp Frequency Regulator Frequency Regulator Ksel Frequency Regulator Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune Drive Tune Torque Autotune Velocity Autotune Transistor Diag Transistor Diag Transistor Diag Transistor Diag Transistor Diag Transistor Diag Torque Autotune Drive Tune Torque Autotune Drivetune Monitor Monitor Monitor Monitor Monitor Monitor Monitor Monitor Monitor Monitor Velocity Fdbk Monitor Monitor Monitor Monitor Testpoints Torque Autotune Testpoints Torque Autotune Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Factory Use Only Torque Block Torque Block Torque Block Torque Block File File No Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Startup 1 Velocity Torque 3 Velocity Torque 3 Diagnostics 4 Diagnostics 4 Diagnostics 4 Diagnostics 4 Diagnostics 4 Diagnostics 1
42. X Perunit Motor Volt 186 non funct X Transistor Diag 257 bit 12 non funct Compatible with exception X Drive Comm 49 19 non linkable X Drive Comm Tx Rx 14 19 max value 219 X Torque Stop Configuration 58 not available X Service Factor 494 not available X Feedback Device Type 150 mode 7 not available X Calculated Torque 267 not available X Precharge Timeout 225 min value 0 X Perunit Motor Current 185 not available X Perunit Motor Voltage 186 not available X Transistor Diagnostics 4257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 92 min value 150 X Motor Poles 233 max value 12 X Base Motor Speed 229 max val 6000 Compatible with exception X V3 04 VP must be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 not available X Perunit Motor Voltage 186 not available X Transistor Diagnostics 4257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 92 min value 150 x Motor Poles 233 value 12 x Base Motor Speed 229 max val 6000 Compatible with exception X V5 xx VP must be used with V4 02 AP and V4 02 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 not available X Perunit Motor Voltage 186 not available X Transistor Diagnostics 4257 bit 12 not available X Iq Rate Limit 181 max va
43. wy Allen Bradley 1336 FORCE Adjustable Frequency AC Drive 0 75 485 kW 1 650 HP Standard Adapter 5 01 PLC Communications Adapter 5 01 User Manual Important User Information Because of the variety of uses for the product described in this publication those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements including any applicable laws regulations codes and standards The illustrations charts sample programs and layout examples shown in this guide are intended solely for purposes of example Since there are many variables and requirements associated with any particular installation Allen Bradley Company does not assume responsibility or liability to include intellectual property liability for actual use based upon the examples shown in this publication Allen Bradley publication SGI 1 1 Safety Guidelines for the Application Installation and Maintenance of Solid State Control available from your local Allen Bradley office describes some important differences between solid state equipment and eletromechanical devices that should be taken into consideration when applying products such as those described in this publication Reproduction of the contents of this copyrighted publication in whole or in part without writt
44. 0 0 amps 6 553 5 amps 265 Source x Volt None 0 Volt 3 000 Volt 3 000 Volt Stator Frequency Freq Command Displays the actual value of motor stator frequency Units are in Hz times 128 128 1 Hz Calculated Torque Calc Torque This parameter will display the calculated value of motor torque as determined by the Velocity Processor The actual value of motor torque will be within 5 of this value Scaling is 4096 at rated motor torque This data is updated on a 2 millisecond basis DC Bus Voltage DC Bus Voltage This is the actual Bus Voltage as read by the software from an analog input port Units are in volts Filtered Velocity Feedback Filt Vel Fdbk This parameter contains a filtered version of velocity feedback The value contained in this parameter is not meant to be used for control only for display and monitoring purposes Inverter Temperature Feedback Inv Temp Fdbk Inverter temperature determined by NTC device on heatsink power structure Can be configured to generate either a warning or fault when heatsink reaches 80 degrees C Limited Motor Flux Lim Motor Flux This parameter displays the level of motor field flux calculated by the current proces sor and limited by the Min Flux Level parameter Param 174 Testpoint Selection 1 Torq TP Sel 1 This parameter selects a torque block test point The value of that test point can be read from Torq TP Data 1 Parm 2
45. 1 85 gt vP CQNEIG VOLTS FAILURE STATUS i CP INT RAM FAILURE SELECT ana i 5 CP EXT RAM FAILURE TOWER CP STACK RAM FAILURE VERRE ee VP MBI FAILURE 5 NTC VP CONFIGURABLE FAULT WARNING VP PROM FAILURE PARAMETERS 83 85 88 and 89 VP INT RAM FAILURE BIT DESCRIPTION DESCRIPTION VP EXT RAM FAILURE ENCODER FEEDBACK LOSS VP STACK RAM FAILURE INVERTER OVERTEMPERATURE PEND PARAMETER LIMIT CP MBI FAILURE g EXTERNAL FAULT DRIVE TO DRIVE FAULT RMS FAULT INVERTER OVERLOAD TRIP IT or 47 Appendix A 36 Firmware Function Inverter Overload INTERNAL 168 REFERENCE l x MOTOR M M C RISE NAMEPLATE 230 TRANSISTOR AMPS RJC CONVERT MOTOR TO INVERTER UNITS RATED i INVERTER 220 OUTPUT AMPS i 100 x L M CONVERT INVERTER TO MOTOR UNITS MAXIMUM CONVERT INVERTER INVERTER lt 172 O gt TO MOTOR UNITS Iq 6144 150 48 Appendix 36 Firmware Function Inverter Overload NTC FOLDBACK PROTECTION DEVICE JUNCTION TEMPERATURE NTC LIMIT LIMIT STATUS lt 25 172 1 300 98 gt LIMIT SQ 52 ERROR MOTOR D 7 CURRENT LIMIT SELECTION 270 ds LIMITER INVERTER HEATSINK INTEGRATOR TEMPERATURE C CONFIGURABLE FAULT WARNING lt 83 15 RATED INVERTER
46. 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 161 162 163 164 165 166 167 168 Maximum Forward Speed Trim Droop Percent Velocity Reference Output LOW Velocity Reference Output HI 32 bit Velocity Regulator Output Velocity Regulator Testpoint Data LOW Velocity Regulator Testpoint Data HI Velocity Regulator Testpoint Select Velocity Error KI Velocity Loop KP Velocity Loop KF Velocity Loop KF Error Filter Bandwidth Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Select Velocity Feedback Scaled Velocity Feedback Encoder Position Feedback LOW Encoder Position Feedback HI Fdbk Device Type Fdbk Tracker Gain Fdbk Filter Select Kn Fdbk Filter Gain Wn Fdbk Filter BW Tach Velocity Notch Filter Freq Notch Filter Q External Iq Reference External Torque Reference 1 Slave Torque Percent 1 External Torque Reference 2 Slave Torque Percent 2 External Torque Step Internal Torque Reference Internal Iq Reference Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Reg Velocity Reg Testpoints Velocity Reg Testpoints Velocity Reg Testpoints Velocity Reg Velocity Reg Drive Tune Velocity Autotune Velocity Reg Drive Tune Velocity Autotune Velocity Reg Drive Tune Velocity Autotune Velocity Fdbk Velocity Fdbk Testpoints Velocity Fdbk Testpoints Velocity Fd
47. 302 307 305 303 5 29 Chapter 5 Programming Parameters Parameter Descriptions 5 30 A detailed description of each 1336 FORCE Parameter is contained in the following listing The parameters are listed in numerical order Take note that some parameters are used more than once in the 1336 FORCE and may be located in more than one File and Group To determine if a parameter is used in more than one application refer to the numerical list which begins on Page 5 3 NOTE The following parameter descriptions in the range from 300 to 500 cover the Standard Adapter Only If you have a PLC Comm Adapter equipped drive and wish to refer to PLC Comm parameter descriptions refer to the PLC Comm User Manual If you have a ControlNet Adapter equipped drive parameter descriptions are provided at the end of this chapter NOTE If you wish to record parameter values and links that have been set for your particular application a User Parameter Sheet is provided in Appendix C Drive Software Version Drive SIO Version This parameter stores the present software revision for the firmware product The firmware value represents the soft ware version in the range 00 0 to 99 9 Power Structure Type Drive Type This number is a unique code that identi fies the drive s current and voltage ratings This number originates from a serial EE memory located on the Drive s Base Drive Board Motor Control Counter MCB Counter
48. 363 376 378 174 97 264 08 297 234 230 232 233 231 92 95 177 265 179 81 156 157 62 63 64 65 185 186 294 263 358 353 Page Ret 5 68 5 62 5 51 5 68 5 62 5 70 5 61 5 69 5 75 5 74 5 38 5 38 5 37 5 39 5 38 5 38 5 40 5 41 5 76 5 41 5 41 5 50 5 49 5 77 5 78 5 78 5 80 5 81 5 56 5 45 5 64 5 31 5 69 5 60 5 60 5 60 5 60 5 60 5 45 5 45 5 56 5 64 5 56 5 42 5 54 5 54 5 39 5 39 5 40 5 40 5 57 5 57 5 68 5 64 5 T 5 76 Chapter 5 Programming Parameters Table 5 B 1336T Alphabetical Parameter Table Parameter Name Element Page Ref Pot Offset 359 5 77 Pot Scale 360 5 77 Powerup Diagnostic Fault Status 80 5 42 Positive Motor Current Reference Limit 179 5 56 Positive Torque Ref Limit 175 5 56 Precharge Ridethru Selection 223 5 59 Preset Speed 1 119 5 48 Preset Speed 2 120 5 48 Preset Speed 3 121 5 48 Preset Speed 4 122 5 49 Preset Speed 5 123 5 49 Process Trim Data 31 5 34 Process Trim Feedback 28 5 34 Process Trim Filter Bandwidth 30 5 34 Process Trim KI Gain 32 5 34 Process Trim KP Gain 33 5 35 Process Trim High Limit 35 5 35 Process Trim Low Limit 34 5 35 Process Trim Output 26 5 34 Process Trim Output Gain 36 5 34 Process Trim Select 29 5 34 Process Trim Setpoint Select 38 5 35 Process Trim Testpoint 37 5 35 Process Trim Reference 27 5 34 Pulse Edge 396 5 84 Pulse PPR 395 5 84 Pulse O
49. 7596 70 HP ME EE ME Carrier Frequency in kHz 8 Figure 9 1336T A100 and B200 Figure 10 1336T B015 Figure 11 1336T B025 Figure 12 1336T BX040 Figure 13 1336T B075 Appendix NENNNNENNE Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive in 50 C Ambient Derating Factor for Enclosed Drive in Ambient between 41 amp 50 96 of Drive Rated Amps son I 1 1 I 1 1 2 3 4 5 6 Carrier Frequency in kHz of Drive Rated Amps 65757 I 1 1 I I I I I I 1 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz of Drive Rated Amps 55 I I I 1 I I I I 1 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz of Drive Rated Amps I I I I I I I I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz 96 of Drive 100 Rated Amps 95 90 85 80 75 70 60 I I I I I 1 2 3 4 5 6 Carrier Frequency in kHz Appendix A Figure 14 1336T B100 Figure 15 1336T B125 and BX150 Figure 16 1336T B250 Figure 17 1336T B500 Figure 18 1336T B600 A 10 of Drive Rated Amps 96 of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps of Drive Rated Amps Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive in 50 C Ambient Derating Factor for Enclosed Drive in Ambient between 41 amp 50
50. 800 0 32767 289 Sink 256 1 0 128 290 Sink SOK None 67 0 0 32767 291 Sink x None 5000 0 32767 292 Sink X None 1 Self Adjust 0 Fixed 128 293 Sink X None 5000 0 32767 294 Source Bit None 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 Bit Condition 0 Enable Drop Out 11015 Reserved 5 68 Motor Inductance Test Errors Lo Test Error Parameter Number Parameter Type This parameter indicates an error condition Display Units detected during the motor inductance test Drive Units 1 Drive condition true Factory Default 0 Drive condition false Bits are defined as follows Minimum Value Maximum Value Bit Condition 0 Motor Not at Zero Speed 1 Sign Error 2 Zero Current 3 A D Overflow at min gain 4 Enable drop out 5 Sign error Overflow 6 to 15 Reserved Motor Stator Resistance Test Errors Parameter Number Rs Test Error Parameter Type Low frequency gain boost of the frequency Display Units regulator in sensorless mode This param Drive Units eter must not be changed Factory Default Bits are defined as follows Minimum Value Maximum Value Bit Condition 0 Motor Not at Zero Speed 1 Sign Error 2 Not Used 3 Zero Current 4 Not Used 5 Software Error 6 Not Used 7 Enable Drop Out 8 15 Reserved Motor Flux Id Test Errors Parameter Number Id Test Error Parameter Type This parameter indicates an error condition Di
51. Appendix A Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive in 50 C Ambient Derating Factor for Enclosed Drive in Ambient between 41 C amp 50 C Figure 28 of Drive 100 1336T C600 Rated Amps o5 9096 85 8096 7596 70 65 60 55 I I 1 2 3 4 Carrier Frequency in kHz Figure 29 of Drive 100 1336T C650 Rated Amps 5 90 85 80 75 70 65 60 55 1 1 2 3 4 Carrier Frequency in kHz Figure 30 96 of Drive 100 All Drive Ratings Rated Amps 90 80 I I 0 1 000 2 000 3 000 4 000 3 300 6 600 9 900 13 200 ft Altitude Figure 31 100 Required Only for the following drives 1336T A B C 025 18 5 kW 25 HP at 8 kHz 1336T A B C 22 kW 30 HP at6 8 kHz 1336T A B C 45 kW 60 HP at6 kHz of Drive Rated Amps 20 240 480 600V Nominal 2 4 6 8 10 Input Voltage A 13 Appendix A Figure 32 BP 250 Figure 33 BP 300 Figure 34 BP 350 Figure 35 BP 400 A 14 100 90 of Drive 80 Rated Amps _ 60 50 2 4 6 Carrier Frequency in kHz 100 90 of Drive 80 Rated Amps gt _ 60 50 F 2 4 6 Carrier Frequency in kHz 100 90 of Drive 80 Rated Amps _ 60
52. CP Red 5 blink VP Red 1 blink VP Red 2 blink VP Red 3 blink VP Red 4 blink VP Red 5 blink VP Red 6 blink VP Red Flashing CP Solid Red CP Solid Red CP Solid Red CP Solid Red CP Solid Red CP Solid Red CP Solid Red VP Solid Red VP Flashing Red VP Flashing Red CP VP Flash Red VP Solid Red VP Solid Red CP Flashing Red CP Flashing Red CP Flashing Red CP Flashing Red CP Flashing Red CP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Flashing Red VP Solid Red VP Flashing Red VP Flashing Red VP Flashing Red Fault Type Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Hard Hard Hard Hard Hard Hard Hard Hard Hard Soft Soft Soft Hard Hard Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Soft Hard Soft Soft Soft Fault Text CP EPROM CP Int RAM Fit CP Ext RAM CP Stack RAM VP MBI Failure Dual Port VP EPROM Fit VP Int RAM Fit VP Ext RAM Fit VP Stack RAM CP MBI Failure AP MBI Failure Power EEPROM Fit Bus Overvoltage Transistor Desat Ground Fault IOC Fault SW Malfunction M S Cable Loss M S Ena Timeout AP Handshake Error Absolute Overspd Analog Spply Tol Atune Diag Fail Inv Temperature SW Error Ridethr
53. CP Warn Config 148 Enc Pos Fdbk Lo VP Warn Config 149 Enc Pos Fdbk Hi Absolute Overspeed 167 Internal Torque Fdbk Stall Delay 168 Internal Iq Ref Motor Ovload Lim 182 Computed Power Service Factor 184 Torq Mode Stat Motor Ovload Speed 1 185 Perunit Motor Current Motor Ovload Speed 2 186 Perunit Motor Voltage Min Overload Lim 264 Motor I Magn Fdbk 265 Motor Volt Fdbk 266 Stator Frequency 268 DC Bus Voltage 269 Filtered Velocity Fdbk 270 Inverter Temp Fdbk 271 Limited Motor Flux 5 20 ChA RIO In 0 ChA RIO In 1 ChA RIO In 2 ChA RIO In 3 ChA RIO In 4 ChA RIO In 5 ChA RIO In 6 ChA RIO In 7 ChA RIO Out 0 ChA RIO Out 1 ChA RIO Out 2 ChA RIO Out 3 ChA RIO Out 4 ChA RIO Out 5 ChA RIO Out 6 Chapter 5 Figure 5 3 PLC Comm Adapter Parameters cont FILE 2 Communications Channel A Group Channel B Group Group Analog Input Group TE Output Group ChB RIO In 0 ChB RIO In 1 ChB RIO In 2 ChB RIO In 3 ChB RIO In 4 ChB RIO In 5 ChB RIO In 6 ChB RIO In 7 ChB RIO Out 0 ChB RIO Out 1 ChB RIO Out 2 ChB RIO Out 3 ChB RIO Out 4 ChB RIO Out 5 ChB RIO Out 6 Logic Cmd Logic Sts Lo Logic Sts Hi Logic Options chA Logic Cmd chB Logic Cmd SB Analog In Analog In 1 Analog In 2 Analog In 3 Analog In 4 Analog In 1 Off Analog In 1 Scale Analog In 2 Off Analog In 2 Scale Analog In 3 Off Analog In 3 Scale Analog In 4 Off Analog In 4 Scale Programming Parameters SP Analog Out Analog Out 1 Analog Out 2 Analog
54. Chapter 6 Troubleshooting Running the Resistance Test 6 26 The drive requires a motor resistance measurement to determine references for the regulators that control torque The motor resistance test measures the motor resistance and displays it in Rs Tune parameter 236 The test runs for approximately 10 30 seconds When running this test you should be aware of the following The motor should not rotate during this test although rated voltages and currents are present and the possibility of rotation exists For en coderless systems you must visually verify that the motor does not rotate e This test is run at rated motor current and by passes the normal cur rent limit functions Before running the resistance test make sure that you have entered the correct motor nameplate information To run the motor resistance test 1 Set bit 3 in Autotune Diagnostic Selection parameter 256 2 Enable the drive The drive enable light turns off when the test is complete When reading is obtained in RS Tune perform the flux test Typical values for per unit motor resistance are in the range of 1 to 396 as displayed in RS Tune The value in RS Tune increases as the length of wiring runs increase Chapter 6 Troubleshooting Several faults have been included to identify some problems that can occur in the resistance measuring routine If the drive trips during the resistance test check bits 0 throug
55. Each parameter entry in the parameter table contains the following information No The parameter number in decimal Name Parameter text as it appears on the Programming Terminal Display Units Specifies what engineering units will be used to display the parameter value on the Programming Terminal RPM etc This is specified first in the Units column of the Parameter Table Drive Units Specifies the Conversion Units as seen in the Drive Figure 5 1 Drive Units Example P Engineering Drive Units Units 4096 C Drive Conversion y 1750 Units Formula RPM Factory Default Parameter value as it will appear after the Drive Initialize Init command has been sent from the Programming Terminal The Init values are the same as the default values listed in the Parameter Descriptions section of this chapter Min Minimum allowable value for the parameter If no min value is given the parameter has not been assigned a minimum limit Max Maximum allowable value for the parameter If no max value is given the parameter has not been assigned a maximum limit Enum Allows numbers or bits to be represented by text Chapter 5 Programming Parameters Parameter Table Standard Adapter Equipped Drives Note For PLC Comm equipped drives refer to your PLC Comm User Manual for parameter descriptions For ControlNet Adapter equipped drives refer to your ControlNet Adapter M
56. Figure 2 15 Standard Adapter Board Connections LANGUAGE LED STATE DESCRIPTION MODULE D1 Green OFF D2 On or No Power Main Control TP2 DGND J5 Interface 15V BRAM TPs EN DIS TPe 15 Flashing Adapter Warning Fault Solid ON Adapter OK D2 RED OFF D1 On or No Power Flashing Adapter Soft Fault Solid ON Adapter Hard Fault Refer to Fault Codes in Table 6 B TP7 TP8 ISO 12 ISO wy L OPTION BOARD ee ae UE 2 79 9 2 KK KC 2 2 2 2 Jumper 5VDC 12VDC Purpose Jumper Position Purpose J13 1102 2103 Pulse Input Voltage Selection J5 1to2 BRAM Write Enable 2to 3 BRAM Write Disabled 2 28 Chapter 2 Installation Wiring Interface Board Installation and Removal IMPORTANT If the L Option Board is being installed Standard Adapter Board jumpers at pins 3 amp 4 and 17 amp 18 of 710 must be removed and the proper Input Mode selected Figure 2 16 If the L Option board is removed these jumpers must be reinstalled and the Input Mode parameter must be programmed to 1 Figure 2 16 Interface Board Jumper Locations Figure 2 17 Reference Signal Connections Standard Adapter Board DC Power Supply v V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 10V Com 10V TB5 E ERROR RR RR SSSSSSSSSSSSSS SH SH _
57. Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 33 Sink X XXX 4096 1 0000 Kp gain 1 000 0 000 16 000 34 Sink x x 4096 100 trim 100 0 800 0 800 0 35 Sink x x 4096 100 trim 100 800 800 36 Sink 2048 1 00 gain 1 00 16 00 16 00 37 Source None 0 32767 32767 38 Sink X None 0 0 3 40 Sink X X 4096 rated motor torque 50 0 25 0 96 100 0 5 35 Chapter 5 Programming Parameters Auto Tune Speed Auto Tune Speed This parameter is the speed of the motor during an auto tune velocity motor test System test and system ID measure 4096 is base speed VP Desired Bandwidth Vel Desired BW This parameter specifies the velocity loop bandwidth requested by the User and determines the dynamic behavior of the velocity loop The maximum value for this parameter is changed by the drive when a request is made to update the the velocity loop gains The vel loop becomes more responsive and is able to track a faster changing vel ref as bandwidth is increased System and noise limitations will establish a practical upper limit however Autotune Status A
58. Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 372 Sink X XXX 32767 l 0 500 1 000 1 000 373 Sink x None 0 32767 32767 374 Sink x xxx volt 205 1 volt 30 000 20 000 420 000 375 Sink X XXX 3276 l 0 500 1 000 1 000 376 Sink X None 0 0 32767 377 Sink X XXX mA 128 0 000 mA 32 000 mA 32 000 mA Chapter 5 Programming Parameters Milli Amp Output Scale Parameter Number 378 mA Output Scale Parameter Type Sink This parameter determines the scale factor Display Units for milli amp output 32767 Drive Units 32767 1 digital value is converted by the scale fac Factory Default 0 500 tor which allows an effective digital range Minimum Value 1 000 of 2048 which is then offset to provide Maximum Value 1 000 20 mA range SCANport Analog Output Parameter Number 379 SP Analog Out Parameter Ty
59. See Page 5 50 See Page 5 50 See Page 5 50 See Page 5 50 See Page 5 50 See Page 5 50 See Page 5 50 See Page 5 50 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 51 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 53 See Page 5 54 See Page 5 54 See Page 5 54 See Page 5 54 See Page 5 54 See Page 5 54 See Page 5 54 See Page 5 54 See Page 5 55 See Page 5 55 See Page 5 55 See Page 5 55 See Page 5 55 Table 5 A 1336T Numerical Parameter Table Cont Chapter 5 Programming Parameters Param No Parameter Name Element Grop File File No 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 240 241 242 243 244 245 246 Torque Reference Testpoint Data Torque Reference Testpoint Select Minimum Flux Level Pos Torque Reference Limit Torque Reference Limit Motoring Power Limit Regen Po
60. South Africa Republic e Spain Sweden Switzerland Taiwan Thailand Turkey United Arab Emirates United Kingdom United States Uruguay Venezuela Yugoslavia Allen Bradley Headquarters 1201 South Second Street Milwaukee WI 53204 USA Tel 1 414 382 2000 Fax 1 414 382 4444 Publication 1336 FORCE 5 12 September 1998 PN 74002 113 01 02 Supersedes Publication 1336 FORCE 5 12 February 1997 Copyright 1995 Allen Bradley Company Inc Printed in USA
61. This parameter contains a counter that increments by 1 every 0 1 seconds It is intended to be a monitor parameter to indicate that the Motor Control Board Velocity Processor firmware is executing Drive Link Task Interval D2D Tsk Interval This parameter specifies the interval at which drive to drive data will be transmitted and received The intervals are 2 ms intervals up to 20 ms 1 2 ms scan Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 2 4 ms scan 5 10 ms scan 3 6 ms scan 6 12 ms scan 4 8 ms scan 7 14 ms scan Drive Link Baud Rate Parameter Number D2D Baud Rate Parameter Type This word parameter specifies the baud rate used on the drive to drive link CAN communication interface as follows 00H 125K baud 01H 250K baud 02H 500K baud Drive Link Transmit Address D2D Xmit Addr This parameter specifies the node address at which two words of data will be trans mitted A value of zero disables the trans mit function Drive Link Receive 1 Address D2D Rcv 1 Addr This parameter specifies the node address
62. Torq TP Sel 2 This parameter selects a torque block test point The value of that test point can be read from Testpoint Data 2 Parm 276 Testpoint Data 2 Torq TP Data 2 This parameter contains the data selected by Testpoint Selection 1 param 275 Testpoint Selection 3 Torq TP Sel 3 This parameter selects a torque block test point The value of that test point can be read from Testpoint Data 3 Parm 278 Testpoint Data 3 Torq TP Data 3 This parameter contains the data selected by Testpoint Selection 3 param 277 Testpoint Selection 4 Torq TP Select 4 This parameter selects a torque block test point The value of that test point can be read from Testpoint Data 4 Parm 280 Testpoint Data 4 Torq TP Data 4 This parameter contains the data selected by Testpoint Selection 4 param 279 5 66 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units
63. V W and PE DC TE Drive Catalog Cable per Phase T amp B Part No Cable per Phase T amp B Part No 3 Cable per Phase T amp B Part No 3 Number Qty mm AWG Qty Number Qty mm AWG Qty Number Qty AWG Qty Number 1336E A040 1 53 5 1 0 8 54153 1 13 3 6 2 54135 1 13 3 6 1 54135 1336E A050 1 85 0 3 0 8 541631 1 13 3 6 2 54135 1 13 3 6 1 54135 1336E A060 1 107 2 4 0 8 541681 1 13 3 6 2 54135 1 212 4 1 54139 1336E A075 2 53 5 1 0 8 54109 1 33 6 2 2 54109 1 212 4 1 54139 8 54109 1336 100 2 85 0 3 0 8 54111T 1 424 1 2 54148 1 33 6 2 1 54142 8 54111B 1336E A125 2 107 2 4 0 8 54112T 1 67 4 2 0 2 5410 1 33 6 2 1 54142 8 541128 1336 060 1 424 1 8 541471 1 8 4 8 2 541311 1 13 3 6 1 541351 1336 075 1 53 5 10 8 541531 1 13 3 6 2 54135 1 13 3 6 1 54135 1336 100 1 85 0 30 8 541631 1 13 3 6 2 54135 1 13 3 6 1 54135 1336 125 1 107 2 4 0 8 54168 1 26 7 3 2 541471 1 21 2 4 1 541391 1336E BX150 1 107 2 4 0 8 54168 1 267 3 2 541471 1 212 4 1 541391 1336 150 2 53 5 10 8 54109 1 33 6 2 2 54110 1 212 4 1 541391 8 54109 1336 B200 2 85 0 3 0 8 54111T 1 424 1 2 54148 1 26 7 3 1 541421 8 54111B 1336 250 2 107 2 4 0 8 54112 1 67 4 2 0 2 54110 1 33
64. available X Service Factor 94 not available X Feedback Device Type 150 mode 7 not available X Calculated Torque 267 not available X Precharge Timeout 225 min value 0 Compatible Compatible with exception X V3 04 VP must be used with V4 02 SA and V4 02 Language or higher for B800 H Frame drive support Compatible with exception X V3 04 VP MUST be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Calculated Torque 267 non functi X Perunit Motor Curr 185 non funct X Perunit Motor Volt 186 non funct X Transistor Diag 257 bit 12 non funct Compatible with exception X Drive Comm 9 19 non linkable X Drive Comm Tx Rx 14 19 max value 219 X Torque Stop Configuration 58 not available X Service Factor 94 not available X Feedback Device Type 150 mode 7 not available X Calculated Torque 267 not available X Precharge Timeout 225 min value 0 X Perunit Motor Current 185 not available X Perunit Motor Voltage 186 not available X Transistor Diagnostics 257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 92 min value 150 X Motor Poles 233 max value 12 X Base Motor Speed 229 max val 6000 Compatible with exception X V3 04 VP must be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 not available X Perunit Motor Voltage 186 n
65. sa Signal Drive Enable NO Motor Thermoguard NC Normal Stop NC External Fault NC Input Common Fault Output NC Fault Output COM Fault Output NO UT 1 Chapter 2 Installation Wiring Figure 2 30 Reference Signal Connections PLC Comm Adapter O O O O OO OOOO A gt Common Relay lt gt Drive Norm Enable Stop Motor Ext Thermo Fault Refer to Parameter 58 description for explanation of modes 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 10 Comm 10 Analog Analog Analog Analog Analog Analog Analog In 2 In 3 In 4 Analog Out Ou2 outs 1 Note If using a pot as an input 2 5KQ min Pin jumper J3 on the PLC Communication Adapter Board Enables or Disables the BRAM Battery Backup RAM Write function as follows Jumpered 1 2 Enabled Jumpered 2 3 Disabled The PLC Communication Adapter Board 120V 24V jumper settings for 1 0 circuits J8 J11 are detailed in the 1336 FORCE PLC Communications Adapter User Manual Publication 1336 FORCE 5 13 Switch Settings There DIP switches and jumpers located on the PLC Communications Adapter Board that have been preset at the factory Communication is received through Channels A and B This communication protocol is defined through SW U2 US If you need to reconfigure the switches or jumpers consult the 1336 FORCE PLC Communications
66. to a stop This type of fault can be removed by doing a Clear Faults command after the condition that caused the Drive to trip has been removed Drive Warning A Drive Warning is simply an undesirable condition that exists within the Drive It will not cause the Drive to trip A Clear Faults command after the warning condition has been alleviated will remove the warning Everytime the Drive has any of the faults or warnings decribed above a fault warning message is logged in either the fault or warning queue This is designed to aid in troubleshooting Motor Control Board Faults amp Warnings There are two types of fault and warning queues for the Main Control Board configurable and nonconfigurable Configurable Faults amp Warnings The configurable fault queue contains faults that can be set up to either trip the drive or provide only a visual warning while the drive continues to operate Nonconfigurable Faults amp Warnings The nonconfigurable fault queue contains faults that you can t disable These faults are the result of a condition that could damage the Drive if allowed to persist The non configurable fault queue faults can be viewed in parameter 81 Fig 6 2 In addition to configurable amp non configurable faults there are the powerup faults Powerup Faults The powerup faults appear in parameter 80 Fig 6 3 These faults primarily consist of problems that could occur with powerup of both the curren
67. 10 An exit from precharge was requested 11 Precharge was skipped due to an enable dropout 12 An initial first precharge is executed 13 A high horsepower drive type is being used Enabling Fast Flux Up You can use fast flux up to achieve rated flux conditions and consequently high torque as fast as possible after an enable Under default conditions no fast flux up the drive brings the motor to rated flux conditions in a time proportional to the rotor time constant of the motor These times range from 50 milliseconds for small motors to several seconds for large motors If a high load is attempting to be started no acceleration occurs until that time has elapsed Enabling fast flux up can decrease that time by a factor of 5 to 10 You can enable the fast flux up function of the drive by setting bit 8 of Precharge Ridethrough Selection parameter 223 In this case Use Testpoint Select 1 parameter 273 to check the approximate fluxing time Enter a value of 86 into Testpoint Select 1 to display the fluxing time in Testpoint Data 1 parameter 274 The time delay is given in seconds x 0 000977 If the flux time is 0 no fast flux up occurs and the drive starts normally If at least 5096 of the commanded current is not measured you can configure the drive to fault at this time using CP Fault Warning Configuration Select P86 Understanding the Bus Voltage Tracker Chapter 6 Troubleshooting Forcing the Dri
68. 148 EncPos FdbkLOW 0 99 FaultTstpt Sel 0 149 Enc Pos Fdbk HI 0 100 Vel Ref 1 LOW 0 150 Fdbk Device Type None 101 Vel Ref 1 HI 0 0 rpm 151 Fdbk Tracker Gain 1 000 102 VelSclFctr1 1 000 152 Fdbk Filter Sel 0 103 Vel Ref2 LOW 0 153 Kn Fdbk Filter Gain 41 00 104 Vel Ref 2 HI 0 0 rpm 154 Wn Fdbk Filter BW 100 radian seconds 105 VelSclFctr2 1 000 155 Tach Velocity 0 00 rpm 106 Vel Trim LOW 0 156 Notch Filter Freq 135 Hz 107 Vel Trim HI 0 0 rpm 157 Notch Filter Q None 108 Vel Ref TP LOW 0 161 External Iq Ref 40 096 109 Vel Ref TP HI 0 162 Ext Trq Ref 1 40 096 110 Vel Ref TP Sel 0 163 Slave Torque 1 100 117 005 41 0 0 rpm 164 ExtTorg Ref 2 0 0 118 Jog Spd 2 0 0 rpm 165 ExtTorque 2 0 0 119 Preset Speed 1 0 0 rpm 166 Ext Torg Step 0 096 120 Preset Speed 2 30 0 rpm 167 Int Torq Ref 0 0 121 Preset Speed 3 0 00 rpm 168 Internal Iq Ref 0 0 122 Preset Speed 4 0 0 rpm 172 Ref TP Data 0 0 123 Preset Speed 5 0 0 rpm 173 Torq Ref TP Sel 0 125 Accel Time 10 0 seconds 174 Min Flux Level 100 126 Decel Time 10 0 seconds 175 Pos Mtr CurRefLmt 200 127 Rev Motor Spd Lim Base Motor Speed 176 Neg Mtr Cur Ref Lmt 200 128 Fwd Motor Spd Lim Base Motor Speed 177 Motor Power Lmt 200 129 Max Rev Spd Trim base speed 178 Regen Power Lmt 20096 130 Max Fwd Spd Trim Base Speed 179 Pos Mtr CurRefLim 100
69. 4096 100 Motor Current Ip 100 0 0 0 200 0 180 Sink X x 4096 100 Motor Current Ip 100 096 200 096 0 096 Di DT Limit Di Dt Limit This parameter determines the largest al lowable rate of change for the Iq reference signal This number is scaled in units of maximum per unit Ig every 2 msec Computed Power Computed Power Calculated product of Torque Reference time motor velocity feedback A 125 msec filter is applied to this result Positive values indicate motoring power negative regenerative power Torque Limit Status Torq Lmt Stat This parameter provides a bit coded sum mary of any condition that may be limiting either the IQ current or torque reference 0 Positive Motor IQ Limit 1 Positive NTC Inverter Foldback 2 Positive IT Inverter Foldback 3 Positive Maximum Inverter Current 4 Positive Torque Limit 5 Positive Torque Power Limit 6 Positive Autotune Torque 7 Not Used 8 Negative Motor Iq Limit Torque Mode Status Torq Mode Stat This parameter provides a bit coded indica tion of the currently active torque mode If the drive is running this parameter reflects the Torque Mode selected in Torque Mode Sel P 53 If the drive is coasting or stopped this parameter will indicate the ac tive torque mode is zero If in min or max mode then the corresponding min max bit will be set along with the appropriate speed or torque mode bit as deter
70. 57 See Page 5 58 See Page 5 58 See Page 5 58 See Page 5 58 See Page 5 58 See Page 5 59 See Page 5 59 See Page 5 59 See Page 5 59 See Page 5 60 See Page 5 60 See Page 5 60 See Page 5 60 See Page 5 60 See Page 5 60 See Page 5 60 See Page 5 60 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 61 See Page 5 62 See Page 5 62 See Page 5 62 Chapter 5 Programming Parameters Table 5 A 1336T Numerical Parameter Table Cont Param No Parameter Name Element Group 246 247 248 249 250 251 252 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 273 274 275 276 ZIT 278 219 280 281 282 283 284 285 286 287 288 289 290 Base Slip Frequency Base Slip Freq Max Base Slip Freq Min Kp Slip Regulator Ki Slip Regulator Kp Flux Regulator Ki Flux Regulator Autotune Diagnostics Selection Transistor Diagnostics Configuration Inverter Diagnostics Result 1 Inverter Diagnostics Result 2 Iq Offset Id Offset Phase Rotation Current Reference Phase Rotation Frequency Reference Motor Current Magnitude Feedback Motor Voltage Magnitude Stator Frequency Calculated Torque DC Bus Voltage Filtered Motor Velocity Feedback Inverter Temperature Feedback Limited Motor Flux Testpoint Selection Testpoint Data Testpoint Selection 2
71. 6 2 1 54142 8 541128 1336 250 3 53 5 1 0 24 54109 1 67 4 2 0 2 54110 1336 250 3 53 5 10 24 54109 1 67 4 2 0 2 54110 1336 300 3 67 4 2 0 24 54110 1 4240 2 54148 NA NA 1336E BP 300 3 67 4 2 0 24 54110 1 4240 2 54148 NA NA 1336 350 3 85 0 3 0 24 5411 1 424 1 2 54148 NA NA 1336E BP350 3 85 0 3 0 24 54111 1 424 1 2 54148 NA NA 1336E B400 3 107 2 4 0 24 54112 1 4240 2 54148 NA NA 1336E BP400 3 107 2 4 0 24 54112 1 4240 2 54148 1336 450 3 127 0 250 24 54174 1 4240 2 54148 1336 450 3 127 0 250 24 54174 1 4240 2 54148 1336 500 3 152 0 300 24 54179 1 53 5 1 0 2 54109 NA NA 1336E B600 3 152 0 300MCM 24 54179 1 53 5 1 0 2 54109 NA NA 1336E C075 1 33 6 2 8 541421 1 13 3 6 2 541351 1 8 4 8 1 541311 1336E C100 1 53 5 10 8 541531 1 13 3 6 2 541351 l 13 3 6 1 541351 1336E C125 1 67 4 2 0 8 541581 1 26 7 3 2 541471 1 13 3 6 1 541351 1336 150 1 107 2 4 0 8 5411 1 4240 2 54148 1 13 3 6 1 54135 1336 200 2 67 4 2 0 8 54110T 1 4240 2 54148 1 26 7 3 1 541421 8 541108 1336 250 2 85 0 3 0 8 54111T 1 67 4 2 0 2 5410 1 26 7 3 1 541421 8 54111B 1336E CX300 3 85 0 3 0 16 54111 NA NA 1336 300 3 8
72. 9 7 5 30 7 5 30 25 40 375 600 600 600 80 600 30 45 30 45 7 6 02 1143 1829 1829 182 9 76 2 1829 X40 X60 40 60 25 40 375 600 600 600 250 600 D 45 112 45 112 122 305 114 3 182 9 182 9 182 9 61 0 914 60 X150 60 150 40 100 375 600 600 600 200 300 E 112 187 112 224 122 533 143 1829 1829 1829 1829 182 9 150 250 150 300 40 175 375 600 600 600 600 600 F 187 336 187 336 183 533 1143 182 9 182 9 182 9 182 9 182 9 250 450 250 450 60 175 375 600 600 600 600 600 G 187 448 187 448 183 533 1143 182 9 182 9 182 9 182 9 182 9 X250 600 250 600 60 175 375 600 600 600 600 600 Type A Motor Characteristics No phase paper or misplaced phase paper lower quality insulation systems corona inception voltages between 850 and 1000 volts Type B Motor Characteristics Properly placed phase paper medium quality insulation systems corona inception voltages between 1000 and 1200 volts 1329R Motors These AC Variable Speed motors are Power Matched for use with Allen Bradley Drives Each motor is energy efficient and designed to meet or exceed the requirements of the Federal Energy Act of 1992 All1329R motors are optimized for variable speed operation and include premium inverter grade insulation systems which meet or exceed NEMA 1 Part 31 40 4 2 A 3 Appendix
73. A profile name will be displayed on line 2 of the HIM Pressing the Increment Decrement keys will scroll the display to a second profile if available HIM gt Drive Once the desired profile name is dis played press the Enter key An informa 38028 882802 tional display will be shown indicating the version numbers of the profile and drive m Press Enter to start download I HIM gt Drive 60 parameter number currently being downloaded will be displayed on line 1 of the HIM Line 2 will indicate total progress Press ESC to stop the download A successful download will be indicated VET 35 45 rive gt by COMPLETE displayed on line 2 of COMPLETE the HIM Press Enter If ERROR is displayed see Chapter 6 E m 1 e S E B Co k Chapter 3 Programming Terminals Search Mode The Search Mode is only available with a Series version 3 0 or Series B HIM This mode allows you to search through the parameter list and display all parameters that are not at the factory default values This mode also offers an option to search parameter links for links that are not factory defaults From the Status Display press Enter or any key Choose Mode will be shown Press the Increment or Decrement key until Search is displayed Press Enter The HIM will display the Search Parameters or Search Link
74. A025 B050 and BX060 Appendix Drive ratings can be affected by a number of factors If more than one factor exists consult Allen Bradley Co Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive in 50 C Ambient Derating Factor for Enclosed Drive in Ambient between 41 amp 50 96 of Drive Rated Amps 65 7 1 1 I 1 I I 1 I 1 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency 2 of Drive Rated Amps 50 7 1 I 1 1 1 1 1 I I 1 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz of Drive Rated Amps 60 I 1 1 I 1 1 I I I I I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz of Drive Rated Amps I I I I I I I I I 1 2 3 4 5 6 T 8 9 10 11 12 Carrier Frequency in kHz Appendix A Standard Rating for Enclosed Drive in 40 C Ambient amp Open Drive in 50 C Ambient Derating Factor for Enclosed Drive in Ambient between 41 amp 50 Figure 5 of Drive 1336T A040 Rated Amps 65 7 I 1 1 I I I 1 I 7 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz Figure 6 of Drive 1336 050 Rated Amps 65 7 I I I I I 1 I 1 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz Figure 7 of Drive 1336T A060 Rated Amps 60 7 I I I I 1 I 1 1 1 I 1 2 3 4 5 6 7 8 9 10 11 12 Carrier Frequency in kHz Figure 8 of Drive 100 1336T A075 and B150 Rated Amps 95 9095 85 80
75. AC supply line and the drive power input terminals In general it is best to install the filter on the same mounting plate physically close and with short connections to the drive Important To assure that the RFI filter is effective the motor cable must be shielded or armored and the guidelines given in this manual must be followed Refer to Motor Cables in the Appendix RFI Filter Leakage Current The optional RFI filter may cause ground leakage currents Therefore an appropriate ground connection must be provided refer to grounding instructions on the following page ATTENTION To guard against possible equipment damage RFI filters can only be used with AC supplies that are nominally balanced with respect to ground In some countries three phase supplies are occasionally connected in a 3 wire configuration with one phase grounded Grounded Delta The filter must not be used in Ground Delta supplies Grounding Chapter 2 Installation Wiring Refer to the grounding diagram on the following page The drive must be connected to the system ground at the power ground PE terminal provided on the power terminal block TB1 Ground impedance must conform to the requirements of national and local industrial safety regulations NEC VDE 0160 BSI etc and should be inspected and tested at appropriate and regular intervals In any cabinet a single low impedance ground point or ground bus bar should be used
76. Adapter User Manual 2 43 Chapter 2 Installation Wiring 2 44 Discrete Outputs Fault outputs from the 1336 FORCE are supplied at terminal block TB20 on the PLC Communication Adapter Board Fault outputs provide warning or fault signals based on drive programming Fault NC Fault Com Fault NO A form C NO NC relay contact on the Standard Adapter Board programmed to provide external warning or fault change of state signals Contact Ratings 2A 115 VAC 2A 30 VDC Figure 2 31 Typical Digital Output l Fault NO Digital Out O Fault Com Digital Out O Fault NC Digital Out O Discrete Inputs Discrete Inputs to the 1336 FORCE are only supplied when a PLC Communication Adapter Board is used These inputs are supplied at terminal block TB20 Discrete inputs serve to enable and stop the Drive as well as provide checks on drive and motor operation Figure 2 32 Typical Digital Output INPUT COM Digital Common Common EXT FAULT Digital Out 115 AC 24V DC HIGH EXTERNAL FAULT NORM STOP Digital In MOTOR THERMO Digital In DRIVE ENABLE Digital In ENABLE Chapter 2 Installation Wiring Figure 2 33 illustrates a typical stop control scheme that might be used when the 1336 FORCE is equipped with a PLC Communication Adapter Board For further information on PLC Communication Adapter board operation and configuration refer to the
77. After a start command is issued there is a 0 5 sec flux up delay before the motor will start accelerating with sensorless control This delay can be eliminated in subsequent accelerations from 0 speed by configuring the drive to decel down to a preset speed of 0 rather than decelerating to stop Increasing Speed Range Speeds down to zero speed may be commanded when Param 150 is set to 7 As operation nears 0 speed cogging may result A 31 Appendix A Software Block Diagram Standard Adapter SCANports 1 SCANport Analog 1 Select 364 2 SCANport Analog 1 Scale 366 3 SCANport Analog 1 In 365 SCANport 4 1 5 2 cs 3 SCANport Analog Out 379 4 1 SCANport Analog 2 Select 367 5 2 6 3 SCANport Analog 2 Scale 368 gt SCANport Analog 2 In 369 4 5 6 SCANport Image In Pes arning selec Fault Status 407 Data In A1 310 Si Warning Status 408 SCANport Image Out 1 Data In A2 311 1 SCANport 1 Timeout Data Out A1 320 2 Data In B1 312 2 SCANport 2 Timeout Data Out A2 321 1 3 Data In B2 313 3 SCANport Timeout Data Out B1 322 2 4 Data In C1 314 4 SCANport 4 Timeout Data Out B2 323 3 5 Data In C2 315 5 SCANport 5 Timeout Data Out A1 324 4 6 Data In D1 316 boss Data Out A2 32 13 Illegal Drive Type Not Configurable ata Out A2 325 5 Data In D2 317 14 Different Drive Type Not Configurable
78. Blinking e Motor Poles Number of Motor Poles Nameplate Undervoltage Setpoint Sets minimum threshold voltage for a Bus undervoltage condition Should be set to a value of 200V for 230V AC drives and 400V for a 460VAC drive e Torque Mode Select This parameter is used to select the source for the drive torque reference Must be set to Speed Mode for auto commission ing To change a value in any of 10 Drive Data menu parameters the following sequence which shows you how to change motor base speed should be SEL AB0282A Blinking Box and E5 ESC AB0270A and followed Base Motor Speed 1750 RPM Press the SEL key to move from the Drive Data Menu parameter to the Drive Data Value When this is successful a blinking box will appear next to the Ram value as shown in the following figure Base Motor Speed 5 1750 RPM Use the INC DEC keys to scroll to the desired value then press the ENTER key to accept the new value When you have entered all Drive Data menu parameters press the ESC key to return to the Startup Menu The display should now appear as shown in the following example DRIVE DATA STARTUP Use the INC DEC keys to scroll thru the Startup menu until the Limits option is displayed The HIM display should now appear as shown below Press the ENTER key to move into the Limits menu LIMITS STARTUP ATTENTION The Motor Pole Entry is critical to all Autotune tests Ma
79. Current The RFI filter may cause ground leakage currents Therefore a solid ground connection must be provided as shown in the electrical configuration scheme shown on the following page Appendix B CE Conformity ATTENTION To guard against possible equipment damage RFI filters can only be used with AC supplies that are nominally balanced with respect to ground In some installations three phase supplies are occasionally connected in a 3 wire configuration with one phase grounded Grounded Delta The filter must not be used in Grounded Delta supplies or in an ungrounded wye configuration Electrical Configuration o1 51 Conduit 4 Wire Cable R L1 RFI S L2 Filter al T L3 PE y Y Ground Rod Grid Shield Terminated in Cable or Building Structure Steel Clamp on A Frame Drives Grounding RFI Filter Grounding Important Using the RFI filter may result in relatively high ground leakage currents Surge suppression devices are also incorporated into the filter Therefore the filter must be permanently installed and solidly grounded bonded to the building power distribution ground Ensure that the incoming supply neutral is solidly connected bonded to the same building power distribution ground Grounding must not rely on flexible cables and should not inclu
80. Data 4 10096 237 Lsigma Tune 18 0096 281 TP Select 5 0 238 Id Tune 30 0 282 TP Data 5 0 240 Iq Tune 95 4096 283 TP Select 6 0 24 Vde Tune 75 0 volts 284 TP Data 6 0 242 Vge Tune 367 0 volts 285 SelectforTstDAC1 0 243 Vde Maximum 356 0 volts 286 SelectforTstDAC2 0 244 Vque Maximum 367 0 volts 287 Ki Freq Reg 0 245 Vde Minimum 3 0 volts 288 Kp Freq Reg 0 246 Base Slip Freq 0 469 Hz 289 Kff Freq Reg 0 247 Base Slip Freq Max 2 00 Hz 290 Ksel Freq Reg 0 248 Base Slip Freq Min 0 50 Hz 291 Freq Track Filt 0 260 Iq Offset 0 292 Track Filt Type 3 261 Id Offset 40 293 Freq Trim Fil 5000 262 Ph Rot Cur Ref 50 294 MtrPhs RotErr 0000 0000 0000 0000 263 Ph Rot Freq Ref 3 0 Hz 295 MtrinducTestError 0000 0000 0000 0000 264 Mtr Cur Mag Fdbk 0 0 Amps 296 StatorRS TestError 0000 0000 0000 0000 265 Mtr Volt Fdbk 40 Volts 297 Id Test Errors 0000 0000 0000 0000 266 Stator Freq 0 000 Hz 298 Torque Blk Calc 0000 0000 0000 0000 267 Calc Torque 0 0 300 Adapter ID 2 268 DC Bus Voltage 0 volts 301 Adapter Version X XX 269 Filter Mtr Vel Fdbk 0 0 rpm 302 Adapter Config 270 Inv Temp Fdbk 0 deg 304 Language Select 0 Appendix C User Parameter Values No Name Default No Name Default Value 310 Data In A1 0 359 PotOffset 0 000 311 Data In A2 0 360 PotScale 1 000 312
81. Data In B1 0 361 Milli Amp Input 0 313 Data In B2 0 362 Milli Amp In Offset 30 000 mA 314 Data In C1 0 363 Milli Amp In Scale 42 000 315 Data In C2 0 364 SP Analog Sel 1 316 Data In D1 0 365 Sp Analog In 0 317 Data In D2 0 366 Sp An1 Scale 1 32767 320 Data Out A1 0 367 Sp Analog Select 1 321 Data Out A2 0 368 Sp Analog2 In 0 322 Data Out B1 0 369 SP An2 Scale 1 32767 323 Data Out B2 0 370 Analog Output 1 0 324 Data Out C1 0 371 Analog Out1 Offset 40 000 volt 325 Data Out C2 0 372 An Out 1 Scale 40 500 326 Data Out D1 0 373 An Out2 Scale 0 327 Data Out D2 0 374 Analog Out2 Offset 40 000 330 SP Port Enable Msk 0111 1111 375 An Out2 Scale 40 500 331 SP Direction Mask 0111 1111 376 mA Output 0 332 SP Start Mask 0111 1111 377 mA Output Offset 0 000 mA 333 SP 00 Mask 0111 1111 378 Regen Power Lmt 40 500 334 SP Ref Mask 0111 1111 379 Pos Mtr Cur Lim 0 335 SP Clr Fit Mask 0111 1111 384 SelectforTstDAC2 8 336 SP ResetDrv Mask 0111 1111 385 Input Mode 1 337 SP Local CntrlMask 0111 1111 386 Input Status 0000 0000 340 SP Stop Owner 0000 0000 387 Stop Select 1 0 341 SP Dir Owner 0000 0000 388 Stop Select 2 0 342 SP Start Owner 0000 0000 389 Accel Rate 1 10 sec 343 SP 001 Owner 0000 0000 390 Accel Rate 2 3 344 SP J og 2 Owner 0000 0000 391 Decel Rate 1 5000 345 SP Ref Owner 0000 0000 392
82. Data Out D1 326 6 15 SCANport Error Not Configurable Data Out D2 327 TB3 19 TB3 20 TB3 22 TB3 24 TB3 26 1B3 27 TB3 28 TB3 30 TB3 21 Input 1 Input 2 Input 3 Input5 Input7 Input8 Input9 TB3 25 Not Stop P59 C Status Status atus Status Status Enable TB3 29 Not S Rev F wd ExtFault SpdSel3 SpdSel2 SpdSe Enab COMMON Not S Rev F wd ExtFault SpdSel3 SpdSel2 SpdSe Enab Not S Rev F wd ExtFault 15219 SpdSel2 SpdSe Enab Stop Select 1 387 Not S Rev F wd ExtFault SpdSel2 SpdSe Enab Stop Select 2 388 i ot ev xt raul el e Discrete Input Mode 385 No Rev Ext Faul sha Sel2 Shd Se Enab Ded d ree Input Status 386 No MOP Inc ExtFau SpdSel2 SpdSe Enab Decel Rate 2 392 No Rev F ExtFau MOP Dec SpdSe Enab lstAcc 2nd Acc Ext Faul 2nd Dec Spd Se Enab RunRev Loc Rem Ext Fau Spd Sel Spd Se Enab RunRev StopType ExtFau SpdSe SpdSe Enab RunRev 1502 0 ExtFau SpdSe SpdSe Enab RunRev Inc Ext Faul Spd Sel Spd Se Enab RunRev Loc Rem Ext Faul Spd Sel Spd Se Enab Rev Fwd rim En Ext Faul is Spd Sel Spd Se Enab Rev Fwd ux Enable ExtFau Spd Se Spd Se Enab Spd Trq3 pd Trq2 Ext Faul Ptrim E Spd Se Enab Spd Trq3 pd Trq2 Ext Faul Flux En Spd Se Enab Reverse orward Ext Fau i Reset Spd Se Enab Spd Trq3 pd Trq2 Ext Faul pd Trq1 Spd Sel Spd Se Enab Run Rev rim En Ext Faul eset Spd Sei Spd Se Enab Run Rev luxEnable Ext Faul ese Spd Sel Spd Se Enab Run Rev rim En Ext Faul amp Dis Spd Se Spd Se Enab Run
83. Encoder Connections eccrine ene si a kaa 2 24 Drive to Drive Communication 2 24 Standard Adapter Board soise RE ys Keay RES 2 26 Control amp Signal Wiring Standard Adapter 2 26 Interface Board Installation amp Removal 2 2 Standard Adapter Analog Inputs 2 28 Standard Adapter Analog Outputs 2 29 Standard Adapter Discrete Outputs 2 29 Pulse Input Standard Adapter Equipped Drives 2 29 Starting amp Stopping the Motor Standard Adapter Equipped Drives 2 32 Control Interface 2 3 Table of Contents Programming Terminals Start Up Control amp Signal Wiring PLC Comm Adapter Board Switch Settings PLC Comm Board Discrete Outputs PLC Comm Adapter Discrete Inputs PLC Comm Adapter Control Scheme 12 ve dte ead ds RR EUR RI EE ac RE Computer Connections Frame D Drives ControlNet Connections Frame D Configuration PLC Comm Adapter Chapter 3 Chapter Objectives 22s eese 9222 mne eme Description SER SR AIR uu
84. Fitr Bdwth 0 radian seconds 78 ax Dyn Brake Tmp 50 deg 31 Proc Trim Data 40 096 79 Dyn BrkTime Const 10 sec 32 Proc KI Gain 1 000 80 PwrUp DiagFltSts 0000 0000 0000 0000 33 Proc Trim KP Gain 1 000 81 Non Config Fit Sts 0000 0000 0000 0000 34 Proc Trim Lo Lmt 100 0 82 CP Config Fit Sts 0000 0000 0000 0000 35 Proc Trim Hi Lmt 100 0 83 VP Config Fit Sts 0000 0000 0000 0000 36 Proc Trim Out Gain 1 00 84 CP Config Warn Sts 0000 0000 0000 0000 37 Process Trim Tstpnt 0 85 VP Config Warn Sts 0000 0000 0000 0000 38 Proc Trim TP Sel 0 86 CP Sel 0000 0000 0000 0000 40 Auto Tune Trq Lmt 50 096 87 CP wam Config Sel 0000 0000 0000 0000 41 Auto Tune Speed 0 85 x Base Motor S pd 88 VP FaultSelect 1111 1111 1111 1111 43 VP Desired BW 5 00 radian seconds 89 VP Warn Config Sel 0000 0000 0000 0000 44 Autotune Status 50 00 radian seconds 90 Abslte Ovrspd Thrsh 0 1 x base speed 45 VP Damping Factor 1 0 91 Stall Delay 1 0 sec 46 Total Inertia 20 0 sec 92 MtrOverload Limit 200 096 Appendix C User Parameter Values No Name Default Value No Name Default Value 94 Service Factor 1 00 144 Vel Fdbk TP HI 0 95 MtrOvrld Speed 1 0 8 x Base Speed 145 Vel Fdbk TP Select 0 96 MotorOvrld Speed 2 0 8 x Base Speed 146 Vel Fdbk 00 rpm 97 Min Ovrld Lim 100 096 147 Scaled Vel Fdbk 0 98 Fault Tstpt Data 0
85. Fwd Run Rev 0g Ext Faul pdSel3 SpdSel Spd Se Enab Power Cycle or Reset required to take effect cn cn cn Co C 22 20 20 20 23 n n n n Co n n n Co Co CO A 32 GOO N O MOP Inc 393 Port Enable MOP Value 394 Local Mask 337 Start Mask 332 Jog Mask 333 Appendix Logic Command 52 Permanent Link Bit0 Ramp Stop Software Block Diagram Standard Adapter Logic Status 56 Bit 0 Run Ready Bit 1 Running Bit 2 Command Direction 1 FWD 0 REV Bit 3 Rotating Direction 1 FWD 0 REV Bit 4 Accelerating Bit 5 Decelerating Bit 6 Warning Bit 7 Faulted Bit 8 AT Set Speed Bit9 Local A N Mask 330 Clear Fault Mask 335 Bit Start Bit 10 Local B Direction Mask 331 Bit2 Jog1 Bit 11 Local C CBA p Bit3 Clear Fault Bit 12 AT Zero Speed 000 No Change Bit 4 Forward Bit13 RefA 001 External Ref 1 815 Reverse BI TA Rer 010 Preset Speed 1 i i 2 Reference Mask 334 Bia Coast Stop Logic Status 57 Preset Spee Bit9 Velocity Ramp Available Flux Read 87 6 101 Preset Speed 4 Reset Drive Mask 336 Bit 10 Flux Enable a 110 PresetSpeed 5 Bit11 Process Trim Enable Bit 2 Diagnostic Complete E 111 Extemal Ref 2 Breeton Owner 31 Bit 12 Vel R
86. Hard fault see Troubleshooting 8 Refer to Para 59 to configure Start amp Stop type 9 Digital Pot Value Zeroed When Stop Asserted 2 38 19 20 Ist Spd Tq3 Spd Tq3 2nd Spd Tq2 Spd Tq2 Ist Spd Tq1 Spd Tql 2nd Proc Trim Flux En 24 25 Flux En Proc Trim Reset Ramp Dis 21 Fwd Ramp Dis Reset SpdSel3 22 Spd Tq3 Spd Tq2 Spd Tq1 Spd Sel2 26 Chapter 2 Installation Wiring Figure 2 26 Option L4 L4E Wiring 4 V 4 L4 L4E Options gt Typical of Each Input Typical 2470 470 Bu O ETDE GND 19 29 21 2 TB3 L t ttt 0 tee 4a 2 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Ep Contacts shown are general refer to Figure 2 24 for Input Mode selection and recommended contact types Option L4 L4E Contact Closure Interface Board Requirements Circuits used with Option LA LAE must be capable of operating with low true logic Reed type input devices are recommended In the low state external circuits must be capable of a sinking current of approximately 10mA to pull the terminal voltage low to 3 0V DC or less In the high state external circuits must allow the terminal voltage to rise to a voltage of 4 0 5 0V DC The L4 L4E option is compatible with the following Allen Bradley PLC modules 1771 OYL 1771 OZL 2 3
