Home
A User Guide for DRAGON Release 3.06L (2013/07/05)
Contents
1. 0 0 SAVE ON EDITMOD VOLMATF 180 for first step BURNUP is created WHILE Timei Timec lt DO EVALUATE Timef Timei Delt IF Timei 0 0 THEN BURNUP LIBRARY EVO LIBRARY FLUX VOLMATF DEPL lt lt Timei gt gt lt lt Timef gt gt DAY POWR lt lt Power gt gt ELSE BURNUP LIBRARY EVO BURNUP LIBRARY FLUX VOLMATF DEPL lt lt Timei gt gt lt lt Timef gt gt DAY POWR lt lt Power gt gt ENDIF LIBRARY SHI LIBRARY VOLMATS INTLINS EDIT 0 PIJ DELETE PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU FLUX PIJ LIBRARY VOLMATF TYPE EDITION EDI EDITION FLUX LIBRARY VOLMATF SAVE us change delta t for burnup and final time if required PEN IF Timef Timec THEN IF Timec 150 0 THEN EVALUATE Delt Timec 50 0 300 0 ENDIF IF Timec 50 0 THEN EVALUATE Delt Timec 20 0 150 0 ENDIF IF Timec 10 0 THEN EVALUATE Delt Timec 10 0 50 0 ENDIF IF Timec 5 0 THEN EVALUATE Delt Timec 5 0 10 0 ENDIF IF Timec 1 0 THEN EVALUATE Delt Timec 4 0 5 0 ENDIF ENDIF EVALUATE Timei Timef ENDWHILE Save calculation results in CPO format file IGE 174 Rev 12 Release 3 061 181 LSS 1 CPO BURNUP EDITION
2. 170 ROD1 GEO ROD1 SPLITR 2 1 ROD2 GEO ROD2 SPLITR 2 1 ROD3 GEO ROD3 SPLITR 2 1 RODA GEO RODA SPLITR 2 1 n Self Shielding calculation EXCEL Transport calculation EXCEL Flux calculation for keff rr VOLMATS INTLINS EXCELT CANDU6S TITLE TCWU11 FEW GROUP BURNUP SELF SHIELDING TRACKING EDIT 0 MAXR 13 TRAK TISO 5 10 0 SYMM 12 LIBRARY SHI LIBRARY VOLMATS INTLINS EDIT 0 VOLMATF INTLINF EXCELT CANDU6F TITLE TCWU11 FEW GROUP BURNUP TRANSPORT TRACKING EDIT 0 MAXR 31 TRAK TISO 5 10 0 SYMM 12 PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU PIJ LIBRARY VOLMATF TYPE K EDITION FLUX LIBRARY VOLMATF CANDU6F MERG 6 610 7 710 1 8 8 10 1 1 9 9 10 1 1 2 4 5 5 9 o 5 5 5 5 COND 4 0 FLIB ALL SAVE SPH MGEO CANDU6F EXCELT EDIT 0 MAXR 31 TRAK TISO 5 10 0 SYMM 12 69 group Burnup EUN BURNUP LIBRARY EVO LIBRARY FLUX VOLMATF EDIT 3 EXPM 200 0 DEPL lt lt Timei gt gt lt lt Timec gt gt DAY POWR lt lt Power gt gt LIBRARY SHI LIBRARY VOLMATS INTLINS EDIT 0 PIJ DELETE PIJ PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU FLUX PIJ LIBRARY VOLMATF TYPE K EDITION EDI EDITION FLUX LIBRARY VOLMATF CANDU6F PERT SPH MGEO CANDU6F EXCELT EDIT 0 MAXR 31 TRAK TISO 5 10 0 SYMM
3. PIJK FLUX FLU SYS MACRO TRACK TYPE K EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK PNL BUCK 1 40181E 03 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE B B1 PNL KEFF 1 228007 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE B B1 PNL EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE L B1 PNL EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX DELETE FLUX FLUX FLU SYS MACRO TRACK TYPE B1 HETE BUCK 1 40181E 03 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE B B1 HETE KEFF 1 228007 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE B B1 HETE R BUCK 7 5 00993E 04 EDITION EDI EDITION FLUX MACRO TRACK IGE 174 Rev 12 Release 3 061 FL EDIT 2 SAVE UX FLU FLUX SYS B B1 H MACRO TRACK ETE Z BUCK R 1 00198 EDITION EDI EDITION EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE B Bl HETE EDITION EDI EDITION EDIT 2 SAVE FLUX FLU FL
4. STRING PolarAng CACB MODULE GEO EXCELT MAC MOCC EDI DELETE END MACROSCOPIC CROSS SECTIONS MACRO MAC NGRO 1 NMIX 3 READ INPUT MIX 1 TOTAL 0 2 SCAT 1 1 0 19 FIXE 6 4 MIX 2 TOTAL 0 2 SCAT 1 1 0 19 MIX 3 TOTAL 0 0 SCAT 1 1 0 00 GEOMETRIES ENTERED WITH SYMMETRIES WAT24 24 X 24 REGIONS WATA GEO CAR2D 3 3 X DIAG VOID MESHX 0 00 1 25 5 00 10 00 Y REFL DIAG MESHY 0 00 1 25 5 00 10 00 MIX 1 3 2 3 2 2 WAT24 GEO WATA SPLITX 3 9 12 SPLITY 3 9 12 SOLUTION FOR WAT24 TRACK WATATRK EXCELT WAT24 TITLE TCMO3 WATANABE MAYNARD 24X24 MAXR 300 TRAK TSPC 12 12 0 FLUX MACRO TRACK WATATRK lt lt PolarAng gt gt S THER 1 6 100 EXTE 1 E 6 100 UPPER QUADRANT FLUX FOR 24X24 RESULTS GIVEN IN TABLE 1 ref p 411 EDITION EDI FLUX MACRO TRACK EDIT 2 SAVE MERGE REGION 000000000000 0 000000 0 00000000000 0 0 0 0 0 0 0 0 0000000000 0 000000 0 000000000 0 0 0 0 0 0 0 0 00000000 0 0 0 0 0 0 0 0 0000000 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 0 0 0 0 0 0 0 0 0000 0 0 0 0 O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 SS
5. 112 Solution FIXED SOURCE PROBLEM Editing Absorption rates taken from STANKOVSKI cell 1 0 83799 0 00689 cell 2 0 73979 0 03571 cell 3 0 82218 0 03991 cell 4 0 85166 0 04104 cell 5 0 78722 0 03824 cell 6 1 67049 0 08092 cell 7 1 71199 0 08252 cell 8 0 85350 0 04120 cell 9 1 72122 0 08328 cell 10 0 86023 0 04174 NOTE There is a factor 4 0 with the EDI results of DRAGON SYS ASM MACRO TRACK PWRTRK FLUX FLU SYS MACRO TRACK TYPE S EDITION EDI FLUX MACRO TRACK EDIT 2 SAVE MERGE REGION 1 1 1 2 3 4 3 4 5 6 5 6 7 8 7 8 910 910 9 10 11 12 11 12 11 12 11 12 13 14 13 14 13 14 13 14 15 16 15 16 15 16 17 18 17 18 17 18 17 18 19 20 19 20 19 20 PWRTRK END QUIT DELETE PWRTRK LIST 4 3 3 TCM03 Watanabe and Maynard problem with a void region This test case is one group problem with a central void region see Figure 20 This benchmark was first ro posed by Watanabe and Maynard Akroyd and Riyait used it to analyze the performance of various codes Input data for test case TCM03 x2m 5 5 MACROSCOPIC CROSS SECTIONS FIXED SO E PROBLEM CARTESIAN 3 X 3 ASSEMBLY an URCE R Nucl Ann EF Akroyd and Riyait Energy 16 R Roy et al Advances in Mathematics and Reactor Physics April 28 May 2 1 R Roy
6. ROD2 GEO ROD1 MIX 7 10 NPIN 6 RPIN 1 4885 APIN ROD3 GEO ROD1 MIX 8 10 NPIN 12 RPIN 2 8755 APIN ROD4 GEO RODI MIX 9 10 NPIN 18 RPIN 4 3305 APIN EDITION 0 0000 0 0000 0 261799 0 0 IGE 174 Rev 12 Release 3 061 VOLMATF INTLINF EXCELT CANDU6S EDIT 0 MAXR 100 TRAK TISO 29 20 0 LIBRARY SHI LIBRARY VOLMATF INTLINF EDIT 0 VOLMATF INTLINF DELETE VOLMATF INTLINF CANDU6F GEO CARCEL 8 X REFL MESHX 14 2875 14 2875 REFL Y REFL MESHY 14 2875 14 2875 REFL RADIUS 0 00000 0 7221626 2 160324 3 600681 SPLITR 1 2 2 2 1 1 1 9 MIX 14 15 16 17 2 3 4 5 5 CLUSTER ROD1 ROD2 ROD3 ROD4 HE ROD1 GEO TUBE 2 MIX 6 10 M NPIN 1 RPIN 0 0000 APIN 0 0000 RADIUS 0 00000 0 6122 0 6540 SPLITR 2 1 ROD2 GEO RODI MIX 7 11 NPIN 6 RPIN 1 4885 APIN 0 0000 ROD3 GEO RODI MIX 8 12 NPIN 12 RPIN 2 8755 APIN 0 261799 RODA GEO RODI MIX 9 13 NPIN 18 RPIN 4 3305 APIN 0 0 CANDU6H GEO CARCEL 8 X REFL MESHX 14 2875 14 2875 REFL Y REFL MESHY 14 2875 14 2875 REFL RADIUS 0 00000 0 7221626 2 160324 3 600681 SPLITR JJ 2 2 2 1 1 1 9 MIX 1 2 3 4 5 6 7 8 8 VOLMATF INTLINF EXCELT CANDU6F TITLE TCWW14 Flux geometry EDIT 0 MAXR 100 TRAK TISO 12 20 0 VOLMATH INTLINH EXCELT CANDU6H TCW
7. ES Ue Bae OR 82 56 Structure INEO ou uu euh EUR Ra oie as Nes dt ds 83 Tm 83 58 Structure 2 o ud oue aem eae EE abdo Se 3 85 59 Structure desccfC 22222002055 D ex we X m v 87 60 Structure for merging EXCELT tracks 88 61 _ Structure for merging NXT track 88 62 Structure for partitioning NXT tracking filed 88 63 Structure cou ae lee wx d ep wed qu 89 Bests ee Bt eae 90 ii a we 90 66 Structure PSP for valid tracking 90 67 Structure desepspi soe 4 he AUS SW BE d 91 68 Structure SAD aS BS S h a bee ROE EES qeu eG eS 92 69 Structure descsady 92 70 Str ctur PERI 22 59 OEE DE p re 95 71 Structure 95 72 Updatins or creating an HISTORY structure using a BURNUP structure 96 73 Updatins or creating an HISTORY structure using MAP structurd 96 74 Updating a MAP structure using an HISTORY
8. 3 19 The TEM modula RD om Sew Ed me o a 3 19 1 Data input for module 320 Pheer MT module uu 33 erp Leu A S we a LR APN 3 21 Th PTE module s au so ke dec ES OR sn 3 21 1 Data input for module 4 3 4 4 2 4 da eh em ORE RR ER HO 4 EXAMPLES Macroscopic cross sections example 4 3 4 3 4 4 3 5 4 3 6 TCM06 Buckling search without fission source 4 3 7 TCM07 Test of boundary condition 4 3 8 TCMOS Fixed source problem with fissio 4 4 4 4 1 4 4 2 4 4 3 4 4 4 WLUP microscopic cross section example TCM04 Adjuster rod in a CANDU type supercel 05 Comparison of leakage model TCWUO The Mosteller benchmark TCWUO2 A 17 x 17 PWR type assembly TCWUO3 An hexagonal assembly TCWU04 A Cylindrical cell with burnupi 4 4 5 TCWU05 A CANDU 6 type annular cell with burnup vi 67 68 70 71 72 76 77 78 81 83 85 87 88 89 90 91 92 92 95 96 99 99 101 102 103 105 105 105 IGE 174 Rev 12 Release 3 061 Vil J06 A CANDU 6 type su percell with control rod TCWU TCWU 174 Rev 12 Release 3 061 List of Figures 3 Hexagonal geometries of type SB60 and 90 199 4 Hexagonal geometries of type R120 and R180 5 Hexagonal geometry of type SA180
9. TRACK INTLIN EXCELT BCO EDIT 0 MAXR 40 TRAK TISO 2 1 0 SYS ASM LIBRARY2 TRACK INTLIN EDIT 0 FLUX FLU SYS LIBRARY2 TRACK TYPE K EDITION EDI FLUX LIBRARY2 TRACK EDIT 2 MERG COMP COND 4 0 SAVE ON NOBC SYS TRACK INTLIN DELETE SYS TRACK INTLIN PODES Transport calculation EXCEL Flux calculation for keff IGE 174 Rev 12 Release 3 061 x Homogenized properties for rod in ges TRACK INTLIN EXC ELT BCI 160 EDIT 0 MAXR 40 TRAK TISO 2 1 0 SYS ASM LIBRARY2 TRACK INTLIN EDIT 0 FLUX FLU FLUX SYS LIBRARY2 TRACK TYPE K EDITION EDI EDITION FLUX LIBRARY2 TRACK EDIT 2 MERG COMP COND 4 0 STAT DELS REFE NOBC TRACK INTLIN SYS DELETE TRACK INTLIN SYS END QUIT LIST 4 47 TCWUO07 A CANDU 6 type calculation using various leakage options This test case treats the CANDU cell with a cartesian moderator region similar to the cell described in defined Figure 26 using various leakage options This test case also uses the embedded DRAGON procedure stored in the TCWUO5Lib c2m file Input data for test case TCWU07 x2m TEST CASE TCWUO7 x CANDU 6 CARTESIAN CELL iaea WLUP Library EST VARIOUS LEAKAGE OPTIONS foo Define ST
10. b O O O O O O O O O 129 IGE 174 Rev 12 Release 3 061 130 5 0 6 0 0 7 O 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 9 0 0 0 0 O 0 0 0 10 0 0 FLUX AT X 5 625CM FOR 24X24 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE MERGE REGION 000000000000 0 1 0 0 0 0 0 0 0 0 0 0 00000000000 0 2 0 0 0 0 0 0 0 0 O 0 0000000000 0 3 0 0 0 0 0 0 0 0 0 0 000000000 0 4 0 0 0 0 0 0 0 0 0 0 00000000 0 5 0 0 0 0 0 0 0 0 0 0 0000000 0 6 0 0 0 0 0 0 0 0 0 0 000000 0 7 0 0 0 0 0 0 0 0 0 O 00000 0 8 0 0 0 0 0 0 0 0 0 0000 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 011 0 0 0 0 0 0 0 0 0 0 0 012 0 0 0 0 0 0 0 0 0 0 013 0 0 0 0 0 0 0 0 0 O 14 15 16 17 18 19 20 21 22 23 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 WATATRK DELETE WATATRK END QUIT LIST 4 3 10 10 Solution of a 2 D fixed source problem using the module This test case is for a 2 D Cartesian assembly that contains a fixed source It is solved using the method of cyclic characteristics IGE 174 Rev 12 Release 3 061 Input data for test case TCM10 x2m TEST CASE TCM11 MACROSCOPIC CROSS SECTIONS FI
11. NAMISO dens dil INF inrs DBYE tempd SHIB NAMS THER ntfg HINC TCOH NOEV COMB mati relvol IGE 174 Rev 12 Release 3 061 22 where MIX matnum temp denmix NAMALI NAMISO dens dil INF inrs DBYE tempd SHIB NAMS THER keyword to specify the number identifying the mixture to be read mixture identifier The maximum value that matnum may have is nmixt When matnum is ab sent the mixtures are numbered successively starting from if no mixture has yet been specified or from the last mixture number specified 1 absolute temperature in Kelvin of the isotopic mixture It is optional only when this mixture is to be updated in which case the old temperature associated with the mixture is used mixture density in gxcm 2 characterx8 alias name to be used locally for an isotope When the alias name is absent the isotope name used locally is identical to the isotope name on the library keyword to specify to which isotope in a library is associated the previous alias name characterx12 name of an isotope present in the library which is included in this mixture When the mixture density denmix is specified this parameter is the relative weight percentage of the isotope in this mixture Otherwise the parameter is the isotopic concentration of the isotope NAMISO in the mixture 1024 x cm group independent microscopic
12. 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 000000000000 00000000000 0000000000 000000000 00000000 6 7 8 0000000 000000 00000 9 10 11 0000 0 0 0 13 14 15 16 17 18 19 20 21 22 23 24 IGE 174 Rev 12 Release 3 061 117 0 0 0 0 0 WATATRK DELETE WATATRK END QUIT LIST 4 3 4 04 Adjuster rod in a CANDU type supercell This test case represents a two group calculation of incremental cross sections resulting from the insertion of stainless steel adjuster rods in a CANDU 6 supercell see Figure 21 Input data for test case TCM04 x2m TEST CASE 04 MACROSCOPIC CROSS SECTIONS FISSION SOURCE PROBLEM CANDU 3 D ADJUSTER ROD 1 8 ASSEMBLY REF none F s Define STRUCTURES and MODULES used 2 LINKED_LIST BC TRACK MACRO SYS FLUX EDITION TRACK2 SYS2 FLUX2 EDITION2 SEQ BINARY BCTRK MODULE GEO EXCELT EXCELL MAC ASM FLU EDI DELETE END Less Macroscopic XS NGRO 2 NMIX 4 NIFI 1 READ INPUT MIX 1 TOTAL 3 22798014E 1 3 81341100E 1 NUSIGF 5 46564534E 3 7 17375278E 2 CHI 1 0 0 0 SCAT 22 3 13575147E 4 3 11233580E 1 2 2 3 24143648E 1 2 19577667E 3 MIX 2 OTAL 1 49818063E 1 1 59792125E SCAT 22 7 40572286E 5 1 47693634E 22 1 57371104
13. ENDIF LIBRARY SHI LIBRARY TRACK EDIT 0 PIJ DELETE PIJ PIJ ASM LIBRARY TRACK FLUX FLU FLUX PIJ LIBRARY TRACK IF Iprint 3 THEN EDITION EDI EDITION FLUX LIBRARY TRACK SAVE ENDIF change delta t for burnup final time and power if required IF Timef Timec THEN IF Timec 1000 0 THEN EVALUATE Power Delt Timec 0 0 1000 0 2000 0 ENDIF IF Timec 500 0 THEN EVALUATE Delt Timec 100 0 1000 0 ENDIF IGE 174 Rev 12 Release 3 061 IF Timec 50 0 THEN EVALUATE Delt Timec ENDIF ENDIF EVALUATE Timei Timef ENDWHILE END QUIT LIST p 4 4 9 TCWUO9 Testing boundary conditions 165 50 0 500 0 This case tests different boundary conditions for the Mosteller cell see Figure 23 Input data for test case TCWU09 x2m TEST CASE 009 M iaea WLUP Library R REF None LINKED_LIST MOSTELA MOST 1 VOLMAT EFLECTIVE AND VOID BC Define STRUCTURES and MODULI MODULE LIB DELETE END Lee O JPMT SYBILT SHI LIBRA OSTELLER BENCHMARK FOR 1 ANNULAR CELL ES used RY PIJ FLUX OUT ASM FLU EDI Microscopic cross section from file iaea format WIMSD4 Les
14. REPEAT keyword to specify that the previous list of mixtures real or virtual will be repeated This is valid only when N m is an integer If this keyword is absent and n lt then the missing mixtures will be replaced with void imix ihmix 0 CELL keyword to specify the sub geometries generating cells that fill a Cartesian or hexagonal as sembly of cells When a sub geometry is located inside a geometry but outside the calculation region it must be declared virtual for example the corners of a nuclear reactor HCELL array of sub geometry character x12 names to fill the Cartesian or hexagonal assembly of cells The same sub geometry may appear in different positions within the global geometry if the material properties and dimensions are identical The concept of sub geometry is useful for the JPMT and SYBILT calculation options since the collision probability matrix associated with each sub geometry is computed independently of its location in the geometry In general the neutron flux in identical sub geometry located at different locations will be different even if they are associated with the same collision probability matrix These sub geometry names must be specified in the same order as for real and virtual mixtures MERGE keyword to specify that some sub geometries or regions must be merged imerge array of numbers that associate a global sub geometry or region number with each sub geometry or
15. G G 66 67 GAMMA 226 GANLIB GAUS cc 58 59 GELB 601 67 GEO 72 73 GEO ix 25 25 28 44 48 62 73 EOMETRY 7 25 46 58 60 68 71 72 91 GEONAM 25 26 45 46 60 68 90 01 83 96 97 99 MASS 84 LOB 78 81 LOBAL D8 GOXSRN 2 GOXSWN 91 58 GRMIN 58 GROUP 26 27 a FE Q Q IGE 174 Rev 12 Release 3 061 H H1 78 81 HALT 52 54 HBC 29 30 HCELL B6 42 HCOH 2123 hd2 83 HEDIT 16 17 60 666 26 27 354044 45 HEXCEL 26 27 36 41 44 5 HEXCELZ 26 27 36 41 exmsh B I msan 26 27 32 35 40 41 45 2 26 27 32 36 41 45 EXZ ABARA HINC CLEA HISO 72 74 HISTORY 96 97 HISTORY x 8 96199 36 8742 72 73 P1 182 HOMO 76 77 HOMOGE 26 45 HSB DI 6 896 97 hstbrn hstdim xi 9698 hstpar 119699 HTURN 36102 hu8 83 I iaea 142 iaea lib 142 ialbp ibun 96 iburn 19 icha 96 icode 29 icol 56 icond 72 IDEM 66 67 96 idir 100 idirn 72 idiro 72 ielem 56 iext 90 igroup ihmix 3640 ilastg gt 230 imat 0 12 imerge 36 2 imix B6H40 42 imixa 72 75 imixb 78
16. H 7 Jj 3 lt MAC GEO EXCELT ASM FLU EDI DELETE END MACRO MAC NGRO 1 NMIX 2 NIFI 1 READ INPUT MIX 1 TOTAL 0 75 SCAT 1 1 0 50 NUSIGF 1 00 CHI 1 0 MIX 2 TOTAL 0 75 SCAT 1 1 0 50 d x Geometry LATGEOR Cartesian 2D with reflection BC Cartesian 2D with void BC Tracking EXCELT sess LATGEOR GEO 2 2 2 X REFL X REFL MESHX 0 00 1 0 2 00 SPLITX 4 4 Y REFL Y REFL MESHY 0 00 1 0 2 00 SPLITY 4 4 MIX 1 2 2 2 ATGEOV GEO LATGEOR X VOID X VOID Y VOID Y VOID ATREGR TRKR EXCELT LATGEOR TITLE LATHROP P1 ANISOTROPE MAXR 64 TRAK TISO 49 20 0 LATREGV TRKV EXCELT LATGEOV TITLE LATHROP P1 ANISOTROPE MAXR 64 TRAK TISO 49 20 0 Solution 5 2 SYSR ASM MACRO LATREGR TRKR FLUXR FLU SYSR MACRO LATREGR ACCE 3 0 EDITR EDI FLUXR MACRO LATREGR EDIT 1 SYSV ASM MACRO LATREGV TRKV FLUXV FLU SYSV MACRO LATREGV ACCE 3 0 EDITV EDI FLUXV MACRO LATREGV EDIT 1 LATGEOR LATREGR SYSR FLUXR EDITR TRKR IGE 174 Rev 12 Release 3 061 126 LATGEOV LATREGV SYSV FLUXV EDITV TRKV
17. 3 13 The CFC module The CFC module is used to generate a Feedback Model database required for a full core calculation in DONJON TE The input specifications for this module are presented in Table Table 58 Structure CFC CFCNAM CFC CFCNAM CPONAM 1 i 1 28 desccfc CFCNAM characterx12 name of the FBMXSDB data structure containing the Feedback Model reactor database The reactor database can be updated if CFCNAM appears on the RHS CPONAM characterx12 name of read only data structures There are 28 different CPO data struc tures required These CPO respectively contain the following information 1 Reference data for cell averaged and two group burnup dependent cross sections 2 Data for cell averaged and two group burnup dependent cross sections cross section at high fuel temperature perturbation 3 Data for cell averaged and two group burnup dependent cross sections cross section at low fuel temperature perturbation 4 Data for cell averaged and two group burnup dependent cross sections cross section at high coolant temperature perturbation 5 Data for cell averaged and two group burnup dependent cross sections cross section at low coolant temperature perturbation 6 Data for cell averaged and two group burnup dependent cross sections cross section at high moderator temperature perturbation 7 Data for cell averaged and two group burnup dependent cross sections cross section at low
18. 96 r a 97 COUR HP 98 77 Structure hstbrny ES NOR es 98 Structure Stary uu s Ro bee SL lama Q alta Owe Rx BES 99 79 Structure TLM i 5 44 4 4 sss Lu s S RR LE TOROS S099 9 Q 3 EE 99 80 Structure desctlm 100 81 Structure FMT for SUS3D option 101 82 Structure FMT for DIRFLX option 102 53 Str ctute IER 2 ous oom Eno us ROS db eb Powe BSG 102 84 Structure descasm IGE 174 Rev 12 Release 3 061 1 1 INTRODUCTION The computer code DRAGON results from an effort made at Ecole Polytechnique de Montr al to ratio nalize and unify into a single code different models and algorithms used to perform lattice cell calculations based on solutions to the neutron transport equation One of the main concerns of the DRAGON development team has always been to ensure that the structure of the code remains such that the development and implementation of new calculation techniques is facilitated DRAGON is therefore a lattice cell code divided into many calculation modules that are linked using the GAN generalized driver These modules exchange information only via well defined data structures The main components of the code DRAGON are e the library access m
19. where MAXR keyword to specify the maximum number of flux regions for this geometry maxreg maximum number of flux regions for this geometry The default value is set to the number of regions previously computed by the GEO module However this value is generally insufficient if symmetries or mesh splitting are specified MAXI keyword to specify the maximum number of interface currents surrounding the blocks in the calculations maxcur the maximum number of interface currents surrounding the blocks The default value is max 18 4 maxreg MAXZ keyword to specify the maximum amount of memory required to store the tracking lines maxint the maximum amount of memory required to store the tracking lines The default value is max int 10000 174 Rev 12 Release 3 061 53 HALT QUAI iqual QUA2 iqua2 nsegment EOW GAUS ROTH ROT DPOO DPO1 ASKE LIGN QUAB keyword to stop the execution at the end of the geometry analysis This option permits the geometry inputs to be checked the number of blocks and interface currents to be calculated and a conservative estimate of the memory required for storing the tracks to be made for mixed geometries keyword to specify the 1 D integration parameters number of basis points for the angular integration of the blocks in a 1 D geometry This parameter is not used for CAR1D geometries If a Gauss Legendre or Gauss Jacobi quadrat
20. IGE 174 Rev 12 Release 3 061 155 IF Timei 0 0 THEN BURNUP LIBRARY EVO LIBRARY FLUX VOLMATF DEPL lt lt Timei gt gt lt lt Timef gt gt DAY POWR lt lt Power gt gt BURNUP LIBRARY EVO BURNUP LIBRARY FLUX VOLMATF lt lt Timei gt gt lt lt Timef gt gt DAY POWR lt lt Power gt gt EDIT 0 DELETE PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU FLUX PIJ LIBRARY VOLMATF END LIBRARY SHI LIBRARY VOLMATS INTLINS J EDITION EDI EDITION FLUX LIBRARY VOLMATF RM change delta t for burnup and final time if required dm IF Timef Timec THEN IF Timec 150 0 THEN EVALUATE Delt Timec 50 0 300 0 ENDIF IF Timec 50 0 THEN EVALUATE Delt Timec 20 0 150 0 ENDIF IF Timec 10 0 THEN EVALUATE Delt Timec 10 0 50 0 ENDIF IF Timec 5 0 THEN EVALUATE Delt Timec 5 0 10 0 ENDIF IF Timec 1 0 THEN EVALUATE Delt Timec 4 0 5 0 ENDIF ENDIF EVALUATE Timei Timef ENDWHILE Save calculation results in CPO format file 1 BURNUP EDITION BURNUP REF CASE EXTRACT Xe135 Xe135 NAME MIXTRXE fuel COMPOI COMPO2 CPO EDITION STEP EDITMOD NAME MIXTMOD mode COMPC2 INTLINF INTLINS DELETE INTLINF INTLINS END QUIT LISTT IGE 174
21. character 12 name of the GEOMETRY data structure for the EXCELL module see Sec tion 3 3 structure containing the input data to this module see Section 3 6 1 structure containing the general tracking data to the EXCELL module see Section 3 4 2 structure containing the input data for the EXCELL module see Section 3 6 2 3 6 1 Data input for module ASM EDIT iprint Table 40 Structure descasm 1 ARM NOR2 PIJ PIJKk SKIP NORM ALBS NAME NMPIJ PNOR NONE DIAG GELB HELI 1 ALLG EDIT iprint ARM NOR2 keyword used to modify the print level iprint index used to control the printing of this module The amount of output produced will vary substantially depending on the print level specified keyword to specify that an assembly calculation is carried out without building the full collision probability matrices This option can only be used for a geometry tracked using the JPMT module By default the PIJ option is used keyword to specify that the matrix required for residual calculation is not required This is active 174 Rev 12 Release 3 061 61 PIJ PIJK SKIP NORM ALBS NMPIJ PNOR NONE DIAG NONL only when the JPMT tracking module is called Only the variational acceleration technique in module FLU uses this information see Section 3 7 keyword to spec
22. 75 MACROLIB 5 79 1113 571 60 63 64 68 71 75 MAP 96 07 MAP K 96H98 MASS 83 mass 83 84 mati 21 23 matnum 21 matold L4 16 18 2223 59 83 84 MATXS 2 1618 22 23 83 84 maxcur 52 54 maxint 52 54 MAXJ 52 54 maxmix 43 74 75 231 maxout 64 65 69H71 92 93 MAXR 48 52 54 56 maxreg 33 43 48 52 54 56 74 MAXS 19 maxscr 70 71 maxthr 64 65 69H71 92 93 MAX2 52 54 MCU ix 68 MCU vi 6H8 67 68 70 136 8 MERG 72175 77 93 94 103 MERGE 36 42 144 MESHX BI 107 5 07 MESH2Z 31 32 MFILE 99 MGEO 76 MGF LUX 01 02 MICLIB 9 C504 19 20 24 25 577 78 79 MICOLD 15 19 RA 25 MI CR 72 74 75 82 MICROLIB v BHJ 13 15 16 19 24 57 58 60 63 milie 43 MIX 13 14 21 22 24 Bal 57 41 72H74 93 04 103 MIXB 78 79 mixdil 43 mixegr 43 mixnum 13 L4 MIXP 78 79 16 18 91 MOCC 7 ix 68 MOCC vil 6 8 67 68 128 130 173 MODNAME l5 MODULE 4 module 4 5 MRG Millel 7 88 MTRK 76 MU 226 MXIS 16 58 64 68H70 92 93 N2N I8 21 N2NF 17 N3N 18 21 N3NF 17 IGE 174 Rev 12 Release 3 061 18
23. 18 64 nacti 75 NALBP 11 nalbp 11 NAMALLD1ID2 20 60 61 1821831223 NAMEFIL 16 8 3 84 NAMF LX 225 NAMISO 212224 25 NAMPAR DO 211 99 NAMPIN 36 42 NAMREC NAMREC NAMS 2162 225 1 48511621163 nanis 47 61 naniso 10 13 16 17 105 nb 103 NBAL 72 76 nbiso 83 84 NBMESH 103 104 68 69 nbscat 1 3115 NBSLIN 50 52 nbslin 50 52 nbun 98 ncha 98 NCOR 93 94 nd2 85 16 18 NDIR 82 83 nedit 16 17 NELAS NEWNAME NF 17 NFLUX 225 NFSLO 17 NFTOT 13 14 21 03 94 171821 nglo 98 nglob 08 NGRO LI NGROUP 225 ngroup L1H13 15 63 65 74 92 105 ngroup 1 74 nh1 83 85 NHEAT 1 7 18 nhr 26 27 32 232 10 115 10 13 NINEL 17 nis 72 74 01 68 69 nlibre 64 65 6971 93 94 nloc 98 nmilg 43 nmisot 16 nmistr 43 NMIX 10 16 nmix 75 nmixt 1012 14 16 22 60 61 NNE 17 nol16 83 85 NOBA 691 71 NOCONTOUR 91 78 80 EV 2023 Ex 78 81 GC 58 59 GL 78 81 LJ 53 59 NOMDIR 82 NONE 16 60H62 72 73 91 93 94 103 NONL 60 NoPause 100 NOR2 60 65 NORE 47 48 NORM 11 12 49 le0H62 64 NOSA 78 79 NOSY 50 51 NOTR 50 52 58 59 82 np
24. 2 REFL 43662E 02 17610E 07 91216E 01 51050E 06 53310E 03 47660E 03 72890 03 00160 09 80960 01 83340 04 23970 02 70140 01 06420 08 06790 01 98750 06 44780 02 21400 07 84350 01 23470 04 24570 01 15510 01 31840 08 11820 01 44860 06 12290 02 04550 06 138 IGE 174 Rev 12 Release 3 061 139 C6 C6 C6 CT CT CT C7 CT C7 C7 C7 CT C1 GEO CARCELZ 1 1 MESHX 0 0 1 26 MESHY 0 0 1 26 MESHZ 0 0 1 26 RADIUS 0 0 0 54 MIX 1 2 C6 GEO Cl MIX 3 3 CT GEO Cl MESHZ 0 0 1 26 MIX 4 4 Use EXCELL eut PIJMatrix T3D EXCELL GEOM MACRO MAXR 400 TRAK SUBG 1 TISO 4 10 0 FLUXA FLU MACRO PIJMatrix T3D TYPE K FLUXA T3D PIJMatrix DELETE FLUXA T3D PIJMatrix Use EXCELT to track then ASM FLU or MCU T3D IntLine EXCELT GEOM MACRO EDIT 0 MAXR 400 TRAK TISO lt lt AngTra gt gt lt lt DenTra gt gt 2 PIJMatrix ASM MACRO T3D Intline FLUXA FLU PIJMatrix MACRO T3D TYPE K FLUXA DELETE FLUXA i FLUXA MCU T3D IntLine MACRO TYPE K ETAB lt lt Etab gt gt CURR DIRT Itlm FLUXA T3D IntLine DELETE FLUXA T3D IntLine x MCU Use EXCELL tracking option FLUXA T3D MCU GEOM MACRO lt lt Etab gt gt CURR DIRT lt lt Itlm gt gt MAX
25. 9 3 1 1 The descmac input structure for 10 3 1 2 The descmaci input structure for 10 3 1 3 The descmacm input structure for MAC 12 3 1 4 Macroscopic cross section definition 13 3 1 5 Multigroup physical albedo definition 15 3 2 15 16 19 19 20 3 25 Formatfor d escmixl 2214x693 sus 046 21 3 2 6 Format for descemix2 23 327 Format for desemix3 24 3 3 The GEO moduld 25 3 3 1 Geometry ype 4 won See X wo ad ports 26 3 3 2 Geometry content 28 3 3 3 Boundary 28 3 3 4 Spatial description of geometry 31 3 3 5 Physical properties of eeometry 36 3 3 6 Non standard geometries 42 3 4 44 47 48 50 52 54 er ee 55 3 5 The SAT mod ler a yaoa Ti ae god a uS eite RS s 57 3 5 1 Data input for module SHT 58 3 6 Th assembly modules o up e de des A Bw 6 59 3 6 1 Data input for module ASM 60 3 6 2 Data input for module EXCELL 62 3 7 The FLU module 1 11 Jos
26. Figure 14 Cylindrical cluster geometry IGE 174 Rev 12 Release 3 061 lt G dH s HO gt 13 Figure 15 Two dimensional hexagonal geometry 211 IGE 174 Rev 12 Release 3 061 212 Figure 16 Three dimensional Cartesian supercell IGE 174 Rev 12 Release 3 061 Figure 17 Hexagonal multicell lattice geometry 213 IGE 174 Rev 12 Release 3 061 214 Figure 18 Geometry for test case TCM01 for an annular cell with macroscopic cross sections IGE 174 Rev 12 Release 3 061 216 z scattering region 2 v gt 0 20 cm gt DIEI o uv N Zo 125cm 5 00 cm 10 00 cm Figure 20 Geometry for test case 03 IGE 174 Rev 12 Release 3 061 Figure 21 Geometry of the CANDU 6 supercell with stainless steel adjuster rods 217 IGE 174 Rev 12 Release 3 061 Colored by Region 218 Figure 22 Geometry of the CANDU 6 supercell with stainless steel adjuster rods IGE 174 Rev 12 Release 3 061 219 3 lt 1 26209 cm Figure 23 Geometry for the Mosteller benchmark problem used for TCWUOI 220 IGE 174 Rev 12 Release 3 061 boundary cell 3 O CLV9T T empty cell 1 O CLIT I 1 31472 cm 1 26472 cm corner cell 4 O LIC I 2 fuel cell 1 26472 cm O c y9c T 1 31472 cm generating cell number merged
27. LIBRARY LIB NMIX 3 CTRA WIMS MIXS LIB WIMSD4 FIL MIX 1 600 0 U235 2235 U238 8238 MIX 2 600 0 Zr91 91 MIX 3 600 0 H1H20 3001 BNat 1011 TENDRE Geometry MOSTELA MOSTELV iaea 1 66078 4 2 28994 2 3 83243E 2 4 42326E 2 1 02133E 5 Annular cell Annular cell MOSTELA GEO TUBE 3 O16 6016 4 61309E 2 1 1 016H20 6016 2 21163E 2 with reflective BC with void BC IGE 174 Rev 12 Release 3 061 166 RADIUS 0 0 0 39306 0 45802 0 71206 SPLITR 2 1 1 MIX 1 2 3 R REFL MOSTELV GEO MOSTELA R VOID nn Self Shielding calculation JPM Transport calculation SYBIL Flux calculation for keff VOLMAT JPMT MOSTELA TITLE TCWU09 JPM TRACK MOST MAXR 4 01 QUAI 5 BENCHMARK REFLECTIVE LIBRARY SHI LIBRARY VOLMAT VOLMAT DELETE VOLMAT VOLMAT SYBILT MOSTELA TITLE TCWU09 SYBIL TRACK MOSTELLER BENCHMARK REFLECTIVE BC MAXR 4 QUAI 5 PIJ ASM LIBRARY VOLMAT FLUX FLU PIJ LIBRARY VOLMAT TYPE K OUT EDI FLUX LIBRARY VOLMAT EDIT 4 MERG MIX 1 2 3 COND 4 0 SAVE PIJ VOLMAT DELETE PIJ VOLMAT VOLMAT SYBILT MOSTELV TITLE TCWU09 SYBIL TRACK MOSTELLER BENCHMARK VOID BC MAXR 4 QUAI 5 PIJ
28. TITLE TCWUO1 MOSTELLER BENCHMARK JPM SYBIL MAXR 4 QUAI 5 QUA2 12 5 ASM LIBRARY DISCR2 r CALC FLU CALC CP LIBRARY DISCR2 IGE 174 Rev 12 Release 3 061 T OUT YPE K EDI DIS gt DIS MAXR 4 LIB CP CAI T OUT DIT CRI DISCR2 CP Case 3 Sel annular OUT CALC LIBRARY DISCR2 1 MERG MIX 1 2 3 COND 4 0 STAT ALL REFE 1 DELETE DISCRI D F culation TRKSPC I TCWUO1 ux calculation TLE RARY SHI EDI YPE DIS ysa DIS T MAXR 4 LIB CP CA T OUT DIS EN QUI EDIT D DIT CRI TRKSPC CP Case 4 Sel f Shielding cal Transport calculation EXCE MOS RAK TISO 12 LIBRA ASM LIBRARY DISCR1 TR FLU CALC CP OUT CALC 1 MERG MIX 1 2 3 COND 4 0 STAT ALL REFE 1 DELETE DISCR1 TRKSPC CP EXCE EXCE for K no leakage LT MOST an ELC NCHMARK TELLER 20 0 RY DISCR1 TRKSP KSPC LIBRARY DISCRI LIBRARY DISCRI Cartesian f Shielding cal h culation Transport calculation F TRKSPC T TCWUO1 ux calculation LE RARY SHI ASM LIBRARY D FLU CALC CP K EDI YPE B TRKSPC CP T LIST EXCE MOS RAK TSPC 12 LIBRA OUT CALC 1 MERG MIX 1 2
29. structure describing the tracking data specific to BIVACT see Section 3 4 6 3 4 1 The general tracking data This data structure is described in Table EDIT iprint TITL TITLE ANIS nanis RENO NORE Here EDIT iprint TITL TITLE ANIS nanis Table 30 Structure desctrack ENM REND keyword used to modify the print level iprint index used to control the printing of this module The amount of output produced by each tracking module vary substantially depending on the print level specified the geometry analyzed and the tracking options selected For example with the NXT module one generally has e if iprint 0 no output is produced e if iprint lt 1 a minimum amount of output is produced main geometry properties maxi mum and average errors on regional volume and surface area resulting from the tracking if iprint lt 2 local errors on regional volume and surface area resulting from the tracking are also produced e if iprint 7 1000 explicit follow up of the tracking process as it progresses through the code keyword to specify the title for this tracking file the character 72 title associated with this tracking file By default TITLE is a series of 72 blank characters keyword to specify the order of anisotropy in collision probability or for the method of charac teristics order of anisotropy in collision probability or for the method of c
30. RESULTS lt 3 ABS e3 lt lt 9 ABS 9 lt 136 11 lt 12 5 12 lt 14 lt 15 ABS 15 lt 4 3 12 TCMI2 Solution of a 3 problem using the MCU module This test case is for a simplified 3 D Cartesian assembly analyzed using the EXC solution is generated as well as two solutions using the method of characteristics Input data for test case TCM12 x2m T 3 U EST CASE TCM MACROSCOP D CARTI 12 ASSEMBLY SE the 3 D C 1 TESTI ROSS SECTIONS HARACTERISTICS MODUL E TRACKING FILE Gl MCU ELT Acollisions probability IGE 174 Rev 12 Release 3 061 137 EXCELL TRACKING 2 TEST2 US pea Define STRUCTURES and MODULES used jose MODULE MAC GEO MCU END EXCELT DELETE EXCELL FLU ASM LINKED_LIST MACRO GEOM T3D FLUXA PIJMatrix SEQ BINARY Intline REAL DenTra 10 0 INTEGER AngTra 4 STRING Itlm EVALUATE Itlm ITLM STRING Prll STRD H INTEGER Merg EVALUATE 0 STRING Etab EVALUATE Etab OFF STRING jacc EVALUATE jacc JACC x Validate input options IF Itlm NOT THEN EVALUATE Itlm ENDIF dc Macroscopic cross sect
31. 6016 2 38345 2 BNat 1011 2 38103E 5 MIX 2 579 9 016 6016 3 06711E 4 Cr52 52 7 54987 5 Fe56 2056 1 47624E 4 Zr91 91 4 18621E 2 MIX 3 579 9 H1H20 3001 4 65292E 2 016H20 6016 2 32646E 2 Cr52 752 4 79927E 5 Fe56 2056 4 45845E 5 Ni58 58 1 13521E 4 MoNat 96 4 03755E 6 A127 27 2 35231 6 55 50 4 15901 7 BNat 1011 2 32761E 5 Zr91 791 8 92427E 4 MIX 4 933 6 O16 6016 4 49355E 2 U235 2235 7 39237E 4 1 U238 8238 2 17285E 2 1 MIX 5 579 9 Inlis 2115 7 57464 3 Cd113 2113 2 62493E 3 Ag109 3109 4 49188E 2 MIX 6 579 9 Cr52 527 1 52702 2 56 2056 5 57670 2 11158 58 7 51418E 3 Mn55 50 8 02943E 4 MIX 7 579 9 H1H20 3001 3 06466E 2 016H20 6016 1 53233E 2 Fe56 2056 5 27485E 5 Cr52 52 2 69769E 5 BNat 1011 1 53077E 5 Zr91 91 1 49580E 2 MIX 8 579 9 H1H20 3001 4 65292 2 016H20 6016 2 32646E 2 Cr52 1527 4 79927E 5 Fe56 2056 4 45845E 5 Ni58 58 1 13521E 4 MoNat 96 4 03755E 6 A127 27 2 35231E 6 Mn55 d 4 15901E 7 BNat 1011 2 32761E 5 Zr91 719 8 92427E 4 MIX 9 579 9 O16 6016 2 87335E 4 Cr52 752 7 07291E 5 Fe56 2056 1 38298E 4 Zr91 91 3 92175E 2 MIX 10 579 9 IGE 174 Rev 12 Release 3 061 H1H20 3001 4 71346E 2 O16H20 6016 2 Cr52 52 2 Fe56 2056 2 09013E 5 Ni58 58 5 MoNat 96 1 127 27
32. The global numbering of the zones for a specific geometry proceeds following an order that is generally de pendent on the specific tracking module selected For more information on the region ordering selected by the EXCELT module one can consult reference 5 while for the NXT module the information is provided in refer ence 14 The calling specifications for each of these modules are provided in Tables 25 to 29 Table 25 Structure EXCELT TRKNAM TRKFIL EXCELT TRKFIL GEONAM desctrack descexcel IGE 174 Rev 12 Release 3 061 46 Table 26 Structure NXT TRKNAM GEONAM desctrack desenxt TRKFIL TRKNAM TRKNAM desctrack descnxt TRKFIL TRKNAM NXT GEONAM desctrack descnxt The first form for the structure NXT is used to analyze the geometry and track but will not generate a tracking file see Table 26 The second form can be used to generate a tracking file from a compatible TRACKING data structure Finally the last form generates both the tracking file and the TRACKING data structure from the GEOM ETRY data structure Thus even if TRKFIL is not provided the tracking of the geometry may still take place and will be validated The track normalization factors required to ensure volume preservation will also be computed and stored on TRKNAM This information is required by the ASM module for collision probab
33. ASM LIBRARY VOLMAT FLUX FLU FLUX PIJ LIBRARY VOLMAT TYPE K OUT EDI OUT FLUX LIBRARY VOLMAT EDIT 4 MERG MIX 1 2 3 COND 4 0 SAVE OUT FLUX PIJ LIBRARY VOLMAT DELETE OUT FLUX PIJ LIBRARY VOLMAT END QUIT LIST 4 4 10 TCWU10 Fixed source problem in multiplicative media This case verifies the use of a fixed source inside a cell where fission also takes place Input data for test case TCWU10 x2m FRE TEST CASE TCWU10 MOSTELLER BENCHMARK FOR 1 D ANNULAR CELL iaea WLUP Library FIXED SOURCE PROBLEM IN MULTIPLICATIV MEDIA IGE 174 Rev 12 Release 3 061 LI Define STRUCTURES and MODULES used MO LI LI MO VO NKED LIST MOSTELA VOLMAT LIBRARY PIJ FLUX OUT DUL LIB MAC GEO JPMT SYBILT SHI ASM FLU DELETE END Microscopic cross section from file iaea format WIMSD4 Fixed source of 1 0 5 in group 6 BRARY LIB EDIT 0 NMIX 3 CTRA WIMS IXS LIB WIMSD4 FIL iaea M MIX 1 600 0 MIX 2 600 0 MIX 3 600 0 U235 U238 Zr91 016 2235 1 66078 4 1 8238 2 28994E 2 1 COLT 3 83243E 2 H1H20 3001 4 42326E 2 016 20 BNat 1011 1 02133E 5 BRARY MAC LIBRARY EDIT 0 READ INPUT MIX 3 F
34. DELETE LATGEOR LATREGR SYSR FLUXR EDITR TRKR LATGEOV LATREGV SYSV FLUXV EDITV TRKV MACRO DELETE MACRO END QUIT LIST 4 3 8 08 Fixed source problem with fission This test is for a 2 D Cartesian cell that contains both a fission and a fixed source Input data for test case TCM08 x2m dcin TEST CASE 08 MACROSCOPIC CROSS SECTIONS FIXED SOURCE PROBLEM WITH FISSILE MATERIAL FOR 1 8 7X7 PWR ASSEMBLY 02 Define STRUCTURES and MODULES used 2 LINKED_LIST PWRF TRACF SYSF FLUXF EDITF PWRS TRACS SYSS FLUXS EDITS MACRO SEO BINARY PWRTRKF PWRTRKS MODULE GEO EXCELT MAC ASM FLU EDI DELETE END Macroscopic XS g lt MACRO s MAC NGRO 1 NMIX 4 NIFI 1 READ INPUT 1 TOTAL 1 250 SCAT 1 1 1 242 NUSIGF 0 15 CHI 1 0 MIX 2 TOTAL 0 625 SCAT 1 1 0 355 FIXE 0 000 MIX 3 TOTAL 14 000 SCAT 1 1 0 000 FIXE 1 000 MIX 4 TOTAL 1 250 SCAT 1 1 1 242 FIXE 0 000 Geometry PWRF Cartesian 2D assembly with fission PWRS Cartesian 2D assembly without fission Tracking EXCELT z PWRF G X DIAG REFL Y SYM Oe CAR2D 4 4 Y DIAG IGE 174 Rev 12 Release 3 061
35. DELETE SYS SYS ASM LIBRARY TRACK FLUX FLU FLUX SYS LIBRARY TRACK TYPE K Bl PNL BUCK 0 2948E 2 TION EDI EDITION FLUX LIBRARY TRACK EDIT 3 SAVE EVALUATE step2 step3 step4 step5 step3 step4 step5 step2 EVALUATE istep istep 1 ENDWHILE COMPO CPO EDITION BURNUP BURNUP REF CASE NAME COMPO res COMPO END QUIT LIST 4 4 5 TCWUO05 A CANDU 6 type annular cell with 152 This test case represents the typical CANDU type cell with an annular moderator region defined in Figure Both its cross section and depletion data are taken from the same WIMS D4 file Depletion calculations are performed for 50 days at a fixed power Pl This test case uses the embedded DRAGON procedure stored in the TCWUO5Lib c2m file IGE 174 Rev 12 Release 3 06L Input data for test case TCWU05 x2m TEST CASE TCWU CANDU 6 ANNULA iaea WLUP Libr POWER KW BURN POWER KW URANIUM MASS UO2 REAL DENSI UO2 EFF DENSIT 2 05 UO2 TEMPERATURE ENRICHMENT COOLANT D2 AT MODERATOR D2 A NUMBER OF DAYS a Power 1 4 5 10 20 50 R CELL ary 615 00000 KG 31 973130 19 23600 TY 10 59300 10 43750 F 941 28998 0 71140 99 222 T 99 911 50 initialize Define variables and Burnup paremeters
36. Data for cell averaged and two group burnup dependent cross sections cross section with perturbed coolant temperature and density Data for cell averaged and two group low power burnup dependent cross sections cross section Data for cell averaged and two group low intermediate burnup dependent cross sections cross section Data for cell averaged and two group high power burnup dependent cross sections cross section Reference data for two group burnup dependent moderator cross sections Data for two group burnup dependent moderator cross sections at high moderator temper ature perturbation Data for two group burnup dependent moderator cross sections at low moderator tempera ture perturbation Data for two group burnup dependent moderator cross sections at high moderator density perturbation Data for two group burnup dependent moderator cross sections at low moderator density perturbation Data for two group burnup dependent moderator cross sections with perturbed moderator boron concentration Data for two group burnup dependent moderator cross sections with perturbed moderator purity structure containing the input data to this module see Section 3 13 1 174 Rev 12 Release 3 061 87 3 13 1 Data input for module CFC EDIT iprint EDIT iprint INFOR TITLE DNAME RNAME PWR powerref powerhigh powerint powerlow TCOOL tcoolref tcoolhigh tcoollow TMODE
37. ON OFF ITLM see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 8 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 keyword used to modify the number of iterations in the self collision rebalancing procedure the number of iterations in the self collision rebalancing procedure The default value is maxscr 5 keyword to specify the option for using exponential tables to specify that the exponential tables will be used to specify that the exponential tables will not be used keyword to specify that the effective number of thermal iterations m at outer iteration n is m min n maxthr where maxthr is the maximum number of thermal iterations 3 9 The EDI module The EDI module performs the main editing calculations in DRAGON It can compute reaction rates aver age and condensed cross sections and fluxes It can also store both macroscopic and microscopic cross sections respectively in the form of a MACROLIB or a MACROLIB on an EDITION data structure for further use The input specifications for this module are presented in Table Table 49 Structure EDI EDINAM EDI EDINAM FLUNAM LIBNAM TRKNAM REFGEO REFPIJ SPHGEO SPH SPHLINE descedi EDINAM FLUNAM LIBNAM TRKNAM REFGEO characterx12 name of the EDITION data structure where the editing results will be stored character 12 name ofthe FLUXUNK data structure co
38. day days days days days days for for for for for for 31 9713 kw kg for b Burnup time interval Delt 1 F o F M Xo oo Ro Ro 0 to l to 5 to 10 to 50 to 50 to 1 5 10 50 150 300 day days days days days days c Days with burnup interval changes 0 0 150 0 and 300 0 days 0 0 to 300 0 days Timef 1 0 5 0 10 0 5 d Burnup control time variables Timei Timei initial time Timef final time REAL Power Delt Timec Timei Timef 31 9713 120 1 0 0 0 0 0 TRE x Define STRUCTURES and MODULI LINKED_LIST LIBRARY CANDU6S CANDU6F VOLMATS VOLMATF PIJ FLUX BURNUP 1 COMPO2 Q BINARY INTLINS INTLINF SEQ_ASCIT fuel mode GEO EXCELT SH DELETE END I ASM ES used FLU EVO EDI CPO EDITION 153 IGE 174 Rev 12 Release 3 061 154 Depletion data from file iaea format WIMSD4 Microscopic cross sections from file iaea format WIMSD4 aS PROCEDURE TCWUO5Lib INTEGER iedit 1 LIBRARY TCWUO5Lib lt lt iedit gt gt eee Geometry CANDU6S 13 regions annular cluster for self shielding CANDU6F 31 regions annular cluster for transport c CANDU6S GEO TUBE 5 REFL RADIUS 0 00000 5 16890 5 60320 6 44780 6 58
39. iaea WLUP Library STAINLESS STELL RODS IN 3D SUPERCELL Gl LL Define STRUCTURES and MODULES used NKED_LIST SE MO IN LI TN LIBRARY LIBRARY2 CANDU6F CANDU6S TRACK SYS FLUX EDITION BCO BCI O BINARY INTLIN DULE GEO JPMT EXCELT LIB SHI ASM FLU EDI DELETE UTL END Depletion data from file iaea format WIMSD4 Microscopic cross sections from file iaea format WIMSD4 PROCEDURE TCWUOS5Lib TEGER iedit 1 BRARY TCWUOS5Lib lt lt iedit gt gt CELL CALCULATION Geometry CANDU6S 14 regions Cartesian cluster for self shielding CANDU6F 32 regions Cartesian cluster for transport BCO 48 regions 3D Cartesian geometry 174 Rev 12 Release 3 061 CANDU6F BCI GEO 48 regions 3D Cartesian geometry CARCEL 1 X 1 Y 234 ER RODI ROD1 US 0 0 ROD2 ROD3 ROD4 HHA OF ROD1 ROD2 ROD3 ROD4 Q Q Ej EJ El O O x Fl TRACK INTLIN 5 9 o TUBE e ROD1 ROD1 RODI CANDU6S RODI ROD2 ROD3 ROD4 PLITR 2 PLITR 2 PLITR 2 NNN N lt 5 MESHX 14 2875 14 2875 MESHY 14 2875 14 2875 0 00000 5 16890 5
40. 91 3001 2056 557 1011 91 91 3001 2056 55 10117 91 3001 2056 557 1011 iaea 4 766901 2 381031 7 549871 4 186211 4 652921 4 458451 4 159011 2 327611 8 924271 7 072911 3 921151 4 713461 2 090131 1 949761 2 355981 4 183721 4 716761 1 961301 1 829571 EE 53 FJ ER 1 Gl LH Lu Gl El Gl Gl 2 35153 Gl El FLU EDI CPO file iaea format WIMSD4 016H20 016 Fe56 O16H20 Cr52 Ni58 MoNat A127 016 Fe56 O16H20 Cr52 Ni58 MoNat A127 O16H20 C 52 Ni58 MoNat A127 6016 6016 2056 6016 root 758 96 127 6016 2056 6016 752 PST 96 eda 6016 r527 rege 96 Riu mn mn H NN N F 38345 067111 476241 326461 79927 135211 037551 N Gl LH on 352311 873351 38298 356731 249911 321881 892811 D Dd Dd EH NI on 102771 358381 111221 993831 776141 D Dl Ed Dd OY N 034791 AAA Dd Dd a Ul 145 IGE 174 Rev 12 Release 3 061 Zr91 MIX 7 579 9 H1H20 Fe56 Mn55 BNat Zr91 MIX 8 933 6 U235 U238 contains ASSMB GEO X
41. CELL GEO CARCEL 1 RADIUS 0 000 0 450 MIX 2 1 MESHX 0 625 0 625 SPLITX 2 MESHY 0 625 0 625 SPLITY 2 P GEO MIX 3 1 SPLITR 3 P PWRS GEO CAR2D 4 4 X DIAG X REFL Y SYME Y DIAG CELL PFFF GEO CARCEL 1 RADIUS 0 000 0 450 MIX 2 4 MESHX 0 625 0 625 SPLITX 2 MESHY 0 625 0 625 SPLITY 2 P GEO MIX 3 4 SPLITR 3 TRACF PWRTRKF EXCELT PWRF 22 TITLE 08 STANKOVSKI PWR ASSEMBLY MAXR 58 TRAK TISO 12 8 0 SYSF ASM MACRO TRACF PWRTRKF TRACS PWRTRKS EXCELT PWRS TITLE TCM08 STANKOVSKI MAXR 58 TRAK TISO 12 8 0 SYSS ASM MACRO TRACS PWRTRKS ote Solution TYPE K to test if TYPE S to include TES FLUXF FLU SYSF MACRO TRACF TYPE K EDI FLUXF MACRO TRACF EDITF EDIT 2 SAVE MERGE REGION 1 1 1 2 3 4 3 4 5 6 910 910 91011 12 11 12 15 16 15 16 15 16 17 18 17 18 19 20 19 20 19 20 EDITF DELETE EDITF SINCE KEFF 1 PWR ASSEMBLY k 1 0 fixed source 5 6 7 8 7 8 11 12 11 12 13 14 13 14 13 14 13 14 17 18 17 18 DO FIXED SOURCE PROBLEM 127 IGE 174 Rev 12 Release 3 061 128 FIXED AND FISSION SOURCES TAKEN INTO ACCOUNT ganm FLUXF FLU FLUXF SYSF MACRO TRACF TYPE S EDITF EDI FLUXF MACRO TRACF EDIT 2 SAVE MERGE REGION 1 1 1 2 3 4 3 4 5 6
42. D s en wow x e ew Oe 63 3 7 1 Data input for module FLU 63 3 7 2 Leakage model specification structurd 65 IGE 174 Rev 12 Release 3 061 3 8 The MOCC and MCU modules as 4 4 cQ w woe BO or ew Wa an Bara 3 8 1 Data input for module or ta 3 9 The EDI modulg 3 9 1 Data input fot mod le TOUT RPM SO The myvo module Seu ce mode ETE S 4 3 10 1 Data input for module EVO G TE The CPO module date Sas S SOC eb 3 11 1 Data input for module 3 12 The INFO module 3 12 1 Data input for module INFO 3 13 The modula 3 13 1 Data input for module 314 The MRG moduld 3 14 1 Data i input for geometr pre homogenizatio 3 13 The P O P MOULE 3 15 1 Data input for module PSP 3 16 The SAD moduld 3 16 1 Data input for module SAD 3 17 ___ The PER module ha g De ee eae 3 18 The HST module
