Home
User's guide - Applicaties Helpdesk Water
Contents
1. Heen User s Guide SIMPAR SIMONA report number 98 02 Rijkswaterstaat Ministerie van Infrastructuur en Milieu User s Guide SIMPAR SIMPAR calculates the displacement of particles in a two dimensional water flow environment Version 10 43 January 2008 Maintenance see www helpdeskwater nl waqua Copyright Rijkswaterstaat Contents Contents 1 General directions for the use of SIMPAR sscssessssseessseeeseees 3 1 1 Background mformaton ec ceeeesseeeeesneeeeeesseeeeeessaeeeeees 3 1 2 Rectilincar modela 3 1 2 1 A e ee ret ee ana 3 1 2 2 Mathematical description sse sese eee eee 4 1 2 2 1 The Wiener process eee eee 5 1 2 2 2 Fractional Brownian motion sese eee eee eee 6 1 2 2 3 The rectilinear grid T 6 1 3 Curvilinear model U 7 SAS EEE 7 1 3 2 Coordinate transformation of the random walk model 8 1 4 Boundary treatment in SIMPAR sese e eee eee 9 1 4 1 Open boundaries sss sees eee 9 1 4 2 Closed boundaries sese sese 9 1 5 Dissolved versus floating transport 9 16 Involved EE 10 1 7 Simulation time SPA 10 RN D 10 1 9 Momentaneous sources and continuous Sources eee 11 1 10 Geographical aspects sees eee 11 1 11 Release of particles in the environment sese eee eee 11 1 11 1 Source or group 11 1 11 2 Particle property sss sese 12 1 12 Mass disintegration sss eee eee 12 Se Concentr UOn 007 voer verversen edet eveedee 13 1 13 1 Concentration grid nnee eeen
2. ISTEP ival NPTRAC ival IMOVE ival IFIELD ival Note IVELO ival Version 10 43 January 2008 The Input File of SIMPAR Specify 1 if backtracking reverse in time should be done Only allowed if floating particle transport IMODEL 1 advection only IMOVE 1 no cyclic velocity fields IVELO 3 no restart s Default 0 Specifies the maximum number of iterations executed per time step and per particle It is recommended to use the value 2 Default 3 Specifies the number of particle groups It s equivalent to the number of momentaneous sources It does not include the number of continuous sources Default 0 Is an indicator related to the calculation of the time step U user defined fixed time step 1 program determines time step not implemented Default 0 Specifies the number of particles that will be tracked Subsequently for NPTRAC particles the status of each distinct particle the group number of the particle and the serial number must be specified Default 0 Specifies the type of particle movement 1 only advection 2 advection and diffusion Specifies the kind of wind field U lt No extra wind in SIMPAR even if the user had specified wind 1 In case of floating particles global WAQUA wind or space varying wind in SIMPAR In case of cyclic fields a user defined wind Default 0 In case of space varying wind the wind SDS filename and the experiment n
3. 1 70 TIMVAL 2000 1 45 TIMVAL 3000 1 90 29 User s guide SIMPAR WNDVAL val val val val 3 4 1 8 CONTSRCS SRC iseq DATA XYZCRD val val val NPART ival 30 O TIMVAL 6000 1 00 TIMVAL 8000 2 00 Specifies absolute date and time WSPEED and WANGLE DATIME must have a value of 2 in this case Example WNDVAL 19890320 164000 1 90 WNDVAL 19890321 024000 2 70 WNDVAL 19890321 092000 2 45 WNDVAL 19890322 020000 2 90 WNDVAL 19890324 040000 3 0 WNDVAL 19890325 132000 2 0 CONTSRCS optional By means of the KEYWORD CONTSRCS the so called continuous sources will be incorporated in the SIMPAR simulation For each individual group the geographical position the number of particles released per minute and the start time and stop time of the release have to be specified The total number of particles released in each continuous group equals NPART TIMINT Continuous and moment aneous particle sources may be combined in the same SIMPAR simul ation The number of continuous sources is not counted in the KEYWORD NPARG CONTSRCS lt SRC iseq gt DATA XYZCRD voll val val NPART ival TIMINT val val TISSTD val TISSTT val TISEND val TISENT val Labels each continuous source of particles Bundels the data Specifies the position x y z of the continuous source in meters relative to Paris Specifies the
4. Must be between 0 and 1 When 1 2 lt hurst factor lt 1 the motion is persistent For hurstfactor 0 5 we have the random walk movement When 0 lt hurst factor lt 1 2 the motion is anti persistent This parameter needs only to be set if IHURST 2 Default 0 5 Specifies the starting time for particle position output TICONC val TLCONC val 3 4 1 3 SOURCES XYZCRD val val val 3 4 1 4 NUMBERS GROUP iseq ival 3 4 1 5 TRACKS GRELMTfiseq ival Version 10 43 January 2008 SOURCES optional o Specifies the end time for particle position output The Input File of SIMPAR o Specifies the interval time for particle position output O The next KEYWORD is SOURCES It specifies for each distinct momentaneous group NPARG where the origin in model coordinates is situated The number of groups of sources must be equal to NPARG SOURCES lt XYZCRD val val val gt For example in case NPARG 2 SOURCES XYZCRD 51250 00 XYZCRD 51150 00 NUMBERS optional 405750 00 405700 00 25 20 M Specifies the position of the momentaneous sources in meters relative to Paris NPARG must be greater than 0 o By means of KEYWORD NUMBERS the user specifies the number of particles that participates in each distinct momentaneous group This is done by indicating two numbers first the group number and second the number of particles that