87. Iq IN MOTOR PER UNIT IT INVERTER PROTECTION IT INVERTER PROTECTION LIMIT STATUS OVERLOAD CURRENT LIMIT TO MOTOR CURRENT LIMIT NOT PENDING SELECTION SELECT lt 83 CONFIGURABLE FAULT WARNING 49 Appendix A VELOCITY LOOP AUTOTUNE AUTOTUNE DIAGNOSTIC AUTOTUNE AUTOTUNE SELECTION TORQUE SPEED INVERTER TRANSISTOR DIAG AUTOTUNE STATUS MOTOR PHASE ROTATION TEST LO MEASURE RS MEASURE EMO NS ate AUTOTUNE ID MEASURE INHIBIT FRICTION UPDATE TORQUE BLOCK CALC MOTOR INERTIA TOTAL INERTIA MEASURE MOTOR INERTIA MEASURE SYSTEM INERTIA UPDATE VELOCITY LOOP GAINS LOGIC CONTROL DRIVE STOPPED TORQUE UMIT AUTOTUNE STATES VELOCITY Kj VELOCITY VELOCITY Kp LOOP VELOCITY GAIN CALCULATIONS DESIRED LOOP X XX RAD SEC BANDWIDTH DIDT LIMIT DAMPING X X FACTOR ao ERROR FILTER BW AUTOTUNE PROCEDURE 1 RUN TRANSISTOR DIAGNOSTICS SET 0 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND 2 RUN PHASE ROTATION TEST SET BIT 1 IN PARM 256 AND SET START BIT INLOGIC COMMAND CHECK SIGN OF VELOCITY FEEDBACK PARM 146 AGAINST FREQ REF PARM 263 STOP DRIVE AND CLEAR PARAMETER 256 SWAP ENCODER PHASES IF NECESSARY TO GET SIGNS TO MATCH 3 RUN TORQUE AUTOTUNE SET BITS 2 THROUGH 5 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND 4 RUN VELOCITY AUTOTUNE ENTER DESIRED BANDWI
88. Ki Flux Autotun Diag Sel Ph Rot Cur Ref Ph Rot Freq Ref Torq TP Sel 1 Torq TP Data 1 Proc Trim Output Proc Trim Ref Proc Trim Fdbk Proc Trim Select Proc Trim Filtr W Proc Trim Data Proc Trim Ki Proc Trim Kp Proc Trim Lo Lmt Proc Trim Hi Lmt Proc Trim Out K Proc Trim TP Proc Trim TP Sel Vel Ref Out Low Vel Ref Out Hi Accel Rate 1 Accel Rate 2 Decel Rate 1 Decel Rate 2 Mop Increment 388 Stop Select 2 Phs Test Rot Err Lo Test Error Rs Test Error Id Test Error Torq Calc Error Velocity Reg Torque Ref Torque Block Vel Autotune 134 Vel Reg Output 135 Vel Reg TP Low 136 Vel Reg TP Hi 137 Vel Reg TP Sel 138 Velocity Error 139 Ki Velocity Loop 140 Velocity Loop 141 Kf Velocity Loop Torque Mode Sel Notch Filt Freq Notch Filt Q External Iq Ref Ext Torq Ref 1 Slave Torque 96 1 Ext Torq Ref 2 Slave Torque 2 Ext Torque Step Int Torque Ref Internal Ig Ref Torque Ref TP Torq Ref TP Sel Min Flux Level Pos Mtr Tor Lmt Neg Mtr Tor Lmt Motor Power Lmt Regen Power Lmt Pos Mtr Cur Lmt Neg Mtr Cur Lmt Di Dt Limit Computed Power Lmt Stat Torq Mode Stat PWM Frequency Prech Rdthru Sel Undervoltage Setpt Bus Precharge Timeout Bus Ridethru Timeout CP Options Ki Freq Reg Kp Freq Reg Kff Freq Reg Ksel Freq Reg Freq Track Filt Track Filt Type Freq Trim Filt Auto Tune Torque Auto Tune Speed Vel Desired BW Auto Tune Status Vel Damp Factor Total Inertia Auto Tune TP Auto Tune TP Sel
89. Ki Velocity Loop Kp Velocity Loop Kf Velocity Loop Motor Inertia Autotun Diag Select Chapter 5 Programming Parameters Figure 5 2 Standard Adapter Parameters cont FILE 4 Diagnostics Scaled Vel Fdbk Enc Pos Fdbk Low Enc Pos Fdbk Hi Int Torque Ref Internal Iq Ref Computed Power Perunit Motor Current Perunit Motor Voltage Motor Cur Fdbk Motor Volt Fdbk Freq Command DC Bus Voltage Filt Vel Fdbk Inv Temp Fdbk Lim Motor Flux Input Status Mop Value Pulse Value Logic Options Autotune Diag Sel Trans Diag Disable Inverter Diag 1 Inverter Diag 2 Iq Offset Id Offset Auto Tune TP Auto Tune TP Sel Logic Tstpt Data Logic Tstpt Sel Fault TP Fault TP Sel Vel Ref TP Low Vel Ref TP Hi Vel Ref TP Sel Vel Reg TP Lo Vel Reg TP Hi Vel Reg TP Sel Vel Fdbk TP Low Vel Fdbk TP Hi Vel Fdbk TP Sel Torq Ref TP Sel Torque Ref TP Torque TP Sel 1 Torque TP Data 1 Drive SW Version Drive Type Base Drive Curr Base Line Volt Adapter ID Adapter Version Adapter Config Language Select SP Comm Retries Max DB Power Max DB Temp DB Time Const Pwrup Flt Status Ncfg Flt Status CP Fit Status VP Fit Status CP Warn Status VP Warn Status CP Fault Select CP Warn Select VP Fault Select VP Warn Select SA Fault Select SA Warn Select SA Fault Status SA Warn Status Motor Overload Mtr Overload Lim Service Factor Mtr Overld Spd 1 Mtr Overld Spd 2 Min Overload Lmt Chapter 5 Programming Parame
90. Offset and P393 analog In1 Scale are set accordingly Analog Input 1 must be passed from the master drive to the slave drive and connected to the P101 Ext Vel Ref using the D2D protocol Setting up the Master drive requires that a transmit address be chosen An address 1 is chosen in this example P14 Drive Xmit Indirect 1 will have a value of 20 entered into it which means look to P20 Drive Xmit Data 1 P20 Drive Xmit Data 1 must be linked to P339 Analog In1 This is where the data comes from that will be transmitted Figure 4 5 Master Slave Communication Example Master P11 Drive Xmit Address Transmitter Station Address 1 P14 Drive Xmit Indirect 1 VP CP Parm or P20 20 P20 Drive Xmit Data 1 Non VP CP Parm Linked 339 Analog In 1 P339 Analog In 1 linked P101 Ext Vel Ref P392 Analog In1 Offset P393 Analog In 1 Scale Analog Inputs 0 10V Slave P12 Drive Receive 1 Address Transmitter you are getting data from 1 P16 Drive Receive Indirect 1 VP CP Parm or P22 101 Ext Vel Ref P102 Vel Scale Factor Used to Control Gear Ratio 4 19 Chapter 4 Startup 4 20 The slave drive is set up by first setting P12 Drive Receive 1 Address P12 contains the address of the tranmitter that you wish to receive data from In this example a value of 1 is entered indicating that data should be read from transmitter 1 P16 Drive Receive Indirect 1 s
91. Out C1 Data Out C1 This parameter displays the drive to SCANport image which is sent to some device on SCANport Data Out C2 Data Out C2 This parameter displays the drive to SCANport image which is sent to some device on SCANport Data Out D1 Data Out D1 This parameter displays the drive to SCANport image which is sent to some device on SCANport Data Out D2 Data Out D2 This parameter displays the drive to SCANport image which is sent to some device on SCANport SCANport Port Enable Mask Port Enable Mask This parameter selects which SCANport devices can control the Drive 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 5 72 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5
92. Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 186 Source x x 4096 100 0 motor voltage 0 0 0 0 800 0 220 Source x x amps Display units x 10 20 0 amps 0 1 amps 3 276 7 amps 221 Source x volt Non 460 volt 75 volt 575 volt 222 Sink x Hz None 4 000 Hz 1 000 Hz 12 000 Hz Precharge Ridethru Selection Prech Rdethru Sel Parameter 223 lets you choose options for the bus filter reference precharge ride through conditions and braking Use bits 0 through 4 to set the slew rate for the bus voltage tracker The bus voltage tracker slowly tracks changes in the actual bus voltage If none of the bits 0 through Parameter Number File group Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Conversion Chapter 5 Programming Parameters 223 Application Bus Reg Control linkable destination Bits None 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1 1 4 are set the slew rate is 0 05V second The precharge function of the drive limits the current to the bus capacitors when power is initially applied to the drive The precharge function is completed after a minimum 300 mill
93. Power Struct Type 0 48 Autotune TP Select 0 8 otor Cntrl Counter 0 0 sec 52 Logic Cmd Word 0000 0000 0000 0000 9 Drv Comm Tsk Intrvl 1 53 Torque Mode Sel 1 10 Dr Comm Baud Rate 0 54 Local InputStatus 0000 0000 0000 0000 11 Drv Comm Trans Addr 0 55 LocalOutputStatus 0000 0000 0000 0000 12 DivCommRev 1 Addr 0 56 Logic Status Low 0000 0000 0000 0000 13 Div Comm 2 Addr 0 57 Logic Status Hi 0000 0000 0000 0000 14 Dr Comm XmitInd 1 20 58 Torq Stop Config 0 15 Dr Comm Xmit Ind 2 21 59 Logic Options 0000 0001 1000 0010 16 1 1191 22 60 AtSetpoint 1 30 096 17 DrCommRcv1Ind2 23 61 AtSetpoint2 40 096 18 DrCommRcv2Ind1 24 62 Over Setpoint 1 40 096 19 2 192 25 63 Over Setpoint 2 0 0 20 DrComm XmitDatal 0 64 Over Setpoint 3 0 0 21 DrComm XmitData2 0 65 OverSetpoint 4 40 096 22 DrComm Rcv1 Datal 0 66 Setpoint Select 0000 0000 0000 0000 23 DrComm Rcv1 Data2 0 67 SpdSetpoint Tol base speed 100 24 DrComm Rcv2 Data 1 0 68 CurSetpoint Tol 2 096 25 DrComm Rcv2 Data2 0 69 Zero Spd Tolerance base speed 100 26 Process Trim Output 40 0096 70 Logic Testpoint Data 0000 0000 0000 0000 27 Process Trim Ref 40 0096 71 Logic Testpoint Sel 0 28 Process Trim Fdbk 0 00 72 Stop Dwell 1 0 sec 29 Process Trim Select 0000 0000 0000 0000 71 Dyn Brake Pwr 0 Watts 30 Proc Trim
94. Seconds 900 Radian Seconds 5 53 Chapter 5 Programming Parameters Tach Velocity Tach Velocity This word supplies a motor velocity feed back signal when a source other than an encoder is used This input will typically be linked to an analog input parameter from the adapter board Notch Filter Frequency Notch Freq This parameter sets the center frequency for an optional 2 pole notch filter The notch filter is enabled by selecting a value of 4 in parameter 152 Notch Filter Q Notch Filter Q This parameter sets the Quality Factor or Q for the 2 pole notch filter described in parameter 156 External Iq Reference External Iq Ref This parameter supplies an external Iq ref erence to the Drive The external Iq refer ence is summed with the internal Iq refer ence just prior to the current limiter External Torque Reference 1 External Torque Ref 1 This word supplies an external motor torque reference to the Drive The external torque reference can be selected by setting the Torque Mode Select parameter Parm 53 to a value of 2 Slave Torque Percent 1 Slave Torque 96 1 Ext Torq Ref 1 P162 is multiplied by a gain that is specified by this parameter This multiplier is scaled so that 4096 repre sents a gain of 1 0 100 External Torque Reference 2 Ext Torq Ref 2 This word supplies an external motor torque reference to the Drive The Exter nal Torque Reference can be s
95. Sink This parameter selects the functions ofthe Display Units inputs 1 9 at Drive Units None Factory Default 1 Minimum Value 1 Maximum Value 30 Enums Mode Input 1 Input2 Input 3 Input 4 Input 5 Input 6 Input 7 1 Status Stop Status Status Status Status Status 2 Start Stop Rev Fwd Ext Fault Spd 3 Spd 2 3 Start Stop Rev Fwd Stop ExtFault Spd 2 4 Start Stop Rev Fwd 1 2 ExtFault 1 2 Spd2 5 27 Start Stop Rev Fwd Pot Up Ext Fault Pot Dn Spd 2 6 Start Stop Rev Fwd Ext Fault Loc Rem 5 2 7 Start Stop Rev Fwd Ext Fault Jog Spd 2 8 Start Stop Rev Fwd Ext Fault Spd 3 Spd 2 9 28 Start Stop Pot Up Pot On Ext Fault Spd3 Spd 2 10 29 Start Stop Rev Fwd Ext Fault Pot Up Pot Dn 11 Start Stop istAcc 2ndAcc ExtFault ist Dec 2nd Dec 12 RunFwd Stop Run Rev Loc Rem ExtFault Spd3 Spd 2 13 RunFwd Stop Run Rev Stop Type ExtFault Spd 3 Spd 2 14 Run Fwd Stop Run Rev 1 2 ExtFault 1 2 Spd2 15 30 RunFwd Stop Rev Potup Ext Fault Pot Dn Spd 2 16 Run Fwd Stop Run Rev Loc Rem ExtFault Stop Type Spd 2 17 Start Stop Rev Fwd Proc Trim Ext Fault Ramp Spd 2 18 Start Stop Rev Fwd FluxEn Ext Fault Reset Spd 2 19 Start Stop Spd Trq3 Spd Trq 2 Ext Fault Spd Trqi Proc Trim 20 Start Stop Spd Trq3 Spd Tr 2 Ext Fault Spd Trq 2 Flux En 21 Start Stop Rev Fwd Ext Fault Ramp Reset 22 Start Stop Spd Trq3 Spd Trq2 Ext Fault Spd Trqi 5 2 23 RunFwd Stop Run Rev ExtFa
96. TP1 amp TP2 2 5V WITH DRIVE PROVIDING PEAK RATED DRIVE AMPS FEEDBACK CKT CURRENT SENSOR BURDEN RESISTOR VOLTAGE BETWEEN TP3 amp TP4 2 5V WITH DRIVE PROVIDING PEAK RATED DRIVE AMPS MOTOR CURRENT MAGNITUDE X X AMP PERUNIT INVERTER AMPS MOTOR CURRENT X X 45 Appendix A 36 Firmware Function Drive Fault Detection CONFIGURABLE FAULTS ENCODER FEEDBACK DEVICE 150 ls BIT 0 QUAD LOSS HSI 0 Tana ENCODER 1 FAULT CODE 5048 VELOCITY FEEDBACK PHASE Loss TESTPOINTS 18 ACCEL ERROR 98 19 QUAD Loss EDGE EXT FAULT QUAD LOSS Levee 54 gt 4 4 BIT 6 FAULT CODE 5054 gt O 98 gt 2 PHASELOSSEDGE LOGIC STATUS 98 22 AT LIMIT PHASE LOSS LEVEL lt 57 28 STOPPED BIT 5 FAULT CODE 1053 ZERO SPEED AND DELAY 56 X12 LOGIC CONTROL WORD STALL XX X SEC e DELAY MOTOR STALLED TRIP BIT 4 CODE 1052 FILTERED Iq SERVICE FACTOR C94 FILTERED x VEL I T PENDING MOTOR SPEED 1 3 _CODE 1051 OVERLOAD SPEED 2 97 LIMIT MOTOR OVERLOAD FUNCTION 427 FAULT TESTPOINTS BIT FIELDS PARAM LIMIT 1 PARAM LIMIT 2 MATH LIMIT VEL REF CP CONFIGURABLE FAULT WARNING MATH LIMIT VEL FBK PARAMETERS 82 84 86 and 87 MATH LIMIT VEL REGULATOR IT DESCRIPTION MATH LIMIT TORQUE REF BUS RIDETHROUGH TIMEOUT MATH LIMIT PROCESS TRIM PRECHARGE TIMEOUT B
97. The accompanying table details the expected output from each testpoint Figure 6 11 Main Control Board Test Points e DGND 45V 15V AGND 15V Enable VP Indicator CP Indicator 00 D1 02 03 04 05 i TP1 TP2 TP4 TP5 DC Bus FDBK TP14 TP16 Base Driver Board Control Encoder Feedback Signals J3 amp J4 must be set for same voltage TP23 co c TP24 E 2207 12VISO 150 COM Drveto a Drive SHD ES Interface Dcum Adapter Board Interface Testpoint Application Testpoint Application TP1 DGND la FDBK 0 to 5V sine wave same as Ig feedback TP2 45V Ic FDBK 0 to 5V sine wave same as Iq feedback TP3 15V 145 Command 0 to 10V sine wave TP4 AGND Ids Command 0 to 10V sine wave TP5 15V Master Reset 5V Reset TP6 2 5 0 2 5 V Id FDBK 0 to 5V sine wave TP7 0 to 2 5V Feed Forward Voltage 0 to 7 5V sine wave TP8 5V when faulted ISO 12V for Tachometer Encoder TP9 CHA Encoder Fdbk 0 to 5 Square Wave with respect ISO for Tachometer E ncoder to TP1 or TP25 DGND DGND TP10 Test DAC2 Development Use Only TP ll Square Wave Follows Carrier Frequency TP12 Test DAC1 Development Use Only TP13 CHB Encoder Fdbk 0 to 5V Square Wave with respect to TP1 or TP25 DGND TP14 Bus Voltage FDBK 4V 650 vdc TP15 Feed Forward Voltage 0 to 7 5V sine wave 6 34 AP Status Fault Out Ext Fault Norm Stop M
98. This phasing will be double checked later in this procedure Verify that the encoder feedback device is properly connected The encoder should be a quadrature device with a 12V input power requirement and either 12V or 5V differential outputs Jumpers J3 and J4 on the Main Control Board Figure 2 7 must be set for the desired output Phasing of the encoder should be checked in that A and A B and B are properly terminated This phasing will be double checked later in this procedure If your Drive is equipped with a Standard Adapter Board verify that the Pulse Input Voltage Selection jumper is set correctly for your application Jumper J13 should be set across pins 1 and 2 for 5V DC input and across pins 2 and 3 for 12V DC input voltage If your Drive is equipped with a PLC Comm Adapter Board verify that the standard I O inputs on the PLC Comm Board are configured for the proper input voltage level The Standard I O can be configured for operation at 24V DC or 120V AC To select the proper voltage set the jumpers on J5 J6 J7 and J8 across pin 1 and 2 if the input voltage level is 120V AC and across pins 2 and 3 if the input voltage level is 24V DC After all pre power checks have been completed the incoming power may be applied The application of power for each system can be different Make sure you know the safety controls associated with the system Power should only be applied if you have a thorough understanding of the 1336 FO
99. Tracker Filter Freq Track Filt Rotor frequency regulator filter in sensor less mode This parameter must not be changed Tracking Filter Type Track Filt Type Low frequency filter select of the frequency regulator in sensorless mode This param eter must not be changed by non factory personnel Frequency Trim Filter Freq Trim Filt Slip frequency regulator filter in sensorless mode This parameter must not be changed Motor Phase Rotation Errors Phs Test Rot Err This parameter indicates an error condition detected during the motor phase rotation test 1 Drive condition true 0 Drive condition false Bits are defined as Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums 288 Sink X None
100. V 5 PS V PS V RL1 5 RL1 9 IN POS BUS IN NEG BUS GATE CATHODE OUT POS BUS e OUT NEG BUS User Supplied 120 VAC or 24 VDC 1 4 7 10 1 4 1 5 J2 J1 4 SMP wi Precharge s m A10 Common Bus J3 x 2 TB1 aeo te Board 9 COMON lt 3 120VAC 2 3 10 wi 11 ICHARGE 1 2 3 12 AC LINE 25 Appendix Schematic Diagram 700 800 HP cont 15 AMPS 15 PS V PS V CT1 4000 1 R20 R21 R22 R23 U M1 AC 2 OUTPUT W M3 POWER PE CT2 4000 1 R24 R25 PSCOM Psv PS V RLi 5 RLI 9 NTC TO TO GATE TO GATE TO GATE TO GATE TO GATE TOGATE AHAN i DRIVER DRIVER DRIVER DRIVER DRIVER DRIVER BOARD U_AMPS W_Amps BUS BUS ACT2
101. VEL REF SELECT C RESET DRIVE C53 TORQUE MODE SELECT PRESET SPEED REF 2 PRESET SPEED REF 3 PRESET SPEED REF 4 PRESET SPEED REF 5 EXTERNAL REF 2 0 ZERO TORQUE 1 SPEED REGULATOR 2 TORQUE REGULATOR 3 MIN TORQUE OR SPEED 4 TORQUE OR SPEED INVERTER 5 SUM SPEED amp TORQUE DIAG 6 ZERO TORQUE RESULTS 7 ZERO TORQUE A 51 Appendix A 36T Firmware Function Logic Control LOGIC OPTION BITS MAINT START REGEN STOP MAINT START COAST STOP START TYPE A MOMENTARY START MAINT START REGEN STOP START TYPE B FLUX ENABLED JOG RAMP ENABLE RUN INHIBIT JOG COAST REGEN STOP 0 MOTOR SPINNING STOP INPUT TYPE A DISCRETE STOP STOP INPUT TYPE B DO POWER UP DIAG FLUX EN DO FLUX UP DIAG INHIBIT BITS z gt G INHIBIT DO START DIAG BITS AUTOTUNE COAST PUS PREGHARGE AC CONTACTOR PRESENT 1 COAST STOP HWSW 1 BIPOLAR VEL REF 0 UNIPOLAR NOT USED COMMON BUS DISCONNECT EXT FAULT COAST FAULT NO DRIVE ENABLE J8 1 RUN INHIBIT LOGIC STATE 0 4 LOSS OF FLUX UP AC CONTACTOR FAULT FLUX E INHIBIT C G H START JOG RESET SETPOINT SETPOINT OVER SETPOINT OVER SETPOINT 0 NONE OVER SETPOINT 3 1 COAST T 2 NORMAL OVER SETPOINT 4 3 1 LIMIT SETPOINT SELECT LAST STOP SPD SETPOINT TOL TYPE SETPOINT TOL ZERO SPEED T ACTIVE T
102. Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 235 Sink x PPR None 1 024 ppr 500 ppr 20 000 ppr 236 Sink 00 4096 100 0096 Stator Res 1 50 0 00 100 00 237 Sink 4096 100 Leakage Ind 18 00 0 00 100 00 238 Sink 4096 100 0 motor amps 30 0 0 0 75 0 240 Sink 1024 100 00 Iq Motor 95 40 0 00 100 00 241 Sink X x volts 16 1 volt L N 75 0 volts 468 0 volts 0 0 volts 242 Sink volts 16 1 volt L N 367 0 volts 0 0 volts 468 0 volts 243 Sink X x volts 16 1 volt line to neutral peak 112 5 volts 0 0 volts 468 0 volts 5 61 Chapter 5 Programming Parameters Vqe Maximum Constant HP Vqe Max Q axis voltage at which the motor enters field weakening Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED Data represented as
103. Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 13 Sink None 64 14 Sink None 20 219 15 Sink None 21 16 Sink None 21119 17 Sink None 29 219 18 Sink None 24 2110 19 Sink None 25 219 Drive Link Transmit Data 1 D2D Xmit Datal This parameter is the default data location of the first word of data for transmit Drive Link Transmit Data 2 D2D Xmit Data2 This parameter is the default data location of the second word of data for transmit Drive Link Receive 1 Data 1 D2D Rcv 1 Datal This parameter is the default data location of the first word of data for receive 1 Drive Link Receive 1 Data 2 D2D Rcv 1 Data 2 This parameter is the default data location of the second word of data for receive 1 Drive Link Receive 2 Data 1 D2D Rcv 2 Data 1 This parameter is the default data location of the first word of data for receive 2 Drive Link Receive 2 Data 2 D2D Rcv 2 Data 2 This parameter is the default data location of the second word of data for receive 2 Process Trim Output Proc Trim Output This parameter represents the scaled and limited output of the process trim function Process Trim consists of a general purpose PI regulator that uses unspe
104. Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Startup 1 Diagnostics 4 Startup 1 Diagnostics 4 Startup 1 Diagnostics 4 Startup 1 Diagnostics 4 Diagnostics 4 Startup 1 Velocity Torque 3 Startup 1 Diagnostics 4 Startup 1 Diagnostics 4 Diagnostics 4 Velocity Torque 4 Diagnostics 4 Velocity Torque 4 DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE DO NOT USE Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Param Descrpt See Page 5 62 See Page 5 62 See Page 5 62 See Page 5 62 See Page 5 62 See Page 5 62 See Page 5 62 See Page 5 63 See Page 5 63 See Page 5 63 See Page 5 63 See Page 5 63 See Page 5 63 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 64 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 65 See Page 5 66 See Page 5 66 See Page 5 66 See Page 5 66 See Page 5 66 See Page 5 66 See Page 5 66 See Page 5 66 See Page 5 67 See Page 5 67 See Page 5 67 See Page 5 67 See Page 5 67 See Page 5 67 See Page 5 67 See Page 5 68 See Page 5 68 See Page 5 68 Table 5 A 133
105. a bit is set to 1 the corresponding condition in the Drive will be reported as configured by parameter 88 If the bit is set to 0 the condition is not reported Bit Condition Encoder Feedback Loss Motor Stalled External Fault RMS Fault OOP OONN 5 44 Inverter Overemp Pending Motor Overtemperature Tri Motor Overload Pending I Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bus Ridethrough Timeout Fast Flux Up Current lt 50 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enum Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending I T Motor Overload Trip 12 Bit 10 11 12 13 14 15 87 Sink Bits None 0000 0000 0001 1111 0000 0000 0000 0000 88 Sink Bits None 0000 0000 0000 0000 M AA A Bit Condition 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending IT 14 Drive to Drive Fault 15 Inverter Overload Trip IT 89 Sink Bits None TOUT A nini 0000 0000 0000 0000 1111 1111 1111 1111 Condition Not Used Parameter Limit Math Limit Dynamic brake overte
106. all current links in the drive and change or clear these links From the Status display press Enter Choose Mode will be shown Press the Increment or Decrement key to reach the Link Option Press Enter and either the Clear Links or Set Links option screen will appear Toggle between the screens using the Inc or Dec key From the Clear Links screen use the Enter key to clear all links To change links use the Inc or Dec key to reach the link you wish to change Use the Sel key to access the 2nd line in the display and then change the link using the Inc or Dec key Choose Mode Process Choose Mode Link F 3 Clear 11 Links Drive SW Version lt l gt lt 0 gt Chapter 3 Programming Terminals Process Mode SEL When selected the Process mode will allow you to monitor 6 different pre programmed processes 2 of these processes can be displayed at one time Use the Enter key to select the Process Mode Press the Enter key again to access the Process Variable display Press the Enter key again if you wish to monitor the processes under Process Variable 1 Use the Inc Dec keys to view the six processes that are currently programmed on line 1 To move to the second Process Variable Line Press the Select key This will allow you to access the six processes under Process Variable 2 To return to a previous level press the Escape key Note HIM Se
107. and Offset 398 The PPR is the number of pulses per one revolution The scale determines the RPM at 1 per unit 4096 The edges are either one edge rising edge of the pulse or two edges the rising and falling edge of the pulse Two edges provide better resolution The offset sets the minimum speed For example You have a lead drive with a 1024 PPR encoder with a base speed of 1750 The follower uses the lead drive s encoder but runs at half the speed The follower s ppr should be 1024 scale should be set to 3500 offset should be 0 and a link should be made from external reference 101 to Pulse Value 399 Figure 4 12 Pulse Input Configuration MOTOR CONTROL BOARD Lead 396 395 397 398 Drive e D gt a e m Pulse Ext Speed foe DN Ref D MOP Configuration The MOP function is controlled by the L Option I O modes 5 9 and 15 The MOP up and MOP down increment and decrement the MOP value parameter 394 based on the MOP increment parameter 393 which is in RPM per second SCANport Image Configuration The SCANport image is a mechanism for transferring data to and from SCANport devices It operates the same way as a PLC image with its 1 4 1 2 3 4 and full racks The SCANport image is setup by a SCANport device such as a GD1 module or a RIO to SCANport gateway Chapter 4 Startup SCANport Control Configuration The SCANport controls are the functions that control the motor like start s
108. at rated current Set Parameter 256 Bit 4 to a value of 1 This selects the Motor Flux Test This test measures the amount of current required to produce rated motor flux and displays it in Parameter 238 The motor will accelerate to approximately two thirds base speed and then coast for several seconds This cycle may repeat several times The motor will then decelerate to a low speed before disabling If the motor will not accelerate increase parameter 40 Torque Limit until the motor accelerates Parameter 41 Speed Limit will change the speed the motor accelerates to The Transistor Diagnostics Phase Rotation Inductance and Resistance Tests MUST be run before this test can be performed Toggle the start bit in the logic command to start the test The Drive enable light will go out when the test is complete When a reading is obtained in Parameter 238 record it and then update the torque block gains If the test still faults refer to the flux test faults Flux Test Faults Typical values for rated motor flux range from 20 to 5096 Several faults have been added to identify some problems that can occur in the flux test Should the drive trip while the flux test is being performed the cause can be found using parameter 297 The possible faults are detailed in Table 6 D Table 6 D Flux Test Fault Descriptions Bit Fault 0 Set Parameter 41 set to less than 33 speed 1 Set Parm 238 lt 0 Current 2 Set Parm 238 gt 100 Drive cu
109. at which two words of data will be received A value of zero disables the receive function Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 01 Source 559 Display units x 100 1 01 0 00 9 39 05 Source None 0 0 65635 08 Source 520 886 x 10 sec 0 0 sec 65535 5 sec 09 Sink x ms 52 2 1 10 8 16 ms scan 9 18 ms scan 10 20 ms scan 10 Sink Kbaud None Refer to Document Update 0 0 2 11 Sink x None 0 0 64 12 Sink None 0 0 64 5 31 Chapter 5 Programming Parameters Drive Link Receive 2 Address D2D Rcv 2 Addr This parameter specifies the node address at which two words of data will be received A value of zero disables the receive function Drive Link Transmit Indirect 1 D2D Xmit Ind 1 This is a word parameter defining the pa rameter number which data will be fetched from to be transmitted in the high speed communication network CAN for the first word location of the transmitted message Drive Link Transmit Indirect 2 D2D Xmit Ind 2 This is a word parameter defining the pa rameter number which data will be fetched from to be transmitted in the
110. between the SCANport I O image and another device Refer to the appropriate manual for your specific adapter Chapter 4 Startup Within the 1336 FORCE drive the I O image table resembles the following 7 NotUsed it8 AtLimit 9 NotUsed 10 AtSetpoint 1 it11 AtSetpoint 2 Data Out D2 p 327 Logic Command Word Logic Status LOW parameter 52 parameter 56 1336 FORCE Drive Normal Stop Run Ready Controller Bitl Start Bitl Running 2 0919 Bit2 Command Dir Bit3 Clear Fault Bit3 Rotating Dir Logic Evaluation Block gt Logic Command 52 Bit4 Forward Bit4 Accelerating SP An 2 Sel p 367 SPAn2 Scale 369 SP In2 Value 368 Bit5 Reverse Bit5 Decelerating Data In 1 310 Preset Speed 1 p 119 6 Jog 2 Bit6 Warning Data In A2 p 311 Link Bit Cur Lim Stop Bit7 Faulted Data In B1 p 312 Bit8 Coast Stop Bit8 AtSetSpeed Data In B2 313 Bit9 Spd Ramp Dis Bit9 LocalA Data In C1 314 Speed Ref 1 p 101 Bit10 Flux Enable Bit10 LocalB Data In C2 p 315 Vel Scale Factor p 102 Bitll Process Trim Bitll LocalC Data In D1 p 316 Bitl2 Speed Ref A Bit12 AtZero Spd Data In D2 p 317 Bit13 Speed RefB Bit13 Speed RefA Bit14 Speed RefC Bit14 Speed Ref B Bit15 ResetDrive Bit15 Speed Ref C Logic 2 Logic Status LOW HI param 56 57 11772 j SP An Output p 379 Velocity Feedback p 146 FI y Dat
111. bits shown below are set then a problem with the associated test is indicated 0 Transistor U upper shorted 1 Transistor U lower shorted 2 Transistor V upper shorted 3 Transistor V lower shorted 4 Transistor W upper shorted 5 Transistor W lower shorted Iq OFFSET Iq Offset This parameter contains the LEM U offset required to null the current error no motor current flowing This offset is set automati cally by running the transistor diagnostics Id OFFSET Id Offset This parameter contains the LEM W offset required to null the current error no motor current flowing This offset is set automati cally by running the transistor diagnostics Phase Rotation Current Reference Ph Rot Curr Ref This parameter sets the current reference that will be used when the Phase Rotation test is run Parm 256 bit 1 Phase Rotation Frequency Reference Phase Rot Freq Ref This parameter sets the frequency refer ence that will be used when the Phase Rotation test is run Parm 256 bit 1 Motor Current Magnitude Feedback Motor Cur Fdbk Displays the actual RMS value of the motor current as determined from the LEM cur rent sensors This data is averaged and updated on a 50 millisecond basis Motor Voltage Magnitude Motor Volt Fdbk Displays the actual Line to Line RMS val ue of motor voltage This data is averaged and updated on a 50 millisecond basis 5 64 Parameter Number 259 Parameter Type
112. drive has been removed and bus voltage has decayed completely When changing the Input Mode parameter the functions of the TB3 inputs will change when power is reapplied to the drive Important If a Control Interface Option is not installed the Input Mode parameter must be set to 1 default and jumpers must be installed If the drive was shipped from the factory without the option these jumpers will have been installed The programming options of the Control Interface Option allow the user to select an input combination to meet the needs of a specific installation Appropriate selection of a combination may be done by using Figure 2 24 First determine the type of start stop direction control desired Then select the remaining control functions available Record the selected mode number below Selected Mode Number 2 35 Chapter 2 Installation Wiring Figure 2 23 provides the terminal designations for TB3 The maximum and minimum wire size accepted by TB3 is 2 1 and 0 30 mm2 14 and 22 AWG Maximum torque for all terminals is 1 36 N m 12 Ib in Use Copper wire only Figure 2 23 TB3 Terminal Designations NOT USED Included on L4E L5E amp L6E Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 2 22 1111 101 U U top Enable Input 2 Si EncoderA Encoder NOT B Encoder NOT A Encoder Corrrron 5
113. hardware and others configure Drive parameters for torque control with the attached motor NOTE The Quickstart procedure in Chapter 4 will take you step by step throught the Autotuning Procedure The information presented here explains how to manually tune specific areas ATTENTION Power must be applied to the Drive and the motor must be connected for some of the following tests Some of the voltages present are at incoming line potential To avoid electrical shock hazard or damage to equipment only qualified service personnel should perform the following procedures Test Overview Auto Tuning includes 6 tests all of which can be performed on a motor which is either coupled or decoupled from load These tests include The power structure and transistor diagnostics routines let you determine if any problems exist in the power structure of the drive and determine the probable cause of these problems The diagnostic software determines hardware problems through a series of system tests These tests are parameter dependent The test results depend on drive size motor size system wiring and other factors that affect system voltage and load impedance In most cases the software can properly determine if faults exist however there may be some installations where some faults cannot be properly checked In general test results are listed as failed if a questionable case is found You must review test results with respect to the whole dri
114. is removed there will be a loss of inherent regenerative braking effect and the motor will coast to a stop An auxiliary braking method may be required ATTENTION The 1336 FORCE Drive control circuitry includes Figure 2 22 illustrates the location of the terminal blocks that are used for interfacing control signals to a 1336 FORCE equipped with a Standard Adapter Board Figure 2 22 Terminal Block Locations 1 Power Terminal Block TB10 11 Control amp Signal Wiring TB3 Control Interface Option TB4 For Factory Use Only TB6 For Factory Use Only Al La TB9 480V Output F Frame Only 9 Shield Terminals TB10 11 oS TB4 n 1 TE TB I mi EH HERE TE Control Interface TB6 TB10 h Opto TN TBI erminais Frames D E Frame F RST TB3 TB3 aaa 118311 la 10 11 TE U V W TB U V W Location amp Brake Location amp Brake Terminals 7 Terminals TA m PE Ground Ground Frame G Frame H 2 34 Chapter 2 Installation Wiring Control Interface Option TB3 The Control Interface Option provides a means of inter
115. over a 40 1 Speed Range 1 5 Chapter 1 Introduction Software Compatibility mE PLC COMM ADAPTER BOARD Not Compatible Not Compatible Key MOTOR CONTROL BOARD Compatible Compatible with exception X Torque Stop Configuration 58 non functional X Service Factor 494 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functional Compatible with exception X Torque Stop Configuration 58 non functional X Service Factor 494 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functional X Perunit Motor Current 185 non functional X Perunit Motor Voltage 186 non functional X Transistor Diagnostics 257 bit 12 non functional VP z Velocity Processor EZ Not Compatible Compatible with exception X Drive Comm 9 19 non linkable X Drive Comm Tx Rx 14 19 max value 219 X Torque Stop Configuration 58 not available X Service Factor 494 not available X Feedback Device Type 150 mode 7 not available X Calculated Torque 267 not available Compatible with exception X V3 04 VP must be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support Compatible with exception X V3 04 VP must be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 non functional X Perunit Motor Vo
116. the sequence that is required to start up the 1336 FORCE Drive Figure 4 1 Bulletin 1336 FORCE Start Up Sequence PRE POWER CHECKS External Internal Communication Wiring Checks Drive Checks Configuration LIVE CPOWER CHECKS Voltage Standard Measurements Checks PARAMETER PROGRAMMING POLARITY CHECKS Encoder Motor Check Check DRIVE TUNING Pre Power Checks Pre Power checks are meant to identify any problems prior to applying voltage to the system The drive should be checked for any damage that may have occurred during shipment and installation You should also verify that all jumpers and configuration controls are properly applied for the application at hand Finally you must check all wiring external to the drive for accuracy and reliability External Wiring Checks 1 Verify that all external I O wires are properly terminated in the terminal blocks A full point to point continuity check should be performed on all I O wiring connected to the drive 4 4 Power On Chapter 4 Startup Verify that the incoming power connections are properly connected and tight Also verify that the power source is properly sized and protected for your particular drive Verify that the motor power connections are properly connected and tight Motor Phasing should be checked Motor Phase A should be connected to Drive output phase A likewise Phase B and C should be properly terminated to their respective terminals
117. then the drive is enabled and the transistors will be allowed to turn on Parameter 54 bit 1 also reflects the status of the DRIVE ENABLE input 2 The EXTERNAL FAULT TB20 terminal 4 PLC Comm input allows you to tie a signal into the 1336 FORCE that will be monitored by the Velocity Processor VP If the input voltage is removed the VP will issue a fault or warning based on the configuration of that fault and the red LED D5 on the PLC Comm board will be illuminated When Input voltage is applied D5 will not be illuminated 3 The MOTOR THERMOGUARD TB20 terminal 2 input allows you to tie a signal from the thermo switch in the motor into the 1336 FORCE that will be monitored by the Velocity Processor VP The red LED D9 will illuminate if an overtemp condition occurs Chapter 4 Startup 4 The NORMAL STOP TB20 terminal 3 input is stop command that will stop the drive according to the specified Stop Mode The drive responds the same way it would if the STOP bit were set in any Logic Command The red LED D7 reflects the present state of the STOP input When a Stop is in effect the LED is illuminated and the Drive is not allowed to run 5 The FAULT OUT TB20 terminals 8 9 10 input is a Form C relay contact Red LED D4 reflects the status of relay contact If the LED is illuminated the contact is not energized External Control Link Configuration The 1336 FORCE AC Drive has been designed to accept control input through the u
118. to Tables 6 amp 6 B for a listing and description of the various faults When applicable a possible solution will also be provided Figure 6 1 Typical Fault Description Display 02055 Fault Code Definition The fault code is a 5 character decimal number that 15 defined as follows SAXXX 5 Designator Area Designator Internal Fault Code 0 thru 999 The Source Designator S is the 1st digit of the number 0 Main Board Velocity Processor VP 2 Main Board Current Processor CP 2 Adapter Processor PLC Comm Standard Adapter etc 3 Domino Processor DP 4 Reserved Area Designator A is the 2nd digit of a number 0 General Motor 2 Inverter 3 Mtr Control 4 Adapter 5 External Device 6 Communications 7 Reserved 8 Reserved 9 Converter Brake Internal Fault Code The internal fault codes last three digits of number are identified in Table 6 A thru 6 C Table 6 A Chapter 6 Troubleshooting 1336 FORCE Main Control Fault Descriptions Fault 13000 13001 13002 13003 13004 03008 03009 03010 03011 03012 03013 02014 12016 12017 12018 12019 14020 16021 16022 04024 03025 03026 12027 02028 03029 12032 12033 12034 12035 12036 12037 05048 02049 01050 01051 01052 01053 05054 02055 03057 03058 09059 02060 02061 06062 02063 LED CP Red 1 blink CP Red 2 blink CP Red 3 blink CP Red 4 blink
119. to read fault codes In addition to a programming device the following should be available before initiating any troubleshooting procedures Digital Multimeter DMM capable of 1000V DC 750VAC with one megohm minimum input impedance Clamp on Ammeter AC DC with current ratings to 2X rated current output of 1336 FORCE AC Drive C Dual trace oscilliscope with differential capability digital storage two X10 and one X100 calibrated probes optional but recommended er useage of an oscilliscope and other test equipment The oscilli scope chassis may be at potentially fatal voltage if not properly grounded Allen Bradley does not recommend use of an oscilli scope to directly measure high voltages Use an isolated measur ing device with a high voltage probe Contact Allen Bradley for recommendations ATTENTION Potentially fatal voltages may result from improp _J tachometer used to monitor motor velocities L Programming Device Instruction Manual and Adapter Board Reference Manuals Chapter 6 Troubleshooting Fault Descriptions 6 2 Fault Display Faults are indicated by showing a decimal number of up to 5 characters relating to the fault Figure 6 1 or by flashing LED sequences on the Main Control Board The fault will be displayed until a Drive reset or Clear Faults is initiated A Drive Reset will clear all faults but a Clear Faults Command will only clear soft and warning faults Refer
120. used 5 52 Feedback Access Point Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Encoder Velocity edge Hi Diff Low Selected Velocity Low Difference Velocity High 2 msec Scan Interval Low Zero High Edge Pulse Count Low Zero High Acceleration Low Acceleration Error High Edges Moved Count Low Zero High Count Direction Low Status Bits High Edge to Edge Time Low Zero High Equal Area Intervals Low Zero High Empty Intervals Low Zero High Active Feedback Device Limit Status Low Zero High Qf 1st 16 bit Low 2nd 16 bit High Qf 3rd 16 bit Low Not Used High Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 143 Source x None Ou Ou 65535u 144 Source x None 0 32767 32767 145 Sink None 0 0 16 146 Source x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Motor Speed 8 x Base Motor Speed 147 Source None 0 32767 32767 Encoder Position Feedback L
121. you to directly access Process parameters from the Process Display screen The Display Mode option F3 soft designator allows you to enter the Logo Status or Meter modes for the Process Display parameters IMPORTANT Main Menu screens are dynamic and will change based on functionality provided by adapter and drive status Figure 3 9 Main Menu Screen Main Menu 1 Parameter 2 Link Summary Help 3 Fault Queue Help Text 4 Warning Queue Description 5 EEPROM BRAM For Each Menu Item 6 Clock Data Selected 1 Function Block 8 Special Password IMPORTANT Only 5 of the 8 Main Menu options are displayed at one time on the screen Scroll with the Inc Dec keys to access all eight selections Figure 3 10 details the complete menu tree for the GPT Programming Terminal This menu is dynamic and all options may not be supported by your Drive or SCANport device If you need more detailed information on Key functions Menu Screens or general Terminal operation refer to the appropriate chapter in the GPT user manual Chapter 3 Programming Terminals Figure 3 10 GPT Programming Options P Process Process Process x Display Config Program Screen Screen Screen Main Menu Screen 7 Function Block 8 Special 9 4 5 Warning EE BRAM Queue Function 1 Parameter 2 Link Summary Mode amp Warning Entry 1 Set Clock List 2 Set Ref gt 3 Load Re
122. 0 11829 229 1829 25 40 375 situations 300 600 600 100 100 300 200 600 75 600 0 75 1 7 6 122 1143 checkwith 1829 1820 1829 305 305 914 610 182 9 229 1829 25 40 375 the motor 600 600 600 100 100 300 200 600 75 600 0 37 0 5 7 6 122 1143 manufactur 182 9 182 9 182 9 305 305 914 610 182 9 229 1829 25 40 375 erforinsula 600 600 600 100 100 300 200 600 75 600 2 2 3 2 2 3 76 122 1143 lonra ng 1829 1829 1823 22 9 1829 25 40 375 600 600 600 75 600 1 5 2 7 6 122 1143 182 9 1829 1829 229 1829 25 40 375 600 600 600 75 600 0 75 1 7 6 122 1143 1829 1829 1829 229 1829 25 40 375 600 600 600 75 600 0 37 0 5 7 6 122 114 3 182 9 182 9 182 9 229 182 9 25 40 375 600 600 600 75 600 3 7 5 3 7 5 7 6 12 2 1143 182 9 1829 182 9 229 182 9 25 40 375 600 600 600 75 600 2 2 3 7 6 122 1143 1829 1829 1829 229 1829 25 40 375 600 600 600 75 600 1 5 2 7 6 12 2 1143 182 9 1829 1829 229 1829 25 40 375 600 600 600 75 600 0 75 1 7 6 12 2 1143 182 9 1829 182 9 229 182 9 25 40 375 600 600 600 Use 1204 TFB2 75 600 0 37 0 5 7 6 122 114 3 182 9 182 9 182 9 Botis 229 1829 25 40 375 600 600 600 75 600 4 5 5 7 5 5 5 7 5 7 6 122 114 3 182 9 1829 182 9 244 182 9 7 5 10 7 5 10 25 40 375 600 600 600 80 600 B 5 5 22 5 5 22 7 6 122 114 3 182 9 1829 182 9 244 182
123. 00 Maximum Value 0111 1111 Enums Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero SCANport Jog 1 Owner Jog 1 Owner This parameter displays which SCANport devices are presently issuing a valid jog 1 command 1 Jog 1 Input present 0 Jog 1 Input Not Present Bit TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 SCANport Jog 2 Owner Jog 2 Owner This parameter displays which SCANport Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Chapter 5 Programming Parameters 343 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero Parameter Number Parameter Type Display Units devices are presently issuing a valid jog 2 Drive Units command 1 Jog 2 Input Present 0 Jog 2 Input Not Present Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Reference Owner Reference Owner This parameter displays which SCANport device currently has exclusive control of the reference changes 1 Current Owner 0 Non Owner Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Local Control Owner Local Owner This parameter displays which SCANport device c
124. 00 HP Terminal Designations C DC PE PE 11 S L2 T 13 U M1 V M2 W M3 BUS INPUT OUTPUT To Motor Required 1 1 Required Branch InputFusing Circuit Disconnect AC Input Line 380 480V 187 336 kW 250 450 HP Terminal Designations PE V M2 co E 92 90 19 9 9 E 2 Fusing Supplied To Motor 1 Required Branch Circuit Disconnect T T T Z AC Input Line elole 32 OO OO typical terminal e A e 2 23 Chapter 2 Installation Wiring Figure 2 10 cont Terminal Block TB1 380 480V 522 597 kW 700 800 HP Terminal Designations 500 600V 522 597 kW 700 800 HP Terminal Designations o DC Brake DC Required Brake Input Fusing 1 Required Branch Circuit Disconnect T T T AC Input Line
125. 0000 0000 0000 0000 is true Maximum Value 1111 1111 11111 1111 Enums Value Description Value Description Value Description Value Description 0 Flux Ready 4 Bus Ridethru 8 At Limit 12 Over Setpoint 1 1 Flux Up 5 Jogging 9 Not Used 13 Over Setpoint 2 2 Not Used 6 Not Used 10 At Setpoint 1 14 Over Setpoint 3 3 Not Used 7 Not Used 11 At Setpoint 2 15 Over Setpoint 4 5 38 Torque Stop Configuration Torq Stop Config This parameter selects how the drive will react to a stop command when it occurs in non speed mode ex torque mode Possible selections are 0 Normal Mode Switch to speed mode then perform a controlled stop 1 Stay in selected torque mode until zero speed is reached 2 Stay in selected torque mode until zero torque is reached Logic Options Logic Options This parameter selects the options for logic operation of the drive as follows 5 Option Start Type Start Type B Jog Ramp Enable 1 Coast 0 Regen Stop STOP Input Type A STOP Input Type B Do Power Up Diag Do Flux Up Diag At Setpoint 1 At Setpoint 1 This parameter is used to specify the setpoint threshold for the At Setpoint 1 bit in Logic Status Hi At Setpoint 2 At Setpoint 2 This parameter is used to specify the setpoint threshold for the At Setpoint 2 bit in Logic Status Hi Over Setpoint 1 Over Setpoint 1 This parameter is used to specify the setpoint threshold
126. 00k baud Maximum Value 2 U S Allen Bradley Drives Technical Support Tel 1 262 512 8176 Fax 1 262 512 2222 Email support drives ra rockwell com Online www ab com support abdrives www rockwellautomation com Power Conirol and Information Solutions Headquarters Americas Rockwell Automation 1201 South Second Street Milwaukee WI 53204 2496 USA Tel 1 414 382 2000 Fax 1 414 382 4444 Europe Middle East Africa Rockwell Automation Vorstlaan Boulevard du Souverain 36 1170 Brussels Belgium Tel 32 2 663 0600 Fax 32 2 663 0640 Asia Pacific Rockwell Automation Level 14 Core E Cyberport 3 100 Cyberport Road Hong Kong Tel 852 2887 4788 Fax 852 2508 1846 Publication 1336 FORCE 5 12DU2 February 2007 P N 74002 113 01 03 Supersedes 1336 FORCE 5 12DU2 dated February 2006 Copyright 2007 Rockwell Automation Inc All rights reserved Printed in USA Summary of Changes Summary of Changes Summary of Manual Changes The 5 01 release of the 1336 FORCE 5 12 User Manual contains some new and updated information The new and updated information is summarized in the table below For further information refer to the page numbers provided Description of New or Updated Information Page Type H frame dimensions added 2 7 New Line fuse ratings updated 2 7 Clarification Motor Cable requirements added 2 16 New H frame terminal block added 2 22 New Figure 2 17 upgraded 2 29 Clarification H Frame Terminal Bl
127. 1 32767 1 32767 370 Sink x None 0 32767 32767 371 Sink x xxx volt 205 1 volt 0 000 volt 20 000 volt 20 000 volt 5 79 Chapter 5 Programming Parameters Analog Output 1 Scale An Out 1 Scale This parameter determines the scale factor or gain for Analog Output 1 A 32767 digital value is converted by the scale fac tor which allows an effective digital range of 2048 which is then offset to provide a 10 volt range Analog Output 2 Analog Out 2 This parameter converts a 32767 digital value to a 10 volt output Analog Output 2 Offset An Out 2 Offset This parameter determines the offset ap plied to the raw analog output 2 The offset is applied after the scale factor Analog Output 2 Scale An Out 2 Scale This parameter determines the scale factor or gain for Analog Output 2 A 32767 digital value is converted by the scale fac tor which allows abn effective digital range of 2048 which is then offset to provide 10 volt range Milli Amp Output mA Output This parameter converts a 32767 digital value to a 4 20 mA output Milli Amp Output Offset mA Output Offset This parameter determines the offset ap plied to the raw milli amp output The off set is applied after the scale factor 5 80 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value
128. 10 15 HP Terminal Designations 380 480 15 22 kW 20 30 HP Terminal Designations 500 600V 15 kW 20 HP Terminal Designations QIOQIOIO OJO IO IOO OOO S O O O O 6 JO O O PE PE DC DC R S T U V W n Pi T1 72 13 Dynamic To Motor To Motor I I Required Branch Circuit Disconnect T T AC Input Line 2 21 Chapter 2 Installation Wiring Figure 2 10 Terminal Block TB1 cont 200 240V 15 22 kW 20 30 HP Terminal Designations 380 480V 30 45 kW 40 60 HP Terminal Designations 500 600V 18 5 45 kW 25 60 HP Terminal Designations
129. 100A 80A 1336T X060 45 60 100A 1336T 060 45 60 250A 125A 90A 1336T 075 56 75 150A 110A 13367 100 75 100 200 150 1336T 105 93 125 250A 175A 1336T X150 112 150 250A 13367 150 112 150 300 225 13367 200 149 200 400 350 13367 250 187 250 450 400A 1336T X300 224 300 400A Bussmann FWP Gould Shawmut A 70C Semi conductor Type 1336T X250 187 250 450A 450A2 B 450A 400A 500A 450A 500A 450A 600A2 1336E 2502 187 1336T 23001 224 300 1336E 23002 224 300 1336T 350 261 350 1336E 23502 261 350 13361 400 298 400 600A 500A 1336E 400 298 600A2 250 300 300 350 350 400 400 1336T 450 336 450 800A 600A 450 500 600 650 700 800 1336E 4502 336 450 700A 600A 800A 800A 13360T _ 500 373 500 900A 800A a 800A 600A3 700A3 700A3 700A3 1336T _ 600 448 600 1336T 650 485 650 1336T 700 2 522 700 1336T _ _ 800C2 597 800 1 Both fast acting and slow blow are acceptable 2 Fuses are supplied with F and H Frame drives 3 Two fuses in parallel are required 2 12 Electrical Interference EMI RFI Chapter 2 Installation Wiring Immunity The immunity of 1336 FORCE drives to externally generated interference 15 good Usually no special precautions are required beyond the installation practices provided in this pub
130. 11 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved 335 Sink Bits None 0111 1111 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved 5 73 Chapter 5 Programming Parameters SCANport Reset Drive Mask Reset Drive Mask This parameter selects which SCANport devices can issue a Reset Drive command 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Local Control Mask Local Mask This parameter selects which SCANport devices can take local control 1 Permit Control 0 Deny Control Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Stop Owner Stop Owner This parameter displays which SCANport devices are presently issuing a valid stop command 1 Stop Input Present 0 Stop Input Not Present Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 SCANport Direction Owner Direction Owner This parameter displays which SCANport device currently has exclusive control of direction changes 1 Current Owner 0 Non Owner Bit TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 SCANport Start Owner Start Owner This parameter displays which SCANport devices are presently issuing a valid start command 1 Start Input Present 0 Start Input Not Present Bi
131. 2 13 14 15 Condition Math Limit Dynamic Brake Overtemperature AC Motor Contactor Failure Inverter Overload Pending IT Drive to Drive Communication Fault Inverter Overload Trip IT CP Configurable Warning Status CP Warn Status This word parameter indicates conditions detected by the current processor CP that have been configured to report as a Drive Warning condition Each configuration bit matches the bit definitions of parameters 82 86 and 87 When bit is set to 1 the corresponding condition in the Drive is true otherwise it is false it Condition Bus Precharge Timeout Bus Drop Bus Undervoltage Bus Drop Cycles gt 5 OIT OONN O VP Configurable Warning Status bits VP Warn Status This word parameter indicates conditions detected by the Velocity Processor VP that have been configured to report as a Drive warning condition Each configura tion bit matches the bit definitions of parameters 83 88 and 89 When a bit is set to 1 the corresponding condition in the Drive is true otherwise it is false Bit Condition Encoder Feedback Loss Motor Overload Pending Motor Overload Trip 2 Motor Stalled External Fault RMS Fault Not Used Parameter Limit Math Limit Qo IO O OOP CP Fault Warning Configuration Select CP Fault Select This word parameter determines conditions detected by the Current Processor CP that will be reported as either a dr
132. 2 JOGS FLUX INHIBIT RUN INHIBIT COND AUT UNE AN AN AN TORQUE TRIM AN TORQUE LIMIT 5 PRESETS VELOCITY VELOCITY 2 JOGS REFERENCE 7 CONTROL PI CONTROL REGULATOR 2 EXTERNAL VELOCITY REFERENCES KN AN A TORQUE COMMAND VELOCITY FEEDBACK ENCODERLESS CONTROL Sheet Connection Symbols AN VELOCITY RAMP OUTPUT PN VELOCITY PI REGULATOR OUTPUT VELOCITY REFERENCE A CURRENT PROCESSOR COMMAND A j TORQUE TRIM AN FILTERED Ig REFERENCE A FILTERED Iq REFERENCE AN 19 REFERENCE AN TORQUE LIMIT HIGH A VELOCITY TRIM A TORQUE LIMIT LOW A LOGIC CONTROL WORD AN TORQUE COMMAND AN ACTIVE TORQUE MODE VELOCITY FEEDBACK 34 Appendix 36T Firmware Function Motor Control Board Overview LOCAL INPUTS DRIVE FAULT DETECTION 4 FAULT STATUS WORDS TRUE Iq REF AC i BLOCK Id REF AC ANALOG DC TO AC CURRENT 2 EXTERNAL CONTROL TORQUE gt CONVERTER REGULATOR REFERENCES DIGITAL ENCODER ENCODERLESS A 35 Appendix A 36 Firmware Function Velocity Reference Overview PARAM 52 LOGIC COMMAND WORD PARM External Velocity Ret1 101 External Velocity Ref2 104 REFERENCE CONTROL SELECT MAX UNIPOLAR 0 FM SELECT 32767 BIPOLAR lt Vel Ref Type LOGIC OPTION FORWARD SPEED LIMIT 52 Cas D 452 Locic STATUS PARM T X 71 h DIRECTION SELECT REVE
133. 20 drives but has been removed from its mounting cradle for remote operation the blank cover plate must be installed in place of the HIM The HIM is divided into two sections Display Panel and Control Panel The Display Panel provides a means of programming the Drive and viewing the various operating parameters The Control Panel allows you to control different drive functions Figure 3 1 Human Interface Module Location p Display Panel Storred 6 60 Hz Control Panel Human Interface Module HIM Chapter 3 Programming Terminals Figure 3 2 HIM Front Panel LCD Display AB0273A Key Descriptions Descriptions of the keys used with the 1336 FORCE Drive are presented in the following paragraphs Remaining keys that are not described shaded in figure above are not used and reserved for future use ESC AB0270A SEL AB0282A Escape When pressed the ESCape key will cause the programming system to go back one level in the menu tree Select Pressing the SELect key alternately causes the top or bottom line of the display to become active The flashing first character indicates which line is active Increment Decrement These keys are used to increment and decrement value or scroll through different groups or parameters AB0295A AB0269A 3 2 AB0267A Enter When pressed a group or parameter will be selected or a parameter value will be e