43. DELETE END jun Depletion data from file iaea format WIMSD4 AAG T IGE 174 Rev 12 Release 3 061 Microscopic cross sections from LIBRARY LIB NMIX 3 CTRA WIMS 151 file iaea format WIMSD4 DEPL LIB WIMSD4 FIL iaea MIXS LIB WIMSD4 FIL iaea MIX 1 600 0 016 6016 4 61309E 2 U235 12235 1 66078E 4 1 U238 8238 2 28994E 2 1 U236 236 0 0 1 Pu239 6239 0 0 1 MIX 2 600 0 Zr91 91 3 83243E 2 MIX 3 600 0 H1H20 3001 4 42326E 2 O16H20 6016 2 21163E 2 BNat 1011 1 02133E 5 ses Geometry MOSTELAS 3 regions annular cell for self shielding MOSTELA 4 regions annular cell for transport MOSTELAS GEO 3 REFL RADIUS 0 0 0 39306 0 45802 0 71206 MIX 1 2 3 MOSTELA GEO MOSTELAS SPLITR 2 1 1 gees Self Shielding calculation SYBI Transport calculation SYBI Li Li Flux calculation for keff with imposed buckling using Bl homogeneous leakage model TRACKS SYBILT MOSTELAS TITLE TCWU04 MOSTELLER BENCHMARK WITH BURNUP EDIT 1 MAXR 3 LIBRARY SHI LIBRARY TRACKS TRACK SYBILT MOSTELA TITLE TCWU04 MOSTELLER BENCHMARK WITH BURNUP EDIT 1 MAXR 4 SYS ASM LIBRARY TRACK FLUX FLU SYS LIBRARY TRACK PNL BUCK 0 2948E 2 EDITION EDI FLUX LIBRARY
44. DELETE LIBRARY END QUIT LIST 4 4 14 TCWUIA SPH Homogenisation without tracking 176 This case illustrates the use of the SPH homogenisation procedure in the module of DRAGON when tracking data structure is provided as input This test case also uses the embedded DRAGON procedure stored in the TCWUO5Lib c2m file Input data for test case TCWU14 x2m TEST CASE TCWW14 CANDU 6 Cartesian CELL UO2 REAL DENSITY 10 59300 x 002 EFF DENSITY 10 43750 UO2 TEMPERATURE 941 28998 ENRICHMENT 0 71140 COOLANT D2 AT 99 222 MODERATOR D2 09 931 Define STRUCTURES and MODULES used LINKED_LIST LIBRARY CANDU6F CANDU6S VOLMATF CANDU6H VOLMATH PIJ FLUX SEQ BINARY INTLINF INTLINH GEO EXCELT LIB ASM FLU EDI SHI DELETE END Depletion data from file iaea format WIMSD4 x Microscopic cross sections from file iaea format WIMSD4 PRA PROCEDURE TCWUOSLib INTEGER iedit 1 LIBRARY TCWUO5Lib lt lt iedit gt gt CANDU6S GEO CARCEL 5 X REFL X REFL MESHX 14 2875 14 2875 Y REFL Y REFL MESHY 14 2875 14 2875 RADIUS 0 00000 5 16890 5 60320 6 44780 6 58750 14 00 MIX 123455 CLUSTER ROD1 ROD2 ROD3 RODA ROD1 GEO TUBE 2 MIX 6 10 NPIN 1 0 0000 APIN RADIUS 0 00 0 6122 0 6540
45. a Power 31 9713 kw kg for b Burnup time interval Delt 1 day for to 1 4 days for 1 to 5 5 days for 5 to 10 10 days for 10 to 50 20 days for 50 to 150 50 days for 150 to 300 c Days with burnup interval changes 1 0 5 0 10 0 50 0 d Burnup control time variables Timei Timei initial time Timef final time Delt Timec Timei Timef 31 9713 1 0 1 0 0 0 0 0 Define STRUCTURES MODULES used day days days days days days INTLINH VOLMATH CANDU6H 0 0 to 300 0 days 150 0 and 300 0 days Timef IGE 174 Rev 12 Release 3 061 179 LINKED_LIST LIBRARY CANDU6S CANDU6F VOLMATS VOLMATF PIJ FLUX BURNUP EDITION 1 COMPO2 Q BINARY INTLINS INTLINF SEO ASCII fuel mode EO NXT SHI ASM FLU EVO EDI CPO DELETE END Depletion data from file iaea format WIMSD4 Microscopic cross sections from file iaea format WIMSD4 deeem PROCEDURE TCWUO5Lib INTEGER iedit 1 LIBRARY TCWUO5Lib lt lt iedit gt gt nee Geometry CANDU6S 13 regions annular cluster for self shielding CANDU6F 31 regions annular cluster for transport decies CANDU6S GEO CARCEL 5 REFL X REFL MESHX 14 2875 14 2875 REFL Y REFL MESHY 14 2875 14 2875 RADI
46. absolute temperature in Kelvin of the isotope By default tempd temp keyword to specify that the name of the isotope containing the information related to the self shielding is different from the initial name of the isotope characterx12 name of a record in the library containing the self shielding data This name is required if the dilution is not infinite or a non zero resonant region is associated with this isotope and NAMS is different from NAMISO keyword to specify that the thermalization effects are to be included with the cross sections when using a MATXS or MATXS2 format library IGE 174 Rev 12 Release 3 061 23 HINC character x6 name of the incoherent thermalization effects which will be taken into account The incoherent effects are those that may be described by the S a scattering law The value FREE is used to simulate the effects of a gas TCOH keyword to specify that coherent thermalization effects will be taken into account HCOH characterx6 name of the coherent thermalization effects that will be taken into account The coherent effects are the vector reactions in the MATXS or MATXS2 format library where the name is terminated by the suffix They are generally available for graphite beryllium beryllium oxide polyethylene and zirconium hydroxide ntfg number of energy groups that will be affected by the thermalization effects NOEV keyword to force a mixture or a nuclide to be non depleting ev
47. ix 57 HI MEM 2244167158 SHIB 2U22 SIDE 812 H 2 sideh 31 32 SICS 66 SKIP 60H62 66 sms 50 5 1 sn 101 102 SPO01 54 55 7276 176 SPHE 23 SPHERE 6 3214 37 45 54 SPHGEO 71 72 76 SPHLINE 71 72 76 797 SPHTRK 71 72 76 sPLITH BI B2 SPLITR BIIJB2 LOG SPLITX 31 SPLITY BUB2I SPLITZ BUB2I SPRD 76 SSYM 29 STABLE 20 21 72 75 STEP STRNAME B SUBG 62 SUBGEO 28 SURF 89 SUS3D g 101 102 SYBILT ix 46 H 234 SYBILT MAM 2a 27 29 33 424447 SYME 29 B0 36 symm 48 50 62 63 T TAGE TAKE 72475 93 94 103 19 20 TCMO01 vil vii 08 214 TCMO2 vil viii 111 215 TCMO3 vil viii 112 216 TCM04 17 TCM05 vil 120 TCM07 vil 24 TCM08 vil 126 TCMO09 vil 128 TCM10 vil 130 TCM11 vil 133 TCM12 vil 136 TCM13 vil 108 140 TCOH P1 B3 IGE 174 Rev 12 Release 3 061 TCOOL 87 tcoolhigh 87 tcoollow 87 tcoolref 87 TCWv01 vil viii 142 219 TCWU02 vil viii 144 220 TCWU03 vil TCWU04 vil 150 TCWU0S vil 152 168 178 TCWU06 vii 157 TCWUO7 vii 160 TCWUO8 vii 162 TCWUO9 vii 65 TCWU10 vii 166 TCWU1L vii 168 TCWU12 val 171 TCWU13 v l 173 TCWU14 vil 176 TCWUIS vii 178 TCWU
48. 0 NPIN 6 APIN 2 1 ROD3R RADIUS 0 NPIN 6 APIN 1 0 RADIUS 0 NPIN 9 APIN 1 24 3 ROD4R GEO TUB RADIUS 0 NPIN 9 APIN 1 0 0 FXYR GEO CARCEL 5 MESHX 7 14375 0 0 7 14 MESHY 7 14375 7 14375 RADIUS 0 00000 5 16890 HMIX 1 1 0 0 MIX 11 12 1 2 CLUSTER ROD1 ROD2L ROD2 RODI GEO TUB NPIN 1 MESHX 0 MESHY 0 RADIUS 0 ROD2L GEO TUB RADIUS 0 NPIN 3 APIN 2 0 EO TUBI 26179939 RODAL GEO TUB E 2 MIX 7 10 HMIX 00 00000 0 6122 0 6540 RPIN 1 4885 9439510 3 14159265 4 18879020 E 2 MIX 17 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 1 4885 04719755 0 0000 1 04719755 E 2 MIX 8 10 HMIX 00 00000 0 6122 0 6540 RPIN 2 8755 87979327 2 35619449 1 83259571 83259571 2 35619449 2 87979327 E 2 MIX 18 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 2 8755 30899694 0 78539816 0 26179939 0 78539816 1 30899694 E 2 MIX 9 10 HMIX 00 00000 0 6122 0 6540 RPIN 4 3305 74532925 79252680 83972435 2 09439510 3 14159265 3 49065850 4 18879020 4 53785606 E 2 MIX 19 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 4 3305 39626340 1 04719755 0 69813170 34906585 0 0 0 34906585 69813170 1 04719755 1 39626340 2 44346095 2 1 375 5 60320 6 44780 6 58750 7 00 1 1 1 1 0 0 0 0 13 14 15 15 3 4 5 5 R ROD3L ROD3R ROD4L ROD4R E 2 1 2 MIX 16 20 6 10 RPIN 0 0000 APIN 0 0000 6540 0 6540 6540 0 0 0 6540 00000 0 6122 0 6540 E 2 MIX 1
49. 0 039 MIX 7 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 8 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 9 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 10 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 11 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 12 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 13 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 14 TOTAL 0 166667 1 111111 IGE 174 Rev 12 Release 3 061 SCAT 22 0 00015 0 126667 2 2 1 10111 MIX 15 OTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 MIX 1 OTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 MIX 17 OTAL 0 222222 0 833333 SCAT 1 1 0 19222 2 2 0 75333 NUSIGF 0 0 0 170 CHI 1 0 0 0 MIX 18 OTAL 0 222222 0 833333 SCAT 11 0 19222 220373333 NUSIGF 0 0 0 170 CHI 1 0 0 0 pere Geometry Hexagonal assembly containing x hexagons with 4 triangular crown and pins docte GlobalGeo GEO HEX 7 HBC COMPLETE REFL CELL Cl C2 C2 C2 Cl GEO HEXT 4 SIDE 4 0 MIX 12345678 9 10 11 12 13 14 15 16 J 2 3 4 5 6 7 8 9 10 TL 12 13 14 15 16 1234567891011 12 13 14 15 16 1 23 45 60 7 8 9 10 IL 12 13 14 15 16 12345678910 11 12 13 14 15 16 12345678910 11 12 13 14 15 16 CLUSTER R
50. 1 TRACK JPMT ANGEO TITLE TCMO1 ANNULAR GEOMETRY WITH MACROSCOPIC XS JPM EDIT 1 MAXR 5 IP01 QUAI 5 SYS ASM MACRO TRACK ARM FLUX FLU SYS MACRO TRACK TYPE K EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE STAT ALL REFE 1 FLUX FLU FLUX SYS MACRO TRACK TYPE BO PNL EXTE 5 0E 5 EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE STAT ALL REFE 2 FLUX FLU FLUX SYS MACRO TRACK TYPE L BO EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE STAT ALL REFE 3 FLUX SYS DELETE FLUX SYS ee Tracking JPMT Solution PIJ 1 KEFF WITHOUT BUCKLING 2 BUCKLING WITH KEFF 1 3 LEAKAGE WITH KEFF 1 SYS ASM MACRO TRACK FLUX FLU SYS MACRO TRACK TYPE K EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE STAT ALL REFE 4 FLUX FLU FLUX SYS MACRO TRACK TYPE B BO EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE STAT ALL REFE 5 FLUX FLU FLUX SYS MACRO TRACK TYPE L BO EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE STAT ALL REFE 6 res EDITION END QUIT LIST 110 IGE 174 Rev 12 Release 3 061 111 4 3 2 TCMO02 The Stankovski test case This test case represents a one group calculation of a 7 x 7 PWR The reaction rates obtained from DRAG
51. 1 Mn55 55 1 94976E 7 BNat 1011 2 Zr91 19417 4 18372 4 11 579 9 H1H20 3001 4 71676E 2 O16H20 6016 2 Cr52 152 2 Fe56 2056 1 96130E 5 Ni58 58 4 MoNat 96 1 A127 27 1 55 55 1 82957E 7 BNat 1011 2 35153E 5 Zr91 91 3 92583E 4 dec x Geometry ASSMBH hexagonal assembly with poison contains Cl cell without fuel C2 poison cel C3 normal fuel cell C4 peripheral cell ASSMBH GEO HBC S30 REFL HEX 36 CELL C1 C3 C3 C3 C3 C3 C2 G3 C3 C2 C3 C3 C3 TURN A A A A A A A F A A E E A A MERGE 1 2 3 4 5 4 6 12 13 14 15 12 16 17 Cl GEO HEXCEL 2 SIDE 0 707297 RADIUS 0 0 MIX 123 C2 GEO HEXCEL 5 SIDE 0 707297 RADIUS 0 0 MIX 5 5 5 6 7 8 GEO Cl MIX 4 9 C4 GEO MIX 4 9 T C3 C3 C3 C2 C3 C3 C3 C3 C3 C3 C3 C3 C4 C4 C4 C4 C4 A B D A I A C F J B E A A A A A A A A A 7 8 7 9 810 7 7 4 7 12 16 18 18 19 20 21 21 22 22 0 412282 0 475917 356731 249911 321881 89281 102771 355981 358381 1112321 9938631 77614 034791 Jo 33 ol EE 51 E on Dl Ed bd C2 C4 11 23 0 25057 0 354359 0 436 0 486 0 6125 1 01 3 uM Z Self Shielding calculation JPM Transport calculation SYBIL Flux calculation for Bl homogeneous leakag Editing using SP
52. 102 Table 82 Structure FMT for DIRFLX option DAF FMT FLUX VOLTRK EDIT iprint DIRFLX WGTANGL DFLUX DADJOINTS DAF FLUX VOLTRK EDIT iprint SUS3D SN CP DIRFLX characterx12 name of the ASCII file that will contain the angular weights and directions character 12 name of the ASCII or BINARY file that will contain the directional flux in a SUS3D compatible format characterx12 name of the ASCII or BINARY file that will contain the directional adjoints in a SUS3D compatible format characterx12 name of the ASCII file that will contain the weights angular directions and directional flux adjoints and generalized adjoints in a DIRFLX compatible format see Ap pendix A J for a description of the format for this file characterx12 name of the FLUXUNK data structure to process character 12 name of the TRACKING data structure to process keyword used to modify the print level iprint index used to control the printing in this module keyword to activate the SUS3D processing option keyword to generate Sy compatible fluxes and adjoints cell edge values It is the default value keyword to generate CP compatible fluxes and adjoints cell averaged values keyword to activate the DIRFLX processing option 3 21 The ITR module The utility module ITR performs dedicated editing to generate TRIPOLI importances files The input speci fications for this module are presented in Ta
53. 11 0 08 0 07 0 04 0 05 0 03 0 03 0 04 0 05 EVALUATE el e2 e3 e8 e ell 12 13 el rl 2 2 r3 e8 ell r11 e12 r12 e13 EVALUATE el e2 e3 e8 e 11 12 13 el ou 2 e3 ou ed 1 ou el2 ou Macroscopic XS MACRO MAC NGRO 1 NMIX 19 EAD INPUT z z S lt lt lt lt lt H HHH HH HH xx x x x Jo 40 N lt H co Dua D ey ce aoo DE D D D D D L 9 14 10 15 e8 ou 9 ou 10 ou e13 ou 14 ou 15 ou 250 625 2290 625 250 625 250 625 250 000 250 625 250 625 250 625 250 625 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 11 SCAT 11 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 SCAT 1 pec H OTH O Fa E 242 5999 242 399 242 355 242 355 242 000 4242 322 4242 999 242 4359 242 2359 FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE She qai Ou OF Oh p r13 14 r14 15 r15 000 000 000 000 000 000 000 000 000 000 000 000 000
54. 12 7 BURNUP FLUX PIJ LIBRARY INTLINS VOLMATS CANDU6S DELETE BURNUP FLUX PIJ LIBRARY INTLINS VOLMATS CANDU6S EDITION UTL EDITION STEP UP REF CASE 17 x LIBRARY EDITION EDITION UTL EDITION STEP DOWN EDITION DELETE EDITION PIJ ASM LIBRARY VOLMATF INTLINF IGE 174 Rev 12 Release 3 061 FL D ON DIT 1 ED ALL PIJ LIBRARY VOLMATF LIBRARY VOLMATF SAVE 171 EDI FLUX MERGE COMP F UATE Timec 1 9 Timei Timec DO UATE Timef Timei 0 0 URNU LIB EDIT 3 D ji Pa VA Timei Delt EN THI RY RA EVO imei gt gt lt lt 1 lt lt LIBRARY FLUX VOLMATF EVO BURNUP LIBRARY FLUX VOLMATF Fr imef gt gt DAY POWR lt lt Power gt gt Timei gt gt lt lt 1 a LIBRARY VO FLUX PIJ LUX TYPI DITION SAVE Sea m an K Ej DI EDITION FLUX t LMATF INTLINF LIBRARY VOLMATF Timef gt gt DAY POWR lt lt Power gt gt LIBRARY VOLMATF change delta t for burnup and final time if required IF Timef Timec THEN IF Timec 5 0 THEN EVALUATE Delt Timec 5 0 10 0 ENDIF IF Timec 1 0 THEN EVALUATE Delt Timec 4 0 5 0 ENDIF ENDIF EVALUATE Timei Timef E
55. 174 Rev 12 Release 3 06L 345 66 1 082885 3002 2 01016E 1 941 29 10 4375010 4135 0 0 2235 6 27118E 1 8238 8 75256E 1 236 0 0 6239 0 0 COMB 6 1 0 COMB 6 1 0 COMB 6 1 0 560 66 6 44 58 6 00000E 2 1011 3 10000 4 91 9 97100E 1 345 66 52 1 56659E 3 729 7 79072 4 5154 1 25431 3 QUIT LIST PRP PR 016 H1H20 016 Fe56 Cr52 Fe56 Ni58 C12 6016 3001 6016 2056 52 2056 r587 2012 7 98895E 1 8 96000 5 1 18473E 1 1 60000E 1 1 10000 1 6 19027 2 6 83337 3 1 46552 4 IGE 174 Rev 12 Release 3 061 191 References 1 G Marleau A H bert and R Roy New Computational Methods Used in the Lattice Code DRAGON Topical Meeting on Advances in Reactor Physics 1 177 Charleston South Carolina 1992 2 G Marleau R Roy and A H bert DRAGON A Collision Probability Transport Code for Cell and Supercell Calculations Technical Report IGE 157 Ecole Polytechnique de Montr al 1994 3 A H bert G Marleau and R Roy Application of the Lattice Code DRAGON to CANDU Analysis Transaction American Nuclear Society 72 335 1995 4 A H bert G Marleau and R Roy A Description of the Data Structures for DRAGON 3 06 Technical Report IGE 232 Rev 5 Ecole Polytechnique de Montr al 2008 5 G Marleau The EXCELL Geometries Numbering Scheme in
56. 3 1 3 The descmacm input structure for MAC The descmacm input structure takes the form 174 Rev 12 Release 3 061 13 Table 5 Structure desemacm OFF ON MIX numnew numold UPDL OLDL Here CTRA keyword to specify the transport correction option All the modules that will read this MACROLIB will have access to this transport correction to produce transport corrected cross sections By default there is no transport correction OFF do not use the transport correction 63 stored on the MACROLIB ON use the transport correction Du stored on the MACROLIB MIX keyword to specify that the macroscopic cross sections associated with a mixture are to be created or updated numnew mixture number to be updated or created on the output MACROLIB numold mixture number on an old MACROLIB or MICROLIB that will be used to update or create numnew on the output MACROLIB OLDL the macroscopic cross sections associated with mixture numold are taken from OLDLIB This is the default option UPDL the macroscopic cross sections associated with mixture numold are taken from MACLIB 3 1 4 Macroscopic cross section definition Table 6 Structure descxs MIX mixnum EFISS efss i i 1 nifiss TOTAL xssigt g g 1 ngroup TRAN xssigtr g g 1 ngroup NUSIGF xssigf i g g 1 ngroup i 1 nifiss NF TOT xsfiss i g g 1 ngroup i 1 nifiss CHI xschi i g g 1 ngroup i 1
57. 3 COND 4 0 STAT ALL REFE 1 DELETE DISCR1 TRKSPC CP EXCE EXCE for K no leakage LT MOST ry ELC NCHMARK TELLER 20 0 RY DISC ISCR1 TRKSPC LIBRARY DISCRI T LIBRARY DISCRI 4 42 TCWU02 A 17 x 17 PWR type assembly This test case represents a production calculation of a normal PWR assembly with cell grouping M TURN options Its configuration is shown in Figure Input data for test case TCWU02 x2m T R EST CASE TCWUO2 17 X 17 PWR ASSI an EF none R1 TRKSPC 144 LA ISCR2 CP ISO ISO EXC ELL Ff L4 SPC SPC EXC ELL E and ERG EMBLY WITHOUT POISON IGE 174 Rev 12 Release 3 061 Less Define STRUCTUR g amp LINKED_LIST FS and MODULI FS used ASSMB DISCR1 DISCR2 LIBRARY CP CALC OUT COMPO SEO ASCII res MODULE LIB GEO JPMT DELETE END SYBILT SHI ASM Microscopic cross sections from LIBRARY LIB MIX 1 579 9 H1H20 BNat MIX 2 579 9 Cr52 Zr91 MIX 3 579 9 H1H20 Fe56 Mn55 BNat Zr91 MIX 4 579 9 Cr52 Zr91 MIX 5 579 9 H1H20 Fe56 Mn55 BNat Zr91 MIX 6 579 9 H1H20 Fe56 Mn55 BNat NMIX 8 CTRA WIMS MIXS LIB WIMSD4 FIL 3001 TOLT 52
58. 6 Hexagonal geometry of type SB18 7 Hexagonal geometry of type COMPLETH 203 N N 8 Hexagonal geometry with triangular mesh that extends past the hexagonal boundary 204 9 Description of the various rotations allowed for Cartesian 205 10 Description of the various rotation allowed for hexagonal geometried 206 11 cluster eeometry 207 pine Be Re eee MC 208 13 Two dimensional Cartesian assembly containing microstructure 209 14 Cylindrical cluster geometry 210 15 Two dimensional hexagonal eeometry 211 16 Three dimensional Cartesian supercell 212 17 multicell lattice 213 18 Geometry for test case TCM01 for an annular cell with macroscopic cross sections 214 19 Geometry for test case TCM02 215 20 Geometry for test case TCM03 216 T 217 oer 218 219 220 25 Geometry for test case TCWUO3 221 26 Geometry of the CANDU 6 cell 222 27___ Geometry of 2 D CANDU 6
59. 7 2 from surface Y to surface Y j 1 ly IGE 174 Rev 12 Release 3 061 39 e CARCEL geometries Ir 1 x Ix x ly The real and virtual mixtures are then given in the following order 1 radially outward l 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region i 7 2 Ir 1 for the mixture outside the annular regions but inside Cartesian region 2 7 3 from surface X to surface X i 1 Ix for each 7 4 from surface Y to surface Y 7 1 ly e CAR3D geometry without diagonal symmetry N lx x ly x Iz The real and virtual mixtures or the cells are then given in the following order from surface X to surface X i 1 Ix for each j and k 2 from surface Y to surface Y j 1 ly for k 3 from surface Z to surface Z k 1 12 with diagonal symmetry X and _ dx x Ix 1 2 x Iz The real and virtual mixtures or the cells are then given in the following order 1 from surface X to surface X i j Ix for each j and k 2 from surface Y to surface Y 7 1 ly for each 3 from surface Z to surface Z k 1 12 with diagonal symmetry X and _ xx Ix 1 2 x Iz The real and virtual mixtures or the cells are then given in the following order 1 from surface X to surface X 1 1 j for each 7 and 2 from surface Y to surface Y 7 1 ly
60. 80 WATER 83 wcc 78 80 WGHT 226 WGTS WGTANGL 101 102 WILLIE 142 11116118 83 84 IGE 174 Rev 12 Release 3 061 WIMS AECL 17 WIMSAECL 16 18 58 83 1 84 5 4 1618 58 83 84 WRIT 1102 X x 66 x 29 x 29 XIR 87 XML 102 102 xpins 31 33 xschi 13 14 xsfiss xsfixa 13 xsfixe 13 14 xsfixg 13 14 XSM FILE MB xsscat 13 L5 xssigf I3 xssigt 13 xssigtr 13 xtf 78181 xti xtr 78 xts 78 79 XXX Y v 68 67 29 32 37 40 29 32 37 40 YEAR 78 80 yield 20 21 ypins 31 33 yyy B11B2 Z 2 66 67 2 291B2 B7H41 z PABABA zpins B1163 zzz B1B2 236
61. 82 92 95 EDIT 10 16 19 28 47 58 60 62H64 6870 72 EDITION ZHI 71 81 92 95 EFISS I3 I4 efiss 3 13 L4 64 65 93 94 D 46 DCHAIN 20 ENER 11 12 energy IJRA 21 72 74 93 94 103 ENR 83 84 enrichment B3 83 84 PS 51 78 80 EPS2 78 80 epsgpa 64 93 epsgps 65 94 epsout 64 65 69171 92 93 epsthr 64 65 69171 22 93 epsunk 64 65 69 70 93 48H55 ETA 226 ETAB 70 71 evo 78 EVO 78 EVO MHI 771 78 8 1 P8 142 EVONAM 79 68 69 EXCELL ix 60 EXCELL MBABA 59 60 62 91 EXCELT EXCELT y K BHA 29 32 33 44431 50 59 l6 1 EXPM 78 80 ExTE 64 65 69H71 92 93 n z P P z El El E Q 229 EXTR 78 81 90 EXTRACT F FBMXSDB 8 85 FIL 16 18 83 84 FILL FIXA I3 14 FIXE I3 14 FIXG I3 14 LIB 72 74 75 FLU ix 63 LU MEA 61 63 77 FLUNAM e3 64 66H68 71 78 90H92 95 FLUNAP 95 FLUX 101 102 FLUX PACS E78 80 9 1 92 226 flux 78 80 63 64 92 93 FLUXNAM 95 FLUXNAP 95 FLUXUNK 7 63 64 68 69 71 78 79 91 2 95 FLX 640203 FMT K 01 102 FMT vil 7 101 102 fract 43 FREE 23 FROM PORI nj hj
62. 83243E 2 MIX 3 600 0 H1H20 3001 4 42326E 2 016H20 6016 2 21163E 2 BNat 1011 1 02133E 5 f Geometry MOSTELA annular 3 region geometry MOSTELC Cartesian 3 region geometry STELA GEO TUBE 3 R REFL RADIUS 0 0 0 39306 0 45802 0 71206 SPLITR 2 1 1 MIX 1 23 STELC GEO CARCEL 2 X REFL X REFL MESHX 0 0 1 26209 REF RADIUS 0 0 MIX 123 Case 1 annular Y REFL MESHY 0 0 1 26209 0 39306 0 45802 SPLITR 2 1 Self Shielding calculation JPM Transport calculation SYBIL Flux calculation for K no leakage SCR1 JPMT MOSTELA TITLE TCWUO1 MOSTELLER BENCHMARK JPM SYBIL MAXR 4 IPO1 QUAI 5 BRARY SHI LIBRARY DISCRI SCR2 SYBILT MOSTELA TITLE TCWUO1 MOSTELLER MAXR 4 QUAI 5 ASM LIBRARY DISCR2 BENCHMARK JPM SYBIL CALC FLU LIBRARY DISCR2 TYPE K OUT EDI CALC LIBRARY DISCR2 DI PM EN DI LI DI Case 2 Cartesian EDIT 4 MERG MIX 12 3 COND 4 0 SAVE SCR1 DISCR2 CP DELETE DISCR1 DISCR2 Self Shielding calculation JPM Transport calculation SYBIL Flux calculation for K no leakage SCR1 JPMT MOSTELC TITLE TCWUO1 MOSTELLER BENCHMARK JPM SYBIL MAXR 4 01 QUA1 5 QUA2 12 5 BRARY SHI LIBRARY DISCRI SCR2 SYBILT MOSTELC
63. Ann Nucl Energy 18 511 1991 ko 1 1989 Computation 991 Pittsburgh IGE 174 Rev 12 Release 3 061 I Define STRUCTURES and MODULES used INKED 1 151 MODULE GEO EXCELT 08 WAT16 WAT24 TRACK MACRO SYS FLUX EDITION EQ BINARY WATATRK Macroscopic MACRO MAC NGRO 1 NMIX READ INPUT MIX 1 TOTAL MIX 2 TOTAL MIX 3 TOTAL Geometry Tracking WATA GEO X DIAG X VOID Y MAC ASM FLU EDI DELETE END XS 3 0 2 SCAT 1 1 0 19 FIXE 6 4 0 2 SCAT 1 1 0 19 0 0 SCAT 1 1 0 00 WATA 3 X 3 REGIONS WATO8 8 X 8 REGIONS WAT16 16 X 16 REGIONS WAT24 24 X 24 REGIONS EXCELT CAR2D 3 3 EFL Y DIAG MESHX 0 00 1 25 5 00 10 00 MESHY 0 00 1 25 5 00 10 00 MIX 1 3 3 WATO8 GEO WAT24 GEO SPLITX 3 EXCI Tracking Solution Editing m TRACK WATATRK TITLE TCMO3 WATANABE MAYNARD 8X8 MAXR 300 CUT 1 E 4 TRAK TSPC 12 4 0 FIX N El rg rg EXCELT SYS ASM MACRO TRACK 4 SPLITY 1 3 4 8 SPLITY 2 6 8 D SOURCE PROBLEM ER QUADRANT FLUX LUX AT X 5 625CM WATATR
64. ESRI NP IN 31 32 npins 31133 36 nplots 100 npol 48 52 225 nreg 89 90 nregio 63 92 15 43 NSAT 78 80 nsegment 5255 nsubg 62 nsur 89 ntfg 21123 nth2 83 85 NTOTO 17 NTOT1 17 NTPO 100 zw O O z IGE 174 Rev 12 Release 3 061 nu3 83 85 nu5 83 85 nu 85 NUDEL 17 umnew 13 umold 13 USIFG 94 USIGF 13l 14 93 WTO NWT1 17 NXT ix 46 NXT 0 K 6 7 26 27 2952 42 44443 50 52 2126 N OFF ZOZI oFF 11 13 63H65 68 69 76 92 94 OFFCENTER OLD 54 OLDGEO 25 28 OLDL 13 OLDLIB 9 13 57 OLDMIC 78 OLDNAME 82 83 OLDW L6 17 ON 70 71 on C 13 63H65 68 69 72 75 2 93 95 ORIGINE 103 orpg 103 P 0 66 77 POW 72 74 21 66 77 P1SCAT 72 73 P1w 72 74 64 92 93 85 43 44 pcorn 48150 62 63 pcut 48H50 PER 95 96 PER Ixi 95 ER 65 period 08 PERT 72 75 PIJ pijcel 43 44 P 1 JK 47 60 6 66 59663 92 5 48 50 U 233 rg LAN 100 101 100 LANP 100 pmodper 87 88 pmodref 87 88 PNL 66 PNOR 60H62 PNTN 50 51 POINTS 100 POURCE power 78 80 98 powerhigh 87 powerint 87 powerlow 87 power
65. El 016 H1H20 Nb93 He4 Fe56 Cr52 O16 H1H20 016 Fe56 Cr52 6016 r 3001 gg rat 2056 152 6016 r 3001 6016 2056 52 7 994491 837741 2 50000 1 000001 1 600001 1 100001 7 988951 960001 1 184731 1 60000E 1 100005 EX EI El Et En EE mn mn O1 156 IGE 1 EN QU 4 4 6 74 Rev 12 Release 3 061 BNat 1011 3 10000E 4 9 97100 1 Zr91 MIX 11 COMB 10 1 0 MIX 12 COMB 10 1 0 MIX 13 COMB 10 1 0 MIX 14 COMB J 1 0 MIX 15 COMB 122 20 16 t 10 MIX 17 COMB 1 30 Di y IT LLST TCWUO06 A CANDU 6 type supercell with control rods 157 This test case treats both the CANDU cell with a cartesian moderator region similar to the cell described in defined Figure 26 and the supercell containing a stainless steel rod which can be either in the inserted or extracted position see Figure 21 Two groups incremental cross sections corresponding to the rod in the inserted and extracted position with respect to the original supercell containing only 3 D fuel elements are computed B This test case also uses the embedded DRAGON procedure stored in the TCWU05Lib c2m file Input data for test case TCWU06 x2m F LI TEST CASE TCWUO6 CANDU 6 CARTESIAN
66. HN amp ON HO N Oo N N F P gt P gt Lo w HN HN I Be AB 858691 281811 11760 000001 343681 336011 304571 284281 583711 761901 201701 276001 864501 45952291 931601 656401 616591 403771 832971 733301 499001 172601 944601 979201 588101 099121 929701 129701 254451 44777 823341 45256 143701 234001 215701 699901 324401 373201 480701 03 01 E 01 E 00 E O1 E 01 E 01 E 01 E 01 E 04 E 09 E 03 E 03 E 01 E 01 E 01 E 02 E 01 E 01 E 05 E 04 E 04 E 03 E 02 E 02 E 00 E 03 E 01 E 00 E 02 E 01 E 01 E 05 E 04 E 03 E 02 E 01 E 02 E 00 213901 E 02 Z 41340 04320 39060 00000 93785 53603 or 17920 64360 63709 13290 82313 49751 31140 PHN OO BFP B 2 84240 172215 mn 90700 24350 88511 46220 97312 92390 16765 08030 38770 05670 NO Or CO H 90310 65038 N 13400 29940 10284 74990 39138 80020 4929913 64430 37320 03440 O1 505 H WOOF F SSYM E 02 9 00 E 04 1 E 00 E 01 5 E 01 E 02 E 03 8 E 01 2 E 09 E 01 5 E 01 8 E 02 9 E 01 2 00 E 02 E 02 E 02 E 06 E 02 E 05 E 01 E 03 E 01 E 04 E 01 5 00 E 01 E 01 7 E 02 E 06 E 01 E 05 E 01 E 03 E 01 E 04
67. IGE 174 Rev 12 Release 3 061 85 WGT D20 keywords to recover 3 number densities for a compound mixture of heavy and light water The isotope list is assumed to contain 7D and O Temperature and purity are supposed to be available It returns concentration of these isotopes in the output parameters nh1 nd2 and 16 WGT UO2 keywords to recover 3 number densities for a compound mixture of Uranium oxide The isotope list is assumed to contain 2351 2380 and 160 The 2350 enrichment is supposed to be available Note that the number densities will sum to 100 It returns concentration of these isotopes in the output parameters nu5 8 and 16 WGT THO2 keywords to recover 3 number densities for a compound mixture of Thorium Uranium oxide The isotope list is assumed to contain Th 2330 and 160 2330 enrichment is supposed to be available Note that the number densities will sum to 100 It returns concentration of these isotopes in the output parameters nth2 nu3 and nol6 The INFO module works the following way For a given isotope list the mass is extracted from the library or a calculation process is expected Once this calculation is has been performed it is possible to list other isotopes and ask for further calculations Finally note that the number of output parameters denoted by gt gt param must be equal to the number of isotopes names given plus the water density when a command CALC DENS WATER is issued
68. It can also be used by the PSP module a standard data structure used by DRAGON to store condensed and homogenized microscopic and macroscopic cross sections It is a stand alone structure that can contain embedded MACROLIB and MICROLIB sub structures When used by a DRAGON module it must be stored on a linked list or an XSM file It is created by the EDI module It is required for a successful execution of the CPO module a standard data structure used by DRAGON to store burnup information It is a stand alone structure that must be stored on a linked list or an XSM file It is created by the EVO module Such a structure is also required for a successful execution of the CPO module It can also be used by the LIB and HST module a standard data structure used by DRAGON to store a simplified reactor dabase It is a stand alone structure that must be stored on a linked list or an XSM file It is created by the CPO module It is required for a successful execution of the CFC module It can be used by the CRE module of DONJON BSI a standard data structure used by DRAGON to store a full reactor cross section database with Feedback coefficients It is a stand alone structure that must be stored on a linked list or an XSM file It is created by the CFC module It can be used by the AFM module of DONJON standard data structure that contains the information required to ensure smooth coupling of DRAGON with DONJON when
69. LOY25 TRACK LOYATRK EXCELT LOY25 TITLE TCMO3 LOYANABE MAYNARD 24X24 MAXR 625 TRAK TSPC 12 100 0 REPEAT IF 1 1 THEN MACRO 100 IF i 2 THEN MACRO MACROO50 IF i 3 THEN MACRO MACROO10 IF i 4 THEN MACRO MACROO005 IF i 5 THEN MACRO MACROOOO FLUX MOCC MACRO TRACK LOYATRK lt lt PolarAng gt gt TYPE 5 SOLUTION FOR LOY25 FLUX AT X Y 0 50 0 70 AND 0 98 SEE TABLE 2 ref 412 EDITION EDI FLUX MACRO TRACK EDIT 2 SAVE MERGE REGION 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00100 00000 00000 00000 00000 00000 00000 00000 IGE 174 Rev 12 Release 3 061 0 0 0 0 0 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00200 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00003 FLUX MACRO EDITION DELETE FLUX MACRO EDITION EVALUA
70. M R MY M SPLITX 2 SPLITY 2 375 SPLITX 3 3 SPLITY 3 SPLITX 6 SPLITY 3 375 SPLITX 3 3 IGE 174 Rev 12 Release 3 061 186 MESHY 0 0 7 14375 SPLITY 3 HMIX 1 0 MIX 15 MY GEO CAR2D 1 2 MESHY 7 14375 0 0 7 14375 SPLITY 3 3 MESHX 0 0 7 14375 SPLITX 3 HMIX 0 0 MIX 3 Z BXY GEO CARCEL 2 MESHX 7 14375 7 14375 SPLITX 6 MESHY 7 14375 7 14375 SPLITY 6 RADIUS 0 0 6 380 6 530 5 PLITR 2 2 HMIX 1 1 1 MIX 15 15 15 CLUSTER ROD ROD GEO TUBE 4 NPIN 1 0 0 APIN 0 0 RADIUS 0 0 5 4115 5 4877 5 5791 5 6553 SPLITR 1 1 1 1 HMIX 1 1 1 1 MIX 15 14 21 14 FXYL GEO CARCEL 5 2 1 MESHX 7 14375 0 0 7 14375 SPLITX 3 3 MESHY 7 14375 7 14375 SPLITY 6 RADIUS 0 00000 5 16890 5 60320 6 44780 6 58750 7 00 HMIX 0 0 0 0 0 0 1 1 1 1 1 1 MIX 1 2 3 4 5 5 11 12 13 14 15 15 CLUSTER ROD1 ROD2L ROD2R ROD3L ROD3R ROD4L ROD4R ROD1 GEO TUBE 2 1 2 MIX 6101620 HMIX 0011 NPIN 1 RPIN 0 0000 APIN 0 0000 MESHX 0 6540 0 6540 MESHY 0 6540 0 0 0 6540 RADIUS 0 00000 0 6122 0 6540 ROD2L GEO TUBE 2 MIX 7 10 HMIX 0 0 RADIUS 0 00000 0 6122 0 6540 NPIN 3 RPIN 1 4885 APIN 2 09439510 3 14159265 4 18879020 ROD2R GEO TUBE 2 MIX 17 20 HMIX 1 1 RADIUS 0 00000 0 6122 0 6540 NPIN 3 RPIN 1 4885 APIN 1 04719755 0 0000 1 04719755 ROD3L GEO TUBE 2 MIX 8 10 HMIX 00 RADIUS 0 00000 0 6122 0 6540 NPIN 6 RPIN 2 8755 2 87979327 2 35619
71. MESHX 0 0 1 26209 MESHY 0 0 1 26209 RADIUS 0 0 0 39306 0 45802 SPLITR 2 1 MIX 122 MOSTELCV GEO MOSTELC MIX 102 PERMET Tracking EXCELT MOSTELC ANIS 2 for adequate dimensions in PIJK IGE 174 Rev 12 Release 3 061 eS Solution Leakage TRACK TRKSPC SY P FL ED FL ED FL ED FL ED FL ED FL FL ED FL ED FL ED FL ED FL ED FL ED Bl D or 1 PNL 5 XCELT MOSTELC ULAR GEOMETRY WITH MACROSCOPIC XS TITLE 05 ANN MAXR 5 ANIS 2 TRAK TISO 12 20 0 S ASM MACRO TRACK TRKSPC IJK UX FLU SYS MACRO TRACK TYPE K ITION EDI FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B1 PNL BUCK 1 51429E 03 ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B B1 PNL KEFF 1 199538 ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B B1 PNL ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE L B1 PNL ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX DELETE FLUX UX FLU SYS MACRO TRACK
72. MESHY 14 2875 14 2875 RADIUS 0 00000 5 16890 5 60320 6 44780 6 58750 14 00 MIX 123455 CLUSTER ROD1 ROD2 ROD3 ROD4 ROD1 GEO TUBE 2 MIX 6 10 NPIN 1 0 RADIUS 0 00000 0 6122 0 6540 ROD2 GEO RODI MIX 7 10 NPIN 6 RPIN 1 ROD3 GEO RODI MIX 8 10 NPIN 12 RPIN 2 RODA GEO RODI MIX 9 10 NPIN 18 RPIN 4 CANDU6F GEO CARCEL 5 X REFL X REFL Y REFL Y REFL MESHX 0 0 28 375 MESHY 0 0 28 375 RADIUS 0 00000 5 16890 5 60320 6 44780 6 58750 14 0 MIX 123455 SPLITR 6 111 10 CLUSTER ROD1 ROD2 ROD3 RODA ROD1 GEO TUBE 2 MIX 6 10 NPIN 1 0 RADIUS 0 00000 0 6122 0 6540 SPLITR 2 1 ROD2 GEO ROD1 MIX 7 10 NPIN 6 RPIN 1 H ROD3 GEO ROD1 MIX 8 10 NPIN 12 RPIN 2 RODA GEO RODI MIX 9 10 NPIN 18 RPIN 4 VOLMATF INTLINF EXCELT CANDU6S EDIT 0 MAXR 100 TRAK TISO 29 20 0 LIBRARY SHI LIBRARY VOLMATF INTLINF EDIT 0 VOLMATF INTLINF DELETE VOLMATF INTLINF VOLMATF INTLINF EXCELT CANDU6F TITLE TCWW13 CANDU 6 ANNULAR POWER 31 971 FUEL 941 29 EDIT 0 MAXR 32 TRAK TSPC 12 10 0 A PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU PIJ LIBRARY VOLMATF TYPE K flxxel FLUX FLUX PIJ DELETE FLUX FLUX LIBRARY VOLMATF INTLINF CACB TYPE K THER 1 0E 5 100 EXTE 1 0E 5 100 flxmoc FLUX FLUX DELETE FLUX IGE 174 Rev 12 Release 3 061 INTLINF VOLMATF CANDU6F DELETE INTLINF VOLMATF CANDU6F LIBRARY
73. Mosteller benchmark This benchmark uses both a cartesian 2 D cell with a central annular pin and an equivalent annular cell see Figure 23 8l No depletion information is required since the module EVO will not be executed A comparison between various calculation options is provided here We first consider an annular geometry with a JPMT self shielding and a SYBILT transport calculation This is then repeated for the cartesian 2 D cell Finally we used an isotropic TISO and a specular TSPC EXCELT tracking successively for the self shielding and transport calculations Input data for test case TCWUO1 x2m s TEST CASE TCWUO1 MOSTELLER BENCHMARK 1 D ANNULAR CELL AND 2 D CARTESIAN CELL WIMSD4 69 GROUPS LIBRARY FILE iaea from WLUP REF R Mosteller et al Nucl Sci Eng 107 265 1991 Define STRUCTURES and MODULES used dt LINKED LIST MOSTELA MOSTELC DISCR1 DISCR2 LIBRARY CP CALC OUT SEQ BINARY TRKSPC MODULE LIB GEO JPMT SYBILT EXCELT SHI ASM FLU EDI DELETE END Microscopic cross sections from file iaea format WIMSD4 LIBRARY LIB NMIX 3 CTRA WIMS MIXS LIB WIMSD4 FIL iaea MIX 1 600 0 016 76016 4 61309 0235 2235 1 66078 4 1 0238 8238 2 28994 2 1 N IGE 1 DI LI DI CP 74 Rev 12 Release 3 06L MIX 2 600 0 143 Zr91 719 3
74. PISO PSPC CUT peut CORN pcorn SYMM see Section 3 4 2 see Section 3 4 2 see Section 3 4 2 see Section 3 4 2 see Section 3 4 2 see Section 3 4 2 keyword to specify the level to which the tracking will respect the symmetry of the geometry IGE 174 Rev 12 Release 3 061 51 isymm NOSY TISO TSPC EOW MEDI PNTN nangl GAUS CACA CACB LCMD TRAD TRAA levelto which the tracking will respect the symmetry of the geometry For 2 D and 3 D Cartesian geometries it must takes the form isymmz25 45 165 where e 5 lifthe X symmetry is to be considered and 5 0 otherwise e S 1 if the Y symmetry is to be considered and Sy 0 otherwise e S 1 if the Z symmetry is to be considered and 5 0 otherwise keyword to specify the full tracking will take place irrespective of the symmetry of the geometry This is equivalent to specifying isymm 0 see Section 3 4 2 see Section 3 4 2 keyword to specify the use of equal weight quadrature azimuthal integration in 2 D using a trapezoidal quadrature or directional quadrature in 3 see Section 3 4 2 keyword to py that Legendre Techbychev quadrature will be selected only valid for 3 D geometries keyword to that Legendre trapezoidal quadrature will be selected only valid for 3 D geometries 6 azimuthal or directional 3D quadrature order Depending on the geometry and the tracking options nang will take different
75. Perturbation Theory for Lattice Cell Calculations Nuclear Science and Engi neering 143 19 32 2003 45 E Varin A H bert R Roy and J Koclas A User s Guide for DONJON Technical Report IGE 208 Rev 2 Ecole Polytechnique de Montr al 2004 46 G Marleau and E Varin An History Interface Between DRAGON and DONJON The HST module Tech nical Report IGE 259 Rev 1 Ecole Polytechnique de Montr al 2004 47 E Varin and Marleau Transport Diffusion Coupling for CANDU Reactor Core Follow up SNA 2003 International Conference on Supercomputing in Nuclear Applications Paris France 2003 Proceedings available on CD Rom 48 E Varin and G Marleau A First Attempt at a CANDU 6 Core Tracking Using Coupled DRAGON DONJON Calculations 6th International Conference on Simulation Methods in Nuclear En gineering Montr al QC 2004 Proceedings available on CD Rom 49 E Varin and G Marleau Validating the History based Method in DRAGON DONJON Using G2 Core Follow up 26th Annual Conference of the Canadian Nuclear Society Toronto ON 2005 Proceedings available on CD Rom 50 MATLAB The Language of Technical Computing 2006 51 C Plamondon V rification des lignes dint gration et illustration des g om tries DRAGON Technical Report IGE 290 Ecole Polytechnique de Montr al 2006 52 A Bidaud G Marleau and E Nablat Nuclear Data Uncertainty Analysis using the
76. Reactor Physics pp 2 2 1 1 2 2 1 12 Pitts burgh PA 1991 60 Marleau and A H bert Analysis of Cluster Geometries Using the DPI Approximation of the J Tech nique Nuclear Science and Engineering 111 257 270 1992 61 A H bert Application of a Dual Variational Formulation to Finite Element Reactor Calculations Annals of Nuclear Energy 20 823 1993 62 T Jevremovic T Postma J Vujic and Tsuda A Comparative Study of the NEACRP Nine Pin Supercell Benchmark by the Two Dimensional General Geometry Transport Codes Transaction American Nuclear Society 99 169 1998 63 M J Halsall CACTUS A Characteristics Solution to the Neutron Transport Equation in Complicated Ge ometries Technical Report AEEW R 1291 United Kingdom Atomic Energy Establishment 1980 64 B Carlson Tables of Equal Weight Quadrature Over the Unit Sphere Technical Report LA 4734 Los Alamos Scientific Laboratory 1971 65 Longoni and A Haghighat Development of New Quadrature Sets with the Ordinate Splitting Tech nique M amp C 2001 American Nuclear Society Topical Meeting in Mathematics and Computations Salt Lake City Utah 2001 Proceedings available on CD Rom 66 R Sanchez L Mao and S Santandrea Treatment of Boundary Conditions in Trajectory Based Determin istic Transport Methods Nuclear Science and Engineering 140 23 50 2002 67
77. Release 3 061 31 SA180 keyword to specify an hexagonal symmetry of half a type A assembly see Figure 5 This option is not yet supported by the NXT tracking module see SectionB 4 SB180 keyword to specify an hexagonal symmetry of half a type B assembly see Figure 6 This option is not yet supported by the NXT tracking module see SectionB 4 COMPLETE keyword to specify a complete hexagonal assembly see figure Figure 7 3 3 4 Spatial description of geometry The descSP structure is described in Table Table 22 Structure descSP ESHX xxx 1 4 1 1 1 LITX ispltx i i 1 1x ESHY yyy i i 1 1y1 LITY isplty i i 1 ly ESHZ zzz i 1 12 1 SPLITZ ispltz i 1 12 RADIUS rrr i i 1 1r 1 SPLITR ispltr i i 1 Ir OFFCENTER disxyz i i 1 3 SIDE sideh hexmsh SPLITH isplth NPIN npins rpins rpins i i 1 npins APIN apins apins i i 1 npins CP INX xpins i i 1 npins CP INY ypins i i 1 npins CPINZ zpins i i 1 DPIN dpins Here MESHX keyword to specify the spatial mesh defining the regions along the X axis XXX array giving the X limits cm of the regions making up the geometry These values must be given in order from to X If the geometry presents a diagonal symmetry the same data is also used along the Y axis SPLITX keywo
78. Rev 12 Release 3 061 Input data for test case TCWUOSLib c2m for Procedure TCWU05Lib x Create Library for test CASE TCWU05 Calling LIBRARY TCWUO5Lib iedit with LIBRARY Linked list containing the result of LIB TCWU05 iprint print level for LIB module Define PARAMETERS STRUCTURES and MODULES used oo PARAMETER IBRARY LINKED LIST LIBRARY MODULE DELETE END re Define and read LIB EDIT option INTEGER iedit gt gt iedit lt lt Depletion data from file format WIMSD4 Microscopic cross sections from file iaea format WIMSD4 LIBRARY LIB EDIT lt lt iedit gt gt NMIX 17 CTRA WIMS DEPL LIB WIMSD4 FIL MIXS LIB WIMSD4 FIL MIX 1 560 66 0 812 D2D20 3002 MIX 2 560 66 6 57 BNat 11011 Zr91 91 MIX 3 345 66 0 001 MIX 4 345 66 6 44 Ni58 456 BNat 1011 Zr91 91 5 345 66 1 082 D2D20 3002 MIX 6 941 29 10 437 Xe135 4135 U235 72235 U238 8238 U236 236 Pu239 6239 MIX 7 COMB 6 1 0 MIX 8 COMB 6 1 0 MIX 9 COMB 6 1 0 MIX 10 560 66 6 44 Ni58 58 iaea iaea 12 1 997681 2 100001 9 750001 4 6 000001 3 100001 9 971001 885 1 P Lu LH FI mn 2 010161 5010 0 0 27118E 6 8 752561 0 0 0 0 6 000001 Lu
79. Section 3 4 4 structure of the JPMT tracking options see Section 3 4 5 structure of the BIVACT tracking options see Section 3 4 6 3 10 The EVO module The EVO module is used for in core i e burnup or out of core isotopic depletion calculations Both the isotopic densities and the macroscopic cross sections present in the MICROLIB are updated at the end of each calculations The general format of the data which is used to control the execution of this module is presented in Table IGE 174 Rev 12 Release 3 061 78 Table 52 Structure EVO BRNNAM MICNAM EVO BRNNAM MICNAM OLDMIC TRKNAM FLUNAM descevo where BRNNAM characterx12 name of BURNUP data structure that will contain the depletion history MICNAM characterx12 name of the MICROLIB that will contain the update macroscopic cross sec tions If MICNAM appears on both LHS and RHS it is updated otherwise the microcopic cross section library OLDMIC is copied in MICNAM and then updated OLDMIC character 12 name of a read only MICROLIB that is copied in MICNAM TRKNAM characterx12 name of a read only TRACKING for the depleting geometry This information is required both for in core and out of core depletion cases FLUNAM characterx12 name of a read only FLUXUNK This information is used only for in core depletion cases descevo structure containing the input data to this module see Section 3 10 1 3 10 1 Data input for m
80. TRACK EDIT 3 MERG COMP COND 4 0 SAVE two burnup per step by a transport calculation 2 use approximation for final loop for first step BURNUP is created while for other steps it is modified 1 get a first approximation of final composition followed ux distribution to get a better approximation for final composition 174 Rev 12 Release 3 061 EVALUATE evoend 20 s WHILE evoend step2 DO EVALUATE evobeg evoend EVALUATE evoend step2 IF istep 1 THEN BURNUP LIBRARY EVO LIBRARY FLUX TRACK SAVE evobeg DAY DEPL lt lt evobeg gt gt lt lt evoend gt gt DAY POWR 36 8 SET evoend DAY 2 RNUP LIBRARY EVO BURNUP LIBRARY FLUX TRACK SAVE lt lt evobeg gt gt DAY D S U E lt lt evobeg gt gt lt lt evoend gt gt DAY POWR 36 8 ET lt lt evoend gt gt DAY LIBRARY SHI LIBRARY TRACKS SYS DELETE SYS SYS ASM LIBRARY TRACK FLUX FLU FLUX SYS LIBRARY TRACK TYPE B1 PNL BUCK 0 2948E 2 BURNUP LIBRARY EVO BURNUP LIBRARY FLUX TRACK lt lt evoend gt gt DAY DEPL lt lt evobeg gt gt lt lt evoend gt gt DAY POWR 36 8 SET lt lt evoend gt gt DAY pi lt LIBRARY SHI LIBRARY TRACKS SYS
81. TYPE B1 HETE BUCK 1 50298E 03 ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B B1 HETE KEFF 1 199538 ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B B1 HETE R BUCK 7 5 00993E 04 ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B B1 HETE 7 BUCK R 1 001986E 03 ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE B B1 HETE ITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE UX FLU FLUX SYS MACRO TRACK TYPE L B1 HETE R BUCK 7 5 00993E 04 ITION EDI EDITION FLUX MACRO TRACK 121 IGE 174 Rev 12 Release 3 061 122 EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE L Bl HETE Z BUCK 1 001986E 03 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE L Bl HETE EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE FLUX SYS DELETE FLUX SYS Tracking EXCELT MOSTELCV only update TRACK TRKSPC files since only change is in one material Solution TYPE K B or L Leakage Bl PNL Bl HETE TRACK TRKSPC EXCELT TRACK TRKSPC MOSTELCV TITLE TCM05 ANNULAR GEOMETRY WITH MACROSCOPIC XS VOID SYS ASM MACRO TRACK TRKSPC
82. as well as its associated input structure All the modules can be called more than once 2 3 The DRAGON Modules The code DRAGON is divided into 27 main calculation modules Some of these modules perform identical tasks but using different calculation techniques i e the five tracking modules while others combine several modules i e EXCELL that combines ASM and EXCELT One of the modules namely BIVACT can only be called indirectly as a sub module of EDI These modules perform the following tasks MAC LIB generates or modifies a DRAGON MACROLIB see Section 2 4 that contains the group ordered macroscopic cross sections for a series of mixtures see Section 3 1 The MACROLIB generated can be an independent data structure or included as a substructure in a MICROLIB The spatial positioning of these mixtures in a geometry is provided by the GEO module see Section 3 3 generates or modifies a DRAGON MICROLIB see Section 2 4 It can read different formats of microscopic cross section libraries see Section 3 2 Currently the DRAGLIBE7 MATXS BRI WIMS D4B154 and WIMS AECLE formats are supported After having interpolated the mi croscopic cross sections for each isotope in temperature and dilution they are then multiplied by the isotopic concentrations particles per and combined in such a way as to produce an embedded MACROLIB see Section 2 4 The spatial positioning of these mixtures in a