5. belongs to that group NUMBERS lt GROUP iseq ival gt TRACKS optional M By means of GROUP the group number is specified o If the user wants to activate the tracking of particles he she can do this by means of the KEYWORD TRACKS If NPTRAC has been given a value greater than 0 then for NPTRAC particles the status of each distinct particle must be specified This means that per particle the group number and the local number must be given TRACKS lt GRELMT iseq ival gt M By means of GRELMT the user specifies a sequential number of a specific group and the particle number of that group Groups are numbered sequentially first all momentaneous sources followed by all continuous sources 27 User s guide SIMPAR 3 4 1 6 TIMES COMP val val TSTOP_WAQCYCLE val STDATE val STTIME val ENDATE val ENDTIM val ENDAT_WAQCYCLE val ENTIM_WAQCYCLE val 28 TIMES mandatory M On behalf of TIMES the user can specify the start and stop time of the particle computation TIMES COMP val val TSTOP_WAQCYCLE val STDATE val STTIME val ENDATE val ENDTIM val ENDAT_WAQCYCLE val ENTIM_WAQCYCLE val By means of the KEYWORD COMP and two points of time respective start time and end time the particle computation period is assigned As an alternative the user also can specify absolute datum s and times STDATE and STIME EN
6. data that originate from another SDS file other than the files mentioned in section 3 4 1 10 By means of the KEYWORD RESTART the simulation process is directed to act on another SDS file First the name SDS file is defined subsequently the name of the experiment and there upon the point of time at which the simulation process must commence The user is allowed to repeat this procedure several times maximum 5 Restart data must be specified with start times in ascending order Note when cyclic WAQUA velocity fields are specified ivelo 3 see 3 4 1 1 restart is not allowed RESTART lt RES iseq gt WAQSDS text EXPWAQ text TIME val RSDATE val RSTIME val Labels restart actions Specifies another WAQUA SDS file Experiment name in above mentioned WAQUA SDS file Start time min of restart with respect to the start time of the base run where DATIME 1 Restart date of a new simulation format yyyymmdd where DATIME 2 Restart time of a new simulation format hhmmss where DATIME 2 35 User s guide SIMPAR 3 4 4 TROUT text 36 OUTPUT Optional Store particle tracking results in an output file OUTPUT TROUT text M Name of the particle tracking output file 4 1 Version 10 43 January 2008 Examples Examples Example 1 Meld eerst eventueel dat U geen echo van alle SIMONA messages op uw scherm wilt set noecho Beperk het aantal SIMONA waarschuwi
7. data are given by the WAQUA water movement model in an SDS file The diffusion part is a stochastic model the particle makes random jumps in the direction of the water flow or in a direction perpendicular to it The size of the jump is determined by chance In a random walk model the diffusion part is based on the Wiener process where the spreading of particles grow linearly with time In a fractional Brownian motion the diffusion part is based on the so called fractional Brownian motion where the spreading of particles varies in time The user can choose either the random walk model or fractional Brownian motion for the simulation Rectilinear model General To model advection diffusion the movement of a single particle is insignificant but the movement of a large collection of particles undergoing drift and random motion is significant The displacement of a particle by drift is determined by a time integration of the WAQUA given flow velocity and the gradients of the bottom topography The random displacement is based on the so called Wiener process in which the particle undergoes a longitudinal in the direction of flow as well as a transversal deviation To this end a random number is drawn for each direction from a probability distribution User s guide SIMPAR Instead of the Wiener process the random displacement can also be based on the fractional Brownian motion Some of the aspects are illustrated in Fig 1 Xy Y 1
8. moment aneous WAQUA velocities as well as Eulerian integrated velocities e The simulation time span in SIMPAR in a cyclic environment is a multiple of the WAQUA simulation time span The WAQUA velocity fields both momentaneous and integrated can be used cyclically in order to calculate the displacement of particles as a consequence of advection This facility has been introduced in order to make long term calculations Wind In the Water Movement Model WAQUA the influence of wind on depth average velocities is taken into account On behalf of the transport simulation of floating particles a facility was created in order to provide an extra contribution of wind on the displacement of particles at the water surface This is done by directly influencing the floating particles through a percentage of the wind velocity by means of a user defined factor Distinction between the following three cases can be made e Simulation of dissolved material The influence of wind on displacement of dissolved particles is already handled by displacement as a consequence of water movements In a cyclic calculation it is impossible to work with an extra windfield within SIMPAR e Simulation of floating material using the actual wind fields of WAQUA The wind which is used by a WAQUA simulation and already has influenced the water movement will be passed on to SIMPAR The additional displacement of particles at the water surface by this wind