134. 380V 480V Drives 1 No External Devices w 1204 TFB2 Term w 1204 TFA1 Terminator Reactor at Drive Motor Motor Motor Motor A B 1329 1329R HR L AorB 1329 B 139 A Bor 1329 Drive kW Motor kW Any Any Any Any Cable Type Any Cable Type Cable Type Any Any Any Drive Frame HP HP Cable Cable Cable Cable Shid 3 Unshid Cable Shi Unshid Shld3 Unshid Cable Cable Cable Al 0 37 0 5 0 37 0 5 122 335 1143 30 5 610 305 610 182 9 229 182 9 40 110 375 100 200 100 200 600 75 600 0 75 1 0 75 1 02 335 1143 305 305 305 305 182 9 22 9 182 9 40 110 375 100 100 100 100 600 75 600 0 37 0 5 122 335 143 Use 1204 1 30 5 610 305 610 182 9 229 1829 40 10 375 100 200 100 200 600 75 600 2 1 2 1 5 12 15 122 335 1143 30 5 305 610 610 182 9 229 1829 40 110 375 Unlimited 100 100 200 200 600 75 600 0 75 1 122 335 143 to 30 5 305 610 610 1829 229 1829 40 110 375 new installa 100 100 200 200 600 75 600 0 37 0 5 122 335 1143 tions using 30 5 305 610 610 182 9 229 1829 40 10 375 new motors 100 100 200 200 600 75 600 1 5 2 1 5 2 7 6 122 1143 andnew 914 1829 182 9 305 2305 914 610 1829 229 1829 25 40 375 drives 300 600 600 100 100 300 200 600 75 600 1 2 1 5 76 122 1143 For retrofit 914 1829 182 9 305 305 914 61
135. 4 15 are detected by software Bit Condition DC Bus Overvoltage Trip Transistor Desaturation Ground Fault Instantaneous Overcurrent Adapter Comm Loss detected by CP Master Slave Cable Loss CP Configurable Fault Status CP Status This word parameter indicates conditions detected by the Current Processor CP that has been configured to report as a Drive fault condition Each configuration bit matches the bit definitions of Parameter 84 86 and 87 When a bit is 1 the condition is true otherwise the condition is false OIT OONN O Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 150 volts VP Configurable Fault Status VP Fit Status This word parameter indicates conditions detected by the Velocity Processor VP that have been configured to report as fault conditions Each configuration bit matches the definitions of Parameter 85 88 and 89 When a bit is 1 the condition is true otherwise the condition is false Bit Condition Feedback Loss Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending Motor Overload Trip 5 42 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit Condition Bit 0 CP PROM Failure 9 1 CP Internal RAM Failure 10 2 CP External RAM Failure 11 3 CP Stack RAM Failure 12 4 VP Dualport RAM Failure detected by CP 13 5 Not Used 14 6 No
136. 4 Setpoint Select Speed Setpoint Tolerance Current Setpoint Tolerance Zero Speed Tolerance Logic Testpoint Data Logic Testpoint Select Stop Dwell Maximum Dynamic Brake Power Maximum Dynamic Brake Temp Dynamic Brake Time Constant Powerup Diagnostic Fault Status Non Configurable Fault Status CP Configurable Fault Status VP Configurable Fault Status CP Configurable Warning Status Torque Ref Drive Data Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Transistor Diag Limits Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Logic Testpoints Logic Logic Testpoints Logic Logic Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Velocity Torque 3 Startup File 1 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Communications I O 2 Velocity Torque 3 Velocity Torque 3 Communications I O 2 Diagnostics 4 Startup 1 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Ve
137. 4 C450 394 473 455 457 4592 8300 265 335 403 324 4064 500 434 520 501 503 5051 8350 300 379 455 366 4592 C600 514 617 594 597 5992 B400 330 416 501 402 5051 C650 578 694 668 671 6734 B450 372 470 565 454 5702 C700 616 739 756 767 770 B500 391 494 594 477 5992 C800 639 767 786 797 800 B600 439 555 668 537 6734 12C700C 616 739 756 767 770 BP250 230 291 350 282 3536 12 800 639 767 786 797 800 BP300 265 334 400 324 4064 BP350 300 378 455 366 4592 BP400 313 396 476 383 4810 BP450 346 437 526 424 5317 B700C 517 625 835 677 850 B800C 647 817 965 783 983 12B700C 517 625 835 677 850 12B800C 647 817 965 783 983 11 485 kW 7 5 65 drives are suitable for use on a circuit capable of delivering up to a maximum of 200 000 rms symmetrical amperes 600 volts maximum when used with the AC input line fuses specified in Table 2 A The 1336 FORCE does not contain input power short circuit fusing Specifications for the recommended size and type to provide drive input power protection against short circuits are on the following pages damage caused by improper fusing use only the recommended line fuses specified in Table 2 A Branch circuit breakers or disconnect switches cannot provide this level of protection for drive components ATTENTION To guard against personal injury and or equipment Chapter 2 Installation Wiring Unbalanced Distribution Systems The drive is designed for use with conventional three phase supplies which
138. 4005 VP Mode Failure SW Malfunction Hard Fault 24006 CP Mode Failure SW Malfunction Hard Fault 24007 SA Language Failure HW Malfunction Hard Fault 24017 SP Port 1 Failure SP PT1 Timeout Fault Warning None 24018 SP Port 2 Failure SP PT2 Timeout Fault Warning None 24019 SP Port 3 Failure SP PT3 Timeout Fault Warning None 24020 SP Port 4 Failure SP PT4 Timeout Fault Warning None 24021 SP Port 5 Failure SP PTS Timeout Fault Warning None 24022 SP Port 6 Failure SP PT6 Timeout Fault Warning None 24024 4 20Ma Loss 4 20Ma Loss Fault Warning None 24029 Drive Type Difference Diff Drv Type Soft Fault 24030 Illegal Drive Type Illegal Drv Type Hard Fault 24031 SP Internal Failure SW Malfunction Soft Fault Fault Warning Handling Chapter 6 Troubleshooting The lights on the motor control board indicate the status of the Current and Velocity processors Both the Current and Velocity processors have both Green and Red LED s associated with their status Table 6 C explains the meaning of the CP and VP status lights Table 6 CP and VP Status VP LED Status Meaning D2 Solid Green No Fault D2 Flashing Green Drive Warning 03 Flashing Red Drive Soft Fault D3 Solid Red Drive Hard Fault Hard Fault A Drive hard fault is a fault that trips the Drive causing it to come to a stop This type of fault requires the user to perform a Drive Reset to remove the fault Soft Fault A Drive soft fault will also cause the drive to trip and come
139. 5 Programming Parameters Velocity Reference Testpoint Select Vel Ref TP Sel This parameter selects which internal location of the velocity reference will be come the testpoint value shown in P108 and 109 The following are the internal locations based upon the select value Select Value 0 1 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Velocity Reference Access Point Zero Limit Status HI Reference Selection LOW Selected Reference HI LOW Limited Reference HI LOW Direction Selected Ref Hl LOW Fwd Speed Limit HI Rev Speed Limit LOW Ramp Input HI LOW Ramp Output HI LOW Q Jog Speed 1 Jog Speed 1 This will be the velocity reference used by the Drive when Jog 1 has been selected in the Logic Command P52 Jog Speed 2 Jog Speed 2 This will be the velocity reference used by the Drive when Jog 2 has been selected in the Logic Command P52 Preset Speed 1 Preset Speed 1 This will be the velocity reference used by the Drive when preset 1 has been selected in Logic Command P52 Preset Speed 2 Preset Speed 2 This will be the velocity reference used by the Drive when preset 2 has been selected in Logic Command P52 Preset Speed 3 Preset Speed 3 This will be the velocity reference used by the Drive when preset 3 has been selected in Logic Command P52 5 48 Velocit
140. 5 0 3 0 16 54111 NA NA 1336E C350 3 53 5 1 0 24 54109 NA NA 1336E C400 3 67 4 2 0 24 54110 Consult Factory NA NA 1336E C450 3 85 0 3 0 24 54111 NA NA 1336 500 3 107 2 4 0 24 54112 1336 600 3 127 0 250 24 54174 1336E C700C 3 253 0 500 6 54118 1 67 4 2 0 1 54110 1336 800 3 253 0 500 6 54118 1 67 4 2 0 1 54110 1 5 16 5 All other studs are 3 8 2 Lugs shown for DC are based on dynamic brake sizing of 50 of motor rating X 1 25 Select proper lugs based on required braking torque 3 T amp B COLOR KEYED Connectors require T amp B WT117 or TBM 6 Crimper tool or equivalent Lugs should be crimped according to manufacturer s tool instructions 2 19 Chapter 2 Installation Wiring Table 2 D Cable and Wiring Recommendations Minimum Spacing in Inches between Classes Wiring Steel ConduitTray Spacing Category Class Signal Definition Signal Examples Cable Type 1 23 4 56 7 8 9 10 11 Notes Power 1 AC Power 600V or greater 2 3KV 3 Ph AC Lines per NEC amp Local Codes 3 18 Note 6 1 2 5 AC Power less than 600V 460V 3 Ph AC Lines per NEC amp Local Codes Control AC DC Logic Relay Logic PLC 1 0 per NEC amp Local Codes Motor Thermostat 3 9 3 6 3 9 Note 6 1 2 5 115V AC Power Power S upplies Instruments 6 24V AC DC Logic PLC 1 0 per NEC amp Local Codes
141. 5 sec 392 Sink X X sec 56 10 0 sec 0 0 sec 6553 5 sec 393 Sink x x RPM RPM per sec 4096 Base Speed 1096 of base speed 0 0 RPM Base Speed 394 Source x RPM 4096 Base Speed 0 0 Negative Speed Limit Positive Speed Limit 5 83 Chapter 5 Programming Parameters Pulse PPR Pulse PPR This parameter determines the pulse input pulses per revolution Pulse Single or Double Edge Pulse Edge This parameter determines if rising single or rising and falling double edges are counted for the pulse input Pulse Scale Pulse Scale This parameter determines the pulse input speed that is equal to 4096 drive units Pulse Offset Pulse Offset This parameter determines the minimum Speed the pulse input will go to Pulse Value Pulse Value This parameter displays the pulse input value SP Comm Retries SP Comm Retries This parameter monitors the amount of SCANport communications errors that have occurred since power up 5 84 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums 185056 2 2164565 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Valu
142. 5 volts adds a digital value of 1024 to the range This causes 0 volts on the potentiometer to register as 1024 digital internal to the drive and 10 volts on the potentiometer will be 1024 to the drive This can then be scaled by a factor of 4 8192 drive units so that 0 volts sends a digital value of 4096 for 100 torque and 10 volts sends a digital value of 4096 for 100 torque Figure 4 9 Potentiometer 0 10V Range to Control 100 Torque Reference 10V Input 1024 4096 1024 4096 RANGE OF 20V 10V 0 10V POTENTIOMETER 10 0 5V 10V DIGITAL VALUE 2048 0 1024 2048 E 1024 0 1024 SCALEBY4 4096 0 4096 Analog outputs are set up similar to analog inputs Each output has a scale and offset parameter along with a specific variable parameter used for linking Differences occur because of the direction of information flow The drive sends a digital value in drive units which must be matched to the voltage of the monitoring device Similar to analog inputs the analog output converts 2048 to X 10VDC Thus when the drive sends 100 Base Speed equal to 4096 it must be scaled by 0 5 to be in the proper range 4096 x 0 5 2048 Offset can be 20VDC even though the physical limit is 10VDC This allows you to offset the signal anywhere within the entire range 4 25 Chapter 4 Startup 4 26 VELOCITY In Figure 4 10 Analog Output 1 is used as an example to detail the scaling
143. 50 600 1100 200 600 0 37 0 5 NR NR 15 2 NR 182 9 3353 61 0 182 9 50 600 1100 200 600 3 7 5 3 7 5 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 2 2 3 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 1 5 2 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 0 75 1 NR NR 15 2 NR 182 9 3353 NR 61 0 182 9 50 600 1100 200 600 0 37 0 5 NR NR 15 2 NR 1829 3353 NR 61 0 182 9 50 600 1100 200 600 B 5 5 15 5 5 15 NR 9 1 15 2 91 4 182 9 1829 61 0 182 9 30 5 91 4 182 9 7 5 20 7 5 20 30 50 300 600 600 200 600 100 300 600 C 18 5 45 18 5 45 NR 9 1 12 2 91 4 182 9 1829 61 0 182 9 30 5 914 182 9 25 60 25 60 30 40 300 600 600 200 600 100 300 600 D 56 93 56 93 NR 91 33 5 914 1829 1829 61 0 1829 61 0 91 4 182 9 75 125 75 125 30 110 300 600 600 200 600 200 300 600 E 112 224 112 224 NR 9 1 213 91 4 1829 1829 61 0 182 9 1829 1829 11829 150 X300 150 X300 30 10 300 600 600 200 600 600 600 600 F 187 336 187 336 NR 9 1 41 1 91 4 182 9 1829 61 0 182 9 1829 1829 1829 250 450 250 450 30 135 300 600 600 200 600 600 600 600 G 224 448 224 448 NR 9 1 41 1 91 4 182 9 1829 61 0 182 9 1829 1829 1829 300 600 300 600 30 135 300 600 600 200 600 600 600 600 H 522 597 522 597 NR 9 1 41 1 91 4 182 9 11829 61 0 182 9 1829 1829 11829 700 800 700 800 30 135 300 600 600 200 600 600 600 600 NR Not Recommended 1 Values shown are for 480V nominal input voltage and drive car
144. 56 Sink Bits None 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 257 Sink Bits None 0000 0000 0000 0000 0000 0000 0000 0000 A ita Bit 9 Disable Power Trans V Lower for all tests Bit 10 Disable Power Trans W Upper for all tests Bit 11 Disable Power Trans W Lower for all tests Bit 12 High Induct Bit 13 Reserved Always leave 0 Bit 14 Reserved Always leave 0 Bit 15 Reserved Always leave 0 High Inductance motors may need extended test time to de termine opens Setting bit 12 increases the test time 258 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 lit DUREE ET UI Bit 0 Software Fault Bit9 Hardware desaturation fault occurred Bit 1 2 No motor connected or open bus fuse Bit 10 2 Hardware ground fault occurred Bit 2 Phase U and W Shorted Bit 11 Hardware phase overcurrent fault occurred Bit Phase and V shorted Bit 12 Open power transistor s See bit 12 in parameter 257 Bit 4 Phase V and W shorted Bit 13 Current feedback fault s Bit 5 Shorted modules Bit 14 Reserved Leave Zero Bit 6 Ground fault Bit 15 Reserved Leave Zero Bit 7 Fault before shorted module ran Bit 8 Hardware overvoltage fault occurred 5 63 Chapter 5 Programming Parameters Inverter Diagnostics Result 2 Inverter Diag 2 The results of the Transistor Diagnostic Tests are given in parameters 258 amp 259 If any of the
145. 6 9 1 pu 9 Minimum Limit for di dt to acheive requested bandwidth 10 Minimum error filter bandwidth Logic Command Word Parameter Number 52 Logic Command Parameter Type Source This word parameter contains data used to Display Units Bits Control Drive logic operation If a bitis set Drive Units None the function is enabled otherwise it is Factory Default 0000 0000 0000 0000 disabled inactive Minimum Value 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111 BITS 0 Ramp Stop 1 Start 2 Jog1 3 Clear Fault 4 Forward 5 Reverse 6 Jog 2 C B A 5 Current Limit Stop 0 0 0 Zero Coast Stop 0 0 1 External Ref 9 Ramp Disable 0 1 0 Preset Speed 1 Flux Enable 0 1 1 Preset Speed 2 Process Trim Enable 1 0 0 Preset Speed 3 Velocity Ref Select A 1 0 1 Preset Speed 4 Velocity Ref Select B 1 1 0 Preset Speed 5 Velocity Ref Select C 1 1 1 External Ref 2 Reset Drive Torque Mode Select Parameter Number 53 Torque Mode Sel Parameter Type Sink This is a word parameter used to select the Display Units 28 source for the drive torque reference The Drive Units None operation of this parameter functions asa Factory Default 1 selector switch The position of the Minimum Value 0 selector determines the torque reference Maximum Value 5 selection as follows Value Description Value 0 Zero Torque 3 1 Velocity Regulate 2 External Torque 4 5 Description Min Select Speed Torque Selects
146. 67 into it The value of flux can be read by the user in the corresponding testpoint data parameter 274 The value of 274 is the identified flux current and must then be entered into parameter 236 Chapter 6 Troubleshooting Torque Block Update To update the Torque Block gains bit 5 in Parameter 256 must be set to 1 and then Start command must be given to the drive Bit 5 of parameter 256 will automatically be set back to zero The values in parameters 240 thru 248 will now to be updated Calculations This procedure takes the motor parameter information from Parameters 236 237 and 238 along with the inverter and motor nameplate data and calculates the proper regulator references for torque control Fig 6 9 Figure 6 9 Calculations Test Resistance Test Parameter 236 Inductance Test Parameter 237 Calculations Parameter 240 Parameter 241 Parameter 247 Parameter 248 Flux Test Parameter 238 MOTOR N P DATA Parm 228 235 INVERTER DATA Parm 220 227 6 31 Chapter 6 Troubleshooting Velocity Loop Autotune 6 32 The Velocity Loop Autotune procedure for the 1336 FORCE is designed to 1 you determine the maximum bandwidth for a particular system You can select operation at any bandwidth at or below the maximum bandwidth that has been calculated The velocity regulator is a PI regulator with a Velocity Feed Forward term Kp Parm 141 term is user chosen
147. 6T Numerical Parameter Table Cont Param No Parameter Name Element Group 291 292 293 294 295 296 297 298 300 301 302 304 310 311 312 313 314 315 316 317 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337 340 341 342 343 344 345 346 347 348 349 350 352 353 354 355 356 357 358 359 Frequency Tracking Filter Tracking Filter Type Freq Trim Filter Motor Phase Rot Errors Motor Inductance Test Errors Stator Resistance Test Errors Motor Flux Id Test Errors Torq Block Calc Errors Adapter ID Adapter Version Adapter Config Language Select Data In A1 Data In A2 Data In Bl Data In B2 Data In Cl Data In C2 Data In D1 Data In D2 Data Out Al Data Out A2 Data Out B1 Data Out B2 Data Out C1 Data Out C2 Data Out DI Data Out D2 Port Enable Mask Direction Mask Start Mask Jog Mask Reference Mask Clear Fault Mask Reset Drv Mask Local Mask Stop Owner Dir Owner Start Owner Jog 1 Owner Jog 2 Owner Set Ref Owner Local Owner Flux Owner Trim Owner Ramp Owner Clr Owner 10 Volt In Pot In Filtr mA In Filtr 10 Volt Input 10 Volt Offset 10 Volt Scale Pot Input Pot Offset Torque Block Torque Block Torque Block Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune Info Info Info Info Drive Data SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANp
148. 7 178 179 180 181 389 390 391 392 Logic Options Service Factor Rev Speed Limit Fwd Speed Limit Min Flux Level Pos Mtr Tor Lmt Neg Mtr Tor Lmt Motor Power Lmt Regen Power Lmt Pos Mtr Cur Lmt Neg Motor Cur Limit D1 Dt Limit Accel Rate 1 Accel Rate 2 Decel Rate 1 Decel Rate 2 Accessible only while using Drive Tools 5 16 CP Faukt Select VP Fault Select CP Warn Select VP Warn Select Absolute Overspd Stall Delay Mtr Overload Lim Mtr Overload Spd 1 Motor Overload Spd 2 Min Overload Lmt MCB Counter Enc Pos Fdbk Low Enc Pos Fdbk Hi Computed Power Perunit Motor Current Perunit Motor Voltage Torque Mode Status Motor Cur Fdbk Motor Volt Magn Freq Command DC Bus Voltage Filt Vel Fdbk Inv Temp Fdbk Lim Motor Flux Input Status Mop Value Pulse Value Chapter 5 Programming Parameters Figure 5 2 Standard Adapter Parameters cont FILE 2 Communications 1 0 SCANport I O Analog Input Analog Output Data In Al Logic Command 352 10 Volt in Flltr Analog Out 1 Data In A2 Local In Status 353 Pot In Filtr An Out 1 Offset Data In B1 Local Out Status 354 mA In Filtr An Out 1 Scale Data In B2 Logic Status Low 355 10 Volt Input Analog Out 2 Data In Logic Status Hi 356 10 Volt Offset An Out 2 Offset Data In C2 Torq Stop Config 357 10 Volt Scale An Out 2 Scale Data In DI Logic Options 358 PotInput mA Output Data In D2 At Setpoint 1 359 Pot Offset mA Output Offset Data Out Al At Setpoint 2 360 Po
149. 73 A030 27 30 79 A040 43 531 123 A050 53 64 154 A060 60 72 174 A075 82 99 238 A100 100 120 289 A125 111 134 322 AC Supply Source 2 8 2 5 11 14 19 26 31 32 48 60 72 96 116 130 Output Output CatNo kVA Amps kVA Amps 4 5 12 212 33 7 48 2 645 78 2 80 120 3 149 2 180 4 240 291 4 327 4 The input and output current ratings grouped by drive voltage rating are provided in the following table 380 480 575 Input Input Output Output Input Input Output Output CatNo kVA Amps kVA Amps CatNo kVA Amps kVA Amps B001 2 3 2 25 C001 2 3 3 2 2 5 B003 4 5 6 5 6 0 C003 5 6 6 6 6 B007 9 12 14 11 13 9 C007 9 11 10 10 99 B010 1 18 22 17 209 C010 1 3 32 B015 18 23 28 2 212 015 17 20 19 19 189 B020 23 29 35 27 337 C020 21 226 25 2 236 B025 23 26 43 33 418 C025 27 32 3 30 3 B030 32 41 49 38 482 C030 31 37 36 35 346 BX040 40 50 62 4 587 C040 40 48 46 45 451 B040 41 52 63 52 645 C050 48 5 5 5 572 B050 48 60 75 61 782 C060 52 62 60 6 616 BX060 62 75 61 782 075 73 88 84 85 858 B060 61 77 93 76 969 C100 94 112 108 109 1091 B075 78 99 119 96 1203 C125 118 142 137 137 138 6 B100 98 124 149 120 1492 C150 136 163 157 157 1597 B125 117 148 178 1433 1804 C200 217 261 251 251 2525 BX150 148 178 143 1804 C250 244 203 282 283 283 6 B150 157 198 238 191 240 0 C300 256 307 296 297 298 B200 191 241 290 233 2914 C350 304 364 351 352 353 6 BX250 231 291 350 282 3536 C400 349 419 403 405 406 4 B250 212 268 322 259 327
150. 74 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 266 Source 26051812 128 1Hz 0 000 Hz 255 992 Hz 255 922 Hz 267 Source x x 4096 100 0 96 0 0 800 0 800 0 268 Source x Vit None 0 volts 0 volts 1 000 volts 269 Source X x rpm 4096 base motor speed 0 0 rpm 8 x Base Speed 8 x Base Speed 270 Source x deg None 0 deg 50 deg 255 deg 271 Source 4096 100 flux 100 12 5 100 273 Sink x None 0 0 100 5 65 Chapter 5 Programming Parameters Testpoint Data 1 Torq TP Sel 1 This parameter contains the data selected by Testpoint Selection 1 param 273 Testpoint Selection 2
151. 8 71 9 28 6 34 9 22 2 22 1 kg 10 88 18 75 8 86 8 37 18 15 1 26 0 30 5 16 7 12 2 83 1 125 1 375 0 875 50 Ibs 301 8 101 0 225 0 238 0 685 8 32 00 1 6 1311 374 7 71 9 28 6 34 9 22 2 38 6 kg 11 88 27 60 8 86 9 37 27 00 1 26 0 30 5 16 14 75 2 83 1 125 1 375 0 875 85 16 Chapter 2 Installation Wiring Figure 2 3 IP 20 NEMA Type 1 Dimensions Frame D gt 7 fa m m AN 4 1 ALLEN BRADLEY EY AA Y E l B BB lt cc gt ii tD Y Y Y Mounting Holes 4 7 0 0 28 s 7 0 0 28 12 7 050 12 7 0 50 All Dimensions in Millimeters and Inches All Weights in Kilograms and Pounds Frame Knockouts Shipping Reference B CMax D E Y 7 BB cc 3 Dual Size 3 Fixed Weight D 3815 1240 0 2708 3259 12162 27 94 1194 1311 688 6 719 62 7 76 2 34 9 50 0 34 9 108 9 kg 15 02 48 82 10 66 12 83 47 88 110 047 5 16 27 11 2 83 2 47 3 00 1 38 1 97 1 38 240 Ibs 2 3 Chapter 2 Installation Wiring Figure 2 4 IP 20 NEMA Type 1 Dimensions Frame E 1 1 ALLEN BRADLEY
152. 86 87 88 89 81 80 71 78 19 Motor Overload Mtr Overload Lim Mtr Overld Spd 1 Mtr Overld Spd 2 Min Overload Lmt Service Factor 92 95 96 97 94 Transistor Diag Autotun Diag Sel Logic Options Tran Diag Disabl Inverter Diag 1 Inverter Diag 2 19 Offset Id Offset 256 59 257 258 259 260 261 Trl Status Tr2 Status Tr3 Status Tr4 Status Trend In 1 Trend In 2 Trend In 3 Trend In 4 Trend Out1 Trend Out 2 Trend Out 3 Trend Out 4 Trend 1 0 462 472 482 492 454 464 474 484 463 473 483 493 Chapter 5 Programming Parameters Trend Setup r1 Opnd Parm X rl Opnd Parm Y r1 Operator rl Sample Rate r1 Post Samples r1 Cont Trigger r1 Select Tr2 Opnd Parm X Tr2 Opnd Parm Y Tr2 Operator Tr2 Sample Rate Tr2 Post Samples Tr2 Cont Trigger Tr2 Select Tr3 Opnd Parm X Tr3 Opnd Parm Y Tr3 Operator r3 Sample Rate Tr3 Post Samples Tr3 Cont Trigger Tr3 Select Tr4 Opnd Parm X Tr4 Opnd Parm Y Tr4 Operator Tr4 Sample Rate Tr4 Post Samples Tr4 Cont Trigger Tr4 Select Shaded parameters are Standard 1336 FORCE parameters 455 456 457 458 459 460 461 465 466 467 468 469 470 4n 415 416 471 418 479 480 481 485 486 487 488 489 490 491 Info Drive SW Version Drive Type Base Drive Curr Base Line Volt Adapter Version Adapter ID Language SP Comm Retries ICN Status ChA LED State DIP Switch ChA 220 221 301 300 309
153. 9 Chapter 2 Installation Wiring Figure 2 27 Option L5 L5E Wiring 510 510 Typical L5 L5E Options Typical 681 fe slm 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 2 40 T User Supplied 24V AC DC Contacts shown are general refer to Figures 2 24 amp 2 25 for Input Mode selection and recommended contact types Option L5 L5E 24V AC DC Interface Board Requirements Circuits used with Option L5 L5E must be capable of operating with high true logic DC external circuits in the low state must generate a voltage of no more than 8V DC Leakage current must be less than 1 5 mA into a 2 5k ohm load AC external circuits in the low state must generate a voltage of no more than 10V AC Leakage current must be less than 2 5 mA into a 2 5k ohm load Both AC and DC external circuits in the high state must generate a voltage of 20 to 26 volts and source a current of approximately 10 mA for each input The L5 L5E option is compatible with these Allen Bradley PLC modules 1771 e 1771 16 1771 16 e 1771 OBD 1771 OYL e 1771 OBN 1771 OZL e 1771 0Q e 1771 Chapter 2 Installation Wiring Figure 2 28 Option L6 L6E Wiring 102 100 16 L6E Options 20k V Typical of Each Input 0 22uf Typical 0 15 NOT 681 USED 499k WV E es
154. ANport Device 6 Int Gateway Bit 7 Reserved Leave Zero 347 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero 5 75 Chapter 5 Programming Parameters SCANport Process Trim Owner Trim Owner This parameter displays which SCANport devices are currently issuing a valid process trim command 1 Process Trim Input Present 0 Process Trim Input Not Present Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Ramp Owner Ramp Owner This parameter displays which SCANport devices are presently issuing a valid ramp command 1 Ramp Input Present 0 Ramp Input Not Present Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Clear Fault Owner Clr Fault Owner This parameter displays which SCANport devices are presently issuing a valid Clear Fault Command 1 Clear Fault Input Present 0 Clear Fault Input Not Present Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 10 Volt In Filtr 10 Volt In Filtr This parameter establishes the breakpoint radian frequency for the 10 Volt Input Pot In Filtr Pot In Filter This parameter establishes the breakpoint radian frequecy for the Pot Input mA In Filtr mA In Filter This parameter establishes the breakpoint for the mA Input 5 76 Parameter Number Parameter Type Display Units Drive Units Factory Def
155. AP Dualport RAM Failure Base Drive EE Failure NOT USED This word parameter indicates a fault condition which has been detected during power up or reset of the drive Where the bit is set to 1 the corresponding condition in the Drive is true otherwise the condition is false 6 6 Chapter 6 Troubleshooting Current Processor Faults amp Warnings Both the fault and warning queues are configurable for either the Current or the Velocity processor You can configure which Current processor faults you want to trip the Drive by setting Parameter 86 When the Drive trips on one of the faults set in parameter 86 the CP light on the Main Control board will turn red When the drive trips it will coast the motor to a stop Parameter 87 has the same bit definitions as parameter 86 but instead of tripping the Drive will display a warning fault which in turn causes the CP light to flash green indicating a warning The Drive will continue to run when there is a CP warning Parameter 82 displays which CP fault caused the Drive to trip while parameter 84 displays any CP warnings that have occurred Most of the setup for the current processor Fault Warning configuration deals with DC Bus conditions These Bus conditions deal with the Bus precharge and any type of ride through conditions Configuring CP Faults and Warnings You can configure which of the following faults you want to trip the drive by using CP Fault Warning Configurat
156. All circuits should be grounded independently and directly The AC supply ground conductor should also be connected directly to this ground point or bus bar Sensitive Circuits It is essential to define the paths through which the high frequency ground currents flow This will assure that sensitive circuits do not share a path with such current and to minimize the area enclosed by these paths Current carrying ground conductors must be separated Control and signal ground conductors should not run near or parallel to a power ground conductor Motor Cable The ground conductor of the motor cable drive end must be connected directly to the drive ground terminal PE not to the enclosure bus bar Grounding directly to the drive and filter if installed provides a direct route for high frequency current returning from the motor frame and ground conductor At the motor end the ground conductor should also be connected to the motor case ground If shielded or armored cables are used the same grounding methods should be used for the shield armor as well Encoder Connections If encoder connections are required they must be routed in grounded steel conduit The conduit must be grounded at both ends Ground the cable shield at the drive only Discrete Control and Signal Wiring The control and signal wiring must be grounded at a single point in the system remote from the drive This means the OV or ground terminal should be grounded a
157. Clr Fault Owner 367 369 371 372 373 370 374 375 376 377 378 379 Analog Input Group Analog In 1 An In 1 Offset An In 1 Scale Analog In 2 An In 2 Offset An In 2 Scale Analog In 3 An In 3 Offset An In 3 Scale Analog In 4 An In 4 Offset An In 4 Scale SP Analog In SP Analog Sel SCANport Masks Port Enable Mask Start Mask 09 Mask Direction Mask Reference Mask Local Mask Clear Fault Mask Reset Drive Mask 339 392 393 340 394 395 341 396 397 342 398 399 338 391 Analog Output Group Analog Out 1 387 An Out 1 Offset 400 An Out 1 Scale 401 Analog Out 2 388 An Out 2 Offset 402 An Out 2 Scale 403 Analog Out 3 389 An Out 3 Offset 404 An Out 3 Scale 405 Analog Out 4 390 An Out 4 Offset 406 An Out 4 Scale 407 SP Analog Out 386 SCANport I O Data In Al 314 Data In A2 315 Data In B1 316 Data In B2 317 Data In C1 318 Data In C2 319 Data In D1 320 Data In D2 321 Data Out A1 343 Data Out A2 344 Data Out B1 345 Data Out B2 346 Data Out C1 347 Data Out C2 348 Data OutD1 349 Data Out D2 350 5 25 Chapter 5 Programming Parameters Velocity Ref Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Jog Speed 1 Jog Speed 2 Vel Ref 1 Low Vel Ref 1 Hi Vel Ref 2 Low Vel Ref 2 Hi Vel Scale Fctr 1 Vel Scale Fctr 2 Vel Trim Low Vel Trim Hi Vel Ref Out Low Vel Ref Out Hi Accel Time Decel Time Fwd Speed Limit Rev S pee
158. Contact Allen Bradley for recommendations ATTENTION This Drive contains ESD Electro Static Dis charge sensitive devices Static control precautions are required when installing testing servicing or repairing this assembly These precautions should be applied when working with logic boards AND any components in the power section properly grounded wrist strap should be worn when contacting any compo nent in the drive If you are not familiar with static control proce dures before servicing reference Allen Bradley Publication 8000 4 5 2 Guarding against Electrostatic Damage or any other applicable ESD protection handbook The following equipment is required for start up and tuning Digital Multimeter DMM capable of 1000V DC 750V AC with input resistance of at least 1 megohm e Tachometer used to monitor motor velocities e User Manuals for optional equipment e DriveTools Software optional This start up sequence specifies using hand instruments such as multimeters tachometers ammeters and an oscilliscope to carry out this start up test procedure If you have the optional DriveTools software for the 1336 FORCE Drive it can be used to simplify the startup procedure This option can be used to set input commands manipulate parameters and verify frequencies and voltage levels IMPORTANT This startup sequence for a Series B Drive assumes that you have a HIM Programming Terminal If a different programming de
159. Conventional Mounting Frames D amp E 2 Frames D amp E 2 1 Inputpower source to filter and output power filter to drive and drive to motor wiring must be in conduit or have shielding armor with equivalent attenuation Shielding armor must be bonded to the metal bottom plate S ee requirements 6 amp 7 on page E 1 2 Refer to the Filter Selection table on page B 2 for frame references and corresponding catalog numbers B 5 Appendix B CE Conformity Filter Mounting continued Important positive electrical bond must be maintained All Dimensions in Millimeters and Inches between the enclosure and filter including brackets fans and drive To assure a positive electrical bond any paint near all mounting points must be removed Important Cooling fans are required for proper drive operation Refer to the User Supplied Enclosures section in Chapter 2 for CFM recommendations Typical Connection to Drive 75 0 2 95 Mounting Brackets AC Input Terminals Important This information represents the method used to mount 1336 RFB 475 590 amp 670 filters in an Allen Bradley supplied EMC enclosure User supplied EMC enclosures must follow all of the guidelines shown Illustrations are only intended to identify structural mounting points and hardware shapes You must design and NDS DX fabricate steel components based on the actual mounting ST configuratio
160. DTH IN PARM 43 SET BITS 6 THROUGH 8 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND CHECK DI DT LIMIT IN PARM 181 50 LOCAL DRIVE I O Appendix 36T Firmware Function Logic Control BRAKE INTERFACE 750 VOLTS LOCAL INPUT STATUS BUS VOLTS DISCRETE INPUT ADAPTER DEBOUNCE TERMINALS J8 BRAKE REQ DRIVE ENABLE N O THERMO GUARD N C STOP N C EXTERNAL FAULT DISCONNECT N C PSI BOARD VP ENABLE Bad REVERSE PILOT RELAY CURRENT LIMIT STOP GREENLED COAST STOP LED SYMBOL C PARAMETER XXX DATA SINK lt gt PARAMETER YYY DATA SOURCE BIT O TESTPOINT OFF SHEET CONNECTION W gt 1150 MSEC SCAN INTERVAL 12 HIGH BYTE HANDSHAKE ENABLE LOW BYTE SYSTEM MODE DRIVE ENABLE MOTOR OVERTEMP DISCRETE STOP EXTERNAL STOP RMS FAULT P0 2 0 NORMAL STOP 1 TORQUE TO 0 SPEED 0 MASTER SLAVE DRIVE 2 TORQUE TO 0 TORQUE P0 3 INVERTER TORQUE STOP TEST DIG P0 5 ENABLE CONFIGURATION uA LED NVERTER STATUS po CONTACTOR VERIFY LOGIC COMMAND LOCAL WORD OUTPUT STATUS NORMAL STOP 0 BRAKE ENABLE START 1 TURN ON DELAY P1 4 JOG 1 CLEAR FAULT FORWARD RED LED VEL RAMP DISABLE FLUX ENABLE PROCESS TRIM ENABLE VEL REF SELECT A VEL REF SELECT B VELOCITY REF SELECT ZERO TORQUE EXTERNAL REF 1 PRESET SPEED 1
161. Decel Rate 2 0000 0000 0000 0000 346 SP Local Owner 0000 0000 393 Mop Increment 0000 0000 0000 0000 347 SP Flux Owner 0000 0000 394 Mop Value 0000 0000 0000 0000 348 SP Trim Owner 0000 0000 395 Pulse PPR 0000 0000 0000 0000 349 SP Ramp Owner 0000 0000 396 Pulse Edge 0000 0000 0000 0000 350 SP ClrFaultOwner 0000 0000 397 Pulse Scale 1750 352 10 Volt In Filtr 0 0 r s 398 Pulse Offset 0 0 353 Potin Fitr 0 0 r s 399 Pulse Value 0 0 354 mA In Filtr 0 0 r s 404 SP Comm Retries 0 0 355 10 Volt Input 0 405 FaultSelect 0000 0000 0111 1111 356 10 Volt Offset 0 00 Volt 406 Warning Select 0000 0000 0111 1111 357 10 Volt Scale 42 000 407 Fault Status 0000 0000 0000 0000 358 Pot Input 0 408 Warning Status 0000 0000 0000 0000 Appendix B Spare Parts Information Current 1336 FORCE spare parts information including recommended parts catalog numbers and pricing can be obtained from the following sources Allen Bradley home page on the World Wide Web at http www ab com then select Drives and Motors followed 1336 FORCE from the Product Directory Technical Support Select Parts List Appendix D Spare Parts This Page Intentionally Blank D 4 This Page Intentionally Blank Appendix D Spare Parts Appendix D Spare Parts This Page Intentionally Blank D 4 A AC Supply Source 2 3 AC Input Line Fuse Ratings 2 12 An
162. Device 4 SCANport Device 5 SCANport Device 6 SCANport Image In option only based on the stop type in modes 3 13 and 16 Stop from SCANport devices follow parameter 59 bits 4 amp 5 The Accel Rates 389 amp 390 and Decel Rates 391 amp 392 are selected by modes 4 11 and 14 NOTE Mode 2 3 4 5 and 6 take permanent ownership of the direction function NOTE If the Control Interface Option is other than 1 the Control Interface Option speed reference will take ownership of the speed reference To allow other devices to control speed reference disable the Control Interface Option speed reference with the speed reference mask 334 Using the SCANport Image You can view the values in the SCANport image table by using parameters 310 through 317 for input and 320 through 327 for output 1336 FORCE Logic Command Logic Status Reference Feedback Data In A1 Par 310 Data Out A1 Par 320 SCANport Device 1 Data In A2 Par 311 Data Out A2 Par 321 SCANport Devige 2 Data In B1 Par312 Data Out B1 Par 322 Mp SCANport Device 3 Data In B2 Par 313 Data Out B2 Par 323 SCANport Device 4 Data In C1 Par 314 Data Out C1 Par 324 SCANport Device 5 Data In C2 Par315 Data Out C2 Par 325 SCANport Device 6 Data In D1 Par 316 Data Out D1 Par 326 Data In D2 Par 317 Data Out D2 Par 327 SCANport gateways or adapters to RIO DF1 DH485 DeviceNet SLC and Flex I O are some of the devices that can transfer data
163. Diagnostics Bit 1 Motor Phase Rotation Test Bit 2 Lsigma Measure Test Bit 3 Rs Measure Test Bit 4 Id Measure Test Bit 5 Torque Block Calc Test Bit 6 Motor Inertia Test Bit 7 System Inertia Test Bit 8 Velocity Loop Gain Transistor Diagnostics Configuration Tran Diag Disabl This parameter provides a means of disab ling certain transistor diagnostic tests by setting the following bits Bit 0 Disable feedback phase U offset Bit 1 Disable feedback phase W offset Bit 2 Disable Shorted Transistor Tests Bit 3 Disable Ground Fault Tests Bit 4 Disable Open device tests Bit 5 Not Used Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 6 Disable Power Trans U Upper for all tests Bit 7 Disable Power Trans U Lower for all tests Bit 8 Disable Power Trans V Upper for all tests Inverter Diagnostics Result 1 Inverter Diag 1 The results of the Transistor Diagnostic Tests are given in parameter 258 amp 259 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Chapter 5 Programming Parameters 252 Sink x None 125 0 32767 2
164. Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 244 Sink x x volts 16 1 volt L N 367 0 volts 0 0 volts 468 8 volts 245 Sink x x Volts 16 1 volt line to neutral peak 3 0 volts 0 0 volts 50 0 volts 246 Sink x xx Hz 256 1Hz unit torque 0 832 Hz 0 000 Hz 10 000 Hz 247 Sink Hz 256 1Hz unit torque 2 00 Hz 0 00 Hz 30 00 Hz 248 Sink HZ 256 1Hz unit torque 0 50 Hz 0 00 Hz 10 00 Hz 249 Sink X None 153 0 32767 250 Sink x None 306 0 32767 251 Sink X None 300 0 32767 Ki Regulator Ki Flux Integral gain of the slip regulator This pa rameter MUST NOT BE CHANGED Data represented as x Autotune Diagnostics Selection Autotun Diag Sel This parameter allows selection of drive diagnostic and commisioning tests by set ting individual bits in this parameter Bit 0 Inverter transistor
165. F CP FLUX UP wo RESET DRIVE CLEAR FAULT A DIAGNOSTIC CP FLUX a TORQUE BLOCK INTERFACE REQUEST PROCESS TRIM ENABLE FLAG LOSS 53 Appendix A Battery Disposal When it becomes necessary to replace the battery that supports the real time clock on the 1336 FORCE precautions must be taken when disposing of the old battery The following procedure must be followed when disposing of lithium batteries general trash collection Explosion or violent rupture is possible Batteries should be collected for disposal in a manner to prevent against short circuiting compacting or destruction of case integrity and hermetic seal ATTENTION Do not incinerate or dispose of lithium batteries in For disposal batteries must be packaged and shipped in accordance with Federal state local or provincial laws to an appropriate Transfer Storage and Disposal facility The person disposing of the material is responsible for any hazards created in doing so as the material may be considered toxic reactive or corrosive 54 EMC Directive Requirements for Conforming Installation Appendix mm CE Conformity This apparatus is tested to meet Council Directive 89 336 Electromagnetic Compatibility EMC using a technical construction file and the following standards e EN 50081 1 2 Generic Emission Standard e EN 50082 1 2 Generic Immunity Standard Marked for all applicable dire
166. Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 274 Source x None 0 32767 32767 275 Sink x None 0 0 100 276 Source x None 0 32767 32767 Sink X None 0 0 100 278 Source None 0 32767 32767 279 Sink x None 0 0 100 280 Source x None 0 32767 32767 Testpoint Selection 5 Torq TP Sel 5 This parameter selects a torque block test point The value of that test point can be read from Testpoint Data 5 Parm 282 Testpoint Data 5 Torq TP Data 5 This parameter contains the data selected by Testpoint Selection 5 param 281 Testpoint Selection 6 Torq TP Sel 6 This parameter selects a torque block test point The value of that test point can be read from Testpoint Data 6 Parm 284 Testpoint Data 6 Torq TP Data 6 This parameter contains the data selected by Testpoint Selection 6 param 283 Selection for Test DAC 1 Test DAC1 Sel This parameter is for factory use only DO NOT ATTEMPT TO USE Selection for Test DAC 2 Test DAC2 Sel This parameter is for factory use only DO NOT ATTEMPT TO USE Ki Frequency Regulator Ki Freq Reg Integral gain of the frequency regulator in sensorless mode This parameter must not be changed Parameter Number Parameter Type Display Units Drive Units Factory De
167. Flux Regulator 251 5 62 Chapter 5 Programming Parameters Table 5 B 1336T Alphabetical Parameter Table Parameter Name Element Kp Frequency Regulator Kp Slip Regulator Kp Velocity Loop Ksel Freq Regulator K Slip Language Select Leakage Inductance Lo Test Errors Local Owner Local Mask Local Input Status Local Output Status Logic Command Word Logic Options Logic Status Low Logic Status Hi Logic Testpoint Data Logic Testpoint Select mA In Filtr Maximum Dynamic Brake Power Maximum Dynamic Brake Temp Maximum Forward Speed Trim Maximum Reverse Speed Trim Milli Amp Input Milli Amp Input Offset Milli Amp Input Scale MilliAmp Output MilliAmp Output Scale Minimum Flux Level Minimum Overload Limit Motor Current Magnitude Feedback Motor Control Counter Motor Flux Id Test Errors Motor Inertia Motor Nameplate Amps Motor Nameplate Frequency Motor Nameplate Poles Motor Nameplate Volts Motor Overload Limit Motor Overload Speed 2 Motoring Power Limit Motor Voltage Magnitude Negative Motor Current Reference Limit Non Configurable Fault Status Notch Filter Freq Notch Filter Q Over Setpoint 1 Over Setpoint 2 Over Setpoint 3 Over Setpoint 4 Perunit Motor Current Perunit Motor Voltage Phase Rotation Errors Phase Rotation Frequency Reference Pot Input Pot In Filtr 288 249 140 290 246 304 237 295 346 337 54 56 52 29 56 57 70 71 354 77 78 130 129 361 362
168. G1 5 E Ek K2 K2 G2 G2 INV SCR6 SCR2 1 Gate Driver Board 1 To Gate Driver Board A1 To Gate Driver Board A1 40 gel CNV STD PRECHARGE BD all To Precharge Board A10 GATE DRIVERS F2 F3 1 15V AUXBUS MAIN BUS 24V E 1A DC DC DC DC 45V AUXBUS CONVERTER CONVERTER 12V 12V TP1O OTP2 5 TP6 4 8 TP11 F Y 240 150 15 5V 412V 12V AUX 24V VELOCITY CURRENT CURRENT PROC PROC REG O O O 15 TP22 TP25 VAFF VBFF VCFF CONTROL 14 16 TP18 TP23 1 TP4 5 TP26 2111 12 VBUS ID DAC1 DAC2 15V GND 20 Appendix Schematic Diagram 150 250 HP 380 460V 150 300 HP 575V CUSTOMER TO BLOWER FUSING CIRCUIT SEE SHEET 2 CONV SNUBBER CONV SNUBBER CONV SNUBBER GATE GATE GATE INTERFACE INTERFACE INTERFACE GATE INTERFACE 1 GATE INTERFACE 1 INVERTER SNUBBER INVERTER SNUBBER INVERTER SNUBBER gt gt gt N
169. I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communication I O 2 Communication I O 2 Communication 2 Communication I O 2 Communication I O 2 Param Descrpt See Page 5 68 See Page 5 68 See Page 5 68 See Page 5 68 See Page 5 69 See Page 5 69 See Page 5 69 See Page 5 69 See Page 5 70 See Page 5 70 See Page 5 70 See Page 5 70 See Page 5 70 See Page 5 70 See Page 5 70 See Page 5 70 See Page 5 71 See Page 5 71 See Page 5 71 See Page 5 71 See Page 5 71 See Page 5 71 See Page 5 71 See Page 5 71 See Page 5 72 See Page 5 72 See Page 5 72 See Page 5 72 See Page 5 72 See Page 5 72 See Page 5 73 See Page 5 73 See Page 5 73 See Page 5 73 See Page 5 73 See Page 5 74 See Page 5 74 See Page 5 74 See Page 5 74 See Page 5 74 See Page 5 75 See Page 5 75 See Page 5 75 See Page 5 75 See Page 5 75 See Page 5 76 See Page 5 76 See Page 5 76 See Page 5 76 See Page 5 76 See Page 5 76 See Page 5 77 See Page 5 77 See Page 5 77 See Page 5 77 See Page 5 77 Chapter 5 Programming Parameters Table 5 A 1336T Numerical Parameter Table Standard Adapter Parameters Param No Parameter Name Element Grup
170. ILE 3 Velocity Torque Figure 5 2 Standard Adapter Parameters cont Velocity Ref Velocity Fdbk Torque Autotune Vel Ref 1 Low Vel Ref 1 Hi Vel Scale Fctr 1 Vel Ref 2 Low Vel Ref 2 Hi Vel Scale Fctr 2 Vel Trim Low Vel Trim Hi Vel Ref TP Lo Vel Ref TP Hi Vel Ref TP Sel Jog Speed 1 Jog Speed 2 Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Rev Speed Limit Fwd Speed Limit Max Rev Spd Trim Max Fwd Spd Trim Droop Percent A 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 Logic Command Local In Status Local Out Status Logic Status Low Logic Status Hi Torq Stop Config Logic Options At Setpoint 1 At Setpoint 2 Over Setpoint 1 Over Setpoint 2 Over Setpoint 3 Over Setpoint 4 Setpoint Select Speed Setpnt Tol Cur Setpt Tol Zero Speed Tol Logic Tstpt Data Logic Tstpt Sel Stop Dwell 384 Output Select 385 Input Mode 387 Stop Select 1 Error Filter BW Vel Fdbk TP Low Vel Fdbk TP Hi Vel Fdbk TP Sel Vel Feedback Scaled Vel Fdbk Enc Pos Fdbk Low Enc Pos Fdbk Hi Fdbk Device Type Fdbk Track Gain Fdbk Filter Sel Fdbk Filter Gain Fdbk Filter BW Tach Velocity Filt Vel Fdbk Pulse PPR Pulse Edge Pulse Scale Pulse Offset Auto Tune Torque Auto Tune Speed Stator Res Leakage Ind Base Flux Cur Base Torque Cur Base Torque Volt Base Flux Volt Vde Max Vqe Max Vde Min Base Slip Freq Base Slip Fr Max Base Slip Fr Min Kp Slip Ki Slip Kp Flux
171. If possible uncouple the motor from the load and place a guard around the motor shaft Figure 4 2 HIM Power Up Display LCD Display AB0273A Chapter 4 Startup Quick Start Procedure 1 An automated Quick Startup sequence is available on the HIM to lead you through all data entry configuration and diagnostic tests that must be performed when starting up the 1336 FORCE drive From the Status Display press Enter or ESPERE any key Choose Mode will be Display shown Pur Decrement key until Startup is displayed Press Enter Startup The Setup Motor Nameplate display 1 Setup Motor If you have not previously entered the Motor Nameplate data toggle to the Yes Y selection in the Setup Motor m Nameplate display and press Enter The first motor informational screen will appear Use the Select key to access the second line and make any changes with the Increment and Decre SEL 21 ment keys In subsequent displays you or 30 0 will be asked to provide the following motor information 1 Base Motor Current 2 Base Motor Volts 3 Base Motor Frequency 4 Motor Poles 5 Base Motor Speed 6 Feedback Device Type When all motor and feedback data have been entered a display asking you if Diagnostics Y you wish to run Motor Connect Diagnostics will appear Press the Enter key to initiate the test sequence In Tran
172. LTAGE 0 VOLTS 5 VOLTS 10 VOLTS BASESPEED 100 0 100 Chapter 4 Startup SCANport Analog I O Parameter Configuration SCANport analog is what is received from and sent to the SCANport devices Figure 4 11 SCANport 1 0 Parameter Configuration SP Analog In Select Par 364 Default setting of Drive Parameter 364 1 ae SP Analog In Par 365 SP Analog In Select Par 367 Default setting of Drive Parameter 367 1 SP Analog In Par 368 SP Analog Out Par 379 gt To receive analog input from a device the SCANport Analog Input Select parameter 364 must be set to the SCANport device port number and the SCANport Analog Input parameter 365 must be linked to a sink Set the scale as needed For example if the HIM is plugged into Port 1 and it is to control external velocity you would then enter 1 for SCANport Analog Input Select 364 and link External Velocity 101 to SCANport Analog Input 365 You may scale the velocity through External Velocity Scale 102 or through SP Analog Scale 366 The Drive sends SCANport Analog Output parameter 379 to all devices connected to SCANport To send data out to the SCANport devices you must link SCANport Analog Output 379 to a source For example If the HIM is to receive Velocity Feedback you would link SCANport Analog Output 379 to Velocity Feedback 269 Output Relay Configuration T
173. Minimum Overload Limit Min Overload Lmt This is the minimum motor overload trip level that will be in effect when the motor speed is at or below Mtr Overld Spd 2 P96 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 90 Sink X x rpm 4096 100 0 overspeed 0 1 x base speed 0 0 rpm base speed 91 Sink 52 886 1 0 sec 0 1 sec 3276 7 sec 92 Sink 4096 100 Iq for 60 sec 200 096 110 0 400 0 94 Sink 559 4096 1 00 1 00 1 00 2 00 95 Sink x x rpm 4096 Base Motor Speed 0 8 x Base Speed 0 0 rpm 2 x Base Speed 96 Sink x x rpm 4096 Base Motor Speed 0 8 x Base Speed 0 0 rpm 2 x Base Speed 97 Sink
174. Monitor Monitor Info Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status Fault Select Status File File No Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communication I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Startup 1 Startup 1 Diagnostics 4 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Startup 1 Diagnostics 4 Diagnostics Diagnostics File Communications I O 2 Diagnostics File Communications I O 2 Diagnostics File Communications I O 2 Diagnostics File Communications I O 2 Param Descrpt See Page 5 77 See Page 5 77 See Page 5 78 See Page 5 78
175. NCE lt 172 gt 25 C87 V S REFERENCE 99 TORQUE REFERENCE TORQUE TO CURRENT CURRENT LIMIT LIMIT STATUS q LIMIT PARAM NTC LIMIT CURRENT NVERTER IT LIMIT LIMITS pod MAX NVERTER MAXIMUM C271 SELECT LIMITED MIN FEUX TORQUE LIM PARAM FLUX POWER LIM PARAM TORQUE AUTOTUNE LIM PARAM 43 Appendix A 36 Firmware Function Torque Block Overview ENABLE CURRENT COMMAND CONDITIONING 4096 2 238 2 4096 FROM TORQUE REF R MIN 8192 SYNCHRONOUS MAX MOTOR TO CURRENT RANGE STATIONARY DRIVE ENABLE TRANSFORMATION RATED FLUX Id Q35 gt LIMITER MOTOR POLES ENCODER FEEDBACK CONDITIONING 233 COUNTER 2 THETA e 2 CHAN A HARDWARE DELTA COUNTS 233 1024 THETA r CHAN B 4 235 COUNTERS DIGITAL ENCODER COUNTER 1 THETA s C235 ENCODER PPR SLIP REGULATOR fs fslip eletrical stator freq A 44 IqOFFSET Appendix 36 Firmware Function Torque Block Overview ANALOG CURRENT REGULATOR INVERTER GAIN FEEDBACK VOLTAGE TP16 2 5V WITH PEAK RATED MOTOR AMPS THROUGH THE MOTOR INVERTER GAIN COMMAND 2048 FEEDBACK GAIN VOLTAGE TP21 5V WITH PEAK RATED MOTOR AMPS THROUGH THE MOTOR c lt TOTAL CURRENT BRIDGE GAIN IN TORQUE TESTPOINT 27 WHEN PAR 173 27 FEEDBACK CKT CURRENT SENSOR BURDEN RESISTOR VOLTAGE BETWEEN
176. ORQUE MODE TO TORQUE REF CONTROL RUN INHIBIT LOGIC TESTPOINTS TESTPOINT SELECT LOGIC COMMAND PROCESSING stop DwELL 72 52 Appendix 36T Firmware Function Logic Control LOGIC OPTION BITS LOGIC STATUS LOGIC OPTION BITS RUN READY FLUX READY RUNNING FLUX UP COMMAND DIRECTION 12 FWD 0 REV ROTATING DIRECTION 1 FWD 0 REV ACCELERATING BUS RIDETHRU DECELERATIN JOGGING WARNING FAULTED AT SET SPEED AT LIMIT lt 183 gt Not to 0 AA NOT USED LOGIC STATE LOCAL B AT SETPOINT 1 LOCAL C STOP START AT ZERO SPEED RUN STOPPING REFA DIAG AT SETPOINT 2 OVER SETPOINT 1 OVER SETPOINT 2 REF OVER SETPOINT 3 REF C OVER SETPOINT 4 STATUS LOGIC CONTROL WORD BITS TO FAULT AN CONTROL VEL REF CONTROL A 4 VEL REF CONTROL B eo i See Vel Ref VEL REF CONTROL C Testpoint 1 TO CURRENT PROCESSOR FLUX ENABLE DIAGNOSTIC ENABLE ENCODERLESS DISABLE 15 RIDETHRU ACK CP to VP BITS J TRO FROM CURRENT PROCESSOR VEL REF CONTROL D 1 STOPPING STOPPED MASTER INVERTER SLAVE INVERTER PRECHARGE REQUEST RAMP CONTROL 1 RAMP SPEED REGULATOR ENABLE o FLUX UP 1 DIAGNOSTIC ACKNOWLEDGE 2 DIAGNOSTIC ERROR 4 5 8 9 MOTOR SIMULATOR ENABLE FLUX ENABLE DIAGNOSTIC ENABLE VP GAIN CALC oa c 0 NO REQ NOT 0 DO DIAG NOT 0 LOSS O
177. OW Enc Pos Fdbk Low This is the LOW word portion of a 32 bit encoder pulse accumulator Each encoder quadrature edge will be counted resulting in a 4X multiplication As a result this pa rameter will be scaled such that the posi tion change per motor revolution is equal to 4 times the encoder PPR Encoder Position Feedback HI Enc Pos Fdbk HI This is the HI word portion of a 32 bit en coder pulse accumulator that was de scribed for the previous parameter This word will change by 1 count for every change in low count of 65 536 4X encoder pulses Feedback Device Type Fdbk Device Type This parameter selects the source for motor velocity feedback 0 Encoder Feedback 1 Encoder Feedback 2 Encoder Feedback w tracker filter 3 Motor Simulator 4 External Feedback Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 5 Encoderless velocity estimate with deadband 6 Encoderless velocity estimate without deadband 7 Encoderless without deadband and low bandwidth Feedback Tracker Gain Fdbk Track Gain Affects gain of the alpha beta tracker filter used when Fdbk Device Type 2 Smaller gains result in increased filteri
178. Out 3 Analog Out 4 Analog Out 1 Analog Out 1 Off Analog Out 1 Scale Analog Out 2 Scale Analog Out 3 Off Analog Out 3 Scale Analog Out 4 Off Analog Out 4 Scale ChA RIO Out 7 ChB RIO Out 7 Redund Chan ChB RIO Fault Select Status Group SCANport Owners Group SCANport Masks SCANport I O Max Dyn Brake Pwr Port Enable Mask Data In A1 Max Dyn Brake Temp Direction Mask Data In A2 Max Dyn Time Const Start Mask Data In Pwrup Flt Status Jog Mask Data In B2 Non config sts Reference Mask Data In CP Fit Status Clear Fault Mask Data In C2 VP Flt Status Reset Drv Mask Data In D1 CP Warn Status Local Mask Data In D2 CP Fit Status Data Out Al CP Fit Select Data Out A2 CP Warn Select Data Out VP Fit Select Data Out B2 VP Warn Select Data Out Cl ChA Fit Sel Data Out C2 ChA Warn Sel Data Out D1 ChB Fit Sel Data Out D2 ChB Warn Sel ChA Fit Status ChA Warn Status ChB Fit Status ChB Warn Sts SP Fit Select SP Warn Sel SP Fit Status SP Warn Sts Drive Drive D2D Interval D2D Xmit Data 2 D2D Baud Rate D2D Rcv 1 Data 1 D2D Xmit Addr D2D Rcv 1 Data 2 D2D Rcv 1 Addr D2D Rcv 2 Data 1 D2D Rcv 2 Addr D2D Rcv 2 Data 2 D2D Xmit Ind 1 D2D Xmit Ind 2 D2D Rcv 1 Ind 1 D2D Rcv 1 Ind 2 D2D Rcv 2 Ind 1 D2D Rcv 2 Ind 2 D2D Xmit Data 1 Stop Owner Dir Owner Start Owner Jog 1 Owner Jog 2 Owner Set Ref Owner Local Owner Flux Owner Trim Owner Ramp Owner Clr Flt Owner 5 21 Chapter 5 Progr
179. Out B2 p 323 Data Out C1 p 324 Data Out C2 p 325 Data Out D1 p 326 Data Out D2 p 327 8 words maximum Optionally enabled using DIP switches on the module Flex I O Module The following figure shows how the I O image table for the programmable controller relates to the 1336 FORCE drive when a Flex I O Module is used SCANport Flex 1203 FM1 1336 FORCE Drive Adapter and 1203 FB1 Modules Logic Command Logic Evaluation Block RIO Reference SP An 2 Sel p 367 DeviceNet ControlNet Shiels Logic Status Logic Status Low p 56 Feedback SP An Output p 379 4 34 Chapter 4 Startup This Page Intentionally Blank 4 35 Introduction Terminology Chapter Programming Parameters This chapter contains the information required to assist you in programming the 1336 FORCE AC Drive for a specific application after initial start up Drives are shipped programmed with default values and are preconfigured for the options installed Parameters 0 thru 288 are the parameters for the 1336 FORCE Motor Control Board Parameters 300 and above cover the Adapter Board of the 1336 FORCE DRIVE The 1336 FORCE parameter table has been broken down into three different table types as follows Table 5 A lists parameters in numeric order with page references Table 5 B lists parameters alphabetically with page references Figures 5 2 amp 5 3 list Standard Adapter and PLC Comm Adapter parameters