83. associated with a different external surface and its weight will be multiplied by a factor 1 n This allows for a better distribution of tracks which are relatively close to n external surfaces By default there is no special treatment for the corners and pcorn 0 0 keyword to specify that isotropic tracking parameters will be supplied This is the default track ing option for cluster geometries keyword to specify the use of equal weight quadrature 69 keyword to specify the use of the Gauss Legendre quadrature This option is valid only if an hexagonal geometry is considered keyword to specify that specular tracking parameters will be supplied This option is invalid for 2 D hexagonal or annular geometries and for general 3 D geometries keyword to specify that instead of selecting the angles located at the end of each angular interval the angles located in the middle of these intervals are selected This is particularly useful if one wants to avoid tracking angles that are parallel to the X or Y axis as is the case when the external region of a CARCEL geometry is voided angular quadrature parameter where e For 3 D geometry only the EOW option is permitted with nangl 2 4 8 10 12 14 or 16 8 e For 2 D isotropic tracking any value of nangl may be used and equidistant angles will be selected e For 2 D specular tracking the input value must be of the form p 1 where p is a prime number for example p 7 11 etc the choi
84. can be used to identify a record An input variable can be defined in one of two ways e set of consecutive characters containing no blanks it will be automatically interpreted by DRAGON as being either an INTEGER a REAL a DOUBLE PRECISION or a CHARACTER variable depending on the format of the input variable The identification of INTEGER REAL and DOUBLE PRECISION vari ables follows the FORTRAN prescriptions everything else is automatically assumed to represent a character variable e As a set of characters enclosed between quotation marks In this case the information is always assumed to represent a character variable The only separator allowed between two input variables is one or more blank character not enclosed between quotation marks A single input variable cannot span two records Comments can also be included in the input deck as folows e characters in column 73 or higher on a record e each record starting with the character x e characters on a record following a e characters on a record following the keyword These comments are not transferred to DRAGON during the execution but are useful to document the input data structure This users guide was written using the following conventions e An input structure represents a set of input variables It is identified by a name in boldface surrounded by parenthesis For example the complete DRAGON input deck is represen
85. characterx12 name of a MAP data structure hstdim structure containing the dimensions for the HISTORY data structure CELLID keyword to identify the cell for which history information is to be processed icha channel number for which history information is to be processed ibun bundle number for which history information is to be processed idfuel fuel type number associated with this cell One can associate to each fuel cell a different fuel type By default a single fuel type is defined and it fills every fuel cell Only the initial properties of each fuel type are saved These properties are used for refueling GET keyword to specify that the values of the parameters selected in brnpar will be read from the input stream or CLE 2000 local variables and stored on the HISTORY data structure PUT keyword to specify that the values of the parameters selected in brnpar will be read from the HISTORY data structure and transferred to local CLE 2000 variables BREF L keyword to specify that the information to extract from the HISTORY data base is related to the properties of the cell before refueling takes place AREFL keyword to specify that the information to extract from the HISTORY data base is related to the properties of the cell after refueling took place hstbrn structure containing the burnup options hstpar structure containing the local parameters options The hstdim input structure is required for general dimension
86. coupling of DRAGON with SUSD3D M amp C 2009 Saratoga Springs NY 2009 Proceedings available on CD Rom 53 Camand Utilisation de sources et d adjoints DRAGON pour les calculs TRIPOLI M Sc thesis Ecole Polytechnique de Montr al 2012 54 A Kavenoky Calcul et utilisation des probabilit s de premi re collision pour les milieux h t rog nes a une dimension Technical Report CEA N 1077 Commisariat l nergie Atomique 1969 55 A H bert A Collision Probability Analysis of the Double Heterogeneity Problem Nuclear Science and Engineering 115 177 1993 IGE 174 Rev 12 Release 3 061 194 56 G Marleau R Roy and A H bert An Integral Transport Method for Treating CANDU and GCR Clusters Nuclear Science and Engineering 18 197 205 1986 57 G Marleau R Roy and A H bert Analytic Reductions for Transmission and Leakage Probabilities in Finite Tubes and Hexahedra Nuclear Science and Engineering 104 209 216 1990 58 G Marleau M L Vergain A H bert and R Roy Computation of the DP1 Collision Probabilities for Spherical and Cylindrical Geometries Annals of Nuclear Energy 17 119 134 1990 59 M Ouisloumen G Marleau A H bert and Roy Computation of Collision Probabilities for Mixed Hexagonal Cylindrical Geometries Using the DP1 Approximation to the J Technique International Top ical Meeting on Advances in Mathematica Computation and
87. diffusion TENER DISCR1 JPMT ASSMB TITLE TCWUO2 17 X 17 MULTICELL PWR BENCHMARK WITHOUT POISON MAXR 400 OLD LIBRARY SHI LIBRARY DISCRI DISCR2 SYBILT ASSMB TITLE TCWUO2 17 X 17 MULTICELL PWR BENCHMARK WITHOUT POISON MAXR 400 CP ASM LIBRARY DISCR2 CALC FLU CP LIBRARY DISCR2 TYPE B Bl OUT EDI CALC LIBRARY DISCR2 ASSMB EDIT 3 UPS SAVE COND 4 0 SPH BIVACT PRIM 1 2 EDIT 0 COMPO CPO OUT EDIT 1 STEP REF CASE 1 EXTRACT ALL NAME COMPO res COMPO END QUIT LIST 4 4 3 TCWUO03 An hexagonal assembly 147 This test case represents a production calculation of a typical hexagonal control assembly Its configuration is presented in Figure Input data for test case TCWU03 x2m Ses TEST CASE TCWUO3 MULTICELL HEXAGONAL ASSEMBLY WITH POISON iaea WLUP Library REF none Define STRUCTURES and MODULES used k LINKED_LIST ASSMBH DISCR1 DISCR2 LIBRARY CP CALC OUT COMPO SEQ_ASCIT F IGE 174 Rev 12 Release 3 061 148 res MODULE GEO JPMT SYBILT LIB SHI ASM FLU EDI CPO DELETE END ss Microscopic cross sections from file iaea format WIMSD4 LIBRARY LIB NMIX 11 CTRA WIMS MIXS LIB WIMSD4 FIL iaea MIX 1 579 9 H1H20 r 30017 4 76690 2 016H20
88. dilution cross section in barns of the isotope NAMISO in this mixture The group dependent dilution for an isotope can be computed using the SHI module see Section 3 5 In this case the dilution is only used as a starting point for the self shielding iterations and has no effect on the final result If the dilution is not given or is larger than 1019 barns an infinite dilution is assumed keyword to specify that an infinite dilution 1019 barns is to be associated with this isotope This value implie that the isotope is present in trace amounts only number of the resonant region associated with this isotope By default inrs 0 and the isotope is not a candidate for self shielding When 111570 the isotope can be self shielded using the SHI module see Section 3 5 where it is assumed that a given isotope distributed with different concentrations in a number of mixtures and having the same value of inrs will share the same fine flux This approximation is similar to the PIC approximation of Livolant Jeanpierre Should one wish to self shield both the fuel sheaths and the fuel it is important to assign a different inrs number to each If a single type of fuel is located in different mixture in onion peel fashion it is necessary to attribute a single inrs value to this fuel keyword to specify that the absolute temperature of the isotope is different from that of the isotopic mixture This option is useful to define Debye corrected temperature
89. isotope is generated rather than the unique fission spectrum for all fissile isotopes generated when MICR is used The use of this keyword is required if burnup using the condensed and homogenized library is to be considered since in this case the file EDINAM contains a MICROLIB keyword to specify that all the isotopes present in the original MICROLIB are to be processed number of isotopes present in the original MICROLIB to be processed array of character 8 isotope names to be processed IGE 174 Rev 12 Release 3 061 75 ACTI imixa ISOT SAVE ON DIRN idirn STAT ALL DIRO idiro keyword to specify that microscopic activation data will be edited for the isotopes associated with the specified mixture This information correspond to the microscopic cross section associated with each isotope in a given macro group and macro region assuming a concentration for this isotope of 1 0 cm in each region This keyword is followed by nacti material mixture indices where nacti lt maxmix array of material mixture indices which contains the isotopes for which activation data is to be generated nmix lt maxmix Even mixtures not used in the geometry can be considered here keyword to specify that the set of microscopic cross section generated by the FLIB MICR and ACTI command must be saved on a multigroup microscopic neutron cross section library in the ISOTXS IV format This will generate a file f
90. lt nhr x hexmsh lt sideh hexmsh The triangles in the last hexagonal ring are truncated at sideh see 8 keyword to specify that a triangular mesh splitting level for HEXT and HEXTZ type geometries is to be considered This is valid only if nhr 1 value of the triangular mesh splitting Its use is similar to nhr except that each sector of the hexagonal cell will be filled by a unique mixture keyword to specify the number of pins located in a cluster geometry It can only be used for SPHERE TUBE TUBEX TUBEY and TUBEZ sub geometry the number of pins associated with this sub geometry in the primary geometry IGE 174 Rev 12 Release 3 061 33 DPIN dpins RPIN rpins APIN apins CPINX xpins CPINY ypins CPINZ zpins keyword to specify the pin density in a geometry that contains clusters A number N of pins that will be placed randomly in the geometry with dar Ve Nor 27 Vp where dp r is the pin density V the volume of the cell containing these pins and V the volume of this pin type The function NINT provides the nearest integer associated with its real argument It can only be used for SPHERE TUBE TUBEX TUBEY and TUBEZ sub geometry the pin density dp r keyword to specify the radius of an imaginary cylinder where the centers of the pins are to be placed in a cluster geometry the radius cm of a
91. main input data structure for a DRAGON execution is an ASCII file that is identified by 12 characters case dependent including an optional x2m extension A CLE 2000 procedure is also a file identified by 12 characters again case dependent However two file format options are available for these procedures First the procedure can be provided in an ASCII format identified by the c2m extension In this case it is compiled by the GAN generalized driver preprocessed and the resulting information is stored in a direct access binary file extension 02m This is the file that is processed during a DRAGON execution One can also provide the procedure directly via a direct access binary file extension o2m In that case the GAN generalized driver transfers directly the information to DRAGON for processing This is mainly used to store reference procedures because they are impossible to modify the explicit contents of these compiled procedures is also hidden from the user 2 1 Data organization The instructions to control the execution of DRAGON are stored in a file also known as the the input deck or the INPUT data structure as a collection of sequential ASCII record The logical organization of the input deck is in the form of a list of free format input variables and keywords The instructions must be located in the first 72 columns of each record in the input stream Characters located in column 73 and higher are treated as comments they
92. meaning e For Cartesian and hexagonal 2 D geometries with isotropic tracking only option permitted is EQW which is the default value the azimuthal angle is discretized using a double nangl trapezoidal quadrature 0 lt lt 7 2 and 1 2 lt lt m For Cartesian 2 D geometries with cyclic specular tracking only MEDI option permitted the default being to use end of range azimuthal position the azimuthal angle is dis cretized using a specialized numerical quadrature In this case nangl must be of the form p 1 where p is a prime number for example p 7 11 etc only the nangl 8 12 14 18 20 24 or 30 are allowed By default the polar angle quadrature is a Gauss Legendre quadrature of order nangl 2 1 it can also be specified independently For Cartesian and hexagonal 3 D p with the EOW option Carlson equal weight directional quadrature are selected The only values of nang permitted are then 2 4 8 10 12 14 or 16 corresponding to 1 3 10 21 28 and 36 directions per quadrant in the upper half sphere For Cartesian and hexagonal 3 D geometries with the PNTN or SMS options nang must be an even number smaller than 46 4 see Section 3 4 2 see Section 3 4 2 see Section 3 4 2 see Section 3 4 2 keyword to specify that the polar integration will be carried out using an order npol trapezoidal quadrature over cos 0 0 u lt 1 keyword to specify that the polar integration will be carried ou
93. on the DRAGON format library associated with file DRAGLIB Also assume that the depletion chain which is written on the WIMS AECL format library associated with file WIMSLIB states that isotope U236 initially absent in the mixture can be generated form U235 by neutron capture Then one can either specify explicitly from which library file the microscopic cross sections associated with isotope U236 zero concentration are to be read or omit U236 from the mixture description in which case DRAGON will assume that the microscopic cross sections associated with isotope U236 are to be read from the same library as the cross section for isotope U235 Remember that the isotopes added automatically will remain at infinite dilution not affected by resonance self shielding calculations IGE 174 Rev 12 Release 3 061 24 3 2 6 Format for descmix2 The structure descmix2 is used to describe the modifications in the isotopic composition of a mixture taken from a BURNUP data structure Table 14 Structure descmix2 MIX matnum matold NAMALI dens where MIX keyword to specify the number identifying the next mixture to be updated If no mixture is specified then all the mixtures are updated matnum mixture identifier on MICLIB matold mixture identifier on BRNOLD When matold is not specified this mixture is not updated NAMALI character 8 alias name for an isotope on MICLIB to be modified dens isotopic concentration of the isoto
94. origin in space of the cell Orpg array containing the X Y and Z positions of the origin REPERE keyword used to define the three axis direction vectors IGE 174 Rev 12 Release 3 061 rep array containing the X Y and Z components of the i j and j axis vectors NBMESH keyword used to define the number of mesh point in each direction for adjoint weighting rep array containing the number of mesh points in the i j and j directions 174 Rev 12 Release 3 061 105 4 EXAMPLES Here we present a few examples of DRAGON input structures in such a way as to clarify and illustrate some of the options presented in SectionB 4 1 Scattering cross sections In DRAGON the angular dependence of the scattering cross section is expressed in a Legendre series expan sion of the form L X Q Us u x gt Qt s inq 1 0 Since the Legendre polynomials satisfy the following orthogonality conditions m CEN we will have gt a f af GP D dus PU 1 Let us now consider the following three group ngroup 3 isotropic and linearly anisotropic scattering cross sections L naniso 2 given by i g ee EIT 2 cmt In DRAGON this scattering cross section must be entered as SCAT 1 1 0 90 3 3 0 30 0 70 0 80 2 3 0 40 0 60 3 3 0 03 0 00 0 09 22 0 07 0 05 3 3 0 04 0 06 0 08 4 2 Geometries In order to illustrate the use of the various geometri
95. that a consistent Selengut normalization of the collision probability matrix is to be used both for the flux solution module see Section 3 7 and in the equivalence calculation see Section 3 9 This keyword results in storing the escape probabilities P s in For all the cases where this option is used it is necessary to define a geometry with VOID external boundary conditions see Section 3 3 keyword to specify that the complete collision probability matrices are to be computed even if they are not required in the flux solution module keyword PIJ or SKIP absent and sated on PIJNAM characterx12 name under which the complete collision probability matrices are saved keyword to specify that the collision leakage and escape probability matrices are to be normal ized in such a way as to satisfy explicitly the neutron conservation laws This option compensates for the errors that arise due to the numerical evaluation of the probabilities that may result in non conservative collision probability matrices The default option normalization is HELI keyword to specify that the probability matrices are not to be normalized for neutron conserva tion keyword to specify that only the diagonal element of the probability matrices will be modified in order to insure the validity of the conservation laws keyword to specify that the Gelbard algorithm will be used to normalize the collision probability matrices keyword to specify th
96. the NXT tracking module see Section 3 4 IGE 174 Rev 12 Release 3 061 27 TUBEY TUBEZ 1 CAR2D CARCEL CAR3D CARCELX CARCELY CARCELZ HEXZ HEXTZ GROUP keyword to specify a 3 D cylindrical along the Y axis geometry This geometry can contain an imbedded X Y Z Cartesian mesh This option is only supported for cluster sub geometries in the NXT tracking module see Section 3 4 keyword to specify a 3 D cylindrical along the Z axis geometry This geometry can contain an imbedded X Y Z Cartesian mesh keyword to specify a single Cartesian cell geometry in 1 D with an imbedded Z mesh or an assembly of 1 D Cartesian cells This option is only supported by the SYBILT tracking module see Section B 4 keyword to specify a single Cartesian cell geometry in 2 D with an imbedded X Y mesh or an assembly of 2 D Cartesian cells keyword to specify a 2 D Cartesian cell geometry with embedded annular regions concentric tubes surrounded by a rectangle keyword to specify a single Cartesian cell geometry 3 D with an imbedded X Y Z mesh or an assembly of 3 D Cartesian cells keyword to specify a 3 D Cartesian cell geometry with embedded cylinders oriented along the X axis keyword to specify a 3 D Cartesian cell geometry with embedded cylinders oriented along the Y axis keyword to specify a 3 D Cartesian cell g
97. tmoderef tmodehigh tmodelow Table 59 Structure desccfc NFOR TITLE NAME RNANE R powerref powerhigh powerint powerlow COOL tcoolref tcoolhigh tcoollow MODE tmoderef tmodehigh tmodelow TFUEL tfuelref tfuelhigh tfuellow HOC dcoolref H OM dmoderef R pmodref pmodper keyword used to modify the print level iprint index used to control the printing of the module keyword to define the database title characterx72 title associated with the reactor FMB database keyword to define the database name characterx12 name of the FBM database keyword to define the power levels used for the burnup calculations reference power level kW high power level level kW intermediate power level level kW low power level level kW keyword to specify coolant temperature used for reference and perturbed cases reference coolant temperature K high coolant temperature low coolant temperature K keyword to specify moderator temperature used for reference and perturbed cases reference moderator temperature K high moderator temperature K low moderator temperature K IGE 174 Rev 12 Release 3 061 88 TFUEL keyword to specify fuel temperature used for reference and perturbed cases tfuelref reference fuel temperature K tfuelup high fuel temperature K tfueldown low fuel temperature K RHOC keyword to specify coolant density used for reference calculations dcoolref reference
98. 000 000 000 000 000 134 IGE 174 Rev 12 Release 3 061 135 MIX 19 TOTAL 1 250 SCAT 11 1 242 FIXE 1 000 7 5 x Geometry PWR Cartesian 7x7 Tracking EXCELT PWR GEO CAR2D 4 4 X DIAG X Y SYME Y DIAG CELL WA F2 F4 F6 F8 P10 F12 14 F16 F18 WA GEO CAR2D 1 1 MESHX 0 625 0 625 SPLITX lt lt Nsplit gt gt MESHY 0 625 0 625 SPLITY lt lt Nsplit gt gt MIX 1 i F2 GEO CARCEL 1 MESHX 0 625 0 625 SPLITX lt lt Nsplit gt gt MESHY 0 625 0 625 SPLITY lt lt Nsplit gt gt RADIUS 0 000 0 450 MIX 2 3 FA GEO F2 MIX 4 5 2 F6 GEO F2 MIX 6 7 2 F8 GEO F2 MIX 8 9 P10 GEO F2 MIX 10 1 SPLITR 3 F12 GEO F2 MIX 12 3 F14 GEO F2 MIX 14 5 F16 GEO F2 MIX 16 J gt F18 GEO F2 MIX 18 9 TRACK PWRTRK EXCELT PWR MAXR 300 TRAK TSPC lt lt Nazimuth gt gt lt lt DenTrak gt gt FLUX MOCC MACRO TRACK PWRTRK lt lt Polar_Ang gt gt TYPE S HER lt lt Tolerance gt gt 100 lt lt Tolerance gt gt 100 EDITION EDI FLUX MACRO TRACK DIT 2 SAVE GREP EDITION TEP UP REF CASE 1 STEP UP MACROLIB ETVAL VOLUME 1 11 gt gt 1 lt lt gt gt 2 lt lt gt gt 3 lt lt gt gt 8 lt lt gt gt 9 lt lt gt gt v10 lt lt gt gt 11 lt lt gt gt 12 lt lt gt gt 13 lt lt gt gt 14 lt lt gt gt 15
99. 02 FLUX IR IA IR 1 NREG IA 1 NANGL O LUX GT 1 THEN IGROUP 1 NGROUP READ 1002 ADJOINT IR IA IR 1 NREG 1 DO END NDIF IF 3 NFLUX DO IGROUP 1 NGROUP READ IPU 1002 2 1 1 NANGL ENDDO N O O 5110 5 12 2 2 2 2 lt gt ORMAT 5F20 10 Here IPU NGROUP NAME fortran output unit number number of energy groups number of angles N4 at which the angular flux is evaluated number of regions Ng number of flux record In the case where NF LUX 1 only the directional fluxes are provided If NFLUX 2 both the directional fluxes and adjoints are provided Finally for NF LUX 2 the di rectional fluxes adjoints as well as generalized adjoints are provided The type of the generalized adjoints is provided in the record name NAME of the fluxes record By definition e NAME zFLUX aan e NAMEs ADJOINT e for gt 2 depends on the generalized adjoint source IGE 174 Rev 12 Release 3 061 226 MU ETA WGHT FLUX ADJOINT GAMMA projection of direction on z axis Ha COS Sin With Ya the azimuthal angle and a the polar angle projection of direction on y axis sin with Ya the azimuthal angle and a the polar angle angular
100. 16 vil 181 TCWU17 vii 142 182 TDXS 78 81 temp 21 22 83 84 tempd 21 22 TFILEEXT 88 89 TFILEMOD 88 89 TFILENEW 88 89 TFILEOLD 88 89 TFUEL 87 88 tfueldown tfuelhigh 87 tfuellow 87 tfuelref 87 88 tfuelup THER 21 22 64 65 69 70 92 93 THO2 83 85 T1S0 48H51 62 63 142 TITE TITLE 4787 TIXS 78 81 TLM 01199 MABARA TMODE tmodehigh 87 tmodelow 87 tmoderef 87 TMP 83 84 TOTAL 13 14 93 94 TRAA 50 51 TRACKING 7 44 46 58H60 63 68 713773 76 78 TRAD 50 51 ui 235 TRAK 48 49 62 TRAN 13 14 29 30 TRANC 93 94 TRKENEW 88 89 TRKEOLD 88 89 45 46 57 60 68 99 73 TRKNAM 45 16 54 57H60 63 68 71 78 90H92 TRKNNEW 88 TRKNOLD 88 TSPC SHI 142 TUBE 26 32134 B7 12H45 BA TUBEX 26 32 34 37 42 TUBEY 2612718234187121 TUBEZ 26 271B2134 B31 42 45 54 TURN 86 42 144 TYPE 64 6870 91493 96 U v roo 101 UNKT 64 65 69 70 93 U02 83 85 UPDL I3 UPS 72 73 V v 100 valb2 66 valbr2 66 67 valbx2 66 67 valby2 66 67 valbz2 66 valeps valeps 1 78 valeps2 78 valexp 78 80 valh1 78 valk 66 67 valpar 99 VIRTUAL 26 29 VOLTRK 101103 78
101. 4 63 ELE 11 12 ELS 72 75 enmix 21 22 ENS 83 dens 21 22 24 25 48 50 52 62 63 83 84 dens12 50 densz 48 50 pEPL 16 18 78 79 descasm descBC ix 28 29 64 descbivac desccfc K 85187 descepo K 81 82 descdepl ix 16 18 20 228 descedi 71 72 descevo descexcel ix 45 47 48 68 76 77 descextr x1 88H90 descflu descgent descgtyp descinfo descitr descjpm descleak desclib desclibbrn desclibupd descmac 9 descmaci descmacm 9 descmcu descmix1 v descmix2 V descmix3 V descmoc descmpa descmrg descNSG desenxt descper descPP descpsp descsad x descshi ix 57 58 descSP ix 28 a desesph 72 76 descsybil fix 4647 desctlm desctrack desctrak descXL descxs DFLUX DFLX DIAG dil DIMENSIONS 98 DIR DIRA DIRECTION 72 73 DIRECTIONS I00 DIRFLX DIRN DIRO DIST IGE 174 Rev 12 Release 3 061 dist 100 LOT disxyz 31 32 dmoderef 87 88 DNAME DP00 521 55 DP 01 52H55 DPIN 31 33 dpins 31 33 DRAGON DRAGON 16 18 83 84 DUAL 56 dxt 78 79 E EDI ix 71 EDI 17 7 82 l8 4 7 1 72 82 176 EDINAM 71 741176 81
102. 41 29 10 437 Xe135 4135 U235 72235 U238 8238 U236 236 Pu239 6239 MIX 7 COMB 6 1 0 MIX 8 COMB 6 1 0 MIX 9 COMB 6 1 0 MIX 10 560 66 6 44 Ni58 58 BNat 1011 Zr91 19 MIX 11 560 66 0 812 D2D20 3002 MIX 12 560 66 6 57 BNat 1011 Zr91 91 MIX 13 345 66 0 001 MIX 14 345 66 6 44 Ni58 58 BNat 1011 Zr91 191 iaea iaea 12 1 997681 2 100001 9 750001 4 Ae 3 6 000001 3 100001 9 971001 885 2 01016E 1 5010 0 0 27118 75256E 1 20 0 D Dp Bs 4 mn 6 000001 3 100001 9 971001 12 1 997681 D Ed A N mn ps 2 100001 9 750001 4 Ed 53 6 000001 3 100001 9 971001 N Awe Bs 4 mn 016 H1H20 Nb93 He4 Fe56 Cr52 016 H1H20 016 Fe56 Cr52 O16 H1H20 Nb93 He4 Fe56 Cr52 identification 6016 3001 93 rar 2056 52 6016 3001 6016 2056 52 6016 3001 193 r 4 2056 52 7 99449E 1 7 83774E 4 2 50000 1 00000 2 1 60000E 1 1 10000E 1 7 98895E 1 8 96000E 5 1 18473E 1 1 60000E 1 1 10000 1 7 99449 1 7 83774 4 2 50000 1 00000E 2 1 60000E 1 1 10000E 1 189 MIX 15 D2D20 MIX 16 Xe135 U235 U238 U236 Pu239 MIX 17 MIX 18 MIX 19 MIX 20 Ni58 BNat Zr91 MIX 21 Cr52 5129 55 END IGE
103. 449 1 83259571 1 83259571 2 35619449 2819719327 ROD3R GEO TUBE 2 MIX 18 20 HMIX 1 1 RADIUS 0 00000 0 6122 0 6540 NPIN 6 RPIN 2 8755 IGE 174 Rev 12 Release 3 061 APIN 1 0 RODAL GEO TUB RADIUS 0 NPIN 9 APIN 1 2s 35 RODAR GEO TUB RADIUS 0 NPIN 9 APIN 1 0 0 7 E FXYR GEO CARCEL 5 MESHX 7 14375 0 0 7 14 MESHY 7 14375 7 14375 RADIUS 0 00000 5 16890 HMIX 1 1 0 0 MIX 11 12 1 2 CLUSTER ROD1 ROD2L ROD2 RODI GEO NPIN 1 MESHX 0 MESHY 0 RADIUS 0 ROD2L GEO TUB RADIUS 0 NPIN 3 APIN 2 0 ROD2R GEO TUB RADIUS 0 NPIN 3 APIN 1 ROD3L GEO TUB RADIUS 0 NPIN 6 APIN 2 1 ROD3R GEO TUB RADIUS 0 NPIN 6 APIN 1 0 RADIUS 0 NPIN 9 APIN 1 2 26179939 RODAL GEO TUB 30899694 0 78539816 0 26179939 26179939 0 78539816 1 30899694 E 2 MIX 9 10 HMIX 00 00000 0 6122 0 6540 RPIN 4 3305 74532925 2 09439510 2 44346095 79252680 3 14159265 3 49065850 83972435 4 18879020 4 53785606 E 2 MIX 19 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 4 3305 39626340 1 04719755 0 69813170 34906585 0 0 0 34906585 69813170 1 04719755 1 39626340 21 375 SPLITX 3 3 SPLITY 6 5 60320 6 44780 6 58750 7 00 1 1 1 1 0 0 0 0 13 14 15 15 3 4 5 5 R ROD3L ROD3R ROD4L ROD4R E 2 1 2 MIX 16 20 6 10 RPIN 0 0000 APIN 0 0000 6540 0 6540 6540 0 0 0 6540 00000 0 6122 0 6540 E 2 MIX 17 20 HMI
104. 5 descNSG structure used to specify the properties of non standard geometries see Section 3 3 6 SUBGEO characterx12 name of the directory that will contain the sub geometry OLDGEO characterx12 name of a parallel directory containing an existing sub geometry The type and all the characteristics of OLDGEO will be copied to SUBGEO before the updates specified by descgent are applied descgtyp structure describing the geometry type of SUBGEO see Section 3 3 1 descgent structure describing the characteristics of SUBGEO see Section 3 3 2 3 3 3 Boundary conditions The data corresponding to the descBC structure is presented in Table IGE 174 Rev 12 x VOI X VOI Y VOI Y VOI Z vor 2 VOI R VOID HBC S30 VOID REFL X Y Zt R SSYM Qo NJ WM Release 3 06L 29 Table 21 Structure descBC SSYM TRAN SYME ALBE albedo icode DIAG SSYM TRAN SYME ALBE albedo icode DIAG SSYM TRAN SYME ALBE albedo icode DIAG SSYM TRAN SYME ALBE albedo icode DIAG EFL SSYM TRAN SYME ALBE albedo icode EFL SSYM TRAN SYME ALBE albedo icode EFL ALBE albedo icode A60 SB60 590 R120 R180 SA180 5 180 COMPLE SYME ALBE albedo keyword to specify the boundary conditions associated with the negative X surface in a C
105. 5 10 20 50 days for days for days for days for days for 5 0 100 i initial 1 po Time LINKED LIST LIBRARY CANDU6S CANDU6F VOLMATF PIJ FLUX INTLINF SEO ASCII SEO BINARY f flxxel flxmoc MODULE GE OF SHI DELETE I x Depletion data from file format WIMSD4 x Microscopic cross sections from file iaea format WIMSD4 END EXC final time ES and MODULI 0 to 1 to 5 to 10 to 50 to 50 to 1 5 10 50 150 300 TotalTime Final time reached ES used ELT ASM FLU MOCC 0 0 to 300 0 days day days days days days days c Days with burnup interval changes 0 0 150 0 and 300 0 days d Burnup control time variables Timei time TotalTime 174 IGE 174 Rev 12 Release 3 061 LSS 0000 APIN 4885 APIN 8755 APIN 3305 APIN 0000 APIN 4885 APIN 8755 APIN 3305 APIN 175 uster for self shielding uster for transport 0000 0000 261799 z0 y 0000 0000 261799 0 PROCEDURE TCWUOS5Lib INTEGER iedit 1 LIBRARY TCWUOS5Lib lt lt iedit gt gt e Geometry CANDU6S 13 regions annular cl CANDU6F 31 regions annular cl CANDU6S GEO CARCEL 5 X REFL X REFL MESHX 14 2875 14 2875 REFL Y REFL
106. 5 6 7 8 7 8 910 910 9 10 11 12 11 12 11 12 11 12 13 14 13 14 13 14 13 14 15 16 15 16 15 16 17 18 17 18 17 18 17 18 19 20 19 20 19 20 4 Solution TYPE S only since no fission pa KEFF lt 1 DO FIXED SOURCE PROBLEM PROBLEM FIXED AND FISSION SOURCES TAKEN INTO ACCOUNT FLUXS FLU SYSS MACRO TRACS TYPE S EDITS EDI FLUXS MACRO TRACS EDIT 2 SAVE MERGE REGION 1 112 3 4 3 4 5 6 5 6 7 8 7 8 910 910 9 10 11 12 11 12 11 12 11 12 13 14 13 14 13 14 13 14 15 16 15 16 15 16 17 18 17 18 17 18 17 18 19 20 19 20 19 20 PWRTRKS PWRTRKF DELETE PWRTRKS PWRTRKF END QUIT LIST 4 3 9 09 Solution of a 2 D fission source problem using the module This test case is for a 3 x 3 Cartesian assembly in 2 D similar to TCMO3 It is solved using the method of cyclic characteristics Input data for test case TCM09 x2m TEST CASE TCM09 MACROSCOPIC CROSS SECTIONS FIXED SOURCE PROBLEM CARTESIAN 3 X 3 ASSEMBLY WATANABE MAYNARD PROBLEM SIMILAR TO TCM03 REF Roy The Cyclic Characteristics Method Int Conf Physics of Nuclear Science and Technology Long Island NY October 1998 pp 407 414 ox F F LINKED LIST WATA WAT24 TRACK MACRO FLUX EDITION 174 Rev 12 Release 3 061 SEO BINARY WATATRK
107. 6 67 BUNBLES 98 BUNDLES 98 08 BURN 19 20 98 96 97 82 BURNUP MKB ISLS 19 24 78 79 8 1 96 97 C C 83 84 100 101 c 100 101 CACA 48 CACB 48 CALC 83185 95 96 CAR1D 26 27 34 38 45153 CAR2D 26 27 34 38 44 45 CAR3D D6 27 35 39 45 CARCEL B26 271 32 53 B9 44 45 49 CARCELX 26 271 32 35 B9 CARCELY 28 27 32 35 40 5 CARCELZ 28 27 32 35 40 5 CDEPCHN 16 18 CDIRN 75 CELL 624372 73 CELLID 99 CELLID 96 97 85 6885 87 85 CGPA 64 65 93 94 CHAIN 20 CHANNELS 98 character 72 47 cH 1314 CHID 17 CHIS 17 174 Rev 12 Release 3 061 CLUSTER 36 42 CMYK DI COHERENT 72 73 come 21 23 171 compe 72 73 771 93 194 103 COMPLETE 29 BI 81 coND 72 74 93 94 103 congpa 64 65 93 94 COOL 78 80 CORN 48 50 62 63 cp 101 102 813 813 CPINZ 31 33 CPO 88 cPo 8 81 85 CPO Bi 68882 CPONAM 81 82 85 CRE 8 11316 17 59182 CURRENT 72 73 68 50 D 100 101 d 100 101 D20 83 85 DADJOINTS 101 102 102 DA Y 78 S0 DB2 66 67 DBYE 21 22 dcoolref 87 88 dcr 20 ECO 6
108. 60320 ROD2 ROD3 ROD4 2 MIX 6 10 0 6122 0 6540 MIX 7 10 MIX 8 10 MIX 9 10 NPIN NPIN NPIN NPIN SPLITR 6 11 PLITR 2 tion EXCEL Self Shielding calcula Transport calculation ux calculation for keff TITLE TCWU06 SHI EDIT 0 RACK INTLIN TRACK INTLIN TITLE TCWU06 SYS EDIT 0 FLUX TYPE K X EDIT 0 MAXR 14 TRAK LIBRARY EXCELT CAND LIB DELETE EXCELT CANDU 6 MIX 1 2 3 from EDI MIX 4 stainless steel rods CAND U 6 CART TISO 2 RARY TRAC TRAC CAND s CARTESIAN FU EDIT 0 MAXR 32 TRAK TISO 29 20 0 SYMM 4 ASM LIBRARY TRACK INTLIN fuel EXCEL U6S ESIAN 9 20 0 K INT FUEL SYMM 4 LIN K INT U6F LIN EL FLU SYS LIBRARY TRACK 6 44780 12 18 L4 6 58750 14 00 RPIN RPIN RPIN RPIN 10 0 0000 APIN 1 4885 APIN 8755 APIN 4 3305 APIN TEMP 941 29 TEMP 941 29 EDITION EDI FLUX LIBRARY TRACK EDIT 0 MERGE MIX 1222311111 SAVE ON SSRODS EDITION UTL EDITION STEP UP SSRODS LIBRARY2 LIB EDITION EDIT 0 NMIX 4 CTRA WIMS MIXS LIB WIMSD4 FIL iaea MIX 4 345 66 Fe56 2056 Cr52 7527 1 56659E 3 Ni58 758 5129 29 7 79072 4 C12 20127 0 00 0 00 0 26 0 0 Microscopic cross sections from WIMS
109. 66666667 PROCEL 0 0 1 0 0 5 0 5 CELL 2 2 GEO TUBE 1 RADIUS 0 0 1 1822093 MIX 1 35 C2 GEO C1 MIX 2 HBC 530 SYME 1 3 MIX 12 SIDE HEXDIR 108 such that 1 3 2 3 _ 0 1 1 2 1 2 EXDIR HEX 2 GEO The first lattice can only be analyzed using SYBILT and JPMT while the second lattice can be analyzed using all the tracking modules of DRAGON except NXT 4 3 Macroscopic cross sections examples The sample test cases we will consider here use the MAC module to enter macroscopic cross sections directly into DRAGON They are numbered successively from TCM01 to TCM13 4 3 1 TCM01 Annular region This sample input is used to analyze the annular cell presented cross sections provided directly by the user Two types of solut collision probability calculation SYBILT and one using the in Figure 18 It uses two groups macroscopic ions are provided here one with a complete method JPMT Note that for the second flux calculation the initial flux distribution is taken from the existing FLUXUNK structure which already contains the flux distribution from the SYBILT calculation Input data for test case 01 2 desee TEST CAS MACROSCO FISSION 1 D ANNU E 01 PIC CROSS 51 SOURCE PROB AAR CELL ECTIONS EM xo R EF none IGE 174 Rev 12 Release 3 061 109 PEINE Define STRUC
110. 7 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 1 4885 9439510 3 14159265 4 18879020 HMIX 110 0 IGE 174 Rev 12 Release 3 061 M ESHX ESHY MIX IX MXL ESHX ESHY MIX IX MX2 ESHX ESHY MIX IX MXR ESHX 0 5 ROD2R GEO TUB RADIUS 0 NPIN 3 APIN 1 ROD3L GEO TUB RADIUS O0 NPIN 6 APIN 2 1 ROD3R GEO TUB RADIUS 0 NPIN 6 APIN 1 0 RODAL GEO TUB RADIUS O0 NPIN 9 APIN 1 2 34 RODAR GEO TUB RADIUS O0 NPIN 9 APIN 1 0 0 GEO CAR2D 5 3 X REFL Y REFL MXL MX2 MXR FXYL BXY FXY MXL MX2 MXR GEO CAR2D 1 1 0 0 7 14375 0 0 7 14375 GEO CAR2D 2 1 7 14375 0 0 7 14 0 0 7 14375 0 1 5 15 3 GEO CAR2D 1 1 7 14375 7 14375 0 0 7 14375 1 15 2 GEO CAR2D 2 1 7 14375 0 0 7 14 185 an 2 MIX 7 10 HMIX 00 00000 0 6122 0 6540 RPIN 1 4885 04719755 0 0000 1 04719755 r E 2 MIX 18 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 2 8755 87979327 2 35619449 1 83259571 83259571 2 35619449 2487979327 E 2 MIX 8 10 HMIX 00 00000 0 6122 0 6540 RPIN 2 8755 30899694 0 78539816 0 26179939 26179939 0 78539816 1 30899694 E 2 MIX 19 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 4 3305 74532925 2 09439510 2 44346095 79252680 3 14159265 3 49065850 83972435 4 18879020 4 53785606 E 2 MIX 9 10 HMIX 00 00000 0 6122 0 6540 RPIN 4 3305 39626340 1 04719755 0 69813170 34906585 0 0 0 34906585 69813170 1 04719755 1 39626340
111. 7 TCWU17 2 D CANDU 6 supercell with control rods This test case use of the virtual treats a 2 D CANDU 6 supercell containing fuel clusters and control rods see Figure 27 The homogenization mixtures defined by is also illustrated This test case uses the embedded DRAGON procedure stored in the TCWU17Lib c2m file Input data for test case TCWU17 x2m doe Exemple of the use of HMIX for cell homogenization 2 D supercell with fuel clusters based on AECL supercell model for G2 SOR and MCA with fuel and reactivity devices parallel References PREPARED BY Marleau 2013 06 11 TENE x modules and data structures SEQ ASCII MACROLIBF LINKED LIST SORINS SORIN TRACK MicLib FLUX EDITION XSM FILE ASMPIJ SEO ASCII FigReg ps FigMix ps FigHom ps SEQ ASCII HomMix txt HomHMix txt SEO BINARY Lines MODULE GEO EXCELT EXCELL SHI ASM LIB FLU EDI UTL DELETE FREE END INFO CPO MAC NXT PSP PROCEDURE TCWU17Lib INTEGER iedit 1 MicLib TCWU17Lib lt lt iedit gt gt P DEFINE GEOMETRY FOR SUPERCELL CALCULATION SORINS 2D self shielding geometry with SHUT OFF ROD amp GT in for annular fuel SORIN 2D transport geometry with SHUT OFF ROD amp GT in for annular fuel x SORTNS GEO CAR2D 5 3 EDIT 0 X REFL X REFL IGE 174 Rev 12 Y REFL Release 3 061 REFL CELL
112. 750 16 12171 MIX 12345 CLUSTER ROD1 ROD2 ROD3 ROD4 ROD1 GEO TUBE 2 MIX 6 10 NPIN 1 0 0000 APIN 0 0000 RADIUS 0 00000 0 6122 0 6540 ROD2 GEO RODI MIX 7 10 NPIN 6 RPIN 1 4885 APIN 0 0000 ROD3 GEO ROD1 MIX 8 10 NPIN 12 RPIN 2 8755 APIN 0 261799 RODA GEO RODI MIX 9 10 NPIN 18 RPIN 4 3305 APIN 0 0 CANDU6F GEO CANDU6S SPLITR 6 11 1 10 ROD1 GEO 1 SPLITR 2 1 ROD2 GEO ROD2 SPLITR 2 1 ROD3 GEO ROD3 SPLITR 2 1 RODA GEO RODA SPLITR 2 1 D Self Shielding calculation EXCEL Transport calculation EXCEL Flux calculation for keff VOLMATS INTLINS EXCELT CANDU6S TITLE TCWU05 CANDU 6 ANNULAR POWER 31 971 FUEL 941 29 EDIT 0 MAXR 13 TRAK TISO 5 10 0 SYMM 12 LIBRARY SHI LIBRARY VOLMATS INTLINS EDIT 0 VOLMATF INTLINF EXCELT CANDU6F TITLE TCWU05 CANDU 6 ANNULAR POWER 31 971 FUEL 941 29 EDIT 0 MAXR 31 TRAK TISO 5 10 0 SYMM 12 PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU PIJ LIBRARY VOLMATF TYPE K EDITION EDI FLUX LIBRARY VOLMATF COND 4 0 MERGE MIX 0000100000 SAVE ON EDITION EDI EDITION FLUX LIBRARY VOLMATF COND 4 0 MERGE COMP MICR 1 Xe135 SAVE Burnup loop for first step BURNUP is created x while for other steps it is modified Jc tienes WHILE Timei Timec DO EVALUATE Timef Timei Delt I
113. 79 imixm 74 imixp 78 79 imixt 72 74 93 P4 103 imxit 58 2 INFO 183 INFO 6 83 S5 171 INFOR INIT 63 6492 93 INPUT 12 INPUT 3 inrs 2122 57 IPOO 54 IPO1 54 iplan 100 101 iplot 100 iprint 4 ro Le 19 20 28 17 58 e0 62H64 68 70 IPU 225 iqual 52 55 iqua2 52155 iquab 52 54 55 ireg 72 74 93 94 100 03 iregm 74 89 ismrg 89 TSO 83 84 ISONAM 83 84 ISOT 72 75 isplh 56 isplth 31 32 ispltr 31 32 ispltx 31 32 isplty 31 2 ispltz 31 32 isymm 48 50 51 62 63 ITIM 2001 ITR 102 ITR 01021103 iuv 100 101 izae J JPMT ix 46 JPMT 6 7 33 42 44H47 54 59H61 76 77 174 Rev 12 Release 3 061 K 64 66 68 KAP S 78 81 KEFF 66 67 L 64 LCMD 48 EVE 58 59 1 1 58 59 Igrmax 58 1 58 1 02807 LIB ix 15 LIB 5 781516 18 19 82 84 142 171 59 60 62 63 68 71 92 95 102 103 LIBNAP 95 LIGN 52 55 LIN 96 LINKED _LIST 4 5 LJ 58 LKRD 66 77 OCAL 98 LoNG 50 52 99 Ip 26 28 43 ir Pel Ix el 2731 1 242781 2 267 M m file 7 09 ix 9 MAC jS Ez le 10 12 50 82 108 MACGEO 76 MACLIB PTE
114. 8 lt lt WU238F gt gt MIX 3 COMB 10 5 0 0 5 MIX 4 COMB 1 0 1 2 0 9 END QUIT LIST 173 3 DensCool WH1C WD2C WO16C TempFuel ratio in Fuel Enrichment DensFuel lt lt gt gt WO16F lt lt WU235F WU238F WO16F file iaea format WIMSD4 O16 6016 WO16C H1H20 3001 lt lt WH1C gt gt O16 6016 lt lt WO16F gt gt 1 1 4 4 13 TCWUI3 Solution by the method of cyclic characteristics This case illustrates the use of the MOCC module the method of cyclic characteristics This test case als of DRAGON for a solution by the transport equation by o uses the embedded DRAGON procedure stored in the 174 Rev 12 Release 3 061 TCWUO5Lib c2nm file Input data for test case TCWU13 x2m TEST CASE TCWW13 CANDU 6 ANNULAR CELL iaea WLUP Library POWER KW 615 00000 BURN POWER KW KG 31 97130 URANIUM MASS 19 23600 UO2 REAL DENSITY 10 59300 UO2 EFF DENSITY 10 43750 UO2 TEMPERATURE 941 28998 ENRICHMENT 0 71140 COOLANT D2 AT 99 222 MODERATOR D2 AT 99 911 NUMBER OF DAYS 50 Define variables and initialize Burnup paremeters a Power 31 9713 kw kg for b Burnup time interval Delt 1 day for M Xo Xo Xo X Xo Xo Xo F RS XS XS XS XS F Xo Rok k Define STRUCTUR 1 Time 4
115. A H bert and Marleau Generalization of the Stamm ler Method for the Self Shielding of Resonant Isotopes in Arbitrary Geometries Nuclear Science and Engineering 108 230 1991 68 A H bert Revisiting the Stamm ler Self Shielding Method 25th Annual Canadian Nuclear Society Con ference Toronto 2004 Proceedings available on CD Rom 69 Roy and Marleau Normalization Techniques for Collision Probability Matrices PHYSOR 1990 pp IX 40 IX 49 Marseille France 1990 70 E A Villarino J Stamm ler A A Ferri and J J Casal HELIOS Angularly Dependent Collision Probabilities Nuclear Science and Engineering 112 16 31 1992 71 A H bert Consistent Technique for the Pin by Pin Homogenization of a Pressurized Water Reactor Assembly Nuclear Science and Engineering 113 227 1993 72 A H bert and A Mathonni re Development of a Third Generation Superhomog n isation Method for the Homogenization of a Pressurized Water Reactor Assembly Nuclear Science and Engineering 115 129 1993 73 G Rimpault Algorithmic Features of the ECCO Cell Code for Treating Heterogeneous Fast Reactor Sub assemblies M amp C 1995 International Conference on Mathematics and Computations Reactor Physics and Environmental Analyses Portland OR 1995 Proceedings available on CD Rom IGE 174 Rev 12 Release 3 061 195 74 P Benoist J Mondot and I Pe
116. ACRO TRACK2 EDIT 3 UPS MERG COMP STAT DELS REFE NOROD BCTRK DELETE BCTRK END QUIT LIST IGE 174 Rev 12 Release 3 061 120 4 3 5 05 Comparison of leakage models This test presents various homogeneous and heterogeneous leakage models on a simple cell see Figure 23 881 Input data for test case TCM05 x2m ucc TEST CASE 05 MACROSCOPIC CROSS SECTIONS FISSION SOURCE PROBLEM 2 D CARTESIAN ANNULAR CELL Validating leakage options B L FOR MOSTELC NO VOID TYPE K B L FOR MOSTELCV MOSTELC WITH VOID I F HF aes Define STRUCTURES and MODULES used LINKED_LIST MOSTELC MOSTELCV TRACK MACRO SYS FLUX EDITION SEQ BINARY TRKSPC MODULE GEO EXCELT MAC ASM FLU EDI DELETE END Macroscopic XS a MACRO MAC NGRO 2 ANIS 2 NMIX 2 NIFI 1 READ INPUT MIX 1 TOTAL 0 222222 0 833333 SCAT 11 0 19222 2 2 0 75333 0 02 11 0 1 2 2 025 0 01 NUSIGF 0 0 0 135 CHI 1 0 0 0 MIX 2 OTAL 0 166667 1 111111 SCAT 2 2 0 00015 0 126667 2 2 1 10111 0 04 2 2 0 0001 0 1 2 2 02 5 0 01 Geometry MOSTELC Cartesian 2D cell without void region MOSTELCV Cartesian 2D cell with void region REPE MOSTELC GEO CARCEL 2 REFL Y REFL REFL
117. AL 2 1 Mixed dual quadratic finite elements e DUAL 2 2 Quadratic nodal collocation method e DUAL 2 3 Mixed dual quadratic superconvergent finite elements equivalentto PRIM 2 3 e DUAL 3 1 Mixed dual cubic finite elements e DUAL 3 2 Cubic nodal collocation method e DUAL 3 3 Mixed dual cubic superconvergent finite elements equivalentto PRIM 3 3 e DUAL 4 2 Quartic nodal collocation method 3 5 The SHI module The self shielding module in DRAGON called SHIBAE is used to compute the energy dependent dilution parameter microscopic dilution cross section associated with each resonant isotope identified as such by the inrs parameter defined in Section 3 2 Using this information it then recomputes the self shielded cross section for these resonant isotopes saved on the MICROLIB as well as updates the embedded MACROLIB The general input format for this module is presented in Table Table 36 Structure SHI MICLIB SHI MICLIB OLDLIB TRKNAM TRKFIL descshi Here MICLIB characterx12 name of the MICROLIB that will contain the microscopic and macroscopic cross sections updated by the self shielding module OLDLIB character 12 name of a read only MICROLIB that is copied into MICLIB The library OLDLIB is first copied to MICLIB before this library is updated 174 Rev 12 Release 3 061 58 TRKNAM character 12 name of the TRACKING data structure associated with the GEOMETRY consid er
118. AUS dens densz TSPC MEDI nangl dens SYMM isymm where MAXR keyword to define the maximum number of regions that will be generated for this geometry maxreg maximum dimensions of the problem to be considered The default value is set to the number of regions previously computed by the GEO module However this value is generally insufficient if symmetries or mesh splitting are specified PISO keyword to specify that a collision probability calculation with isotropic reflection boundary conditions is required It is the default option if a TISO type integration is chosen To obtain ac curate transmission probabilities for the isotropic case it is recommended that the normalization options in the ASM module be used this is the default option in ASM PSPC keyword to specify that a collision probability calculation with mirror like reflection or periodic boundary conditions is required this is the default option if a TSPC type integration is chosen This calculation is only possible if the file was initially constructed using the TSPC option CUT keyword to specify the exponential cutoff parameter for cyclic collision probability or character istic integration specular tracking only IGE 174 Rev 12 Release 3 061 49 peut GAUS LCMD CACA CACB npol TRAK CORN TISO EOW GAUS TSPC nangl real value cutoff representing the maximum error allowed on the ex
119. BURNUP REF CASE EXTRACT 135 135 NAME MIXTRXE fuel COMPOI COMPO2 EDITION STEP EDITMOD NAME MIXTMOD mode COMPC2 INTLINF INTLINS DELETE INTLINF INTLINS END QUIT LIST 4 4 16 TCWUI6 A basic PWR pin cell This case represents a basic PWR pin cell It illustrates the use of the PSP module Input data for test case TCWU16 x2m A basic PWR pin cel Author T Courau Date 2004 To test the NXT and PSP modules FREUEN Define STRUCTURES and MODULES used pus LINKED LIST GEOMETRY DISCR PIJ SUBG SEQ_ASCII Fig ps MODULE GEO EXCELT NXT PSP DELETE O Ej ND pees Define amp set up parameters pte REAL LPitch 1 26 gosn Geometry GEOMETRY Cartesian 3 region geometry Du GEOMETRY GEO CAR2D 2 2 X REFL X DIAG Y DIAG Y SYME CELL C1 C2 C3 55 Cl GEO CAR2D 1 1 MESHX 0 00 LPitch MESHY 0 00 LPitch MIX 1 C2 GEO CAR2D 1 1 SHX 0 00 lt lt LPitch gt gt SHY 0 00 lt lt LPitch gt gt MIX 2 GEO CAR2D 1 1 MESHX 0 00 LPitch IGE 174 Rev 12 Release 3 061 182 MESHY 0 00 lt lt LPitch gt gt MIX 3 3 DISCR NXT GEOMETRY EDIT 10 TISO 4 5 0 Fig ps PSP DISCR Fig ps PSP Fig ps DISCR TYPE MIXTURE DISCR DELETE DISCR END QUIT LIST 4 4 1