9. put back to its old position and a new random step is made This procedure is repeated until the particle stays within the simulation area Fig 4 Particle trajectory along the coast by halving the timestep Dissolved versus floating transport In SIMPAR an option is introduced to discern between dissolved and floating transport of a particle The choice is made by means of the keyword IMODEL see User Input In the case of dissolved transport the spatial variation of the dispersion and the water depth is taken into account This is reflected in the second term of the drift components in equations 13 In the case of floating transport it is not taken into account User s guide SIMPAR 10 1 6 1 7 1 8 Involved files SIMPAR utilizes it s own SDS files In this file all necessary data is stored and will be used for postprocessing activities A subset of this data has been generated by SIMPAR e g position of particles and another subset is copied from the WAQUA SDS file e g geometry and water levels WAQUA information that is actually used in a WAQUA computation but not necessarily used for post processing purposes is only read from a WAQUA SDS file but not copied Simulation time span There are two cases to be considered e The simulation time span in SIMPAR and in WAQUA are identical and is called the actual situation The displacement of particles as a result of advection in SIMPAR will be based on both
10. 1 datime tijden relatief t o v starttijd WAQUA 1 of absoluut 2 Wordt vast op 2 gezet datime 2 Het volgend sub keyword is reals Hier worden alle real constanten opgegeven reals tstep de tijdstap waarmee het programma zou moeten draaien Het programma past tijdens het proces de tijdstap steeds aan aan de uitvoereisen is tstep te groot dan wordt tijdelijk met een ZO danige stap gerekend dat de uitvoer op de juiste tijdstippen beschikbaar komt tstep 10 0 Tijdstap berekenen positie deeltjes tiparw 10 Begindatum tijd berekenen positie deeltjes datfpw 19920929 timfpw 044000 Einddatum tijd berekenen positie deeltjes datlpw 19920929 timlpw 102000 paraa standaard afwijking random verplaatsing in X richting parab standaard afwijking random verplaatsing in Y richting parac standaard afwijking random verplaatsing in Z richting wordt niet gebruikt De waarde van deze parameters doet er niet toe hiervoor wordt in SIMPAR de wortel uit de WAQUA diffusie genomen paraa 0 1 parab 0 03 parac 0 wopfac 00 titrac tijdstap wegschrijven positie te volgen deeltjes datftw begindatum wegschrijven positie te volgen deeltjes timftw begintijd wegschrijven positie te volgen deeltjes datltw einddatum wegschrijven positie te volgen deeltjes timltw eindtijd wegschrijven positie te volgen deelt
11. 13 1 13 2 Pointspread function method 14 1 13 3 Histogram method 15 1 13 4 Total concentratiOn cece eee eee eee 15 EAA OutputresultS geseet ege 15 2 Input description of SIMPAR omoocccconoonccncononocnconcnncnncononacncononacos 17 2 1 General information sese eee eee 17 2 1 1 Conventions use 17 DAD Dada T T nn vereen edere Aad 18 21 21 GEOBA L rederier ites ese Een 18 2122 ROCA RE 19 3 The Input File of SIMPAR ccssssssssssscssssssssssssccsssssssssssssssoees 21 3 1 General Information sss ee essere eee 21 GED EE 21 O Oeste dotes delete electo nd 21 3 4 Main keywords sese eee 21 3 4 1 PARTICLES mandatory nennen 22 3 4 1 1 INTEGERS mandatory eee 22 3 4 1 2 REALS mandatory sese 24 3 4 1 3 SOURCES optional nennen 27 3 4 1 4 NUMBERS optional ee 27 Version 10 43 January 2008 1 User s guide SIMPAR 3 4 1 5 TRACKS optional sees 27 3 4 1 6 TIMES mandatory eee enenneen 28 3 4 1 7 WIND optional sese 29 3 4 1 8 CONTSRCS optional sse eee 30 3 4 1 9 DIFFUSION optional sese eee eee 31 3 4 1 10 MASS optional sese eee eee 33 3 4 2 SDSNAMES Mandatory sees 34 3 4 3 RESTART Optional sese 35 3 4 4 OUTPUT Optional sese 36 4 Examples ssizcccscscocssscscesasscscececscsessensssestoascsesavesssesssescsessnescsessseacss 37 re 37 S GE A A 40 RE 47 6 Appendices ssiscccecsssocsessssoccsesssocsssssseccsssssaccssessascssestescssessesesese 49 6 1 L