180. P light on the Main Control board will blink red soft fault for configurable VP faults When this happens the drive will shut off and coast the motor to a stop VP faults can be viewed in parameter 83 Figure 6 6 Configurable VP warnings can be setup in Parameter 89 Figure 6 7 and viewed in parameter 85 When a configurable VP warning exists the VP light will be flashing green but the drive will continue to run Velocity processor warning faults can be viewed in parameter 85 Figure 6 8 Figure 6 5 gii Parameter 88 VP Fault Warning Configuration Select bits 15 1413 12 11 109 8 7 6 5 1 O O OOO O O OO 00000000 E Feedback Loss Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending IIT Motor Overload Trip IIT Motor Stalled External Fault RMS Fault NOT USED Parameter Limit Math Limit Dynamic Brake Resistor Overtemperature AC Motor Contactor Failure Inverter Overload Pending IT Drive to Drive communication fault Inverter Overload Trip IT This word parameter indicates conditions detected by the Velocity Processor VP that have been configured to report as a Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 85 and 89 When a bit is set to 1 the corresponding condition in the Drive will be reported as a FAULT otherwise the condition is reported as a WARNING 6 17 Chapter 6 Troubleshooting Figure 6 6 Bit Parameter 83
181. PLC Communication Adapter Board User Manual 1336 FORCE 5 13 Figure 2 33 Control Scheme 120V 24V Drive Enable 120 24V Motor Thermo 120 24V Stop 120 24V Ext Fault 120 24V Input Input Common Common Fault NC G m Fault Com Fault NO 10 Note Terminal Blocks TB20 amp TB21 are pull apart terminal blocks to aid in making cable connections Both terminal blocks will accept wire sizes from 30 12 AWG 0 06 3 3 mm his is a configurable stop see parameter 59 under the Drive Logic group for Start and Stop options Input must be jumpered if not used Computer Connections to Frame D drives In some cases it will be necessary to use a DH port connection kit when connecting some computers to a 1336 FORCE drive in FRAME D ONLY Refer to the Installation instructions included with Frame D drives for more information on the use and installation of this kit ControlNet Fiber Optic Cable Connections to Frame D drives If you are installing the fiber optic cable for ControlNet on a Frame D drive special note should be taken of the following The strain relief latching cover assembly must be removed from the cable connectors due to space constraints The cable connectors must then be separately plugged into the ControlNet board connectors on Frame D drives ONLY Correct orientation of the loose cables is determined by the color of the connectors The blue connector must be plugged in
182. RCE Drive and the associated system design Measure the incoming line voltage between L1 and L2 L2 and L3 and L1 and L3 Use the DMM on AC Volts highest range 1000 VAC The input voltage should equal the drive rated input voltage present on the drive s nameplate within 10 If the voltage is out of tolerance verify the drive rating is correct for the application if it is adjust the incoming line voltage to within 10 4 5 Chapter 4 Startup Startup Configuration Procedures 4 6 After you have completed all wiring and power up the drive the parameter configuration procedure must be completed using one of the Startup Configuration Procedures Quick or Manual The configuration procedures used here assumes you have a HIM programming terminal and a Standard Adapter Board in your Drive If you are using a different programming method or a PLC Comm Adapter Board the configuration procedure will have to be altered to match your particular setup ATTENTION Failure to complete the parameter configuration could result in injury to personnel or damage to the drive and the motor when attempting to perform the remaining steps in the Configuration Procedure Apply power to the Drive The HIM display will appear as shown in Figure 4 2 ATTENTION During some startup procedures the motor will rotate Hazard of personal injury exists due to unexpected starts rotation in the wrong direction or contact with the motor shaft
183. RCE are supplied at terminal block TB7 on the Standard Adapter Board Fault outputs provide warning or fault signals based on Drive Programming Fault NC Fault Com Fault NO A form C NO NC relay contact on the Standard Adapter Board programmed to provide external warning or fault change of state signals Contact Ratings 2A 115 VAC 2A 30 VDC Figure 2 19 Typical Digital Output Standard Adapter TB7 Fault NO Digital Out O Fault Com Digital Out O Fault NC Digital Out O Pulse Input The pulse input lets an external source provide the drive with a digital reference or trim signal Pulse input is a differential input with a maximum frequency of 100 KHz Figure 2 20 Pulse Input Connection O 5 12V Pulse Input O 100 kHz max Unidirectional O The pulse input can be useful if you have a system with multiple drives and you want encoder pickup or other drives that provide a pulse to supply the reference for additional drives You could use this reference to ensure that all drives run at the same speed or to ensure that the speed of the other drives is related to the speed of the reference 2 31 Chapter 2 Installation Wiring Configuration The 1336 FORCE Drive is shipped pre configured meaning that some of the inputs and outputs are linked to a predefined signal Figure 2 21 shows the 1336 FORCE standard configuration when equipped with a Standard Adapter Board The u
184. RSE SPEED LIMIT 36 ACCEL PARM PARM UNE 52 TUNE ACTIVE C078 0 JOG 1 SPEED AUTO TUNE REFERENCE TOAND ieee SELECT SPEED JOG REFERENCE SELECT P54 DISCRETE STOP INPUT PARM 52 RAMP BYPASS RAMP OUTPUT TIME DECEL TME PROCESS LINEAR TRIM VEL INPUT ACCEL DECEL SELECT RAMP PROCESS lt gt Q TRIM 29 PROCESS 28 FEEDBACK VEL 146 gt Appendix 36 Firmware Function Trim Control Overview PROCESS TRIM HIGH LOW lt 108 gt RAMP f 69 SELECT VELOCITY OUTPUT 55 TRIM PI lt FM i 0 DATA 4096 106 ZERO 32 Bit External REFERENCE Velocity Trim 4096 OUTPUT GAIN 2048 SET OUTPUT OPTION PRESET INTEG OPTION FROM DRIVE LOGIC TORQUE ERENCE m SELECT TORQUE VELOCITY TRIM TRIM LIMIT FWD LIMIT OPTION C130 TO VELOCITY PI REGULATOR TRIM FREQ LIMIT LIMIT REV LIMIT 2327 A 37 Appendix A 36T Firmware Function Velocity Feedback Overview ENCODER FEEDBACK SCALING LOW ENCODER SPEED SIGNAL PULSE To PER ALGORITHM PROCESSING UNIT CONVERSION DIGITAL ENCODER 38 Appendix 36T Firmware Function Velocity Feedback Overview Scaled Vel Scale1 Scale 2 Feedback VEL REF SELECT VELOCITY FEEDBACK SELECTED VELOCITY TO VELOCITY PI REGULATOR
185. Ridethrough Selection parameter 223 to change how precharge and ridethrough work Precharge Ridethrough Selection 1s a bit encoded word that disables the following functions when the appropriate bit is set 1 Yiq Has this definition 0 Sets the bus voltage tracker slew rate to 10 volts second 1 Sets bus voltage tracker slew rate to 5 volts second 2 Sets the bus voltage tracker slew rate to 0 5 volts second 3 Sets the bus voltage tracker slew rate to 0 05 volts second 4 Sets the bus voltage tracker slew rate to 0 005 volts second 5 Reserved Leave zero 6 Reserved Leave zero Setting this bit selects the slave drive of a Master Slave 7 combination to use the master drive analog frequency reference in place of the slave encoder input Enables fast flux up This is covered in more detail later in this chapter 9 Reserved Leave zero 10 Reserved Leave zero 11 Forces an exit from precharge after the precharge timeout 12 Identifies the drive as a common bus converter Disables faults or warnings while the drive is disabled This allows power up and down the bus for a common bus system 13 without faulting even if the faults or warnings are enabled For example faults or warnings only occur if the drive is running This may be desirable when external power supplies are used Disables the precharge function after initial power up Any bus drop or undervoltage will n
186. See Page 5 78 See Page 5 78 See Page 5 78 See Page 5 78 See Page 5 79 See Page 5 79 See Page 5 79 See Page 5 79 See Page 5 80 See Page 5 80 See Page 5 80 See Page 5 80 See Page 5 80 See Page 5 80 See Page 5 81 See Page 5 81 See Page 5 81 See Page 5 81 See Page 5 82 See Page 5 82 See Page 5 82 See Page 5 82 See Page 5 82 See Page 5 82 See Page 5 82 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 83 See Page 5 84 See Page 5 84 See Page 5 84 See Page 5 84 See Page 5 84 See Page 5 84 See Page 5 84 See Page 5 85 See Page 5 85 See Page 5 85 See Page 5 85 See Page 5 85 See Page 5 85 See Page 5 85 See Page 5 85 Chapter 5 Programming Parameters Table 5 B 1336T Alphabetical Parameter Table Parameter Name Element Absolute Overspeed Threshold Accel Rate 1 Accel Rate 2 Accel Time Adapter Config Adapter ID Adapter Version Analog Output 1 Analog Output 1 Offset Analog Output 1 Scale Analog Output 2 Analog Output 2 Offset Analog Output 2 Scale At Setpoint 1 At Setpoint 2 Autotune Diagnostics Selection Autotune Speed Autotune Status Autotune Testpoint Data Autotune Testpoint Select Autotune Torque Limit Base Motor Speed Base Slip Freq Max Base Slip Freq Min Bus Precharge Timeout Bus Ridet
187. See Page 5 41 See Page 5 41 See Page 5 41 See Page 5 41 See Page 5 42 See Page 5 42 See Page 5 42 See Page 5 42 See Page 5 42 See Page 5 42 See Page 5 42 See Page 5 42 See Page 5 43 See Page 5 43 Table 5 A 1336T Numerical Parameter Table Cont Param No Parameter Name Element Group 85 86 87 88 89 90 91 92 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 117 118 119 120 121 122 123 125 126 127 128 129 VP Configurable Warning Status CP Fault Configuration CP Warning Configuration Select VP Fault Configuration Select VP Warning Configuration Select Absolute Overspeed Threshold Stall Delay Motor Overload Limit Service Factor Motor Overload Speed 1 Motor Overload Speed 2 Minimum Overload Limit Fault Testpoint Data Fault Testpoint Select Velocity Reference 1 LOW FRACTION Velocity Reference 1 HI WHOLE 32 bit Velocity Scale Factor 1 Velocity Reference 2 LOW FRACTION Velocity Reference 2 HI WHOLE 32 bit Velocity Scale Factor 2 Velocity Trim LOW Velocity Trim HI 32 bit Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Select Jog Speed 1 Jog Speed 2 Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Accel Time Decel Time Reverse Motor Speed Limit Forward Motor Speed Limit Maximum Reverse Speed Trim Can be
188. Sel AT Torque Limit AT Speed Stator Resistance Leakage Inductance Rated Flux Current Rated Torque Current Rated Torque Volt Rated Flux Voltage Vde Max Vqe Max Vde Minimum Base Slip Freq Base Slip Freq Max Base Slip Freq Min Kp Slip Regulator Ki Slip Regulator Kp Flux Regulator Ki Flux Regulator AT Diag Select Phase Rot Cur Ref Phase Rot Freq Ref Torque Testpoint Sel Torque Testpoint Data Phase Rot Errors Lo Test Errors Rs Test Errors Id Test Errors Torque Calc Errors Velocity Reg Torque Ref Torque Block Velocity Autotune 134 135 136 137 138 139 140 141 5 22 Vel Regulator Out Velocity Reg Testpt Lo Velocity Reg Testpt Hi Velocity Reg Testpt Sel Velocity Error KI Vel Loop KP Vel Loop KF Vel Loop Torque Mode Sel Notch Filter Freq Notch Filter Que External Iq Ref Ext Torque Ref 1 Slave Torque Percent 1 Ext Torque Ref 2 Slave Torque Percent 2 External Torque Step Int Torque Ref Int Iq Ref Torque Ref Testpoint Data Torque Ref Testpnt Sel Inverter Carrier Freq Precharge Ridethru Sel Undervoltage Setpt Bus Precharge Timeout Bus Ridethru Timeout CP Operating Options Ki Frequency Regulator Kp Frequency Regulator Kff Frequency Regulator Ksel Frequency Regulator Frequency Track Filter Track Filter Type Frequency Trim Filter AT Torque Lim AT Speed VP Desired BW Auto Tune Status VP Damping Factor Total Inertia AT Testpt Data AT Tespt Sel KI Vel Loop KP Vel Loop KF Ve
189. Source Display Units Bits Drive Units None Factory Default 0000 0000 0000 0000 Minimum Value Maximum Value 0000 0000 0000 0000 1111 1111 1111 1111 Enums 6 Current fdbk ph U offset too big 7 Current fdbk ph W offset too big 8 Transistor U upper open 9 Transistor U lower open 10 Transistor V upper open See Parameter 257 bit 12 11 Transistor V lower open 12 Transistor W upper open 13 Transistor W lower open 14 Current feedback phase U open 15 Current feedback phase W open Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 260 Sink None 0 100 100 261 Sink None 0 100 100 262 Sink 4096 100 0 Motor Current 50 0 0 0 100 0 263 Sink Xx HAZ 128 1 Hz 3 0 Hz 30 0 Hz 30 0 Hz 264 Source Amp Display units x 10 0 0 amps
190. Standard Adapter Parameters Table 5 B 1336T Alphabetical Parameter Table Parameter Name Element Warning Select Wn Feedback Filter Bandwidth Zero Speed Tolerance 10 Volt In Filtr 10 Volt Input 10 Volt Offset 10 Volt Scale Param No Page Ref 406 5 85 154 5 54 69 5 40 352 5 76 955 5 77 356 5 77 357 5 77 If your 1336 Drive is equipped with Standard Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the the Standard Adapter Board Standard Adapter Parameters are divided into four files The complete parameter table for a Standard Adapter equipped 1336 Force is detailed in Figure 5 2 The table has been divided into Files Groups and Elements for ease of reference Figure 5 2 1336 FORCE Drive Equipped with Standard Adapter Board FILE 1 Startup Drive Data Torque Mode Sel Base Motor HP Base Motor Speed Base Motor Curr Base Motor Volt Base Motor Freq Motor Poles Encoder PPR Calc Torque Torq TP Sel 2 Torq TP Data 2 Torq TP Sel 3 Torq TP Data 3 Torq TP Sel 4 Torq TP Data 4 Torq TP Sel 5 Torq TP Data 5 Torq TP Sel 6 Torq TP Data 6 Test DAC 1 Sel Test DAC 2 Sel Language Select Input Mode Auto Tune Speed Vel Desired BW Auto Tune Status Vel Damp Factor Total Inertia Ki Velocity Loop Kp Velocity Loop Kf Velocity Loop Vel Feedback Motor Inertia Autotune Diag Sel Ph Rot Cur Ref Phas Rot Freq Ref 59 94 127 128 174 175 176 17
191. TE Enums Value Description Value Description Value Description Value Description 0 Brake Enable 4 Not Used 8 Not Used 12 VP Green LED 1 Turn On Delay Select 5 Not Used 9 VP Enable 13 VP Red LED 2 Not Used Not Used 10 Pilot Relay 14 Not Used 3 Not Used 7 Not Used 11 Not Used 15 Not Used Logic Status Low Parameter Number 56 Logic Status Low Parameter Type Source This parameter is the Low of a double Display Units Bits word that indicates boolean logic condi Drive Units Bits tions within the Drive When bitis setto Factory Default 0000 0000 0000 0000 1 the corresponding condition in the Drive Minimum Value 0000 0000 0000 0000 is true Maximum Value 1111 1111 1111 1111 Value Description Value Description Value Description Value Description 0 Ready to Run 4 Accelerating 12Accel 8 At Set Speed 12 At Zero Speed 1 Drive Running 5 Decelerating 12Decel 9 Local A 13 Reference 2 Cmd Direction 12FWD 0 Rev 6 Warning 10 Local B 14 Reference B 3 Rotation Direction 12FWD 0 Rev 7 Faulted 11 Local C 15 Reference C CBA 000 No Change 001 Ref 1 010 Ref 2 011 Ref 3 100 Ref 4 101 Ref 5 110 Ref 6 111 Ref 7 Logic Status Hi Parameter Number 57 Logic Status Hi Parameter Type Source This parameter is the Hi part of a double D isplay Units Bits word that indicates boolean logic condi Drive Units None tions within the Drive When a bitis setto Factory Default 0000 0000 0000 0000 1 the corresponding condition in the Drive Minimum Value
192. Trend 1 Operand X Trend 1 Operand Y Trend Operator Trend 1 Rate Trend 1 Post Samples Trend 1 Continuous Trig Trend 1 Select Trend 2 Operand X Trend 2 Operand Y Trend 2 Operator Trend 2 Rate Trend 2 Post Samples Tr2 Cont Trigger Trend 2 Select Trend 3 Operand X Trend 3 Operand Parm Y Trend 3 Operator Trend 3 Rate Trend 3 Post Samples Trend 3 Continuous Trig Trend 3 Select Trend 4 Operand X Trend 4 Operand Y Trend 4 Operator Trend 4 Rate Trend 4 Post Samples Trend 4 Continuous Trig Trend 4 Select 7 nr Logic Options AT Diag Select Trans Diag Config Inv Dig Result 1 Inv Diag Result2 Iq Offset Id Offset Drive Software Ver Power Structure Type Rated Inverter Out Amps Rated Inverter In Volts Adapter ID Adapter Version Adapter Config ChA Dip Switch ChB Dip Switch ChA LED State LED State PLC Comm Bd Sts Language Select Trend In 1 Trend In 1 Status Trend Out 1 Trend In 2 Trend In 2 Status Trend Out 2 Status Trend In 3 Trend In 3 Status Trend Out 3 Trend In 4 Trend In 4 Status Trend Out 4 Note Trending Functions are NOT implemented in Version 2 xx software 5 23 Chapter 5 Programming Parameters ControlNet Parameters The complete parameter table for a ControlNet Adapter Board equipped 1336 FORCE is detailed in Figure 5 4 The table has been divided into Files Groups amp Elements for ease of reference For a detailed description of ControlNet par
193. US DROP BUS UNDERVOLTAGE BUS DROP CYCLES gt 5 OPEN CIRCUIT RESERVED RESERVED 46 Appendix 36T Firmware Function Drive Fault Overview NON CONFIGURABE FAULTS GONE 0 3 ARE HARDWARE FAULTS BUS OVERVOLTAGE TRIP TRANSISTOR DESATURATION GROUND FAULT INSTANTANEOUS OVERCURRENT SOFTWARE MALFUNCTION CP MASTER SLAVE CABLE LOSS MASTER SLAVE ENABLE TIMEOUT RESERVED ADAPTER HANDSHAKE LOSS VP ABSOLUTE OVERSPEED ANALOG SUPPLY FAILURE 13 18V AUTOTUNE DIAG FAIL INVERTER TEMPERATURE TRIP SOFTWARE MALFUNCTION VP ILLEGAL INTERRUPT Actual Velocity At Overspeed FILTERED VELOCITY FEEDBACK ABSOLUTE OVERSPEED FWD MOTOR SPEED LIMIT REV MOTOR SPEED LIMIT 127 LIMIT CHECK ABSOLUTE OVERSPEED MOTOR OVERTEMPERATURE TRIP MATHLIMIT AP MBI FAILURE MOTOR OVERLOAD PENDING IIT DYNAMIC BRAKE OVERTEMP EEPROM FAILURE BASE DRIVE BRD MOTOR OVERLOAD TRIP IIT AC MOTOR CONTACTOR STALLED INVERTER OVERLOAD PENDING IT RESERVED INVERTER TEMPERATURE CHECK dep em st dep du me ami aa a ms Css et eh TUR ase 1 POWERUP FAULTS WARN CONFIG WARN i FAULT C86 cP NONE C87 STATUS BITS POWER TRANSISTOR CONFIG SEL Cag VP SE HEAT STATUS SELECT VP TEMPERATURE C BITS 84 gt
194. VP Configurable Fault Status 15 1413 12 11 10 9 8 7 6 54 3 2 10 o0000000 00000000 Feedback Loss Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending IIT Motor Overload Trip IIT Motor Stalled External Fault RMS Fault NOT USED Parameter Limit Math Limit Dynamic Brake Resistor Overtemperature AC Motor Contactor Failure Inverter Overload Pending IT Drive to Drive Communication Fault Inverter Overload Trip IT This word parameter indicates conditions detected by the Velocity Processor VP that have been configured to report as a Drive fault condition Each configuration bit matches the bit definitions of Parameters 85 88 and 89 When a bit is set to 1 the corresponding condition in the Drive is true otherwise the condition is false Figure 6 7 Bit Parameter 89 VP Warning None Configuration Select bits 15 1413 12 11 10 9 8 7 6 54 3 2 1 0 00000000 00000000 Feedback Loss Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending IIT Motor Overload Trip IIT Motor Stalled External Fault RMS Fault NOT USED Parameter Limit Math Limit Dynamic Brake Resistor Overtemperature AC Motor Contactor Failure Inverter Overload Pending IT Drive to Drive Communication Fault Inverter Overload Foldback IT This word parameter indicates conditions detected by the Velocity Processor VP that will be reported as either a drive fault or warnin
195. W lower for all tests 11 Bits 5 and 13 through 15 reserved You must leave these bits 0 Even though you set bits 6 through 11 to disable the individual tests you will still get a fault with the other tests if there is an open in an individual section To test specific modules within the power structure you can disable any transistor or any combination of transistors You must leave all transistors enabled under most conditions Use sound judgement to verify that power transistor fault conditions do not exist before disabling tests 6 21 Chapter 6 Troubleshooting Inverter Diagnostics Result 1 parameter 258 and Inverter Diagnostics Result 2 parameter 259 contain the results of the transistor diagnostic tests Important Serious component failures may occur if unverified power transistor fault conditions are ignored or tests are disabled before you proceed to run the drive under load Inverter Diagnostics Result 1 parameter 258 is defined as follows When this bit is set 1 Then A software fault occurred No motor is connected or a bus fuse is open Phase U and W shorted Phase U and V shorted Phase V and W shorted There are shorted modules A ground fault occurred A fault occurred before the short module ran A hardware overvoltage fault occurred BI WwW NM A hardware desat fault occurred hardware ground fault occ
196. a Out A1 320 Motor Current Magnitude Feedback p 264 ux Up Data Out A2 p 321 Link Bit2 NotUsed Bit3 NotUsed Data Out B1 322 Bit4 Bus Ridethru Pie CU Bit5 Jogging Data Out C1 p 324 Bit6 NotUsed Data Out C2 p 325 Bi Data Out D1 p 326 B B B B These functions require an edge in order to take effect The following examples are provided to show how the 1336 FORCE drive interfaces with some of the available adapters These are only examples You should also refer to the appropriate manual for your gateway for additional information 4 31 Chapter 4 Startup SLC to SCANport Module The following figure shows how the I O image table for the SLC programmable controller relates to the 1336 FORCE drive In this example the drive is connected to channel 1 of the SLC module in enhanced mode If this were an example of basic mode only the O 1 2 O 1 3 1 2 and I 1 3 entries would be used Backplane SCANport SLC SLC to 1336 FORCE Drive 1 0 Image Controller Output Image Logic Command Reference Datalink A19 Datalink A29 Datalink B19 Datalink 2 Datalink C19 Datalink C29 Datalink D19 Datalink D2 Logic Evaluation Block SP An 2 Sel p 367 Data In A1 p 310 Data In A2 p 311 Data In B1 p 312 Data In B2 p 313 Data In C1 p 314 Data In C2 p 315 Data In D1 p 316 Data In D2 p 317 Logic Status Feedback Datalink A19 Datal
197. alk that could reduce the effectiveness of the noise reduction methods described If more than three drive motor connections per conduit are required shielded cable as described above must be used If practical each conduit should contain only one set of motor leads ATTENTION To avoid a possible shock hazard caused by induced voltages unused wires in the conduit must be grounded at both ends For the same reason if a drive sharing a conduit is being serviced or installed all drives using this conduit should be disabled This will eliminate the possible shock hazard from cross coupled drive motor leads Motor Lead Length Installations with long cables to the motor may require the addition of output reactors or cable terminators to limit voltage reflections at the motor Refer to the following tables for the maximum length cable allowed for various installation techniques Appendix Table A 1 Maximum Motor Cable Length Restrictions in meters feet
198. alog I O Parameter Configuration Analog Inputs Analog Outputs Analog I O Links 4 22 Auto Tuning Test Procedure B Battery Disposal 54 Bi Directional Operation Bit Enums 3 3 Bus Voltage Tracker 6 13 Cable Termination Cable and Wiring Recommendations 2 26 CE Filter B 4 CE Mechanical Configuration 4 CE Requirements B 1 Configuration Standard Adapter Configuration PLC Comm Adapter 2 44 p m Configuration 4 1 Control Link Configuration 4 2 ControlNet Parameters Control Interface Option 2 34 Control amp Signal Wiring Standard Adapter Control amp Signal Wiring PLC Comm Adapter 2 44 Control Specifications 1 2 Control Status Mode Control Wiring 2 24 Current Processor Faults 6 1 D Discrete Inputs Discrete Outputs 2 44 Display Mode Derating Guidelines Drive to Drive Communication Drive to Drive Hardware Connection 2 2 Drive to Drive Hardware Connection 2 2 Drive Disconnection 2 11 Drive Features 1 12 Drive Hardware Overview A 14 E Enclosure Requirements Encoder Connections Encoderless Speed Regulation EMC Directive 1 EEPROM Mode EMI RFI Emission 2 13 EMI RFI Emission Emmisions 2 1 Environmental Specifications 14 External Control Link Configuration 4 2 F Fault Descriptions 6 2 Fault Warning Handling 6 3 Faults amp Warnings Current Processor 6 1 Flex I O Module 4 34 Frame D Drive C
199. ameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 41 Sink x x rpm 4096 Base Motor Speed 0 85 x Base Motor Speed 0 3 x Base Motor Speed Base Motor Speed 43 Sink x xx rad sec Display units x 100 5 00 rad sec 0 01 rad sec 100 00 rad sec 44 Source bits value of bits 0000 0000 0000 0000 0000 0000 0000 0000 001100000 11111111 45 Sink X X 2048 1 0 damping 1 0 0 5 3 0 46 Sink X XX Display units x 100 2 00 sec 0 01 sec 655 00 sec 47 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 Auto Tune Testpoint Select Auto Tune TP Sel This parameter selects what internal loca Chapter 5 Programming Parameters Parameter Number 48 Parameter Type Sink Display Units None tion of the Velocity Auto Tune Controller Drive Units None will become the testpoint value shown in Factory Default 0 P47 The internal locations available are Minimum Value 0 Maximum Value 10 Select Value Autotune Access Point Enums Select Value Autotune Access Point 0 Zero 5 Torque Limit for autotune 1 Autotune Status Bits 6 Autotune State Word 1 2 Autotune Inhibit Word all zero OK 7 Autotune State Word 2 3 Autotune Error Word all zero OK 8 Autotune Control Bits 4 Calculated Friction 409
200. ameters refer to the ControlNet Adapter Reference Manual Figure 5 4 1336 FORCE equipped with a ControlNet Adapter Board File 1 Startup Drive Data Group Drive Tune Group Limits Group Language Sel 309 Autotun Diag Sel 256 Accel Time 125 Encoder PPR 235 Vel Feedback 146 Decel Time 126 Base Motor Speed 229 Vel Desired BW 43 Logic Options 59 Base Motor HP 228 Auto Tune Status 44 Fwd Speed Limit 128 Base Motor Curr 230 Motor Inertia 234 Rev Speed Limit 127 Base Motor Volt 231 Total Inertia 46 Pos Mtr Cur Lmt 179 Base Motor Freq 232 Ki Velocity Loop 139 Neg Mtr Cur Lmt 180 Motor Poles 233 Kp Velocity Loop 140 Pos Mtr Tor Lmt 175 Torque Mode Sel 53 Kf Velocity Loop 141 Neg Mtr Tor Lmt 176 Vel Damp Factor 45 Motor P ower Lmt 177 Auto Tune Speed 41 Regen Power Lmt 178 Ph Rot Cur Ref 262 Di Dt Limit 181 Ph Rot Freq Ref 263 Min Flux Level 174 Fault Setup Group Monitor Group CP FltWarn Cfg 86 Filt Vel Fdbk 269 CP Warn None Cfg 88 Scaled Vel Fdbk 147 VP Cfg 87 Int Torque Ref 167 VP Warn None Cfg 89 Internal Iq Ref 168 Absolute Overspd 90 Computed Power 182 Stall Delay 91 DC Bus Voltage 268 Mtr Overload Lim 92 Motor Volt F dbk 265 Mtr Overload S pd1 95 Motor Curr F dbk 264 Mtr Overload 5 pd2 96 Freq Command 266 Min Overload Lmt 97 Inv Temp Fdbk 270 Service F actor 94 Torque Mode Stat 184 Lim Motor Flux 271 Enc Pos Fdbk Low 148 Enc Pos Fdbk Hi 149 MCB Counter 8 Shaded parameters are Standard 1336 FORCE parameters
201. amiliar with the 1336 FORCE AC Drive and its associated machinery should plan and implement the installation startup and subsequent maintenance of the Drive Failure to comply may result in personal injury and or equipment damage ment can be hazardous Severe injury or death can result from ATTENTION Working with energized industrial control equip electrical shock burn or unintended actuation of controlled equip ment Hazardous voltages may exist in the cabinet even with the circuit breaker in the off position Multiple sources of power may be connected to this drive Recommended practice is to disconnect and lock out control equipment from power sources and discharge stored energy in capacitors if present before coming in contact with any equipment in this cabinet During startup it will be nec essary to work in the vicinity of energized equipment The Safety Related Practices of NFPA 70E ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES must be followed at all times DO NOT work alone on energized equipment 4 1 Chapter 4 Startup Required Tools and Equipment 4 2 ATTENTION Potentially fatal voltages may result from improp er useage of an oscilliscope and other test equipment The oscilli scope chassis may be at potentially fatal voltage if not properly grounded Allen Bradley does not recommend use of an oscilli scope to directly measure high voltages Use an isolated measur ing device with a high voltage probe
202. amming Parameters FILE 3 Velocity Torque Figure 5 3 PLC Comm Adapter Parameters cont Velocity Ref Velocity Fdbk Torque Autotune Vel Ref 1 Lo VeL Ref 2 Hi Vel Scale Factor 1 Vel Ref 2 Lo Vel Ref 2 Hi Vel Scale Factor 2 Vel Trim Lo Vel Trim Hi Vel Ref Testpt Lo Vel Ref Testpt Hi Vel Ref Testpt Sel Jog Speed 1 Jog Speed 2 Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Accel Time Decel Time Rev Speed Limit Fwd Speed Limit Max Rev Speed Trim Max Fwd Speed Trim Droop Percent Vel Ref Out Lo Vel Ref Out Hi KF Err Filt BW Vel Fdbk Testpt Lo Vel Fdbk Testpt Hi Logic Cmd a Local Input Sts 55 Local Output Sts 56 Local Sts Lo 57 Local Sts Hi 58 Torq Stop Config 59 Logic Options 60 At Setpt I 61 At Setpt 2 62 Over Setpt 1 63 Over Setpt 2 64 Over Setpt 3 65 Over Setpt 4 66 Setpt Select 67 Speed Stpt Tol 68 Cur Setpt Tol 69 Zero Speed Tol 70 Logic Testpt Data 71 Logic Testpt Sel 72 Stop Dwell 367 Pt6 Logic Cmd 368 Pt7 Logic Cmd Velocity Fdbk Scaled Vel Fdbk Enc Pos Fdbk Lo Enc Pos Fdbk Hi Fdbk Device Type Fdbk Tracker Gain Fdbk Filter Sel Tach Velocity Filtered Vel Fdbk Vel Fdbk Tesetpt Sel Kn Fdbk Filter Gain Wn Fdbk Filter BW Process Trim Output Process Trim Ref Proc Trim Fdbk Proc Trim Select Proc Trim Filt BW Proc Trim Data Proc Trim KI Proc Trim KP Proc Trim Lo Lim Proc Trim Hi Lim Proc Trim Out Gain Proc Trim Testpt Proc Trim Testpt
203. and describes the system response to a change in velocity reference only By decreasing the value of Kr the overshoot of the system will be reduced When is 1 0 the velocity loop behaves like a normal PI loop with the overshoot equaling approximately 1096 If Kp is reduced to 0 7 the recommended operating point then the overshoot is typically less than 1 if Kp is reduced even further to 0 5 the lowest recommended value the response becomes underdamped with no overshoot The velocity loop KI term parm 139 is the integral term of the PI regulator The KI term is adjusted to remove any steady state instabilities The velocity loop KP term Parm 140 is the proportional term of the PI regulator The KP term is adjusted to determine how the drive responds to a step change in load IMPORTANT If the velocity regulator is tuned too responsive the motor and load could potentially chatter If tuned non responsive the regulator will seem sluggish The value for Kp will increase as the system inertia increases For High inertia systems Kp may be greater than for KI For low inertia systems systems with inertias under 1 Sec KI will typically be larger than KP Figure 6 10 Velocity Regulator Functional Diagram 50 Veloc ity 0 Time The list of parameters that must be set to achieve proper velocity loop tuning is detailed in Table 6 F Parameter Number 40 41 53 127 128 150 175 176 177 178 179
204. and offset parameters At Analog Output 1 a meter with a range of 0 10 V DC has been connected Parameter 370 has been linked to Parameter 146 Velocity Feedback In order for the meter to indicate speed in both directions the scale and offset parameters must be adjusted as shown in Figure 4 10 Working in the opposite direction as the analog inputs apply the scale factor first The drive sends a 4096 digital value to indicate 100 velocity feedback for a total digital range of 8192 The meter having an analog range of 0 10V DC requires a digital range of 2048 This is accomplished by applying a scale factor of 0 25 8192 x 0 25 2048 In order to have the 0 10V DC meter indicate 100 feedback an offset must be applied Offset parameters for analog outputs will again add the corresponding digital value to the range In this case an offset of 5 volts adds a digital value of 1024 to the range This will allow full range deflection on the 0 to 10 volt meter with 5 volts indicating zero speed Figure 4 10 Analog Output 1 100 Speed Indication 100 100 SPD 0 SPD B SPD FEEDBACK ANALOG OUT 1 OFFSET PAR 371 146 Sv NDA 2048 10V 44096 100 SPEED 1024 2048 10 100 BASE SPEED 0 0 1024 45V 0 SPEED 4096 100 SPEED 1024 0 OV 100 DIGITAL RANGE FROM DRIVE 4096 0 4096 SCALED BY 025 _ 1024 0 1024 OFFSET 5V ADDING 1004 1024 1024 1024 DIGITAL VALUE 0 0 2048 METER VO
205. anual for parameter descriptions Table 5 A 1336 FORCE Numerical Parameter Table Param Parameter Element Group File File No Param Descrpt 01 Drive Software Version Info Diagnostics 4 See Page 5 31 05 Drive Power Structure Type Info Diagnostics 4 See Page 5 31 08 Motor Control Counter Monitor Startup 1 See Page 5 31 09 Drive Comm Task Interval Drive to Drive Communications I O 2 See Page 5 31 10 Drive Comm Baud Rate Drive to Drive Communications I O 2 See Page 5 31 11 Drive Comm Transmit Addr Drive to Drive Communications I O 2 See Page 5 31 12 Drive Comm Receive 1 Address Drive to Drive Communications I O 2 See Page 5 31 13 Drive Comm Receive 2 Address Drive to Drive Communications 1 2 See Page 5 32 14 Drive Comm Transmit Indirect 1 Drive to Drive Communications I O 2 See Page 5 32 15 Drive Comm Transmit Indirect 2 Drive to Drive Communications I O 2 See Page 5 32 16 Drive Comm Receive 1 Indirect 1 Drive to Drive Communications 1 2 See Page 5 32 17 Drive Comm Receive 1 Indirect 2 Drive to Drive Communications I O 2 See Page 5 32 18 Drive Comm Receive 2 Indirect 1 Drive to Drive Communications 1 2 See Page 5 32 19 Drive Comm Receive 2 Indirect 2 Drive to Drive Communications I O 2 See Page 5 32 20 Drive Comm Transmit Data 1 Drive to Drive Communications I O 2 See Page 5 33 21 Drive Comm Transmit Data 2 Drive to Drive Communications I O 2 See Page 5 33 22 Dr
206. aram 156 and then attempt a Start Table 4 B Sensorless Setup Values Param 46 Param 43 Param 141 Param 142 lt 2 Sec 10 rad 4 50 rad 2 5 Sec 5 rad 4 25 rad 5 20 Sec 1 4 25 rad gt 20 Sec 5 rad 4 25 rad e f the motor won t start increase the bandwidth Param 43 select bit 8 of Param 256 and attempt a restart e If the motor chatters or velocity ripple is too high decrease the bandwidth Param 43 select bit 8 of Param 256 and restart e If the motor continues to chatter set Param 142 to zero NOTE For additional information on sensorless operation refer to Appendix A of this manual 4 16 Chapter 4 Startup Communication Configuration Drive to Drive Communication Drive to Drive Communication D2D provides high speed communications between drives D2D is capable of connecting up to 64 Drives together using three different transfer rates 125K 64 nodes 250K 64 nodes and 500K 32 nodes baud Hardware Setup Refer to Chapter 2 Installation for Drive to Drive wiring L Option wiring and Pulse Input Configuration Data Transfer The D2D which allows multiple transmitters to broadcast information based on priority to multiple receivers which choose the information they wish to receive The D2D will operate at three different baud rates as shown in the following chart Baud Rate Max Distance End to End Data Rate Max Transmitters 2ms task The baud rate c
207. arameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 313 Source x None 0 32767 32767 314 Source x None 0 32767 32767 315 Source 0 32767 32767 316 Source x None 0 32767 32767 317 Source x None 0 32767 32767 320 Sink x None 0 32767 32767 321 Source x None 0 32767 32767 322 Sink x None 0 32767 32767 5 71 Chapter 5 Programming Parameters Data Out B2 Data Out B2 This parameter displays the drive to SCANport image which is sent to some device on SCANport Data
208. are symmetrical with respect to ground Surge suppression devices are included to protect the drive from lightning induced overvoltages between line and ground For this reason the drive must not be used directly with supplies where one phase is grounded Grounded Delta In such cases an isolation transformer must be used to provide a supply balanced with respect to ground Ungrounded Distribution Systems All 1336 FORCE drives are equipped with an MOV Metal Oxide Varistor that provides voltage surge protection and phase to phase plus phase to ground protection which is designed to meet IEEE 587 The MOV circuit is designed for surge suppression only transient line protection not continuous operation With ungrounded distribution systems the phase to phase MOV connection could become a continuous current path to ground MOV line to line and line to ground voltages should not exceed the values listed below Exceeding these values may cause physical damage to the MOV R Joules A Three Phase 5 Joules A 4 ACinput 7 Joules A Ground Joules B Line to Line MOV Rating NN Energy Rating 2 x Line Line Rating A Line to Ground MOV Rating Energy Rating Line Line A Line Ground B Frame Reference A B C D G Device Rating V 240 480 600 240 480 600 240 480 600 Line Line A 160 140 NA 160 160 160 140 140 150 Line Ground B 220 220 NA 220 220 220 220 220 220 Line to Line MOV Rating Ener
209. ase Derate Amps based on B400 505 None m 7470 nominal voltage 240 480 or 600V 2 ae 1335 6875 b If input voltage exceeds Drive Rat BP450 532 Fig 36 931 7000 7931 ing Drive Output must be derated B500 599 Fig 17 1395 7800 9200 Refer to Figure 31 B600 673 Fig 18 1485 8767 10252 2 C001 25 4 4 4 4 Drive Ambient Temperature Rating is C003 6 4 4 4 40 C If ambient exceeds 40 C the un 0 in 1 e drive must be derated Refer to Fig C015 19 4 17 360 177 ures 1 29 020 24 4 140 467 607 3 C025 30 141 492 633 DriveRating is based altitudes of C030 a 4 141 526 667 C040 45 175 678 853 1 000m 3000 ft or less If installed C050 57 4 193 899 1092 ata higher altitude Drive must be C060 62 4 193 981 1174 derated EET C075 B6 Fig 19 361 1553 1894 i C100 Fig 20 426 1978 2504 Refer to Figure 30 paved C125 138 Fig 21 522 7162 7683 4 C150 160 Fig 22 1 4 4 Not available at time of publication C200 252 Fig 23 755 3065 3820 5 JT Fig 24 890 S BN None 5015 5941 Important Two 2 725 CFM fans C3505 354 None ed 5935 6935 are required if an open type drive is C4005 406 Fig 25 1430 7120 8550 mounted in a user supplied enclo C4505 460 Fig 26 1465 8020 9485 sure C500 505 Fig 27 1500 8925 10425 C6005 600 Fig 28 1610 10767 12377 C6505 673 Fig 29 1700 12000 1400 Derating Guidelines Figure 1 1336T A010 and B020 Figure 2 1336T A015 and B030 Figure 3 1336T A020 and B040 Figure 4 1336T
210. at the the drive PE and motor frame Some armored cable has a PVC coating over the armor to prevent incidental contact with grounded structure If due to the type of connector the armor must be grounded at the cabinet entrance shielded cable should be used within the cabinet to continue as far as possible to the coaxial arrangement of power cable and ground In some hazardous environments it is not permissible to ground both ends of the cable armor This is because of the possibility of high current circulating at the input frequency if the ground loop is cut by a strong magnetic field This only applies in the proximity of powerful electrical machines In this case the ground connection at one end may be made through a capacitance which will block the frequency current but present a low impedance to RF Because of the highly pulsed nature of the circulating current the capacitor type used must be rated for AC to ground voltage Consult factory for specific guidelines Conduit If metal conduit is preferred for cable distribution the following guidelines must be followed 1 Drives are normally mounted in cabinets and ground connections are made at a common ground point in the cabinet If the conduit is connected to the motor junction box and the drive end no further conduit connections are necessary A 1 Appendix 2 No more than three sets of motor leads can be routed through a single conduit This will minimize cross t
211. ation 1 of Top Speed over a 40 1 Speed Range Accel Decel Independently programmable accel and decel times Program from 0 to 6553 seconds in 0 1 second increments Current Limit Independent Motoring and Regenerative Limit Inverse Time Overload Capability Class 20 protection with speed sensitive response Adjustable from 0 200 of rated output current in 3 speed ranges 2 1 4 1 amp 10 1 UL Certified Meets NEC Article 430 Standard Adapter Board which provides 2 Analog Inputs 10V 2 Analog Outputs 10V One 4 20mA input One 4 20mA output 5or 12 vdc pulse input 10V reference voltages At Speed Run Fault and Alarm contacts PLC Communication Adapter Board which provides 4 Analog Inputs 10V 4 Analog Outputs 10V 10V Reference voltages RIO DHTM Communications 2 channels selectable Function Blocks DriveTools PC Windows IM based programming software compatible with the 1336 FORCE Drive and also other Allen Bradley 1336 and 1395 products Dynamic Braking AC Motor Contactor The 1336 FORCE Drive incorporates the following protective measures Programmable Motor Overload Protection investigated by UL to comply with NEC Article 430 Programmable Inverter Overload Protection IT Overspeed Detection even when operating as a torque follower Programmable Stall Detection Peak output current monitoring to
212. ation as shown in Figure 2 1 Figure 2 1 Mounting Requirements Attention Care must be taken to prevent debris metal shavings conduit knockouts etc from falling into the drive while performing any installation work on or around the drive A hazard 152 4 mm 152 4 mm of personal injury and or equipment damage exists if foreign material lodges inside the drive 6 0 in 6 0 in ALLEN BRADLE 152 4 mm 152 4 mm 6 0 in 6 0 in gt Chapter 2 Installation Wiring Figure 2 2 IP20 NEMA Type 1 Dimensions Frames B and C Max gt TT f ALLEN BRADLEY E _ x i H BB 0000000 w i 0711 1 esc CC Mounting Holes 4 7 0 0 28 lt Knockouts 023 gt Ty Location Will Vary with HP _ 7 0 0 28 12 7 0 50 E 12 7 0 50 Im C All Dimensions in Millimeters and Inches All Weights in Kilograms and Pounds Frame 1 Knockouts Shipping Reference A 3 Dual Size 1 Fixed Weight B1 B2 276 4 476 3 225 0 212 6 461 0 32 00 7 6 131 1 180
213. ation n over RERBA EAS MOP Configuration SCANport Image Configuration SCANport Control Configuration F L PIPI TIT I E o IL Programming Parameters Troubleshooting Table of Contents Control Interface Option Using the SCANport Image VO Image Table oes SLC to SCANport Module Serial Communications Module Remote I O Communications Module Chapter 5 I trod ction ves Terminology i uu e mp etna Rh su aqha lu Parameter Table Structure Parameter Table Numerical Parameter Table Alphabetical Standard Adapter Parameters PLC Comm Adapter Parameters Parameter Descriptions ControlNet Parameters Chapter 6 General IRR C OE e be Shh eb ehe ha Required Equipment MESE REEF ERES Fault Descriptions ERE S Fault Code Definition Main Control Board Fault Descriptions Standard Adapter Board Fault Descriptions Fault Warning Handling Current Processor Faults amp Warnings Understanding Precharge and Ridethrough Faults Understanding the Bu
214. ault Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 348 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero 349 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero 350 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero 352 X x r s eng x 10 radian sec 0 0 r s 0 0 r s 200 0 r s 353 KOKETIS eng x 10 radian sec 0 0 r s 0 0 r s 200 0 r s 354 X X r s eng x 10 radian sec 0 0 r s 0 0 r s 200 0 r s 10 Volt In
215. ault indicates the actual fault that tripped the drive A clear function clears the queue it will not clear an active fault Link Link mode provides a method of transferring data from a source parameter to a linkable sink parameter When a PLC Comm Adapter Board is used up to 50 links are allowed Links can be programmed only when the Drive is not running Links are stored in BRAM and established at power up BRAM recall and or system reset Password The Password mode protects the drive parameters against programming changes by unauthorized personnel When a password has been assigned access to the Program EEProm modes and the Control Logic Clear Fault Queue menus can only be gained when the correct password has been entered The password can be any five digit number between 00000 and 65535 Refer to the Password section of the example that follows Chapter 3 Programming Terminals Program Mode or or SEL The Program mode allows access to change parameters From the Status Display press Enter Choose Mode will be shown Press the Increment or Decrement key to show Program if it is not currently shown Press Enter The Choose File Display will appear Use the Increment or Decrement key to select the Diagnos tics Velocity Torque Communica tion I O or Startup file Press Enter The Choose Group Display will appear Press the Increment or Decrement k
216. be used to determine when to update the Set point Bits in the Logic Status Hi P57 when configured for actual speed option Current Setpoint Tolerance Cur Setpoint Tol This parameter establishes a hysteresis band around the Setpoints It will be used to determine when to update the Setpoint Bits in Logic Status Hi P57 when config ured for commanded current option Zero Speed Tolerance Zero Speed Tol This parameter establishes a band around zero speed that will be used to determine when to update the At Zero Speed bit in the Logic Status Low P56 Logic Testpoint Data Logic Tstpt Data This parameter contains the logic control testpoint data that has been selected by the Logic Tstpt Sel parameter P71 5 40 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 4 Over Setpoint 3 Bit 5 Over Setpoint 4 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parame
217. bk This is the feedback input value for pro cess trim The Process Trim Output pa rameter is updated based on the value of this input Process Trim Select Proc Trim Sel This is a bit coded word of data containing Several selection options for the process trim regulator as follows BitO the Velocity Reference Bit1 the Torque Reference Bit2 Select Velocity Inputs Bit3 Output Option Bit4 Preset Integrator Option Bit5 Force ON Trim Limit option Process Trim Filter Bandwidth Proc Trim Fltr W This parameter determines the bandwidth of a single pole filter used with the error input for process trim The output of this filter is used as the input to the process trim regulator Process Trim Data Proc Trim Data This parameter is used to preset the output of the process trim regulator when either the Set Output Option or Preset Integra tor Option is selected in parameter 29 Process Trim KI Gain Proc Trim Ki This parameter controls the integral gain of the process trim regulator If process trim equals 1 0 then the process trim PI regula tor output will equal 1 pu in 1 second for 1 pu process trim error 5 34 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Driv
218. bk Testpoints Velocity Fdbk Drive Tune Velocity Fdbk Monitor Velocity Fdbk Monitor Monitor Velocity Fdbk Monitor Monitor Velocity Fdbk Velocity Fdbk Velocity Fdbk Velocity Fdbk Velocity Fdbk Velocity Fdbk Torque Ref Torque Ref Torque Ref Torque Ref Torque Ref Torque Ref Torque Ref Torque Ref Torque Ref Monitor Torque Ref Monitor File File No Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Startup 1 Velocity Torque 3 Velocity Torque 3 Startup 1 Velocity Torque 3 Velocity Torque 3 Startup 1 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Startup 1 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Startup 1 Diagnostics 4 Velocity Torque Startup 1 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Param Descrpt See Page 5 50
219. by file and group Parameters are divided into 4 Files to help ease programming and operator access as follows 1 Startup File 2 Communications I O File 3 Velocity Torque File 4 Diagnostics File These four Files are then divided into Groups with each parameter making up an Element in a specific group Parameters may be used as Elements in more than one group Refer to Table 5A for a numerical breakdown of the File Group Element designations NOTE Parameters that appear in more than one group in Table 5A are listed after the initial entry in italics The definition of terms related to the parameter table include Configuration The process of linking Sink to Source parameters Configuration Parameters Parameters used to transfer data between the drive control and external devices The Configuration Parameters are categorized into two types 1 Source Parameters Parameter used as a source of data 2 Sink Parameters Parameter used to receive data input All parameters in the 1336 FORCE AC Drive can be used for evaluation sink or source and some can be modified dynamically sink only to meet application requirements Drive Units The actual value of the parameter as it is stored within the Drive parameter table The drive units may be converted to engineering units or to hexidecimal for display using the Programming Terminal or may be displayed directly in drive units All internal values in the drive are
220. cified reference and feedback inputs Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 20 Sink None 0 32767 32767 21 Sink x None 0 32767 32767 22 Source x None 0 32767 32767 23 Source x None 0 32767 32767 24 Source x None 0 32767 32767 25 None 0 32767 32767 26 Source x x 4096 100 trim 0 0 800 0 800 0 5 33 Chapter 5 Programming Parameters Process Trim Reference Proc Trim Ref This is the reference input value for pro cess trim The Process Trim Output is up dated based on the value of this input Process Trim Feedback Proc Trim Fd
221. ck device type 1 Encoder feedback 5 Sensorless feedback Similar to armature voltage feedback for a DC Drive Note If choosing sensorless feedback the bandwidth of the velocity loop will be significantly reduced Press the SEL key to access the feedback device type selection and use the INC DEC keys to toggle between the selections Note If sensorless feedback 15 selected the drive will fault on feedback loss You must set bit O in parms 88 and 89 from 1 to 0 before clearing this fault and proceeding with the autotune The feedback device type can be accepted by pressing the ENTER key The display should now appear as shown below Fdbk Device Type el Est wo DB 150 feedback Drive Mode Menu Selections EEPROM PASSWORD DISPLAY PROCESS PROGRAM LINK SEARCH CONTROL STATUS STARTUP LINEAR LIST Parameter Number 1 LINEAR LIST Parameter Number 150 4 10 Chapter 4 Startup ESC AB0270A NOTE It is important that you retain a record of the feedback device that was selected because the bandwidth of the velocity regulator will be significantly reduced when the drive is used without an encoder After the feedback device type has been selected and accepted press the ESC key to return to the Startup Menu The display should appear as shown below Linear List Startup Use the INC DEC keys to scroll thru the Startup Mode menu selections until DRIVE DATA 15
222. covered in the PLC Comm Adapter User Manual Adapter Identification Number Adapter ID This parameter displays the Standard Adapter ID Adapter Software Version Adapter Version This parameter displays the software version number Adapter Config Adapter Config Not Used In Present Release Language Select Language Select This parameter makes the selection between two languages 0 Primary Language 1 Alternate Language Data In A1 Data In A1 This parameter displays the SCANport to drive image which is received from some device on SCANport Data In A2 Data In A2 This parameter displays the SCANport to drive image which is received from some device on SCANport Data In B1 Data In B1 This parameter displays the SCANport to drive image which is received from some device on SCANport 5 70 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Unit
223. ction capacitors connected an AC line reactor or isolation type transformer must be connected between the capacitor bank and the input to the drive 2 If the AC line frequently experiences transient power interruptions or significant voltage spikes an AC line reactor or isolation type transformer may be required Refer to Unbalanced Distribution Systems ATTENTION The 1336 FORCE does not provide input power short circuit fusing Specifications for the recommended fuse size and type to provide drive input power protection against short circuits are provided in Table 2 A Branch circuit breakers or disconnect switches cannot provide this level of protection for drive components Chapter 2 Installation Wiring Table 2 A Maximum Recommended AC Input Line Fuse Ratings fuses are user supplied Drive Catalog kW HP Rating 200 2400 380 4800 500 600 Number Rating Rating Rating UL Class CC T J1 BS88 non UL installations 1336T 10 0 75 1 10 1336T _ _ F30 2 2 3 25A 15A 1336T F50 3 7 5 40A 20A 13367 001 0 75 1 10A 6A 6A 13367 003 2 2 3 15A 10A 10A 1336T 007 5 5 7 5 40 20 15 13367 00 7 5 10 50 30 20 1336T 015 11 15 70 35 25 1336T 020 15 20 100A 45A 35A 1336T 025 18 5 25 100A 60A 40A 13367 030 22 30 125 70 50 13361T 040 30 40 150A 80A 60A 13367 050 37 50 200A
224. ctives Emissions EN 50081 1 C EN 50081 2 EN 55011 Class A EN 55011 Class B Immunily EN 50082 1 EN 50082 2 IEC 801 1 2 3 4 6 8 per EN50082 1 2 Important The conformity of the drive and filter to any standard does not guarantee that the entire installation will conform Many other factors can influence the total installation and only direct measurements can verify total conformity The following seven items are required for CE conformance 1 Standard 1336 FORCE Drive 0 37 45 kW 1 60 HP CE compatible Series D or higher 2 Factory installed EMC enclosure AE option or field installed EMC Enclosure Kit 1336x AEx see page 2 Filter as called out on the following page Grounding as shown on page B 2 Maximum cable length drive to motor of 75 meters 250 feet e Input power source to filter and output power filter to drive amp drive to motor wiring must be braided shielded cable with a coverage of 75 or better metal conduit or other with equivalent or better attenu ation mounted with appropriate connectors For shielded cable it is recommended to use a compact strain relief connector with double saddle clamp for filter and drive input and compact strain relief connector with EMI protection for motor output 7 Control I O and signal wiring must be in conduit or have shielding with equivalent attenuation Appendix B CE Conformity