120. By default ispltz 1 keyword to specify the spatial mesh along the radial direction array giving the radial limits cm of the annular regions cylindrical or spherical making up the geometry It is important to note that we must have rrr 1 0 0 keyword to specify that a mesh splitting of the geometry along the radial direction is to be performed array giving the number of zones that will be considered for each region along the radial axis A negative value results in a splitting of the regions into zones of equal volumes a positive value results in a uniform splitting along the radial direction By default ispltr 1 keyword to specify that the concentric annular regions in CARCEL CARCELX CARCELY and CARCELZ geometries are displaced with respect to the center of the Cartesian mesh This dis placement also affects the TUBE TUBEX TUBEY and TUBEZ pin clusters locations This option is only processed by the EXCELT NXT and EXCELL tracking modules array giving the disxyz 1 y disxyz 2 and z disxyz 3 displacements cm of the con centric annular regions with respect to the center of the Cartesian mesh keyword to specify the length of a side of a hexagon length of one side of a hexagon cm triangular mesh for HEXT and HEXTZ hexagonal geometries By default hexmsh sideh nhr When hexmsh is provided it is used instead of the default value with the following constraints sideh
121. DIAG X CELL Cl C2 C2 TURN 4H am 91 3001 20 55 10 91 1 22 782 Geometry ASSMB 56 11 FT 357 38 92 12 82 70 2499 2 65 4159 17 583E 4 020E 2 630E 5 365E 7 914E 5 562 4 237 4 285E 2 O16H20 Cr52 Ni58 MoNat A127 016 6016 rege 758 96 t2 6016 a 17 X 17 normal PWR assembly C1 cell without fuel C2 normal fuel cell peripheral cell C4 corner cel CAR2D 9 9 REFL Y SYME Y DIAG C2 CI CL C2 CS C2 C2 C2 C2 C2 C2 C3 C2 02 C2 CZ C27 C2 C3 C1 C2 C2 C1 C2 C2 C2 02 Cz C3 Cl C2 02 C2 CZ C3 C2 C4 12 11 12 12 11 12 15 6 5 6 6 5 6 8 13 5 6 amp 5 6 8 2 5 5 10 5 8 13 5 5 6 8 2 5 7 8 13 7 8 14 8 9 B H H B H H A G G H G H A A F E F E E A H H F H H A H E G H A H H A A H A A A A A EO CARCEL 2 1 26472 MESHY 0 0 1 26472 F F 36010E 2 96591E 5 65011E 5 65389E 6 63569E 7 4 49355E 146 IGE 174 Rev 12 Release 3 061 RADIUS 0 0 0 572435 0 613142 MIX 1 2 3 C2 GEO Cl RADIUS 0 0 0 412660 0 474364 MIX 8 4 5 GEO C2 MESHX 0 0 1 31472 MIX 8 4 6 C4 GEO MESHY 0 0 1 31472 MIX 8 47 gi Self Shielding calculation JPM Transport calculation SYBIL Flux calculation for Bl homogeneous leakag Editing using SPH model for transport
122. DITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE MERGE REGION 00000000 1 1 0 0 0 0 0 O 0000000 2 2 0 0 0 0 0 0 000000 3 3 0 0 0 0 0 0 00000 4 4 0 0 0 0 0 0 0000 5 5 0 0 0 0 0 0 000 6 6 0 0 0 0 0 0 00 7 T 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 9 10 12 13 14 15 16 17 11 12 13 14 15 16 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRACK WATATRK SYS FLUX DELETE TRACK WATATRK SYS FLUX DEN Tracking EXCELT WAT24 Solution FIXED SOURCE PROBLEM Editing 1 UPPER QUADRANT FLUX 2 FLUX AT X 5 625CM T TRACK WATATRK EXCELT WAT24 TITLE 03 WATANABE MAYNARD 24X24 MAXR 300 CUT 1 E 4 TRAK TSPC 12 12 0 SYS ASM MACRO TRACK WATATRK SKIP FLUX FLU SYS MACRO TRACK S THER 1 6 100 1 6 100 116 174 Rev 12 Release 3 061 O lt m EA o m Oo lt gt D E u a fH H A m H Z A mo E gt H oO l n E m N Z HH m A m Hee A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000 00000000000 0000000000 000000000 00000000 0000000 000000 00000 0000 M O lt mx H lt gt gt D fy 2 O HA EA H a m H z E gt H o H m m N 2 E HH gt
123. DRAGON Technical Report IGE 233 Ecole Polytechnique de Montr al 1997 6 Marleau DRAGON Theory Manual Part 1 Collision Probability Calculations Technical Report IGE 236 Rev 1 Ecole Polytechnique de Montr al 2001 7 R Roy and A H bert The GAN Generalized Driver Technical Report IGE 158 Ecole Polytechnique de Montr al 2000 8 R Roy The CLE 2000 Tool Box Technical Report IGE 163 Ecole Polytechnique de Montr al 1999 9 E Drigger A Method for Calculating Neutron Absorption and Flux Spectra at Epithermal Energies Tech nical Report AECL 1996 Atomic Energy of Canada Limited 1964 10 A Hoffman APOLLO Code Multigroupe de r solution de l quation du transport pour les neutrons ther miques et rapides Technical Report CEA N 1610 Commisariat l nergie Atomique 1973 11 A H bert D veloppement de la m thode SPH Homog n isation de cellules dans un r seau non uniforme et calcul des param tres de r flecteur Technical Report CEA N 2209 Commisariat l nergie Atomique 1981 12 Roy A H bert and Marleau Transport Method for Treating Three Dimensional Lattices of Het erogeneous Cells Nuclear Science and Engineering 101 217 225 1989 13 R Roy G Marleau J Tajmouati and D Rozon Modeling of CANDU Reactivity Control Devices with the Lattice Code DRAGON Annals of Nuclear Energy 21 115 132 1994 14 Marleau New Geometries Process
124. E MacFarlane TRANSX CTR A Code for Interfacing MATXS Cross Section Libraries to Nuclear Trans port Codes for Fusion System Analysis Technical Report LA 9863 MS Los Alamos National Laboratory 1984 29 RSIC Data Library Collection DLC 117 MATXS7A 69 Neutron Group Cross Section Library in MATXS 1985 30 P Vontobel and S Pelloni New JEF EFF Based MATXS Formatted Nuclear Data Libraries Nuclear Science and Engineering 101 298 1989 31 J R Askew J Fayers and P B Kemshell A General Description of the Lattice Code WIMS Journal of the British Nuclear Energy Society 5 564 1966 32 J Taubman WIMS 69 Group Library Tape 166259 Technical Report AEEW M1324 United King dom Atomic Energy Establishment 1975 33 J J Kim J T Lee and H R Kim Generation and Benchmarking of a 69 Group Cross Section Library for Thermal Reactor Applications Journal of the Korean Nuclear Society 21 245 1989 34 WLUP Final Stage of the WIMS D Library Update Project 2005 35 J V Donnelly WIMS CRNL A User s Manual for the Chalk River Version of WIMS Technical Report AECL 8955 Atomic Energy of Canada Limited 1986 36 MacFarlane TRANSX 2 A Code for Interfacing MAT XS Cross Sectios Libraries to Nuclear Transport Codes Technical Report LA 12312 MS Los Alamos National Laboratory 1992 37 M T Sissaoui and G Marleau Application of the Feedback Model for the H
125. E 1 1 30506000E 3 MIX 3 OTAL 2 60458171E 1 3 77224326E SCAT 22 5 98954648E 5 2 49342978E 1 22 3 77127469E 1 1 11155845E 2 MIX 4 OTAL 2 60458171E 1 3 77224326E 1 IGE 174 Rev 12 Release 3 061 118 SCAT 22 5 98954648E 5 2 49342978 1 22 3 77127469E 1 1 11155845E 2 Lee Geometry BC 3D Cartesian assembly with annular regions Tracking 1 EXCELT 2 EXCELL includes ASM and does not require track file pes BC GEO CAR3D 3 2 2 X REFL X SYME Y REFL Y SYME Z REFL Z SYME CELL M MX MX MX FXY MXY M MX MX FXY BXY TURN A A A F A A A A A F A A M GEO CAR3D 1 1 1 MESHX 0 0 7 14375 MESHY 0 0 7 14375 MESHZ 8 25500 8 25500 SPLITZ 2 MIX 3 MX GEO M MESHX 7 14375 7 14375 SPLITX 2 MXY GEO MX MESHY 7 14375 7 14375 SPLITY 2 BX GEO CARCELY 2 1 MESHX 7 14375 7 14375 SPLITX 2 MESHY 0 0 7 14375 MESHZ 8 25500 8 25500 SPLITZ 2 RADIUS 0 0 3 5100 3 8100 MIX 3 4 9 BXY GEO BX MESHY 7 14375 7 14375 SPLITY 2 FXY GEO CARCELZ 2 1 MESHX 7 14375 7 14375 SPLITX 2 MESHY 7 14375 7 14375 SPLITY MESHZ 8 25500 8 25500 SPLITZ 2 RADIUS 0 0 5 16890 6 58750 MIX 1 2 3 N TRACK BCTRK EXCELT TITLE 04 TWO GROUPS CANDU 3 D ADJUSTER ROD ASSEMBLY MAXR 40 TRAK TISO 4 2 5 SYS ASM MACRO TRACK BCTRK SYS2 TRACK2 EXCELL BC MACRO TIT
126. EDI FLUX MicLib TRACK EDIT 3 COND 0 625 MERG MIX 0000000000111111 11 1 1 1 SAVE ON SORINMIX HomMix txt EDITION EDITION DELETE EDITION TRACK FLUX ASMPIJ Lines DELETE TRACK FLUX ASMPIJ Lines END QUIT LIST Input data for test case TCWU17Lib c2m Create Library for test CASE TCWU17 x2m Calling LIBRARY TCWU17Lib x2m iedit LIBRARY with Linked list containing the result of LIB for TCWU17 x2m iprint print level for LIB module Define PARAMETERS STRUCTURES and MODULES used Rs 174 Rev 12 Release 3 061 PARAMETER MODULE IBRARY IB DELETE END Define and read LIB EDIT option INTEGER iedit H gt gt iedit lt lt Depletion data from file iaea format WIMSD4 LINKED LIST LIBRARY Microscopic cross sections from file iaea format WIMSD4 All materials are duplicated for left and right cell during homogenization k LIBRARY LIB EDIT lt lt iedit gt gt NMIX 21 CTRA WIMS DEPL LIB WIMSD4 FIL MIXS LIB WIMSD4 FIL MIX 1 560 66 0 812 D2D20 3002 MIX 2 560 66 6 57 BNat 1011 Zr91 91 MIX 3 2345 66 0 001 MIX 4 345 66 6 44 Ni58 58 BNat 1011 Zr91 91 MIX 5 345 66 1 082 D2D20 3002 MIX 6 9
127. Engineering 107 265 271 1991 IGE 174 Rev 12 Release 3 061 FIGURES 196 NNNSN 52 AZANIA IGE 174 Rev 12 Release 3 061 Figure 2 Hexagonal geometries of type S30 and SA60 IGE 174 Rev 12 Release 3 061 Figure 3 Hexagonal geometries of type SB60 and S90 199 IGE 174 Rev 12 Release 3 061 TEON SEERA Rn 14 23 PEUT Rone D OROORO E Figure 6 Hexagonal geometry of type SB180 202 x 5 x 7 a DEED epp Een Gene ERS IGE 174 Rev 12 Release 3 061 204 Figure 8 Hexagonal geometry with triangular mesh that extends past the hexagonal boundary IGE 174 Rev 12 Release 3 061 P lt Tut Figure 9 Description of the various rotations allowed for Cartesian geometries 205 IGE 174 Rev 12 Release 3 061 HOODOO PERDOR Figure 10 Description of the various rotation allowed for hexagonal geometries 206 IGE 174 Rev 12 Release 3 061 Figure 11 Typical cluster geometry 207 IGE 174 Rev 12 Release 3 061 208 0 0 0 1 0 3 05 06 0 8 Figure 12 Slab geometry with mesh splitting 1 0 209 IGE 174 Rev 12 Release 3 061 X Figure 13 Two dimensional Cartesian assembly containing micro structures IGE 174 Rev 12 Release 3 061 210
128. F HF EAL Power 31 9713 dome Defi pin INKED INKED Delt 1 0 Timei Timef 0 0 0 0 Timec 300 0 ne STRUCTUR ES and MODULES used 1151 1151 LIBRARY CANDU6S CANDU6F VOLMATS VOLMATF PIJ FLUX BURNUP EDITION Ej O BINARY INTLINS INTLINF SCII ipa EXC f ELT UTL SHI d ASM FLU EVO EDI END Dep Microscopic cross sections from file iae ce ee PROCEDURE INTEGER LIBRARY Geometry CANDU6S CANDU6F F TCWUO5Lib iedit TCWU 1 O5Lib r lt lt iedit gt gt ar cl ar cl 13 regions annu 31 regions annu qc CANDU6S GEO REFL RADIUS MIX 12345 CLUSTER ROD1 ROD2 ROD3 ROD4 RODI EO TUBE 2 MIX 6 10 NPIN DIUS 000 0 6122 0 6540 ROD2 ROD1 ROD3 ROD1 RODA ROD1 TUBE 5 0 00000 5 16890 5 60320 0 0 pi GI 1 RA 0 MIX 7 10 NPIN 6 MIX 8 10 NPIN 12 MIX 9 10 NPIN 18 o O G G G Gl Gl Ei O CANDU6F GEO CANDU6S 6111 SPLITR letion data from file iaea format WIMSD4 a format WIMSD4 uster for self shielding uster for transport 6 44780 6 58750 16 12171 RPIN 0 0000 APIN 0 0000 RPIN 1 RPIN 2 RPIN 4 4885 APIN 8755 APIN 3305 APIN 0 0000 0 261799 0 0 10 IGE 174 Rev 12 Release 3 061
129. GEO HOMOGE MIX 1 7 TRACK SYBILT WATER TITLE TCM06 ENE6101 MAXR 1 7 Solution TYPE L Leakage BO PNL SYS ASM MACRO TRACK SYS MACRO TRACK TYPE L BO SIGS EXTE 5 1 0E 5 BUCK 0 07 EDITION EDI FLUX FLU EDIT 3 SAVE FLUX FLU FLUX SYS TYPE L PO SIGS EXTE 5 EDITION EDI EDITION EDIT 3 SAVE FLUX FLU FLUX SYS TYPE L Bl SIGS EXTE 5 EDITION EDI EDITION EDIT 3 SAVE FLUX FLU FLUX SYS TYPE L Pl SIGS EXTE 5 EDITION EDI EDITION EDIT 3 SAVE END QUIT LIST PO PNL B1 PNL J N FLUX MACRO TRACK MACRO TRACK 1 0E 5 BUCK 0 07 FLUX MACRO TRACK MACRO TRACK 1 0E 5 BUCK 0 07 FLUX MACRO TRACK MACRO TRACK 1 0E 5 BUCK 0 07 FLUX MACRO TRACK 4 3 7 7 Test of boundary conditions This test is for a 2 D Cartesian cell with reflective and void boundary conditions Input data for test case TCM07 x2m TEST CASE 07 MACROSCOPIC CROSS SECTIONS FISSION SOURCE PROB 2 D CARTESIAN CELL REFLECTIVE AN EM D VOID BOUNDARY CONDITIONS P1 PNL 124 IGE 174 Rev 12 Release 3 061 125 REF none Define STRUCTURES and MODULES used dec LINKED LIS MACRO LATGEOR LATREGR SYSR FLUXR EDITR LATREGV SYSV FLUXV EDITV
130. GON calculations for each cell see Section G 18 6989 IGE 174 Rev 12 Release 3 061 7 TLM creates Matlab m file to generate a graphics representation of the NXT tracking lines see Section 3 19 51 FMT performs dedicated editing for the flux cross sections and reaction rates see Section 3 9 ac cording to regional homogenization and energy condensation requirements for other codes see Section 3 20 62 ITR performs dedicated editing to generate TRIPOLI importance files see Section 3 21 3 2 4 The DRAGON Data Structures The transfer of information between the DRAGON execution modules is ensured by well defined data structure They are generally created or modified by one of the DRAGON or utility modules Here we will give a brief description of these data structures their complete contents being described in report IGE 232 4 The execution of a sequence of module by DRAGON can be replaced by a sequence of DRAGON executions calling a single module provided the data structure generated by the different modules are save on a physical support created on an XSM file or exported to a XSM or a sequential ASCII file These files be re imported for anew DRAGON execution and then used for subsequent calculations This is also the preferred method for restarting an execution that has been stopped prematurely MACROLIB a standard data structure used by DRAGON to transfer group ordered macroscopic cross sections between its module
131. H model for transport diffusion DISCRI JPMT ASSMBH TITLE TCWU03 MULTICELL HI MAXR 400 MAXZ 15000 OLD LIBRARY SHI LIBRARY DISC DISCR2 SYBILT ASSMBH EXAGONAL ASSEMBLY WITH POISON Ri s 149 IGE 174 Rev 12 Release 3 061 150 TITLE TCWU03 MULTICELL HEXAGONAL ASSEMBLY WITH POISON MAXR 400 MAXZ 15000 CP ASM LIBRARY DISCR2 CALC FLU CP LIBRARY DISCR2 TYPE B Bl OUT EDI CALC LIBRARY DISCR2 ASSMBH EDIT 3 UPS SAVE COND 4 0 SPH BIVACT PRIM 1 2 1 COMPO CPO OUT STEP REF CASE 1 EXTRACT ALL NAME COMPO res COMPO END QUIT LIST 4 4 4 TCWU04 A Cylindrical cell with This test case represents a burnup calculation for the Mosteller annular geometry see Figure 23 Input data for test case TCWU04 x2m FERAE TEST CASE TCWU04 iaea WLUP Library ANNULAR MOSTELLER BENCHMARK WITH BURNUP REF R Mosteller et al Nucl Sci Eng 107 265 1991 x F HF Define variables llc INTEGER istep 1 REAL evobeg evoend REAL step2 step3 step4 step5 1 0 27 1739 67 9348 135 8696 Define STRUCTURES and MODULES used LINKED_LIST LIBRARY MOSTELAS MOSTELA TRACKS TRACK SYS FLUX BURNUP DITION COMPO SEQ ASCII res MOD Ej ipa GEO SYBILT LIB SHI ASM FLU EVO EDI CPO
132. HISTORY data structure the information available in BURNUP data structures generated by DRAGON see Table 72 It can also read MAP data structures generated by DONJON to prepare the HISTORY data structure for a new series of cell calculations in DRAGON see Ta ble 73 The HISTORY data structures can also be used to update MAP data structures see Table 74 Finally the module HST can be used to create an initial BURNUP data structure that can be used to burn the cell another time step in DRAGON see Table 75 Table 72 Updating or creating an HISTORY structure using a BURNUP structure HISTORY HST HISTORY BURNUP hstdim ET hstpar ELLID icha ibun idfuel GET hstpar Table 73 Updating or creating an HISTORY structure using a MAP structure HISTORY HST HISTORY MAP hstdim GET hstpar Table 74 Updating a MAP structure using an HISTORY structure MAP HST MAP HISTORY IGE 174 Rev 12 Release 3 061 97 Table 75 Creating a BURNUP structure using an HISTORY structure BURNUP HST HISTORY hstdim hstpar CELLID icha ibun PUT BREFL hstbrn hstpar AREF L hstbrn hstpar AREFL hstbrn hstpar The description of the variables and structures presented in Tables 72 to 75 follows HISTORY characterx12 name of an HISTORY data structure BURNUP characterx12 name of a BURNUP data structure MAP
133. II files list of Nr Nx Ng or NA characterx12 name of data structures The type and format LINKED LIST XSM FILE SEQ BINARY and SEQ_ASCIT of various DRAGON data struc tures is presented in Section keyword used to specify the user defined procedures to be used in this DRAGON execution list of character 12 name of DRAGON procedure These procedures are stored in file with name PROCNAME c2m and contain standard DRAGON instructions 181 input specifications for a DRAGON or utility module For the DRAGON specific modules these input structures are defined in Section 3 For utility modules the equivalent information is provided in report IGE 158U and IGE 1638l keyword to call the normal end of execution utility module end of record keyword This keyword is used by DRAGON to delimit the part of the input data stream associated with each module Note that the user generally has the choice to declare most of the data structures in the format of a linked list to reduce CPU times or as a XSM file to reduce memory resources Several exceptions to this general rule exist including the tracking files SEO BINARY and the PostScript graphical file SEO ASCII The data structures stored on LINKI ED_LIST and XSM FILE can be archived on sequential ASCII files for backup purpose The input data normally ends with a call to the END module Finally module contains a description of the execution modules to be called
134. IJ LIBRARY VOLMAT 4 4 11 TCWUI1 Two group burnup of a CANDU 6 type cell 168 This case is similar to TCWUOS except that the burnup module uses DRAGON generated two groups time dependent microscopic cross sections This test case also uses the embedded DRAGON procedure stored in the TCWUO5Lib c2m file Input data for test case TCWU11 x2m TEST CASE TCWU11 CANDU 6 ANNULAR CELL iaea WLUP Library TWO GROUP BURNUP POWER KW BURN POWER KW KG URANIUM MASS UO2 REAL DENSITY UO2 EFF DENSITY UO2 TEMPERATURE ENRICHMENT COOLANT D2 AT MODERATOR D2 AT NUMBER OF DAYS gt T Define variables Burnup paremeters a Power 31 9713 kw kg b 69 Groups Burnup X o F o F 3 F Xo F Xo 615 00000 31 97130 19 23600 10 59300 10 43750 941 28998 0 71140 99 222 99911 50 for 0 0 to 300 0 days time interval Delt IGE 174 Rev 12 Release 3 061 300 day 0 to 300 Groups Burnup time interval 1 day for 0 to 1 4 days 1 to 5 5 days 5 to 10 10 days 10 to 50 20 days 50 to 150 days 50 days for 150 to 300 days Days with burnup interval changes 1 0 5 0 10 0 50 0 150 0 and Burnup control time variables Time for day Delt day days days days for for for for Q E 169 300 0 days i Timef Timei initial time final time Timef ook o F F F X
135. IL ndepl descdepl MIXS LIB DRAGON MATXS MATXS2 WIMSD4 WIMS WIMSAECL APLIB1 FIL NAMEFIL desemix1 with EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module It must be set to O if no printing on the output file is required while values gt 0 will increase in steps the amount of information transferred to the output file MXIS keyword used to redefine the maximum number of isotopes per mixture nmisot the maximum number of isotopes per mixture By default up to 200 different isotopes per mixture are permitted NMIX keyword used to define the number of mixtures This data is required if MICLIB is created nmixt the maximum number of mixtures CTRA keyword to specify the type of transport correction that should be generated and stored on the MICROLIB All the modules that will read this MICROLIB will then have access to transport corrected cross sections The default is no transport correction NONE keyword to specify that no transport correction should be used in this calculation IGE 174 Rev 12 Release 3 061 17 APOL OLDW WIMS ANIS naniso PROM ADED nedit HEDIT keyword to specify that an APOLLO type transport correction irm based on the linearly anisotropic scattering cross sections will be computed and used for the total and isotropic scat tering cross sections This correction assumes
136. ING a standard data structure used by DRAGON to store the general tracking information It is a stand alone structure When used by a DRAGON module it must be stored on a linked list or an XSM file when the NXT module is considered It can be created by the JPMT SYBILT EXCELT EXCELL and modules It is required for a successful execution of the ASM FLU MOCC MCU EDI EVO SAD and PER modules It can also be used by the MRG and PSP modules ASMPIJ a standard data structure used by DRAGON to store the multigroup response and collision prob ability matrices It is a stand alone structure When used by a DRAGON module it must be stored on a linked list or an XSM file It is created by the ASM and EXCELL module It is required for a successful execution of the FLU module FLUXUNK a standard data structure used by DRAGON to store the fluxes the adjoints the generalized adjoints the multiplication constant multiplicative problem without leakage and no external IGE 174 Rev 12 Release 3 061 8 EDITION BURNUP CPO FBMXSDB HISTORY sources the leakage coefficients and the buckling multiplicative problem with leakage and no external sources It is a stand alone structure When used by a DRAGON module it must be stored on a linked list or an XSM file It is created by the FLU MOCC MCU and SAD modules It is required for a successful execution of the EDI and EVO modules
137. IT iprint NTPO nplots REGIONS POINTS DIRECTIONS P LANP PLANA NoPause ireg DIR idir EDIT iprint NTPO nplots 100 Table 80 Structure desctlm EGIONS NoPause ireg OINTS NoPause LANP NoPause DIR idir DIST dist PLAN iplan LANA NoPause AaBb Cc Dd iplot 1 R DIRECTIONS NoPause DIR idir PLAN iplan U V keyword used to modify the print level iprint index used to control the printing in this module keyword to specify the number of figures to draw integer value for the number of figures to draw keyword to specify that the figure will illustrate only the lines associated with a given region keyword to specify that the figure will illustrate the intersection points between the lines and the external faces of the geometry keyword to specify that the figure will illustrate the lines crossing each region as well as the intersection points between the lines and the external faces of the geometry keyword to specify that the figure will illustrate the points crossing a plane normal to the line direction keyword to specify that the figure will illustrate the points crossing an arbitrary surface in 3 D or line in 2 D The equation for the surface in 3 D is aX bY cZ d while the equation for the line in 2 D is aX bY d keyword to specify that all the lines must be drawn without Matlab pause By d
138. IXE 0 S ooooooo oo oc oooooo od 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pan 6016 6016 Geometry MOSTELA Annular cell with reflective STELA GEO TUBE 3 RADIUS 0 0 0 39306 0 45802 0 71206 SPLITR 2 1 1 MIX 1 2 3 R REFL Self Shielding calculation JPM Flux calcul Transport calculation SYBIL ation for keff LMAT JPMT TITLE 1 MOSTELA 0 JPM TRACK MOSTELLER BENCHMARK 167 N 4 613091 2 211631 174 Rev 12 Release 3 061 MAXR 4 IPO1 QUAI 5 LIBRARY SHI LIBRARY VOLMAT VOLMAT DELETE VOLMAT VOLMAT SYBILT MOSTELA TITLE TCWU10 SYBILT TRACK MOSTELLER BENCHMARK MAXR 4 QUAI 5 PIJ ASM LIBRARY VOLMAT FLUX FLU PIJ LIBRARY VOLMAT TYPE K OUT EDI FLUX LIBRARY VOLMAT EDIT 4 MERG MIX 1 2 3 COND 4 0 FLUX DELETE FLUX FLUX FLU PIJ LIBRARY VOLMAT TYPE S EXTE 30 UNKT 1 0E 3 OUT EDI OUT FLUX LIBRARY VOLMAT EDIT 4 MERG MIX 1 2 3 COND 4 0 OUT FLUX PIJ LIBRARY VOLMAT DELETE END QUIT LIST OUT FLUX P
139. K 113 IGE 174 Rev 12 Release 3 061 SKIP 7 FLUX FLU SYS MACRO TRACK TYPE S THER 1 E 6 100 EXTE 1 E 6 100 EDITION EDI FLUX MACRO TRACK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 3 4 5 6 7 8 9 10 EDITION EDI EDITION FLUX MACRO TRACK EDIT 2 SAVE MERGE REGION 0 0 0 0 1 00 O 0 0 0 2 0 0 O 0 0 0 0 4 0 0 0 5 6 7 8 O 0 20 0 TRACK WATATRK SYS FLUX DEL EDIT 2 SAVE MERGE REGION 0 Tracking EXC ELT WAT16 Solution FIX Editing 1 UPPER QUAD ED SOURCE PROBLEM RANT FLUX 2 FLUX AT X 5 625CM TRACK WATATRK EXCELT WAT16 TITLE 03 WATANAB MAXR 300 CUT 1 Fr E MAYNARD 16X16 E 4 TRAK TSPC 12 8 0 SYS ASM MACRO TRACK WATATRK SKIP FLUX FLU SYS MACRO TRACK EDITION EDI EDITION FL S THER 1 6 100 f EDIT 2 SAVE MERGE REGION 00000000 0000000 000000 0 0 0 0 0 0 0 1 E 6 100 0 0 0 0 0 0 O TRACK WATATRK SYS FLUX UX MACRO TRACK 114 IGE 174 Rev 12 Release 3 061 115 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 00 0 0 0 0000 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 1 2 2 3 3 4 4 5 5 6 T 7 5 6 6 7 7 8 8 9 9 8 9 9 10 10 10 E
140. LE 04 TWO GROUPS CANDU 3 D ADJUSTER ROD ASSEMBLY MAXR 40 TRAK NORM TISO 4 2 5 Solution K EFFECTIVE Editing Compute reference reaction rates IGE 174 Rev 12 Release 3 061 119 pa FLUX FLU SYS MACRO TRACK TYPE K EDITION EDI FLUX MACRO TRACK EDIT 3 UPS MERG COMP SAVE ON NOROD FLUX FLU FLUX SYS2 MACRO TRACK2 TYPE K EDITION EDI EDITION FLUX MACRO TRACK2 EDIT 3 UPS M RG COMP STAT ALL REFE NOROD EDITION2 EDI FLUX MACRO TRACK2 EDIT 3 UPS MERG COMP SAVE ON NOROD SYS 5 52 TRACK2 DELETE SYS SYS2 TRACK2 Modify Macrolib for adjuster material Solution K EFFECTIVE Editing Compute Delta Sigma rw pn MACRO MAC MACRO READ INPUT MIX 4 TOTAL 6 96358740E 1 1 12379551E 0 SCAT 22 2 55611958E 4 6 77430272E 1 22 9 55488145E 1 3 16311372E 3 SYS ASM MACRO TRACK BCTRK 5 52 TRACK2 EXCELL MACRO TITLE 04 TWO GROUPS CANDU 3 ADJUSTER ROD ASSEMBLY MAXR 40 TRAK NORM TISO 4 2 5 FLUX FLU FLUX SYS MACRO TRACK TYPE K EDITION EDI EDITION FLUX MACRO TRACK ES EDIT 3 UPS MERG COMP STAT DELS REFE NOROD FLUX FLU FLUX SYS2 MACRO TRACK2 TYPE K EDITION2 EDI EDITION2 FLUX M
141. LIB for stainless steel structure material and moderator 158 00 00 1799 6 19027E 2 6 83337E 3 1 46552 4 174 Rev 12 Release 3 061 159 Mn55 5357 1 25431E 3 i EDITION TRACK INTLIN SYS FLUX DELETE EDITION TRACK INTLIN SYS FLUX amp SUPERCELL CALCULATION Geometry BCO 27 regions 3D Cartesian geometry with rods out BCI 27 regions 3D Cartesian geometry with rods in BCO GEO CAR3D 3 2 2 REFL X SYME Y REFL Y SYME Z REFL Z SYME CELL M MX MX MX FXY MXY M MX BX MX FXY BXY TURN A A A A A A A F A A GEO CAR3D 1 1 1 MIX 3 MESHX 0 0 7 14375 MESHY 0 0 7 14375 MESHZ 8 25500 8 25500 SPLITZ 2 MX GEO MESHX 7 14375 7 14375 SPLITX 2 MXY GEO MX MESHY 7 14375 7 14375 SPLITY 2 BX GEO CARCELY 2 1 MIX 3 3 3 MESHX 7 14375 7 14375 SPLITX 2 MESHY 0 0 7 14375 MESHZ 8 25500 8 25500 SPLITZ 2 RADIUS 0 0 3 5100 3 8100 BXY GEO BX MESHY 7 14375 7 14375 SPLITY 2 FXY GEO CARCELZ 2 1 MIX 1 2 3 MESHX 7 14375 7 14375 SPLITX 2 MESHY 7 14375 7 14375 SPLITY 2 MESHZ 8 25500 8 25500 SPLITZ 2 RADIUS 0 0 5 16890 6 58750 f BCI GEO BCO BX GEO BX MIX 3 4 3 BXY GEO BXY MIX 3 4 3 i Transport calculation EXCEL Flux calculation for keff x Homogenized properties for rod out k
142. M MXL MX2 MXR M MY FXYL BXY FXYR MY M MXL 2 MXR GEO CAR2D 1 1 MESHX 0 0 7 14375 MESHY 0 0 7 14375 HMIX 0 MIX 5 MXL GEO CAR2D 2 1 MESHX 7 14375 0 0 7 14 MESHY 0 0 7 14375 HMIX 0 1 MIX 9 A9 MX2 GEO CAR2D 1 1 MESHX 7 14375 7 14375 MESHY 0 0 7 14375 HMIX 1 MIX 15 MXR GEO CAR2D 2 1 MESHX 7 14375 0 0 7 14 MESHY 0 0 7 14375 HMIX 1 0 MIX l5 Ss MY GEO CAR2D 1 2 MESHY 7 14375 0 0 7 14 MESHX 0 0 Ta LASTS HMIX 0 0 MIX 5 Sr BXY GEO CARCEL 2 MESHX 7 14375 7 14375 MESHY 7 14375 7 14375 RADIUS 0 0 6 380 6 53 HMIX 1 1 1 MIX 15 15 15 CLUSTER ROD ROD GEO TUBE 4 NPIN 1 RPIN 0 0 AP RADIUS 0 0 5 4115 HMIX 1 1 MIX 15 14 FXYL GEO CARCEL 5 MESHX 7 14375 0 0 7 14 MESHY 7 14375 7 14375 RADIUS 0 00000 5 16890 HMIX 0 0 1 1 MIX 1 2 11 12 CLUSTER ROD1 ROD2L ROD2 ROD1 GEO TUB NPIN 1 M 315 375 375 0 0 0 5 4877 5 5791 5 6553 1 1 21 14 A A 2 A 35 5 60320 6 44780 6 58750 0 0 0 1 1 1 3 4 5 13 14 15 R ROD3L ROD3R ROD4L ROD4R F 2 1 2 MIX 6 10 16 20 RPIN 0 0000 APIN 0 0000 7 00 0 1 5 15 HMIX 0011 183 174 Rev 12 Release 3 061 ESHX 0 6540 0 6540 ESHY 0 6540 0 0 0 6540 ADIUS 0 00000 0 6122 0 654 184 M M R G ROD2L RADIUS 0 NPIN 3 APIN 2 0 ROD2R GEO TUB RADIUS 0 NPIN 3 APIN 1 ROD3L GEO TUB RADIUS
143. MODULE LIB INFO END _ x Get Coolant properties ECHO Input Coolant temperature K TempCool ECHO Input D2 D2 H1 Weight ratio in Coolant Purity INFO TMP lt lt TempCool gt gt PUR lt lt Purity gt gt WGT CALC DENS WATER gt gt DensCool lt lt LIB WIMSD4 FIL iaea ISO 3 3001 3002 6016 CALC WGT D20 gt gt WH1C lt lt gt gt WD2C lt lt gt gt WO16C lt lt IGE 174 Rev 12 Release 3 061 ECHO Output Coolant Density g cm ECHO Output H1 Weight in Coolant ECHO Output D2 Weight in Coolant ECHO Output O16 Weight in Coolant x Get Fuel properties ECHO Input Fuel temperature ECHO Input 0235 U235 U238 Weight ECHO Input Fuel Density g cmxx3 INFO 2 ENR lt lt Enrichment gt gt WGT LIB WIMSD4 FIL iaea ISO 3 72235 r 8238 6016 CALC WGT UO2 gt gt WU235F lt lt gt gt WU238F ECHO Output U235 Weight in Fuel ECHO Output U238 Weight in Fuel ECHO Output O16 Weight in Fuel NEN Microscopic cross sections from LIBRARY LIB NMIX 8 CTRA WIMS MIXS LIB WIMSD4 FIL iaea MIX 1 lt lt TempCool gt gt lt lt DensCool gt gt D2D20 3002 lt lt WD2C gt gt MIX 2 lt lt TempFuel gt gt lt lt DensFuel gt gt U235 2235 lt lt WU235F gt gt U238 823
144. N Interna tional Conference on the Physics of Nuclear Science and Technology Long Island NY 1998 81 G Marleau New Geometric Capabilities of DRAGON Nineteenth Annual Conference of the Canadian Nuclear Society Toronto ON 1998 82 G Harrisson and G Marleau Modeling of a 3 D SCWR unit cell 32nd Annual conference of the CNS Niagara Falls ON 2011 Proceedings available on CD Rom 83 Kohler K E PostScript for Technical Drawings PSPLOT A FORTRAN Callable POSTSCRIPT Plotting Library User s Manual 2000 84 Theisen T O Ghostview An X11 user interface for Ghostscript 2000 this program is free software under the term of the GNU general public licence as published by the Free Software Fundation 85 I Kodeli Multidimensional Deterministic Nuclear Data Sensitivity and Uncertainty Code System Method and Application Nuclear Science and Engineering 138 45 66 2001 86 v Stankovski Refinement of the Substructure Method for Integral Transport Calculations Nuclear Science and Engineering 92 255 1986 87 R T Akroyd and N S Riyait Iteration and Extrapolation Methods for the Approximate Solution of the Even Parity Transport Equation for systems with voids Annals of Nuclear Energy 16 1 1989 88 D Mosteller L D Eisenhart C Little W J Eich and J Chao Benchmark Calculations for the Doppler Coefficient of Reactivity Nuclear Science and
145. NDU6TV GEO CANDU6SV SPLITR 6 1 1 1 10 RODI GEO ROD1 SPLITR 2 1 ROD2 GEO ROD2 SPLITR 2 1 ROD3 GEO ROD3 SPLITR 2 1 ROD4 GEO RODA SPLITR 2 1 CASE WITH NO VOID Self Shielding calculation EXCEL Transport calculation EXCEL Flux TYPE AND B WITH VARIOUS LEAKAGE OPTIONS ENSE TRACK INTLIN EXCELT CANDU6S TITLE TCWUO7 CANDU 6 CARTESIAN FUEL TEMP 941 29 EDIT 0 MAXR 14 TRAK TISO 7 20 0 SYMM 4 LIBRARY SHI LIBRARY TRACK INTLIN EDIT 0 TRACK INTLIN DELETE TRACK INTLIN TRACK INTLIN EXCELT CANDU6T TITLE TCWU07 CANDU 6 CARTESIAN FUEL 941 29 EDIT 0 MAXR 32 ANIS 2 TRAK TISO 7 20 0 SYMM 4 SYS ASM LIBRARY TRACK INTLIN EDIT 0 PIJK FLUX FLU SYS LIBRARY TRACK TYPE K EDITION EDI FLUX LIBRARY TRACK EDIT 3 SAVE COND 4 0 TAKE REGI 1 4 7 10 16 24 FLUX FLU FLUX SYS LIBRARY TRACK TYPE B B1 PNL EDITION EDI EDITION FLUX LIBRARY TRACK EDIT 3 SAVE COND 4 0 TAKE REGI 1 4 7 10 16 24 FLUX FLU FLUX SYS LIBRARY TRACK IGE 174 Rev 12 Release 3 061 TYPE B Bl EDITION EDI EDITION FL EDIT 3 SAVE COND 4 0 TAKE UX LIBRARY TRACK REGT 147101624 FLUX SYS TRACK INTLIN DEL CASE WITH COOLANT VOIDED ETE FLUX SYS TRACK IN
146. NDWHILE res EDITION EDITION BURNUP FLUX PIJ LIBRARY INTLINF VOLMATF CANDU6F DELETE EDITION BURNUP FLUX PIJ LIBRARY INTLINF VOLMATF CANDU6F END QUIT LIST 4 4 12 TCWUI2 Mixture composition This case illustrates the use of the INFO module of DRAGON see Section 3 12 as well as the COMB option in the module LIB see Section 3 2 Input data for test case TCWU12 x2m x TEST CASE TCWU12 1 WLUP Library x GENERATE A LIBRARY USING INFO AND OTH ER OPTIONS IGE 174 Rev 12 Release 3 061 172 REF None Define variables and initialize Coolant properties a Input TempCool Coolant temperature K Purity D2 D2 H1 Weight ratio in Coolant b Output DensCool Coolant Density g cmxx3 WH1C H1 Weight in Coolant WD2C D2 Weight in Coolant WO16C O16 Weight in Coolant Fuel properties a Input TempFuel Fuel temperature x Enrichment U235 U235 U238 Weight ratio in Fuel DensFuel Fuel Density g cmxx3 b Output VU235F U235 Weight in Fuel VU238F U238 Weight in Fuel VO16F 016 Weight in Fuel REAL TempCool Purity TempFuel Enrichment DensFuel 560 66 99 95 941 29 0 72 10 437501 REAL WH1C WD2C WO16C DensCool WU235F WU238F WO16F PERDER Define STRUCTURES and MODULES used LINKED_LIST LIBRARY
147. O HEX 12 HBC S30 ALBE 1 6 SIDE 1 3 MIX 111222333456 e 3 D Cartesian supercell see Figure 16 This geometry can only be analyzed using the EXCELT and NXT tracking modules SUPERCELL GEO CAR3D 4 4 3 X REFL X REFL Y REFL Y REFL Z REFL 74 REFL CELL Al Cl D1 A2 C2 D2 D2 A2 C2 C2 C2 A2 C2 C2 C2 D3 A4 CA D4 D4 C4 C4 C4 CA CA CA C3 D3 A4 CA D4 D4 C4 C4 CA CA CA Cl GEO CAR3D 1 1 1 MESHX 0 0 1 0 MESHY 0 0 1 5 MESHZ 0 0 2 0 MIX 1 C2 GEO Cl MESHY 0 0 1 0 C3 GEO Cl MESHZ 0 0 1 0 C4 GEO C2 MESHZ 0 0 1 0 21 GEO MIX 2 D2 GEO C2 MIX 2 D3 GEO C3 MIX 2 D4 GEO C4 MIX 2 Al GEO CARCELY 2 1 MESHX 0 0 1 0 MESHY 0 0 1 5 MESHZ 0 0 2 0 RADIUS 0 0 0 4 0 45 MIX 3 4 1 A2 GEO Al MESHY 0 0 1 0 GEO CARCELZ 2 1 MESHX 0 0 1 0 MESHY 0 0 1 5 MESHZ 0 0 2 0 RADIUS 0 0 0 3 0 35 IGE 174 Rev 12 Release 3 061 MIX A4 5 6 q z EO A3 MESHZ 0 0 1 0 G ror e Multicell geometry in a 2 D hexagonal lattice see Figure 17 Here we consider an infinite lattice having two types of cells reset procel 1 1 1 pource 1 pource 2 and procel 2 1 2 2 This lattice can be represented either in a do it yourself type geometry HEXDI Y or directly HI HEXDIY GEO GROUP 2 POURCE 0 3333333 0
148. OD1 ROD2 ROD1 GEO TUBE 2 MIX 17 18 NPIN RADIUS 0 00000 0 6122 0 6540 ROD2 GEO RODI 17 18 NPIN C2 GEO 4 SIDE 4 0 1 1 MIX L 2 3 45 6 7 8 9 10 11 12 13 14 15 16 YJ 2 4 5 6 7 8 9 10 11 1213 14 15 16 12345678910 11 12 13 14 15 16 J 2 294 5 6 7 8 9 10 11 12 13 14 15 16 12345678910 11 12 13 14 15 16 12345678 9 10 11 12 13 14 15 16 7 De Tracking NXT Solution PIJ dens Lines Tracking NXT GlobalGeo EDIT 2 LONG NORE Fig ps PSP Tra Pij ASM MacLib ISO 3 10 0 cking Tracking Lines 0 039 0 039 0 039 1 RPIN 0 0000 APIN 0 0000 6 RPIN 1 4885 APIN 0 0000 Li 141 IGE 174 Rev 12 Release 3 061 142 Flux FLU Pij MacLib Tracking TYPE K Flux Pij DELETE Flux Pij GlobalGeo Tracking Lines DELETE GlobalGeo Tracking Lines END QUIT LIST 44 WLUP microscopic cross section examples The test cases we present here use the LIB module to provide microscopic cross sections taken from a WIMS D4 format library We will assume that this library is located in file 1 8 This file is the result of processing the file 11 downloaded form the IAEA WLUP site with the utility WILLIE B3 An example of how to process such files for DRAGON can be found in ftp ftp polymtl ca pub nucl WLUP tgz Our test cases are numbered successively from TCWUO01 to TCWU17 4 4 1 01 The
149. ON can be compared with those obtained using the MARSYAS code 181198 The corresponding geometry is shown Figure I9 where the cell numbers generated by DRAGON are shown Input data for test case TCM02 x2m dcm TEST CASE 02 MACROSCOPIC CROSS SECTIONS FIXED SOURCE PROBLEM FOR 1 8 7X7 PWR ASSEMBLY R EF Z Stankovski R Roy et al and Reactor Physics Nucl Sci Eng 92 255 1986 Advances in Mathematics Computation April 28 May 2 1991 Pittsburgh xoxo ox Define STRUCTURES and MODULES used T LINKED LIST PWR TRACK MACRO SYS FLUX EDITION SEO BINARY PWRTRK MODULE GEO EXCELT MAC ASM FLU EDI END DELETE c Macroscopic XS FRAGE MACRO MAC NGRO 1 NMIX 3 READ INPUT MIX 1 TOTAL 1 250 SCAT 11 1 242 FIXE 1 000 MIX 2 TOTAL 0 625 SCAT 11 0 355 FIXE 0 000 MIX 3 TOTAL 14 000 SCAT 11 0 000 FIXE 0 000 ete Geometry Cartesian 4X4 Tracking EXCELT ee gt PWR GEO CAR2D 4 4 X DIAG X REFL Y SYME Y DIAG CELL PP EVENE Be OE GEO CARCEL 1 RADIUS 0 000 0 450 MIX 2 1 MESHX 0 625 MESHY 0 625 0 625 SPLITX 2 0 625 SPLITY 2 IGE 174 Rev 12 Release 3 061 P GEO F MIX 3 1 SPLITR 3 TRACK PWRTRK EXCELT PWR TITLE TCMO2 STANKOVSKI PWR ASSEMBLY MAXR 58 CUT 1 E 4 TRAK TSPC 12 8 0
150. Polytechnique de Montr al for its support as well as to the graduate students and research staff that have contributed to the development of DRAGON along the years We would also like to thank Kevin E Kohler at the Nova Southeastern University Oceanographic Center for letting us use and distribute a PostScript utility module derived from his PSPLOT package Finally the DRAGON team would never have survived without the financial support of the Natural Science and Engineering Research Council of Canada NSERC Hydro Qu bec Atomic Energy of Canada limited AECL and the CANDU Owners Group COG IGE 174 Rev 12 Release 3 061 iv Summary The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor It includes all the functions that characterize a lattice cell code namely e interpolation of microscopic cross sections supplied by standard libraries e resonance self shielding calculations in multidimensional geometries e multigroup and multidimensional neutron flux calculations that can take into account neutron leakage e transport transport or transport diffusion equivalence calculations as well as editing of condensed and ho mogenized nuclear properties for reactor calculations e isotopic depletion or fuel burnup calculations Two neutron flux solution procedures are currently programmed in DRAGON e the collision probability method CPM e th
151. R 400 TRAK TISO lt lt AngTra gt gt lt lt DenTra gt gt FLUXA T3D DELETE FLUXA T3D GEOM MACRO DELETE GEOM MACRO END QUIT IGE 174 Rev 12 Release 3 061 140 4 3 13 13 Hexagonal assembly with hexagonal cells containing clusters This test represents an example of a 2 D hexagonal assembly filled with triangular hexagonal cells containing clusters see Figure 22 that can be analyzed with NXT Input data for test case TCM13 x2m TERES TEST CASE TCM13 MACROSCOPIC CROSS SECTIONS FISSION SOURCE PROBLEM HEXAGONAL CELL with PINS PR Define STRUCTURES and MODULES used Le LINKED_ LIST MacLib GlobalGeo Tracking Pij Flux SEO ASCII Fig ps SEO BINARY Lines MODULE MAC GEO NXT PSP ASM FLU DELETE END goa Macroscopic XS MacLib MAC NGRO 2 NMIX 18 NIFI 1 READ INPUT MIX 1 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 2 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 3 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 4 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 5 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 MIX 6 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111
152. RUCTURES and MODULES used eee LINKED_LIST LIBRARY CANDU6S CANDU6T CANDU6SV CANDU6TV TRACK SYS FLUX EDITION MODULE GEO EXCELT LIB SHI ASM FLU EDI DELETE END SEO BINARY INTLIN gue Depletion data from file iaea format WIMSD4 Microscopic cross sections from file iaea format WIMSD4 5 PROCEDURE TCWUO5Lib INTEGER iedit 1 LIBRARY TCWUO5Lib lt lt iedit gt gt ea x Geometry CANDU6S GEOMETRY FOR SELF SHIELDING NO VOID CANDU6F GEOMETRY FOR TRANSPORT NO VOID CANDU6FV GEOMETRY FOR TRANSPORT COOLANT VOID CANDU6FV GEOMETRY FOR TRANSPORT COOLANT VOID IGE 174 Rev 12 Release 3 061 161 dece eem CANDU6S GEO CARCEL 5 X REFL X REFL MESHX 14 2875 14 2875 REFL Y REFL MESHY 14 2875 14 2875 RADIUS 0 00000 5 16890 5 60320 6 44780 6 58750 14 00 MIX 1 2 3 4 5 5 CLUSTER ROD1 ROD2 ROD3 ROD4 ROD1 GEO TUBE 2 MIX 6 10 NPIN 1 RPIN 0 0000 APIN 0 0000 RADIUS 0 00000 0 6122 0 6540 ROD2 GEO RODI MIX 7 10 NPIN 6 RPIN 1 4885 APIN 0 0000 ROD3 GEO RODI MIX 8 10 NPIN 12 RPIN 2 8755 APIN 0 261799 ROD4 GEO RODI MIX 9 10 NPIN 18 RPIN 4 3305 APIN 0 0 4 CANDU6T GEO CANDU6S SPLITR 6 11 1 10 RODI GEO ROD1 SPLITR 2 1 ROD2 GEO ROD2 SPLITR 2 1 ROD3 GEO ROD3 SPLITR 2 1 ROD4 GEO ROD4 SPLITR 2 1 CANDU6SV GEO CANDU6S 3 MIX 0 2 3 4 5 5 5 CA
153. SAT NODI DIRA keyword to specify that the time is given in days keyword to specify that the time is given in years keyword to specify that a zero flux burnup calculation is to be performed keyword to specify that burnup calculation at constant flux is to be performed 2 flux expressed in 25 1 In the case where flux 0 0 the calculations are performed as if the COOL option was used keyword to specify that a burnup calculation at constant power KW Kg is to be performed power expressed in KW Kg MW tonne In the case where power 0 0 the calculations performed as if the COOL option was used keyword to specify that a burnup calculation at constant power W cm is to be performed power expressed W cm In the case where wcc 0 0 the calculations are performed as if the COOL option was used keyword to specify the tolerance used in the algorithm for the solution of the depletion equations the tolerance used in the algorithm for the solution of the depletion equations The default value is 10 keyword to specify the tolerance used in the search algorithm for a final fixed power used if the POWR and W CC options are activated the tolerance used in the search algorithm for a final fixed power The default value is 1074 keyword to specify the selection criterion for non fissile isotopes that are at saturation the isotopes for which x xtf xti gt valexp will be treated by a saturatio
154. Sections T and 2 TRKNAM character 12 name of the TRACKING data structure see Section 3 4 descflu structure containing the input data to this module see Section 3 7 1 3 7 1 Data input for module FLU Table 43 Structure descflu iprint OFF ON fluxes i g i 1 nregio g 1 ngroup continued on next page IGE 174 Rev 12 Release 3 061 64 Structure descflu continued from last page FLX PAF AF N descleak B L descleak THER maxthr epsthr EXTE maxout epsout UNKT epsunk REBA OFF ACCE nlibre naccel EGPA epsgpa CGPA congpa DECO ON OFF Here EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module The amount of output produced will vary substantially depending on the print level specified INIT keyword to specify the neutron flux initialization option used OFF keyword to specify that the initial neutron flux distribution is not to be initialized ON keyword to specify that the initial neutron flux distribution follows fluxes array of average flux per region and per group FLX keyword to specify that a flux solution is to be considered This is the default option PAF keyword to specify that a pseudo adjoint flux solution is to be considered 9l AF keyword to specify that a pseudo adjoint flux soluti
155. TE i i 1 UNTIL i 6 LOYATRK DELETE LOYATRK END QUIT LIST 4 3 11 TCMI1 Comparison of CP and MoC solutions 133 This test case is for a 4 x 4 Cartesian assembly in 2 D It is solved using the method of cyclic characteristics and the method of collision probabilities using specular mirror like boundary conditions Input data for test case TCM11 x2m TEST CASE TCM12 MACROSCOPIC CROSS SECTIONS FIXED SOURCE PROBLEM CARTESIAN 4 X 4 ASSEMBLY WITH FUEL RODS AND POISON KAVENOKY BENCHMARK REF R Roy The Cyclic Characteristics Method Int Conf Physics of Nuclear Science and Technology Long Island NY October 1998 pp 407 414 o X F HF STRING Polar_Ang CACB INTEGER Nazimuth 8 REAL DenTrak 2 100 INTEGER Nsplit 5 REAL Tolerance 5 E 6 LINKED_LIST PWR TRACK MACRO SYS FLUX EDITION SEQ BINARY PWRTRK MODULE GEO EXCELT MAC MOCC EDI END DELETE GREP REAL ou 100 REAL fl 2 8 9 10 fil 12 13 14 15 vl v2 v3 v8 v9 v10 v11 v12 v13 v14 v15 IGE 174 Rev 12 Release 3 061 r10 r15 0 2847 3 673 e10 15 0 002 0 05 9 14 Fr e10 15 r8 9 r9 e10 r10 REAL fT r2 ES r8 r9 11 r12 r13 r14 5 166 3 699 4 183 3 178 3 617 2 913 3 441 3 937 3 225 REAL el e2 e3 e8 9 11 12 e13 14 0
156. TECHNICAL REPORT IGE 174 Rev 12 Release 3 06L A User Guide for DRAGON Release 3 06L 2013 07 05 G MARLEAU A HEBERT AND R ROY Institut de g nie nucl aire D partement de g nie physique Ecole Polytechnique de Montr al July 2013 IGE 174 Rev 12 Release 3 061 ii Copyright Notice for DRAGON The development of DRAGON has been financially supported along the years directly or indirectly by var ious organizations including Ecole Polytechnique de Montr al Hydro Qu bec and the Hydro Qu bec chair in nuclear engineering the Natural Science and Engineering Research Council of Canada NSERC Atomic Energy of Canada limited AECL and the CANDU Owners Group COG The code DRAGON and its user guide are and will remain the property of Ecole Polytechnique de Montr al The PostScript utility module used in DRAGON is based on PSPLOT which is owned by Kevin E Kohler at the Nova Southeastern University Oceanographic Center in Florida Permission is granted to the public to copy DRAGON without charge Ecole Polytechnique de Montr al makes no warranty express or implied and assumes no liability or responsibility for the use of DRAGON IGE 174 Rev 12 Release 3 061 iii Acknowledgments The computer code DRAGON results from a concerted effort of professors research scientists and graduate students at cole Polytechnique de Montr al The main authors of this report would therefore like to express their thanks to cole
157. TLIN EXCEL F Self Shielding calculation x Transport calculation EXCE EL Flux AND WITH VA TRACK INTLIN EXCELT CANDU6SV RIOUS L EAKAGE OPTIONS TITLE TCWUO7 CANDU 6 CART EDIT 0 MAXR 14 TRAK TISO 7 LIBRARY SHI LIBRARY TRAC EDIT 0 K INT ESIAN FUEL TEMP 20 0 TRACK INTLIN TRACK INTLIN DEL EXC ETE ELT TRAC CAND K INT U6TV 941 29 SYMM LIN 4 LIN TITLE TCWUO7 EDI SYS EDIT LUX TYPE EDITION EDI EDIT 3 SAVE CON LUX FLU FLUX TYPE B Bl PNL EDITION EDI EDIT 3 SAVE CON LUX FLU FLUX TYPE B Bl HETE EDITION EDI EDITION FL EDIT 3 SAVE COND 4 0 TAKE ASM LIBRA 0 PIJK FLU SYS K RY TRACK INTLIN E LIBRARY T RACK EDITION FL D 4 0 SYS TAKE EDITION FL D 4 0 TA SYS KE F CANDU 6 CARTESIAN FUEL TEMP 0 MAXR 32 ANIS 2 TRAK TISO 7 20 0 SYMM 4 941 29 UX LIBRARY TRACK REGI 1 4 7 10 16 24 LIBRARY TRACK UX LIBRARY TRACK REGI 1 4 7 10 16 24 LIBRARY TRACK UX LIBRARY TRACK REGI 1 4 7 10 16 24 FLUX SYS TRACK INTLIN DEL END QUIT LIST ETE 4 4 5 TCWU08 Burnup of an homogeneous cell FLUX SYS TRACK INTLIN 162 p This case illustrates the
158. TURES and MODULES used 2 5 LINKED_LIST MACRO ANGEO TRACK SYS FLUX EDITION SEO ASCII res MODULE GEO SYBILT JPMT MAC ASM FLU EDI DELETE END amp Macroscopic XS ann MACRO MAC NGRO 2 NMIX 2 NIFI 1 READ INPUT MIX 1 TOTAL 0 222222 0 833333 SCAT 1 1 0 19222 2 2 0 75333 0 02 NUSIGF 0 0 0 135 CHI 1 0 0 0 MIX 2 TOTAL 0 166667 1 111111 SCAT 22 0 00015 0 126667 2 2 1 10111 0 039 decree Geometry ANGEO Annular 2 regions usce ANGEO GEO TUBE 2 Rt REFL RADIUS 0 0 0 19653 1 0 MIX 1 2 SPLITR 1 4 Posen Tracking SYBILT Solution PIJ 1 KEFF WITHOUT BUCKLING 2 BUCKLING WITH KEFF 1 3 LEAKAGE WITH KEFF 1 TRACK SYBILT ANGEO TITLE TCMO1 ANNULAR GEOMETRY WITH MACROSCOPIC XS SYBIL EDIT 1 MAXR 5 QUAI 5 SYS ASM MACRO TRACK FLUX FLU SYS MACRO TRACK TYPE EDITION EDI FLUX MACRO TRACK EDIT 3 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE B BO EDITION EDI EDITION FLUX MACRO TRACK EDIT 3 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE L BO EDITION EDI EDITION FLUX MACRO TRACK IGE 174 Rev 12 Release 3 061 EDIT 3 SAVE FLUX SYS TRACK DELETE FLUX SYS TRACK Tracking JPMT Solution ASM 1 KEFF WITHOUT BUCKLING 2 BUCKLING WITH KEFF 1 3 LEAKAGE WITH KEFF