12. 3 Bag irection of flow y Yi X Fig 1 Movement of a particle by advection and diffusion Xi Y position of the particle at time t X Y position of the particle at time t 1 advection part 2 diffusion part parallel to the flow direction 3 diffusion part normal to the flow direction 1 2 2 Mathematical description The position see Fig 1 in a cartesian coordinate system x y of a particle which at time to is injected at position LA may be described by the so called stochastic differential equations 1 lt drift part gt lt diffusion part gt in which Em are independent components 2 and 3 of the Wiener process parallel to the direction of flow resp normal to the direction of flow L L Input description of SIMPAR and are the so called components of the drift vector resp the elements of the diffusion matrix 4 lt flow velocity gt lt additional velocity caused by spatial variation of water depth and diffusion gt _ total water depth till bottom L depth mean velocity in x direction L depth mean velocity in y direction D diffusion coefficient _ angle between direction of flow and x axis The first term in the driftvector components is the flow velocity The second term in the driftvector components is an additional velocity as a consequence of spatial variation of water depth and diffusion 1 2 2 1 The Wie
13. 44 grelmt 1 245 grelmt 1 246 grelmt 1 247 grelmt 1 248 grelmt 1 249 grelmt 1 250 times keyword voor aangeven begin en einddatum tijd berekening times stdate begindatum rekenperiode sttime begintijd rekenperiode endate einddatum rekenperiode endtim eindtijd rekenperiode stdate 19920929 sttime 044000 endate 19920929 endtim 102000 diffusion global layout 4 const_value 50 sdsnames keywoord voor aangeven SDS filenaam sdsnames Geef naam le SDS file die gebruikt moet worden met experimentnaam waqsds SDS 99 expwaq 99 parsds PARTIC exppar pasvt Examples 45 User s guide SIMPAR 00005 0000p 0000 000048 00008 0681 ph OOLSLE dA OSGEP dX UOIG Orup 2661 des ez Ggs sojabdo uernuiw pe dexsp n zow yjomseljjoap usznaula UEA SEd 46 References 5 References A W Heemink 1990 1 Stochastic modelling of dispersion in shallow water 2 Stochastic Hydrology and Hydraulics 4 161 174 J W Stijnen H X Lin 2000 1 The Modeling of Diffusion in Particle Models 2 Extension of SIMPAR with Pointspread Functions Version 10 43 January 2008 47 6 1 6 2 Version 10 43 January 2008 Appendices List for further reading User s guide WAQUA Index Concentration Fractional Brownian motion histogram KEYWORD Keywords box celldx comp conlen const_values conwid corner_values d
14. DATE and ENDTIM specify respective absolute start time and end time DATIME must have a value of 2 in this case Specifies the relative end time elapsed minutes after midnight of the WAQUA start date of the WAQUA cycle in case of cyclic WAQUA velocity fields datime 1 and ivelo 3 see 3 4 1 1 Default last WAQUA map time Specifies the start date of particle computation format yyyymmdd Specifies the absolute start time of particle computation format hhmmss Specifies the date when to finish particle computation format yyyymmdd Specifies the absolute time when to finish particle computation format hhmmss Specifies the absolute date of the end of the WAQUA cycle in case of cyclic WAQUA velocity fields datime 2 and velo 3 see 3 4 1 1 Format yyyymmdd Default last WAQUA map time Specifies the absolute time of the end of the WAQUA cycle in case of cyclic WAQUA velocity fields datime 2 and velo 3 see 3 4 1 1 Format hhmmss Default last WAQUA map time Note 1 The end date and time must be greater than the start date and time otherwise an error will be reported and the program stops Note 2 At cyclic WAQUA velocity fields 1velo 3 see 3 4 1 1 3 4 1 7 WIND WSPEED val WANGLE val WCONVF val TIMVAL val val val Version 10 43 January 2008 The Input File of SIMPAR the start time of the WAQUA cycle is always the same as the start of the SIMPAR simu
15. OCAL optional In LOCAL the function values at grid points specified in GLOBAL can locally be overwritten by specifying boxes i e rectangles Explanation BOX R See 2 1 2 2 MNMN ival ival ival ival M See 2 1 2 2 CONST_VALUES val O See 2 1 2 2 CORNER_VALUES val val val val 0 See 2 1 2 2 VARIABLE_VALUES lt val gt O See 2 1 2 2 32 3 4 1 10 MASS GRPROP val TCHAR val Version 10 43 January 2008 The Input File of SIMPAR MASS optional By means of the KEYWORD MASS the user can specify for each group the initial property values and the rate of disintegration MASS GRPROP val TCHAR val Initial properties for each group The initial properties have to be specified for each group Furthermore the number of particles is given by means of keyword PDIM Property control values rate of disintegration for each group The control values have to be specified for each group and for each property The control value has to be greater than zero TCHAR 0 means no disintegration For example in case NPARG 2 and PDIM 3 MASS GRPROP 100 00 250 00 175 50 initial properties for group 1 450 00 80 00 800 50 initial properties for group 2 TCHAR 0 5 1 0 1 5 control values for group 1 Dto go Led on 200 control values for group 2 33 User s guide SIMPAR 3 4 2 SDSNAMES Mandatory The second main KEYWORD relates to fil