225. d Limit Max Rev Spd Trim Max Fwd Spd Trim Droop Percent Vel Ref TP Sel Vel Ref TP Low Vel Ref TP Hi SP Default Ref 9 Shaded parameters are Standard 1336 FORCE parameters 5 26 416 Logic ChA Logic Cmd In Logic Command Torq Stop Confg Logic Options Logic Status Low Logic Status Hi At Setpoint 1 At Setpoint 2 Over Setpoint 1 Over S etpoint 2 Over Setpoint 3 Over S etpoint 4 Setpoint Select Speed Setpnt Tol Cur Setpoint Tol Zero S peed Tol Local In Status Stop Dwell Local Out Status Logic Tstpt S el File 3 Velocity Torque 367 52 58 59 56 57 60 61 62 63 64 65 66 67 68 69 54 72 55 n Velocity Fdbk Filt Vel Fdbk 269 Vel Feedback 146 Scaled Vel Fdbk 147 Enc Pos Fdbk Low 148 Enc Pos Fdbk Hi 149 Fdbk Track Gain 151 Fdbk Filter Gain 153 Fdbk Filter BW 154 Fdbk Device Type 150 Fdbk Filter S el 152 Tach Velocity 155 Error Filter BW 142 Vel Fdbk TP Sel 145 Vel Fdbk TP Low 143 Vel Fdbk TP Hi 144 Velocity Reg Vel Reg Output Ki Velocity Loop Kp Velocity Loop Kf Velocity Loop Velocity Error Vel Reg TP Sel Vel Reg TP Low Vel Reg TP Hi 134 139 140 141 138 137 135 136 Torque Ref Torque Mode Sel Torq Mode Stat Pos Mtr Cur Lmt Neg Mtr Cur Lmt Int Torque Ref Internal Iq R ef Computed Power Torq Lmt Stat External Iq Ref Ext Torq Ref 1 Ext Torq Ref 2 Slave Torque 1 Slave Torque 2 Ext Torque Step Notch Filter Freq Notch F ilter Q Min Flux Le
226. d Vel Fdbk Computed Power Comm X182 Computed Power Motor Current F dbk C 264 Motor Current Fdbk omm Motor Voltage Fdbk K 265 gt Motor Voltage Fdbk Comm 1042 Ext Vel Ref 2 Hi 3 28 gt Process Trim Fdbk 10V Common comm Sunny 10V 2 46 Chapter Objectives HIM Description Programming Terminals Chapter 3 provides an overview of the optional Programming Terminals available for use with the 1336 FORCE Drive The various controls and indicators found on the Human Interface Module HIM and the Graphic Programming Terminal GPT are both explained in this chapter Additional in depth information on the Graphic Programming Terminal can be found in the GPT programming Manual When the drive mounted HIM is supplied it will be accessible from the front of the drive as shown in Figure 3 1 The HIM has two main functions To provide a means of programming the drive and viewing operating parameters To allow different drive functions to be controlled ATTENTION When a drive mounted HIM is not A supplied on enclosed NEMA Type 1 IP 20 drives the blank cover plate option HAB must be installed to close the opening in the front cover of the enclosure Failure to install the blank cover plate allows access to electrically live parts which may result in personal injury and or equipment damage When a drive mounted HIM is supplied with enclosed NEMA Type 1 IP
227. d voltage ratings stored in EEProm determine the standalone operation With the default configuration the following conditions are needed to complete precharge astable bus voltage for a minimum of 300 milliseconds e abus voltage greater than the value set in Undervoltage Setpoint parameter 224 avalid control status from the precharge board if present You can modify the default configuration for common bus drives by using the external fault input and the precharge exit option e You use the external fault input with a cabinet disconnect switch to force precharge when the disconnect is opened and the drive is dis abled This may reduce current stress when the disconnect is closed again You can use the exit precharge option to let the precharge complete after the precharge timeout period 30 seconds when the bus voltage is not stable All other conditions must be met This is often used in the case of common or shared bus configurations where other drive s may be causing bus voltage variations Only use this option where needed otherwise excessive inrush current could open or weaken the line fuses NOTE The precharge timeout fault Parameter 86 must be disabled to use this option Before you can enable the inverter all drive types must complete a first time precharge This is required even if you have set the disable precharge function by setting bit 14 of Precharge Ridethrough Selection parameter 223 Cha
228. damage or a reduction in product life Wiring or application errors such as undersizing the motor incorrect or inadequate AC supply or excessive ambient temperatures may result in damage to the Drive or motor ATTENTION This Drive contains ESD Electrostatic Discharge sensitive parts and assemblies Static control precautions are required when installing testing servicing or repairing this assembly Component damage may result if ESD control procedures are not followed If you are not familiar with static control procedures reference Allen Bradley Publication 8000 4 5 2 Guarding against Electrostatic Damage or any other applicable ESD protection handbook Detailed definitions of industrial automation and technical terms used throughout this manual may be found in the INDUSTRIAL AUTOMATION GLOSSARY a guide to Allen Bradley technical terms Publication AG 7 1 1 1 Chapter 1 Introduction Standard Drive Features Performance Specifications Control Specifications The Bulletin1336 FORCE Field Oriented AC Drive is a microprocessor controlled Digital AC Drive with the following features 1 to 650 HP at 0 250 HZ constant torque Four Quadrant operation available High Performance Digital Velocity Loop Microprocessor controlled field oriented current loop Simplified programming through the use of a Parameter Table that features data entries in engineering units with English descriptions Nonvolatile Parameter Sto
229. de any form of plug or socket that would permit inadvertent disconnection Some local codes may require redundant ground connections The integrity of all connections should be periodically checked Appendix B CE Conformity Mechanical Configuration Important A positive electrical bond must be maintained between drive and filter at all 4 corners Star washers can be eliminated if a positive electrical bond is assured Three Phase Input Star Washers Access Conduit To Motor 1336 FORCE 37 45 kW 1 60 HP Frames B amp C 1 Input power source to filter and output power filter to drive amp drive to motor wiring must be in conduit or have shielding armor with equivalent attenuation See requirements on page B1 NOTE 1336 FORCE 40 60 HP 230V and 60HP 460V mounted in D Frames are NOT CE approved and cannot be used with the RFB 80 C filter Appendix B CE Conformity Important Drive and filter must be mounted to a common back plane with a positive electrical bond Spacing is Filter Mounting determined by Conduit Box Bracket Three Phase Three Phase Input Input Access Panel and Input Terminal Block Lower Access Panel o Motor To Motor t Conduit Box Filter Mounting Bracket Nipple Fitting 1336 FORCE 1336 FORCE Through the Wall Mounting
230. ditions 20 Longest handshake count 5 Run Inhibit Conditions 21 Stop event LED state 6 Current Processor Command Word 22 Stop event System mode register 7 Current Processor Status Word 23 Stop event Fault stop command 8 Diagnostic Request Flag 24 Stop event Powerup diagnostic status 9 Requested Torque Mode 25 Stop event Nonconfigurable fault status 10 Contactor Fault Flag 26 Stop event Current Processor Config Fault Status 11 Monitor Sample 27 Stop event Velocity Processor Config Fault Status 12 Sys Status 28 Stop event Adapter fault status 13 Loss of CP Enable Acknowledge 29 Stop event Logic Command parameter 52 14 Last Stop 30 Stop event Local Inputs parameter 54 15 Stop Event Stop Dwell Parameter Number 22 NOTE Caution should be used Stop Dwel W pe Sm when changing the dwell time This sets an adjustable dwell time before Display Units from factory setting the drive disables speed andtorqueregu Drive Units Display units x 10 Extended dwell times may not be lators when a stop has occurred o ny UO sae desirable from a safety standpoint Mimin Valle see in some applications Maximum Value 10 0 sec PP Maximum Dynamic Power Parameter Number Til Max DB Power Parameter Type Sink This parameter defines the power rating Display Units x Watts for the optional Dynamic Brake resistor Drive Units None This value is used to calculate the per unit Factory Default 0 Wa
231. duction MOTOR CONTROL BOARD Compatible with exception x Torque Stop Configuration 58 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 4267 non functional Compatible with exception X Torque Stop Configuration 8 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functional Compatible with exception X Torque Stop Configuration 58 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functi x Perunit Motor Curr 185 non funct x Perunit Motor Volt 186 non funct X Transistor Diag 257 bit 12 non funct Compatible with exception x Drive Comm 9 19 non linkable X Drive Comm Tx Rx 14 19 max value 219 X Torque Stop Configuration 58 not available x Service Factor 94 not available x Feedback Device Type 150 mode 7 not available x Calculated Torque 267 not available x Precharge Timeout 225 min value 0 Compatible Compatible with exception X V3 04 VP must be used with V4 02 SA and V4 02 Language or higher for B800 Frame drive support Compatible with exception X V3 04 VP MUST be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Calculated Torque 267 non functi X Perunit Motor Curr 185 non funct
232. e Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 395 Sink x PPR None 1024 500 20000 396 Sink None None 397 Sink x RPM 4096 1750 6000 6000 398 Sink x x RPM None 0 0 Pulse Scale Pulse Scale 399 Source RPM 4096 Pulse Scale 0 0 8 x Pulse Scale 8 x Pulse Scale 404 Source 0 0 0 65535 Fault Select Parameter Number SA Fault Select Parameter Type This parameter chooses whether a SCAN Display Units port device causes a drive fault a warning Drive Units based SA Warn Sel P406 or does Factory Default Chapter 5 Programming Parameters 405 Sink Bits None 0000 0000 0111 1111 nothing 1 Fault 0 Warning Nothing Bit 0 Not Used Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Warning Select SA Warn Select This parameter selects whether a SCAN port device timeout causes a warning or does nothing 1 Warning 0 Does Nothing Bit 0 Not Used Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Fault Status SA Fault Status This parameter displays the fault status of the SCANport device 1 Fault 0 No Fault Bit 0 Not U
233. e Units Factory Default Minimum Value Maximum Value Enums Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Di Sink x x 4096 100 trim 0 0 800 0 800 0 28 Sink x x 4096 100 trim 0 0 800 0 800 0 29 Sink Bits None 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1111 30 Sink x radians sec radians sec 0 radians sec 0 radians sec 240 radians sec 31 Sink x x 4096 100 0 preload 0 0 800 0 800 0 32 Sink 4096 1 000 Ki gain 1 000 0 000 16 000 Process Trim KP Gain Proc Trim Kp This parameter controls the proportional gain of the process trim regulator If the KP process trim is equal to 1 0 then the process trim PI regulator output will equal 1 pu for 1 pu process trim error Process Trim Low Limit Proc Trim Lo Lmt The output of the process trim regulator is limited by adjustable high and low limits This parameter specifies the low limit of the process trim output value Process Trim High Limit Proc Trim Hi Lmt The output of the process trim regulator is limited by adjustable high and low limits This parameter sp
234. e desired group is displayed In this case Info Choices include Transistor Diag Motor Overload Fault Sel Sts Testpoints Monitor Linear List and Info Press Enter Press the Increment or Decrement key to scroll to the desired parameter In this case Adapter ID Param 300 Choose Mode Choose Mode Display Choose File Velocity Torque Choose Group Monitor Choose Group Info Adapter ID H m u Co 7 Chapter 3 Programming Terminals Bit ENUMs SEL With drive software versions above 2 00 and a Series software version 3 0 or Series B HIM bit ENUMS 16 character text strings will be displayed to aid interpretation of bit parameters Select a bit parameter with the Increment or Decrement keys Press the SELect key to view the ENUM of the first bit Pressing this key again will move the cursor to the left one bit A blinking underline cursor will indicate that you are in the Display mode or that a Read Only parameter as been accessed A flashing character will indicate that the value can be changed Individual bits of a Read Write parameter can be changed in the same manner Pressing the SELect key will move the cursor flashing character one bit to the left That bit can then be be changed by pressing the Increment Decrement keys Masks Logic Mask TB3 sa lakalaka kalat Link E E or The Link Option allows you to view
235. ecifies the high limit of the process trim output value Process Trim Output Gain Proc Trim Out K The output of the process trim regulator is scaled by a gain factor This occurs just before the upper and lower limit This pa rameter specifies the gain value to use Process Trim Testpoint Proc Trim This parameter indicates the value of the internal location selected by the Process Trim Testpoint Select parameter Process Trim Testpoint Select Proc Trim TP Sel This parameter selects which location of the Process Trim Controller will become the testpoint value as follows Value Process Trim Access Point 0 Zero 1 Process Trim Error 2 Process Trim Filter Output 3 Process Trim Control Word Auto Tune Torque Limit Auto Tune Torque This parameter specifies the motor torque that is applied to the motor during the Velocity motor test and the Velocity system test 4096 100 rated motor torque Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value
236. ect SB Analog2 Sel This parameter selects which SCANport analog device is used in parameter 368 SB Analog In 2 1 Scanport 1 4 2 Scanport 2 5 3 Scanport 3 6 SCANport Analog2 In SB Analog In This parameter displays the analog value of the SCANport device selected in parameter 367 SP Analog2 Sel SP Analog2 Scale SB Analog2 Scale This parameter can be used to scale the value in Parameter 368 Analog Output 1 Analog Out 1 This parameter converts a 32767 digital value to a 10 volt output Analog Output 1 Offset An Out 1 Offset This parameter determines the offset applied to the raw analog output 1 The offset is applied after the scale factor Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Scanport 4 Scanport 5 Scanport 6 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 367 Sink None 368 Source x None 0 32767 32767 369 Sink x 1 1 32767 1 32767
237. ed in Table 4 B must be used Bit 8 set to 1 to execute update of velocity regulator gains 4 15 Chapter 4 Startup After the New Values for Kp amp Ki have been cal a or 1 culated you now ready to start the Drive Velocity mode Before starting the Drive use the INC DEC keys to scroll to Vel Feedback in the Drive Tune Menu Start the Drive pressing the START key on the HIM Press the SPEED IN CREMENT key to slowly increment the velocity 21 reference Observe velocity feedback motor shaft rotation making sure both are stable If they are not shaft produces a jittery oscillating or jud e ering rotation press the STOP key immediately and readjust the desired bandwidth This will enter ABO287A new values for both Kp amp Ki After these new val ues have been entered you are now ready to restart the Drive in velocity mode and observe motor shaft rotation and velocity feedback for stability If problems still occur refer to the Velocity Loop Autotune troubleshooting section of this manual Chap 6 The HIM display should now appear as shown below Vel Feedback This Figure should 100 00 RPM be stable no wander ing of RPM value Additional Sensorless Drive Instructions If the sensorless mode is being used Param 150 5 7 set Param 43 Param 141 and Param 142 based on the measured inertia expressed in Parameter 46 Autotune in Table 4 B Select Bit 8 of P
238. eference Select A Diagnostic Completed raul Start Owner yB gt Bit 13 Vel Reference Select B Bit 4 Bus Ridethru B7 4 Jog 1 Owner 343 Bit 14 Vel Reference Select C 512 Jogging StatA Jog 2 Owner 344 Bit 15 Reset Drive Bit _ StatB B7 9 Reference Owner 345 Bit 8 At Limit Warning Local Owner 346 Bit 9 Not Used B7 8 Flux Owner 347 Bit 10 AtSetpoint 1 Ramp Quer 349 Bit 11 At Setpoint 2 L TB7 7 Clear Fault Owner 350 Bra Bit 14 Over Setpoint 3 81152 Over Setpoint 4 Select 384 187 1 Enable 55 Bit 9 SR nable 55 Bi 10 Volt Input 22 E e olt Inpu 7850 10 Volt Offset 356 4 10 Volt Scale 357 LO Vottinput 355 01800 Analog Out 1 Scale 372 Be 10 Volt Scale 371 Hee Analog Output TB5 5 370 Pot Input 353 Analog Analog Output 2 TB5 7 PotOffset 359 PotScale 360 Potinput 358 Output2 Analog Out 1 Scale 375 B gt 10 Volt Scale 374 ft TB5 8 373 4TB6 4 TB6 mA Input 354 mA Output 3 TB5 10 mA Input Offset 362 B gt mA Input Scale 363 mAlnput 361 376 FA Output Scale SM MA Qutput Offset 347 pe MA UPN Lee 5 11 quodis Pulse PPR 395 10V Ref TB5 1 TBS 14 Pulse Edge 396 Pulse Offset 398 Pulse Value 399 Com Ref TB5 2 Pulse Scale 397 10 Ref 5 3 33 Appendix A 36T Firmware Function Motor Control Board Overview 3 LOGIC COMMANDS 2LOGIC STATUS WORDS VELOCITY
239. egrees C 26 Drive to Drive fault status 27 Base Drive EE fault status 28 Base Drive EE drive type address 29 Base Drive EE drive type data 30 Heatsink Warn Temp deg C 31 Heatsink Trip Temp deg C 32 Zero 100 Sink X None 0 0 65535 101 Sink rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 102 Sink X XXXX 8192 1 0000 gain 1 0000 4 0000 4 0000 Velocity Reference 2 LOW Fraction Vel Ref 2 Low This word supplies the fractional part of the external velocity reference 2 when the ex ternal velocity control has been selected in Logic Command P52 Velocity Reference 2 HI Whole 32 bit Vel Ref 2 Hi This word supplies the whole number refer ence 2 when the external velocity control has been selected in Logic Command P52 Velocity Scale Factor 2 Vel Scale Fctr 2 This parameter sets the gain multiplier that will be used to scale velocity reference 2 Velocity Trim LOW Vel Trim Low This word supplies the fractional number part of a 32 bit velocity reference trim Velocity Trim Hi 32 bit Vel Trim Hi This word supplies the whole number part of a 32 bit velocity reference trim Velocity Reference Testpoint Data LOW Vel Ref TP Low This parameter indicates the LOW of the 32 bit value of the internal location selected by the Vel Ref TP Sel P110 Velocity Reference Testpoint Data HI 32 bit Vel Ref TP H
240. elected by setting the Torque Mode Select parameter Parm 53 to a value of 2 Slave Torque Percent 2 Slave Torque 2 Ext Torq Ref 2 P164 is multiplied by a gain that is specified by this parameter This multiplier is scaled so that 4096 repre sents a gain of 1 0 10096 5 54 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 155 Sink rpm 4096 Base Motor Speed 0 000 rpm 8 x base speed 8 x base speed 156 Sink x x Hz 8 1 0Hz 135 Hz 511914 135 Hz 157 Sink X None 50 2 500 161 Sink 4096 100 Iq motor 0 0 800 0 800 0 162 Sink x96 None
241. en permission of the Allen Bradley Company Inc is prohibited Throughout this manual we use notes to make you aware of safety considerations circumstances that can lead to personal injury or death property ATTENTION Identifies information about practices or damage or economic loss Attentions help you identify a hazard avoid the hazard recognize the consequences Important Identifies information that is especially important for successful application and understanding of the product Document Update 1336 FORCE AC Drive User Manual This document provides new and updated material for the 1336 FORCE Adjustable Frequency AC Drive User Manual publication 1336 FORCE 5 12 dated September 1998 Please place this document with your manual for future reference HIM Upload Download Errors The following information describes the possible errors that can be encountered during a HIM Upload Download procedure HIM Upload Download Errors Fault Name HIM Drive Error Displayed ERROR 1 Probable Cause The HIM calculated a checksum for the file to be downloaded then checked the EEPROM checksum of the download The checksums did not match indicating the file stored in the HIM is invalid and the download was not successful Action Upload a valid uncorrupted file from the source drive and then repeat the download ERROR 2 The number of parameters in the HIM file is different than the number o
242. eparators are advisable between the class for control wiring groupings 5 If conduit is used it must be continuous and composed of magnetic steel 2 20 Power Wiring Chapter 2 Installation Wiring On 1 to 30 HP drives input and output power connections are performed through a 10 position terminal block TB1 located on the Gate Driver Board On drives larger than 30 HP input and output power connections are made at seperate terminal strips located at the bottom of the drive The drive connections are illustrated in Figure 2 10 The C thru G configurations of TB 1 are stud terminations and require the use of lug type connectors to terminate the field installed conductors Cat No 1336 LUG XXXX Lug Kits are available for use with these configurations of The wire size used is determined by selecting the proper lug kit based on the Cat No of the drive Refer to Table 2 C to determine the correct lug kit for your application Figure 2 10 Terminal Block TB1 200 240V 0 75 5 5 kW 1 7 5 HP Terminal Designations 380 480 500 600V 0 75 11 kW 1 15 HP Terminal Designations PE PE DC DC R S T U V W t 0 03 1 T2 T3 Dynamic Brake A Y To Motor To Motor Required Branch Required 1 Circuit Disconnect Input Fusing AC Input Line 200 240V 7 5 11 kW
243. er Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 122 Sink x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 123 Sink x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 125 Sink XR 556 display units x 10 10 0 seconds 0 0 seconds 6 553 5 seconds 126 Sink display units 10 10 0 seconds 0 0 seconds 6 553 5 seconds 127 Sink rpm 4096 Base Motor Speed Base Motor Speed 8 x Base Motor Speed 0 0 rpm 128 Sink rpm 4096 Base Motor Speed Base Motor Speed 0 0 rpm 8 x Base Motor Speed 129 Sink x x rpm 4096 Base Motor Speed Base Speed
244. ess 32 P13 Rcv 2 Node Address 0 Note that a drive cannot receive its own address and both receives cannot be set to the same address unless it is zero Data Indirect The indirect function for the transmit indicates to the D2D transmit TX where it should obtain data The receive it indicates to the D2D receive RX where it should put its data Indirect parameters can have either VP or CP parameters entered into them or they can have indirect data parameters entered into them as shown in the following examples Transmitter Example P14 Drive Transmit indirect Any VP CP Parameter or P20 Drive Xmit Data 1 P20 would then have a value or be linked to a non VP CP parm 4 18 Chapter 4 Startup Receiver Example P16 Drive Receive Indirect 1 Any VP CP Parameter or P22 Receive 1 Data 1 P22 would then have a value or a non VP CP parm linked to it Data The D2D TX and RX data exists as non VP parameters in the parameter table This allows data outside the Motor Control Board to get access to the D2D Data parameter examples were shown in the previous transmitter and receiver examples Master Slave Drive to Drive Communication Figure 4 5 illustrates an example of D2D applied to a master slave drive set up The master drive receives its speed reference from a speed pot wired to analog input 1 on a PLC Comm board P339 Analog Inl is linked to P101 Ext Vel Ref on the master drive P392 Analog 1
245. ess Display lt 80 Disp Parameter F iles See Chapter 5 Parameter Groups See Chapter 5 Parameters See Chapter 5 1 Him Versions 2 02 amp Up 2 Series B HIM Only 3 Series B V 1 06 amp up 4 Link lt gt Startup lt gt EEProm 1 Search ma 1 Control La 5 Password Status Clear Links Set Links Continue Reset Seq 5 Reset Defaults Drive to HIM 2 HIM to Drive 2 Recall Values Save Values Param Links 1 Control Logic Login Fault Queue Logout Reset Drive 3 Modify Warning Queue File Level Group Level Linear List Available Element Level Chapter 3 Programming Terminals GPT Description 3 20 When an optional GPT Figure 3 5 is supplied it will be either mounted to the front of the Drive as a panel mount terminal or supplied as a remote device with a 1 8 meter 6 foot long cable The GPT offers a 40 by 8 character display that can also be used as a graphics display to show trending graphs etc Figure 3 5 1201 Graphic Programming Terminal af Keypad Description Chapter 3 Programming Terminals The GPT keyboard Figure 3 5 is provided as either a 26 key version non runtime or 30 key runtime version The runtime version as shown in Figure 3 6 provides additional Start Sto
246. eter is actively restricting Iq current Negative Motor Current Reference Limit Neg Mtr Cur Lmt This parameter determines the largest allowable negative motor Iq axis current that will be commanded Bit 8 in Parm 183 indicates when this parameter is actively restricting Iq current 5 56 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 174 Sink 4096 100 0 Flux 100 0 12 5 100 0 175 Sink x x 4096 rated motor torque 200 0 0 0 800 0 176 Sink x x 4096 rated motor torque 200 0 800 0 0 0 177 Sink 4096 rated motoring power 200 0 0 0 800 0 178 Sink x x 4096 rated regen power 200 0 800 0 0 0 179 Sink X x
247. eters are Standard 1336 FORCE parameters Velocity Autotune Autotun Diag Sel Auto Tune Torque Auto Tune Speed Total Inertia Motor Inertia Auto Tune Status Vel Desired BW Vel Damp Factor Ki Velocity Loop Kp Velocity Loop Kf Velocity Loop Auto Tune TP Sel Auto Tune TP 256 40 41 46 234 44 43 45 139 140 141 48 47 5 27 Chapter 5 Programming Parameters Monitor Filt Vel Fdbk Scaled Vel Fdbk Int Torque Ref Internal Iq Ref Computed Power DC Bus Voltage Motor Volt Fdbk Motor Curr F dbk Freq Command Inv Temp Fdbk Torq Mode Stat Lim Motor Flux Enc Pos Fdbk Low Enc Pos Fdbk Hi MCB Counter 269 147 167 168 182 268 265 264 266 210 184 271 148 149 File 4 Diagnostics Testpoints Vel Fdbk TP Sel Vel Fdbk TP Low Vel Fdbk TP Hi Vel Reg TP Sel Vel Reg TP Low Vel Reg TP Hi Vel Ref TP Sel Vel Ref TP Low Vel Ref TP Hi Auto Tune TP Sel Auto Tune TP Logic Tstpt Sel Logic Tstpt Data Fault TP Sel Fault TP Torq Ref TP Sel Torque Ref TP TP Sel 1 Torq TP Data 1 Fault Sel Sts SP Fault Sts SP Warn Sts SP FaultSel SP Warn Sel ICN FitSel ICN Warn Sel CP Fit Status VP Fit Status CP Warn Status VP Warn Status CP Fault Select CP Warn Select VP Fault Select VP Warn Select Ncfg Fit Status PwrUp Fit Status Max DB Power Max DB Temp DB Time Const Shaded parameters are Standard 1336 FORCE parameters 5 28 442 443 440 441 425 426 82 83 84 85
248. ey until the desired group is displayed In this case Torque Ref Press Enter Press the Increment or Decrement key to scroll to the desired parameter In this case Parameter 53 Torque Mode Sel If the parameter you have selected has bit definition information use the Select key to access the 2nd or 3rd line Continue to press the Select key to access the desired bit Use the Inc or Dec key to change the value NOTE If the cursor is a blinking underline instead of a flashing character you are either in Display mode or are trying to change a read only parameter For detailed information on changing bit coded parameters refer to the Bit Enums section in this chapter Press the Enter key to save your changes Choose Mode Display Choose Mode Program Choose File Velocity Torque Choose Group Logic Choose Group Torque Ref Torque Mode Sel Chapter 3 Programming Terminals Display Mode The Display mode allows access to view parameters From the Status Display press Enter Choose Mode will be shown Press the Increment or Decrement key to show Display if it is not currently shown Press Enter The Choose File Display will appear Use the Increment or Decrement key to select the Diagnostics Velocity Torque Communication I O or Startup file Press Enter The Choose Group Display will appear Press the Increment or Decrement key until th
249. f Stamp 4 Zero Acc 1 Clear Warning 2 Clear Warn Q 1 Clear Flt 2 Clear Q 3 Drive Reset Fault List Upload Command 1 0 Node Linear Mode 1 Save Par to EE 2 Recall EE Par 3 Init Parto RAM 4 Evnt File Store 5 Evnt File Recall 6 Evnt File Init 7 Proc FB Links 8 Clear FB Links Numerical Edit List Parameter Screens Download Interval Data Transfer Version Drive Info Identity Trend Autotune Change Function Tests Password Save HIM GPT Recall GPT gt HIM Default This list is dynamic and will change for various Drive States and Drive Product functions 3 24 This Page Intentionally Blank Chapter 3 Programming Terminals Introduction Safety Precautions Chapter Start Up This chapter describes the procedure for the proper start up and tuning of the 1336 FORCE AC drive Among the procedures you must perform in this chapter are the following Pre power checks Power on checks Communication Configuration Parameter Programming Motor and Feedback Polarity Checks Drive Tuning and Calibration ATTENTION Hazard of Electric Shock exists in this drive Power circuits are optically isolated from control driver circuits Power circuit components are floating with respect to ground Use only approved methods of isolating test equipment when mak ing measurements in power circuits ATTENTION Only qualified personnel f
250. f parameters in the drive file The smaller of the two numbers is the number of parameters downloaded The last downloaded parameter number is displayed Verify that the correct file is being downloaded to the correct drive then press the Enter key Manually reprogram parameters with numbers higher than the last number downloaded or whose values were incorrect ERROR 3 The file in the HIM is for a different type of drive than the drive to which it is connected i e 1336 FORCE file to 1336 IMPACT drive Downloads can only occur between like drive types None Download not allowed ERROR 4 The value just transferred to the drive is an illegal value out of range too high or too low for the parameter Record the parameter number displayed and then press Enter to continue the download Manually reprogram all recorded parameters after the download is complete ERROR 5 The download was attempted while the drive was running Stop the drive and repeat the download attempt ERROR 6 The file in the HIM is for a different HP or voltage drive than the drive to which it is connected i e 1336 FORCE 10 HP file to 1336 FORCE 15 HP drive If the download is desired press the Enter key If not desired press the ESCape key to end the download Drive gt HIM ERROR 1 The HIM calculated a checksum as the file was uploaded and compared it to the HIM file checksum stored after the upload The chec
251. facing various signals and commands to the 1336 FORCE by using contact closures Six different versions of the option are available L4 Contact Closure Interface L4E Contact Closure Interface with Encoder Feedback Inputs L5 24V AC DC Interface L5E 24V AC DC Interface with Encoder Feedback Inputs L6 115V AC Interface L6E 115V AC Interface with Encoder Feedback Inputs 1 Encoder feedback inputs are connected to TB10 on the FORCE Drive Do Not connect Encoder Feedback inputs to the Control Interface Option card The user inputs are connected to the option board through TB3 The L4 L5 and L6 options each have nine control inputs The function of each input must be selected through programming as explained later in this section The LAE L5E and L6E options are similar to L4 L5 and L6 with the addition of encoder feedback inputs which are not used with the 1336 FORCE Available Inputs A variety of combinations made up of the following inputs are available Start Enable Stop Clear Fault Ext Fit Reverse 2 Stop Mode Selects Digital Potentiometer MOP Run Forward 2 Accel Decel Rates Run Reverse 3 Speed Selects Local Control The available combinations are shown in Figure 2 24 Programming the Input Mode parameter to one of the Input Mode numbers listed will select that combination of input functions Important The Input Mode parameter can be changed at any time but the change will not affect drive operation until power to the
252. fault Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 281 Sink X None 0 0 100 282 Source x None 0 32767 32767 283 Sink 0 0 100 284 Source x None 0 32767 32767 285 256 286 256 287 Sink None 300 32767 5 67 Chapter 5 Programming Parameters Kp Frequency Regulator Kp Freq Reg Proportional gain of the frequency regula tor in sensorless mode This parameter must not be changed Kff Freq Regulator Kff Freq Reg Feedforward gain of the frequency regula tor in sensorless mode This parameter must not be changed Ksel Freq Regulator Ksel Freq Reg Low frequency gain boost of the frequency regulator in sensorless mode This param eter must not be changed Frequency
253. ffset 398 5 84 Pulse Scale 397 5 84 Pulse Value 399 5 84 Ramp Owner 349 5 76 Rated Inverter Output Amps 220 5 58 Rated Torque Voltage 241 5 61 Reference Mask 334 5 73 Regen Power Limit 178 5 56 Reset Drive Mask 336 5 74 Reverse Motor Speed Limit 127 5 49 SP Analog 1 In 365 5 78 SP Analog Out 3 9 5 81 SP Analog 1 Select 364 5 78 SP Analog 1 Scale 366 5 78 SP Analog 2 In 368 5 79 SP Analog 2 Select 367 5 79 SP Analog 2 Scale 369 5 79 SP Comm Retries 404 5 84 Set Ref Owner 345 5 75 Scaled Velocity Feedback 147 5 52 Setpoint Select 66 5 40 Selection for Test DAC 1 285 5 67 Selection for Test DAC 2 286 5 67 Slave Torque Percent 1 163 5 54 Slave Torque Percent 2 165 5 54 Speed Setpoint Tolerance 67 5 40 Stop Dwell 72 5 41 Stall Delay 91 5 45 Start Mask 392 5 73 Start Owner 342 5 74 Stator Resistance 236 5 61 Chapter 5 Programming Parameters Table 5 B 1336T Alphabetical Parameter Table Parameter Name Element Stop Owner Stop Select 1 Stop Select 2 Tach Velocity Testpoint Data Testpoint Data 2 Testpoint Data 3 Testpoint Data 4 Testpoint Data 5 Testpoint Data 6 Testpoint Selection Testpoint Selection 2 Testpoint Selection 3 Testpoint Selection 4 Testpoint Selection 5 Testpoint Selection 6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuratio
254. for the Over Setpoint 1 bit in Logic Status Hi Over Setpoint 2 Over Setpoint 2 This parameter is used to specify the set point threshold for the Over Setpoint 2 bit in Logic Status Hi Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Chapter 5 Programming Parameters 58 Sink Bon INOTE Coast indicates that the Inverter power has been disabled but actual rotational stoppage of the motor is dependent on the friction of the connected load This parameter has no effect if the drive is already in speed mode when a stop com mand occurs Coast stop commands are also unaffected by this parameter Parameter Number 59 Parameter Type Sink Display Units Bits Drive Units None Factory Default 0000 0000 0001 0010 Minimum Value 0000 0000 0000 0000 Maximum Value TEE Enums 8 Do Start Diag 9 Not Used 10 Not Used 11 1 AC Motor Contactor Present 12 1 Bipolar Ref ref value Forward Dir ref value Reverse Dir 0 Unipolar Bit 4 of P52 1 Forward Direction Bit 5 of P52 1 Reverse Direction Start Type B A 0 0 Maint Start Rgen Stop 0 1 Maint Start Coast Stop 1 0 Momentary Start Maint Start Stop Stop Type B A 0 0 Coast 0 1 Normal Ramp Regen 1 O I Limit Coast Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value
255. from the drive to the HIM you must have a Series B HIM From the EEProm menu see steps A C above press the Increment Decrement keys until Drive HIM is displayed Press Enter A profile name up to 14 characters will be displayed on line 2 of the HIM This name can be changed or a new name entered Use the SEL key to move the cursor left The Increment Decrement keys will change the charac ter EEProm 1A g g H H p p 4 4 0 0 v v 3 10 Chapter 3 Programming Terminals Drive HIM continued Press Enter An informational display indicat 1336T Vector 1 will be shown indicating the drive type and firmware version pur Press Enter to start the upload The s Drive gt HIM 60 parameter number currently being TUNE uploaded will be displayed on line 1 of the HIM Line 2 will indicate total progress Press ESC to stop the upload COMPLETE displayed on line 2 will indicate a successful upload Press Enter If ERROR is displayed see Chapter 6 Drive gt HIM 210 COMPLETE To download a parameter profile from the HIM to a drive you must have a Series B HIM Important The download function will only be available when there is a valid profile stored in the HIM HIM Drive From the EEProm menu press the gt rom Increment Decrement keys until HIM Drive 15 displayed Press the Enter key
256. fset This parameter determines the offset applied to the raw analog value of the pot input before the scale factor is applied This allows the user to shift the range of the of the analog input Pot Scale Pot Scale This parameter determines the scale factor or gain for the pot input The pot input is converted to a 2048 and then the scale is applied allowing an effective digital range of 32767 Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Sink x xx volts 205 1 volt 0 000 volt 20 000 volt 20 000 volt 360 Sink X XXX 2048 1 1 000 16 000 16 000 361 Parameter Number Milli Amp Input mA Input This parameter displays the converted analog value of the milli amp input Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Source X None 0 0 32767 5 77 Chapter 5 Programming Parameters Milli Amp Input Offset mA Input Offset This parameter determines the offset ap plied to the raw analog value of the milli amp input before the scale factor is ap plied This allows the user to shift the range of the analog input Milli Amp Input Scale mA Input Scale This parameter determines the scale factor or gain for the milli amp input The milli amp input is conver
257. g Input and Output reference signals as detailed in Figure 2 30 Figure 2 29 PLC Comm Board Connections AP 001 LANGUAGE Main Control 04 US Status 002 MODULE BRAM Interface ESO Enable autOu pp4 EN DIS ON CHA High ON CHA Low ON CHBHigh ON CH B Low Ext pps J3 Communication Modes Norm Stop 007 Motor Thermo 009 06 Drive Enable 0011 RIO Channel A RIO Channel B 120 AV XFit Jtt 120V 24V eeee Ji 120V 24V CHANNEL B 2 42 eooo J9 120V 24V eeeo J8 Drive Permissives sas 1 TP2 TP4 5 1 e J 0 415V AGND 15y WEM 02 DP Status CHA Status 0100 012 J 013 014 J 015 14 J CHB Status DOMINO ADAPTER Port 1 J5 Port 2 1 4 J7 TP24 25 m 10V Ref 10V Ref 9 2 DAC Inputs ADC Inputs Ref NOTE For more information on the PLC Communication Board including LEDs and Jumpers refer to the PLC Communication User Manual 1336 FORCE 5 13 The maximum and minimum wire size accepted by TB20 TB21 Channel A and Channel B is 3 3 and 0 06 mm 12 and 30 AWG Maximum torque for these terminal blocks is 0 79 N m 7 Ib in Only copper wire may be used Terminal Terminal Block Number s TB20 1 21 pa ss a
258. g TP Hi This parameter indicates the value of the internal location selected by the Vel Reg TP Sel parameter P137 The select allows this parameter to be used as a testpoint for the velocity regulator 5 50 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 130 Sink rpm 4096 Base Motor Speed Base Speed 0 0 rpm 6 x Base Speed 131 Sink x x Display units x 10 0 0 25 5 132 Source 0 0 65535 133 Source x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 134 Source x x 4096 100 0 Iq motor 0 0 300 0 300 0 135 Source x None 0 0 65535 136 Source x None 0 32767 32767 Velocit
259. g or not reported at all ignored Each configuration bit matches the bit definitions of Parameters 83 85 and 88 When a bit is set to 1 the corresponding condition in the Drive will be reported as configured by parameter 88 When the bit is set to 0 the condition is not reported 6 18 Chapter 6 Troubleshooting Figure 6 8 Parameter 85 VP Configurable Warning Status bits 15 1413 12 11 10 9 8 7 6 5 1 O O OOO O O O O 00000000 Feedback Loss Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending IIT Motor Overload Trip IIT Motor Stalled External Fault RMS Fault NOT USED Parameter Limit Math Limit Dynamic Brake Resistor Overtemperature AC Motor Contactor Failure Inverter Overload Pending IT Drive to Drive communication fault Inverter Overload Foldback IT This word parameter indicates conditions detected by the Velocity Processor VP that have been configured to report as a Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 88 and 89 When a bit is set to 1 the corresponding condition in the Drive is true otherwise the condition is false 6 19 Chapter 6 Troubleshooting Auto Tuning Test Procedure Auto Tuning is a procedure which involves the running of a group of tests Power Structure and Transistor Diagnostics Tests 6 20 on the motor drive combination Some of these tests check the Drive
260. g the test e Ifthe motor is not rotating during this test then investigate electrical noise creating encoder transitions Improper encoder grounding or a noisy encoder power supply could cause noise This fault cannot be determined for encoderless applications You must visually check for this condition on encoderless systems If your motor does rotate during this test consult the factory Sign Error A sign error fault occurs when the average voltage is negative If you receive a sign error you need to 1 Run the test again 2 Consider replacing the circuit boards Zero Current If this bit is set you need to 1 Set the rated motor current in Nameplate Amps parameter 4 to the correct value 2 Run the test again 3 Consider replacing the control board A D Overflow at Min gain The motor terminal voltage measuring circuit is not working properly You need to 1 Determine if the motor is connected 2 Check cable connections between the gate drive and control boards 3 Consider replacing the circuit boards 4 Investigate any noise problems Enable Dropout The drive enable was lost during the inductance test Consider running the test again and monitor the drive enable bit 9 of Inverter Status parameter 54 and or the Inv En LED on the main control board Sign error Overflow The calculated inductance is negative Run the test again 2 Consider replacing the circuit boards 6 25
261. g value before the scale factor is applied This allows you to shift the range of the analog input by 4096 drive units 20 volts Figure 4 7 Analog I O Links Standard Adapter 10V Ref Common 10V Ref 10V Input Int 356 Offset 10V Input Inde 357 Scale TE Ini Pot Input Potin put Int TE 4 20 Main 362 Offset mA Input Ifa 363 Scale 395 PPR i ni 396 Edge Pulse Value 5 12V Pulse Input Il 14 307 Scale 398 Offset Analog 1 371 Offset Analog Output 1 041 2 372 Scale 3 Analog 4 374 Offset Analog Output 2 Out 2 5 375 Scale TE 6 mAOut 7 377 Offset mA Output 8 378 Scale 4 23 Chapter 4 Startup 10V Input and a Pot Input will be used in detailing the scaling and offset parameters At Pot Input between TB5 terminals 7 and 8 a potentiometer with a range of 10V DC has been connected Parameter 358 has been linked to Parameter 104 Velocity Reference 2 HI in the Drive which gives the potentiometer control of the external velocity reference To calibrate the pot to control 100 base speed in both directions the scaling parameter must be adjusted The default value of the scale parameters allows a total range of 4096 2048 to 2048 This allows only 50 base speed in each direction By setting a scale factor of 2 in Parameter 360 An In 1 Scale the digital input is multiplied by 2 providing a range of 4096 to 4096 or 100 base speed in both directions If the user
262. ge Module APL PLC Comm Language Module AP Application Processor on PLC Comm CP Current Processor DP Domino Processor on PLC Comm SAL Std Adapter Language Module SA Std Adapter Processor STANDARD ADAPTER BOARD Not Compatible Not Compatible Not Compatible Not Compatible Page 1 7 1336 FORCE AC Drive User Manual 3 The table has been updated to include v6 xx of the Motor Control Board note was added to v5 xx of the Standard Adapter Board MOTOR CONTROL BOARD Compatible Compatible with exception X Torque Stop Configuration 58 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functional Compatible with exception X Torque Stop Configuration 58 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functional Compatible with exception X Torque Stop Configuration 58 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functi X Perunit Motor Curr 185 non funct X Perunit Motor Volt 186 non funct X Transistor Diag 257 bit 12 non funct vix vx v xx Compatible with exception X Drive Comm 9 19 non linkable X Drive Comm Tx Rx 14 19 max value 219 X Torque Stop Configuration 58 not
263. gy Rating 320 J oules Turn On Voltage 1020V nominal Line to Ground MOV Rating Energy Rating 380 J oules Turn On Voltage 1330V nominal Input Devices Starting and Stopping the Motor 2 9 Chapter 2 Installation Wiring Input Devices 2 10 Starting and Stopping the Motor A ATTENTION The drive start stop control circuitry includes solid state components If hazards due to accidental contact with moving machinery or unintentional flow of liquid gas or solids exist an additional hardwired stop circuit is required to remove AC line power to the drive When AC power is removed there will be a loss of inherent regenerative braking effect amp the motor will coast to a stop An auxiliary braking method may be required Repeated Application Removal of Input Power A ATTENTION The drive is intended to be controlled by control input signals that will start and stop the motor A device that routinely disconnects then reapplies line power to the drive for the purpose of starting and stopping the motor is not recom mended If this type of circuit is used a maximum of 3 stop start cycles in any 5 minute period with a minimum 1 minute rest between each cycle is required These 5 minute periods must be separated by 10 minute rest cycles to allow the drive precharge resistors to cool Refer to codes and standards applicable to your particular system for specific requirements and additional information
264. h 7 of Motor Stator Resistance Test Errors parameter 296 this bit Then Is set Motor Not at Zero Speed The motor is not at zero speed Generally this bit is set in two cases e Ifthe motor rotates during this test an improper result is likely Make sure the motor decoupled from load or process is not rotating just before or during the test 0 e Ifthe motor is not rotating during this test then investigate electrical noise creating encoder transitions Improper encoder grounding or a noisy encoder power supply could cause noise This fault cannot be determined for encoderless applications You must visually check for this condition on encoderless systems If your motor does rotate during this test consult the factory Sign Error A sign error fault occurs when average voltage is negative If you receive a sign error run the test again because the value returned is not reliable 2 Not Used Not Used 4 Not Used 6 Zero Current If this bit is set you need to g 1 Set the rated motor current in Nameplate Amps parameter 4 to the correct value 2 Run the test again 3 Consider replacing the control board Software Error 9 A software fault is generated when an improper sequence of events has occurred Consider running the test again Enable Dropout 10 The drive enable was lost during the resistance test Consider running the test again and monitor the drive enable bit 9
265. h achievable with an encoder Note that the maximum achievable bandwidths decrease with increasing inertia for both sensorless and encoder The starting torque available is same with sensorless encoder Available starting torque is at least 150 motor torque and could be as high as 200 if the inverter can supply the current Minimum current limit acceleration and deceleration times are comparable with sensorless and encoder Torque regulation 5 is comparable with sensorless and encoder at velocities greater than approximately 2596 of base speed At lower speeds sensorless torque regulation may degrade with changing motor temperature Torque response is comparable with sensorless and encoder 400Hz Sensorless Mode Selection Param 150 5 Minimum preset speed is 1 60 of base speed When preset speed and actual speed are both lt 1 60 of base speed torque is set to zero When preset speed is gt 1 60 of base speed torque will be developed to accelerate the motor through the min speed to the preset speed When a motor is accelerated from a preset speed of 0 to a preset speed gt 1 60 of base speed the motor will accelerate at the accel rate set by the drive But if the accel rate in the drive is set to 0 or some low value and the acceleration is controlled by ramping the preset speed parameter with a PLC the motor will not accelerate until the preset speed is 1 60 base speed This will re
266. hat provide additional precharge information Configuring the Faults and Warnings for Precharge You can use CP Fault Warning Configuration Select and CP Warning None Configuration Select to enable fault warning conditions when the appropriate bit is set 1 If a bit is clear 0 in CP Fault Warning Configuration Select you can choose to have the condition reported as a warning by setting the bit in CP Warning None Configuration Select The following are the bits that pertain to precharge This bit With this text When set generates a fault when 0 RidethruTime The ridethrough time exceeds 2 seconds default see P226 The precharge time exceeds 30 seconds e nlt sss P225 The bus voltage drops 150 volts below the 2 Bus Drop bus tracker voltage This is the level where the drive would normally enter ridethrough The bus voltage drops below the level set in Undervoltage Setpoint parameter 224 This 3 Bus Undervlt is the level where the drive would enter ridethrough if it occurs before a 150 volt drop in bus voltage At least 5 ridethrough cycles have occurred within a 20 second period This indicates a 4 Bus gt 5 converter problem or a problem with incoming power Consider checking the incoming power for a phase loss 6 11 Chapter 6 Troubleshooting Using Precharge Ridethrough Selection to Change Precharge Ridethrough Options You can use Precharge
267. he outputs consist of three 3 permanently configured and one 1 programmable output The three permanently configured relays are Run Warning and Fault Run is a normally open contact that closes when current is applied to the motor It follows the enable LED on the Motor Control Board Warning has a normally open and close contact that energizes when there is no warnings and de energizes when there is a warning Fault has a normally open and close contact that energizes when there are no faults and de energizes when there is a fault 4 27 Chapter 4 Startup 4 28 gt mpm To calculate Scale Follower Base Speed x Follower RPM The programmable relay is a normally open contact and is configured through the Output Select parameter 384 It allows the relay to follow a single bit within the Logic Status parameters 56 and 57 The relay can be configured to follow the bit function or the not of the bit function For Example When the motor is at set speed and you wish the contact to close you must enter AT SET SPEED 8 When the motor is at set speed and you wish to have the contact open you must enter NOT AT SET SPEED 40 into Output Select 384 Pulse Input Configuration The pulse input allows an external source to provide the drive with a digital reference or trim signal Fig 4 12 It is a differential input with a maximum frequency of 100khz The pulse input parameters consist of PPR 395 Scale 397 Edges 396
268. high speed communication network CAN for the 2nd word location of the transmitted message Drive Link Receive 1 Indirect 1 D2D Rcv 1 Ind 1 This parameter specifies the parameter number where the first word of data will be put after it has been received from the drive to drive communication Drive Link Receive 1 Indirect 2 D2D Rcv 1 Ind 2 This parameter specifies the parameter number where the second word of data will be put after it has been received from the drive to drive communication Drive Link Receive 2 Indirect 1 D2D Rcv 2 Ind 1 This parameter specifies the parameter number where the first word of data will be put after it has been received from the drive to drive communication Drive Link Receive 2 Indirect 2 D2D Rcv 2 Ind 2 This parameter specifies the parameter number where the second word of data will be put after it has been received from the drive to drive communication 5 32 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum
269. hoices allow for different end to end distances and number of transmitters The distance is based on the propagation delay of the signal through the wire and the maximum transmitters come from not exceeding the 2ms task The propagation delay is based on CAN variables The number of transmitters is based on the data rate 2ms 2ms 2ms 600us 1 600us 2 600us 3 600us 1 600 2 600us 3 600us 1 600us 2 600us 3 600us 4 600us 1 600us 2 600us 3 600us 1 600us 2 600us 3 Shown above is the D2D set at 125k baud with 3 and 4 transmitters With 3 transmitters the data rate never exceeds 2ms and all the data 15 received within the 2ms task In the case of 4 transmitters the fourth transmitter does not always get transmitted due to the priority of the transmitters The lower the node address the higher the priority All the data is not seen every 2ms task Data transfer errors also effect how much data is transferred Errors in the transfer will cause retransmission of the data and may cause the data rate to exceed 2ms Within the drive itself the Velocity Processor VP will be running the D2D in its 2ms task With the use of D2D indirects data can be transferred within 2 3 from one drive to another and 4 5ms from one drive to another and back D2D Xfer 2 ms Task 150us D2D Velocity D2D 300us Rx Functions Tx 600us D2D Xfer 2 ms Task D2D 150us D2D velocity D2D Tx 300us Tx Functions Tx Data Transmitted 600u
270. hould be set to P101 Ext Vel Ref It should be noted that the typical transmission time from the master to the slave is between 4ms to 6ms using links otherwise using indirects it is only 2ms to 4ms I O Communication Configuration The Standard I O of the 1336 FORCE Drive must be checked to verify proper operation The Standard is used to interface control circuits into the drive It is very important that this interface is functioning properly Standard Adapter Board Equipped Drives If a Control Interface option is installed verify that the Stop Enable and Ext Fault interlock inputs are present Voltage level is dependent upon the Control Interface option installed Refer to Page 2 27 for Input Mode Param 385 setting IMPORTANT The Stop Enable and Ext Fault inputs must be present before the drive will start Refer to LEDs D1 and D2 shown in Figure 2 13 to determine Drive Status If this option is not installed verify that two jumpers are installed one at pins 3 amp 4 and the other at pins 17 amp 18 of J10 If an Ext Fault occurs check the Fault Mask Programming In parameters 88 and 89 Bit 6 needs to be defined to mask the soft fault and warning indication PLC Comm Adapter Board Equipped Drives 1 The DRIVE ENABLE 20 terminal 1 on the PLC Comm Board input allows the drive to honor a START command D11 on the PLC Comm board a green LED reflects the present state of the DRIVE ENABLE If D11 is illuminated