159. This is the floating default This keyword is useful to get rid of a SPH correction which have been set by a previous SPH calculation SPRD keyword to specify the SPH factors are read on EDINAM IGE 174 Rev 12 Release 3 061 77 SPHNAM HOMO ALBS EXCELT NXT SYBILT JPMT BIVACT desctrack descexcel descnxt descsybil descjpm descbivac name of the directory from which the SPH factors are to be read keyword to specify that the SPH factors are calculated assuming the macro geometry is equiv alent to a complete homogenization of the current micro geometry The options MERG COMP must then be specified In this case the neutron flux transport or diffusion will be uniform which allows the SPH factors to be obtained one per macro group using a direct strategy For a given macro group the SPH factor will be equal to the ratio of the average flux in the region to the surface flux if the SELE option is used Otherwise the SPH factor are all set equal to 1 0 no correction The SELE option prodices SPH factors that are equal to the inverse of the discontinuity factors keyword to specify that the albedo of the geometry are to be taken into account in the com plete homogenization process Thus the MERG and COMP options must be specified The SPH factors are obtained using a transport transport equivalence based on a calculation using the col lision probabilities This option req
160. U or V axis to be drawn Used only for 3 D geome tries keyword to specify the distance between the plane normal and the line direction and the origin real or double precision value for the distance of the plane from the origin keyword to specify the value of a for an arbitrary plane or line real or double precision value a keyword to specify the value of b for an arbitrary plane or line real or double precision value b keyword to specify the value of c for an arbitrary plane real or double precision value c keyword to specify the value of d for an arbitrary plane or line real or double precision value d The FMT module The utility module FMT is used to format various data structure to suit the specific user needs Here two formatting options are available 1 The SUS3D option where three files are created that respectively contain the integration weights and direc tions ASCII the directional flux binary or ASCII and the directional adjoints binary or ASCII in a CP or SN format 2185 The input specifications for this option are presented in Table The DIRFLX option where a single file is created that contain the directional flux adjoints and generalized adjoints The input specifications for this option are presented in Table Table 81 Structure FMT for SUS3D option WGTANGL DFLUX DADJOINTS FMT FLUX VOLTRK EDIT iprint SUS3D IGE 174 Rev 12 Release 3 061
161. US 0 00000 5 16890 5 60320 6 44780 6 58750 14 00 MIX 123455 CLUSTER ROD1 ROD2 ROD3 ROD4 ROD1 GEO TUBE 2 MIX 6 10 NPIN 1 0 0000 APIN 0 0000 RADIUS 0 00000 0 6122 0 6540 ROD2 GEO RODI MIX 7 10 NPIN 6 RPIN 1 4885 APIN 0 0000 ROD3 GEO ROD1 MIX 8 10 NPIN 12 RPIN 2 8755 APIN 0 261799 RODA GEO RODI MIX 9 10 NPIN 18 RPIN 4 3305 APIN 0 0 CANDU6F GEO CANDU6S SPLITR 6 11 1 10 RODI GEO 1 SPLITR 2 1 ROD2 GEO ROD2 SPLITR 2 1 ROD3 GEO ROD3 SPLITR 2 1 RODA GEO RODA SPLITR 2 1 Self Shielding calculation EXCEL Transport calculation EXCEL Flux calculation for keff Less VOLMATS INTLINS NXT CANDU6S TITLE TCWU05 CANDU 6 CARTESIAN POWER 31 971 FUEL TEMP 941 29 EDIT 0 TRAK TISO 5 10 0 LIBRARY SHI LIBRARY VOLMATS INTLINS EDIT 0 VOLMATF INTLINF NXT CANDU6F TITLE TCWU05 CANDU 6 CARTESIAN POWER 31 971 FUEL 941 29 EDIT 0 TRAK TISO 5 10 0 IGE 174 Rev 12 Release 3 061 PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU PIJ LIBRARY VOLMATF TYPE K EDITION EDI FLUX LIBRARY VOLMATF COND 4 0 MERGE MIX 00001000 EDITION EDI EDITION FLUX LIBRARY COND 4 0 MERGE COMP MICR 1 Xe135 SAVE Burnup loop while for other steps it is modified
162. UX SYS MACRO TRACK TYPE L Bl HETE R BUCK Z 5 00993 EDITION EDI EDITION EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE L Bl HETE Z BUCK R 1 00198 EDITION EDI EDITION EDIT 2 SAVE FLUX FLU FLUX SYS MACRO TRACK TYPE L Bl HETE EDITION EDI EDITION EDIT 2 SAVE TRKSPC DELETE TRKSPC END QUIT LIST 6E 03 FLUX MACRO TRACK E 04 FLUX MACRO TRACK 6E 03 FLUX MACRO TRACK 4 3 6 Buckling search without fission source FLUX MACRO TRACK r FLUX MACRO TRACK 123 This test is for an homogeneous water cell A buckling eigenvalue problem is solved in the absence of fission source for the neutron flux distribution inside this cell Input data for test case TCM06 x2m LI MO G p ge MA TEST CASE MACROSCOPIC C BUCKLING SI 06 ROSS SECTIONS EARCH PROBLI HOMOGENEOUS GEOMETRY REF none Define STRUCTURES and MODULES used NKED_LIST WATER TRACK MACRO SYS FLUX EDITION DULE EO SYBILT MAC ASM FLU EDI END Macroscopic XS CRO MAC WITHOUT FISSION SOURCE IGE 174 Rev 12 Release 3 061 READ INPUT Geometry WATER Homogeneous geometry EDIT 2 NGRO 1 ANIS 2 NMIX 1 NIFI 0 MIX 1 TOTAL 3 59 SCAT 11 3 57 1 1 2 38 EXAM Tracking SYBILT TONER WATER
163. W14 Homogenisation geometry EDIT 0 MAXR 100 TRAK TISO 12 20 0 PIJ ASM LIBRARY VOLMATF INTLINF FLUX FLU PIJ LIBRARY VOLMATF TYPE K EDITION MERGE MIX WN FO gt N SPH MTRK SAVE PIJ FLUX EDITION DELETE PIJ FLUX EDITION INTLINF VOLMATF CANDU6F DELETE INTLINF VOLMATF CANDU6F 5 168878 5 60320 6 44780 6 587482 14 0 5 168878 5 60320 6 44780 6 587482 14 0 EDI FLUX LIBRARY VOLMATF VOLMATH INTLINH y 177 IGE 174 Rev 12 Release 3 061 INTLINH VOLMATH CANDU6H LIBRARY END QUIT ST DELETE D LIBRARY ELETE 4 4 15 TCWUIS A CANDU 6 type Cartesian cell with burnup This test case is similar to TCWUOS5 except that the cell boundary are Cartesian and the NXT tracking module is used It uses the embedded DRAGON procedure stored in the TCWUO5Lib c2m file Input data for test case TCWU15 x2m oco Roo ok F X Xo HF x TEST CASE TCWUOS5 CANDU 6 ANNULAR CELL iaea WLUP Library POWER KW 615 00000 BURN POWER KW KG 31 97130 URANIUM MASS 19 23600 UO2 REAL DENSITY 10 59300 UO2 EFF DENSITY 10 43750 UO2 TEMPERATURE 941 28998 ENRICHMENT 0 71140 COOLANT D2 AT 99 222 MODERATOR D2 AT 99 911 NUMBER OF DAYS 50 Define variables and initialize Burnup paremeters
164. X 1 1 00000 0 6122 0 6540 RPIN 1 4885 9439510 3 14159265 4 18879020 E 2 MIX 7 10 HMIX 00 00000 0 6122 0 6540 RPIN 1 4885 04719755 0 0000 1 04719755 E 2 MIX 18 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 2 8755 87979327 2 35619449 1 83259571 83259571 2 35619449 2 87979327 E 2 MIX 8 10 HMIX 00 00000 0 6122 0 6540 2 8755 30899694 0 78539816 0 26179939 0 78539816 1 30899694 E 2 MIX 19 20 HMIX 1 1 00000 0 6122 0 6540 RPIN 4 3305 74532925 79252680 2 09439510 3 14159265 2 44346095 3 49065850 HMIX 1100 187 174 Rev 12 Release 3 061 188 3 83972435 4 18879020 4 53785606 ROD4R GEO TUBE 2 MIX 9 10 HMIX 00 RADIUS 0 00000 0 6122 0 6540 NPIN 9 RPIN 4 3305 APIN 1 39626340 1 04719755 0 69813170 0 34906585 0 0 0 34906585 0 69813170 1 04719755 1 39626340 a Rod and GT absent 4X TRACK Lines NXT SORINS EDIT 5 TISO 40 30 0 MicLib SHI MicLib TRACK Lines TRACK Lines DELETE TRACK Lines TRACK Lines NXT SORIN EDIT 5 TISO 40 30 0 FigReg ps PSP TRACK TYPE REGI FigMix ps PSP TRACK TYPE MIXT FigHom ps PSP TRACK TYPE HMIX ASMPIJ ASM MicLib TRACK Lines PIJ FLUX FLU ASMPIJ MicLib TRACK TYPE K EDITION FLUX Miclib TRACK EDIT 3 COND 0 625 MERG HMIX SAVE ON SORINHMIX HomHMix txt EDITION EDITION DELETE EDITION EDITION
165. XED SOURCE PROBLEM CARTESIAN 2 X 2 ASSEMBLY TSAI LOYALKA SEMI INFINITE PROBLEM REF R Roy The Cyclic Characteristics Method Int Conf Physics of Nuclear Science and Technology Long Island NY October 1998 pp LINKED LIST LOYA LOY25 TRACK FLUX EDITION MACRO MACRO100 MACRO050 MAC SEO BINARY LOYATRK STRING PolarAng CACB MODULE GEO EXCELT MAC MOCC EDI DELETE INTEGER 11 MACROSCOPIC CROSS SECTIONS MACRO100 MAC NGRO 1 NMIX 2 READ INPUT MIX 1 TOTAL 1 0 SCAT 1 1 1 00 FIXE 1 0 MIX 2 TOTAL 1 0 SCAT 111 00 MACRO050 MAC NGRO 1 NMIX 2 READ INPUT MIX 1 TOTAL 1 0 SCAT 1 1 0 50 FIXE 1 0 MIX 2 TOTAL 1 0 SCAT 1 1 0 50 MACROO10 MAC NGRO 1 NMIX 2 READ INPUT MIX 1 TOTAL 1 0 SCAT 1 1 0 10 FIXE 1 0 MIX 2 TOTAL 1 0 SCAT 1 1 0 10 MACRO005 MAC NGRO 1 NMIX 2 READ INPUT MIX 1 TOTAL 1 0 SCAT 1 1 0 05 FIXE 1 0 MIX 2 TOTAL 1 0 SCAT 1 1 0 05 MACRO000 MAC NGRO 1 NMIX 2 READ INPUT MIX 1 TOTAL 1 0 SCAT 1 1 0 00 FIXE 1 0 MIX 2 TOTAL 1 0 SCAT 1 1 0 00 GEOMETRIES ENTERED WITH SYMMETRIES x LOYA 2X 2 REGIONS LOY25 25 X 25 REGIONS LOYA GEO CAR2D 2 2 X REFL VOID MESHX 0 00 0 52 1 00 0010 MACRO005 000 131 IGE 174 Rev 12 Release 3 061 132 Y REFL Y REFL MESHY 0 00 0 52 1 00 MIX 1 2 2 2 E LOY25 GEO LOYA SPLITX 13 12 SPLITY 13 12 SOLUTION FOR
166. a structure containing the perturbed flux see Sec tion 3 7 descper structure containing the input data to this module see Section 3 17 1 3 17 1 Data input for module PER Table 71 Structure descper SAVE ON NAMREC TYPE DIR CALC PER LIN SAVE keyword to specify that the results of the perturbative calculations are to be saved on a sub directory of EDINAM ON keyword to specify on which sub directory of EDINAM this information is to be stored NAMREC characterx12 name of the sub directory of EDINAM where the perturbed homogenized and condensed cross sections are to be saved a MACROLIB IGE 174 Rev 12 Release 3 061 96 TYPE keyword to specify the type of perturbation calculations to perform DIR keyword to specify that the reference flux is to be used in the perturbation calculations PER keyword to specify that the perturbed flux is to be used in the perturbation calculations CALC keyword to specify that the perturbed homogenized and condensed cross sections are to be ex plicitly calculated In this case the perturbed flux is required LIN keyword to specify that the linear perturbation formulas are used In this case the perturbed flux is required This can be used for sensitivity coefficient calculations 3 18 The HST module The HST module is designed to manage a full reactor execution in DONJON using explicit DRAGON cal culations for each cell 89 This module can save in an
167. al fixed source SAJ1 similar to TYPE S external fixed source are taken into account ANGL to save the angular fluxes and adjoint on the FLUXUNK data structure THER see Section 3 7 1 maxthr see Section 3 7 1 IGE 174 Rev 12 Release 3 061 70 epsthr see Section 3 7 1 EXTE see Section 3 7 1 maxout see Section 3 7 1 epsout see Section 3 7 1 UNKT see Section 3 7 1 epsunk see Section 3 7 1 NOBA keyword used to specify that the flux rebalancing option is to be turned off in the thermal itera tion By default the flux rebalancing option is activated ACCE see Section 3 7 1 nlibre see Section 3 7 1 naccel see Section 3 7 1 3 8 2 Data input for module MCU Table 48 Structure descmcu EDIT iprint E N S K descleak descleak ER maxthr epsthr E maxout epsout libre naccel SCR maxscr ETAB ON OFF ITLM EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module The amount of output produced will vary substantially depending on the print level specified TYPE see Section 3 7 1 N see Section 3 7 1 S see Section 3 7 1 K see Section 3 7 1 B see Section 3 7 1 descleak see Section 3 7 2 THER see Section 3 7 1 IGE 174 Rev 12 Release 3 061 71 maxthr epsthr EXTE maxout epsout NOBA ACCE nlibre naccel SCR maxscr ETAB
168. alue has meaning only in the case of a cell without leakages see the structure descBC in Section 3 3 3 It is also possible to use an open geometry with VOID boundary conditions provided it is closed by the ASM module see Section 3 6 1 using the keywords NORM or ALSB IGE 174 Rev 12 Release 3 061 65 descleak THER maxthr epsthr EXTE maxout epsout UNKT epsunk OFF ACCE nlibre naccel EGPA CGPA congpa structure describing the general leakage parameters options see Section 3 7 2 keyword to specify that the control parameters for the thermal iterations are to be modified maximum number of thermal iterations The fixed default value is 2x ngroup 1 using scattering modified CP or 4x ngroup 1 using standard CP convergence criterion for the thermal iterations The fixed default value is 5 0 x 10 5 keyword to specify that the control parameters for the external iteration are to be modified maximum number of external iterations The fixed default value for a case with no leakage model is 2 x nf 1 where nf is the number of regions containing fuel The fixed default value for a case with a leakage model is 10 x n 1 convergence criterion for the external iterations The fixed default value is 5 0 x 10 5 keyword to specify that the flux current error tolerance in the outer iteration convergence criterion for flux current in the outer itera
169. an history based full reactor calculation is to be performed It is a stand alone structure that must be stored on a linked list or an XSM file It is only used hs HST module of DRAGON It can be used and modified by several modules of DONJON 5 IGE 174 Rev 12 Release 3 061 9 3 THE DRAGON MODULES The input to DRAGON has the form of a series of input data structures that are call successively during the execution These input data structures can be interspaced with calls to utility modules procedures and GANLIB structure and variables definitions Each input data structure contains an execution command a module and data instructions for the module In the following sub section we will describe the input data structures associated with each modules of DRAGON 3 1 The MAC module The MAC module is used to store the macroscopic cross sections associated with a mixture in a MACROLIB The MAC module can process the information in one of three different ways First it can read the cross sections directly from the input stream It can also read this information from a GOXS format binary sequential file P3 It should be noted that a number of GOXS files may be read successively by DRAGON and that it is possible to combine data from GOXS files with data taken from the input stream Finally the MACROLIB can also be created using information on MICROLIB EDITION data structure This module can also be used to transfer the macroscopic cros
170. artesian geometry keyword to specify the boundary conditions associated with the positive X surface in a Cartesian geometry keyword to specify the boundary conditions associated with the negative Y surface in a Cartesian geometry keyword to specify the boundary conditions associated with the positive Y surface in a Cartesian geometry keyword to specify the boundary conditions associated with the negative Z surface in a Cartesian geometry keyword to specify the boundary conditions associated with the positive Z surface in a Cartesian geometry keyword to specify the boundary conditions associated with the outer surface of a cylindrical or spherical geometry keyword to specify that the surface under consideration has zero reentrant angular flux keyword to specify that the surface under consideration has a reflective boundary condition For most tracking modules this implies white boundary conditions The main exceptions to this rule are e 1 Cartesian geometries analyzed using SYBILT e 2 D Cartesian geometries processed by EXCELT or NXT using the cyclic tracking tech nique In both cases mirror like rather than white boundary conditions are considered In DRAGON assemblies are never unfolded to take into account a boundary condition keyword to specify that the surface under consideration has a reflective boundary condition The main difference between REFL and SSYM is that the later option
171. as that used for the HEXT geometry starting at the bottom and finishing at the top plane in direction Z k 1 z e HEXCELZ geometries Ny Ir 1 x Iz The real and virtual mixtures are given in the following order 1 radially outward l 1 r for plane k 2 Ir for the mixture outside the annular regions but inside the hexagonal region on plane k 3 from surface Z to surface Z k 1 lz The meaning of the parameters presented in Table 23 follows MIX keyword to specify the real physical isotopic mixture number associated with each region in side the geometry When diagonal symmetries are considered only the mixture associated with regions inside the original geometry need to be specified Here n lt Nj IGE 174 Rev 12 Release 3 061 42 imix array of real physical mixture numbers associated with a region If imix 0 the corresponding volume is filled with void HMIX keyword to specify the virtual mixture number associated with each region inside the geometry When diagonal symmetries are considered only the mixture associated with regions inside the original geometry need to be specified Here n lt Nj ihmix array of virtual mixture numbers associated with each region This information is processed by the tracking module see Section 3 4 for use by the EDI module see Section 3 9 In the case where ihmix 0 the corresponding volume is not considered in the homogenization process
172. at the HELIOS algorithm will be used to normalize the collision probability matrices keyword to specify that a non linear multiplicative algorithm will be used to normalize the colli sion probability matrices 59 IGE 174 Rev 12 Release 3 061 62 ALLG keyword to specify that the contribution of a tracking line to the multigroup collision probabilities will be processed before the next tracking line is analyzed This means that for a multigroup problem the tracking file is read once The default option is to generate the collision probability matrices group by group implying multiple readings of the tracking file The major drawback of using the ALLG keyword is that the space requirement for the problem is N x N x G fora N region G groups problem while only a N x N array is required when this option is not activated 3 6 2 Data input for module EXCELL Table 41 Structure descXL EDIT iprint TRAK SUBG nsubg PNOR DIAG GELB HELI NONL NORM ALBS SKIP TISO nangl dens CORN pcorn SYMM isymm EDIT see Section 3 6 1 iprint see Section 3 6 1 NORM see Section 3 6 1 ALBS see Section 3 6 1 SKIP see Section 3 6 1 PNOR see Section 3 6 1 NONE see Section 3 6 1 DIAG see Section 3 6 1 GELB see Section 3 6 1 HELI see Section 3 6 1 NONL see Section 3 6 1 TRAK see Section 3 4 2 SUBG keyword to specify the number of groups in each subgroup for collision probability calculatio
173. ation is to be homogenized and condensed using a current recovered from a consistent or from a consistent heterogeneous model keyword to specify that a group condensation of the flux is to be performed array of increasing energy group limits that will be associated with each of the N condensed groups The final value of icond will automatically be set to ngroup while icond gt ngroup will be dropped from the condensation We must have N lt ngroup array of decreasing energy limits in eV that will be associated with each of the N condensed groups We must have Ng lt ngroup 1 Note that if an energy limit is located between two en ergy groups the condensation group will include this associated energy group In the case where two energy limits fall within the same energy group the lowest energy will be dropped Finally the maximum and minimum energy limits can be skipped since they will be taken automatically from the information available in the library keyword to specify that the condensation and homogenization procedure will be used to associate microscopic cross sections to the isotopes present in the homogenized regions The macroscopic cross sections and the diffusion coefficients are weighted by the multigroup flux appearing in the regions where the isotopes are present keyword similar to MICR except that the burnup chain are also saved on EDINAM when the SAVE keyword is present In addition one fission spectrum per fissile
174. ay giving the pre calculated probability for a neutron leaving a cell of type i to enter a cell of type j without crossing any other cell The constraint S 2 peinl i pijcel i j S j peinl j pijcel j 1 lt 1074 where S i and S j are the exterior surface areas of the cells of type i and j respectively must be satisfied Examples of geometry definitions for DRAGON can be found in Section 3 4 The tracking modules The tracking modules perform an analysis of the geometry including region volume and surface area calcula tions and generate the integration lines for a geometry that was previously defined in the GEO module These operations are carried out differently depending on the tracking algorithm considered Five different tracking modules are available in DRAGON 1 The JPMT module which is used to perform an interface current tracking inside homogeneous region 56160 2 The SYBILT module which is used for interface current tracking inside heterogeneous blocks 3 The EXCELT module performs the tracking over the complete geometry with isotropic or specular 09 surface current 4 The NXT module is a generalization of EXCELT to more complex geometry including assemblies of clusters in 2 D and 3 D It also performs the tracking over the complete geometry 5 The BIVACT module is used to perform a 2 D diffusion like tracking that may be required for homoge 61 niza
175. because additional routine not present in the original package were needed the PSPLOT package has been reprogrammed for DRAGON The POSTSCRIPT files generated by this module can be viewed by several utility programs such as Ghostview or sent to a printer compatible with this language The input specifications for this module are presented in Tables 65 and 66 Table 65 Structure PSP for valid EXCELT geometry PSGEO PSP PSGEO GEONAM FLUNAM descpsp Table 66 Structure PSP for valid NXT tracking data structure PSGEO PSP PSGEO FLUNAM descpsp PSGEO characterx12 name of the file that contains the graphical description in a POSTSCRIPT format This file must have a sequential ASCII format IGE 174 Rev 12 Release 3 061 91 GEONAM character 12 name of a read only GEOMETRY see Section 3 3 This option can be used only with geometries that can be processed using the EXCELT module TRKNAM character 12 name of an EXCELL type read only TRACKING see SectionB 4 This struc ture must have been created using the EXCELT EXCELL or NXT modules FLUNAM character 12 name of an optional read only FLUXUNK see SectionB 7 It is required only if a flux mapping plot is requested descpsp structure containing the input data to this module see Section 3 15 1 3 15 1 Data input for module PSP Table 67 Structure descpsp EDIT ipri
176. ble XMLIMP Table 83 Structure ITR FMT FLUX VOLTRK LIBNAM descitr XMLIMP FLUX character 12 name of the XML ASCII format file importance that will contain the TRIPOLI importances characterx12 name of the FLUXUNK data structure to process IGE 174 Rev 12 Release 3 061 103 VOLTRK characterx12 name of the TRACKING data structure to process LIBNAM character 12 name of MACROLIB MICROLIB data structure that contains the macro scopic cross sections see Sections T and 2 descitr structure containing the input data to this module see Section 3 21 1 3 21 1 Data input for module ITR Table 84 Structure descasm EDIT iprint D NONE icond g energy g 9 1 ERG COMP NONE MIX imixt i i 1 Nm REGI ireg i i 1 N TAKE MIX imixt i i 1 Nm REGI ireg i 1 N RIGINE orpg i i 1 3 ERE rep i j t 1 3 j 1 3 ESH nb i i 1 3 EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module NONE see Section 3 9 1 COND see Section 3 9 1 icond see Section 3 9 1 energy see Section 3 9 1 MERG see Section 3 9 1 TAKE see Section 3 9 1 COMP see Section 3 9 1 MIX see Section 3 9 1 REGI see Section 3 9 1 ireg see Section 3 9 1 imixt see Section 3 9 1 ORIGINE keyword used to define the absolute
177. burnup of an homogeneous cell that spends the first 1000 days in a reactor before being removed The depletion of the isotopes in this cell for an additional 1000 days outside of the core is also investigated Input data for test case TCWU08 x2m gt TEST CASE TCWWOS HOMOGENEOUS DEPLETION CASI iaea WLUP Library R EF None IGE 174 Rev 12 Release 3 061 hs Define variables Burnup paremeters a Power 600 0 kw kg for 0 0 to 1000 0 days 0 0 kw kg for 1000 0 to 2000 0 days b Burnup time interval Delt 10 days for 0 to 50 days 50 days for 50 to 500 days 100 days for 500 to 1000 days 1000 days for 1000 to 2000 days c Editing time Timec 0 0 50 0 500 0 1000 0 and 2000 0 days d Burnup control time variables Timei Timef Timei initial time Timef final time TotalTime Final time reached d Print variable Iprint 1 reduced print 3 full print REAL Power Delt Timec Timei Timef TotalTime 600 0 10 0 50 0 0 0 0 0 2000 0 INTEGER Iprint 1 PNE ERR Define STRUCTURES and MODULES used LINKED_LIST LIBRARY HOM TRACK PIJ FLUX BURNUP EDITION MODULE GEO SYBILT LIB SHI ASM FLU EVO EDI DELETE END Depletion data from file format WIMSD4 163 TotalTime Microscopic cross secti
178. ce of nangl 8 12 14 18 20 24 or 30 are allowed IGE 174 Rev 12 Release 3 061 50 dens densz SYMM isymm real value representing the approximate density of the integration lines in for 2 D Carte sian 3 D hexagonal geometries and for 3 D Cartesian geometries The choice of density along the plan perpendicular to each track direction depends on the geometry of the cell to be analyzed If there are zones of very small volume a high line density is essential This value will be readjusted by EXCELT In the case of cluster type geometries the default value of this parameter is 5 r where rm is the minimum radius of the pins or the minimum thickness of an annular ring in the geometry real value representing the density of the integration lines in em for 3 D hexagonal geome tries keyword to specify that the cluster geometry has a rotational symmetry integer value describing the rotational symmetry of the cluster geometry invariant under 27 15 rotation The fixed default of this parameter is 1 3 4 3 The NXT specific tracking data Table 32 Structure descnxt CORN SYM pcorn M isymm NOSY TISO TSEC 1 M EDI SMS GAUS CACA CACB LCMD TRAD TRAA dens densl2 NOTR NBSLIN nbslin LONG where
179. cell number b 8 orientation 8 8 5 e e 2 2 e 2 2 2 2 lee 6 lee 5 6 lee 6 lee 5 6 3 8 2 4 Figure 24 Geometry for test case TCWU02 IGE 174 Rev 12 Release 3 061 221 1 epmty cell 3 fuel cell 0 707297 cm 2 orientation 4 boundary cell orientation generating cell number G merged cell number iF Figure 25 Geometry for test case TCWUO3 IGE 174 Rev 12 Release 3 061 222 MODERATOR CALENDRIA Figure 26 Geometry of the CANDU 6 cell IGE 174 Rev 12 Release 3 061 Colored by Region 223 Figure 27 Geometry of 2 D CANDU 6 supercell with control rods 174 Rev 12 Release 3 061 APPENDICES 224 IGE 174 Rev 12 Release 3 061 225 Appendix A Contents of miscellaneous DRAGON files Directional fluxes and adjoints output files The DRAGON directional fluxes and adjoints file has the following format Fortran instructions to write directional flux and adjoint file 1000 1001 1002 R Ej H GAUD E D E F O D D IPU 1000 NGROUP NDIM NANGL NREG NFLUX IPU 1001 NAMFLX IF IF 1 NFLUX IPU 1002 WGHT IQUA IQUA 1 NANGL IPU 1002 MU IQUA IQUA 1 NANGL IPU 1002 ETA IQUA IQUA 1 NANGL G Pj El IPU 1002 VOLUME IR IR 1 NREG ROUP 1 NGROUP EAD IPU 10
180. considered during the self shielding process lgrmax last group number considered during the self shielding process By default 1 is set to the group closest to 4 0 eV for all the libraries except for those in the WIMSAECL and WIMSD4 format where this information is provided explicitly MXIT keyword to specify the maximum number of iterations used in the self shielding process imxit the maximum number of iterations The default is imxit 20 EPS keyword to specify the convergence criterion for the self shielding iteration valeps the convergence criterion for the self shielding iteration By default valeps 1 0 x 1074 IGE 174 Rev 12 Release 3 061 59 LJ keyword to activate the Livolant Jeanpierre normalization scheme that modifies the self shielded averaged neutron flux in heterogeneous geometries By default the Livolant Jeanpierre normal ization scheme is not activated NOLJ keyword to deactivate the Livolant Jeanpierre normalization scheme This is the default option GC keyword to activate the Goldstein Cohen approximation in cases where Goldstein Cohen param eters are stored on the microscopic cross section library These parameters are not available if the resonant isotopes are interpolated from a MATXS type library This is the default option NOGC keyword to deactivate the Goldstein Cohen approximation even if Goldstein Cohen parameters are stored on the microscopic cross section library NOTR keyword to deactivate
181. continued on next page IGE 174 Rev 12 Release 3 061 69 Structure descmoc continued from last page ANG THE L R EXT F UNK NOB T A ACCE AJCB ON OFF ADJ SAJO SAJ1 maxthr epsthr maxout epsout epsunk libre naccel EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module The amount of output produced will vary substantially depending on the print level specified EXAC keyword used to specify that exact exponential functions are to be used for neutron path atten uation By default approximate values for the exponential function derived from second order local polynomials are considered NBPN keyword used to specify the expansion order in Legendre polynomial for the flux used in the calculation nl the expansion order in Legendre polynomial for the flux used in the calculation By default n1 0 TYPE see Section 3 7 1 N see Section 3 7 1 S see Section 3 7 1 K see Section 3 7 1 B see Section 3 7 1 descleak see Section 3 7 2 DFLX to activate or deactivate the flux calculator By default DF LX is ON AJCB to activate or deactivate the adjoint calculator By default AJCB is OFF ON to turn the DFLX or AJCB option ON OFF to turn the DFLX or AJCB option OFF ADJ to select the adjoint calculation option SAJO similar to TYPE K eigenvalue calculation without extern
182. coolant density g cm RHOM keyword to specify moderator density used reference calculations dmoderef reference moderator density g cm XIR keyword to specify water purity D20 content used for reference and perturbed cases pmodref reference moderator purity fraction of D20 in water pmodper perturbed moderator purity fraction of D2O in water Other reference and perturbed values are recovered directly from the concentrations and isotope densities stored in the different CPO 3 14 The module The MRG module is used to pre homogenize a geometry after it has been tracked with the EXCELT module This module can also be used for the same purpose for NXT tracked geometries 50182 In addition NXT based tracking files can also be partition using this module The general specifications for this module are presented in Tables 60 to 62 Table 60 Structure for merging EXCELT tracks TRKENEW TFILENEW MRG TRKEOLD TFILEOLD descmrg Table 61 Structure for merging NXT tracks TRKNNEW MRG TRKNOLD descmrg Table 62 Structure for partitioning NXT tracking files TFILEMOD TFILEEXT MRG TRKNOLD TFILEOLD descextr IGE 174 Rev 12 Release 3 061 89 TRKENEW characterx12 name of the new TRACKING data structure that will contain region volume and surface area vectors in addition to region identification pointers and other tracking information after the pre homogenizati
183. decontamination option keyword used to activate the decontamination option 3 7 2 Leakage model specification structure The descleak structure is described in Table IGE 174 Rev 12 Release 3 061 66 Table 44 Structure descleak LKRD PO P1 BO B1 BOTR SIGS PNL ALBS HETE G R z x Y BUCK valb2 G valb2 R valbr2 Z valbz2 KEFF valk IDEM B2 DB2 X valbx2 Y valby2 LKRD keyword used to specify that the leakage coefficients are recovered from the data structure FLU NAM PO keyword used to specify that the leakage coefficients are calculated using a model Pl keyword used to specify that the leakage coefficients are calculated using a P model BO keyword used to specify that the leakage coefficients are calculated using a Bo model This is the default value when a buckling calculation is performed B Bl keyword used to specify that the leakage coefficients are calculated using a model BOTR keyword used to specify that the leakage coefficients are calculated using a Bo model with trans port correction SIGS keyword used to specify that an homogeneous buckling correction is to be applied on the diffu sion cross section X PNL keyword used to specify that the elements of the collision probability SKIP or the scattering modified collision probability matrices are multiplied by the adequate non leakage homogeneous buckl
184. e edited over specified regions or mixtures keyword to specify that a complete homogenization is to take place keyword to specify that the homogenization region will be selected by comparing a calculation geometry with an homogenization geometry Only a reduced number of EXCELT geometries can now be processed using this option keyword to specify that the homogenization region will be selected using the information pro vided by the HMIX option in GEO module see Section 8 3 5 In this case all the regions associated with a virtual homogenization mixture will be homogenized If the virtual homoge nization mixtures were not defined in the geometry the real mixtures are used instead see MIX keyword in SectionB 3 5 This option is valid only for NXT based TRACKING data structure this option uses the information stored on the reference TRKNAM data structure keyword to specify that one homogenization region will be associated with each cell in an as sembly geometry Only geometries analyzed using the NXT tracking module can be processed using this option this option uses the information stored on the reference TRKNAM data struc ture In the case where the geometry is not built with the CELL option see SectionB 3 5 this option is identical to the COMP option as if the assembly was composed of a single cell Homog enization region identification is printed on the output file on a 3 D Cartesian grid that takes into acc
185. e method of characteristics MOC Both procedures rely on the same basic approximation namely the sources fission scattering or external inside each region over which the integrated flux is evaluated is assumed flat In addition they are obtained by integrating the transport equation numerically over the neutron directions and space As a result DRAGON has been written in such a way that the various numerical quadrature options found in the code the so called tracking procedures are all coherent and the information they generate is compatible with both CPM and MOC The execution of DRAGON is managed via the GAN generalized driver The code is modular and can be interfaced easily with other production codes including the finite reactor code DONJON 174 Rev 12 Release 3 061 Contents PPP ii A a a iii a a oh iv fais eich Binge das BS imo Oe ee oe ee viii og Aa de ee eh ee Be ix avv ET 1 vao 3 2 1 IData orpaniZatiOn 5 32805 572 20x 3 S Q QE a g QO QS x 3 2 2 DRAGON Data Structure and Module Declarationd 4 2 3 The DRAGON Modules 5 2 4 The DRAGON Data Structure 7 3 THE DRAGON MODULES 9 3 1 The MAC module ox oe
186. e mixture associated with each region in the geometry the descPP structure is also used to provide information on the sub geometries required in this geometry An optional procedure can also be used to groups together regions so as to reduce the number of unknowns in the flux calculation In this way only the merged regions contribute to the cost of the calculation However the following points must be considered 1 All the cells belonging to the same merged region must have the same dimensions and contain the same mixtures 2 The grouping procedure is based on the approximation that all the regions belonging to the same merged region share the same flux 3 The merging can also take into account region orientation by a rotation and or transposition before they are merged This procedure facilitates the merging of regions when a DIAG or SYMI used The contents of the descPP structure is presented in Table Table 23 Structure descPP IX imix i i 1 REPE MIX ihmix i i 1 ELL HCELL i i 1 N imerge i i 1 Nz URN HTURN i i 1 N USTER NAMPIN i i 1 Np E boundary condition is IGE 174 Rev 12 Release 3 061 37 Here N is the number of pin types in the cluster In addition to the real physical mixture imix present in a given region of space and specified by the keyword MIX a virtual mixture ihmix can also b
187. e provided using the keyword HMIX This mixture can be used to identify the regions that will be combined in the EDI module to create homogenized region ihmix see Section 3 9 is computed in a way similar to Lzones namely e SPHERE geometry Ir The real and virtual mixtures given in the following order 1 radially outward l 1 Ir e TUBE geometry Ir x Ix x ly The real and virtual mixtures are given in the following order 1 radially outward l 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region i j 2 from surface X to surface X 1 1 lx for each 7 3 from surface Y to surface Y j 1 ly e TUBEX geometry N Ir x ly x Iz x The real and virtual mixtures are given in the following order 1 radially outward l 1 r and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region j 1 2 from surface Y to surface Y 7 1 ly for each k and 2 3 from surface Z to surface Z k 1 lz for each i 4 from surface X to surface X i 1 Ix e TUBEY geometry Nz Ir x Iz x Ix x ly The real and virtual mixtures are given in the following order 1 radially outward l 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region k 1 j 2 from surface Z to sur
188. e treatment of double heterogene ity keyword to specify the use of a linearly anisotropic angular flux approximation between the micro volumes making up the micro structures in a case involving the treatment of double heterogeneity In all cases an approximation of isotropic angular flux is used on the interface between the micro structures and the macro volumes This is the default option see Section 3 4 4 see Section 3 4 4 3 4 6 The BIVACT specific tracking data Note that this tracking option can only be used indirectly through the SPH homogenization option see Sec tion 3 9 1 IGE 174 Rev 12 Release 3 061 56 Table 35 Structure descbivac MAXR maxreg PRIM DUAL ielem icol isplh where MAXR ksee Section 3 4 4 maxreg see Section 3 4 4 PRIM keyword to specify a primal finite element classical discretization DUAL keyword to specify a mixed dual finite element discretization ielem order of the finite element representation The values allowed for Cartesian geometries are ielem 1 for linear polynomials ielem 2 for parabolic polynomials ielem 3 for cubic polynomials and ielem 4 for quartic polynomials By default ielem 1 For hexagonal geometries only ielem 1 is allowed icol type of quadrature used to integrate the mass matrices The values allowed are icol 1 for analytical integration icol 2 for Gauss Lobatto quadrature and icol 3 for Gauss Legendre quadrature By default
189. ection bucklings IGE 174 Rev 12 Release 3 061 67 Y BUCK valb2 valbr2 valbz2 valbx2 valby2 KEFF valk IDEM B2 DB2 keyword used to specify that a Y direction buckling search will be considered with imposed buckling in the X and Z directions keyword used to specify the initial for a buckling eigenvalue problem or fixed for a effective multiplication constant eigenvalue problem buckling keyword used to specify that the bucklings in the X Y and Z directions are to be initialized to valb2 3 floating default keyword used to specify that the buckling in the X and Y directions are to be initialized to valbr2 2 keyword used to specify that the buckling in the 2 direction is to be initialized to valbz2 keyword used to specify that the buckling in the X direction is to be initialized to valbx2 keyword used to specify that the buckling in the Y direction is to be initialized to valby2 value of the fixed or initial total buckling in cm 2 The floating default value is valb2 valbx2 valby2 valbz2 value of the fixed or initial radial buckling in cm The floating default value is valbr2 valbx2 valby2 value of the fixed or initial Z direction buckling in cm 2 By default valbz2 0 0 cm 2 If valb2 is specified then valbz2 valb2 3 value of the fixed or initial X direction buckling in cm 2 By default valbx2 0 0 cm 2 If valb2 is specified then valbx2 valb2 3 If valbr2 is specified t
190. ector cross sections are printed iprint gt 4 the condensed and homogenized scattering cross sections are printed keyword to specify the type of homogenization to be considered for the anisotropic component of the scattering cross section keyword to specify the flux volume homogenization for the anisotropic component of the scat tering cross section This is the default option used when no leakage model is considered keyword to specify the current volume homogenization for the anisotropic component of the scattering cross section This is the default option used when an homogeneous leakage model is considered keyword to specify a coherent directional averaged current volume homogenization for the aniso tropic component of the scattering cross section 9l keyword to specify a coherent directional current volume homogenization for the anisotropic component of the scattering cross section This is the default option used when an heterogeneous leakage model is considered keyword to specify that the reaction rates and the condensed and or homogenized cross sections are corrected so as to eliminate up scattering This option is useful for reactor analysis codes that cannot take into account such cross sections keyword to deactivate the effect of previous use of a preceding keyword keyword to specify that the neutron flux to be edited will be homogenized over a various number of regions keyword to specify that the neutron flux is to b
191. ed adjoints computation key word to specify that the fission neutron production cross section u gt will be considered for generalized adjoints computation keyword to specify that the fission cross section will be considered for generalized adjoints com putation keyword to specify that the scattering cross section will be considered for generalized adjoints computation IGE 174 Rev 12 Release 3 061 95 3 17 The PER module The PER module is used to perform generalized perturbation theory calculations in DRAGON GE The input specifications for this module are presented in Table Table 70 Structure PER EDINAM PER EDINAM LIBNAM TRKNAM FLUNAM LIBNAP FLUNAP descper EDINAM characterx12 name of the EDITION data structure containing the perturbed homogenized and condensed cross sections EDINAM must appears on the RHS after being computed with SAD for the reference state LIBNAM characterx12 name of MACROLIB or MICROLIB data structure that contains the macro scopic cross sections see Sections T and 2 TRKNAM character 12 name of the TRACKING data structure see Section 3 4 FLUXNAM character 12 name of the FLUXUNK data structure containing the reference flux see Sec tion 3 16 LIBNAP character 12 name of the MACROLIB or MICROLIB data structure that contains the per turbed macroscopic cross sections see Sections 3 1 and 3 2 FLUXNAP character 12 name of the FLUXUNK dat
192. ed for self shielding calculations TRKFIL characterx12 name of the sequential binary tracking associated with the TRKNAM TRACK ING data structure This file is required and only if it was produced by the tracking module that generated TRKNAM see Section 3 4 descshi structure describing the self shielding options Each time the SHI module is called the MICROLIB data structure in such a way that the information provided in the descshi input structure is saved The next time this module is called these values will be extracted from the MICROLIB and used as floating defaults 3 5 1 Data input for module SHI Table 37 Structure descshi EDIT iprint RMIN lermin GRMAX Igrmax XIT imxit 5 valeps LJ NOTR EVE level PIJ where EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module The amount of output produced by this tracking module will vary substantially depending on the print level specified GRMIN keyword to specify the minimum group number considered during the self shielding process lgrmin first group number considered during the self shielding process By default Igrmin is set to 1 for all the libraries except for those in the WIMSAECL and WIMSD4 format where this information is provided explicitly in the library GRMAX keyword to specify the maximum group number
193. efault there is a pause after all the points associated with an external surface and all the lines associated with a region are drawn region number for which line illustration will be provided keyword to specify the line direction to draw integer value to identify the track direction to draw In the case where idir 0 all the directions will be drawn A value of idir 0 for 2 D geometry is generally acceptable However for 3 D geometry the number of lines generated is such that the figure becomes a mess and it is generally more convenient to draw the lines direction per direction IGE 174 Rev 12 Release 3 061 101 PLAN iplan DIST dist 3 20 keyword to specify which of the three planes normal to the specified direction in 3 D will be considered for drawing This plane is defined by the axes U V Used only for 3 D geometries integer value to identify which of the three planes normal to the specified direction in 3 D will be considered for drawing The only values permitted are 0 1 2 or 3 When a value of 0 is specified default all three planes will be drawn Used only for 3 D geometries keyword to specify that all the lines in the V axis associated with a position on the U axis will be drawn Used only for 3 D geometries keyword to specify that all the lines in the U axis associated with a position on the V axis will be drawn Used only for 3 D geometries integer value to identify the position on the