16. VALUES val val val val lt VARIABLE_VALUES lt val gt Explanation A BOX is defined by specifying its opposite corner points m1 n1 and m2 n2 where mll m2 and nil h2 In this rectangle the global function value of a field variable can be overwritten by new values It is possible to define more than one box for one single field variable When the rectangles defined in the boxes have common grid points the latest values specified for those grid point will be used The data can be specified either by means of a single value defining all points within the box or by means of a array of data In the latter case the data should be given according to the following scheme my n mo n2 where mll ke and nll ko o Layer index where O _ layer _ kmax If layer is not specified or layer 0 a uniform vertical distribution is assumed However when the function values belong to a data array which is defined for layers O until kmax layer 0 is only valid for the upper layer User s guide SIMPAR CONST_VALUES val and layer 1 will define the uniform vertical distribution As default 3D arrays are assumed to be defined for layers 1 until kmax unless stated otherwise in their input description LAYER is only relevant in the 3D case O The function at all grid points in the box gets this value CORNER_VALUES val val val val The function values at the corner points of the box a
17. W val TIMLPW val PARAA val PARAB val PARAC val WOPFAC val TITRAC val TETRAC val TLTRAC val TSTEP val TFPARW2 val TIPARW val TLPARW2 val DATFPW val TIMFPW val DATLPW val TIMLPW2 val The Input File of SIMPAR DATFTW val TIMFTW val DATLTW val TIMLTW val CELLDX val PSFWID val HURST val TFCONC val TFCONC val TLCONC val M Specifies the time step that is used for SIMPAR simulations During the simulation process SIMPAR adapts time steps constantly to output requirements SIMPAR synchronizes those time intervals in a sense that output is always available when it is needed So there is no need for interpolation between two intervals TFPARW TIPARW and TLPARW specify writing times to disk of particles positions relative to the start of the WAQUA simulation respectively first time time interval and when to write last DATIME must have a value of 1 in this case explicitly or by default Specifies the first writing time of particle positions relative to the start of the simulation Specifies the time interval of writing Specifies the last writing time of particle positions relative to the start of the simulation As an alternative the user also can specify absolute datum s and times DATFPW and TIMFPW DATLPW and TIMLPW are in time date format and s
18. al time and the end time for the concetration calculations The use of concentration profiles implies that the initial mass is known Thus when using concentrations the initial mass has to be given by means of keyword GRPROP see 1 11 2 The concentrations functionality can be used in combination with mass disintegration If only concentrations are required and no mass disintegration the keyword TCHAR has to be set to zero Continuous sources may not be used in combination with concentrations For more detailed information about concentration profiles see the report Extension of SIMPAR with Pointspread Functions cf Ref J W Stijnen H X Lin 2000 Output results It is possible to store in file the whole particle field which is generated at some point of time Also a tracking option exists 1 e to follow in time with another frequency a selected number of particles For the calculation of the displacement of a specific particle from a specific point in time the next available velocity of water movement waterlevel and geometry will be used So when WAQUA data at times TO en T1 are available and the particle leaves at time ta TO lt ta lt T1 the displacement is calculated based on the data at time point T1 Input description of SIMPAR 2 Input description of SIMPAR 2 1 General information The input is based on SIMONA KEYWORD structure Refer to About SIMONA in Section 1 General Information Reminder Th
19. ame of the wind SDS must be specified see 3 4 1 10 D Specifies which kind of velocity field has to be selected 1 momentaneous WAQUA velocity fields 2 integrated Eulerian rest current fields 3 cyclic velocity fields based on momentaneous WAQUA velocity fields Default 2 Note when ivelo 3 no restarts see 3 4 3 are allowed 23 User s guide SIMPAR DATIME ival IHURST ival MEMO ival CONLEN ival CONWID ival IPSF ival PDIM ival 3 4 1 2 REALS 24 S Specifies the method of time specification 1 All times are specified relative in relation to the start time of WAQUA in elapsed minutes after midnight 2 All times are specified in an absolute sense Default 1 Indicator for type of diffusion 1 Random walk 2 Fractional Brownian motion Default 1 Memory of the fractional Brownian motion Default 100 Maximal length of the concentration grid Default 1000 Maximal width of the concentration grid Default 1000 Type of pointspread function l psf 2 histogram method 3 no concentrations Default 3 Number of particles properties The first property always represents mass PDIM should be at least one In other words the mass property is always present Default 1 REALS mandatory There are 19 real input variables REALS TSTEP val TIPARW val TFPARW val TLPARW val DATFPW val TIMFPW val DATLP