271. hru Timeout Clear Fault Mask Clear Fault Owner Computed Power CP Configurable Fault Status CP Configurable Warning Status CP Fault Configuration Select CP Operating Options CP Warning Configuration Select Current Setpoint Tolerance Data In A1 Data In A2 Data In B1 Data In B2 Data In Cl Data In C2 Data In D1 Data In D2 Data Out Al Data Out A2 Data Out B1 Data Out B2 Data Out C1 Data Out C2 Data Out D1 Data Out D2 DC Bus Voltage Decel Rate 1 Decel Rate 2 Decel Time Direction Owner 389 390 125 302 300 301 370 371 372 373 374 375 60 61 256 41 44 47 48 40 229 247 248 225 226 335 350 182 82 84 86 227 87 68 310 311 312 313 314 315 316 317 320 321 322 323 324 325 326 327 268 391 392 126 341 5 45 5 83 5 83 5 49 5 70 5 70 5 70 5 79 5 79 5 80 5 80 5 80 5 80 5 39 5 39 5 63 5 36 5 36 5 36 5 37 5 35 5 38 5 38 5 38 5 59 5 59 5 73 5 76 5 57 5 42 5 43 5 43 5 60 5 44 5 40 5 70 5 70 5 70 5 71 5 71 5 71 5 71 5 71 5 71 5 71 5 71 5 71 5 71 5 71 5 71 5 72 5 65 5 83 5 83 5 49 5 74 5 11 Chapter 5 Programming Parameters Table 5 B 1336T Alphabetical Parameter Table Parameter Name Element Drive Comm Baud Rate Drive Comm Receive 1 Data 1 Drive Comm Receive 1 Data 2 Drive Comm Receive 2 Data 1 Drive Comm Receive 2 Data 2 Drive Comm Receive 1 Address Drive C
272. i This parameter indicates the HI 32 bit value of the internal location selected by the Vel Ref TP Sel P110 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 103 Sink None 0 0 65535 104 Sink rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 105 Sink X XXXX 8192 1 000 gain 1 0000 4 0000 4 0000 106 Sink SEC None 0 0 65535 107 Sink x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 108 Source X 1 2 og Base Motor Speed 0 0 65535 109 Source x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 5 47 Chapter
273. in terms of Per Unit numbering 5 1 Chapter 5 Programming Parameters Parameter Table Structure Engineering Units A label given to parameter data which specifies what units are to be used to display the parameter value on the Programming Terminal Examples of engineering units include RPM etc Non Volatile Memory Data memory in the drive which retains the values of all data even when power is disconnected from the drive control BRAM Battery Backed Random Access Memory chips are used for the non volatile memory to store some of the drive parameters Parameter Table Table of parameter entries for all configuration and setup parameters used in the drive Parameter Entry Information stored in the drive which contains the parameter number parameter data and all other information related to the specific parameter Parameter Memory location used to store drive data Each parameter is given a number called the parameter number The parameter value may be specified in decimal or in hexadecimal When specified in hexadecimal the word Hex will appear after the parameter value Per Unit Numbering Per Unit numbering is a numbering system which defines a specific numeric value as representing 100 of a particular quantity being measured The number 4096 is used in many places in the drive to represent 1 Per Unit 10096 pu All data used to perform the Drive functions is stored in the Parameter Table
274. ink A29 Datalink B19 Datalink 2 Datalink C19 Datalink C29 Datalink D19 Datalink D2 Logic Status LOW p 56 SP An Output p 379 Data Out A1 p 320 Data Out A2 p 321 Data Out B1 p 322 Data Out B2 p 323 Data Out C1 p 324 Data Out C2 p 325 Data Out D1 p 326 Data Out D2 p 327 Message Buffers Message Handler Available only in enhanced mode Optionally enabled via G file in SLC processor 4 32 Chapter 4 Startup Serial Communications Module The following figure shows how the I O image table for the programmable controller relates to the 1336 FORCE drive when a Serial Communications Module is used SCANport 1203 Gx2 1336 FORCE Drive DF1 DH485 to SCANport Message Handler Logic E valuation Block SP An 2 Sel p 367 Data In A1 p 310 Data In A2 p 311 Data In B1 p 312 Data In B2 p 313 Data In C1 p 314 Data In C2 p 315 Data In D1 p 316 Data In D2 p 317 N40 0 63 BTW Emulation N41 0 Logic Command N41 1 Reference N41 29 Datalink A1 N41 3 Datalink A2 4 4 4 DF 1 DH485 N41 4 Datalink B1 4 4 4 4 4 Serial Messages Write N41 59 Datalink B2 N41 6 Datalink C1 N41 7 N41 Datalink D1 N41 9 Datalink D2 Datalink C2 BTR Emulation Logic Status Feedback Datalink A1 Datalink A2 Datalink B1 Datalink B2 Datalink C1 Datalink C2 Datalink D1 Datalink D2 Message Handler Logic Status Low p 56 SP An Ou
275. input and 1 pulse source input with a digital resolution of 12 bits These inputs are differential inputs with noise rejection filtering Each input has a gain and offset adjustment The A D converter is a 12 bit device where an input value of 10V will result in a digital value of 2048 Likewise an input value of 10V will result in a digital output value of 2048 NOTE Analog input parameters must be linked to a velocity reference parameter as well as a scaling and offset parameter for an analog input to function NOTE Refer to Chapter 4 Startup for Analog I O configuration information Figure 2 18 Analog Input Connections 10V DC POWER SUPPLY COM POWER SUPPLY COMMON Connect to Either 1 or 3 NLY ONE 10V DC POWER SUPPLY lt E IN ANALOG IN 23 REFERENCE IN ANALOG IN 6 Typical Connections for Unidirectional Operation Forward Reverse fee 10V DC POWER SUPPLY a REVERSE COM POWER SUPPLY COMMON 10V DC POWER SUPPLY W e FORWARD REFERENCE POT IN ANALOG IN REFERENCE Po IN ANALOG IN 6 Typical Connections for Bidirectional Operation 2 30 Chapter 2 Installation Wiring Analog Outputs There are 2 analog outputs from the Standard Adapter Board that have a range of 10V and 1 4 20 mA output with a digital resolution of 12 bits Discrete Outputs Fault outputs from the 1336 FO
276. ion Compatible with exception BOARD X Torque Stop Configuration 58 X V3 04 VP must be used with V3 03 X V3 04 VP must be used with V3 03 non functional X Service Factor 94 non functional X Feedback Device Type 150 AP and V3 03 Language or higher for B800 H Frame drive support AP and V3 03 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 not mode 7 non functional X Calculated Torque 267 non functional available X Perunit Motor Current 186 not available X Transistor Diagnostics 257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 92 min value 150 X Motor Poles 233 max value 12 X Base Motor Speed 229 max value 6000 Not Compatible Compatible with exception Compatible X Torque Stop Configuration 58 non functional X Service Factor 94 non functional X Feedback Device Type 150 mode 7 non functional X Calculated Torque 267 non functional X Perunit Motor Current 185 non functional X Perunit Motor Voltage 186 non functional X Transistor Diagnostics 257 bit 12 non functional Compatible with exception X V3 04 VP must be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 non functional X Perunit Motor Voltage 186 non functional X Transistor Diagnostics 257 bit 12 non functional Key VP Velocity Processor MCC Main Control Board Langua
277. ion Select parameter 86 and CP Warning None Configuration Select parameter 87 Parameters 86 and 87 both have the following bit definitions vum With this text Is defined as 0 RidethruTime A bus ridethrough timeout occurred 1 Prechrg Time timeout occurred A bus voltage drop of 150V below the bus tracker 2 Bus Drop voltage This is covered in detail later in this chapter A bus voltage drop to a level below the value set Bus Endervit in Undervoltage Setpoint parameter 224 4 Bus Cycles gt 5 More than 5 ridethroughs occurred within 20 second period 5 Open Circuit The fast flux up current is less than 50 of commanded 6 15 RESERVED Always leave zero For each condition that you want the drive to fault on set the corresponding bit in Fault Select 1 When the drive trips on a condition that you set to fault the drive how the drive reacts depends on which condition occurred For bits 0 through 5 The red CP light turns on The motor coasts to a stop Chapter 6 Troubleshooting Fault Select Warning Select bit 1 Trips Drive bit 1 Reports Warning Faut o o bit 0 Reports as Warning bit 0 No Report Ignored For each condition that you want the drive to display a warning fault on you need to 1 Set the corresponding bit in CP Warning None Configuration Select 2 Make sure the corresponding bit in CP Faul
278. ir respective circuits pulled in the same conduit or layered in the same tray General Notes Note Bundle may not exceed conditions of NEC 310 ses D Classes7 and 8 may have their respective circuits pulled in the 1 Steel conduit is recommended for all wiring classes Classes 7 11 same conduit or layered in the same tray 2 Spacing shown between classes is the minimum required for parallel runs Note Encoder cables run in a bundle may experience some amount of less than 400 feet Greater spacing should be used where possible EMI coupling The circuit application may dictate separate spacing E Classes 5 i and 11may Ne their respective in ihe 3 Shields for shielded cables must be connected at one end only The other end should be cut back and insulated Shields for cables from a cabinet to an external device must be connected at cabinetend Shields for cables from one cabinet to another must be connected at the source end cabinet Splicing of shielded cables if absolutely necessary should be done so that Shields remain continuous and insulated from ground same conduit or layered in the same tray Communication cables run in a bundle may experience some amount of EMI coupling and corresponding communication faults The application may dictate separate spacing TG WIES ee Re UD TEMUS Toe e NERA Per Merecommendatons 4 Power wire is selected by load 16AWG is the minimum recommended size 4 In cable trays steel s
279. isabled Series A version 3 0 or Series B HIM Setting Bit 1 of the Logic Mask parameter to 0 will disable Serial Fault from a HIM on port 1 Note that this also disables all HIM control functions except Stop To remove the module J 1 Assure that power has been removed Logic Mask has been set or Control Logic has been disabled 2 Take the drive front cover off and simply slide the module down and out of its cradle Remove cable from module 3 Remove HIM as described in the following sequence If Jog control is required after the HIM is reconnected repeat steps 1 but select Enable J 4 Connect the appropriate cable between the HIM and the Communications Port Adapter 2 3 4 or 5 5 Reverse the above steps to replace the module Apply power reset Bit 1 of the Logic Mask or enable Control Logic When power is first applied to the drive the HIM will cycle through a series of displays These displays will show drive name HIM ID number and communication status Upon completion the Status Display see Figure 3 3 will be shown Figure 3 3 Status Display AB0286A This display shows the current status of the drive i e Stopped Running etc or any faults that may be present refer to Chapter 6 for fault information On a Series A version 3 0 or Series B HIM see back of HIM the Status Display can be replaced by the Process Display or Password Login menu See appropriate sections
280. isecond time delay and bus voltage at least 30 volts greater than the undervoltage setpoint and a stable bus voltage Ridethrough provides extended logic operating time if the power lines drop out while the drive is running If the pre charge function is enabled ridethrough also provides inrush current protection by starting a precharge in case the incoming power returns The bits are defined as follows Bit Description 0 Slew Rate 1 Set to choose a slew rate of 10V second Bit 1 Slew Rate 2 Set to choose a slew rate of 5V second 2 Slew Rate 3 Set to choose a slew rate of 0 5V second 3 Slew Rate 4 Set to choose a slew rate of 0 05V second 4 Slew Rate 5 Set to choose a slew rate of 0 005V second 5 Reserved For additional information about Precharge Ridethrough Selection refer to Chapter 12 Troubleshooting Bit Description 6 Reserved Leave 0 7 Reserved Leave 0 8 Fast Fluxup Set to enable fast flux up 9 Reserved Leave 0 10 Reserved Leave 0 11 Prech Exit Set to force an exit from precharge after the precharge timeout 12 En Comm Bus Set to enable common bus precharge External fault input is used as precharge enable 13 Dis Prech Tm Set to disable bus precharge and undervoltage faults while the drive is disabled 14 Dis Mult Pre Set to disable all precharges after the first power up 15 Dis Ridethru Set to disable all ridethroughs Leave 0 Undervoltage Setpoint Under Volt Stpnt This sets the minimum thre
281. it 12 Not Used Bit 13 Illegal Drive Type Not Configurable Bit 14 Diff Drive Type Not Configurable Bit 15 SCANport error Not configurable 408 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0111 1111 Bit 8 4 20 mA Loss Bit 9 15 Not Used 5 85 Chapter 5 Programming Parameters This Page Intentionally Blank 5 86 General Required Equipment Chapter Troubleshooting Chapter 6 provides information to guide you in troubleshooting The 1336 FORCE Drive employs extensive diagnostics to aid in correcting many malfunctions that may occur in the system This guide is designed to help you interpret the diagnostic response of the Drive when a malfunction occurs Possible corrective measures will be explained to help you get the Drive repaired or functional as quickly as possible for most types of malfunctions 1336 FORCE drive system and the associated machinery should perform troubleshooting or maintenance functions on the Drive Failure to comply may result in personal injury and or equipment damage ATTENTION Only qualified personnel familiar with the During Start up you should have recorded board jumper settings for each board board software version numbers and the drive and motor name plate data in Table 4 A If it was not record it at this time before beginning any troubleshooting sequences For initial troubleshooting a programming device is required
282. ive Comm Receive 1 Data 1 Drive to Drive Communications I O 2 See Page 5 33 23 Drive Comm Receive 1 Data 2 Drive to Drive Communications I O 2 See Page 5 33 24 Drive Comm Receive 2 Data 1 Drive to Drive Communications I O 2 See Page 5 33 25 Drive Comm Receive 2 Data 2 Drive to Drive Communications I O 2 See Page 5 33 26 Process Trim Output Process Trim Velocity Torque 3 See Page 5 33 21 Process Trim Reference Process Trim Velocity Torque 3 See Page 5 34 28 Process Trim Feedback Process Trim Velocity Torque 3 See Page 5 34 29 Process Trim Select Process Trim Velocity Torque 3 See Page 5 34 30 Process Trim Filter Bandwidth Process Trim Velocity Torque 3 See Page 5 34 31 Process Trim Data Process Trim Velocity Torque 3 See Page 5 34 32 Process Trim KI Gain Process Trim Velocity Torque 3 See Page 5 34 33 Process Trim KP Gain Process Trim Velocity Torque 3 See Page 5 35 34 Process Trim Low Limit Process Trim Velocity Torque 3 See Page 5 35 35 Process Trim High Limit Process Trim Velocity Torque 3 See Page 5 35 36 Process Trim Output Gain Process Trim Velocity Torque 3 See Page 5 35 37 Process Trim Testpoint Process Trim Velocity Torque 3 See Page 5 35 38 Process Trim Setpoint Select Process Trim Velocity Torque 3 See Page 5 35 40 Auto Tune Torque Limit Velocity Autotune Velocity Torque 3 See Page 5 35 Torque Autotune Velocity Torque 3 See Page 5 35 41 Auto Tune Speed Velocity Autotune Velocity Torq
283. ive fault or drive warning condition Each configu ration bit matches the bit definitions of parameters 82 84 and 87 When a bit is set to 1 the corresponding condition in the Drive will be reported as a FAULT otherwise it will be reported as a Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bus Ridethrough Timeout Fast Flux Up Current lt 50 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Inverter Overtemp Pending Motor Overtemperature Tripped 1 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums WARNING Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles 5 5 Fast Flux Up Current lt 50 Bit 11 12 13 15 Chapter 5 Programming Parameters 84 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 LIE 85 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 Iit i Till Condition Dynamic Brake Resistor Overtemperature Motor Contactor Failure Inverter Overload Pending IT Drive to Drive Communication Fault Inverter Overload Foldback 86 Sink Bits None 0000 0000 0010 0011 0000 0000 0000 0000 5 43 Chapter 5 Programming Parameters CP War
284. izes are available Each frame size is line dependent and can power a motor between the following voltages 200 240 Vac line dependent 380 480 Vac line dependent 500 600 Vac line dependent If voltage required for your application is not shown contact Allen Bradley for specific application Output Current 2 5 673A Output Power 2 116 KVA 230V 2 190 KVA 380V 2 208 KVA 415V 2 537 460V 2 671 KVA 575V Note For information on factors that could effect the power output of the drive please refer to the Enclosure and Derating Guidelines in the Appendix of this manual Output Horsepower Continuous 7 5 650HP Overload Capability Continuous 100 Fundamental current 1 minute 150 Feedback Devices Chapter 1 Introduction Output Frequency Range 0 250 HZ Output Waveform Sinusoidal PWM Max Short Circuit Current Rating 200 000A rms symmetrical 600 volts when used with specified AC input line fuses as detailed in Table 2 A Ride Through 2 seconds minimum Efficiency 97 596 at rated amps nominal line volts Encoder Incremental dual channel 12 volts 500mA Supply 5 12 Volt 10ma Min Inputs isolated with differential transmitter 102 5 KHz max Quadrature 90 27 25 C Duty Cycle 50 10 Speed Regulation with Encoder Feedback 0 00146 of Top Speed over a 100 1 Speed Range Encoderless Speed Regulation 0 596 of Top Speed
285. ke certain you are entering the correct number of poles for your motor before proceeding with the Autotune sequence 4 12 Chapter 4 Startup AB0282A Fwd Speed Limit 1750 RPM Use the INC DEC keys to scroll through the Limits menu selections When you reach the Limit selection that you wish to change press the SEL key to move the blinking cursor down to the value field Blinking First then Blinking ESC AB0270A Fwd Speed Limit 1750 RPM Once the cursor is in the value field the INC DEC keys can be used to scroll to the selected value After the desired value is reached the ENTER key must be pressed to accept the value This process should be repeated for all of the the parameters in the Limit Menu selection After all of the parameters in the Limit Menu have been set up press the ESC key to take you back to the Startup Menu The HIM Display should now appear as shown below Limits Startup You must now access the Drive Tuning option in the Startup menu Use the INC Dec keys to scroll through the Startup Menu until the Drive Tuning selection is reached The HIM display should now appear as shown below Drive Tune Startup When Drive Tune appears press the ENTER key to access the Drive Tune Menu The Parameters you will need to set up in the Drive Tune sequence are detailed in the list located in the right column For detailed descriptions of these paramete
286. keys will increase or decrease the HIM frequency command An indication of this command will be shown on the visual Speed Indicator The drive will run at this command if the HIM is the selected frequency reference See Freq Select 1 2 Pressing both keys simultaneously stores the current HIM frequency command in HIM memory Cycling power or removing the HIM from the drive will set the frequency command to the value stored in HIM memory If the Analog Speed Potentiometer option has been ordered the Up Down keys and Speed Indicator will be replaced by the pot Speed Indicator only available with digital speed control Illuminates in steps to give an approximate visual indication of the commanded speed If the Analog Speed Potentiometer option has been ordered the Up Down keys and Speed Indicator will be replaced by the pot Chapter 3 Programming Terminals Module Removal HIM Operation 3 4 For handheld operation the module removed located 10 meters 33 feet from the Drive cover are at incoming line potential To avoid an electric shock ATTENTION Some voltages present behind the Drive front hazard use extreme caution when removing replacing the HIM Important Removing a HIM or other SCANport device from a drive while power is applied will cause a Serial Fault unless the Logic Mask parameter has been set to disable this fault or Control Logic Control Status menu has been d
287. ksums did not match indicating the upload was not successful and the HIM file is now corrupted Repeat the Upload Motor Control Board v6 xx The following changes should be noted if a v6 xx Motor Control Board is being used 2 1336 FORCE AC Drive User Manual Page 1 6 The table has been updated to include v6 xx of the Motor Control Board Software Compatibility MOTOR CONTROL BOARD Compatible Not Compatible Not Compatible Not Compatible Not Compatible Compatible Compatible with exception Compatible with exception X Drive Comm 9 19 non linkable X Drive Comm 49 19 non linkable X Drive Comm Tx Rx 14 19 max X Drive Comm Tx Rx 14 19 max value 219 value 219 X Torque Stop Configuration 58 not X Torque Stop Configuration 58 not available available X Service Factor 94 not available X Service Factor 94 not available X Feedback Device Type 150 mode X Feedback Device Type 150 mode 7 not available 7 not available X Calculated Torque 267 not X Calculated Torque 267 not available available X Precharge Timeout 225 min value 0 X Perunit Motor Voltage 186 not available X Transistor Diagnostics 257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 92 min value 150 X Motor Poles 233 max value 12 PLC X Base Motor Speed 229 max value COMM 6000 ADAPTER Not Compatible Compatible with exception Compatible with except
288. l Loop Motor Inertia AT Diag Select Min Flux Level Pos Torque Ref Limit Neg Torque Ref Limit Motor Power Limit Regen Power Limit Pos Motor Cur Limit Neg Motor Cur Limit dI dT Limit Computed Pwr Torque Limit Status Torque Mode Status FILE 4 Do Figure 5 3 PLC Comm Adapter Parameters cont Chapter 5 Programming Parameters Motor Control Counter Scaled Velocity Fdbk Enc Pos Fdbk Lo Enc Pos Fdbk Hi Internal Torque Fdbk Internal Iq Ref Computed Power Perunit Motor Current Perunit Motor Voltage Motor I Magn Fdbk Motor Volt Magn Stator Frequency DC Bus Voltage Filtered Vel Fdbk Inverter Temp Fdbk Limited Motor Flux AT Testpt Data AT Testpt Sel Logic Testpt Data Logic Testpt Sel Fault Testpt Data Fault Testpt Sel Velocity Ref Testpt Lo Velocity Ref Testpt Hi Velocity Ref Testpt Sel Velocity Reg Testpnt Lo Velocity Reg Testpnt Hi Velocity Reg Testpt Sel Vel Fdbk Testpt Lo Vel Fdbk Testpt Hi Vel Fdbk Testpt Sel Torque Ref Tespt Data Torque Ref Testpt Sel Torque Testpt Select Torque Testpt Data Max Dyn Brake Pwr Max Dyn Brake Temp Max Dyn Time Const Pwrup Flt sts Non config sts CP Flt Status VP Flt Status CP Warn Status VP Warn Status CP Flt Select CP Warn Select VP Fit Select VP Warn Select ChA Fit Sel ChA Warn Sel ChB Flt Sel ChB Warn Sel ChA Fit Status ChA Warn Status ChB Fit Status ChB Warn Status SP Fit Select SP Warn Select SP Warn Sts SP Warn Sts
289. l TB3 Connections Input Mode 1 Status Factory Default Not Stop Clear Fault 3 Common Status Status Status Common Status Status Status Common Enable 3 Input Mode 2 6 17 18 Three Wire Control with Single Source Reversing Start Not Stop Clear Fault 3 78 Mode el Common 2 3 4 527 6 1 eI Rev F wd el gt Jog Stop 2nd lst Digital Jog Proc FluxEn Accel PotU i eal Auxiliary 3 ne d n Jog eal Common Speed Speed 2nd lst Digital Local Ramp Reset T Select 31 5 31 Decel PotDn Control Speed Select 2 1 Speed Select 11 1See Speed Select Table on previous page 2 Drive must be stopped to take Local Control Common Control by all other adapters is disabled except Stop 3 These inputs must be present before drive will start 4 Bit 0 of Direction Mask must 21 5 For Common Bus P recharge Enable 6 Bit 12 of Para 59 Logic Options must 0 for Reverse Direction Control 7 Soft Fault Reset Only Must Cycle Power to Drive to Clear Hard Fault Hard Fault See Troubleshooting Section 8 Soft Fault Refer to Para 59 to Configure Start amp Stop Type 9 Digital Pot Value Zeroed When Stop Asserted Enable 3 2 37 Chapter 2 Installation Wiring Start 6 Common gt Ext Fault 3 2 Common l gt Speed Select 1 1 Common Enable 3 Run Forward 4 6
290. lication It is recommended that the coils of DC energized contactors associated with drives be suppressed with a diode or similar device since they can generate severe electrical transients In areas subject to frequent lightning strikes additional surge suppression is advisable Suitable MOVs connected between each line and ground should be used see Figure 2 8 Emission Careful attention must be given to the arrangement of power and ground connections to the drive to avoid interference with nearby sensitive equipment Refer to Motor Cables Appendix A The cable to the motor carries switched voltages and should be routed well away from sensitive equipment The ground conductor of the motor cable should be connected to the drive ground PE terminal directly Connecting this ground conductor to a cabinet ground point or ground bus bar may cause high frequency current to circulate in the ground system of the enclosure The motor end of this ground conductor must be solidly connected to the motor case ground Shielded or armored cable may be used to guard against radiated emissions from the motor cable The shield or armor should be connected to the drive ground terminal PE and the motor ground as outlined above Common mode chokes are recommended at the drive output to reduce the common mode noise An RFI filter can be used and in most situations provides an effective reduction of RFI emissions that may be conducted into the
291. locity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Communications I O 2 Velocity Torque 3 Comm I O 2 Velocity Torque 3 Communications I O 2 Diagnostics 4 Velocity Torque 3 Communications I O 2 Diagnostics 4 Velocity Torque 3 Communications I O 2 Diagnostics 4 Diagnostics 4 Diagnostics 4 Communications I O 2 Diagnostics 4 Communications I O 2 Diagnostics 4 Communications I O 2 Diagnostics 4 Communications I O 2 Diagnostics 4 Communications I O 2 Diagnostics 4 Param Descrpt See Page 5 37 See Page 5 37 See Page 5 38 See Page 5 38 See Page 5 38 See Page 5 38 See Page 5 38 See Page 5 38 See Page 5 38 See Page 5 38 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 39 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 40 See Page 5 41 See Page 5 41 See Page 5 41 See Page 5 41
292. ltage 186 non functional X Transistor Diagnostics 257 bit 12 non functional Compatible with exception X Drive Comm 49 19 non linkable X Drive Comm Tx Rx 14 19 max value 219 X Torque Stop Configuration 58 not available X Service Factor 494 not available X Feedback Device Type 150 mode 7 not available X Calculated Torque 267 not available X Precharge Timeout 225 min value 0 X Perunit Motor Voltage 186 not available X Transistor Diagnostics 257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 492 min value 150 X Motor Poles 233 max value 12 X Base Motor Speed 229 max value 6000 Compatible with exception X V3 04 VP must be used with V3 03 AP and V3 03 Language or higher for B800 H Frame drive support X Perunit Motor Current 185 not available X Perunit Motor Current 186 not available X Transistor Diagnostics 257 bit 12 not available X Iq Rate Limit 181 max value 3096 X Motor Overload Select 492 min value 150 X Motor Poles 233 max value 12 X Base Motor Speed 4229 max value 6000 Compatible CP Current Processor DP Domino Processor on PLC Comm SAL Std Adapter Language Module SA Std Adapter Processor MCC Main Control Board Language Module APL PLC Comm Language Module AP Application Processor on PLC Comm STADARD ADAPTER BOARD Not Compatible Not Compatible Not Compatible Chapter 1 Intro
293. lue 30 X Motor Overload Select 92 min value 150 X Motor Poles 233 max value 12 x Base Motor Speed 229 max valu 6000 Compatible 1 7 Chapter 1 Introduction This Page Intentionally Blank Chapter Objectives Mounting Installation Wiring Chapter 2 provides the information needed to properly mount and wire the 1336 FORCE Drive Since most start up difficulties are the result of incorrect wiring every precaution must be taken to assure that the wiring is completed as instructed items must be read and understood before the actual installation begins IMPORTANT The end user is responsible for completing the installation wiring and grounding of the 1336 FORCE drive and for complying with all National and Local Electrical Codes proper installation The National Electrical Code and any other governing regional or local code will overrule this information The Allen Bradley Company cannot assume responsibility for the compliance or the noncompliance to any code national local or otherwise for the proper installation of this drive or associated equipment A hazard of personal injury and or equipment damage exists if codes are ignored during installation ATTENTION The following information is merely a guide for When the 1336 FORCE drive is delivered in a NEMA Type 1 enclosure it must be mounted so that there is sufficient space at the top sides and front of the cabinet to allow for heat dissip
294. main supply lines If the installation combines a drive with sensitive devices or circuits it is recommended that the lowest possible drive PWM frequency be programmed 2 13 Chapter 2 Installation Wiring RFI Filtering 2 14 1336 drives can be installed with an RFI filter which controls radio frequency conducted emissions into the main supply lines and ground wiring If the cabling and installation recommendation precautions described in this manual are adhered to it is unlikely that interference problems will occur when the drive is used with conventional industrial electronic circuits and systems Also refer to Motor Cables in the Appendix of this manual However a filter is recommended if there is a likelihood of sensitive devices or circuits being installed on the same AC supply or if the motor cable exceeds 50 meters 164 feet Beyond this length capacitance to ground will increase the supply emissions Where it is essential that very low emission levels must be achieved or if conformity with standards is required EN 55011 VDE0875 BSA FCC the optional RFI filter should be used Important The conformity of the drive and filter to any standard does not assure that the entire installation will conform Many other factors can influence the total installation and only direct measurements can verify total conformity RFI Filter Installation The RFI filter must be connected between the incoming
295. meter Limit Status Word 2 Velocity Reference Math Overflow Status Velocity Feedback Math Overflow Status Velocity Regulator Math Overflow Status Torque Reference Math Overflow Status Process Trim Math Overflow Status 18 Acceleration Error 19 Illegal State Edge Samples 20 Illegal State Level 21 Encoder Loss Edge Samples Velocity Reference 1 LOW Fraction Parameter Number Vel Ref 1 Low Parameter Type This word supplies the fractional part of the Display Units external velocity reference 1 when Drive Units external velocity control has been selected Factory Default in Logic Command P52 Velocity Reference 1 HI Whole 32 bit Velocity Ref 1 Hi This word supplies the whole number part of external velocity reference 1 when the external velocity control has been selected in Logic Command P52 Velocity Scale Factor 1 Vel Scale Fctr 1 This parameter sets the gain multiplier that will be used to scale velocity reference 1 5 46 Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 98 Source X None 0 0 65535 99 Sink x None 0 0 20 Select Value Velocity Ref Access Point 22 Encoder Loss Level 23 Iq Reference in per unit Inverter Units 24 Motor Overload Integrator Output Level IT 25 Motor Temperature D
296. mined by the outcome of the min max selector Bits are defined as Bit 0 Zero Torque lq 0 Bit 1 Speed Mode Bit 2 Torque Mode Bit 3 Minimum Speed Torque Bit 4 Maximum Speed Torque Bit 5 Sum Speed Torque Bit 6 to Bit 15 Reserved Leave Zero Perunit Motor Current Motor Cur Fdbk Displays the perunit value of motor current as determined from the LEM current sen Sors This data is scaled to read 1 0 pu at rated motor current This is a version of parameter 264 that has been scaled to be compatible with analog outputs This data is averaged and updated on a 50 millisec ond basis Chapter 5 Programming Parameters Parameter Number 181 Parameter Type Sink Display Units x x Drive Units 4096 100 0 Iq per 2msec Factory Default 20 0 Minimum Value 0 0 Maximum Value 30 0 Parameter Number 182 Parameter Type Source Display Units x x Drive Units 4096 100 0 power Factory Default 0 0 Minimum Value 800 0 Maximum Value 800 0 Parameter Number 183 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 Maximum Value Enums 1111 1111 1111 1111 9 Negative NTC Inverter Protection Foldback 10 Negative IT Inverter Protection Foldback 11 Negative Maximum Inverter Current 12 Negative Torque Limit 13 Negative Torque Power Limit 14 Negative Autotune Torque Limit 15 Reser
297. mited Iq Reference 31 Current Processor Regulation Active Flag 15 16 Filtered Reference 5 55 Chapter 5 Programming Parameters Minimum Flux Level Min Flux Level This parameter sets the smallest level of flux that will be used to convert a torque to a current reference Setting the parameter to 4096 will prevent flux reduction and by pass the torque to current conversion Pos Torque Reference Limit Pos Mtr Tor Lmt This parameter provides a user settable torque limit for positive torque reference values Positive motor torque reference will not be allowed to exceed this value Neg Torque Reference Limit Neg Mtr Tor Lmt This parameter provides a user settable torque limit for negative torque reference values Negative motor torque reference will not be allowed to exceed this value Motoring Power Limit Motoring Power Lmt This parameter provides for a user entry of the maximum power level that will be sup plied to the motor from the DC bus The motoring power limit is used in a calcula tion that results in an internal torque limit Regen Power Limit Regen Power Lmt This parameter provides a user entry for the maximum power level that will be transferred from the motor to the DC bus Positive Motor Current Reference Limit Pos Mtr Cur Lmt This parameter specifies the largest allow able positive motor Iq axis current that will be commanded Bit 0 in Parm 183 indi cates when this param
298. mp AC Motor Contactor Failure Inverter Overload Pending IT Drive to Drive Fault Inverter Overload Foldback IT Absolute Overspeed Threshold Absolute Overspd This parameter indicates the incremental speed above Forward Speed Limit or be low Reverse Speed Limit that is allowable before an Absolute Overspeed Fault is indicated Stall Delay Stall Delay This parameter specifies the amount of time that the Drive must be in current limit and at zero speed before a Stall Fault will be indicated Motor Overload Limit Mtr Overload Lim This parameter specifies the level of Iq current that will cause a Motor Overload Trip after 60 seconds Service Factor Service Factor This parameter specifies the minimum lev el of Iq current that will cause a motor over load IIT trip under continuous operation Current levels below this value will never result in an overload trip Example a service factor of 1 15 implies continuous operation up to 11596 of name plate motor current Overload Speed 1 Mtr Overld Spd 1 If the absolute value of motor speed is at or below the speed specified in this parame ter the motor overload will use the Min Overload Lmt parameter 97 as its mini mum current trip level Motor Overload Speed 2 Mtr Overld Spd 2 If the absolute value of motor speed is at or below the speed specified in this parame ter the motor overload will use 10096 as its minimum current trip level
299. n TB 3 Terminal Designations 2 34 Torque Block Tuning Torque Block Update Troubleshooting 6 1 U U nbalanced Distribution Systems N ndervoltage Setpoint 6 13 ngrounded Distribution System ni directional Operation V Velocity Loop Autotune Velocity Processor Faults W Wire Types 2 20 c This Page Intentionally Blank 1 4 9 Rockwell Automation Allen Bradley a Rockwell Automation Business has been helping its customers improve productivity and quality for more than 90 years We design manufacture and support a broad Allen Br adley range of automation products worldwide They include logic processors power and motion control devices operator interfaces sensors and a variety of software Rockwell is one of the world s leading technology companies Worldwide representation Argentina Australia Austria Bahrain Belgium Brazil Bulgaria Canada Chile China Colombia Costa Rica Croatia Cyprus Czech Republic Denmark Ecuador Egypt El Salvador Finland France Germany Greece Guatemala Honduras Hong Kong Hungary Iceland India Indonesia Ireland Israel Italy Jamaica Japan Jordan Korea Kuwait e Lebanon Malaysia Mexico Netherlands New Zealand Norway Pakistan Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia CIS Saudi Arabia Singapore Slovakia Slovenia
300. n Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune Base Torque Voltage Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select Velocity Reference 1 HI Velocity Reference 1 LOW Velocity Reference 2 HI Velocity Reference 2 LOW Velocity Reference Output HI Velocity Reference Output LOW Velocity Regulator Output Velocity Regulator Testpoint Data HI Velocity Regulator Testpoint Data LOW Velocity Regulator Testpoint Select Velocity Regulator Output Velocity Regulator Testpoint Data HI Velocity Regulator Testpoint Data LOW Velocity Regulator Testpoint Select Velocity Scale Factor 1 Velocity Scale Factor 2 Velocity Trim HI Velocity Trim LOW VP Configurable Fault Status VP Configurable Warning Status VP Damping Factor VP Desired Bandwidth VP Fault Configuration Select VP Warning Configuration Select Param No 340 387 388 155 274 276 278 280 284 286 273 275 277 279 281 283 298 183 184 172 173 257 348 224 245 241 138 146 144 143 145 109 108 110 101 100 104 103 133 132 134 136 135 137 134 136 135 137 102 105 107 106 83 85 45 43 88 89 Page Ref XO GO NO Chapter 5 Programming Parameters
301. n calculated loads and enclosure specifications Refer to Chapter 2 for drive mounting requirements Typical Bracket for Stability 1336 FORCE Typical Mounting Frame G 2 1 Input power source to filter and output power filter to drive and drive to motor wiring must be in conduit or have shielding armor with equivalent attenuation Shielding armor must be bonded to the metal bottom plate S ee requirements 6 amp 7 on page E 1 2 Referto the Filter Selection table on page B 2 for frame references and corresponding catalog numbers B 6 Appendix B CE Conformity Required Knockout Assignments Frames B and Control Filter Input Motor Output SCANport 28 6 34 9 1 13 1 38 3 Plcs 22 2 0 88 1 Plc Frame D Frame E SCANport Control 1 0 i Filter Input Motor Output Filter Input Motor Output Side of Drive Control 1 0 SCANport 62 7 76 2 2 47 3 00 2 Plcs Appendix B CE Conformity This Page Intentionally Blank Appendix User Parameter Values Use the tables on the following pages to record your particular parameter value setting for the current application No Name Default Value No Name Default Value 1 Drive Software Ver 1 01 47 Autotune TP Data 0000 0000 0000 0000 5
302. nd will not appear in the menu To access these modes perform the following steps Press the Increment or Decrement key until Password is displayed Press Enter Login will be displayed Press Enter Enter Password will be displayed Press the Increment or Decrement key until your correct password is displayed With a Series version 3 0 or Series B HIM the SELect key will move the cursor Press Enter The Program and EEProm modes will now be accessible To prevent future access to program changes logout as described in step 1 Choose Mode Password Password Login Enter Password lt Enter Password 223 Choose Mode Password Logout from the Drive To prevent unauthorized changes to parameters Logout must be performed as described below Press the Increment or Decrement key until Password is displayed Press Enter Press the Increment or Decrement key until Logout is displayed Press Enter to log out of the Password mode Choose Mode Password Password Login Password Logout Choose Mode Password N Chapter 3 Programming Terminals Startup Mode An automated Quick Startup sequence is available on the HIM to lead you through all data entry configuration and diagnostic tests that must be performed when starting up the 1336 FORCE drive From the Status Display press Enter or ae any key Cho
303. ng Typical Value 0 15 to 0 7 Use 1 0 to disable Feedback Filter Select Fdbk Filt Sel 0 No Filter 1 light 35 49 radian feedback filter 2 heavy 20 40 radian feedback filter 3 Single pole Lead Lag feedback filter 4 Notch Kn Feedback Filter Gain Fdbk Filt Gain This is the Kn term of the single pole lead lag feedback filter Kn greater than 1 0 will produce a lead filter and less than 1 0 a lag filter Kn equal to 1 0 will disable the feedback filter Wn Feedback Filter Bandwidth Fdbk Filt BW This parameter establishes the breakpoint radian frequency for the velocity feedback lead lag filter Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 148 Source None 0 0 65535 149 Source x None 0 0 65535 150 Sink None Encoder 0 7 151 Sink 55995 1024 1 000 gain 1 000 0 043 1 000 152 Sink x None 0 0 4 153 Sink BER NOS 256 1 00 gain 1 00 5 00 5 00 154 Sink x Radian Seconds None 100 Radian Seconds 1 Radian
304. ning None Configuration Select CP Warn Select This word parameter determines conditions detected by the Current Processor CP that will be reported as either a drive fault or drive warning condition Each configu ration bit matches the bit definition of Pa rameter 82 84 and 86 When a bit is set to 1 the corresponding condition in the Drive will be reported as a FAULT other wise the condition is reported as a WARNING Bit Condition Bus Precharge Timeout Bus Drop 150 volts Bus Undervoltage Bus Drop Cycles ON VP Fault Warning Configuration Select VP Fault Select This word parameter determines conditions detected by the Velocity Processor VP that will be reported as either a drive FAULT or drive WARNING condition Each configuration bit matches the bit definitions of Parameters 83 85 and 89 When a bit is set to 1 the corresponding condition in the Drive will be reported as a FAULT otherwise the condition is reported as a WARNING Bit Condition 0 Encoder Feedback Loss Motor Overload Trip 12 Motor Stalled External Fault RMS Fault Reserved Leave Zero OO N Warning None Configuration Select VP Warn Select This parameter determines conditions de tected by the Velocity Processor VP that will be reported as either a drive FAULT or WARNING or not reported ignored Each configuration bit matches the bit definitions of Parameters 83 85 and 88 When
305. nt Data 1 You can use this to check the actual bus voltage that causes an undervoltage condition Checking the Status of the Precharge To view the precharge status enter a value of 12 into Testpoint Select 1 and then monitor 7est Data 1 for the precharge status The precharge status is bit encoded as follows kn When set indicates that The precharge function has been completed and the precharge 0 device should be on The drive can be enabled only after this bit 1s set The drive is in ridethrough Precharge must be completed and 1 the bus must return to within 75 volts of the bus voltage tracker before normal drive operation can resume 2 A precharge initiated condition is in ridethrough A precharge has been requested due to an external fault input Common Bus Configuration only The converter is ready for precharge and the controller may 4 start its precharge function The external precharge board is ok if present 6 13 Chapter 6 Troubleshooting 6 14 The measured bus voltage is not stable there is a variation of greater than 25 volts and the precharge cannot finish 6 The DC bus voltage is less than line undervolts The precharge function cannot complete because the measured 7 bus voltage is less than 75 volts below the bus voltage tracker This only applies to precharging after a ridethrough 8 The precharge device has been commanded ON 9 Not used
306. ntered into memory After a parameter has been entered into memory the top line of the display will automatically become active allowing another parameter or group to be chosen Chapter 3 Programming Terminals Key Descriptions continued AB0285A 0287 JOG 0275 0281 Start By default this key will initiate drive operation if hardware is enabled and no other control devices are sending a Stop command To change this function the Command Mask and Typ 1 Logic Axis parameters must be reconfigured Refer to Chapter 5 Stop When pressed a stop sequence will be initiated at the System Module causing a controlled stop to be initiated in each axis as determined by Stop Mode Stop Time Lim and Stopping Cur Jog By default when this key is pressed the motor will jog at a speed determined by the Jog Vel parameter for any axis that is enabled default will be 2096 of motor rated speed Releasing the key will stop the function Change Direction J og Digital Velocity Reference Modes Only Pressing this key will cause the motor to change direction The appropriate Direction Indicator will light to indicate direction Direction LEDs Indicators These LEDs will illuminate to indicate the direction of motor aosa rotation for Axis 0 by default AB0295A AB0267A Note Pot Range 0 32767 AB0283A Up Down Arrows only available with digital speed control Pressing these
307. o base speed ramp rate I O Deceleration Rate 1 Decel Rate 1 This parameter determines the base speed to 0 rpm ramp rate I O Deceleration Rate 2 Decel Rate 2 This parameter determines the base speed to 0 rpm ramp rate Mop Increment Mop Increment This parameter determines the rate of increase or decrease to the MOP value per time MOP Value Mop Value This parameter displays the MOP value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 388 Sink None 389 Sink 10 1 10 0 0 6553 5 390 Sink X X sec 10 0 0 0 6553 5 sec 391 Sink X X sec Ii sec 10 0 sec 0 0 sec 6553
308. o at least 5 Decrease the acceleration time faster acceleration Change Param 150 to mode 7 Problem Motor oscillates after it is up to speed Possible Solutions Decrease the bandwidth if the process will allow If this doesn t help set Param 142 to 1500 If unstable in field weakening change Param 174 to 10096 Problem Inverter trips on absolute overspeed during starting Increase the bandwidth If the overspeed occurs during a reversal increase the deceleration time slower deceleration Sensorless Fine Tuning Procedures Improving Speed Regulation Typically the speed regulation as a function of load in sensorless mode can be improved by adjusting Param 246 Base Slip Frequency after the drive has been completely auto tuned This parameter is originally calculated during the torque calculation section of auto tune and is dependent on the nameplate speed of the motor Ideally this adjustment is made while the motor is fully loaded and at its normal operating temperature Adjust Param 246 until the actual speed as measured by an independent source i e hand tach is equal to the desired speed This should result in a minimum steady state speed deviation as load changes The proper slip for good speed regulation is also motor temperature dependent thus if the motor operating temperature normally varies between cold and hot a compromise slip must be selected Minimizing Acceleration Time from 0 Speed
309. ocity Loop Kp Velocity Loop This parameter controls the proportional error gain of the velocity regulator Gain has a resolution of 1 8 therefore a gain of 1 0 is converted to internal drive units as a value of 8 KF Velocity Loop Kf Velocity Loop This parameter controls the feed forward gain of the velocity regulator Setting the Kf gain to less than one reduces velocity feedback overshoot in response to a step change in velocity reference KF Error Filter Bandwidth Error Filter BW This parameter sets the bandwidths of two cascaded low pass filters in the Kf error path of the Velocity PI Regulator Band width is entered in units of radians per second Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Chapter 5 Programming Parameters 137 Sink None 15 Logic Control Word LOW Integrator Enable Flag HIGH 138 Source rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed rpm 8 x Base Speed
310. ocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Startup 1 Velocity Torque 3 Velocity Torque 3 Param Descrpt See Page 5 43 See Page 5 43 See Page 5 43 See Page 5 43 See Page 5 43 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 44 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 45 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 46 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 47 See Page 5 48 See Page 5 48 See Page 5 48 See Page 5 48 See Page 5 48 See Page 5 48 See Page 5 48 See Page 5 49 See Page 5 49 See Page 5 49 See Page 5 49 See Page 5 49 See Page 5 49 See Page 5 49 See Page 5 49 Chapter 5 Programming Parameters Table 5 A 1336T Numerical Parameter Table Cont Param No Parameter Name Element Group 130 131 132 133 134 135 136 137
311. ock Location added 2 34 New Frame D ControlNet connection info added 2 43 New ControlNet Parameter Table added 5 24 New Parameter 71 updated 5 35 Clarification Parameter 92 updated 5 39 Clarification Parameter 185 added 5 51 New Parameter 186 added 5 52 New Parameter 223 updated 5 53 Clarification Parameter 224 updated 5 53 Clarification Parameter 229 updated 5 54 Clarification Parameter 233 updated 5 54 Clarification Parameter 257 updated 5 57 Clarification Parameter 258 updated 5 57 Clarification Parameter 259 updated 5 57 Clarification Parameter 294 updated 5 62 Clarification Parameter 385 updated 5 76 Clarification Understanding Precharge and Ridethru Faults 6 9 New Understanding the Bus Voltage Tracker 6 15 New Power structure and transistor Diag tests 6 20 New Sequential Torque Block Tuning 6 24 New H Frame Motor cable restrictions added A 4 New B C 700 amp B C 800 Derating Guidelines added 15 New 700 800 HP Schematic added A 25 New Software Block Diagram updated 32 Clarification Torque Block Firmware Diagram updated A 45 Clarification Lithium Battery Disposal information added 54 New CE mechanical configuration diagram added 5 B 6 B 7 New Spare Part Appendix added D 1 New This Page Intentionally Blank Introduction Installation Wiring Table of Contents Chapter 1 Manual Objectives csse esee ware Who Should Use This Manual Terminology re eine gic
312. of Inverter Status parameter 54 and or the Inv En LED on the main control board 6 27 Chapter 6 Troubleshooting 6 28 What Happens If Multiple Opens Occur If multiple opens occur several additional faults may be indicated For example if transistor U upper and U lower are open the test also indicates that current feedback U phase is open Because current cannot run through phase U the current feedback device cannot be checked and therefore is listed as a malfunction The type of installation often determines which parts of the transistor diagnostics may or may not work As a result treat the software only as an aid for testing the power structure What Do Do If Get a Software Fault If bit 0 of Inverter Diagnostics Result 1 P 258 is set to 1 an improper sequence of events has occurred Either the software cannot distinguish what is occurring or there is noise in the system If a fault occurs repeatedly the problem may be a fault that the software cannot directly identify for example a voltage breakdown in a snubber If this is the case you need to determine through external measurements if the problem is real or if there is a noise problem In cases where a specific test continually results in nuisance faults use Transistor Diagnostics Configuration parameter 257 to disable that test Running the Flux Test Chapter 6 Troubleshooting Rated motor flux is required in order to produce rated torque
313. omm Receive 2 Address Drive Comm Task Interval Drive Comm Transmit Address 5 3 Drive Comm Transmit Data 1 5 3 Drive Comm Transmit Data 2 5 3 Drive Comm Transmit Indirect 1 5 33 Drive Comm Transmit Indirect 2 5 33 Drive Power Structure Type 5 33 Drive Software Version 5 50 Droop Percent 131 5 50 Encoder Position Feedback LOW 148 5 50 Encoder Position Feedback HI 149 5 50 Encoder PPR 235 5 38 External IQ Reference 161 5 54 External Torque Reference 1 162 5 54 External Torque Reference 2 164 5 54 External Torque Step 165 5 54 Fault Status 407 5 42 Fault Select 405 5 42 Fault Testpoint Data 98 5 46 Fault Testpoint Select 99 5 46 Feedback Device Type 150 5 53 Feedback Filter Select 152 5 53 Feedback Tracker Gain 151 5 53 Filtered Vel Fdbk 269 5 65 Flux Owner 347 5 75 Forward Motor Speed Limit 128 5 49 Frequency Tracker Filter 291 5 68 Frequency Trim Filter 293 5 68 Id OFFSET 261 5 64 Id Tune Base Flux Current 238 5 61 Input Mode 385 5 82 Input Status 386 5 82 Internal Torque Reference 167 5 55 Internal Iq Reference 168 5 55 Inverter Carrier Frequency 222 5 58 Iq Offset 260 5 64 Iq Tune Base Torque Current 240 5 61 Jog Mask 333 5 73 Jog 1 Owner 343 5 75 Jog 2 Owner 344 5 75 Jog Speed 1 117 5 48 Jog Speed 2 118 5 48 Kf Velocity Loop 141 5 51 Kff Freq Regulator 289 5 68 Ki Flux Regulator 252 5 62 Ki Frequency Regulator 287 5 67 Ki Slip Regulator 250 5 62 Ki Velocity Loop 139 5 51 Kn Feedback Filter Gain 153 5 53 KP
314. on the following pages for more information From this display pressing any key will cause Choose Mode to be displayed Pressing the Increment or Decrement keys will allow different modes to be selected as described on the pages that follow Chapter 3 Programming Terminals Display When selected the Display mode allows any of the parameters to be viewed However parameter modifications are not allowed Program Program mode provides access to the complete listing of parameters available for programming Process The Process mode displays two user selected parameters with text and scaling programmed by the user EEPROM This mode allows all parameters to be reset to the factory default settings In addition a Series B HIM will allow parameter upload download between the HIM and drive BRAM Battery Backup RAM jumper must be in Enable position in order to change parameters Search Series A version 3 0 or Series B HIM Only This mode will search for parameters that are not at their default values Control Status Series A version 3 0 or Series B HIM Only Permits the drive logic mask to be disabled enabled allowing HIM removal while drive power is applied Disabling the logic mask with a Series A HIM below version 3 0 can be accomplished with Logic Mask as explained on page 3 4 This menu also provides access to a fault queue which will list the last four faults that have occurred Trip displayed with a f