194. en in cases where it is potentially depleting Note that the mixtures or nuclides keep their capability to produce energy COMB keyword to specify that this mixture represents a combination of previously defined mixtures mati number associated with a previously defined mixture In order to insert some void in a mixture use 0 If the mixture is not already defined is is replaced by void relvol relative volume occupied by mixture m mati in matnum Two cases can be considered 1 The density p of each mixture mati is provided along with the weight percent for each isotopes J In this case the density px and volume Vk of the final mixture become Ve X Vm 1 The weight percent of isotope J for the combined mixture is then given by m Dm Wim J Wi id Dx Vk 2 The explicit concentration of each isotope J in each material m is provided and VinNm J Ni k J Vi It is forbidden to combine two mixtures with different isotopic content description Note that in the structure descmix1 one only needs to describe the isotopes initially present in each mixture DRAGON will then automatically associate with each depleting mixture the additional isotopes required by the available burnup chain Moreover the microscopic cross section library associated with these new isotopes will be the same as that of their parent isotope For example suppose that mixture 1 contains isotope U235 which is to be read
195. en the isotope on both libraries is assumed If MICOLD and descmix3 are present only the mixture on the library file specified by descmix3 are updated using information from the MICOLD If MICOLD is absent and descmix3 is present only the mixture on MICLIB specified by descmix3 are updated descmix3 input structure describing perturbations to the isotopic and physical properties of a given mixture see Section 3 2 7 3 2 3 Instruction for updating a MICROLIB using a BURNUP in LIB The general format of desclibbrn is of the form Table 11 Structure desclibbrn EDIT iprint URN iburn tburn desemix2 with EDIT keyword used to modify the print level iprint IGE 174 Rev 12 Release 3 061 20 iprint index used to control the printing in this module It must be set to 0 if no printing on the output file is required while values gt 0 will increase in steps the amount of information transferred to the output file BURN keyword to specify that the mixture density on MICLIB are to be updated using information taken from BRNOLD If descmix2 is absent a direct one to one correspondence between the isotope on BRNOLD and MICLIB is assumed If descmix2 is present only the mixture specified by descmix2 are updated using information from BRNOLD iburn burnup step selected on BRNOLD This step must be present on the burnup file tburn burnup time in days on BRNOLD This time step must be presen
196. eometry with embedded cylinders oriented along the Z axis keyword to specify a single 2 D hexagonal cell geometry or a 2 D assembly of hexagonal cells keyword to specify a single 2 D hexagonal cell geometry having a triangular mesh This option is only supported by NXT tracking module see Section 3 4 keyword to specify a single 2 D hexagonal cell geometry containing concentric annular regions This option is not supported by the tracking module see Section 3 4 keyword to specify a single Z directed 3 D hexagonal cell geometry or a 3 D assembly of Z directed hexagonal cells keyword to specify a single Z directed 3 D hexagonal cell geometry having a triangular mesh plane X This option is only supported by the tracking module see Section 3 4 keyword to specify a single Z directed 3 D hexagonal cell geometry containing concentric Z directed cylinders This option is not supported by the NXT tracking module see Section 3 4 keyword to specify a do it yourself type geometry number of subdivisions along the X axis before mesh splitting number of subdivisions along the Y axis before mesh splitting number of subdivisions along the Z axis before mesh splitting number of cylinders or spherical shells before mesh splitting number of hexagon in an axial plane including the virtual hexagon number of concentric hexagons in a or HEXTZ cell see Figure I This
197. epsthr see Section 3 7 1 EXTE see Section 3 7 1 maxout see Section 3 7 1 epsout see Section 3 7 1 UNKT see Section 3 7 1 epsunk see Section 3 7 1 REBA see Section 3 7 1 IGE 174 Rev 12 Release 3 061 94 OFF ACCE nlibre naccel EGPA epsgps CGPA congpa SAVE NCOR COND NONE icond energy MERG NONE ALL TOTAL TRANC NUSIFG NFTOT SCAT see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 see Section 3 7 1 The generalized adjoint sources are saved on EDINAM The correction matrix associated with the high order components of the flux is not computed see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 see Section 3 9 1 keyword to specify the homogenized and condensed cross sections to take into account for the generalized adjoints computation keyword to specify that no cross section will be considered for generalized adjoints computation keyword to specify that all the cross sections available will be considered for generalized adjoints computation keyword to specify that the total cross section will be considered for generalized adjoints com putation keyword to specify that the transport correction cross section will be considered for generaliz
198. ered in the HISTORY data structure nbun the number of bundles per channel for the reactor model If nbun is different from the value already defined on the HISTORY or MAP data structures the execution is aborted bunl bundle length in cm This information is required to compute inital fuel weight CHANNELS keyword used to specify the number of fuel channels for the reactor model considered in the HISTORY data structure ncha the number of fuel channels for the reactor model If ncha is different from the value already defined on the HISTORY or MAP data structures the execution is aborted The hstbrn serves a unique purpose mainly to extract from the HISTORY file the information required to process a burnup evaluation in DRAGON using the EVO module The information must be stored inside CLE 2000 variables The general form of this output structure is presented in Table 77 Table 77 Structure hstbrn BURN period power BURN keyword to indicate that burnup information follows period the burnup period in days that will be transferred to a real CLE 2000 variable power the power density in kW kg that will be transferred to a real CLE 2000 variable The hstpar is used for two purposes IGE 174 Rev 12 Release 3 061 99 1 to define the names of the local and global parameters that are required for the calculations as well as to initialize these parameters 2 to extract from a HISTORY data structure the values
199. es presented in Section 3 3 lets us consider a few examples that can be treated by DRAGON e 1 Slab geometry see Figure 12 This geometry can be analyzed using the JPMT and SYBILT tracking modules IGE 174 Rev 12 Release 3 061 PLATE GEO CARID 6 VOID X ALBE 1 2 MESHX 0 0 0 1 0 3 SPLITX 2 2 MIX 1 2 29 0 2 3 be ano onn e 2 Cartesian geometry containing micro structures see figure Figure 13 This geometry can be analyzed only using SYBILT tracking modules CARNSG GEO CAR2D 3 3 X DIAG X REFL Y SYME Y DIAG CELL C1 C1 C2 C2 C3 BIHET SPHE 2 2 3 3 0 0 0 1 00 2 0 3 0 0 0 2 0 4 0 5 45110 40 0313 0 2 0 1 l 2 1 2 amp C1 GEO CAR2D 1 1 MESHX 0 0 1 45 MESHY 0 0 1 45 MIX 4 C2 GEO Cl MIX 1 C3 GEO CARCEL 2 MESHX 0 0 1 45 MESHY 0 0 1 45 RADIUS 0 0 0 6 0 7 MIX 5 2 T gt e Cylindrical and Cartesian cluster geometry see Figure 14 The first annular geometry namely ANNP IN can be analyzed using both JPMT and EXCELT 106 tracking modules since the pins in the annular clusters are all located between annular regions For the geometry ANNSPIN this is no longer the case and only the EXCELT tracking module can be used Similarly the CARPIN geometry can be analyzed using both the JPMT EXCELT and NXT BELT geomet
200. f cells keyword to specify that the linearly anisotropic components of the current at cell inter faces are used This hypothesis implies 12 currents per cell in a cartesian geometry and 18 currents per cell for a hexagonal geometry Linearly anisotropic reflection conditions are used Only used for 2 D assemblies of cells keyword to specify the use of an Askew cylinderization of the cells that preserves both the exter nal surface and the material balance of the external crown by a modification of its concentration By default a Wigner cylinderization of the cell is used that preserves the volume of the external crown Note that an assembly containing a number of rectangular cells having unequal volumes requires Askew cylinderization This option can only be used if the ROTH or ROT options are also activated Only used for 2 D assemblies of cells keyword to specify that all the integration lines are to be printed This option should be used with care because it can generate a rather large amount of output Only used for 2 D assemblies of cells keyword to specify that square cells are to be treated as if they were rectangular cells with the inherent loss in performance that this entails This option is of purely academic interest keyword to specify the initial number of basis point for the numerical integration of each micro structure in cases involving double heterogeneity IGE 174 Rev 12 Release 3 061 54 iquab the numbe
201. face Z k 1 12 for each 2 and 7 3 from surface X to surface X i 1 Ix for each 7 4 from surface Y to surface Y J 1 ly 174 Rev 12 Release 3 061 38 e TUBEZ geometry N Ir x Ix x ly x Iz The real and virtual mixtures are given in the following order 1 radially outward l 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region i 7 2 from surface X to surface X 1 1 Ix for each 7 and 3 from surface Y to surface Y 7 1 ly for each k 4 from surface Z to surface Z k 1 lz e CARID geometry lx The real and virtual mixtures then given in the following order 1 from surface X to surface X i 1 lx e CAR2D geometry without diagonal symmetry N lx x ly The real and virtual mixtures or cells are then given in the following order 1 from surface X to surface X i 1 lx for each 7 2 from surface Y to surface Y 7 1 ly with diagonal symmetry X and Y N Ix x Ix 1 2 The real and virtual mixtures or cells are then given in the following order 1 from surface X to surface X 1 j Ix for each 7 2 from surface Y to surface Y j 1 ly with diagonal symmetry X and MS Ix x Ix 1 2 The real and virtual mixtures or cells are then given in the following order 1 from surface X to surface X 1 1 j for each
202. factors in such a way as to respect a specified transport transport or transport diffusion equivalence criteria The input specifications for this structure are presented in Ta ble Table 51 Structure descsph SELE GEO MACGEO OFF MTRK SPRD SPHNAM HOMO ALBS EXCELT desctrack descexcel NXT desctrack desenxt SYBILT desctrack descsybil JPMT desctrack descjpm BIVACT desctrack descbivac SELE keyword to specify the use of Selengut normalization In all cases where this option is used it is necessary to define the geometry with VOID external boundary conditions see Section 3 3 3 and to close the region for the collision probability calculations using the ALBS option see Section 3 6 1 MGEO keyword to specify the macro geometry to be used In some special cases where 2 D Cartesian assemblies are considered a macro geometry named SPHSGEO can be automatically constructed by homogenizing the sub geometries in a geometry However for most problems this is not the case and the macro geometry should be specified explicitly MACGEO characterx12 name of the macro geometry to use This name should be identical to SPH GEO MTRK keyword to specify that the macro TRACKING SPHTRK and tracking file SPHLINE provided will be used for homogenization OFF keyword to specify the SPH factors are all set to 1 0 meaning no correction
203. ffectively used by DRAGON will be the maximum between nmixt and the maximum mixture number defined on MACLIB NIFI keyword used to specify the maximum number of fissile spectrum associated with each mixture Each fission spectrum generally represents a fissile isotope This information is required only if MACLIB is created and the cross sections are taken from the input data stream nifiss the maximum number of fissile spectrum per mixture By default nifiss 1 ANIS keyword used to specify the maximum level of anisotropy permitted in the scattering cross sec tions This information is required only if MACLIB is created and the cross sections are taken directly from the input data stream naniso number of Legendre orders for the representation of the scattering cross sections By default naniso 1 corresponding to the use of Po isotropic scattering cross sections A value of naniso 2 indicates that linearly anisotropic scattering cross sections will be provided as input data 3 1 2 The descmaci input structure for The descmaci input structure takes the form IGE 174 Rev 12 Release 3 061 11 with NGRO ngroup CTRA OFF ON APOL WIMS igroup NALBP nalbp ALBP Table 4 Structure descmaci NGRO ngroup CTRA OFF APOL WIMS igroup NALBP nalbp ALBP albedp i i 1 nalbp IRIT GOXSWN NER energy g g 1 ngroup 1 ADD READ imat i i 1 nmi
204. for each k 3 from surface Z to surface Z k 1 12 e CARCELX geometry Ir 1 x ly x lz x lx The real and virtual mixtures are given in the following order IGE 174 Rev 12 Release 3 061 40 1 92 N radially outward l 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region j k 1 7 1 for the mixture outside the annular regions but inside Cartesian region 7 k 1 from surface Y to surface Y j 1 for each k and i from surface Z to surface Z k 1 lz for each i from surface X to surface X i 1 Ix e CARCELY geometry N lr 1 x Iz x lx x ly The real and virtual mixtures are given in the following order 1 N radially outward J 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersect Cartesian region k i 7 7 1 for the mixture outside the annular regions but inside Cartesian region k i j from surface Z to surface Z k 1 lt for each i and 7 from surface X to surface X i 1 Ix for each 7 from surface Y to surface Y j 1 ly e CARCELZ geometries N Ir 1 x lx x ly x Iz The real and virtual mixtures are given in the following order 1 N radially outward l 1 Ir and such that imix ihmix is arbitrary not used if radial region does not intersec
205. for producing energy Examples of reactions follow IGE 174 Rev 12 Release 3 061 21 NG a radiative capture reaction takes place either for production of this isotope its depletion or for producing energy N2N represents the reaction in 4 47 X N3N represents the reaction in 4X 2 3in 427 X N4N represents the reaction NP represents the reaction in X gt l p 1 Y NA represents the reaction in 4 X 31 He 4 X SY NFTOT a fission reaction takes place energy energy in MeV recoverable per neutron induced reaction If the energy production associated with radiative captures is not provided explicitly it should be included in the energy released by fission By default energy 0 0 MeV STABLE non depleting isotope Such an isotope may produces energy by neutron induced reactions such as radiative capture FROM indicates that this isotope is produced from decay or neutron induced reactions yield production yield for fission expressed in 96 or for other reaction given in absolute value NAMPAR characterx12 name ofthe parent isotope or isomer that appears in the cross section library ENDCHAIN keyword to specify the end of the depletion chain 3 2 5 Format for descmix1 The structure descmix1 is used to describe the isotopic composition and the physical properties such as the temperature and density of a mixture Table 13 Structure descmix1 MIX matnum temp denmix
206. g fract i j j 1 nmistr mixgr i j k 1 ns j j 1 nmistr i 1 nmilg POURCE pcinl i i 1 Ip PROCEL pijcelGi j j 1 1p i 1 1p The parameters use in Table 24 have the following meaning BIHET TUBE SPHE nmistr nmilg ns TS milie mixdil fract mixgr POURCE keyword to specify that a sub geometry made up of spherical or cylindrical micro structures is to be inserted into the current geometry Each micro structure can be composed of many micro volumes keyword to specify that the micro structures are cylinders keyword to specify that the micro structures are spheres number of micro structure types in the region Each type of micro structure is characterized by its dimension and may have distinct volumetric concentrations in each of the macro geometry volumes All the micro structures of a given type have the same nuclear properties in a given macro volume The micro structures of a given type may have different nuclear properties within different macro volumes number of micro structures regions array giving the number of sub regions tubes or spherical shells in the micro structures Each type of micro structures may contain a different number of micro volumes array giving the radius of the tubes or spherical shells making up the micro structures For each type of micro structure i the initial radius must be rs 1 i 0 0 array giving the comp
207. geometry is provided by the GEO module see Section 3 3 IGE 174 Rev 12 Release 3 061 6 NXT SYBILT JPMT BIVACT SHI ASM FLU OCC MCU INFO MRG PSP SAD EXCELT EXCELL generates or modifies a geometry see Section 3 3 tracks the geometry using the standard EXCELL procedure for 2 D and 3 D assemblies of mixed cartesian annular or hexagonal annular cells as well as isolated 2 D cells containing CANDU type clusters see Section 3 4 2 tracks the geometry using the NXT procedure for 2 D and 3 D assemblies of cells containing CANDU type clusters see Section 3 4 3 tracks the geometry using the interface current technique see Section 3 4 4 tracks the geometry using the J technique see Section 3 4 5 tracks the geometry using a diffusion type algorithm see Section 3 4 6 This module can only be called indirectly as a sub module of EDI performs resonance self shielding calculations see Section 3 5 generates multigroup response or collision probability matrices see Section 3 6 1 based on tracking information combines the EXCELT tracking module and the assembly module ASM thereby avoiding the generation of a binary tracking file see Section 3 6 2 solves the transport equation for the flux using the multigroup response or collision probability matrices see Section 3 7 solves the transport equation for the flu
208. h the SPHTRK data structure structure containing the input data to this module see Section 3 9 1 3 9 1 Data input for module REG MIX MIX POwW P1w COND NONI 1501 FLIB ISO1 ERG COMP GEO HMIX CEL NONE TAKE ireg i i 1 N Table 50 Structure descedi EDIT iprint 1SCAT FLUX CURRENT COHERENT DIRECTION I ireg i i 1 N mixt i i 1 Nm imixt i i 1 Nm E icond g energy g g 1 No ALL NONE nis HISO i i 1 nis r ALL NONE ACTI 1501 SAVE ON PER NONE imixa i i 1 Nm DIRN idirn STAT ALL NBAL EDIT iprint RATE FLUX DELS REFE idiro SPH descsph keyword used to modify the print level iprint index used to control the printing of this module The iprint parameter is important for adjusting the amount of data that is printed by this calculation step IGE 174 Rev 12 Release 3 061 73 15 FLUX CURRENT COHERENT DIRECTION UPS NONI GI TAK Gl COMP Q HMIX iprint 0 means no output iprint gt 1 the average and integrated flux are printed floating default iprint gt 2 the reaction rates are printed iprint gt 3 the condensed and homogenized v
209. haracteristics A default value of 1 represents isotropic calculations while a value of 2 corresponds to linearly anisotropic collision probability For the P IJK option a value of 2 is required see Section 3 6 IGE 174 Rev 12 Release 3 061 48 RENO keyword to specify the use of the automatic procedure for integration lines normalization to the fine mesh volumes This normalization procedure ensures neutron balance for each fine mesh zone It is the default option for transport based tracking modules not valid for the BIVACT tracking module NORE keyword to specify that automatic normalization of the integration lines should be deactivated RENM keyword to specify that the automatic normalization procedure for integration lines will be ap plied to the merged volumes This normalization procedure ensures neutron balance for each merged zone This option is only valid when the EXCELT module is called REND keyword to specify that the automatic normalization procedure for integration lines will be ap plied to the merged volumes for each tracking direction This normalization procedure ensures neutron balance on the fine mesh for each direction This option is only valid when the NXT module is called 3 4 2 The EXCELT specific tracking data Table 31 Structure descexcel MAXR maxreg PISO PSPC CUT pcut GAUS LCMD CACA npol TRAK CORN pcorn TISO EQW G
210. hat the cell is never unfolded to take into account a ALBE boundary condition geometric albedo corresponding to the boundary condition ALBE albedo gt 0 0 index of a physical albedo corresponding to the boundary condition ALBE The numerical values of the physical albedo are supplied by the module see SectionB 1 keyword to specify the boundary conditions associated with the outer surface of an hexagonal geometry keyword to specify an hexagonal symmetry of twelfth of an assembly see Figure 2 This option is not yet supported by the NXT tracking module see Section 3 4 keyword to specify an hexagonal symmetry of one sixth of an assembly of type A see Figure This option is not yet supported by the tracking module see Section 3 4 keyword to specify an hexagonal symmetry of one sixth of an assembly of type see Figure 3 This option is not yet supported by the NXT tracking module see Section 3 4 keyword to specify an hexagonal symmetry of one quarter of an assembly see Figure This option is not yet supported by the NXT tracking module see Section 3 4 keyword to specify a rotation symmetry of one third of an assembly see Figure 4 This option is not yet supported by the NXT tracking module see SectionB 4 keyword to specify a rotation symmetry of a half assembly see Figure 4 This option is not yet supported by the NXT tracking module see Section 3 4 IGE 174 Rev 12
211. he geometry type of GEONAM see SectionB 3 1 descgent structure describing the characteristics of a geometry see Section 3 3 2 3 3 1 Geometry types The structure descgtyp presented Table 19 is used to define the type of geometry that will be considered Table 19 Structure descgtyp VIRTUAL HOMOGE SPHERE Ir TUBE Ir Ix ly TUBEX Ir Ix Ix ly Iz TUBEY Ir ly Ix ly Iz TUBEZ Ir Iz Ix ly Iz CARID Ix CAR2D Ix ly CARCEL Ir Ix ly CAR3D Ix ly Iz CARCELX Ir Ix Ix ly Iz CARCELY Ir ly Ix ly Iz RCELZ Ir Iz Ix ly Iz EX EXCEL EXT EXCE ROUP Ip H H H H H G where VIRTUAL keyword to specify a virtual geometry This type of geometry is used to complete an assembly that has irregular boundaries HOMOGE keyword to specify a infinite homogeneous geometry SPHERE keyword to specify a spherical geometry concentric spheres This option is only supported by the SYBILT tracking module see Section 3 4 TUBE keyword to specify a 2 D cylindrical infinite tubes or cylinders geometry This geometry can contain an imbedded X Y Cartesian mesh keyword to specify 3 D cylindrical along the X axis geometry This geometry can contain imbedded X Y Z Cartesian mesh This option is only supported for cluster sub geometries in
212. hen valbx2 valbr2 2 value of the fixed or initial Y direction buckling in cm By default valby2 0 0 cm 2 If valb2 is specified then valby2 valb2 3 If valbr2 is specified then valby2 valbr2 2 keyword used to specify the fixed for a buckling eigenvalue problem effective multiplication constant value of the fixed effective multiplication constant The fixed default value is valk 1 0 keyword used to specify that the initial for a buckling eigenvalue problem or fixed for a ef fective multiplication constant eigenvalue problem leakage is to be read from the data structure FLUNAM keyword used to specify that only the buckling is to be read from the data structure FLUNAM This is the default value keyword used to specify that the initial buckling and diffusion coefficients are to be read from the data structure FLUNAM 3 8 The and MCU modules The MOCC and MCU modules can be used respectively to solve the transport equation using the method of cyclic characteristics In the case of the MOCC module specular boundary conditions in 2 D geometries are considered cyclic track 6223 2 SA 6466 ing required The MCU module can be used for 3 D geometries with isotropic boundary conditions The calling specifications are presented in Tables 45 and 46 IGE 174 Rev 12 Release 3 061 68 Table 45 Structure MOCC FLUNAM MOCC FLUNAM LIBNAM TRKNAM TRKFIL descmoc Table 46 Struc
213. icol 2 The analytical integration corresponds to classical finite elements the Gauss Lobatto quadrature corresponds to a variational or nodal type collocation and the Gauss Legendre quadrature corresponds to superconvergent finite elements isplh type of hexagonal mesh splitting This data valid only for 2 D hexagonal geometries The values allowed are isplh 1 for full hexagon isplh 2 for for splitting each hexagon into 6 triangles isplh 3 for splitting each hexagon into 24 triangles isplh 5 for splitting each hexagon into 96 triangles isplh 9 for splitting each hexagon into 384 triangles and isplh 17 for splitting each hexagon into 1536 triangles Various finite element approximations can be obtained by combining different values of ielem and icol e PRIM 1 1 Linear finite elements e PRIM 1 2 Mesh corner finite differences e PRIM 1 3 Linear superconvergent finite elements IGE 174 Rev 12 Release 3 061 57 e PRIM 2 1 Quadratic finite elements e PRIM 2 2 Quadratic variational collocation method e PRIM 2 3 Quadratic superconvergent finite elements e PRIM 3 1 Cubic finite elements e PRIM 3 2 Cubic variational collocation method e PRIM 3 3 Cubic superconvergent finite elements e PRIM 4 2 Quartic variational collocation method e DUAL 1 1 Mixed dual linear finite elements e DUAL 1 2 Mesh centered finite differences e DUAL 1 3 Mixed dual linear superconvergent finite elements equivalent to PRIM 1 3 e DU
214. ies that can be analyzed by the module NXT a Cartesian 2 D and 3 D geometries that can be processed by the EXCELT module described above b A generalization of the Cartesian 2 D and 3 D geometries that can be processed by EXCELT that includes pin clusters b A generalization of the hexagonal 2 D and 3 D assemblies that can be processed by EXCELT and contain hexagons with a triangular mesh HEXT or HEXTZ and can include pin clusters e Geometries that can be analyzed by the module SYBILT a Homogeneous geometry HOMOGE b 1 geometries SPHERE TUBE and CAR1D c 2 D geometries CAR2D and HEX including CARCEL and HEXCEL sub geometries as well as VIRTUAL sub geometries d 2 D non standard geometries containing micro structures e Double heterogeneity option e Geometries that can be analyzed by the module JPMT 1 D geometries SPHERE TUBE and CAR1D b 2 D geometries CAR2D and HEX including CARCEL and HEXCEL sub geometries as well as VIRTUAL sub geometries c 2 D cluster geometries corresponding to a TUBE sub geometry superimposed on a global TUBE CARCEL or HEXCEL geometry each cluster must be located between two independent annular re gions and the clusters must not overlap d 3 D TUBEZ geometries e Double heterogeneity option e Geometries that can be analyzed by the module BIVACT a 2 D Cartesian CAR2D geometries b 2 D hexagonal HEX geometries
215. ify that the standard collision probabilities must be computed This is the default option keyword to specify that both the directional and standard collision probabilities must be com puted The additional directional collision probability matrix can only be used if nanis is set to 2 in Section and HETE is activated Section 3 7 Finally the option is only available for 2 D geometries analyzed with the module EXCELT keyword to specify that only the complete collision probability matrix Pij is to be computed In general the scattering modified collision probability matrix p ij is also computed using 9 9 y 929 l g Ps ig I 2 0 Pij where Ey is the within group isotropic scattering cross section When available p j 1s used in the flux solution module in such a way that for the groups where there is no up scattering the thermal iteration is automatically deactivated In the case where the SKIP option is activated the matrix is used and thermal iterations are required in every energy group keyword to specify that the collision probability matrix is to be normalized in such a way as to eliminate all neutron loss even if the region under consideration has external albedo boundary conditions which should result in neutron loss When used with a void boundary condition zero reentrant current this option is equivalent to imposing a posteriori a uniform reentrant current keyword to specify
216. ility integration with online track generation see Section 3 6 Table 27 Structure JPMT TRKNAM TRKFIL JPMT TRKNAM TRKFIL GEONAM desctrack descjpm Table 28 Structure SYBILT TRKNAM SYBILT TRKNAM GEONAM desctrack descsybil Table 29 Structure BIVACT TRKNAM BIVACT TRKNAM GEONAM desctrack descbivac In Tables 25 to 29 we have used TRKNAM characterx12 name of the TRACKING data structure that will contain region volume and sur face area information in addition to region identification pointers and other tracking information TRKFIL characterx12 name of the sequential binary tracking file used to store the tracks lengths This file is always required for the EXCELT module It is also required if the JPMT module is applied to a cluster type geometry It is optional for the NXT module GEONAM characterx12 name of the GEOMETRY data structure to analyze IGE 174 Rev 12 Release 3 061 47 desctrack descexcel descnxt descsybil descjpm descbivac structure describing the general tracking data see SectionB 4 1 structure describing the tracking data specific to EXCELT see Section 3 4 2 structure describing the tracking data specific to NXT see Section 3 4 3 structure describing the tracking data specific to SYBILT see Section 3 4 4 structure describing the tracking data specific to JPMT see Section 3 4 5
217. imes as required The variables or structures surrounded by curly braces and separated by vertical bars l various calculation options available in DRAGON Only one of these options is permitted represent The variables or structures surrounded by gt gt lt lt represents CLE 2000 output parameters 181 When a fixed default value is specified for an optional parameter in a structure then that parameter is reini tialized to its default value every time the module is called When a floating default value is specified it is saved on the output data structure and can be used in future calls to this module provided it is then provided as input to the module read only or update mode In DRAGON most default value are floating the exception being the parameter iprint default value of 1 that is used to control the amount of information printed by each module Departure from this general rule will be indicated clearly in the following sections 2 2 DRAGON Data Structure and Module Declarations DRAGON is built around the GAN generalized driver 18 Accordingly all the modules and procedures that are used in an input deck must be declared One must also define the format of each data structure that will be processed by these modules The modules and procedures required for a specific calculation are called successively the information generated by the execution of one or several modules being transferred as requested by the user to o
218. in the WIMS AECL format keyword to specify the name of the file where the microscopic cross section library is stored character x8 name of the microscopic cross section library from which the mass ratio are recovered keyword to specify the isotopic temperature temperature given in Kelvin K or Celsius C keyword to specify the heavy water purity that is fraction of heavy water in a mix of heavy and light water heavy water purity in weight percent WGT or atomic percent ATMS keyword to specify the fuel enrichment For UO fuel this represent the ratio of 2351 concen tration or weight to 2350 2380 For ThO fuel the ratio of 2330 concentration or weight to 233U 232Th is considered fuel enrichment in weight percent WGT or atomic percent ATMS keyword to specify an isotope list This list will be used either for getting mass values of isotopes or for computing number densities number of isotopic names used for a calculation limited to nbiso lt 3 characterx12 name of an isotope keyword to recover the mass values as written in the library It returns the mass value of each isotope in the output parameter mass keyword to ask the module to compute some parametric values set of keywords to recover the water density as a function of its temperature and purity This option requires the setting of temperature and purity and it does not affect any given list of isotope names calculated water density
219. inally the third form is for the case where a MICROLIB is updated using the information available on a BURNUP data structure The meaning of each of the terms above is MICLIB characterx12 name of the data structure that will contain the MICROLIB MICOLD characterx12 name of a read only MICROLIB data structure In the case where a second MICROLIB data structure is provided the number densities for the isotopes in file MICLIB will be replaced selectively by those found in MICOLD BRNOLD characterx12 name of a read only BURNUP data structure In the case where a BURNUP data structure is provided the number densities for the isotopes in file MICLIB will be replaced selectively by those found in BRNOLD desclib general input structure for this module see Section 3 2 1 IGE 174 Rev 12 Release 3 061 16 desclibupd input structure for updating the MICROLIB based on information available on a second MICROLIB data structure see Section 3 2 2 desclibbrn input structure for updating the MICROLIB based on information available on a BURNUP data structure see Section 3 2 3 3 2 1 General LIB input structure The general format of desclib is of the form Table 9 Structure desclib EDIT iprint MXIS nmisot NMIX nmixt CTRA NONE APOL WIMS OLDW ANIS naniso DED nedit HEDIT i i 1 nedit CDEPCHN RDEPCHN EPL LIB DRAGON WIMS WIMSAECL WIMSD4 FIL NAMEF
220. ing dependent factors This is the default option when a leakage B or a fission source eigenvalue problem K calculation is performed with imposed buckling ALBS keyword used to specify that an homogeneous buckling contribution is introduced by a group dependent correction of the albedo U2 It is then necessary to define the geometry with an external boundary condition of type VOID see Section 3 3 3 and to close the region in module ASM using the ALBS option see Section 3 6 1 HETE keyword used to specify that the leakage and anisotropic effects will be taken into account using a consistent p Ul or p EsE3 model The heterogeneous buckling contribution is introduced in the B model using the PIJK method It is activated only if ANIS 2 is specified in module EXCELT see Section 3 4 2 and the option PIJK is used in module ASM see Section 3 6 1 Otherwise a consistent P model is used G keyword used to specify that the buckling search assumes that the directional bucklings are all identical floating default option R keyword used to specify that a radial buckling search is considered assuming an imposed Z direction buckling Z keyword used to specify that a Z direction buckling search will be considered with imposed buckling in the X and Y directions X keyword used to specify that a X direction buckling search will be considered with imposed buckling in the Y and Z directions with imposed Y and Z dir
221. ing in DRAGON The NXT Module Technical Report IGE 260 cole Polytechnique de Montr al 2006 15 M Dahmani Marleau and E Varin Effect of Burnup on ACR 700 3 D Reactivity Devices Cross Sec tions PHYSOR 2006 American Nuclear Society s Topical Meeting on Reactor Physics Vancouver Canada 2006 Proceedings available on CD Rom 16 R Le Tellier A H bert and Marleau The Implementation of a 3D Characteristics Solver for the Genera tion of Incremental Cross Sections for Reactivity Devices in a CANDU Reactor PHYSOR 2006 American Nuclear Society s Topical Meeting on Reactor Physics Vancouver Canada 2006 Proceedings available on CD Rom 17 Roy Anisotropic Scattering for Integral Transport Codes Part 1 Slab Assemblies Annals of Nuclear Energy 17 379 388 1990 18 Roy Anisotropic Scattering for Integral Transport Codes Part 2 Cyclic Tracking and its Application to XY Lattices Annals of Nuclear Energy 18 511 524 1991 IGE 174 Rev 12 Release 3 061 192 19 R Roy G Marleau and A H bert A Cyclic Tracking Procedure for Collision Probability Calculation in 2 D Lattices International Topical Meeting Advances in Mathematics Computations and Reactor Physics 2 2 4 1 2 2 4 14 Pittsburgh PA 1991 20 G Marleau and A H bert Solving the Multigroup Transport Equation Using the Power Iteration Method 1985 Simulation Symposiu
222. ing purpose It is generally used only when creating the HISTORY data structure However the number of global and local parameters used in a HISTORY data structure can be increased at all time The number of channels bundles and the refueling scheme must be defined at the creation of the HISTORY data structure This information can be provided manually or extracted from a MAP data structure The general form of the hstdim input is presented in Table 174 Rev 12 Release 3 061 98 Table 76 Structure hstdim EDIT iprint DIMENSIONS GLOBAL nglo LOCAL BUNDLES nbun CHANNELS ncha EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module DIMENSIONS keyword used to indicate that the general dimensioning of the HISTORY data structure will be modified GLOBAL keyword used to modify the number of global parameters on the HISTORY data structure nglo the number of global parameters The history module will use the maximum between nglob and the value if any defined on the HISTORY data structure LOCAL keyword used to modify the number of local parameters on the HISTORY data structure nloc the number of local parameters The history module will use the maximum between nloc and the value if any defined on the HISTORY data structure BUNBLES keyword used to specify the number of bundles per channel for the reactor model consid
223. ining the reactor database Additional contributions can be included in the reactor cross section database if CPONAM appears on the RHS characterx12 name of the read only EDITION data structure characterx12 name of the read only BURNUP data structure containing the depletion history This information is given only if the reactor database is to contain burnup dependent data structure containing the input data to this module see Section 3 11 1 IGE 174 Rev 12 Release 3 061 82 3 11 1 Data input for module CPO Table 55 Structure desccpo T iprint NOTR EP NOMDIR BURNUP PREFIX 4 ALL NEWNAME OLDNAME i i 1 niext E NDIR EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module The amount of output produced by this tracking module will vary substantially depending on the print level specified B2 keyword to specify that the buckling correction dB is to be applied to the cross section to be stored on the reactor database By default fixed default such a correction is not taken into account NOTR keyword to specify that the cross section to be stored on the reactor database are not to be transport corrected By default fixed default transport corrected cross section are considered when the CTRA option is activated in MAC or LIB see Sections JJandB 2 STEP keyword to specify that a specific cross sec
224. ions FORM MACRO MAC EDIT 0 NGRO 7 NMIX 7 NIFI 1 ENER 1 0E7 1 0E5 1 0E3 10 0 4 0 0 625 0 025 0 001 READ INPUT MIX 1 EFISS 200 0 NF TOT 7 21206E 03 8 19301E 04 6 45320E 03 1 85648E 02 1 78084E 02 8 30348E 02 2 16004E 01 NUSIGF 2 00600E 02 2 02730E 03 1 57060E 02 4 51830E 02 4 33421E 02 2 02090E 01 5 25711E 01 CHI 5 87910E 01 4 11760E 01 3 39060E 04 1 17610E 07 0 00000E 00 0 00000E 00 0 00000E 00 TOTAL 1 77949E 01 3 29805E 01 4 80388E 01 5 54367E 01 3 11801E 01 3 95168E 01 5 64406E 01 SCAT 1 1 1 27537E 01 2 2 3 24456E 01 4 23780 02 3 3 4 50940E 01 1 63140E 03 9 43740 06 5 5 1 25250E 04 4 52565E 01 2 67920E 03 3 14270E 09 5 51630E 09 3 6 1 29680E 03 2 71401E 01 5 56640E 03 3 7 8 54580E 03 2 65802E 01 1 02550E 02 3 7 2 73080E 01 1 68090E 02 1 00210E 08 MIX 2 EFISS 200 0 NFTOT 8 25446E 03 1 32565E 03 8 42156E 03 3 28730E 02 1 59636E 02 3 23794E 01 3 62803E 01 IGE 174 Rev 12 Release 3 061 NUSIGF 2 4 CHI 0 TOTAL 1 4 SCAT MIX 3 TOTAL SCAT MIX 4 TOTAL SCAT GEOM X ig 3 1 Ts 381401 576991 879101 000001 813231 E 02 E 02 E 01 E 00 E 01 741981 1 2 3 5 w 26032 E 01 1 2 3 5 oO E 01 344401 1 2 3 5 59206 E 01 E 01 180001 1 2 3 5 CAR3D 4 4 2 DIAG X REFL Y DIAG Y SSYM ELL CL C1 CL Cil C6 C6 C6 E 01 Co
225. is data is recovered from a time cor responding to xtf The isotopic concentrations corresponding to this specific time will be used to update the MICNAM data structure keyword to specify the mixtures that will be burned By default all the mixtures that can burn will list of mixtures to burn All the mixtures not specified in this are assumed to have isotopic con tents constant in time The maximum number of mixtures that can be provided is that specified in the MICROLIB data structure keyword to specify which mixtures will be used for the power normalization By default all the mixtures in the cell can contribute to the power production When the the keyword MIXB is specified the list imixp is assumed to be identical to imixb The irradiation stored in the BURNUP data structure will be that associated with the mixture specified by this keyword list of mixtures mixtures considered for power normalisation The maximum number of mixtures that can be provided is that specified in the MICROLIB data structure keyword to specify that a burnup calculation between an initial and a final time must be per formed In the case where the SAVE keyword is absent the initial isotopic concentration will be stored in BRNNAM on a sub directory corresponding to the initial time If the SET keyword is absent the isotopic concentration corresponding to the final burnup time will be recovered from the FLUXUNK structure initial time associated with
226. istory Base Using DRAGON 19 CNS Simulation Symposium Hamilton ON 1995 174 Rev 12 Release 3 061 193 38 M T Sissaoui G Marleau and D Rozon Accounting For Actinide Burnup History in CANDU Reactor simulation Advances In Nuclear Fuel Management II Myrtle beach SC 1997 39 M T Sissaoui G Marleau and D Rozon CANDU Reactor Simulations Using the Feedback Model with Actinide Burnup History Nuclear Technology 125 197 1999 40 T Courau and Marleau Calculating Adjoint Fluxes in the Code DRAGON Using the Collision Probabil ity Method PHYSOR 2000 International Topical Meeting Advances in Reactor Physics and Mathematics and Computation into the Next Millennium Pittsburgh PA 2000 Proceedings available on CD Rom 41 Courau Application de la th orie des perturbations g n ralis es aux calculs de cellules utilisant la m thode des probabilit s de collision Ph D thesis Ecole Polytechnique de Montr al 2001 42 Courau and G Marleau Generalized Perturbation Theory in DRAGON Application to CANDU Cell Calculations 22nd Annual Canadian Nuclear Society Conference Toronto ON 2001 Proceedings avail able on CD Rom 43 T Courau and G Marleau Adjoint and Generalized Adjoint Flux Calculations Using the Collision Proba bility Technique Nuclear Science and Engineering 141 46 54 2002 44 T Courau and G Marleau
227. istribution only in cases where neutrons undergo upscattering The power iterations are performed to solve the fixed source or eigenvalue problem in the cases where a multiplicative medium is analyzed For problems without eternal sources the effective multiplication factor k p 18 obtained at the end of the power iterations search for the IGE 174 Rev 12 Release 3 061 2 critical MAN aed be superimposed upon the power iterations so as to force the multiplication factor to take an imposed value Similar procedures are also used to solve the MOC transport equation 22126 DRAGON can access directly microscopic cross section libraries having the following standard formats DRAGLIB22 e MATXSBD5IB0 WIMS D4DB UBI WIMS AECLES It can also exchange macroscopic cross section libraries with codes such as TRANSX CTR or TRANSX 2 by the use of GOXS and ISOTXS format files 2824 The macroscopic cross section can also be read in DRAGON via the input data stream useful for few groups benchmarking exercises IGE 174 Rev 12 Release 3 061 3 2 GENERAL STRUCTURE OF DRAGON INPUT The input to DRAGON is in the form of an input data structure containing commands that call successively the calculation modules of DRAGON or the CLE 2000 procedures required in a given lattice cell calculation The DRAGON CLE 2000 procedures are themselves DRAGON input data structures and have the same syntax as the main DRAGON data structure In general the