20. ata datfpw datftw datime datlpw datltw diffusion endat_wagcycle endate endtim entim_waqcycle exppar expwaq expwin global grelmt group grprop hurst ibck ifield ihurst imodel imove integers ipsf istep itpar ivelo layer Appendices 19 19 20 20 34 18 13 14 17 32 26 28 24 32 24 32 30 25 26 24 25 26 31 28 28 28 28 34 35 34 31 27 27 33 26 23 23 24 22 23 22 24 23 23 23 19 49 User s guide SIMPAR 50 layout local mass memo mnmn ndim nparg npart nptrac numbers output paraa parab parac parsds particles pdim psfwid reals res restart rsdate rstime sdsnames sources src stdate sttime tchar tfconc tfparw tftrac ticonc time times timfpw timftw timint timlpw timltw timval tiparw tisend tisstd tisstt titrac tlconc tlparw tltrac tracks trout tstep 18 32 19 32 33 24 19 32 22 23 30 23 27 36 25 25 25 34 22 24 26 24 35 35 35 35 34 27 30 28 28 33 26 25 26 27 35 28 25 26 31 25 26 29 25 31 31 31 26 27 25 26 27 36 25 Appendices tstop_waqcycle 28 variable_values 19 20 32 wangle 29 wagsds 34 35 wconvf 29 wind 29 wndsds 34 wndval 30 wopfac 26 wspeed 29 xyzerd 27 30 Mass disintegration 12 pointspread functions 14 Version 10 43 January 2008 51
21. bestand output trout pkst01 trk Einde invoer 4 2 Example 2 Geen SIMONA messages op scherm set noecho SIMPAR kent 4 mainkeywords PARTICLES SDSNAMES RESTART en OUTPUT De eerste 2 worden gebruikt de 3e alleen als er meerdere SDS files opgegeven zijn en de laatste wordt niet gebruikt Het eerste main keyword is particles particles Particles kent een aantal sub keywoorden De eerste is integers Hier worden alle integer constanten waarmee het model gestuurd wordt opgegeven integers ndim aantal dimensies 2 voor waqua ndim 2 imodel model type 1 gt drijvend transport 2 gt opgelost transport 3 gt opgewerveld transport nog niet operationeel imodel 2 itpar Max aantal iteraties per tijdstap en per particle itpar 2 nparg aantal momentane bronnen vast op 1 nparg 1 nptrac aantal deeltjes dat getracked wordt nptrac 250 imove aard van beweging van de deeltjes 1 gt alleen advectie 2 gt advectie en diffusie imove 2 ifield type windveld 0 gt Geen extra wind in SIMPAR 1 gt Extra standaard WAQUA wind in SIMPAR geadviseerd i g v drijvende stof ifield 0 40 Version 10 43 January 2008 Examples ivelo type stroomsnelheidsveld 1 gt momentane WAQUA snelheidsvelden 2 gt Eulerse WAQUA snelheidsvelden 3 gt periodieke snelheidsvelden gebaseerd op de momentane snelheidsvelden Wordt vast op 1 gezet ivelo
22. d WAQUA of TRIWAQ wind in SIMPAR in geval van drijvende stof of in geval van cyclische velden eigen door gebruiker opgegeven wind ifield 0 met ivelo geeft de gebruiker aan met welk type snelheidsveld gerekend moet worden 1 betekent momentane WAQUA of TRIWAQ snelheidsvelden 2 betekent Eulerse WAQUA of TRIWAQ snelheidsvelden 3 betekent periodieke snelheidsvelden gebaseerd op de momentane snelheidsvelden ivelo 1 met datime kan de gebruiker opgeven of alle tijden relatief ten opzichte van de starttijd van WAQUA TRIWAQ in minuten zijn pgegeven datime 1 dit is ook de default waarde of in absolute zin datime 2 37 User s guide SIMPAR 38 Se Se Se E E Se datime 1 het volgende keyword is reals reals tstep is de tijdstap waarmee het programma zou moeten draaien het programma past tijdens het proces de tijdstap steeds aan aan de uitvoereisen is tstep te groot dan wordt tijdelijk met een zodanige stap gerekend dat de uitvoer op de juiste tijdstippen beschikbaar is Er hoeft dan dus niet geinterpoleerd te worden tstep 10 0 met tfparw tiparw en tlparw geeft de gebruiker aan wanneer de eerste keer alle particle posities moeten worden weggeschreven met welk interval daarna en wat het laatste tijdstip van schrijven moet zijn Ook hier geldt weer dat via datfpw timfpw en datlpw en timlpw een alternatief in de vorm van dat
23. direction than the one it came from is increased the spreading is smaller For more detailed information about concentration profiles see the report The modeling of Diffusion in Particle Models cf Ref J W Stijnen H X Lin 2000 The rectilinear grid The rectilinear grid on which SIMPAR makes its calculations is furnished by WAQUA It looks as follows see User o Guide WAQUA Input description of SIMPAR 1 3 1 3 1 Version 10 43 January 2008 o Le La a o o D o ai o o o N n C o o o o o 3 A o o o o o o n 2 o o o o o o n 14 o b o o o o o n 4 i 7 o o o o K o t t y gt U m m m 1 m 2 2 Fig 2 Rectilinear grid Curvilinear model General Curvilinear coordinates are frequently used in WAQUA for the simulation of water movement This is an attempt to reflect the geometry as faithfully as possible and to introduce a local refinement The calculations are performed in this case on a non equidistant grid cf Fig 3 Y Fig 3 Curvilineair grid The curvilinear coordinates are denoted by a the cartesian coordinates by x y A geometry in the cartesian x y plane also called physical plane is projected on the phare the so called computational plane by means of the following transformations User s guide SIMPAR 9 10 1 3 2 11 12 13 The curves E constant and F constant build two systems of coordinate line