315. onnection using the required Allen Bradley Isolation Board Recommended cable is Drive to Drive cable 1485 C PI C which is available in 50 150 300 and 600 meter lengths Chapter 2 Installation Wiring Figure 2 14 Drive to Drive Hardware Connection Isolator Board 02 24V 1A PN 1336T D2DIS Output Input V CL Shd CH V V CL ShdCH V 8 18 VDC Power Supply Customer Supplied DRIVE 2 2 27 Chapter 2 Installation Wiring Standard Adapter Board When installing and wiring the Standard Adapter board you need to deal with the following issues e Control and Signal Wiring e Interface Board Installation and Removal Control amp Signal Wiring If your 1336 FORCE Drive is equipped with a Standard Adapter Board terminal blocks TB5 TB6 and TB7 located at the bottom center of the board Figure 2 15 are used for control and signal wiring Drive Permissives The Standard Adapter Board is connected to the Main Control Board through J1 the Main Control Interface The maximum and minimum wire size accepted by TB5 TB6 and TB7 is 3 3 and 0 06 mm 12 and 30 AWG Maximum torque for these terminal blocks is 0 79 7 1b in Recommended control signal wire is Belden 8760 or equiv 0 750 mm 18 AWG Twisted Pair Shielded Belden 8770 or equiv 0 750 mm 18 AWG 3 Conductor Shielded Belden 9460 or equiv 0 750 mm 18 AWG Twisted Pair Shielded
316. onnections 2 44 Faults amp Warnings Velocity Processor 6 1 Feedback Devices 1 3 Flux Test Frame Dimensions Firmware Function Overview I 1 G G ate Driver Board Connections 2 raphic Programming Terminal 20 Graphic Programming Terminal Operation 322 Graphic Programming Terminal Keypad Description 3 21 Grounding Discrete Control and Signal Wiring 2 13 pu a Encoder Connections 2 15 Grounding Motor Cables 2 13 Grounding Sensitive Circuits W H Hardware Testpoints HIM Control Panel HIM Key Descriptions HIM Module Removal HIM Operation 3 4 HIM Programming Steps 3 Input Devices 2 10 Input Fusing 2 1 Input Power Conditioning 2 11 I O Communication Configuration I O Ratings Immunity 2 13 Interface Board Installation 2 24 L Link Option 3 8 Lug Selection Lug Kits LA LAE Option L5 LS5E Option L6 L6E Option 1 2 Master Slave Drive to Drive Communication Motor Cables amp 1 Mounting Clearances 2 Mounting 2 Multiple Opens 6 24 Nuisance Faults 0 Options 1 3 Option L4 L4E Wiring Option 1 5 1 5 Wiring Option L6 L6E Wiring Output Relay Configuration 4 27 Open Transistor Faults P Password Mode 3 14 Parameter Descriptions Parameter Table PE Safety Ground Performance Specs PLC Comm Adapter Board Control Scheme 2 4 PLC Comm Adapter Board Parameters Phase Rotation Test PLC Comm Ada
317. ort I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport I O SCANport Masks SCANport Masks SCANport Masks SCANport Masks SCANport Masks SCANport Masks SCANport Masks SCANport Masks SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners SCANport Owners Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Analog Input Chapier 5 Programming Parameters File File No Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Diagnostics 4 Diagnostics 4 Diagnostics 4 Diagnostics 4 Startup 1 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications I O 2 Communications
318. ose Mode will be Display shown pur Press the Decrement key arsa Esa until Startup is displayed Press Enter Startup The Setup Motor Nameplate display M 6 will appear If you DO need to ness c NE enter motor nameplate data toggle to the No N selection and press Enter A display asking you to run the Motor Motor Connect i Connect Diagnostics will appear AM If you have not previously entered the Motor Nameplate data toggle to the Yes Y selection in the Setup Motor Nameplate display and press Enter 21 1 first motor informational screen will appear Use the Select key to 8045 access the second line and make changes with the Increment and Decre ment keys In subsequent displays you will be asked to provide the following motor information Base Motor Current Base Motor Volts Base Motor Frequency Motor Poles Base Motor Speed Feedback Device Type NOTE For more information on the complete Quick Startup sequence refer to Chapter 4 tests and entries are covered in greater detail in the Startup chapter Figure 3 4 HIM Programming Steps Chapter 3 Programming Terminals Power Up and Status Display BB 8 Choose Mode _ Operator Level Mode Level Display Read Only Program 4 Process gt Read Write EJ t Proc
319. osure Use the information in Table A 3 in combination with the enclosure manufacturer s guidelines for sizing Appendix Table A 3 Enclosure Requirements Base Derate Derate HeatDissipation Heatsink Total Catalog No Amps Curve23 Drive Watts 234 Watts Watts A001 45 None 17 32 49 A003 12 None 33 72 105 007 27 None 156 486 642 A010 34 Fig 1 200 721 921 A015 48 Fig 2 205 819 1024 200 A020 65 Fig 3 210 933 1143 A025 78 Fig 4 215 1110 1325 240V A030 80 4 220 1110 1330 Drives A040 120 Fig 5 361 1708 2069 A050 149 Fig 6 426 1944 2370 A060 180 Fig 7 522 2664 3186 A075 240 Fig 8 606 2769 3375 A100 291 Fig 9 755 3700 4455 125 327 Fig 16 902 4100 5002 001 2 5 None 15 20 35 B003 6 None 23 54 71 B007 14 None 91 210 361 010 21 103 394 497 8015 27 Fig 10 117 486 603 B020 34 Fig 1 140 628 168 8025 42 Fig 11 141 120 861 B030 48 Fig 2 141 820 961 BX040 59 Fig 12 175 933 1108 B040 65 Fig 3 175 933 1108 8050 78 Fig 4 193 1110 1303 BX060 78 Fig 4 193 1110 1303 B060 97 4 361 1708 2069 380 8075 120 Fig 13 361 1708 2069 460 V B100 150 Fig 14 426 1944 2370 Drives B125 180 Fig 15 522 2664 3186 BX150 180 Fig 15 606 2769 3375 B150 240 Fig 8 606 2769 3375 B200 291 Fig 9 155 3700 4455 8250 327 Fig 16 902 4100 5002 B300 406 None 1005 4805 5810 BP300 406 Fig 33 619 5342 5961 8350 459 None 1055 5455 6510 1 BP350 459 Fig 34 133 6039 6772 B
320. ot available X Transistor Diagnostics 257 bit 12 not available X Iq Rate Limit 181 max value 30 X Motor Overload Select 92 min value 150 x Motor Poles 233 max value 12 x Base Motor Speed 229 max val 6000 Compatible with exception x V5 xx VP must be used with V4 02 AP and V4 02 Language or higher for B800 H Frame drive support x Perunit Motor Current 185 not available X Perunit Motor Voltage 186 not available X Transistor Diagnostics 257 bit 12 not available X 19 Rate Limit 181 max value 30 X Motor Overload Select 492 min value 150 X Motor Poles 233 max value 12 X Base Motor Speed 229 max valu 6000 v5 xx Compatible v6 xx Drive to drive communications only compatible at 125k baud Not Compatible at 250k or 500k 4 1336 FORCE AC Drive User Manual Pages 3 20 through 3 24 GPT information does not apply Page 5 31 Important note added to Drive Link Baud Rate description Drive Link Baud Rate Parameter Number 10 D2D Baud Rate Parameter Type Sink This word parameter specifies the baud Display Units Kbaud rate used on the drive to drive link CAN Drive Units None communication interface as follows Factory Default 0 125K baud Minimum Value 0 01H 250K baud 02H 500K baud Important If a v6 xx drive is added to the drive link that has v5 xx or less it will only operate at 125k baud If all drives on the drive link are v6 xx it can operate at 250k and 5
321. ot result in precharge This may 14 destroy the drive if power returns to the system This should be used where you control the input impedance or with a front end converter that is current limited Disables the ridethrough and precharge functions If the power lines drop out the drive attempts to continue operation as long 15 as any power is available This may destroy the drive if power returns to the system This should be used only where you control the system s incoming power 6 12 Chapter 6 Troubleshooting Using Undervoltage Setpoint You can use Undervoltage Setpoint parameter 224 to set the level of bus voltage that must be present to complete precharge and a level where ridethrough can be initiated If configured as a fault warning Undervoltage Setpoint sets the bus voltage level that faults warns the drive The bus voltage level that is used is determined as follows Undervoltage Setpoint Rated Inverter Input Voltage parameter 221 sqrt 2 bus voltage level for ridethroughs faults or warnings Using Testpoint Select 1 and Testpoint Data 1 to View Software Testpoints Additional information concerning precharges and ridethroughs is available through Testpoint Select 1 parameter 273 and Testpoint Data parameter 274 Viewing the Calculated Undervoltage Value of Bus Voltage To view the value of the calculated undervoltage 1 Enter a value of 24 into Testpoint Select 1 2 Monitor Testpoi
322. otor Thermo Drive Enable RIO Channel A RIO Channel B X Fit N Stop M Therm Drive En Chapter 6 Troubleshooting The Hardware Testpoints on the PLC Comm Adapter Board are illustrated in Figure 6 12 The accompanying table details the expected output from each testpoint Figure 6 12 PLC Comm Board Test Points LANGUAGE MODULE EN DOMINO ADAPTER 120V 24V Jii 120V 24V Fuse 10 1 4 120V AV eeeoe J9 120V AV 3 1 20 1 TP2 TP3 4 TP5 m e e e DGND 45V 5V AGND 15 WE Main Control v2 us BRAM Interface Enable DIS ON CHAHigh ON CHALow ON CHB High ON CHB Low Communication Modes p DP Status D6 p Dio D12 013 014 015 Status CHB Status TP9 TP10 TP11 TP12 TP13 TP14 e e ees 7 Port 1 15 Port 2 J7 TP20 TP21TP22 TP23 TP15 TP16 TP17 TP18 e o TP24 TP25 a 1 TB21 19 10V Ref 10V Ref Q 2 Q Q Q Q 2 Drive Permissives DAC Inputs ADC Inputs Ref Testpoint Application Testpoint Application 1 DGND 15 AIN 1 TP2 16 AIN 2 TP3 45V TP17 AIN 3 4 AGND TP18 AIN 4 TP5 15V TP19 12V TP9 Not Used TP20 AOUT 1 TP10 Not Used TP21 AOUT 2 TP11 IS0 412 VDC TP22 AOUT 3 TP12 ISO 5V TP23 AOUT 4
323. otor now turning in the positve direction the sign of the velocity feedback P146 should be positive If it is negative reverse the A and A NOT A encoder leads or the B and B Not B leads Bit 0 Bit 1 ATTENTION During this portion of the Autotune Sequence reverse motor rotation is a possiblity If your process equipment could be damaged by rotation in the wrong direction you must uncouple the motor from the load before running the Phase Rotation test Note Step 3 is skipped with a sensorless drive 4 14 Chapter 4 Startup SEL AB0282A Et m r AB0282A ES Blinking First then Blinking _ L SEL AB0282A E After the Phase Rotation test has been performed and the motor rotates in the positive direction with positive en coder feedback you are ready to tune both the Torq Loop and Velocity Loop of the Drive Tuning both the Torq amp Velocity loops requires setting bits 2 thru 8 to a value of 1 and then pressing ENTER followed by pressing the START key on the HIM The HIM display should now appear as shown below Autotune Diag Sel 00000001 11111100 Performing both the Torq and Velocity Loop tests will take approximately 1 min 30 sec to complete Shaft rota tion will occur in the latter part of these tests While the test is being executed the green enable light on the Mo tor Control board will be on Once the
324. ough Time Precharge Time Bus Drop Bus Undervolt Bus Drop Cycles gt 5 Open Circuit Vel FB Loss Inv Overtemp Pnd Mtr Temperature Motor Overld Pnd Motor Overld Trp Motor Stalled External Fit In RMS Fault Parameter Limit Math Limit DB Overtemp AC Contactor Inv Overld Pnd Drv to Drv Error Inverter Overload Parameter Bit 80 80 80 80 80 80 80 80 80 80 80 80 81 81 81 81 81 81 81 81 81 81 81 81 81 82 82 82 82 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 00 01 02 03 04 6 3 Chapter 6 Troubleshooting The first digit in the 5 character fault number for Standard Adapter Board faults is always 2 indicating the source is an Adapter Processor 0 Velocity Processor V P 1 Current Processor CP 2 Adapter Processor Standard Adapter or PLC Comm 3 Domino Processor DP The Area Designator 2nd digit and internal fault codes last three digits remain the same as described under the Fault Code Definition on page 6 2 Listed below are the fault codes for the Standard Adapter Board For a PLC Comm Adapter fault codes refer to the PLC Comm Adapter manual Table 6 B 1336 FORCE Standard Adapter Fault Descriptions Fault Description Fault Text Type 24001 MBI Failure HW Malfunction Hard Fault 24002 BRAM Failure HW Malfunction Hard Fault 24003 VP Handshake Failure SW Malfunction Hard Fault 24004 CP Handshake Failure SW Malfunction Hard Fault 2
325. p Jog and Direction keys Figure 3 6 GPT Keypad Start Key Stop Key 3 21 Chapter 3 Programming Terminals GPT Operation 3 22 When power is first applied to the drive or device a series of hardware diagnostic tests will run before the Power Up Logo Screen shown in Figure 3 7 appears Once the initialization has been completed and all information from the drive is uploaded the terminal will display either the Main Menu screen or the Process Display screen depending on the terminal setup information Figure 3 7 GPT Power Up Logo Screen 1201 GPT Interface Allen Bradley Co Copyright 94 v1 01 Initializing If it has not been deactivated through the terminal during setup the Process Display Screen Figure 3 8 showing you the programmed process variables will appear next If the Process Display Screen is deactivated the Main Menu Screen 3 9 will appear first Figure 3 8 Process Display Screen 0 00 Freq CMD 0 00 Vel FB Info 0 00 COMP PWR Sts Not Enabled 0 00 MTR V FB Dir Forward 0 00 MTR I FB Out 0 00 Torq FB MainMenu DSP Mode When the Process Display Screen is active it is necessary to press the Main Menu Option F2 soft designator on the Process Display to reach the Main Menu The Main Menu contains the password option that provides a highlighted dialog box for password entry Chapter 3 Programming Terminals The Configuration option F1 soft designator allows
326. pe Sink This parameter displays the analog value Display Units that is sent to SCANports Drive Units None Factory Default 0 Minimum Value 32767 Maximum Value 32767 Programmable Output Select Parameter Number 384 Output Select Parameter Type Sink This parameter selects the function of Display Units x TB7 1 Output The NOT column in the Drive Units None following table indicates the value for the Factory Default 8 inverse condition For example Entering Minimum Value 0 a value of 0 will result in a Run Ready Maximum Value 63 condition while a value of 32 results in a NOT Run Ready condition NOT EN NOT EN 32 0 RUN READY 48 16 FLUX READY 33 1 RUNNING 49 17 FLUX UP 34 2 COMMAND DIRECTION 50 18 DIAGNOSTIC COMPLETED 35 3 ROTATING DIRECTION 51 19 DIAGNOSTIC ABORTED 36 4 ACCELERATING 52 20 BUS RIDETHRU 37 5 DECELERATING 53 21 JOGGING 38 6 WARNING 54 22 AUTOTUNE STAT A 39 7 FAULTED 55 23 AUTOTUNE STAT B 40 8 ATSETSPEED 56 24 AT LIMIT 41 9 LOCALA 57 25 NOT USED 42 10 LOCAL B 58 26 AT SETPOINT 1 43 11 LOCAL GC 59 27 ATSETPOINT 2 Set P66 to the type of Set Point desired 44 12 AT ZERO SPEED 60 28 OVER SETPOINT 1 Current or Speed 45 13 61 29 OVER SETPOINT 2 Then set the appropriate parameter P60 46 14 REFB 62 30 OVER SETPOINT P65 to monitor your desired SetPoint 47 15 REFC 63 31 OVER SETPOINT 4 5 81 Chapter 5 Programming Parameters Input Mode Parameter Number 385 Input Mode Parameter Type
327. pecifica tions regarding wire types conductor sizes branch circuit protection and disconnect devices Failure to do so may result in personal injury and or equipment damage Motor Cables A variety of cable types are acceptable for use with the 1336 FORCE The choice of cable type is important to a successful application Motor cables must have an insulation thickness in excess of 15 mils The THHN type wire or any wire with a nylon coating is not recommended for installations where there is a reasonable risk of wire damage including small nicks in coating or insulation due to pulling through conduit or where moisture is present If wire integrity can be assured and no moisture is present THHN wire must have a minimum insulation thickness greater than 15 mils if conduit is used Refer to page 2 18 under Conduit for recommendations on the number of cables per conduit Refer to the Cable recommendations section in the Appendix of this manual for additional information on specific cables Wire sizes must be selected individually observing all applicable safety and NEC and local regulations Due to the drive overload capacity the conductors for the transformer primary and secondary must be sized at a minimum for 125 of the maximum motor current The motor conductors must also be rated for 125 of the full load motor current The distance between the drive and motor may affect the size of the conductors used 2 17 Chapter 2 In
328. power Base Motor HP User entered value of nameplate motor horsepower The drive uses this informa tion in the Dynamic Brake Resistor temperature calculation Base Motor Speed Base Motor Speed User entered value of nameplate motor speed in RPM The drive uses this information to convert motor velocity RPM to from drive per unit Motor Nameplate AMPS Base Motor Curr Drive nameplate current rating of the motor Used for current reference scaling and current processor feedback scaling Motor Nameplate VOLTS Base Motor Volt Drive nameplate voltage rating of the motor Motor Nameplate Frequency Base Motor Freq Drive nameplate frequency rating of the motor Motor Nameplate Poles Motor Poles Total number of motor poles in motor Motor Inertia Motor Inertia Time taken to accelerate an uncoupled motor from zero to base speed at rated torque 5 60 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Numbe
329. protect against excessive current at the output due to a phase to ground or phase to phase short Ground fault monitoring DC Bus Voltage monitoring to protect against under over voltage conditions Power Structure Heatsink Temperature Monitoring 1 3 Chapter 1 Introduction Environmental Specifications Electrical Specifications The following environmental guidelines apply to both the 1336 FORCE Drive and all devices and accessories connected to the Drive Ambient Operating Temperature IP00 Open 0 to 50 degrees C 32 to 122 degrees F IP20 NEMA Type 1 Enclosed 0 to 40 degrees C 32 to 104 degrees F IP65 NEMA Type 4 Enclosed 0 to 40 degrees C 32 to 104 degrees F Storage Temperature all constructions 40 to 70 degrees C 40 to 158 degrees F Relative Humidity 5 95 non condensing Altitude 1000m 3300 ft without derating Shock 15g peak for 11ms duration 1 0 ms Vibration 0 006 inches 0 152 mm displacement 1G peak Input Voltage Rating 200 240VAC Standalone 3 Phase 10 1596 nominal 380 480VAC Standalone 3 Phase 10 15 nominal 500 600VAC Standalone 3 Phase 10 15 nominal 513 621 VDC Common Bus 10 15 nominal 776 VDC Common Bus 41096 21596 nominal Input Power Rating 2 134 KVA 230V 2 437 380V 2 555 KVA 460V 2 3 578 694 500 600V Input Frequency 50 60HZ 3HZ Standard Output Voltage Four frame s
330. pter 6 Troubleshooting 6 10 A filtered or slow average of the bus voltage is developed as reference or bus voltage tracker to determine if a line drop out has occurred If a 150 volt or greater drop in present bus voltage compared to the filtered bus voltage occurs the drive can start a ridethrough The ridethrough function disables the drive restarts a precharge waits for the bus to return to within 75 volts of the bus voltage track er s voltage value before starting again You can use bits 0 4 of Bus Brake Opts to control the slew rate of the bus voltage tracker Refer to the section on the bus voltage tracker later in this chapter for additional information Understanding Ridethrough Ridethrough provides current inrush protection and extended logic operating time if the power lines drop out while the drive is running The drive is immediately disabled when it senses that the incoming power lines dropped out bus capacitor voltage drop The energy stored in the bus capacitors keeps the logic supplies running for an extended time If the power lines return before the logic power supplies lose power you can configure the drive to resume operation without system intervention default The ridethrough timeout is set for two seconds This means that the drive is configured to fault default setting and not auto restart if the dropout lasts more than two seconds ATTENTION You must determine safe auto res
331. pter Board Control amp Signal Wiring 2 42 PLC Comm Switch Settings 2 43 PLC Comm Adapter Board Connections 2 4 Pre Power Checks Protective NAME Process Mode 3 3 Power Application Power Cabling Power Wiring Power Structure Tests Power Conditioning Precharge Faults 6 4 Pulse Input Program Mode Q Quick Start Procedure 4 1 R Remote I O Comm Module 4 34 Repeated Application Removal of Input Power Resistance Test RFI Filter 2 1 B RFI Filter Installatio B RFI Filter Leakage Current 2 RFI Filter Grounding 3 Reference Signal Connections PLC Comm 2 44 Ridethrough 6 10 Ridethrough Faults 6 9 Safety Precautions Safety Ground PE SCANport Control Configuration Schematic Diagrams 17 Search Mode 3 12 Serial Communication Module 4 53 re Torque Block Tuning 6 24 Sensorless Application Notes Signal Ground 2 14 SLC to SCANport Module 4 32 Software Block Diagram A 32 Spare Parts D Speed Regulation with Encoder Feedback 1 3 Standard Adapter Board Connections 9 24 Standard Adapter Parameters 16 Startup Configuration 4 4 Startup Mode Startup Safety Precautions 4 Starting and Stopping the Motor Switch Settings PLC Comm T TE Signal Ground 2 1d Terminal Block Locations Main Control Board 2 23 Terminal Block TB W iring 2 21 Terminology Test Points TB 3 Control Interface Optio
332. put Chapter 5 Programming Parameters 355 Parameter Number 10 Volt Input This parameter displays the converted analog value of the 10 volt input Parameter Type Display Units Drive Units Factory Default Minimum Value Source x None 0 22767 32767 Maximum Value 10 Volt Offset 10 Volt Offset This parameter determines the offset ap plied to the raw analog value of the 10 volt input before the scale factor is applied This allows the user to shift the range of the analog input Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value 356 Sink x xx volt 205 1 volt 0 00 volt 20 00 volt 20 00 volt Maximum Value 10 Volt Scale 10 Volt Scale This parameter determines the scale factor or gain for the 10 volt input The 10 volt input is converted to 2048 and then the scale is applied which allows an effective digital range of 32767 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 357 Sink X XXX 2048 1 2 000 16 000 316 000 358 Parameter Number Pot Input Pot Input This parameter displays the converted analog value of the pot input Pot Offset Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Source x None 0 32767 32767 359 Parameter Number Pot Of
333. r Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 227 Sink Bits None 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 228 Sink Display units x 10 30 0 HP 1 0 HP HP 229 Sink x RPM X 1 750 RPM RPM 15 000 RPM 230 Sink x x amps Display units x 10 0 2 amps 0 1 amps Based on parameter 220 231 Sink x Volt None 460 volt 75 volt 575 volt 232 Sink xox lal display units x 10 60 Hz 1 Hz 250 Hz 233 Sink x poles None 4 poles 2 poles 40 poles 234 Sink 80 Display units 100 0 60 0 01 655 Encoder PPR Encoder PPR User entered pulse per revolution rating of the feedback device when using an encoder to determine motor velocity RS Tune Stator Res Sum of the stator and cable resistances of the motor in a per unit percent representa tion This parameter is determined by the autocommissioning routine Lsigma Tune Leakage Inductance Leakage Ind Sum of the motor stator and rotor leakage inductances and the motor cable induc tance in a per unit base impedance This parameter is determined by the autocom missioning routine Id Tune Base Flux Cu
334. rage Extensive diagnostics including both logic board and power structure tests Time stamped nonvolatile Fault Warning Queue Real Time Clock Reference Time Stamp Run Time Accumulator Enclosed Construction Multiple Communication Interfaces Complete Encoder Interface Drive to Drive Link SCANport Peripheral Interface Speed Regulation to 0 001 of top speed Torque Regulation to 5 of rated motor torque Power Loss Ride Thru capability of two seconds Flying Start Capability of starting into a spinning motor Torque Linearity 1 Overload Capability 150 for 1 minute 200 of motor rating for 10 seconds up to inverter limit Programmable Accel Decel rates from 0 to 6553 seconds Current limit programmable from 200 of rated output current Indirect Self Organized Field Oriented Control Current regulated sine coded PWM with programmable carrier frequency HP Drive Rating Carrier Frequency 1 3 HP 4 kHz 1 12 kHz 7 5 30 HP 4 kHz 1 12 kHz 40 60 HP 4 kHz 1 12 kHz 75 125 HP 2 kHz 1 6 kHz 150 250 2 kHz 1 6 kHz 300 500 2 kHz 1 4 kHz 600 650 1 5 kHz 1 4 kHz 700 800 1 kHz 1 4 kHz Refer to Derating Guidelines in the Appendix of this manual Output Voltage Range 0 to rated voltage Output Frequency Range 0 to 250 Hz Speed Regulation with Encoder Feedback 0 001 of Top Speed over a 100 1 Speed Range Options Protective Features Chapter 1 Introduction Encoderless Speed Regul
335. reached Drive Data Startup STARTUP MENU DRIVE DATA DRIVE TUNE Press the ENTER key to access the Drive Data menu The HIM will allow you to toggle between the I O Drive Data menu parameters using the INC DEC keys The definitions of the I O Drive Data menu parameters is detailed below Language Select This parameter indicates whether English or an alternate language will be used for parameter and fault display text e Input Mode Defines the function of the inputs on the L option board e Encoder PPR Number of pulses per revolution for encoder e Base Motor Speed Motor Nameplate Speed Base Motor HP Motor Nameplate Horsepower e Base Motor Current Motor Nameplate Current Base Motor Volts Motor Nameplate Voltage e Base Motor Frequency Motor Nameplate Frequency LIMITS FAULT SETUP MONITOR LINEAR LIST DRIVE DATA MENU Language Select 304 Input Mode 1385 Encoder PPR 235 Base Motor Speed 229 Base Motor HP 228 Base Motor Current 280 Base Motor Volts 231 Base Motor Freq 232 Torq Mode Select 53 Undervoltage Setpoint 224 Motor Poles 235 NOTE These parameters are primarily motor encoder specific param eters that are used for Scaling Drive output to motor input require ments Not Used in RED Sensorless Mode If using a 230V drive parameter 224 should be set to a value of 200V 4 11 Chapter 4 Startup
336. reference used by the Drive when preset 4 has been selected in the Logic Command P52 Preset Speed 5 Preset Speed 5 This will be the velocity reference used by the Drive when preset 5 has been selected in Logic Command P52 Accel Time Accel Time This parameter displays the ramp rate time for the velocity reference ramp Time is seconds from zero to base motor speed Zero will disable accel ramp See Param 389 amp 390 to set this rate Note This parameter not used with a Standard Adapter Board Equipped Drive Decel Time Decel Time This parameter displays the deceleration ramp time Similar to the parameter above zero will disable the decel ramp See param 391 amp 392 to set this rate Note This parameter not used with a Standard Adapter Board Equipped Drive Reverse Motor Speed Limit Rev Speed Limit This parameter sets a limit on velocity in the negative direction The value entered must be Negative or Zero The numeric range of this parameter is 0 to 6 times base motor speed Forward Motor Speed Limit Fwd Speed Limit This parameter sets a limit on velocity in the positive direction The value entered must be Positive or Zero The numeric range of this parameter is 6 x base speed rpm Maximum Reverse Speed Trim Max Rev Spd Trim This parameter limits the minimum value of the velocity reference after the process trim output and the external velocity trim has been added Paramet
337. rents are present and the possibility of rotation exists For en coderless systems you must visually verify that the motor does not rotate e This test is run at rated motor current and by passes the normal cur rent limit functions Before running the inductance test make sure that you have entered the correct motor nameplate information To run the inductance test 1 Set bit 2 in Autotune Diagnostics Selection parameter 256 2 Enable the drive The drive enable light turns off when the test is complete The inductance test runs for approximately 1 minute When a reading is obtained in Lsigma Tune perform the resistance test Typical values for per unit inductance are in the range of 15 to 2596 motor impedance The value shown in Lsigma Tune is a percent value If you are using long wiring runs the typical value for per unit inductance should increase by the ratio of wiring inductance to motor inductance 6 24 If this bit is set 1 Chapter 6 Troubleshooting The motor inductance measuring routine contains several special faults If the drive trips during the inductance test check bits 0 through 5 of Motor Inductance Test Errors parameter 295 Then Motor Not at Zero Speed The motor is not at zero speed Generally this bit is set in two cases e Ifthe motor rotates during this test an improper result is likely Make sure the motor decoupled from load or process is not rotating just before or durin
338. rier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply 2 values by 0 85 for high line conditions For input voltages of 380 400 or 415V AC multiply the table values by 1 25 1 20 or 1 15 respectively A 3 reactor reduces motor and cable stress but may cause a degradation of motor waveform quality Reactors must have a turn turn insulation rating of 2100 volts or higher Includes wire in conduit Values shown are for nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply values by 0 85 for high line conditions Information not available at time of printing 1329R only A 4 Cable Termination Enclosures Appendix Optional Cable Terminator Voltage doubling at motor terminals known as reflected wave phenomenon standing wave or transmission line effect can occur when using drives with long motor cables Inverter duty motors with phase to phase insulation ratings of 1600 volts or higher should be used to minimize effects of reflected wave on motor insulation life Applications with non inverter duty motors or any motor with exceptionally long leads may require an output inductor or cable terminator An inductor or terminator will help limit reflection to the motor to levels which are less than the motor insulation value Tables 2 A amp 2 B list the maximum recommended cable leng
339. ries B Version 1 06 will allow changing of the 6 process dis plays Choose Mode Process Process Var 1 1 Process Var 2 2 0 00 Freq Cmd 0 00 Vel FB Chapter 3 Programming Terminals EEProm Mode The EEProm mode is used to restore all settings to factory default values or upload download parameters between the HIM and drive Series B HIM Only Reset Defaults L3 ESC AB0270A AB0287A To restore factory defaults From the Status Display press Enter or any key Choose Mode will be displayed Press the Increment or Decrement key until EEProm is displayed If EEProm is not in the menu programming is password protected Refer to Password Mode later in this section Press Enter Press the Increment or Decrement key until Reset Defaults is displayed Press Enter to restore all parameters to their original factory settings Press ESC Display returns to Choose Mode Screen Press the Stop key to reset the fault Note Reset Defaults only modifies parameters in RAM To save in EE do a Save or to recall what is in EE to RAM do a Recall Important If Input Mode was previous ly set to a value other than 1 cycle drive power to reset Choose Mode Choose Mode EEProm EEProm Reset Defaults Choose Mode EEPROM Stopped 0 00 Hz H u E m lt Drive AB0282A To upload a parameter profile
340. rpm 139 Sink XK Display units x 8 32 0 0 0 4096 0 140 Sink ARR Display units x 8 141 Sink AS Display units x 65535 1 00 0 50 1 00 142 Sink x Radian Seconds None 500 Radian Seconds 0 1500 Radian Seconds 5 51 Chapter 5 Programming Parameters Velocity Feedback Testpoint Data LOW Vel Fdbk TP Low This parameter contains the LOW part of the 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter P145 Velocity Feedback Testpoint Data HI 32 bit Vel Fdbk TP Hi This parameter contains the HIGH part of the 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parame ter P145 Velocity Feedback Testpoint Select Vel Fdbk TP Sel This parameter selects which internal loca tion of the velocity reference will become the testpoint value shown in P143 amp P144 The value based upon the select will be stored in the Vel Fdbk TP Low amp Vel Fdbk TP Hi parameter Select Value Zero Delta Theta 32 bit DARONAOOCMNONAWNH 0 Zero Velocity Feedback Vel Feedback This parameter indicates the latest measured motor velocity information from a feedback device Tach encoder etc The value is taken at the output of the selectable feedback filters Scaled Velocity Feedback Scaled Vel Fdbk This parameter is a rescaled version of ve locity feedback from parameter 146 The inverse of either Velocity Scale Factor 1 or 2 is
341. rque Autotune Torque Autotune Torque Autotune Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Diagnostics 4 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Startup 1 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Startup 1 Diagnostics 4 Startup 1 Diagnostics Diagnostics 4 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Startup 1 Startup 1 Startup 1 Startup 1 Startup 1 Startup 1 Startup 1 Velocity Torque 3 Startup 1 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Param Descrpt See Page 5 55 See Page 5 55 See Page 5 55 See Page 5 55 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 56 See Page 5 57 See Page 5 57 See Page 5 57 See Page 5 57 See Page 5 57 See Page 5 57 See Page 5 57 See Page 5 57 See Page 5
342. rrent Base Flux Cur Magnetizing current which produces rated flux in the motor in a per unit percent representation This parameter is deter mined by the autocommissioning routine but can be entered manually Iq Tune Rated Torque Current Base Torque Cur Current which produces rated torque in the motor in a per unit percent representa tion This parameter is determined by the autocommissioning routine but can be en tered manually Vde Tune Base Torque Voltage Base Torque Volt D axis voltage command to the motor at rated speed and rated current Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED Data represented as X X volts Vqe Tune Rated Flux Voltage Base Flux Volt Q axis voltage command to the motor at rated speed and rated current if motor is not in field weakening Parameter calcu lated by autocommissioning routine and MUST NOT BE CHANGED Data repre sented as X X volts Vde Maximum Peak HP Vde Max Maximum D axis voltage allowed on the motor Parameter calculated by autocom missioning routine and MUST NOT BE CHANGED Data represented as X X volts Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum
343. rrent 3 Set Master_Slave enable dropout fault 4 Set Not Used 5 Set Not Used 6 Set Not Used T Set Not Used Responses for faults Parm 41 set to less than 33 speed The Autotune speed must be set higher in order to get a meaningful result out of the flux test Parm 238 lt 0 Current This indicates that either 1 or some of the parameters are incorrectly set electrical noise is was present motor phasing could be incorrect or other problems exist Parm 238 gt 100 Drive Current This identifies flux current greater than the drive rated current This may be due to incorrect parameter settings an undersized drive for the motor or a problem motor Master Slave Enable Dropout This cable interlock between the Master and Slave drive was opened during the test 6 29 Chapter 6 Troubleshooting 6 30 Parameter Number 40 41 127 128 175 176 177 178 179 180 227 If you experience problems while running the Flux Test it may be necessary to verify that parameters are set properly The parameters listed in Table 6 E are the parameters that directly effect the Flux Test Table 6 E Flux Test Parameters Description Autotune Torque Limit Autotune Speed Reverse Speed Limit Forward Speed Limit Positive Torque Ref Limit Negative Torque Ref Limit Motoring Power Limit Regen Power Limit Positive Motor Current Ref Limit Negative Motor Current Ref Limit Cp Operating Options Val
344. rs and their operation refer to Chapter 5 in this Manual under Group 1 STARTUP FILE The Drive Tune Parameters can be accessed by using the INC DEC keys to scroll through the Drive Tune Menu Using the default values for these parameters will work in most cases If the default value does not work refer to the parameter value ranges in Chap 5 for possible alternate values Limits Menu Selections Accel Rate 1 389 Decel Rate 1 4391 Accel Rate 2 390 Decel Rate 2 391 Logic Options 59 Fwd Speed Limit 128 Rev Speed Limit 127 Pos Mtr Cur Lmt 179 Neg Mtr Cur Lmt 180 Pos Mtr Tor Lmt 175 Neg Mtr Tor Lmt 176 Motor Power Lmt 177 Regen Power Lmt 178 Di Dt Limit 181 Drive Tune Menu Selections Autotune Diag Sel 256 Vel Feedback 146 Vel Desired BW 43 Auto Tune Status 44 Motor Inertia 234 Total Inertia 46 Ki Velocity Loop 139 Kp Velocity Loop 140 Kf Velocity Loop 141 Vel Damp Factor 45 Auto Tune Speed 41 Ph Rot Cur Ref 262 Ph Rot Freq Ref 263 4 13 Chapter 4 Startup SEL AB0282A SE AB0282A i E Scroll to the Autotune Diag Sel parameter Set Bit 0 to a value of 1 and then press the ENTER key and the START button This will execute the In verter Transistor Diagnostics test which will take 300 mSec to run Bit 0 will automatically be set back to 0 upon successful completion of the Invert er Transistor Diagnostics test If the test fails non zero val
345. rtup Complete display will appear Press the Enter key to save all configuration data A Startup Completed display will appear to indicate that the Quick Start Procedure has been successfully completed and saved Autotune Torque amp Vel Loops Measure Param s Press START Autotune The Velocity Loop Change Vel BW amp recalc Gains Configure Analog Inputs Continue CH 3 amp 4 config X Configure Analog Outputs Configure SCANport Startup Completed 4 8 Chapter 4 Startup Quick Start Procedure cont If you answer NO to the Autotune Torque amp Velocity question the follow ing configuration options will appear in sequence as each configuration opera tion is completed Configure I O Configure Scanport Configure Input Mode Configure Pulse Input Configure MOP Configure Analog Input Configure Analog Output DE gi D Use the SELect key to access the 2nd line in any configuration display and the INC or DEC keys to make any changes When an option or enable operation is complete use the Enter key to save this change When all tests and enable operations have been completed a Startup Complete display will appear Press the Enter key to save all configuration data A Startup Completed display will appear to indicate that the Quick Start Procedure has been successfully completed and saved Configure I O Configure Scanport
346. s The D2D receive and transmit are on both sides of the velocity functions This is to improve the data rate 4 17 Chapter 4 Startup Message Transfer The D2D allows each drive to transfer two words and receive two words from two different drives for a total words received of four Figure 4 3 Figure 4 3 D2D Communication Transmit Receive 1 Receive 2 P11 Node Address P12 Node Address P13 Node Address P14 Data 1 Indirect P16 Data 1 Indirect P18 Data 1 Indirect P15 Data 2 Indirect P17 Data 2 Indirect P19 Data 2 Indirect P20 Data 1 P22 Data 1 P24 Data 1 P21 Data 2 P23 Data 2 P25 Data 2 Node Address The node address for the transmit is the address at which the drive will transmit its two words of data The node address for each of the receives 15 the address of the drive which you wish to receive two words of data from If the node address is set to zero then the transmit or receive is disabled It is up to you to make sure there are no duplicate transmit node addresses If duplicate addresses exist you must change one address Refer to the example in Figure 4 4 Figure 4 4 Node Address Transmittal Drive 1 Drive 3 P11 Xmit Node Address 32 P11 Xmit Node Address 5 P12 Rcv 1 Node Address 5 P12 Rcv 1 Node Address 0 P13 Rcv 2 Node Address 27 P13 Rcv 2 Node Address 27 Drive 2 Drive 4 P11 Xmit Node Address 0 lt P11 Xmit Node Address 27 P12 Rcv 1 Node Address 5 P12 Rcv 1 Node Address 0 P13 Rcv 2 Node Addr
347. s Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 300 Source X None 2 2 2 301 Source REXX None KXXX 0 00 9 99 302 Source 304 Sink None 310 Source x None 0 32767 32767 311 Source x None 0 32767 32767 312 Source x None 0 32767 32767 Data In B2 Data In B2 This parameter displays the SCANport to drive image which is received from some device on SCANport Data In C1 Data In C1 This parameter displays the SCANport to drive image which is received from some device on SCANport Data In C2 Data In C2 This parameter displays the SCANport to drive image which is received from some device on SCANport Data In D1 Data In D2 This parameter displays the SCANport to drive image which is received from some device on SCANport Data In D2 Data In D2 This parameter displays the SCANport to drive image which is received from some device on SCANport Data Out A1 Data Out A1 This parameter displays the drive to SCANport image which is sent to some device on SCANport Data Out A2 Data Out A2 This parameter displays the drive to SCANport image which is sent to some device on SCANport Data Out B1 Data Out B1 This parameter displays the drive to SCANport image which is sent to some device on SCANport Parameter Number P
348. s screen Use the Increment or Decre ment key to toggle between screens From the Search Parameters display press Enter The HIM will search through all parameters and display any parameters that are not at their factory default values Press the Increment or Decrement key to scroll through the list To search parameter links toggle to the Search Links display from the Search Parameters display using the Increment or Decrement key From the Search Links display press Enter The HIM will search through all links and display any links that are not at their factory default values Choose Mode Display Choose Mode Search Search Parameters Proc Trim Fdbk 0 03 Search Links Proc Trim Fdbk lt 28 E 1355 3 12 Chapter 3 Programming Terminals Control Status Mode PE or AB0282A The Control Status mode is only available with a Series A version 3 0 or Series B HIM This mode allows the drive logic mask to be disabled thus preventing a Serial Fault when the HIM is removed with drive power applied The logic mask can be disabled with Series A HIM versions below 3 0 by using Logic Mask as explained on page From the Status Display press Enter or any key Choose Mode will be shown Press the Increment or Decrement key until Control Status is displayed Press Enter Select Control Logic using the Increment Decrement keys Press Enter Pre
349. s Voltage Tracker Auto Tuning Test Procedure Power Structure and Transistor Diagnostics Tests Phase Rotation Tests Sequential Torque Block Tuning Running the Resistance Test Running the Flux Test Torque Block Velocity Loop Autotune Hardware It RE ap ii us elei Ill ee affo T 2 ON fon N 24 iii Table of Contents Appendix CE Conformity User Parameter Values Spare Parts Information Appendix Motor Cables bee ERU ss 1 Cable Termination uu sts seis Ron e 5 006 055 11 MD 5 Deratmg Guidelmes Re tona ka ich A 7 Drive Hardware Overview A 16 Schematic Diagrams Gate Driver Board Connections A 27 Sensorless Application Notes 30 Software Block Diagram Standard Adapter Firmware Function Overview Diagrams Battery Disposal mee e eR E ES RE 54 Appendix BMC Directive eae ead P ehe B 1 Requirements for Conforming Installation
350. se of Adapter Boards A portion of the Drive Control has been designed to act as an interface from the point of view of external devices In order to perform the control functions required by the specific application it is necessary to configure various control and reference information such as logic commands speed reference and torque reference Additionally for the external control equipment to monitor operation conditions in the drive such as logic status actual speed actual torque configuration provides a way for this information to be transferred to the external device Configuration links must be made between sink and source parameters to allow this information to transfer The source parameter provides the data to be sent to the receiving sink parameter For Example To send the information from Analog Input 41 Parameter 355 to External Velocity Reference 1 Parameter 101 of the drive then P101 must be linked to P355 sink and source parameters in the 1336 FORCE AC Drive are available to provide information and sink parameters can receive information from source parameters The drive is shipped with pre configured links between the Standard Adapter board or PLC Comm board and the Main Control board The user has the flexibility to reconfigure the drive for a particular application For more information on how to use a particular programming device to configure the 1336 FORCE AC Drive refer to the instruction manual for tha
351. se tests are com plete bits 2 through 8 in the Auto Tune Diag Sel parame ter will be set back to a value of 0 and the green enable light will go out If the Drive trips a flashing or solid red VP or CP LED will be present on the Motor Control Board When complete save the parameters to EEPROM using the EEPROM SAVE option under MENU The fault that caused the drive to trip will appear on the HIM display Refer to the Startup Troubleshooting section of this manual for possible solutions to the displayed fault Perform both the Torque and Velocity loop autotune tests again after the problem has been re solved When you have successfully completed the Torque and Velocity Tune tests scroll to the Vel Desired Band Width Parm 43 in the Drive Tune Menu using the INC DEC Bits 2 thru 8 keys Vel Desired BW W 2710 00 R S Enter the desired bandwidth by pressing the SEL key to cursor down to the value field Use the INC and DEC keys to scroll to the desired BW When the appropriate value is selected the ENTER should be pressed to accept the entered value Based on the value entered in the Vel Desired BW the Kp amp Ki Velocity Loop Values will change when Bit 8 is set in the Autotune Diag Sel Parm 256 and the START Key is pressed The HIM display should now appear as shown below Autotune Diag Sel 00000001 00000000 Enter desired BW here Note When using a sensorless version the values list
352. sed Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Warning Status SA Warn Status This parameter displays the warning status of the SCANport device timeouts 1 Warning 0 No Warning Bit 0 Not Used Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 Minimum Value Maximum Value Enums Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Bit 7 Not Used Bit 8 4 20 mA Loss Bit 9 15 Not Used Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Bit 7 Not Used Bit 8 4 20 mA Loss Bit 9 15 Not Used Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 6 SCANport Device 6 Bit 7 Not Used Bit 8 4 20 mA Loss Bit 9 Not Used Bit 10 Not Used Bit 11 Not Used Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 0000 0000 0000 0000 0000 0001 0111 1111 406 Sink Bits None 0000 0000 0111 1111 0000 0000 0000 0000 0000 0001 0111 1111 407 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 1110 0001 0111 1111 B
353. ser has the flexibility to configure the Drive for a particular application 2 32 Chapter 2 Installation Wiring Figure 2 21 Standard Adapter Links TB5 Standard Adapter Motor Control Board 10V Ref Common 10V Ref 10VIn 28 D Proc Trim Fdbk T Potini Vel Ref 2 Hi TE 4 20mA Input TE Pulse PPR 5 12V Pulse Input Pulse Edge Unidirectional _ PulseScale Pulse Offset OFFSET SCALE 10V Analog Out 1 _ 371 TM Vel Fdbk TE OFFSET SCALE 10V Analog Out 2 Computed Power TE 4 20mA Output ib Programmable 1 384 Logic Status LO 56 gt Comm 2 Logic Status lt 57 gt 3 From VP Enable Light Bit 9 Local Output Status OFFSET SCALE N C 4 FAULT Comm 5 N O 6 N C 1 LOGIC STATUS Logic Status Lo ALARM Comm 8 9 Not Used 10 11 12 1 SP Analog In Select 1 Par 364 2 SP Analog 3 In 1 Par 365 4 Vel Ref 1 Hi 5 SP Analog In 2 Par 368 SP Analog Out Par 379 Filtered Lo Vel Fdbk oR ob wh 2 33 Chapter 2 Installation Wiring Starting amp Stopping the Motor solid state components If hazards due to accidental contact with moving machinery or unintentional flow of liquid gas or solids exist an additional hardwired stop circuit is required to remove AC line power to the drive When AC input power
354. shold voltage as a percent of line voltage that will be compared with the DC Bus Voltage as a check for a Bus Undervoltage condition Bus Precharge Timeout Prechrg Timeout This parameter establishes a time delay period for DC Bus Precharge If the Drive fails to finish a DC Bus Precharge in this time a Precharge Timeout will occur Bus Ridethru Timeout Ridethru Timeout This parameter establishes a time delay period for DC Bus Ridethrough If the bus remains in a low bus ridethru condition longer than this time a Bus ridethru timeout condition will occur Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 224 Sink None 61 5 10 0 90 0 225 Sink See Display units x 10 30 0 Sec 10 0 Sec 6553 5 Sec 226 Sink See Display units x 1000 2 000 Sec 0 000 Sec 65 555 See 5 59 Chapter 5 Programming Parameters CP Operating Options CP Options For proper operation bits 0 to 6 must be left at zero If bit 7 0 this allows the motor to coast to a stop after the flux test is completed If bit 7 1 this brings the motor to a con trolled stop after the flux test is completed Motor Nameplate Horse
355. sistor Diag subsequent displays you will be asked if you wish to run the following tests 1 Inverter Diagnostics TET r 2 Motor Rotation Test ANDE Y Press the green Start key to run the diagnostic test Press the red Stop key when the Motor Rotation Test has completed Chapter 4 Startup Quick Start Procedure cont 1 After Inverter Diagnostics has concluded or if you answer NO to the Motor Connect Diagnostics question a display will appear asking if you wish to run the Autotune Torque amp Velocity sequence Press the Enter key to initiate the test If you answer YES to the Autotune Torque amp Velocity question the follow ing configuration options will appear in sequence as each configuration opera tion is completed 1 Measure Parameters 2 Autotune The Velocity Loop 3 Change Velocity Bandwidth amp recalculate Gains 4 Configure Analog Inputs 5 Continue CH 3 amp 4 configuration 6 Configure Analog Outputs 7 Configure SCANport ATTENTION Hazard of Personal Injury exists when running the Autotune Torque amp Velocity sequence as motor rotation occurs with several of these tests Use the SELect key to access the 2nd line in any configuration display and the INC or DEC keys to make any changes When an option or enable operation is complete use the Enter key to save this change When all tests and enable operations have been completed a Sta
356. splay Units detected during the motor flux Id test Ifa Drive Units bit is set to 1 the Drive condition is true Factory Default otherwise the condition is false Bits are defined as follows Minimum Value Maximum Value Bit Condition 0 Autotune Speed Low 3096 min 1 Identified Id zero 2 Identified Id gt 10096 motor current 3 Enable drop out 4 15 Reserved Torque Block Calculation Errors Torq Calc Error Parameter Number Parameter Type This word parameter indicates an error Display Units condition which has been detected during Drive Units the torque block calculations If a bitis set Factory Default to 1 the Drive condition is true otherwise the condition is false Bits are defined as Minimum Value Maximum Value Enums Bit Condition 0 Negative or Zero Slip 1to 15 Reserved Chapter 5 Programming Parameters 295 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 296 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 297 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 298 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 5 69 Chapter 5 Programming Parameters NOTE The Parameters shown here in the range from 300 to 500 are Standard Adapter Parameters Only Parameter descriptions for PLC Comm Adapter Parameters are
357. ss the SELect key then use the Increment or Decrement key to select Disabled or Enable Press Enter The logic mask is now disabled or enabled Choose Mode Display Choose Mode Control Status Control Status Control Logic Control Logic Disabled Chapter 3 Programming Terminals Control Status Mode continued Fault Queue Clear Faults or 0270 This menu provides means to view the fault queue and clear it when desired From the Control Status menu press the Increment or Decrement key until Fault Queue is displayed Press Enter Press the Increment or Decrement key until View Queue is displayed Press Enter The fault queue will be displayed Trip displayed with a fault will indicate the fault that tripped the drive Use the Increment or Decrement key to scroll through the list If you wish to view the time and date of the fault occurrence press the Enter key To clear the fault queue press ESCape Then use the Increment Decrement keys to select Clear Queue Press Enter Please note that Clear Queue will not clear active faults Control Status Fault Queue Fault Queue View Queue Serial Fault F 10 Tripa Reprogram Fault F 48 2 1 20 22 1 1 Fault Queue Clear Queue 3 14 Chapter 3 Programming Terminals Control Status Mode continued Warning Queue Clear Warnings D E or ESC
358. ssword protection To change the password and enable password protection perform the following steps From the Status Display press Enter or any key Choose Mode will be shown Press the Increment or Decrement key until Password is displayed Press Enter Press the Increment or Decrement key until Modify is displayed Press Enter Enter Password will be displayed Press the Increment or Decrement key to scroll to your desired new password With a Series version 3 0 or Series B HIM the SELect key will move the cursor Press Enter to save your new password Press Enter again to return to the Password Mode Press the Increment or Decrement key until Logout is displayed Press Enter to log out of the Password mode With a Series A version 3 0 or Series B HIM the Password mode can be programmed to appear when drive power is applied Simultaneously press the Increment and Decrement keys while the Password display is shown Choose Mode Display Choose Mode Password Password Modify Enter Password lt 0 gt Enter Password 2251237 Choose Mode Password Password Login Password Logout Choose Mode Password Sets Password Display as Power Up Display Chapter 3 Programming Terminals Password Mode continued Login to the Drive The Program EEProm modes and the Control Logic Clear Queue menus are now password protected a
359. stallation Wiring Lug Kits 2 18 Shielded type wire is recommended in control circuits for protection against interference A shielded wire is required for all signal wires The recommended conductor size must be a minimum of 16 AWG The best interference suppression is obtained with a wire having an individual shield for every twisted pair Figure 2 9 shows recommended cable shielding Figure 2 9 Cable Shielding Recommendations 1241 241 H Shield 3682 2 3683 2 Conductor Shielded Cable 8271 s Shield EI E Lr 4 2 Conductor Shielded Cable Shield Connection Multi Conductor Shielded Cable with Individual Shielded twisted Pairs D E F and G frame drives have stud type terminals and or bus bars bolts that require standard crimp type connectors for cable termination Connectors such as T amp B COLOR KEYED Connectors or equivalent are recommended Table 2 C shows the lug selection for one possible cable choice Choose connectors for each installation based on the desired cable sizes the application requirements and all applicable national state and local codes Chapter 2 Installation Wiring Table 2 C Lug Selection AC Input R S T DC Output U