228. ized mixture NAME keyword to specify the prefix for the name of the sub directory where the information corre sponding to a single homogenized region will be stored The fixed default is NDIR 777 NDIR characterx8 prefix for the name of the sub directory The complete name is constructed by the concatenation of NDIR with a four digit integer value 3 12 The INFO module The INFO module is mainly used to compute the number densities for selected isotopes at specific local con ditions The module can also be used to compute the water density p T P according to the assumed temperature T and purity P In that case the compound water density for a mix of light and heavy water is 100 x D 1 7 Temperature tabulations for pzr o T and pp o T are the same as those of the WIMS AECL code and are not valid for supercritical water conditions The input specifications for this module are presented in Table Table 56 Structure INFO INFO descinfo descinfo structure containing the input data to this module see Section 3 12 1 3 12 1 Data input for module INFO Table 57 Structure descinfo EDIT iprint LIB DRAGON MATXS MATXS2 WIMSD4 WIMS WIMSAECL FIL NAMEFIL TMP temp K C PUR purity WGT ATMS CALC DENS WATER gt gt dens lt lt ENR enrichment WGT ATMS ISO nbiso ISONAM i i 1
229. keyword to specify that the group integrated flux is to be drawn MGF LUX keyword to specify that the group flux is to be drawn icond array of increasing energy group limits that will be associated with each of the N condensed groups The final value of icond will automatically be set to ngroup while icond gt ngroup will be dropped from the condensation The number of group condensation entry N must satisfy Ng lt ngroup where ngroup is the total number of groups on the flux data structure 3 16 The SAD module The SAD module is used to compute the generalized adjoint fluxes associated with homogenized and con densed cross sections EA The input specifications for this module are presented in Table 68 Table 68 Structure SAD FLUNAM EDINAM SAD PIJNAM LIBNAM TRKNAM descsad FLUNAM charac solution EDINAM charac PIJNAM c LIBNAM J 2 name of FLUXUNK data structure containing generalized adjoint fluxes 2 name of the EDITION data structure where the homogenized and condensed properties and the generalized adjoint sources will be stored 2 name of the ASMPIJ data structure containing the group dependent system matrices see Section 3 6 12 name of the MACROLIB or MICROLIB data structure that contains the macro scopic cross sections see Sections 3 1Jand 3 2 TRKNAM characterx12 name of the TRACKING data structure
230. keyword to specify that the isotopic depletion chain or the microscopic cross sections are in the WIMS AECL format keyword to specify that the isotopic depletion chain or the microscopic cross sections are in the WIMS AECL format This keyword has the same meaning as the keyword WIMS keyword to specify the name of the file from which the isotopic depletion chain or microscopic cross section is to be read characterx 64 name of the library where the isotopic depletion chain or the microscopic cross sections are stored number of isotopes in the depleting chain input structure describing the depletion chain see Section 3 2 4 IGE 174 Rev 12 Release 3 061 19 descmix1 input structure describing the isotopic and physical properties of a given mixture see Sec tion 3 2 5 3 2 2 Instruction for updating a MICROLIB using a second MICROLIB in LIB The general format of desclibupd is of the form Table 10 Structure desclibupd EDIT iprint MAXS descmix3 with EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module It must be set to 0 if no printing on the output file is required while values gt 0 will increase in steps the amount of information transferred to the output file MAXS keyword to specify that the mixture density on MICLIB are to be modified If MICOLD is present and descmix3 is absent a direct one to one correspondence betwe
231. ld region numbers Two or more regions can be combined together only if they contain the same mixture The number nreg of region is that printed after the execution of the tracking module SURF keyword to specify that surfaces will be pre homogenized ismrg list of new surface numbers associated with old surface numbers Two or more surfaces can be combined together only if they are associated with the same boundary conditions The number nsur of surfaces is that printed after the execution of the tracking module IGE 174 Rev 12 Release 3 061 90 3 14 2 Data input for tracking file partitioning Table 64 Structure descextr EDIT iprint EXTR iext i i l nreg where EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module EXTR keyword to specify that the track associated with a specific set of regions will be extracted from the reference tracking file iext list of region numbers for track extraction The number nreg of region is that printed after the execution of the tracking module 3 15 The PSP module The PSP module can be used to generate a graphical file in a POSTSCRIPT format ASCII file for 2 D geometries that can be analyzed using the EXCELT and NXT tracking modules see Section 3 4 The mod ule PSP is based on the PSPLOT FORTRAN library from Nova Southeastern University 83 Since only few PSPLOT routines were required in DRAGON and
232. lt lt STEP UP GROUP 1 1 T I MERGE MIX 1230000456789 0 110000 R S G IGE 174 Rev 12 Release 3 061 GETVAL FLUX INTG 1 11 gt gt fl lt lt gt gt 2 lt lt gt gt lt lt gt gt f 8 lt lt gt gt 9 lt lt gt gt 10 lt lt gt gt f11 EVA SOLUTION FOR KAVENORY BENCHMARK VALUES COMPAR x 5 ECHO DF 1 3 ECHO DF 8 9 ECHO DF 10 12 ECHO DF 13 15 STEP DOWN EE TABLE 3 DOWN STEP DOWN LUATE f1 f2 3 v1 v2 v3 v8 v9 v10 vll v12 v13 v14 v15 N C2 SONS Fh Fh Fh Fh Fh Fh Fh Fh Fh Fh Fh t Q N 41 fl 2 8 ri r2 r8 r9 EU E S 2 f f rl r2 r8 r9 r10 ELS rl4 ri5 ED TO MONT 3 9 10 f11 12 13 14 15 f9 f10 f11 f12 RS fl ou ou ou ou ou r10 r12 ris r14 15 E CARLO ECHO ACCEPT fl ABS el lt f2 ABS 2 ECHO f8 ABS e8 ECHO ACCEPT f10 ABS e10 f11 ABS ECHO ACCEPT f13 ABS e13 f14 ABS PWRTRK DELETE PWRTRK END QUIT lt lt gt gt 12 lt lt 5f13 gt gt f14 lt lt gt gt 15 lt lt 14 15 ou ou ou ou ou ou gt gt gt
233. m on Reactor Dynamics and Plant Control Kingston ON 1985 21 G Marleau and A H bert Introduction of an Improved Critical Buckling Search in WIMS 1986 Simula tion Symposium on Reactor Dynamics and Plant Control Hamilton ON 1986 22 Roy The Cyclic Characteristics Method International Topical Meeting on the Physics of Nuclear Sci ence and Technology pp 407 414 Long Island NY 1998 23 Roy Cyclic Characteristics Method with Anisotropic Scattering M amp C 1999 Conference Math ematics and Computation Reactor Physics and Environmental Analysis in Nuclear Applications pp 27 30 Madrid Spain 1999 Proceedings available on CD Rom 24 G J Wu and R Roy A New Characteristics Algorithm for 3D Transport Calculations Annals of Nuclear Energy 30 1 16 2003 25 M Dahmani R Roy and J Koclas New Computational Methodology for Large 3D Neutron Transport Problems PHYSOR 2004 International Meeting on the Physics of Fuel Cycles and Advanced Nuclear Sys tems Chicago IL 2004 Proceedings available on CD Rom 26 M Dahmani and R Roy Parallel Solver Based on Three Dimensional Characteristics Method Design and Performance Analysis Nuclear Science and Engineering 150 155 169 2005 27 A H bert DRAGON Description of the DRAGLIB Format Technical Report IGE 117 Ecole Polytech nique de Montr al 1991 28 R
234. macroscopic cross sections In this case the informa tion provided in desexs represents incremental rather than standard cross sections keyword to specify the input file format One can use either the input stream keyword INPUT or a GOXS format file array of mixture identifiers to be read from a GOXS file The maximum number of identifiers permitted is nmixt and the maximum value that imat may take is nmixt When imat is 0 the corresponding mixture on the GOXS file is not included in the MACROLIB In the cases where imat is absent all the mixtures on the GOXS file are available in a DRAGON execution They are numbered consecutively starting at 1 or from the last number reached during a previous execution of the module characterx7 name of GOXS file to be read keyword to specify that the GOXS file is deleted after being read keyword to specify that mixture cross sections will be read on the input stream structure describing the format used for reading the mixture cross sections from the input stream see Section 3 1 4 structure describing the format used for reading multigroup physical albedos from the input stream see Section 3 1 5 keyword to specify that the fission spectrum will be normalized This implies that the fission energy spectrum x7 that will be stored in the output MACROLIB will satisfy G 9 1 This option is available even if the mixture cross sections were not read by MAC module
235. moderator temperature perturbation IGE 174 Rev 12 Release 3 061 86 desccfc 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Data for cell averaged and two group burnup dependent cross sections cross section at high coolant density perturbation Data for cell averaged and two group burnup dependent cross sections cross section at low coolant density perturbation Data for cell averaged and two group burnup dependent cross sections cross section at high moderator density perturbation Data for cell averaged and two group burnup dependent cross sections cross section at low moderator density perturbation Data for cell averaged and two group burnup dependent cross sections cross section with perturbed moderator boron concentration Data for cell averaged and two group burnup dependent cross sections cross section with perturbed moderator purity Data for cell averaged and two group burnup dependent cross sections cross section with perturbed xenon concentration Data for cell averaged and two group burnup dependent cross sections cross section with perturbed samarium concentration Data for cell averaged and two group burnup dependent cross sections cross section with perturbed neptunium concentration Data for cell averaged and two group burnup dependent cross sections cross section with perturbed fuel temperature and coolant density
236. n approximation Here is the sum of the radioactive decay constant and microscopic neutron absorption rate The default value is 80 0 In order to remove the saturation approximation for all isotopes set valexp to a very large number such as 10 or use the keyword SATOFF keyword to specify that the saturation model for the non fissile isotopes will not be used keyword to specify that the saturation model for the non fissile isotopes will not be used This keyword has the same effect as keyword SATOFF keyword to specify that the saturation model for the non fissile isotopes will be used This is the default option keyword to specify that no Dirac delta function will be used in the saturation model For isotope k at saturation one therefore uses keyword to specify that a Dirac delta function will be used in the saturation model For isotope k at saturation one uses ad t to Sx t b t tf This is the default option IGE 174 Rev 12 Release 3 061 81 1 valh1 RUNG KAPS TIXS TDXS NOEX GLOB NOGL EXTR keyword to specify an estimate of the relative width of the time step used in the solution of burnup equations relative width of the time step used in the solution of burnup equations An initial time step of A valhl x xtf xti is used This value will be optimized in the EVO module to ensure that the solution to the depletion equations converges The default value i
237. n imaginary cylinder where the centers of the pins are to be placed In the case where a single value is provided for rpins all the pins are located at the same distance from the center of the cell taking account the offset provided by the keyword OFFCENTER keyword to specify the angle of the first pin or each pin centered on an imaginary cylinder in a cluster geometry the angle radian of the first pin in the ring if only one value is provided for apins angular spacing of the pins being 2r npins or the angle of each pins in the ring keyword to specify the x position where the centers of the pins are to be placed in a cluster geometry the x position cm where the centers of the pins are to be placed keyword to specify the y position where the centers of the pins are to be placed in a cluster geometry the y position cm where the centers of the pins are to be placed keyword to specify the z position where the centers of the pins are to be placed in a cluster geometry the z position cm where the centers of the pins are to be placed The user should be warned that the maximum number of zones resulting from the above description of a geometry Lzones Should not exceed the limits imposed by maxreg and defined in the tracking module JPMT SYBILT or EXCELT see Section 3 4 For pure geometry with splitting we can define the variables Lz Ly IGE 174 Rev 12 Release 3 061 Lz Lr Lp and L as and Lzone
238. nbiso GET MASS gt gt mass i lt lt i 1 nbiso CALC WGTS D20 gt gt nhl lt lt gt gt hd2 lt lt gt gt nol6 lt lt 002 gt gt nuS lt lt gt gt hu8 lt lt gt gt nol6 lt lt THO2 gt gt nth2 lt lt gt gt nu3 lt lt gt gt nol6 lt lt IGE 174 Rev 12 Release 3 061 84 EDIT iprint LIB DRAGON MATXS MATXS2 IMSD4 WIMS WIMSAECL EIL NAMEFIL TMP temp PUR purity ENR enrichment 150 nbiso ISONAM GET MASS CALC DENS WATER dens keyword used to modify the print level iprint index used to control the printing of the module The amount of output produced by this tracking module will vary substantially depending on the print level specified keyword to specify the type of microscopic cross section library from which the isotopic mass ratio will be recovered keyword to specify that the microscopic cross section library is in the DRAGLIB format keyword to specify that the microscopic cross section library is in the MATXS format of NJOY II and NJOY 89 keyword to specify that the microscopic cross section library is in the MATXS format of NJOY 91 keyword to specify that the microscopic cross section library is in the WIMS D4 format keyword to specify that the microscopic cross section library is in the WIMS AECL format keyword to specify that the microscopic cross section library is
239. nifiss FIXE xsfixe g g 1 ngroup FIXA xsfixa g g 1 ngroup FIXG xsfixg g g 1 ngroup SCAT nbscat I h ilastg l h xsscat l h g g 1 nbscat l h h 1 ngroup l 1 naniso IGE 174 Rev 12 Release 3 061 14 MIX mixnum EFISS efiss TOTAL xssigt TRAN xssigtr NUSIGF xssigf NF TOT xsfiss CHI xschi FIXE xsfixe FIXA xsfixa FIXG xsfixg SCAT nbscat ilastg keyword to specify that the macroscopic cross sections associated with a new mixture are to be read identifier for the next mixture to be read The maximum value permitted for this identifier is nmixt When mixnum is absent the mixtures are numbered consecutively starting at 1 or after the last mixture number read either on the GOXS or the input stream keyword to specify the energy released per fission for each fissile spectrum energy MeV released per fission for each fissile spectrum keyword to specify that the total macroscopic cross sections for this mixture follows multigroup total macroscopic cross sections 229 in associated with mixture m keyword to specify that the macroscopic cross sections associated with the transport correction for this mixture follows g multigroup transport correction macroscopic cross sections 39 in em 1 associated with mixture m keyword to specify that the macroscopic fission cross sections multiplied by the average number of neutron pe
240. ns nsubg number of groups in each subgroup in collision probability calculations The default value is the total number of groups contained in the LIBNAM object However in applications needing a large amount of memory to store group dependent collision probability this number can be smaller the minimal value is 1 In all cases the tracking file is rebuilt for every subgroup and the collision probability matrices are computed by block of nsubg groups until all groups are processed IGE 174 Rev 12 Release 3 061 63 TISO see Section 3 4 2 nangl see Section 3 4 2 dens see Section 3 4 2 CORN see Section 3 4 2 pcorn see Section 3 4 2 SYMM see Section 3 4 2 isymm see Section 3 4 2 3 7 The FLU module The FLU module is used to solve the linear system of multigroup collision probability or response matrix equations in DRAGON The input specifications for this module are presented in Table Table 42 Structure FLU FLUNAM FLU FLUNAM LIBNAM TRKNAM descflu Here FLUNAM characterx12 name of the FLUXUNK data structure containing the solution If FLUNAM appears on the RHS the solution previously stored in FLUNAM can be used to initialize the iterative solution process PIJNAM characterx12 name of the ASMPIJ data structure containing the group dependent system matrices see Section 3 6 LIBNAM characterx12 name of the MACROLIB or MICROLIB data structure that contains the macro scopic cross sections see
241. nt FILL NONE GRAY CMYK HSB NOCONTOUR REGION MIXTURE HMIX FLUX MGFLUX icond g g 1 Ng EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module FILL keyword to specify the drawing options NONE keyword to specify that only region contour are to be drawn GRAY keyword to specify that the regions will be filled with various levels of gray RGB keyword to specify that the regions will be filled with various colors taken using the RGB color scheme CMYK keyword to specify that the regions will be filled with various colors taken using the CMYK color scheme HSB keyword to specify that the regions will be filled with various colors taken using the HSB color scheme This is the default option NOCONTOUR keyword to specify that the contour lines delimiting each region will not be drawn TYPE keyword to specify the type of graphics generated REGION keyword to specify that different colors or gray levels will be associated with each region This is the default option MIXTURE keyword to specify that different colors or gray levels will be associated with each physical mixture HMIX keyword to specify that different colors or gray levels will be associated with each virtual ho mogenization mixture valid only for NXT based tracking data structures IGE 174 Rev 12 Release 3 061 92 FLUX
242. ntaining a transport solution see Sec tion 3 7 characterx12 name of the MACROLIB or MICROLIB data structure that contains the macro scopic or microscopic cross sections see Sections T and 3 2 characterx12 name of the TRACKING data structure containing the tracking see Section 3 4 characterx12 name of the GEOMETRY data structure that was used for the original flux calculation see Section 3 3 Required for SPH factors calculation IGE 174 Rev 1 REFPIJ SPHGEO SPHTRK SPHLINE descedi 2 Release 3 06L 72 character 12 name of the ASMPIJ data structure that was used for the original flux calcula tion see Section 3 6 Required for SPH factors calculation characterx12 name of the equivalence GEOMETRY data structure to be used for SPH factors calculation By default the original transport GEOMETRY is used In some cases the module EDI can also automatically build a equivalence GEOMETRY based on the original geometry However it is always preferable to specify explicitly the equivalence GEOMETRY or TRACKING data structure to be considered in such calculations characterx12 name of the equivalence TRACKING data structure to be used for SPH factors calculation By default the original transport TRACKING is used It is always preferable to specify explicitly the equivalence GEOMETRY or TRACKING data structure to be considered in such calculations characterx12 name of the tracking file associated wit
243. o be printed keyword to specify that the absolute differences in the macroscopic cross section are to be printed keyword to specify the directory of EDINAM where the reference data requires for the compar ison is stored When this keyword is absent the last reaction rates and integrated flux saved on EDINAM used characterx12 name of the directory from which the reference information is taken number associated with an directory of EDINAM on which the reference information is stored To each number idirn is associated a the directory CDIRN defined using WRITE CDIRN 8 14 REF CASE idirn IGE 174 Rev 12 Release 3 061 76 NBAL keyword to specify the editing of the four factors computed from a group balance In this case the user must specify explicitly a three group condensation SPH keyword to specify that an equivalence calculation between the transport geometry and an ho mogenization geometry is to be performed using the SPH technique The resulting SPH factors are automatically used for the flux and the microscopic and macroscopic cross sections homog enization and condensation descsph structure used to specify the information required for the SPH calculations see Section 3 9 2 3 9 2 Description of the equivalence information This structure is used to specify the type of equivalence calculation where the flux and the condensed and or homogenized cross sections are corrected X SPH
244. odule EVO Table 53 Structure evo EDIT iprint SAVE xts 1 DAY YEAR FLUX flux POWR power W CC EPS1 1 EPS2 valeps2 EXPM valexp H1 valhl SATOFF NSAT SAT NODI DIRA TIXS TDXS NOEX GLOB NOGL EXTR RUNG KAPS imixp i i 1 Nm MIXB imixb i i 1 Nm DEPL xti xtf DAY YEAR COOL FLUX flux power W CC wec SET xtr DAY YEAR EDIT keyword used to modify the print level iprint iprint index used to control the printing of the module The amount of output produced by this tracking module will vary substantially depending on the print level specified IGE 174 Rev 12 Release 3 061 79 SAVE NOSA ca H MIXB imixb MIXP xti dxt xtf xts xtr keyword to specify that the results of the last transport calculation and the current isotopic con centration must be stored on BRNNAM on a sub directory corresponding to a specific time By default this data is stored at a time corresponding to xti keyword to specify that the results of the last transport calculation and the current isotopic con centration will not be stored on BRNNAM keyword used to recover the isotopic concentration already stored on BRNNAM on a sub directory corresponding to a specific time By default th
245. odule that reads various microscopic cross section library formats e the tracking modules that process a geometry and generate integration lines to be used for collision proba bility CP evaluation or to solve the transport equation using the method of characteristics MOC e the multigroup flux solver used to obtain CP based solutions to the transport equation e dedicated modules to solve the multigroup transport equation using the method of characteristic e the burnup module that solves the Bateman equation to determine the isotopic contents of various mixtures in a lattice or out of core with time e the editing module that is used for homogenization and condensation of microscopic and macroscopic cross sections using a flux volume weighting as well as equivalence procedures to preserve reaction rates One important feature of DRAGON is its ability to process and track a selection of geometries in one two and three dimensions In addition the tracking modules come in various flavor depending on the level of approximation used in the CP or MOC solution to the transport equation For example e the JPM tracking module uses the interface current technique for each homogeneous zones associated with a geometry J method e the SYBIL tracking module emulates the main flux calculation option available in the APOLLO 1 code 10111 and includes a new version of the EURYDICE 2 code that performs reactor assembly calculations in both rectang
246. of local and global parameters The general form of this structure is presented in Table Table 78 Structure hstpar NAMPAR valpar where NAMPAR name of a local or global parameter to process The parameters specified before the keyword CELLID is read will be considered global otherwise they will be considered local valpar real value for the local or global parameter to process In the case where the GET option is activated the history module will extract this parameter from the input data stream In the case where the PUT option is activated the history module will try to transfer this information into a real CLE 2000 variable 3 19 The TLM module The TLM module generates a Matlab m file ASCII file format that contains the instructions for plot ting the tracking lines generated by the NXT option LONG activated in Table 32 5 The input specifications for this module are presented in Table Table 79 Structure TLM MFILE TLM MFILE TRKNAM TRKFIL desctlm MFILE characterx12 name of the ASCII Matlab m file that will contain the instructions for plotting the tracking lines TRKNAM characterx12 name of the TRACKING data structure TRKFIL characterx12 name of the sequential binary tracking file used to store the tracks lengths desctlm structure describing the type of graphics generated see Section 3 19 1 3 19 1 Data input for module TLM IGE 174 Rev 12 Release 3 061 d ED
247. on is to be considered and that both the pseudo adjoint and adjoint flux are to be saved on the FLUXUNK data structure TYPE keyword to specify the type of flux or adjoint calculations to be performed N keyword to specify that no flux calculation is to be performed This option is usually activated when one simply wishes to initialize the neutron flux distribution and to store this information in FLUNAM see ON parameter above S keyword to specify that a fixed source problem is to be treated Such problem can also include fission source contributions K keyword to specify that a fission source eigenvalue problem is to be treated The eigenvalue is then the effective multiplication factor with a fixed buckling In this case the fixed source if any is present on the MACROLIB or MICROLIB data structure is not used B keyword to specify that a fission source eigenvalue problem is to be treated The eigenvalue in this case is the critical buckling with a fixed effective multiplication factor The buckling eigenvalue has meaning only in the case of a cell without leakages see the structure descBC in Section 3 3 3 It is also possible to use an open geometry with VOID boundary conditions provided it is closed by the ASM module see Section 3 6 1 using the keywords NORM or ALSB L keyword to specify that an eigenvalue problem for a non multiplicative medium is to be treated The eigenvalue in this case is the critical buckling The buckling eigenv
248. on process TFILENEW characterx12 name of the new EXCELT compatible sequential binary tracking file used to store the tracks lengths after the pre homogenization process has take place TFILEMOD characterx12 name of the new NXT sequential binary tracking file where the lines not associated with the regions to extract are stored TFILEEXT characterx12 name of the new NXT compatible sequential binary tracking file where the lines associated with the regions to extract are stored TRKEOLD characterx12 name of the TRACKING data structure that contains region volume and surface area vectors in addition to region identification pointers and other tracking information before the pre homogenization process TFILEOLD character 12 name of the old sequential binary tracking file used to store the tracks lengths before the pre homogenization process takes place descmrg structure containing the input data to this module see Section 3 14 1 descextr structure containing the input data for track file partitioning process see Section 3 14 2 3 14 1 Data input for geometry pre homogenization Table 63 Structure descmrg EDIT iprint irmrg i i 1 nreg URF ismrg 1 i 1 nsur EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module REGI keyword to specify that regions will be pre homogenized irmrg list of new region numbers associated with o
249. ons from file iaea format WIMSD4 LIBRARY LIB NMIX 1 CTRA WIMS DEPL LIB WIMSD4 FIL iaea MIXS LIB WIMSD4 FIL iaea MIX 1 300 0 H1 3001 2 00000E 1 U235 2235 1 0 1 U236 8238 0 0 1 Geometry HOM MIX 1 GEO Homogeneous geometry HOMOGI Gl IGE 174 Rev 12 Release 3 061 164 Self Shielding calculation SYBIL Transport calculation SYBIL x Flux calculation for keff pS TRACK SYBILT HOM TITLE TCWW08 HOMOGENEOUS BENCHMARK WITH BURNUP LIBRARY SHI LIBRARY TRACK PIJ ASM LIBRARY TRACK FLUX FLU PIJ LIBRARY TRACK TYPE K EDITION EDI FLUX LIBRARY TRACK COND 4 0 MERGE COMP SAVE NM Burnup loop for first step BURNUP is created while for other steps it is modified WHILE Timei TotalTime lt EVALUATE Timef Timei Delt IF Timef Timec THEN EVALUATE Iprint 3 EVALUATE Iprint 1 IF Timei 0 0 THE BURNUP LIBRARY EVO LIBRARY FLUX TRACK EDIT lt lt Iprint gt gt DEPL lt lt Timei gt gt lt lt Timef gt gt DAY POWR lt lt Power gt gt 2 RNUP LIBRARY EVO BURNUP LIBRARY FLUX TRACK EDIT lt lt Iprint gt gt DEPL lt lt Timei gt gt lt lt Timef gt gt DAY POWR lt lt Power gt gt
250. or each final mixture specified by the TAKE or MERG keyword numbered consecutively IF ILE The name of the file NISOTXS is built using the command WRITE NISOTXS A6 16 6 ISOTXS IFIL keyword to specify that the flux the macroscopic and microscopic cross sections and the volumes corresponding to homogenized regions are to be saved on EDINAM In the case where the FLIB or MACR options are activated the information is saved in the form of a MICROLIB Otherwise a MACROLIB is created on a subdirectory of EDINAM keyword to specify on which directory of EDINAM this information is to be stored characterx12 name of the directory on which the above information is to be stored number associated with a directory of EDINAM on which the above information is to be stored To each number idirn is associated a directory name CDIRN defined as WRITE CDIRN 8 14 REF CASE idirn keyword to specify that first order perturbations for the microscopic cross sections are to be saved on EDINAM keyword to specify that a comparison between the current and a reference set of reaction rates and or integrated flux is to be performed keyword to specify that the relative differences in the reaction rates and the integrated flux are to be printed keyword to specify that the relative differences in the reaction rates are to be printed keyword to specify that the relative differences in the integrated flux are t
251. osite mixture number associated with each region in the micro structures These composite mixture numbers must be greater than the maximum number of real mixtures maxmix array giving the mixture number associated with each region of the geometry where the micro structure is to be inserted array of volumetric concentration Ve Vg of each micro structures volume a given region volume Vp of the geometry array giving the mixture number associated with each region of the micro structures Note that mixgr should be specified only for the regions of the micro structure which have a concentration fract 0 keyword to specify that a do it yourselftype geometry is to be defined that is to say a geometry resembling the multicell geometry seen in APOLLO 1 l9 This option permits the interactions between different arbitrarily and statistically default option arranged cells in an infinite lattice to be treated The cells are identified by the information following the keyword CELL The user must ensure that the total number of regions appearing in all the cells must be less than maxreg IGE 174 Rev 12 Release 3 061 44 pcinl array giving the proportion of each cells type in the lattice such that lp gt pcinl i 1 lt 10 i 1 PROCEL keyword to specify that in a do it yourself type geometry rather than using a statistical arrange ment of cells a pre calculated cell distribution is to be considered pijcel arr
252. ot save the tracking lines to a file but generates them when required by the CP integra tion process A similar feature has been programmed in the ASM module for NXT based tracking Thus calling ASM with a NXT TRACKING data structure but without the associated tracking file will replace all the access to the tracking file with call to the NXT tracking subroutines that will generate online the integration lines required The input specifications for these modules are presented in Tables 38 and 39 Table 38 Structure ASM PIJNAM ASM PUNAM LIBNAM TRKNAM TRKFIL descasm IGE 174 Rev 12 Release 3 061 60 Table 39 Structure EXCELL PIJNAM TRKNAM EXCELL GEONAM LIBNAM desctrack descXL Here PIJNAM LIBNAM TRKNAM TRKFIL GEONAM descasm desctrack descXL characterx12 name of ASMPIJ data structure containing the system matrices character 12 name of MACROLIB MICROLIB data structure that contains the macro scopic cross sections see 2 characterx12 name of the TRACKING data structure see Section 3 4 characterx12 name of the sequential binary tracking file associated with the TRKNAM TRACKING data structure This file is required if it is produced by the tracking module see SectionB 4 the only exception being when based TRACKING data structure is available
253. ount the internal symmetries of the geometries IGE 174 Rev 12 Release 3 061 74 REGI MIX ireg imixt POW COND icond energy MICR FLIB ALL nis HISO keyword to specify that the homogenization of the neutron flux will take place over specific regions N lt maxreg with maxreg the maximum number of regions for which a transport solution was obtained keyword to specify that the homogenization of the neutron flux will take place over specific physical mixtures Nm lt maxmix with maxmix the maximum number of mixtures in the macroscopic cross section library array of homogenized mixtures numbers to which are associated the regions used for the flux calculation MERG option or array of regions where the editing will take place TAKE option A value of iregm 0 means that the corresponding region is not considered in the homogenization process array of homogenized mixture numbers to which are associated the physical mixtures MERG option or array of mixture numbers where the homogenization will take place TAGE option A value of imixm 0 means that the corresponding physical mixture is not considered in the homogenization process For library mixtures not used in the geometry imixm 0 should be used keyword to specify that the information is to be homogenized and condensed using the scalar flux This is the default option keyword to specify that the inform
254. pe NAMISO in the current mixture in 10 4xcm7 When dens gt 0 the isotopic concentration for this isotope becomes dens while all the other isotopes take the value specified on BRNOLD When dens 1 0 the isotopic concentration of this isotope is not updated 3 2 7 Format for descmix3 The structure descmix3 is used to describe the modifications in the isotopic composition of a mixture taken from an old MICROLIB data structure Table 15 Structure descmix3 MIX matnum matold relden dens where MIX keyword to specify the number identifying the next mixture to be updated If no mixture is specified then all the mixtures are updated matnum mixture identifier on MICLIB matold mixture identifier on MICOLD When matold is not specified this mixture is not updated relden relative density of updated mixture The concentration of each isotope in the mixture will be IGE 174 Rev 12 Release 3 061 25 multiplied by this factor independent of the fact that the original concentrations were defined in MICLIB MICOLD or is specified explicitly using dens NAMALI characterx8 alias name for an isotope on MICLIB to be modified dens isotopic concentration of the isotope NAMISO in the current mixture in 10 4xcm7 When dens gt 0 the isotopic concentration for this isotope becomes dens x relden while all the other isotopes are multiplied by relden only When dens 1 0 the isotopic concentration of this i
255. ponential function used for specular collision probability calculations Tracks will be cut at a length such that the error in the probabilities resulting from this reduced track will be of the order of pcut By default the tracks are extended to infinity and pcut 0 0 If this option is used in an entirely reflected case it is recommended to use the NORM command in the ASM module keyword to specify that a gaussian quadrature for the polar integration is to be used Used by the method of characteristics with cyclic tracking keyword to specify that optimized polar integration angles are to be selected This is the default option Used by the method of characteristics with cyclic tracking keyword to specify that CACTUS type equal weight polar integration angles are to be selected 3 Used by the method of characteristics with cyclic tracking keyword to specify that CACTUS type uniformly distributed polar integration angles are to be selected Used by the method of characteristics with cyclic tracking the polar quadrature order Used by the method of characteristics with cyclic tracking keyword to specify the tracking parameters to be used keyword to specify the corner cutoff corner cutoff cm Track redistribution will take place if the minimum distance between a line and the point of intersection of n gt 2 external surfaces is smaller than the corner cutoff In this case the line will be replicated n times each of these lines being
256. py for the scattering cross sections number of Legendre orders for the representation of the scattering cross sections Isotropic scattering is represented by naniso 1 while naniso 2 represents linearly anisotropic scattering The linearly anisotropic scattering contributions are generally taken into account via the transport correction see CTRA keyword in the transport calculation For or leakage calculations the linearly anisotropic scattering cross sections are taken into account explicitly The default value is naniso 2 keyword to specify that only prompt neutron are to be considered for the calculation of the fission spectrum By default the contributions due to delayed neutron are also considered This option is only compatible with a MATXS or MATXS2 format library keyword to specify the input of additional cross sections to be treated by DRAGON These cross sections are not needed to solve the transport equation but are recognized by the EDI module see Section 3 9 number of types of additional cross sections character 6 name of an additional cross section type This name also corresponds to vector reactions in a MATXS and MATXS2 format library not automatically recognized by DRAGON For example VT O NWT1 Po P library weight functions TOTO NTOT1 Po P weighted neutron total cross sections LAS Neutron elastic scattering cross sections MT 2 NEL Neutron inelastic scattering cross sections MT 4 Neut
257. r fission for this mixture follows multigroup macroscopic fission cross sections multiplied by the average number of neutrons per fission vX2 cm for fissile spectrum i and mixture m fim keyword to specify that the macroscopic fission cross sections for this mixture follows multigroup macroscopic fission cross sections Y im in 1 for fissile spectrum i and mixture m keyword to specify that the fission spectrum for this mixture follows multigroup fission spectrum for fissile spectrum and mixture m keyword to specify that fixed neutron source densities for this mixture follows multigroup fixed neutron source densities 99 in 3 for mixture m keyword to specify that adjoint fixed neutron source densities for this mixture follows multigroup adjoint fixed neutron source densities 5 12 in for mixture m keyword to specify that fixed generalized adjoint neutron source densities for this mixture fol lows multigroup generalized adjoint fixed neutron source densities 57 in em for mixture m keyword to specify that the macroscopic scattering cross section matrices for this mixture fol lows array that provides the number of groups 0 for which macroscopic scattering cross section x5 towards the group h will be provided for each anisotropy level associated with this mixture The scattering cross sections for the remaining groups vanish array that provides the group inde
258. r of basis point for the numerical integration of the collision probabilities in the micro volumes using the Gauss Jacobi formula The values permitted are 1 to 20 24 28 32 or 64 The default value is iquab 5 3 4 5 The JPMT specific tracking data Table 34 Structure descjpm MAXR maxreg MAXJ maxcur MAXZ maxint HALT OLD IP00 SP01 01 QUA1 iqual QUA2 iqua2 nsegment EOW GAUS ROTH DPO1 ASKE LIGN RECR BPO1 QUAB iquab where MAXR see Section 3 4 4 maxreg see Section 3 4 4 MAXJ see Section 3 4 4 maxcur see Section 3 4 4 MAXZ see Section 3 4 4 This option is not used for cluster geometries maxint see Section 3 4 4 OLD keyword to specify that a set of previously calculated collision probabilities saved on TRKNAM is to be recovered This option is of interest in cases where the coolant occupies a region of a complex geometry such as a fuel assembly or bundle and calculations of isotopic evolution burnup or resonance self shielding are required By default all the probabilities are recalcu lated even if only one isotopic mixture is modified HALT see Section 3 4 4 This option is not used for cluster geometries IPOO keyword to specify that an isotropic angular flux between each block is used default option for the TUBEZ geometries SP01 keyword
259. rd to specify that a mesh splitting of the geometry along the X axis is to be performed ispltx array giving the number of zones that will be considered for each region along the X axis If the geometry presents a diagonal symmetry this information is also used for the splitting along the Y axis By default ispltx 1 MESHY keyword to specify the spatial mesh defining the regions along the Y axis 174 Rev 12 Release 3 061 32 SPLITY isplty MESHZ 777 SPLITZ ispltz RADIUS IIT SPLITR ispltr OFFCENTER disxyz SIDE P sideh hexmsh SPL ITH isplth NPIN npins array giving the Y limits cm of the regions making up the geometry These values must be given in order from Y to Y keyword to specify that a mesh splitting of the geometry along the Y axis is to be performed array giving the number of zones that will be considered for each region along the Y axis By default isplty 1 unless a diagonal symmetry is used in which case isplty ispltx keyword to specify the spatial mesh defining the regions along the Z axis array giving the Z limits cm of the regions making up the geometry These values must be given in order from Z to 2 keyword to specify that a mesh splitting of the geometry along the Z axis is to be performed array giving the number of zones that will be considered for each region along the Z axis
260. ref 87 78 80 PREFIX 82 PRIM 56 PROCEDURE M 5 PROCEL M3 MA PROM 6 07 PSGEO 90 5 90 PSP vil 6 8 52 90 P 1 181 5 48 50 UR 83 84 urity 83 84 uT 97 99 IR rg g D US UA1 521 55 UA2 52155 UAB 6255 000 R 66 67 29 R120 29 30 R180 9 30 RADIUS 31 32 RATE 72 75 RDEPCHN 16 18 reaction 20 READ IH REBA 64 65 93 54 55 RECR RECT 52 RE ES REFGEO 71 IGE 174 Rev 12 Release 3 061 EFL 29 EFPIJ 71 72 EGI 72 74 89 93 94 103 EGION 91 EGIONS 100 relden 24 25 relvol 2 1 3 REND 47 48 RENM 4718 RENO 47 48 103 104 36 42 103 RGB 9 1 RHOC 87 88 RHOM 87 88 RNAME 87 RNANE 87 ROT 52 ROTH 52 RP IN 31 33 rpins 31 3 rrr 162 IS RUNG 78 81 iPE EP S S 64 68H70 78 79 2 93 530 29 30 590 29 80 180 29 BI 29 30 SAD 92 SAD vil 6892195 SAJO 69 SAJ1 69 SAT 78 80 SATOFF 78 80 sAvE 72 74 75 78 79 82 03H95 sB180 D9 31 5 60 29 30 93 SCAT I3l 14 94 SCR 70 71 SELE 76 77 03104 ASCII SEQ_BINARY 4 5 SET 78 79 SHI
261. region All the sub geometries or regions with the same global number will be attributed the same flux TURN keyword to specify that some sub geometries must be rotated in space before being located at a specific position HTURN array of character 1 keywords to rotate conveniently each sub geometry The letters to L are used as keywords to specify these rotation For Cartesian geometries the eight possible orientations are shown in figure Figure 9 while for hexagonal geometries the orientations avail able are illustrated in figure Figure For 3 D cells the same letters can be used to describe the rotation in the X Y plane However an additional sign can be glued to the 2 D rotation identifier to indicate reflection of the cell along Z axis A to L CLUSTER keyword to specify that pin sub geometry will be inserted in the geometry see Figure 1 1 NAMPIN array of sub geometry character 12 names representing pins These sub geometries must be of type TUBE TUBEX TUBEY or TUBEZ 3 3 6 Non standard geometries The structure descNSG provides the possibility to define non standard geometries such as double heterogeneity and do it yourself assemblies see Table 24 IGE 174 Rev 12 Release 3 061 43 Table 24 Structure descNSG ET TUB E SPHE nmistr nmilg i 1 nmistr rs i 7 j 1 ns i 1 i 1 nmistr milie i 1 nmilg 7 i 1 nmil
262. results in the assembly being unfolded along the reflective boundary Accordingly SSYM implies the use of a mirror like reflection IGE 174 Rev 12 Release 3 061 30 TRAN SYME DIAG ALBE albedo icode HBC S30 SA60 SB60 S90 R120 R180 keyword to specify that periodic boundary conditions are considered The surface under con sideration is therefore connected to the opposite surface in the Cartesian domain The only combinations of periodic boundary conditions permitted are e Periodicity along the X axis X TRAN X TRAN e Periodicity along the Y axis Y TRAN Y TRAN e Periodicity along the Z axis Z TRAN 2 TRAN keyword to specify that the Cartesian surface under consideration is virtual and that a reflection symmetry is associated with the axis running through the center of the cells closest to this surface keyword to specify that the Cartesian surface under consideration has the same properties as that associated with a diagonal through the geometry Note that two and only two DIAG surfaces must be specified The diagonal symmetry is only permitted for square geometry and in the following combinations DIAG Y DIAG or DIAG Y DIAG keyword to specify that the surface under consideration has an arbitrary albedo For most calcu lations this implies white boundary conditions The main exception to this rule is when cyclic tracking in 2 D is considered Note t