24. e re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt 1mt lmt lmt 1mt lmt lmt lmt lmt 1mt lmt lmt lmt lmt lmt lmt lmt Imt lmt lmt lmt lmt lmt lmt lmt 1mt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt 1mt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt Os PW BBB BI BIB W W CO vw OO JO EE LU K LA O OO Ln Ln Ln LQ bM KA E SES LH LH L L L LM M KA C OMAN vs OO OO OV On LO 0 tau vs NN PE dd Wn N A AS oo DN U N O LO oo NA Oo OU vs 00 N Ko O oo SR VO VO wm N VO NO NO VD OW LO MANU N o Lae 201 202 203 204 205 206 207 208 209 210 214 22 213 214 219 216 217 Version 10 43 January 2008 grelmt 1 218 grelmt 1 219 grelmt 1 220 grelmt 1 221 grelmt 1 222 grelmt 1 223 grelmt 1 224 grelmt 1 225 grelmt 1 226 grelmt 1 227 grelmt 1 228 grelmt 1 229 grelmt 1 230 grelmt 1 231 grelmt 1 232 grelmt 1 233 grelmt 1 234 grelmt 1 235 grelmt 1 236 grelmt 1 237 grelmt 1 238 grelmt 1 239 grelmt 1 240 grelmt 1 241 grelmt 1 242 grelmt 1 243 grelmt 1 2
25. e input file is a structured ASCIFfile From the input file only the first 120 columns are read Note If the last keyword block in the input file contains a sequential keyword the SIMONA application independent preprocessor is not able to check the correctness of the block This can result in incorrect processing of the input file 2 1 1 Conventions used For the input definition the following conventions are used val real value tval time specification in the form day hours minutes e g 2 21 15 Times are given relative to midnight of a reference date starting at O 0 00 ival integer value iseq sequence number to indicate a point curve etc text string enclosed between quotes lt gt repetition group IA lt choice between A and B A and B are mutually exclusive IB amp continuation mark In this document keywords are partly underlined eg prirourpur Only the underlined characters are significant So the user must type at least PRINT in his input but PRINTOUT is accepted as well The Explanation part of the description of the various sections and subsections is divided in three columns KEYWORD E Explanation E can be O M D S R X O means keyword is optional M means keyword is mandatory D means keyword has a default value When this keyword is omitted the pre processor will use the default value for the variable specified by means of this keyword s means this keyword
26. ek vanaf de gegeven tijd tot de eerstvolgende tijd gelden wspeed en wangle zoals hier opgegeven timval 1000 ls 90 timval 1600 2i 70 timval 2000 De 45 timval 3000 2H 90 timval 6000 3 0 timval 8000 2 0 wndval 19890320 164000 d 90 wndval 19890321 024000 2 70 wndval 19890321 092000 2 45 wndval 19890322 020000 Ze 90 wndval 19890324 040000 oy 0 wndval 19890325 132000 2 0 Second main key de berekening heeft tenminste twee SDS files nodig 1 een file waarop de WAQUA resultaten staan via WAQSDS wordt die file aangegeven Via expwaq het experiment op die file 2 via PARSDS en EXPPAR wordt aangegeven op welke SDS file de resultaten zullen worden weggeschreven Er kan ook nog een wind SDS file aangegeven worden sdsnames wagsds SDS wkst01 expwaq os05 parsds SDS pkst01 exppar pkst01 Third main key T T T Het is mogelijk de berekening te laten vervolgen met snelheidsvelden die van een andere SDS file als de start SDS komen Via het keywoord RESTART wordt dit aangegeven Eerst wordt de SDS naam genoemd 39 User s guide SIMPAR vervolgens het experiment en tenslotte de tijd waarop met deze nieuwe file moet worden begonnen Dit kan indien gewenst een aantal malen herhaald worden maximum 5 restart resl waqsds SDS for dat expwaq scaldis400 time 1750 rsdate 19970506 rstime 050000 Fourth main key De naam van het tracking uitvoer
27. es The simulation needs at least two SDS files e An existing file in which the calculated results of the program WAQUA are stored Through WAQSDS that file is defined The name of the experiment in the SDS file is given by the EXPWAQ keyword e The results of the SIMPAR simulation are stored in the SDS file given by the PARSDS keyword under the experiment name given by EXPPAR If the file does not exist it is created e There also exists the option to connect an existing wind SDS file to the SIMPAR simulation model by means of the WINSDS and EXPWIN keywords SDSNAMES WAQSDS text EXPWAQ text PARSDS text EXPPAR text WINSDS text EXPWIN text WAQSDS text M Specifies the underlying existing WAQUA SDS file Input file EXPWAQ text M The name of the experiment in WAQSDS PARSDS text M Defines the SDS file in which the results of the particle simulation are to be stored Output file EXPPAR text M Gives the experiment name under which the calculated data are to be stored in the particle SDS file WINSDS text O Specifies WAQUA SDS file with wind data Input file EXPWIN text O Name of wind experiment in wind SDS file 34 3 4 3 RES iseq WAQSDS text EXPWAQ text TIME val RSDATE val RSTIME val Version 10 43 January 2008 The Input File of SIMPAR RESTART Optional The program SIMPAR is provided with a facility to extend the simul ation with velocity field