360. sult in an accel delay until that speed is reached followed by an acceleration at the speed set by the PLC If this is a problem Mode 7 should be used Param 150 6 Minimum preset speed is 1 1000 of base speed Preset speeds down to zero are permitted although it is very likely that the motor will not operate smoothly at these low speeds This mode will eliminate the problems associated with controlling the acceleration rate by ramping preset speeds from a PLC described in Mode 5 Param 150 5 Param 150 7 Available in 3 01 version Minimum present speed is 1 1000 of base speed This mode is similar to mode 6 except that the motor can be expected to operate more smoothly and develop higher continuous torque at speeds 1 60 of base speed This mode will also allow operation with lower Appendix velocity bandwidths than Mode 5 and allow smoother acceleration The disadvantage of this mode is that the response to load changes at low speeds is not as fast as mode 5 Also fast speed reversals may not work when the preset speed is ramped from a PLC and the drives accel decel rate is set to O Sensorless Troubleshooting Procedures Problem Motor won t accelerate or doesn t start smoothly Possible Solutions Increase the bandwidth If the bandwidth is too low there is a chance the motor won t accelerate although the current will increase to current limit If the regen power limit is 0 increase it t
361. t Warning Configuration Select is set to 0 When the drive trips on a condition that you set to display a warning The CP light flashes green e The drive continues to run If a particular bit is not set in either CP Fault Warning Configuration Select or CP Warning None Configuration Select the drive ignores the condition when it occurs Most of the fault warning configuration options deal with DC bus conditions These bus conditions deal with the bus precharge and any type of ridethrough conditions The bus precharge and ridethrough conditions are covered later in this chapter Understanding Precharge and Ridethrough Faults Chapter 6 Troubleshooting To understand the precharge and ridethrough faults you need a basic understanding of how these functions work as well as the options that you can use to alter the way precharge and ridethrough operate in the 1336 FORCE drive Understanding Precharge The precharge of the drive has different circuits depending on drive size For the precharge operation for large horsepower 40 hp and larger standalone drives the precharge starts the SCR phase advance and completes precharge when the bus is stable For all other drive types precharge is completed after a stable bus voltage is achieved and the precharge device SCR or relay by passes the precharge resistor For common bus operation set bit 12 in Precharge Ridethrough Selection parameter 223 The drive current an
362. t 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Bit 3 SCANport Device 3 5 74 Parameter Number 336 Parameter Type Sink Display Units Bits Drive Units None Factory Default 0111 1111 Minimum Value 0000 0000 Maximum Value 0111 1111 Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero Parameter Number 337 Parameter Type Sink Display Units Bits Drive Units None Factory Default 0111 1111 Minimum Value 0000 0000 Maximum Value 0111 1111 Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero Parameter Number 340 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 Minimum Value 0000 0000 Maximum Value 0111 1111 Enums Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero Parameter Number 341 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 Minimum Value 0000 0000 Maximum Value 0111 1111 Enums Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero Parameter Number 342 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 Minimum Value 0000 00
363. t Device 1 Bit 2 SCANport Device 2 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Chapter 5 Programming Parameters 331 Sink Bits None 0111 1111 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved 332 Sink Bits None 0111 1111 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved 333 Sink Bits None 0111 1111 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved 334 Sink Bits None 0111 11
364. t Scale mA Output Scale Data Out A2 Over Setpoint 1 361 Input SP Analog Out Data Out Data Out B2 Data Out C1 Data Out C2 Data Out D1 Data Out D2 D2D Tsk Interval D2D Baud Rate D2D Xmit Addr D2D Rev Addr D2D Rev2 Addr D2D Xmit Ind 1 D2D Xmit Ind 2 D2D 1 D2D Ind2 D2D Rev 1 D2D Rev Ind2 D2D Xmit Data 1 D2D Xmit Data 2 D2D Rcv1 Data 1 D2D Rcv1 Data 2 D2D Rev Data 1 D2D Rev Data 2 Over Setpoint 2 Over Setpoint 3 Over Setpoint 4 Over Setpoint 5 Speed Setpoint Tol Cur Setpoint Tol Zero Speed Tol Logic Tstpt Data Logic Testpt Sel Stop Dwell Output Select Input Mode Stop Select 1 8 Stop Select 2 Pwrup Fit Status Nefg Fit Status CP Fit Status VP Fit Status CP Warn Status VP Warn Status CP Fault Select CP Warn Select VP Fault Select VP Warn Select SA Fault Select SA Warn Select SA Fault Status SA Warn Status 362 363 364 365 366 367 368 369 mA Input Offset mA Input Scale SB Analog Sel SB Analog In SP Analog 1 Scale SP Analog 2 Set SP Analog 2 In SP Analog 2 Scale Std Adapter 4 xx equipped Stop Owner Direction Owner Start Owner Jogl Owner Jog2 Owner Reference Owner Local Owner Flux Owner Trim Owner Ramp Owner Clr Fault Owner Fault Select Status SCANport Owners SCANport Masks Port Enable Mask Direction Mask Start Mask Jog Mask Reference Mask Clear Fault Mask Reset Drive Mask Local Mask Chapter 5 Programming Parameters F
365. t Used 15 7 Not Used 8 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 80 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 Hilli Condition VP Internal RAM Failure VP External RAM Failure VP Stack RAM Failure CP Dualport RAM Failure detected by VP AP Dualport Ram Failure detected by VP Base Drive EE Failure Reserved Leave Zero 81 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 iE Enums Bit Condition Bit Condition 6 Master Slave Enable Timeout 10 Analog Power Supply Tolerance 7 Not Used 11 Autocommisioning or Transistor Diagnostic Failure 8 Handshake Timeout VP 12 Inverter Temperature Trip 9 Absolute Overspeed 13 Software Malfunction detected by VP 14 Not Used 15 Reserved Leave Zero Parameter Number 82 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 Maximum Value Enums Bit Condition 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Fluxup Current lt 50 Parameter Number 83 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 Maximum Value Enums Bit Condition Motor stalled External Fault RMS Fault Not Used Parameter Limit O1 1111 1111 1111 1111 Bit 10 11 1
366. t and velocity processors Adapter Board Faults Adapter board faults are setup and displayed in separate parameters from the Main Control Board Chapter 6 Troubleshooting Figure 6 2 Bit Parameter 81 Non configurable Fault Status 15 1413 12 11109 8 7 6 54 3 2 1 O0 000000000000000 0 E DC Bus Overvoltage Trip Transistor Desaturation Trip Groundfault Trip Instantaneous Overcurrent Trip Adapter Comm Loss detected by CP Master Slave Cable Loss Master Slave Enable Timeout Not Used Adapter Comm Loss detected by VP Absolute Overspeed Analog Power Supply Tolerance Autocommission or Transistor Diagnostic Fail Inverter Temperature Trip Software Malfunction detected by VP Task Overrun Software Malfunction detected by VP Illegal Interrupt NOT USED This word parameter indicates fault conditions in the Drive that CANNOT be configured as warnings When a bit is set to 1 the corresponding condition in the Drive is true otherwise the condition is false Bit 0 3 are detected by hardware and 4 15 are detected by software Figure 6 3 Bit Parameter 80 Powerup Diagnostic Fault Status 15 1413 1211109 8 7654 3 2 1 0 O0O0000000 00000000 CP PROM Failure CP Internal RAM Failure CP External RAM Failure CP Stack RAM Failure CP VP Dualport RAM Failure NOT USED NOT USED NOT USED VP Prom Failure VP Internal RAM Failure VP External RAM Failure VP Stack RAM Failure VP CP Dualport RAM Failure VP
367. t particular device Figure 4 6 shows the as shipped pre configuration links for a 1336 FORCE AC Drive equipped with a Standard Adapter board Refer to the PLC Communications Adapter User Manual 1336 FORCE 5 13 for information on pre configured links for PLC Comm equipped drives PLC COMM Adapter Board Equipped Drives For PLC Comm Adapter Board Equipped Drives refer to the 1336 FORCE PLC Communication Adapter User Manual 1336 FORCE 5 13 for configuration information 4 21 Chapter 4 Startup Figure 4 7 Standard Adapter Links Standard Adapter Motor Control Board 10V Ref Common 10V Ref HOW Im V OFFSET SCALE 355 gt Proc Fdbk TE Potini T OFFSET SCALE P Vel Ref 2 Hi OFFSET SCALE gt CO TE 4 20mA Input T TE 395 PulsePPR 5 12V Pulse Input 396 Pulse Edge d d Unidirectional 397 pulseScale 398 Pulse Offset OFFSET SCALE 10V Analog em TE OFFSET SCALE 10V Analog Out 2 TE 4 20mA Output i Programmable 1 394 Logic Status LO lt 56 gt Comm 2 Logic Status HI lt 57 gt 2 Bit 9 Local Output Status N C FAULT Comm N O N C ALARM Comm OFFSET SCALE gt LOGIC STATUS Logic Status Lo 4 5 6 7 8 9 10 11 12 SP Analog In Select Par 364 gt HIM SP Analog In Par 365 Vel Ref 1 Hi N
368. t the equipment end not the drive end If shielded control and signal wires are used the shield must also be grounded at this point 2 15 Chapter 2 Installation Wiring Conduit 4 Wire Cable Signal Ground TE The TE terminal block is used for all control signal shields internal to the drive It must be connected to an earth ground by a separate continuous lead Any PLC I O communication link must be run in grounded steel conduit The conduit should be bonded to ground at both ends Ground the cable shield at the drive end only The maximum and minimum wire size accepted by this block is 2 1 and 0 30 mm2 14 and 22 AWG Maximum torque is 1 36 N m 12 Ib in Use Copper wire Only Safety Ground PE This is the safety ground required by code The ground bus can be connected to adjacent building steel girder joist or a floor ground loop provided grounding points comply with NEC regulations RFI Filter Important Using an optional RFI filter may result in relatively high ground leakage currents Surge suppression devices are also incorporated in the filter to clamp line surges to a limited voltage above ground potential Therefore the filter must be permanently installed and solidly grounded Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection The integrity of this connection should be periodically checked
369. tart and fault configurations at the system and user level Incorrect selection s may result in safety concerns and or drive damage CP Fault Warning Configuration Select 1 parameter 86 and CP Warning None Configuration Select parameter 87 let you specify how you want the drive to report specific precharge and ridethrough information Ridethrough also protects the drive from excessive inrush current when the power returns by entering a precharge mode when ridethrough is initiated After precharge has finished the drive can complete ridethrough and resume normal drive operation The drive is enabled again after the bus rises to within 75 volts of the bus voltage tracker value Chapter 6 Troubleshooting ATTENTION If you are using an external logic power supply the drive may be able to stay in an indefinite ridethrough state If the power returns to the drive much later the drive automatically restarts You must therefore handle the control of enable faults time outs drive configuration and safety issues at the system level Use the following parameters to configure the precharge and ridethrough functions e CP Fault Warning Configuration Select parameter 86 e CP Warning None Configuration Select parameter 87 Precharge Ridethrough Selection parameter 223 Undervoltage Setpoint parameter 224 In addition Test Select 1 parameter 93 and Test Data 1 parameter 92 contain software testpoints t
370. ted to a 2048 and then the scale is applied which allows an effective digital range of 32767 SCANport Analog Select SB Analog Sel This parameter selects which SCANport analog device is used in parameter 365 SP Analog In 1 SCANport 1 4 SCANport 2 5 3 SCANport 3 6 SCANport Analog1 In SB Analog In This parameter displays the analog value of the SCANport device selected in parameter 364 SP Analog Sel SP Analogl1 Scale SB Analog Scale This parameter can be used to scale the value in Parameter 365 5 78 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums SCANport 4 SCANport 5 SCANport 6 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 362 Sink X XXX mA 128 0 000 mA 32 000 mA 32 000 mA 363 Sink X XXX 2048 1 2 000 16 000 16 000 364 Sink X None 1 1 6 365 Source x None 0 32767 32767 366 Sink x 1 1 32767 1 32767 1 32767 1 32767 SCANport Analog2 Sel
371. ter 6 Troubleshooting At point B the motor was no longer in regeneration and the bus voltage had dipped below the nominal range If the drive compared point B with point A the drive would have seen a bus drop of 150V and entered precharge However because the drive compared point B with the bus voltage tracker the bus drop was less than 150V and the drive continued operating At point the bus voltage had dropped 150V and the drive entered a precharge state Precharge Ridethrough Selection provides the following options for changing the slew rate This With this the sl t bits text Sets the slew rate to 10V second This option is the most sensitive to 0 changes in the actual bus voltage Slew Rate 2 5V second Slew Rate3 0 5V second 1 2 3 Slew Rate 4 0 05V second 4 0 005V second This option is the least Slew Rate 5 sensitive to changes in the actual bus voltage If all bits are clear 0 the slew rate is 0 05 V second If more than one bit 1s set the first bit that 1s set 1s used for the slew rate For most applications the default slew rate of 0 05 V second which is 1 volt in 20 seconds should be appropriate Chapter 6 Troubleshooting Velocity Processor Faults amp Warnings You can configure which velocity processor faults you want to trip the drive by setting Parameter 88 Figure 6 5 When there is a velocity processor fault the V
372. ter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 64 Sink x x 4096 100 0 setpoint 0 0 800 0 800 0 65 Sink 4096 100 setpoint 0 0 800 800 66 Sink Bits bit clear speed set current 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 67 Sink X x rpm 4096 base speed base sp 100 0 0 rpm base speed 10 68 Sink KKO 4096 100 0 Iq 2 0 0 0 20 0 69 Sink x 4096 base speed base speed 100 0 0 rpm 8 x base speed 70 Source Bits None 0000 0000 0000 0000 0000 0000 0000 0000 AN Wa Chapter 5 Programming Parameters Logic Testpoint Select Parameter Number 71 Logic Sel Parameter Type Sink This parameter selects which internal loca Display Units x tion in the logic control software will be Drive Units None come the testpoint value shown in P70 Factory Default 0 The value based upon the select will be Minimum Value 0 stored in the Logic Tstpnt Data parameter Maximum Value 30 The internal locations of the logic control Enums software accessible based on the select value are Select Value Logic Access Point Select Value Logic Access Point 0 Zero 16 Diagnostic Inhibit bits 1 Logic State 17 Common Bus Precharge States 2 Edge Filtered Logic Command 18 Contactor Trip Condition Logic Control Word 19 Adapter handshake counter 4 Flux Inhibit Con
373. ter indicates the value ofthe Display Units x x internal location selected by the Torq Ref Drive Units 4096 100 1 0 pu TP Sel parameter P173 The select will Factory Default 0 0 allow this parameter to be used as a test Minimum Value 800 0 forthe torque Maximum Value 800 0 reference input Torque Reference Testpoint Select Parameter Number 173 Torq Ref TP Sel Parameter Type Sink This parameter selects which internal loca Display Units A tion of the torque reference will become the Drive Units None testpoint value The value based on the Factory Default 0 select will be stored in the Torque Ref TP Minimum Value 0 P172 Maximum Value 31 Enums Select Value Torque Reference Access Point Select Value Torque Reference Access Point 0 Zero 17 Torque Reference Status 1 NTC Limit 18 Torque Reference Math Overflow Status 2 Inverter Current Limit 19 Active Torque Mode 3 Overload Current Limit 20 Positive Torque Power Limit 4 Positive IQ Limit 21 Negative Torque Power Limit 5 Negative Iq Limit 22 Rated Inverter Current 6 Zero Not Used 23 Averaged Motor Flux 7 Torque Limit Low 24 Iq Current Reference Adjusted for Motor Range 8 Torque Limit High 25 Sum 9 Scaled External Torque Reference 1 26 Torque Mode Select Iq Ref 10 Scaled External Torque Reference 2 27 Inverter Gain 11 Torque Sum 28 Motor Range 12 Torque Command 29 Motor to Inverter Current Ratio 13 Filtered Torque Reference 30 DC Bus Ride Thru Latch 14 Unli
374. ters PLC Comm Adapter Parameters If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the PLC Comm Adapter Board rather than the Standard Adapter Board PLC Comm Adapter Parameters are divided into four files as they are with a Standard Adapter Board equipped Drive The complete parameter table for a PLC Comm Adapter equipped 1336 Force is detailed in Figure 5 3 The table has been divided into Files Groups and Elements for ease of reference For a detailed description of PLC Comm Adapter parameters refer to the PLC Comm Adapter Reference Manual Figure 5 3 1336 FORCE equipped with a PLC Comm Adapter Board FILE 1 Startup Drive Data Group Drive Tune Group Limits Group Torque Mode Sel Auto Tune Speed 59 Logic Options Base Motor HP Vel Desired BW 125 Accel Time Base Motor Speed Auto Tune Status 126 Decel Time Base Motor Curr Vel Damp Factor 127 Rev Speed Limit Base Motor Volt Total Inertia 128 Fwd Speed Limit Base Motor Freq KI Vel Loop 174 Min Flux Level Motor Poles KP Vel Loop 175 Pos Motor Tor Limit Encoder PPR KF Vel Loop 176 Neg Motor Tor Limit Language Select Velocity Feedback 177 Motoring Power Limit Motor Inertia 178 Regen Power Limit AT Diag Sel 179 Pos Motor Cur Lim Phase Rot I Ref 180 Motor Cur Limit Phas Rot Req Ref dI dT Limit CP FIt Warn Config 8 Motor Control Cntr VP FIt Warn Config 147 Scaled Velocity Feedback
375. th for unterminated cables since the voltage doubling phenomenon occurs at different lengths for different drive ratings If your installation requires longer motor cable lengths a reactor or cable terminator is recommended Optional Output Reactor The reactors listed in the 1336 FORCE price list can be used for drive input and output These reactors are specifically constructed to accomodate IGBT inverter applications with switching frequencies up to 20 KHz They have a UL approved dielectric strength of 4000 volts opposed to a normal rating of 2500 volts The first two and last two turns of each coil are triple insulated to guard against insulation breakdown resulting from high dv dt When using motor line reactors it is recommended that the drive PWM frequency be set to its lowest value to minimize losses in the reactors Important By using an output reactor the effective motor voltage will be lower because of the voltage drop across the reactors this may also mean a reduction of the motor torque Common Mode Cores Common Mode cores will help reduce the common mode noise at the drive output and guard against tripping of the drive caused by capacitive leakage effects The capacitive currents are larger at higher PWM frequencies Customer Supplied Enclosure Requirements 1336 FORCE drives installed in customer supplied enclosures may be mounted within an enclosure or may be mounted to allow the heatsink to extend outside the encl
376. the smallest value when the torque reference and the torque generated from the speed are compared Max Select Speed Torque Selects the largest value when the torque reference and the torque generated from the speed are compared Sum Speed and Torque selects the sum of the torque reference and the torque generated from the speed 5 37 Chapter 5 Programming Parameters Local Input Status Local In Status This parameter indicates boolean input sta tus conditions for the Velocity Processor When a bit is set to 1 the corresponding input signal is true Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums 54 Source Bits Bits 0000 0000 0000 0000 0000 0000 0000 0000 Value Description Value Description Value Description Value Description 0 Brake Request 4 External Fault Test Diag 12 Not Used 1 Drive Enable 5 RMS Fault Inverter Status 13 Not Used 2 Motor Overtemp Thermoguard 6 0 Parall Inv Contactor Verify 14 Not Used 3 Discrete Stop 7 Single Lang Not Used 15 Not Used Local Output Status Parameter Number 55 Local Out Status Parameter Type Source This parameter indicates boolean output Display Units Bits status conditions for the Velocity Proces Drive Units Bits sor When a bit is set to 1 the correspond Factory Default 0000 0000 0000 0000 ing input signal is true Minimum Value 0000 0000 0000 0000 Maximum Value TL LEU
377. to the dark grey connection on the board The black connector plugs into the light grey connection on the board The cable with the black connector is the transmit cable TX and the cable with the blue connector is the receive RX cable Reset the drive after connecting the cables and the ControlNet system should be ready to operate 2 45 Chapter 2 Installation Wiring Configuration The 1336 FORCE Drive is shipped pre configured which means that some of the inputs and outputs are linked to a predefined signal Figure 2 34 shows the 1336 FORCE standard configuration when equipped with a PLC Communication Adapter Board The user has the flexibility to configure the Drive for a particular application Figure 2 34 PLC Comm Adapter Links 1336 FORCE PLC CONTROLLER Remote I O Interface Drive Parameters PLC Comm Adapter OUTPUT IMAGE TABLE Channel B GROUP NUMBER 3 4 12 Reserved For 02 02 024 A 13 5 1 3 5 7 Logic CMD In Port 6 4 2 4 6 Ext Vel Ref 1 Hi 35 3 5 7 Torque Mode Select 4 6 5 7 Nse o ol 1 Full Rack 2 3 4 Rack PUT IMAGE TABLE 3 1 2 Rack OUP NUMBER 4 1 4 Rack 3 4 12 1 4 02 0 24 0 2 4 6 13 13 5 1 3 5 7 Logic Status Low 24 2 46 Filtered Vel Fdbk 35 357 Motor Current Fdbk 4 6 Motor Voltage Fdbk 5 7 Computed Power Stator Frequency oz Drive Parameters Filtered Vel Fdbk Comm 2692 Filtere
378. top jog etc The control can come from up to 6 SCANport devices and L Option Inputs at the same time The control is based on a ownership mechanism which allows certain functions to have only one owner and other functions to have multiple owners Speed reference direction and local functions are the only one owner functions The other functions like start stop jog etc are considered multiple owner functions Ownership is when a SCANport device or L option Input commands a function As long as that function is commanded that device will be the owner of that function For Example Device 1 is commanding a forward direction this is a one owner function No other device can change the direction until Device 1 stops commanding the forward direction If Device 1 is commanding a start which is a multiple owner function other devices can also command a start If device 1 stops commanding a start the drive will continue to run if another device is still commanding a start NOTE A rising edge is required for start and jog functions If jog is commanded and the drive has been stopped Start and Jog functions will not operate from any device until the Jog command is stopped The same holds true if a Start is commanded while the drive is stopped The parameters in the range from 340 to 350 indicate the owner of each function The owner is identified by the bit in the parameter as follows Bit 0 L Option Inputs Bit 1 SCANport device 1 SCANport de
379. tput p 379 Data Out A1 p 320 Data Out A2 p 321 Data Out B1 p 322 Data Out B2 p 323 Data Out C1 p 324 Data Out C2 p 325 Data Out D1 p 326 Data Out D2 p 327 DF1 DH485 Serial Messages Read ER uim ME NES ue MES MEN dim dim pa s ER Optionally enabled using DIP switches on the adapter 4 33 Chapter 4 Startup Remote IJO Communications Module The following figure shows how the I O image table for the programmable controller relates to the 1336 FORCE drive when a Remote I O Communications Module is used RIO SCANport PLC I O Remote I O 1336 FORCE Drive Image Communications Controller Module Output Image Block Transfer Logic Command Reference Datalink A19 Datalink A29 Datalink B19 Datalink 2 Datalink C1 Datalink C29 Datalink 019 Datalink 029 Message Handler Logic Evaluation Block SP An 2 Sel p 367 Data In A1 p 310 Data In A2 p 311 Data In B1 p 312 Data In B2 p 313 Data In C1 p 314 Data In C2 p 315 Data In D1 p 316 Data In D2 p 317 8 words maximum Input Image Block Transfer Logic Status Feedback Datalink A19 Datalink A29 Datalink B19 Datalink 29 Datalink C19 Datalink C29 Datalink 019 Datalink 02 Message Handler Logic Status LO p 56 SP An Output p 379 Data Out A1 p 320 Data Out A2 p 321 Data Out B1 p 322 Data
380. transistor gate drive signal from the control board through the cabling to the opto isolators continuing through the gate drives and finally through the cabling to the power transistor This includes the power wiring to the motor terminals and the motor If the bus voltage is too low opens could occur bus voltage should be greater than 85 of nominal line 6 23 Chapter 6 Troubleshooting Phase Rotation Tests For proper drive operation it is necessary to have A specific phase sequence of the motor leads M1 M2 M3 MI M3 M2 etc B A specific sequence of encoder leads pulse A leads B etc These sequences determine the direction of rotation of the motor shaft on application of torque An improper sequence can result in either the motor rotating the wrong direction or no production of torque This test 15 used to ensure the above conditions by applying a positive torque and manually checking motor rotation and velocity feedback Sequential Torque Block Set parameter 256 Autotune Diagnostics Selection Bit 3 to a value of 1 Tuning Running the Inductance Test A measurement of the motor inductance is required to determine the references for the regulators that control torque This test measures the motor inductance and displays it in Lsigma Tune Leakage Inductance parameter 237 When running this test you should be aware of the following The motor should not rotate during this test although rated voltages and cur
381. tts R theta for the resistor Minimum Value 0 Watts Maximum Value 30 000 Watts Maximum Dynamic Brake Temperature Parameter Number 78 Max DB Temp Parameter Type Sink This parameter defines the Maximum Tem Display Units x deg perature Rating for the optional Dynamic Drive Units None Brake resistor This value is used to estab Factory Default 50 deg lish setpoints for setting and clearing a Minimum Value 50 deg Brake Overtemperature fault condition Maximum Value 700 deg Dynamic Brake Time Constant Parameter Number 79 DB Time Const Parameter Type Sink This parameter defines the thermal time Display Units X Sec constant for the Optional Dynamic Brake Drive Units None resistor This value is used in the brake Factory Default 10 sec resistor thermal model to predict brake Minimum Value 10 sec temperature as a function of regenerative MAY Weine 600 sec power 5 41 Chapter 5 Programming Parameters Powerup Diagnostic Fault Status PwrUp Flt Status This word parameter indicates a fault condition which has been detected during power up or reset of the drive When a bit is 1 the condition is true otherwise the condition is false VP EPROM Failure Non configurable Fault Status Ncfg Flt Status This word parameter indicates fault condi tions in the drive that Cannot be configured as warnings When a bit is 1 the condi tion is true otherwise the condition is false Bits 0 3 are detected by hardware Bits
382. u sa HIM Module Removal HIM Operation HIM Programming 8 GPT Description ey x eee hoe Per N So Pele uec ep eod Keypad Description serere GPT Operation 225 tiered Soa ad ed does Bee GPT Programming Options u u st dag tes renee Chapter 4 InttOdUCHON SENS Safety Precautions 95 oo ee RR neta he Res Required Tools and Equipment Drive Information sce ke ep hie tes tien XY S eU YR SEE General 2 E Pre Power Checks POWERON f ba opes Startup Configuration Procedures Quick Startup Procedure 2252530 ERE ee Manual Startup Mode Communication Configuration Drive to Drive Communication Communication Configuration External Control Link Configuration Analog I O Parameter Configuration SCANport Analog I O Parameter Configuration Output Relay Configuration Pulse Input Configur
383. ue 3 See Page 5 36 Torque Autotune Velocity Torque 3 See Page 5 36 Drive Tune Startup 1 See Page 5 36 43 VP Desired Bandwidth Velocity Autotune Velocity Torque 3 See Page 5 36 Drive Tune Startup 1 See Page 5 36 44 Autotune Status Velocity Autotune Velocity Torque 3 See Page 5 36 Drive Tune Startup 1 See Page 5 36 45 VP Damping Factor Velocity Autotune Velocity Torque 3 See Page 5 36 Drive Tune Startup 1 See Page 5 36 46 Total Inertia Velocity Autotune Velocity Torque 3 See Page 5 36 Drive Tune Startup 1 See Page 5 36 47 Auto Tune Testpoint Data Velocity Autotune Velocity Torque 3 See Page 5 36 Testpoints Diagnostics 4 See Page 5 36 48 Auto Tune Testpoint Select Velocity Autotune Velocity Torque 3 See Page 5 37 Testpoints Diagnostics 4 See Page 5 37 52 Logic Command Word Logic Velocity Torque 3 See Page 5 37 Logic Communications 1 2 See Page 5 37 Chapter 5 Programming Parameters Table 5 A 1336T Numerical Parameter Table Cont Param No Parameter Name Element Group File File No 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 71 78 79 80 81 82 83 84 Torque Mode Select Local Input Status Local Output Status Logic Status LOW Logic Status HI Torque Stop Configuration Logic Options At Setpoint 1 At Setpoint 2 Over Setpoint 1 Over Setpoint 2 Over Setpoint 3 Over Setpoint
384. ue Comments 100 allows 1 p u torque during accel 68 is the max for the flux test limited internally by the software Set this to the limit of the application if set to 0 the motor may not accelerate Set this to the limit of the application if set to 0 the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate If set too high you may trip out on a Bus Overvolts see note Set this to the limit of the application if set too low the motor may not accelerate Set this to the limit of the application if set too low the motor may not accelerate Set to 0 to allow the motor to coast to stop once the flux test is completed Set to 128 to regen to stop even without a brake once the flux test is completed Note The option to regenerate to stop following identification of flux producing current should function properly with or without a brake or regeneration unit However if a bus overvoltage fault occurs during the regen to stop the identified value of flux producing current can be retrieved and placed in P238 without re running the flux identification test with the regen to stop disabled The identified value of flux can be found by using Software Testpoint Parameter 273 and placing
385. ue with flashing CP or VP light re fer to the Startup troubleshooting section of this manual Chap 6 While you are performing the Inverter Transistor Diagnostics Test the HIM dis play should appear as shown below Autotune Diag Sel 00000000 00000001 The purpose of the Inverter Transistor Diagnostic Test is to help you find any problems that might exist in the installation as well as taking care of setting offset in both the Id amp Iq regulators Parameters 260 amp 261 in the linear list The next test you must run is the Phase Rotation Test This is accomplished by setting bit 1 to a value of 1 in the Autotune Diag Sel parameter Parm 256 and pressing the START key to execute the test The HIM display should appear as shown below Autotune Diag Sel 00000000 00000010 When the START key is pressed the motor should rotate at a rate specified by both Phase Rotation Frequency Ref and a current output as specified by the Phase Rotation Currency Ref Typically default values for both Ph Rot Freq Ref and Ph Rot Cur Ref will work correctly Interpreting Phase Rotation Results 1 In phase rotation the motor should turn in the direction you define as positive velocity If the motor turns in the wrong direction shut the drive down remove power and reverse any two motor leads 2 If no motor rotation occurs refer to the Startup troubleshooting section of this manual 3 In phase rotation with the m
386. ult Reset Spd 2 24 Run Stop Run Rev FluxEn ExtFault Reset Spd 2 25 Run Fwd Stop Run Rev Proc Trim ExtFault Ramp Spd 2 26 RunFwd Stop Run Rev Ext Fault Spd 3 Spd 2 Input Status Parameter Number 386 Input Status Parameter Type Source This parameter displays the on off status of Display Ju Bu inputs 1 8 at TB3 Drive Units None 1 ON Factory Default 0000 0000 0 Off Minimum Value 0000 0000 Maximum Value TETTE Enums Bit Condition Bit Condition Bit Condition 0 Input 1 3 Input 4 6 Input 7 1 Input 2 4 Input 5 7 Input 8 2 Input 3 5 Input 6 Stop Select 1 Parameter Number 387 Stop Select 1 Parameter Type Sink This parameter selects the stopping mode Display Units for a valid stop command Drive Units None 3 Param 59 Bits 4 or 5 Factory Default 0 2 Current limit stop Minimum Value 0 1 Ramp Stop Maximum Value 3 0 Coast Stop 5 82 Input 8 Status Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Spd 1 Stop Select 2 Stop Select 2 This parameter selects the stopping mode for a valid stop command 3 Param 59 Bits 4 or 5 2 Current limit stop 1 Ramp Stop 0 Coast Stop I O Acceleration Rate 1 Accel Rate 1 This parameter determines the 0 rpm to base speed ramp rate I O Acceleration Rate 2 Accel Rate 2 This parameter determines the 0 rpm t
387. unction Torque Reference Overview Limit Selection NTC LIMIT FROM INVERTER MINIMUM OVERLOAD SELECTOR PROTECTION FOR POSITIVE LIMIT MOTOR CURRENT LIMIT Iq LIMIT AUTOTUNE ACTIVE MAXIMUM SELECTOR FOR LIMIT NEGATIVE NEGATIVE MOTOR Iq LIMIT CURRENT LIMIT Torque Selection SLAVE C172 TORQUE 1 9 ACTIVE TORQUE DX EXTERNAL TORQUE REF 1 SELECT From Torque Sum Trim Control ToRQUE SLAVE TORQUE 2 EXTERNAL TORQUE 2 Tm Velocity PI Regulator SQ POSITIVE TORQUE CBA 2 1 o Sits 000 001 010 TORQUE MODE SELECT A 42 LIMITED FLUX CURRENT TO TORQUE LIMITED FLUX FLUX CURRENT TO TORQUE STEP pom COMMAND SZ fal x 152 4 Notch TORQUE LIMIT C183 gt Limits li Positive Torque Limit 175 AUTOTUNE TORQUE CD LIMIT Negative Torque Limit Lit Eck Limit Autotune Torque Appendix 36 Firmware Function Torque Reference Overview Power Limits VELOCITY lt 172 29 FEEDBACK POSITIVE TORQUE POWER LIMIT lt 146 gt MOTORING Tore NE POWER Limit High vw Lj LIMIT WAVE REGEN RECTIFY 1 POWER A let LIMIT NEGATIVE TORQUE POWER LIMIT X Computed Multiply lt 182 gt Torque Ref Computed 96 lt gt ee MAX SELECT EXTERNAL iQ SD LIMITS INTERNAL 0 Iq SUM TORQUE REFERE
388. urred E A hardware phase overcurrent fault occurred N There are open power transistor s 13 There are current feedback faults Bits 14 and 15 are reserved 6 22 Chapter 6 Troubleshooting Inverter Diagnostics Result 2 parameter 259 is defined as follows When this bit is set 1 0 Transistor U upper shorted 1 Transistor U lower shorted 2 Transistor V upper shorted 3 Transistor V lower shorted 4 Transistor W upper shorted 5 Transistor W lower shorted 6 The current feedback phase U offset is too large 7 The current feedback phase W offset is too large 8 Transistor U upper open 9 Transistor U lower open 10 Transistor V upper open 11 Transistor V lower open 12 Transistor W upper open 13 Transistor W lower open 14 Current feedback phase U open 15 Current feedback phase W open If any hardware fault occurs during the open transistor testing then the following occur The hardware fault is saved A phase to phase fault is set All subsequent testing is stopped e Some untested devices may be set as open Typically you should fix the hardware faults and run open tests again to determine if any opens exist What Do Open Transistor Faults Indicate Open transistor faults could indicate an open anywhere in the control or power section that turns on a given transistor You should check the power
389. urrently has exclusive control of the drive 1 Current Owner 0 Non Owner Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 SCANport Flux Owner Flux Owner This parameter displays which SCANport devices are presently issuing a valid flux command 1 Flux Input Present 0 Flux Input Not Present Bit 0 TB3 Bit 1 SCANport Device 1 Bit 2 SCANport Device 2 Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 3 SCANport Device 3 Bit 4 SCANport Device 4 Bit 5 SCANport Device 5 344 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leave Zero 345 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SCANport Device 6 Int Gateway Bit 7 Reserved Leavc Zero 346 Source Bits None 0000 0000 0000 0000 0111 1111 Bit 6 SC
390. uto Tune Status This parameter indicates the status of certain conditions related to the autotune function This is a bit coded parameter that is not changeable by the user Bit 0 2 Executing Bit 1 2 Complete Bit 2 Fail Bit 3 Abort Bit 4 Flux Active Bit 5 Not Ready Bit 6 Not Zero Spd Bit 7 Running VP Damping Factor Vel Damp Factor This parameter determines the dynamic behavior of the velocity loop The damping factor influences the amount of overshoot the velocity loop will exhibit during a tran sient Total Inertia Total Inertia This parameter represents the time in se conds for a motor coupled to a load to ac celerate from zero to base speed at rated motor torque This parameter is calculated by the Autotune System Inverter Test Autotune Testpoint Data Auto Tune TP This parameter indicates the value of the internal location selected by the Autotune TP Sel parameter 48 5 36 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums Bit 8 11 Not Used Bit 12 Timeout Bit 13 No Trq Lim Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Par
391. ve system to properly interpret whether a real problem exists You can run the transistor diagnostics before a start by setting bits 6 8 of Logic Options parameter 59 Transistor diagnostics require motor current so a user start transition is required to run the tests To run the transistor diagnostics independently 1 In Autotune Dgn Sel parameter 256 set bit 0 to 1 2 Enable the drive The green enable light D1 turns on very briefly approximately 300 ms and then turns off This runs only the transistor diagnostics and leaves the drive disabled after the diagnostics are complete Autotune Diagnostics Selection is automatically cleared to zero after the diagnostics have run Chapter 6 Troubleshooting Because the test results depend on your particular system you can disable tests that may give questionable or nuisance faults Use Transistor Diagnostics Configuration parameter 257 to disable individual tests If you want to disable Current feedback phase U offset tests 0 Current feedback phase W offset tests 1 Shorted power transistor tests 2 Ground fault tests 3 Open transistor open motor open current feedback 4 open gate drive and open bus fuse tests Power transistor U upper for all tests 6 Power transistor U lower for all tests 7 Power transistor V upper for all tests 8 Power transistor V lower for all tests 9 Power transistor W upper for all tests 10 Power transistor
392. ve to Complete a Precharge In some cases the precharge may not complete due to external bus disturbances Setting bit 11 in Bus Brake Opts forces the precharge to complete at the precharge interval default 30 seconds This may cause precharge damage and should only be used when large inrush currents cannot occur Precharge Ridethrough Selection parameter 223 also lets you select a rate called a slew rate for the bus voltage tracker The bus voltage tracker slowly tracks changes in the actual bus voltage If the actual bus voltage drops 150 volts or greater below the current value of the bus voltage tracker the drive automatically disables modulation and enters precharge Important You should only use the bus voltage tracker if you are having ridethrough problems The bus voltage tracker adjusts the bus sensitivity to ridethrough for cases where there is an unstable bus By changing the rate used for the bus voltage tracker you can make your system more or less sensitive to changes in the actual bus voltage For example if your drive currently enters precharge after the motor exits regeneration you may need to change your slew rate Figure 6 4 shows an example of the filtered bus voltage reference Figure 6 4 Example Bus Voltage Line Volts Bus voltage tracker 150V Actual bus voltage Time At point A the motor was in regeneration so the value of the bus voltage tracker slowly increased 6 15 Chap
393. ved Leave Zero Parameter Number 184 Parameter Type Source Display Units Bits Drive Units None Factory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 Maximum Value Enums 1111 1111 1111 1111 Parameter Number 185 Parameter Type Source Display Units Drive Units 4096 100 motor current Factory Default 0 0 Minimum Value 0 0 Maximum Value 800 0 5 57 Chapter 5 Programming Parameters Perunit Motor Voltage Motor Volt Fdbk Displays the perunit value of motor voltage as determined from an analog to digital converter input This data is scaled to read 1 0 pu at rated motor voltage This is a version of parameter 265 that has been scaled to perunit to be compatible with analog outputs This data is averaged and updated on a 50 millisecond basis Rated Inverter Output Amps Base Drive Curr Current rating of inverter Automatically set by drive at powerup as a function of Power Structure Type Used for current ref scaling and current processor feedback scaling Rated Inverter Input Voltage Base Line Volt Drive Nameplate Voltage rating of inverter Automatically set by drive at powerup as a function of Power Structure Type Inverter Carrier Frequency PWM Frequency This parameter defines the drive carrier frequency in Hz 5 58 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number
394. vel Pos Mtr Tor Lmt Neg Mtr Tor Lmt Motor Power Lmt Regen Power Lmt Di Dt Limit Torq Ref TP Sel Torque Ref TP 53 184 179 180 167 168 182 183 161 162 164 163 165 166 156 174 175 176 171 178 181 173 172 Torque Block PWM Frequency Prech Rdthru Sel Under Volt Stpnt Prechrg Timeout Ridethru Timeout CP Options Ki Freq Reg Kp Freq Reg Kff Freq Reg Ksel Freq Reg Freq Track Filt Track Filt Type Freq Trim Filter 227 223 224 225 226 227 287 288 289 290 291 292 293 Proc T Proc Proc Proc Proc Proc T Tri Proc Proc Proc T Tri Proc Proc Proc Proc T Tri Tri ri Tri ri Process Trim im Ref im Fdbk im Output Tri m Select m Ki m m Lo Lmt m Hi Lmt m Fitr W m Data m Out K im TP Sel m 21 28 26 29 32 33 34 35 30 3l 36 38 37 Chapter 5 Programming Parameters Torque Autotune Autotun Diag Sel 256 Ph Rot Cur Ref 262 Auto Tune Torque 40 Auto Tune Speed 41 Ph Rot Freq Ref 263 Phs Test Rot Error 294 Lo Test Error 295 Rs Test Error 296 Id Test Error 297 Torq Calc Error 298 Stator Res 236 Leakage Ind 237 Base Flux 238 Base Torque Cur 240 Base Torque Volt 241 Base Flux Volt 242 Vde Max 243 Max 244 Vde Min 245 Base Slip Freq 246 Base Slip Fr Max 247 Base Slip Fr Min 248 Kp Slip 249 Ki Slip 250 Kp Flux 251 Ki Flux 252 Torq TP Sel 1 273 Torq TP Data 1 274 Shaded param
395. veto H RQ 0 0 Drive D43 D47 Interface Purpose Encoder Voltage Selection Encoder Voltage Selection Adapter Board Interface D1 Drive Enable ON Drive Running OFF Drive Not Running D2 VP Indicator ON NoFaults OFF See D3 D3 VP Indicator Refer to Fault Codes in Table 4 A D4 CP Indicator ON NoFaults OFF See D5 D5 CP Indicator Refer to Fault Codes in Table 4 A D43 Drive to Drive Status Solid OK Blinking Fault D47 Drive to Drive Power ON Power OFF No Power 2 25 Chapter 2 Installation Wiring Encoder Connections Drive to Drive Communication 2 26 The Encoder connections are made at terminal block TB 10 on the Main Control Board as detailed in Figure 2 12 Figure 2 12 Encoder Connections Encoder The TB11 connector on the Main Control Board Figure 2 13 is used to connect the Drive to Drive Communication Interface Figure 2 13 Drive to Drive Connections 11 C H SHD C L RTN Drive to Drive Setup The hardware setup for Drive to Drive D2D consists of a shielded cable going from CN and CN between the drives The shields are to be tied together and grounded at one point TE TB11 3 SHD is an open connection and is used to tie ground wire together A wire must go from 11 3 to TE Bus Place 1200 terminating resistor on both ends of the cable You must supply the 8 18 VDC that powers the D2D Figure 2 14 shows a typical D2D c
396. vice is used you must alter the startup accordingly Drive Information Chapter 4 Startup During Startup the following information must be recorded for reference It is important that an accurate list of drive components be maintained and referred to when contacting service personnel Table 4 A Data Checks DRIVE NAMEPLATE DATA Catalog Number Serial Number O O OSS O AC Input 5 AC Output Volts Horsepower Rating kw MOTOR NAMEPLATE DATA Catalog Number Serial Number Series AC Input Volts Horsepower Rating kw Poles RPM Hz ENCODER NAMEPLATE DATA Catalog Number Serial Number Series Input Power Supply Input Signal Level Output Type Pulses Per Rev Maximum Speed Maximum Frequency MAIN CONTROL BOARD Board Revision Level PLC COMM BOARD Board Revision Level GATE DRIVER BOARD Board Revision Level STANDARD ADAPTER BOARD Board Revision Level Standard Adapter Board Jumper Settings Position Position J5 1 2 2 3 2 J10 3 4 17 18 413 1 2 2 3 PLC Comm Adapter Board Switch Settings UE d 2 2 4 5 6 U3 1__ 9 9 U 1 2 3 4 5 6 U5 1 2 3 4 5 6 Amps Amps Amps Volts Volts Chapter 4 Startup General Only qualified electrical technicians and or electrical engineers familiar with solid state controls and circuitry should attempt a 1336 FORCE start up Figure 4 1 outlines
397. vice number is Bit 2 SCANport device 2 determined by the SCANport Bit 3 SCANport device 3 connection Bit 4 SCANport device 4 Bit 5 SCANport device 5 Bit 6 Internal Gateway Bit 7 Not Used This is very useful for determining who may own a function Masking of the control functions allows control functions to be enabled or disabled for all or some of the devices The parameter bit configuration is the same as the example detailed above with 0 indicating disable and 1 indicating enable The masking control starts with the port enable mask which enables or disables all of the devices control functions then the local control mask which allows a device to take full control of the drive to the individual masks like start jog direction speed reference clear faults and reset Control Interface Option The Control Interface Option Modes configure the Control Interface Option The different modes are explained in Chapter 2 The modes allow the user to setup the inputs to meet the requirements of their application The Input Mode parameter 385 sets the mode and takes effect on a power cycle or reset The Input Status parameter 386 indicates the status of the input except for the enable input which can be seen in parameter 54 bit 1 The Stop Select parameters 387 amp 388 select the way the stop input will function on the L 4 29 Chapter 4 Startup 4 30 SCANport Device 1 SCANport Device 2 SCANport Device 3 SCANport
398. viewed only with PLC Comm Board installed Chapter 5 Programming Parameters Fault Select Status Fault Select Status Fault Select Status Fault Setup Fault Select Status Fault Select Status Fault Setup Fault Select Status Fault Select Status Fault Setup Fault Select Status Fault Select Status Fault Setup Fault Select Status Fault Setup Fault Setup Fault Setup Motor Overload Motor Overload Limits Fault Setup Motor Overload Fault Setup Motor Overload Fault Setup Motor Overload Testpoints Testpoints Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Testpoints Velocity Ref Testpoints Velocity Ref Testpoints Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Ref Velocity Limits Velocity Ref Velocity Ref File File No Communications I O 2 Diagnostics 4 Communications I O 2 Startup 1 Diagnostics 4 Communications I O 2 Startup 1 Diagnostics 4 Communications I O 2 Startup 1 Diagnostics 4 Communications I O 2 Startup 1 Diagnostics 4 Startup 1 Startup 1 Startup 1 Diagnostics 4 Diagnostics 4 Startup 1 Startup 1 Diagnostics 4 Startup 1 Diagnostics 4 Startup 1 Diagnostics 4 Diagnostics 4 Diagnostics 4 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Velocity Torque 3 Vel
399. volts Vde Minimum Constant HP Vde Min D axis voltage below which the adaption to motor changes in the torque control is dis abled Parameter calculated by autocom missioning routine and MUST NOT BE CHANGED Data represented as x x volts Kslip Base Slip Frequency Base Slip Freq Base slip frequency of the motor Parameter calculated by autocommission ing routine Data represented as x x Hz Kslip Maximum Base Slip Fr Max Maximum slip frequency allowed on the motor Parameter calculated by autocom missioning routine and MUST NOT BE CHANGED Data represented as x x Hz Kslip Minimum Base Slip Fr Min Minimum slip frequency allowed on the motor Calculated by autocommissioning routine and MUST NOT BE CHANGED Data represented as x x Hz Kp Slip Regulator Kp Slip Proportional Gain of the slip regulator This parameter MUST NOT BE CHANGED Data represented as x Ki Slip Regulator Ki Slip Integral Gain of the slip regulator This parameter MUST NOT BE CHANGED Data represented as x Kp Flux Regulator Kp Flux Proportional Gain of the Flux regulator This parameter MUST NOT BE CHANGED Data represented as x 5 62 Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units
400. wanted a range of 2 times base speed the scale factor would have to be 4 Base Speed 4096 2 times Base Speed 8192 2048 times 4 8192 Parameter 359 Offset will remain at the default value of zero allowing the input range to be 10V to 10V The range of the offset parameter is 20V DC as shown in Figure 4 8 Figure 4 8 Potentiometer with a 10V Range to Control 0 to 100 Base Speed VELOCITY REFERENCE 2 HI Pot Input MULTIPLEXER 10V POT 2048 2 4096 Mr 10V 2048 2048 4096 RANGE OF 20V 0 POTENTIOMETER 10V 10V DIGITAL VALUE 2048 0 2048 SCALE X5 0 FINAL VALUE PAR 401 2_ 0 4096 4096 For 10V Input a 0 to 10 volt potentiometer will be used to adjust the Torque Reference from 100 to 410096 To accomplish this both the scale and offset parameters will need to be adjusted By linking Parameter 355 to Parameter 162 Torque Reference the potentiometer connected to Analog Input becomes the Torque Reference Signal This signal must be scaled and offset in order to get the entire 100 in the 0 10 volt range A digital range of 8192 4096 must now be scaled for an analog range of 10 volts and must be offset so 5 volts on the potentiometer will indicate 0 Torque 4 24 0 10V POT 10 MULTIPLEXER Chapter 4 Startup As shown in Figure 4 9 the offset voltage adds the corresponding digital value to the range In this case an offset of
401. wer Limit Positive Motor Current Reference Limit Negative Motor Current Reference Limit DI DT Limit Computed Power Torque Limit Status Torque Mode Status Perunit Motor Current Perunit Motor Voltage Rated Inverter Output Amps Rated Inverter Input Voltage Inverter Carrier Frequency Precharge Ridethru Selection Undervoltage Setpoint Bus Precharge Timeout Bus Ridethru Timeout CP Operating Options Base Motor Horsepower Base Motor Speed Base Motor Current Base Motor Volts Base Motor Frequency Motor Poles Motor Inertia Encoder PPR Rs Tune Stator Resistance Leakage Inductance Id Tune Base Flux Current Iq Tune Base Torque Current Vde Tune Base Torque Voltage Vae Tune Base Flux Voltage Vde Maximum Peak HP Vqe Maximum Constant HP Vde Minimum K Slip Base Slip Frequency Torque Ref Testpoints Torque Ref Testpoints Torque Ref Limit Torque Ref Limits Torque Ref Limits Torque Ref Limits Torque Ref Limits Torque Ref Limits Torque Ref Limits Torque Ref Limits Torque Ref Monitor Monitor Torque Ref Torque Ref Monitor Monitor Monitor Monitor Info Info Torque Block Torque Block Torque Block Torque Block Torque Block Torque Block Drive Data Drive Data Drive Data Drive Data Drive Data Drive Data Drive Tune Velocity Autotune Drive Data Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune Torque Autotune To
402. y Regulator Testpoint Select Vel Reg TP Sel This parameter selects which internal loca tion of the velocity reference will become the testpoint value shown in Vel Reg TP Low P135 amp Vel Reg TP Hi P136 The fol lowing are the internal locations based upon the select value Select Value Zero Kp Term 32 bit Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Velocity Reference Access Point Droop Speed Offset 32bit Drooped Velocity Reference 32 bit Kf Term Low Kf Err High Kf Error Filter Output 1 Low Kf Error Filter Output 2 High Or 1st 16 bit Low 2nd 16 bit High Or 3rd 16 bit Low 4th 16 bit High Of 1st 16 bit Low 2nd 16 bit High Of 3rd 16 bit Low 4th 16 bit High Oe 1st 16 bit Low 2nd 16 bit High Oe 3rd 16 bit Low Not Used High Oec1 1st 16 bit Low 2nd 16 bit High 1 3rd 16 bit Low 4th 16 bit High Ki Term 32 bit G RONSo CoOoO0 00RON O Velocity Error Velocity Error This parameter contains a value that is the difference between the whole number por tion of the velocity regulator s reference input and the velocity feedback KI Velocity Loop Ki Velocity Loop This parameter controls the integral error gain of the velocity regulator Gain has a resolution of 1 8 therefore a Ki gain of 1 0 is converted to internal drive units as a val ue of 8 KP Vel
403. y Trim Sum HI LOW Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value 110 Sink X None 0 0 i Select Value Velocity Reference Access Point 9 Internal Velocity Trim Hl LOW 10 Trimmed Velocity Reference HI LOW 11 Maximum Frequency Limit HI Zero LOW 12 Reference after Trim Limit HI LOW 13 Deadband In HI LOW 14 Encoderless On Freq Low Encoderless Off Freq High 15 Encoderless Status Low 16 Zero 117 Sink rpm 4096 Base Motor Speed 0 0 rpm 8xrpm 8 x rpm 118 Sink x 4096 Base Motor Speed 0 0 rpm 8 x rpm 8 x rpm 119 Sink x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 120 Sink rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed 121 Sink x x rpm 4096 Base Motor Speed 0 0 rpm 8 x Base Speed 8 x Base Speed Preset Speed 4 Preset Speed 4 This will be the velocity
Download Pdf Manuals
Related Search
Related Contents
ULTRASONE DROP VERSTUIVER DIFFUSEUR LocalView DeLOCK GX53 LED Volvo TP 31397 AW900x - AvaLAN Wireless FLIR GF309 カタログ(PDF 530KB) Copyright © All rights reserved.
Failed to retrieve file