263. ron capture cross sections MT 102 DEL Number of delayed secondary neutron Nu D MT 455 SLO v slow fission cross section EAT Heat production cross section IS CHID Slow delayed fission spectrum NNF N2NEF N3NF vxpartial fission cross sections MT 19 20 21 and 38 Q2Z22222222 I G U F H H E z IGE 174 Rev 12 Release 3 061 18 CDEPCHN RDEPCHN DEPL MIXS LIB DRAGON MATXS MATXS2 WIMSD4 WIMS WIMSAI FIL ECL NAMEFIL 1 descde pl N2N N3N N4N n 2n n 3n n 4n cross sections MT 16 17 and 37 NP NA n p and n o transmutation cross sections MT 103 and 107 By default DRAGON will always attempt to recover the NG and NHEAT cross sections since they may be required for depletion calculations keyword to specify that a complete depletion chain is to be considered As a result the isotopes in a depletion chain specified by keyword DEPL not present in a mixture containing burnup material will be added automatically with 0 0 concentrations This is the default option when the keyword DEPL is activated These isotopes will be flagged as non resonant To ensure that the resonant isotopes are processed by the self shielding module see Section 3 5 they must be inserted manually in the mixture with 0 0 concentration and flagged as such associate a resonant region to the isotopes keyword to specify tha
264. ry CARSPIN which is based on CARPIN can only be treated by the EXC and NXT tracking modules The tracking modules since the pins in the clusters intersect the annular regions defined by the SPLITR option Finally for the geometry CAROP IN which is based also based on CARP IN can only be treated by the NXT modules because some pins are located outside the last annular regions in the cell ANNPIN GEO TUBE 3 REFL RADIUS 0 0 0 75 2 75 4 75 MIX 21 3 CLUSTER C1 C2 C1 GEO TUBE 2 MIX 2 4 RADIUS 0 0 0 3 0 6 NPIN 4 RPIN 1 75 APIN 0 523599 G R EO CI PIN 3 75 APIN 1 570796 GEO ANNPIN SPLITR 3868 EO CARCE X REFL X REFL Y REFL REFL MESHX 0 0 10 0 tracking IGE 174 Rev 12 Release 3 061 MESHY 5 0 5 0 107 RADIUS 0 0 0 75 2 75 4 75 MIX 213 3 CLUSTER Cl C2 C1 GEO TUBE 2 MIX 2 4 RADIUS 0 0 0 3 0 6 NPIN 4 1 75 APIN 0 523599 C2 GEO Cl NPIN 2 RPIN 3 75 APIN 1 570796 CARSPIN GEO CARPIN SPLITR 3 8 8 CAROPIN GEO CARPIN RADIUS 0 0 0 75 2 75 2 75 Note that even if MESHX and MESHY differ in CARP IN the annular regions and pins will still be localized with respect to the center of the cell located at x y 5 0 0 0 cm e 2 D hexagonal geometry see Figure 15 This geometry can be analyzed using the JPMT SYBILT and EXCELT tracking modules HEXAGON GE
265. s It can be a stand alone structure or it can be included into a larger structure such as a MICROLIB or an EDITION structure When used by a DRAGON module it must be stored either in a linked list or an XSM file It can be created by the MAC LIB and EDI modules It can also be modified by the SHI and EVO modules Such a structure either stand alone or as part of a MICROLIB is also required for a successful execution of the ASM and FLU modules MICROLIB a standard data structure used by DRAGON to transfer microscopic and macroscopic cross sec tions between its modules It always includes a MACROLIB substructure It can be a stand alone structure or included into a larger structure such as an EDITION structure When used by a DRAGON module it must be stored either in a linked list or an XSM file It can be created by the LIB and EDI modules It can also be modified by the MAC SHI and EVO modules GEOMETRY a standard data structure used by DRAGON to store the geometry description It can be a stand alone structure or included into a larger structure such as another GEOMETRY structure When used by a DRAGON module it must be stored either in a linked list or an XSM file It is created by the GEO module It is required for a successful execution of the modules JPMT SYBILT EXCELT EXCELL NXT BIVACT It can also be used by the PSP module EXCELT compatible 2 D geometries TRACK
266. s 1074 keyword to specify a solution of the depletion equations using the 5t order Runge Kutta algo rithm keyword to specify a solution of the depletion equations using the 4 order Kaps Rentrop algorithm This is the default value keyword that specifies that time independent cross sections will be used A time dependent flux distribution will also be considered This is the default option when no time dependent cross sections are provided keyword that specified that time dependent cross sections will be used if available This is the default option when time dependent cross sections are provided keyword that specified that time independent cross sections and fluxed will be used keyword to specify that the global energy produced will be taken into account if available This is the default option keyword to specify that only the energy produced in the fuel will be taken into account even if energy production outside the fuel is available keyword for power extrapolation when fixed power burnup is selected 3 11 The CPO module The CPO module is used to generate a reactor cross section database in the COMPO format that can be used for full core calculation using DONJ The input specifications for this module are presented in Table Table 54 Structure CPO CPONAM CPONAM EDINAM BRNNAM desccpo CPONAM EDINAM BRNNAM desccpo characterx12 name of the CPO data structure conta
267. s Will be given by e SPHERE geometry e TUBE geometry e TUBEX geometry e TUBEY geometry e TUBEZ geometry e CARID geometry e CAR2D geometry 34 lx 5 ispltx i i 1 ly y Y isplty i i 1 amp Li ispltz i i 1 Ir Ly M ispltr i Ly lh 6xnh ifnhr gt 1 6 isplith otherwise Dogs d Dod rn Loss l Ta Lyones Ly IGE 174 Rev 12 Release 3 061 35 without diagonal symmetry Lzones Lily with diagonal symmetry Le Ly 1 _ Le DL L ones n 2 2 e CARCEL geometries Lzones Ly Ly Ly a 1 e CAR3D geometry without diagonal symmetry Lzones Lily L with diagonal symmetry _ L 1 Ly L Lrones n e CARCELX geometry Lyones ES LzLyL Ly E 1 e CARCELY geometry Lzones LzLyLz Lr s 1 e CARCELZ geometries Lzones LzLyL Lr 1 e HEX geometry Lyones Lp e HEXT geometry Lyones Li IGE 174 Rev 12 Release 3 061 e HEXCEL geometries Lones Lr 1 e HEXZ geometry Lzones e HEXTZ geometry Lzones L L e HEXCELZ geometries Lzones L Lr 1 36 For cluster geometries only one region is associated with each zone in a pin even if this pin is repeated npins times 3 3 5 Physical properties of geometry In addition to specifying th
268. s sections stored in MACROLIB to a GOXS format binary file The general format of the MAC input data structure is the following Table 2 Structure MAC MACLIB MAC MACLIB descmac descmaci MICLIB MAC MICLIB descmac descmaci MACLIB MAC MACLIB OLDLIB descmac descmacm MICLIB MAC MICLIB OLDLIB descmac descmacm The first form is for the case where a single MACROLIB is involved creation or update the second form corre sponds to the case where a single MICROLIB is to be updated the third form is valid when two MACROLIB are to be combined and finally the fourth form is used to combine two MICROLIB The meaning of each of the terms above is MACLIB characterx12 name of a MACROLIB that will contain the macroscopic cross sections When MACLIB is created all macroscopic cross sections are first initialized to zero MICLIB characterx12 name of a MICROLIB Only the MACROLIB data substructure of this MI CROLIB is then updated This is used mainly to associate fixed sources densities with various mixtures If any other cross section is modified for a specific mixture the microscopic and macroscopic cross sections are no longer compatible One can return to a compatible library using the library update module see SectionB 2 OLDLIB characterx12 name of a MACROLIB or a MICROLIB that will be used to update or create a MACROLIB Or MICROLIB descmac general MAC proces
269. see Section 3 4 descsad structure containing the input data to this module see Section 3 16 1 3 16 1 Data input for module SAD EDIT iprint Table 69 Structure descsad INIT OFF ON fluxes i g i 1 nregio g 1 ngroup LX PAF AF E N S K ER maxthr epsthr TE maxout epsout continued on next page IGE 174 Rev 12 Release 3 061 93 Structure descsad continued from last page UNK ACC TAK SAV CON MER T epsunk REBA OFF E nlibre naccel EGPA epsgpa CGPA congpa E NCOR D NONE icond g energy g g 1 COMP NONE MIX imixt i i 1 Nm ireg i i 1 N 1 E MIX imixt i i 1 Nm REGI ireg 1 SEL E NONE ALL TOTAL TRANC NUSIGF NFTOT SCAD EDIT keyword used to modify the print level iprint iprint index used to control the printing of this module The amount of output produced by this tracking module will vary substantially depending on the print level specified INIT see Section 3 7 1 OFF see Section 3 7 1 ON see Section 3 7 1 fluxes see Section 3 7 1 FLX see Section 3 7 1 PAF see Section 3 7 1 AF see Section 3 7 1 TYPE see Section 3 7 1 N see Section 3 7 1 5 see Section 3 7 1 K see Section 3 7 1 THER see Section 3 7 1 maxthr see Section 3 7 1
270. sing instructions see Section 3 1 1 descmaci instructions to read the macroscopic cross sections from the input data stream see Section 3 1 2 descmacm instructions to transfer the macroscopic cross sections from OLDLIB to MACLIB or MICLIB see Section 3 1 3 IGE 174 Rev 12 Release 3 061 10 3 1 1 The descmac input structure for MAC The descmac input structure takes the form Table 3 Structure descmac EDIT iprint NMIX nmixt NIF1 nifiss ANIS naniso Here EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module It must be set to 0 if no printing on the output file is required The macroscopic cross sections can be written to the output file if the variable iprint gt 2 The transfer cross sections will be printed if iprint gt 5 The normalization of the transfer cross sections will be checked if iprint gt 10 NMIX keyword used to define the number of material mixtures This information is required when the number of mixtures on the MACLIB is to be increased When MACLIB is in creation mode one assumes that at least one mixture will be added and nmixt 1 When MACLIB is in update mode nmixt is selected as the maximum mixture number currently stored on MACLIB nmixt the maximum mixture number a mixture is characterized by a unique set of macroscopic cross sections that will be defined in this execution of the MAC module The value e
271. sotope is not updated while all the other isotope concentrations are multiplied by relden 3 3 The GEO module The GEO module is used to create or modify a geometry All the characteristics dimensions region contents and boundary conditions of simple or complex geometries are specified using this module The specifications of the geometry are independent of the tracking module to be used subsequently Each geometry is stored in a GEOMETRY data structure under its given name Once a geometry has been specified it can be updated through a new call to the GEO module The calling specifications to create a geometry with the GEO module are provided in Table 16 while Table 17 and Table I8 describe respectively the format required to modify or import a geometry Table 16 Structure GEO to create a geometry GEONAM GEO descgtyp descgent Table 17 Structure GEO to modify an existing geometry GEONAM GEO GEONAM descgent Table 18 Structure GEO to import and modify an existing geometry GEONAM EO OLDGEO descgcnt The definition of the parameters used in Tables I6 to IT8 follows GEONAM characterx12 name of the GEOMETRY created or modified OLDGEO characterx12 name of a read only GEOMETRY The type and all the characteristics of OLD GEO are first copied to GEONAM before this later geometry is modified IGE 174 Rev 12 Release 3 061 26 descgtyp structure describing t
272. supercell with control rods 12 Structure descdepl 13 Structure descmix1 14 Structure descmix2 15 Structure descmix3 19 Structure descgtyp 21 Structure descBC 22 Structure descSP 23 Structure descPP 25 Structure EXCELT 27 Structure JPMT 28 Structure SYBILT 20 Structure BIVACT 31 Structure descexcel 32 Structure descnxt 33 Structure descsybil 34 Structure descjpm 35 Structure descbivac 36 Structure SHI 38 Structure ASM 39 Structure EXCELL 41 Structure descXL 42 Structure FLU 43 Structure descflu 45 Structure MOCC 47 Structure descmoc 48 Structure descmcu 49 Structure EDI 16 Structure GEO to create a geometry 17 Structure GEO to modify an existing geometry 18 Structure GEO to import and modify an existing geometry IGE 174 Rev 12 Release 3 061 List of Tables 174 Rev 12 Release 3 061 x 50 Structure descedi 51 Structure 76 52 Str cture EVO 5 ob osos dei d bob db 78 53 _ Structure uo como Ron done 78 54 Structure CPO 22 cae ue HULL eR Let ee ee Mee eed Lib wed gu 81 55 structure 5
273. t Cartesian region i j k 7 1 for the mixture outside the annular regions but inside Cartesian region i j from surface X to surface X i 1 lx for each 7 and from surface Y to surface Y j 1 for each from surface Z to surface Z k 1 lz EX geometry Ih The real and virtual mixtures or the cells are given in the order provided in Figures 2 to 7 HEXT geometry N 6 nhr The real and virtual mixtures are given in the following order IGE 174 Rev 12 Release 3 061 41 1 from each triangle J 1 2 x nhc 1 in hexagonal crown i of sector j Figure l illustrates region and surface ordering in the case where the default value of hexmsh is used and Figure 8 the same information when a different value of hexmsh is provided 2 from each crown in sector 7 3 for each sector j 1 6 e HEXCEL geometries Ir 1 The real and virtual mixtures are given in the following order 1 radially outward l 1 Ir 2 17 1 for the mixture outside the annular regions but inside the hexagonal region e HEXZ geometry lh x Iz The real and virtual mixtures or the cells are given in the following order 1 according to Figures 2 to 7 for plane k 2 from surface Z to surface 7 k 1 12 e HEXTZ geometry 6 x nhr x Iz The real and virtual mixtures are given plane by plane in the the same order
274. t a reduced depletion chain is to be considered As a result the isotopes in a depletion chain specified by keyword DEPL not present in a mixture containing burnup material will not be added automatically keyword to specify that the isotopic depletion burnup chain is to be read For a given LIB execution only one isotopic depletion chain can be read keyword to specify that the mixture description is to be read For a given LIB execution more than one cross section library can be read The energy group structure of the two libraries must be compatible For burnup calculations the depletion chain of the two libraries must also be compatible keyword to specify the type of library from which the isotopic depletion chain or microscopic cross section is to be read It is optional when preceded by the keyword DEPL in which case the isotopic depletion chain is read from the standard input file keyword to specify that the isotopic depletion chain or the microscopic cross sections are in the DRAGLIB format 7 keyword to specify that the microscopic cross sections are in the MATXS format of NJOY II and NJOY 89 no depletion data available for libraries using this format keyword to specify that the microscopic cross sections are in the MATXS format of NJOY 91 no depletion data available for libraries using this format keyword to specify that the isotopic depletion chain or the microscopic cross sections are in the WIMS D4 format
275. t on the burnup file descmix2 input structure describing perturbations to the isotopic and physical properties of a given mixture see Section 3 2 6 3 2 4 Depletion data structure The structure descdepl describes the radioactive decay and neutron activation chain to be used in the isotopic depletion calculation Table 12 Structure descdepl CHAIN NAMDPL izae DECAY dcr reaction energy STABLE FROM DECAY reaction yield NAMPAR J J ENDCHAIN with CHAIN keyword to specify the beginning of the depletion chain NAMDPL characterx12 name of an isotope or isomer of the depletion chain that appears in the cross section library izae six digit integer representing the isotope The first two digits represent the atomic number of the isotope the next three represent its mass number and the last digit indicates the excitation level of the nucleus 0 for a nucleus in its ground state 1 for an isomer in its first exited state etc For example 2380 in its ground state will be represented by izae 922380 STABLE non depleting isotope DECAY indicates that a decay reaction takes place either for production of this isotope or its depletion dcr radioactive decay constant in 107 s 1 of the isotope By default 0 0 reaction characterx6 identification of a neutron induced reaction that takes place either for produc tion of this isotope its depletion or
276. t using an order npol trapezoidal quadrature over 9 0 lt 9 lt 7 2 IGE 174 Rev 12 Release 3 061 52 1 the polar quadrature order dens real value representing the density of the integration lines for 2 D cases and for 3 D cases cases This choice of density along the plan perpendicular to each angle depends on the geometry of the cell to be analyzed If there are zones of very small volume a high line density is essential This value will be readjusted by NXT NOTR keyword to specify that the geometry will not be tracked This is useful to verify if the geometry is adequate can be processed by the module before the tracking process as such is undertaken For 2 D geometries the tracking data structure generated can be used directly by the PSP module see Section 3 15 to illustrate the geometry NBSLIN keyword to change the default value for the maximum number of segments per lines nbslin maximum number of segments per lines By default nbslin 100000 LONG keyword to specify that a long tracking file will be generated This option is required if the tracking file is to be used by module see Section 3 19 3 4 4 The SYBILT specific tracking data Table 33 Structure descsybil MAXR maxreg maxcur MAXZ maxint HALT QUAI iqual QUA2 iqua2 nsegment EQW GAUS ROTH DPO1 ASKE LIGN QUAB iquab
277. ted by the structure DRAGON e A standard DRAGON data structure represents a set of records and directory stored in a hierarchical format on a direct access XSM file or in memory via a linked list 4 It is identified by a name in small capital letters For example the data structure ASMPIJ contains the multigroup collision probability matrices generated by the ASM module of DRAGON IGE 174 Rev 12 Release 3 061 4 The variables presented using the typewriter font are character variables used as keywords For example GEO is the keyword required to activate the geometry reading module of DRAGON The variables in italics are user defined variables When indexed and surrounded by parenthesis they denote arrays If they are in lower case they represent either integer type starting with i to or real type starting with a to or o to z variables If they are in upper case they represent character type variables For example iprint must be replaced in the input deck by an integer variable energy g g 1 ngroup 1 states that a vector containing ngroup 1 real elements is to be read while FILE must be replaced by a character variable its maximum size being specified No character variable can exceed 72 characters in length The variables or structures surrounded by single square brackets are optional The variables or structures surrounded by double square brackets are also optional However they can be repeated as many t
278. that the micro reversibility principle is valid for all energy groups This option is valid only if scattering cross sections are available on the original library keyword to specify that a WIMS AECL type transport correction 20 based on the linearly anisotropic scattering cross sections will be computed and used for the total and isotropic scatter ing cross sections This correction assumes that the micro reversibility principle is valid only for groups with energies less than 4 0 eV For the remaining groups a 1 E flux spectrum is consid ered in the evaluation of the transport correction In addition for WIMSD4 and WIMS AECL libraries linearly anisotropic scattering cross sections diagonal term only are generated in the cases where the transport correction differs from 0 0 and no anisotropic scattering cross sections are provided on the original library This option was inserted for compatibility with the WIMS transport correction implemented in older versions of DRAGON keyword to specify that the transport correction Oem is to be used for the total and isotropic scattering cross sections This type of correction reads directly the transport correction cross sections provided on the original library This information is available only in WIMSD4 and WIMS AECL format libraries In the case where a library of another type is considered this correction is identical to the OLDW option keyword to specify the maximum level of anisotro
279. the burnup calculation By default xti is the final time reached at the last depletion step If this is the first depletion step xti 0 The name of the sub directory EVONAM where this information is stored will be given by WRITE EVONAM A8 I4 DEPL DAT inn where inn is an index associated with the time xti time interval for burnup calculation The initial time xti in this case is taken as the final time reached at the last burnup step If this is the first depletion step xti 0 end of time for the burnup calculation The results of the isotopic depletion calculations are stored in the tables associated with a sub directory whose name is constructed in the same manner as the xti input In the case where the time interval dxt is provided then xtf xti dxt time associated with the last transport calculation The name of the sub directory where this information is to be stored is constructed in the same manner as the for xti input By default fixed default xts xti time associated with the next flux calculation The name of the sub directory where this infor mation is to be stored is constructed in the same manner as for the xti input By default fixed default xtr xtf keyword to specify that the time is given in seconds IGE 174 Rev 12 Release 3 061 80 DAY YEAR COOL FLUX flux POWR power W CC WCC 51 valeps 1 EPS2 valeps2 EXPM valexp SATOFF NSAT
280. the transport correction option for self shielding calculations see CTRA in SectionsB3 T and B 2 LEVE keyword to specified the self shielding correction option When this option is not specified the option level 0 is selected level the self shielding correction option The following values are allowed 1 1 the original Stamm ler model model is used 1 1 the original Stamm ler model with Nordheim approximation is used level 2 the Stamm ler model with Nordheim approximation and Riemann integration is used 68 PIJ keyword to specify the use of complete collision probabilities for the JPMT tracking option By default a fast reconstruction algorithm based on sparse matrix algebra is used for this tracking option 3 6 The assembly modules DRAGON contains two assembly modules ASM and EXCELL that are used to prepare the group depen dent complete collision probability or the assembly matrices required by the flux solution module The ASM module first recovers tracking lengths and material numbers from the sequential tracking file and then computes the collision probability matrices associated with the problem The EXCELL module which is programmed to enhance the capability and performance of collision probability calculations can also be used to perform the work of both the EXCELT and the ASM modules for computing collision probabilities in 3 D geometries As a result EXCELL module does n
281. ther modules via the data structures Finally the execution is terminated by calling the END module This is true even if additional data records may be present in the input data stream The general input data structure therefore follows the calling specifications given below Table 1 Structure DRAGON MODULE MODNAME i i 1 Nm LINKED LIST STRNAME i 1 XSM FILE STRNAME i 1 Nx EQ BINARY STRNAME i i 1 Ng EQ_ASCII STRNAME i i 1 NA ROCEDURE PROCNAME i i 1 Nm module END where MODULE keyword used to specify the list of modules to be used in this execution IGE 174 Rev 12 Release 3 061 5 MODNAME LINKED_LIST XSM_FILE SEO BINARY SEQ ASCII STRNAME PROCEDURE PROCNAME module END list of character 12 name of DRAGON or utility module The list of DRAGON module is provided in Section 2 3 while the utility modules are provided in the GANLIB user guide Ul The number of module declared Nu depends on the particular application of DRAGON keyword used to specify the data structures that will be stored in linked lists keyword used to specify the data structures that will be stored in XSM format files keyword used to specify the data structures that will be stored in sequential binary files keyword used to specify the data structures that will be stored in sequential ASC
282. tion The fixed default value is ep sunk keyword used to specify that the flux rebalancing option is to be turned on or off in the thermal iteration By default floating default the flux rebalancing option is initially activated This keyword is required to toggle between the on and off position of the flux rebalancing option keyword used to deactivate the flux rebalancing option When this keyword is absent the flux rebalancing option is reactivated keyword used to modify the variational acceleration parameters This option is active by default floating default with nlibre 3 free iterations followed by naccel 3 accelerated iterations number of free iterations per cycle of nlibre naccel iterations number of accelerated iterations per cycle of nlibre naccel iterations Variational acceleration may be deactivated by using naccel 0 This is required when the NOR2 is used in the ASM module see Section 3 6 1 keyword to specify that the control parameters for the generalized adjoint flux iteration are to be modified relative convergence criterion for the adjoint flux The explicit convergence criteria for the gen eralized adjoint will be given by epsgps x epsunk By default epsgps 10 keyword to specify the contamination factor for the generalized adjoint contamination factor for the adjoint flux By default congpa 100 keyword to activate or deactivate the decontamination option keyword used to deactivate the
283. tion directory stored in EDINAM via the SAVE option in the EDI module is to be transferred to CPONAM NOMDIR characterx12 name of the specific cross section directory to be treated BURNUP keyword to specify that a chain of cross section directory stored in EDINAM via the SAVE option in the EDI module will be transferred to CPONAM PREFIX characterx8 prefix name of the cross section directory to be treated DRAGON will transfer into the reactor database all the directories with full name NAMDIR created using WRITE NAMDIR 8 14 PREFIX nb where nb is an integer greater than 0 indicating the depletion step index EXTRACT keyword to specify that the contribution of some isotopes to the macroscopic cross sections associated with each homogenized mixture must be extracted before being stored on the reactor database The microscopic cross sections and concentrations associated with these isotopes will also be generated and stored on the reactor database ALL keyword to specify that all the isotopes processed using the MICR option of the EDI mod ule should be extracted from the macroscopic cross sections associated with each homogenized mixture NEWNAME characterx12 name under which a given set of extracted isotope will be stored on the reactor database IGE 174 Rev 12 Release 3 061 83 OLDNAME array of character 8 name of isotopes to be extracted from the macroscopic cross section associated with each homogen
284. tion purposes l The first four tracking modules can be used to generate the information required for a solution to the transport equation The last module BIVACT can only be used in the EDI module since it is not compatible with the flux solution FLU and self shielding SHI modules The general information resulting from these tracking modules is stored in a TRACKING data structure For the JPMT EXCELT and NXT modules an additional sequential binary tracking file may be generated None of these modules can analyze all the geometries that can be defined with the GEO module In general some restrictions apply to each tracking option as a function of the approximations associated with the specific transport solution method For instance e Geometries that can be analyzed by the module EXCELT a 2 D geometries CAR2D and HEX that contain sub geometries CARCEL and HEXCEL respectively b 2 D cluster geometries corresponding to a TUBE sub geometry superimposed on a global TUBE CARCEL or HEXCEL geometry here the main restriction is that the pins are fully located inside the annular part of the cell and they do not overlap even if they can overlap internal annular regions IGE 174 Rev 12 Release 3 061 45 3 D assemblies CAR3D or HEXZ that respectively contain Cartesian annular CARCELX CARCELY and CARCELZ and hexagonal annular sub geometries e Geometr
285. to specify that a linearly anisotropic angular flux between each block is used in com bination with linearly anisotropic boundary conditions default option for all geometries except TUBE SPHERE and TUBEZ IP01 keyword to specify that a linearly anisotropic angular flux between each block is used in com bination with isotropic boundary conditions default option for the TUBE and SPHERE geome tries IGE 174 Rev 12 Release 3 061 25 QUAI iqual QUA2 iqua2 nsegment EQW GAUS ROTH ROT DPOO DPO1 ASKE LIGN RECT RECD RECR BPOO 01 QUAB iquab see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 see Section 3 4 4 keyword to specify the use of the direct reconstruction method for the collision probabilities method with refraction effects Only used when cluster geometries are considered keyword to specify the use of the surface fractioning reconstruction method for the collision probabilities no refraction effect but twice the number of interfaces This is the default option Only used when cluster geometries are considered keyword to specify the use of an isotropic angular flux D Po approximation between the micro volumes making up the micro structures in a case involving th
286. total and isotropic scatter ing cross sections This correction assumes that the micro reversibility principle is valid only for groups with an index greater than that specified by the reference group igroup For the remaining groups a 1 F flux spectrum is considered in the evaluation of the transport correction group number with lowest energy limits which will use a 1 E flux spectrum For the WIMS AECL and WIMS D4 69 groups libraries igroup 27 and the micro reversibility principle is used only for group 28 to 69 keyword to specify the maximum number of physical albedos that will be read These can be used by the GEO module see Section 3 3 the maximum number of physical albedos By default nalbp 0 keyword used for the input of the group independent physical albedo arrays IGE 174 Rev 12 Release 3 061 12 albedp WRIT GOXSWN ENER energy imat GOXSRN DELE INPUT desexs descmpa NORM group independent physical albedo arrays A maximum of nalbp entries can be specified keyword used to write cross section data to a GOXS file characterx7 name of GOXS file to be created or updated keyword to specify the energy group limits energy eV array which define the limits of the groups ngroup 1 elements Generally the first element in the array energy is considered to be the highest energy that can be reached by the neutron keyword for adding increments to existing
287. trovic Calculational and Experimental Investigations of Void Effect A Simple Theoretical Model for Space Dependent Leakage Treatment of Heterogeneous Assemblies Nuclear Science and Engineering 118 194 1994 75 I Petrovic P Benoist and G Marleau A Quasi Isotropic Reflecting Boundary Condition for the Heteroge neous Leakage Model Tibere Nuclear Science and Engineering 122 151 1996 76 G Marleau and E Debos Homogenization of Linearly Anisotropic Scattering Cross Sections in a Consis tent Heterogeneous Leakage Model Nineteenth Annual Conference of the Canadian Nuclear Society Toronto ON 1998 77 G Marleau Coherent Anisotropic Scattering Homogenization in the B Leakage Model M amp C 1999 Con ference on Mathematics and Computation Reactor Physics and Environmental Analysis in Nuclear Applica tions Madrid Spain 1999 Proceedings available on CD Rom 78 A H bert Development of a Second Generation SPH Technique for the Pin by Pin Homogenization of Pressurized Water Reactor Assembly in Hexagonal Geometry Transaction American Nuclear Society 71 253 1994 79 W H Press B P Flannery S A Teukolsky and W T Vetterling Numerical Recipes The art of scientific computing Second Edition FORTRAN Version Cambridge University Press Cambridge MA 1994 80 Marleau Fine Mesh 3 D Collision Probability Calculations Using the Lattice Code DRAGO
288. ture MCU FLUNAM TRKNAM MCU FLUNAM GEONAM LIBNAM TRKFIL descmcu desctrak FLUNAM Mcu FLUNAM TRKNAM TRKFIL LIBNAM descmcu FLUNAM characterx12 name of the FLUXUNK data structure containing the solution If FLUNAM appears on the RHS the solution previously stored in FLUNAM is used to initialize the iterative process LIBNAM characterx12 name of the MACROLIB or MICROLIB data structure that contains macro scopic cross sections see Sections T and 2 TRKNAM characterx12 name of the TRACKING data structure containing the tracking see Section 3 4 TRKFIL characterx12 name of the sequential binary tracking file associated with the TRKNAM TRACKING data structure This file is required if it is produced by the tracking module see Section 3 4 the only exception being when NXT based TRACKING data structure is available GEONAM characterx12 name of GEOMETRY data structure that contains a physical description of the problem to be solved descmoc structure containing the input data for the module see Section 3 8 1 descmcu structure containing the input data for the MCU module see Section 3 8 2 descexcel structure containing the input data for tracking the geometry see Section 3 4 2 3 8 1 Data input for module Table 47 Structure descmoc EDIT iprint EXAC NBPN nl YPE N S K descleak descleak DFLX ON OFF
289. uires a geometry with VOID see Section 3 3 3 external boundary conditions to be closed using ALBS in modules ASM and FLU see Sections 3 6 1 andB 7 1 keyword to specify that the SPH factors are obtained using a transport transport equivalence calculation where the macro geometry is processed using the EXCELT tracking module keyword to specify that the SPH factors are obtained using a transport transport equivalence calculation where the macro geometry is processed using the NXT tracking module keyword to specify that the SPH factors are obtained using a transport transport equivalence calculation where the macro geometry is processed using the SYBILT tracking module keyword to specify that the SPH factors are obtained using a transport transport equivalence calculation where the macro geometry is processed using the JPMT tracking module keyword to specify that the SPH factors are obtained using a transport diffusion equivalence cal culation where the macro geometry is processed using the BIVACT diffusion tracking module This option requires to use one of the keywords LKRD PO P1 BO B1 or BOTR in the flux calculation see Section 3 7 1 so as to supply diffusion coefficients structure of the general tracking options see Section 3 4 1 structure of the EXCELT tracking options see Section 3 4 2 structure of the NXT tracking options see Section 3 4 3 structure of the SYBILT tracking options see
290. ular and hexagonal geometries using the interface current method e the EXCELL tracking module generates the CP and MOC tracking lines for isolated 2 D CANDU fuel clusters and for two or three dimensional assemblies containing mixed rectangular cylindrical cells 1213 e the NXT tracking is a generalization of the EXCELL tracking module to assemblies 2 D and 3 D clusters cells 38 In principle SYBIL is more accurate than JPM due to the fact that it performs a complete calculation of the collision probabilities on the whole or a large part of the domain therefore avoiding the use of an angular approximation for the flux on a large number of interfaces Similarly the standard tracking option of the EXCELL and NXT modules while being more expensive from the point of view of computing time yield results that are more precise than those based on a SYBILT tracking because no approximation is required at region interface Finally the cyclic tracking option programmed in the EXCELL and NXT module provides even better results since it can treat explicitly specular boundary conditions limited to two dimensional rectangular geometry 12191 After the collision probability or response matrices associated with a given lattice have been generated the multigroup solution module can be activated This module uses the power iteration method and requires a number of iteration types 89 The thermal iterations are carried out by DRAGON so as to rebalance the flux d
291. ure is used the values of iqual allowed are 1 to 20 24 28 32 or 64 The default value is iqual 5 keyword to specify the 2 D integration parameters number of basis points for the angular integration of a 2 D cell inserted in an assembly If a Gauss Legendre or Gauss Jacobi formula is used the values allowed for iqua2 are 1 to 20 24 28 32 or 64 The default value is iqua2 6 and represents the number of angles in 0 7 4 for Cartesian geometries and 0 7 6 for hexagonal geometries number of basis points for the spatial integration of a 2 D cell inserted in an assembly The default value is nsegment 3 keyword to specify the use of an equal weight quadrature method keyword to specify the use of the Gauss Legendre or the Gauss Jacobi quadrature method This is the default option keyword to specify that the isotropic D P5 components of the current at cell interfaces is used with the incoming current being averaged over all the faces surrounding a cell The global collision matrix is calculated in a annular model Only used for 2 D assemblies of cells keyword to specify that the isotropic D Po components of the current at cell interfaces is used The global collision matrix is calculated in a annular model Only used for 2 D assemblies of cells keyword to specify that the isotropic D Po components of the current at cell interfaces is used The global collision matrix is computed explicitly Only used for 2 D assemblies o
292. weights wa directional fluxes 9 4 directional adjoints x liia directional generalized adjoints for type l k 2 The scalar fluxes adjoints and generalized adjoints are then given by Na Ds gt Wa Dia a 1 Na 5 Wadi a a 1 Na Wal a 1 174 Rev 12 Release 3 061 Symbols 915 25 45 46 57159 60 63 68 71 78 61 28 76 915 25 28 45 46 671 59 60 63 68 71 78 5 28 2 22 A 100 101 a 100 101 ACCE 64 65 69H71 03 94 ACTI 72 75 ADD II D2 ADED 16 17 69 ADJOINT 226 64 92 93 8 AJCB 69 ALBE 29 30 albedo 29 30 albedp 11 L2 ALBP LI albp 15 LBPG 15 LBS 60H62 66 76 77 LG 60 62 LSB 64 NGL 69 nis L016 1747 66 PIN 31 33 apins 31 33 PLIB1 16 116 7 AREFL 97 60 ASCII 99 102 ASKE 52 ASM fix 59 vj BIBHAS 49 59 60 6466 77 8 7 60 63 72 92 ATMS 83 84 gt D B B 64 66 68 b T00 66 77 227 BOTR 66 77 1 66 77 2 66 67 82 BIHET 43 BINARY 102 BIVACT ix 46 BIVACT WSH7 44148 55 76 77 BP00 54 55 BP01 54 55 BREFL 97 BRNNAM 780981 BRNOLD 5 2024 brnpar 97 BUCK 6
293. will lead to an hexagon subdivided into 6 N identical trangles IGE 174 Rev 12 Release 3 061 28 Ip number of types of cells number of cells inside which a distinct flux will be calculated for a do it yourself type geometry 3 3 2 Geometry contents The structure descgent illustrated in Table is used to define the contents of a geometry dimensions materials boundary conditions As one can see sub geometries included in a geometry can also be defined by calling recursively the module GEO from descgcent embedded module Currently geometries definitions limited to 4 recursion levels and most tracking modules can only process the first two levels Table 20 Structure descgent EDIT iprint descBC descSP descPP descNSG SUBGEO GEO descgtyp SUBGEO OLDGEO descgent The following notation is used in Table EDIT keyword used to modify the print level iprint iprint index used to control the printing in this module It must be set to O if no printing on the output file is required to 1 for minimum printing fixed default value and to 2 for printing the geometry state vector descBC structure defining the boundary conditions associated with a geometry see Section 3 3 3 descSP structure defining the spatial coordinates associated with a geometry see Section 3 3 4 descPP structure defining the physical properties associated with a geometry see SectionB 3
294. x associated with the most thermal group for which macro scopic scattering cross section towards group will be provided for each anisotropy level asso ciated with this mixture IGE 174 Rev 12 Release 3 061 15 xsscat multigroup macroscopic scattering cross sections in cm from the scattering from group g towards group h The elements are ordered in a decreasing order from group number g ilastg to g ilastg nbscat 1 and an increasing order from h 1 to h An example of an input structure for macroscopic scattering cross sections can be found in Section 3 1 5 Multigroup physical albedo definition Table 7 Structure descmpa ALBPG ialbp albp g g 1 ngroup ALBPG keyword to specify that the multigroup physical albedos are to be read ialbp identifier for physical albedo to be read The maximum value permitted for this identifier is nalbp albp multigroup data associated with physical albedo ialbp 3 2 The LIB module The general format of the LIB input data structure is the following Table 8 Structure LIB MICLIB LIB MICLIB desclib MICLIB LIB MICLIB MICOLD desclibupd MICLIB LIB MICLIB desclibbrn The first form is for the case where a single MICROLIB is involved created or updated the second form corre sponds to the case where MICROLIB is updated or created using the information available on a second MICROLIB F
295. x using the cyclic method of characteristics with mirror like boundary conditions for 2 D geometry see Section 3 8 1 22123 solves the transport equation for the flux using the method of characteristics with white boundary conditions for 3 D geometry see Section 3 8 2 performs editing for the flux cross sections and reaction rates see Section 3 9 according to regional homogenization and energy condensation requirements solves the Bateman equations for the time burnup dependent isotopic contents of the mixtures a MICROLIB see Section 3 10 computes the density and isotopic contents of heavy or light water and the isotopic contents of UO or fuels see Section 3 12 creates a simplified reactor cross section database see Section 3 11 creates a reactor cross section database with Feedback coefficients see Section 3 13 9 pre homogenizes a geometry tracked using the module EXCELT NXT see Sectionj3 14 This module can also segment NXT based tracking files for use with multistep CP integration in the ASM module generates PostScript images for 2 D geometries that can be tracked by EXCELT or NXT see Section 3 15 computes the generalized adjoint fluxes associated with homogenized and condensed cross fenem 44 sections see Section 3 16 performs perturbation theory calculations see Section 3 1 7 82541 manages a full reactor execution in DONJ ONE using explicit DRA
296. xt GOXSRN DELE READ INPUT desexs desempa NORM keyword to specify the number of energy groups for which the macroscopic cross sections will be provided This information is required only if MACLIB is created and the cross sections are taken directly from the input data stream the number of energy groups for which macroscopic cross sections will be provided By default ngroup 1 keyword to specify the type of transport correction that should be generated and stored on the MACROLIB All the modules that will read this MACROLIB will have access to this transport cor rection to produce transport corrected cross sections By default there is no transport correction when the MACROLIB is created from the input or GOXS files do not use the transport correction X7 stored on the MACROLIB trm use the transport correction Cm stored on the MACROLIB keyword to specify that an APOLLO type transport correction irm based on the linearly anisotropic scattering cross sections will be computed and used for the total and isotropic scat tering cross sections This correction assumes that the micro reversibility principle is valid for all energy groups This option is valid only if scattering cross sections are available on the MACROLIB keyword to specify that a WIMS AECL type transport correction Erm based on the linearly anisotropic scattering cross sections will be computed and used for the
Download Pdf Manuals
Related Search
Related Contents
ProForm 585 Cse Elliptical User`s manual IBM PC Server Hardware Maintenance Manual Untitled - Lidl Service Website Kurzanleitung Spanish 42-683 Conteúdo - Berlanda この取扱説明書は、脳~ず最終ューザ様までお届けください。 胴 KOHLER K-14511-CP Installation Guide Copyright © All rights reserved.
Failed to retrieve file