28. file If not present there an error message will be printed and the program stops In the absence of WAQUA diffusion coefficients the user should here specify the diffusion coefficients for SIMPAR covering the whole computational grid When part of the computational grid is covered at keyword DIFFUSION the remaining not yet defined positions are copied from the WAQUA SDS file If this fails also an error message will be printed and program execution stops So there is no default value for the diffusion coefficients DIFFUSION GLOBAL LAYOUT ival CONST_VALUES fval lt VARIABLE_VALUES lt val gt LOCAL lt BOX MNMN fival ival ival ival CONST_VALUES val lt CORNER_VALUES val val val val VARIABLE_VALUES lt val gt GLOBAL mandatory Global data can be specified in two ways first by giving one value for the complete computational grid second by giving values for each grid point The order in which these values are to be given is specified by the LAYOUT flag Although keyword GLOBAL is mandatory no value s for either CONST_VALUES or VARIABLE_VALUES need to be given for the 31 User s guide SIMPAR diffusion coefficients missing values will be taken from the WAQUA SDS file if present Explanation LAYOUT ival D See 2 1 2 1 Default 1 CONST_VALUES val O See 2 1 2 1 VARIABLE_VALUES lt val gt O See 2 1 2 1 L
29. grid points ma m 1 18 CONST_VALUES val VARIABLE VALUES lt val gt O BOX MNMN ival fival fival ival M Corner points of the rectangular box specifying LAYER ival 2 1 2 2 Version 10 43 January 2008 Input description of SIMPAR 7 function values at grid points m2 n2 m gt n2 1 mo n Gm gt 2 1 n gt m2 1 0 Gm n m n columns first column is right column values from top to bottom 8 function values at grid points m2 n2 m gt 1 n m n gt m2 n2 1 m1 n2 1 m2 n1 m1 n1 rows first row is top row values from right to left Default 1 Constant value for the complete field Default 0 It is possible to specify a function value at each grid point The order in which the values are to be given is defined by means of layout indicator In the case of 3D the information must be specified as a set of KMAX separate layers each layer given according to the global layout indicator 1 e MMAX NMAX KMAX values must be specified beginning with the top layer LOCAL In LOCAL the function values at grid points specified in GLOBAL can locally be overwritten by specifying boxes 1 e rectangles In the 3D case a box is a rectangle drawn in the horizontal plane identified by the layer index LOCAL lt BOX MNMN fival ival ival ival LAYER ival CONST_VALUES val lt CORNER
30. he input is divided into 4 main keywords PARTICLES Mandatory SDSNAMES Mandatory RESTART Optional OUTPUT Optional These keywords are described in the following sections 21 User s guide SIMPAR 3 4 1 PARTICLES mandatory Main keyword PARTICLES covers several KEYWORDs that has to be given as initial values to the SIMPAR simulation by the user Together these KEYWORD values control the behavior of the SIMPAR simulation model PARTICLES M There are nine subgroups related to particles PARTICLES M INTEGERS M REALS M SOURCES O NUMBERS O TRACKS 0 TIMES M WIND o CONTSRCS O DIFFUSION 0 3 4 1 1 INTEGERS mandatory INTEGERS M There are 17 integer input variables INTEGERS NDI ival IMODEL ival IBCK ival ITPAR ival NPARG ival ISTEP ival NPTRAC ival IMOVE fival IFIELD fival IVELO ival DATIME ival IHURST fival MEMO ival CONLEN ival CONWID ival IPSF ival PDI ival NDIM ival D Specifies the model dimension For WAQUA 2 For TRIWAQ 3 For the time being SIMPAR can only handle 2 Default 2 IMODEL ival D Specifies the type of model that is used for the transport of particles 1 floating particle transport 2 dissolved particle transport 3 suspended particle transport not yet implemented Default 1 22 IBCK ival ITPAR ival NPARG ival
31. icle positions of the current time Because this concentration grid is based on the particle positions it has no fixed size As the cloud of particles can change every time step the size of the concentration grid may also change For each timestep SIMPAR keeps record of the concentration gridsize 1 13 3 1 13 4 NOTES 1 14 NOTE Version 10 43 January 2008 Input description of SIMPAR Pointspread functions spread the mass of a particle across neighbouring gridcells wich results in a much smoother and more accurate concentration than when using histograms Histogram method The histogram method is the simplest method for the concentration calculations With the histogram method the number of particles withtin a grid cell is counted This number is than divided by the cell surface to get a rough estimate for the concentration Problems arise with the curvilinear grid the gridcells are often too large for accurate concentration calculations and the surface of a cell 1s not necessearily easy to calculate In this situation or when a more accurate concentration is wanted the histogram method is not very useful Total concentration The concentrations that are saved to the SDS file are average concentrations When using concentration calculations the user has to define certain input variables such as the size of the concentration grid and the size of a concentration gridcell Also the user can define the start time the interv
32. is a sequential keyword a keyword followed by an integer e g P4 A sequential keyword can be used repeatedly R means keyword may occur more than once x Exactly one of a series of keywords should be given Since all values are read in free format integer notation when reals are expected will be converted to reals so val 4 is identical to val 4 0 Version 10 43 January 2008 17 User s guide SIMPAR LAYOUT ival 2 1 2 2 1 2 1 Data fields Data field input is to be specified in two blocks SPACE_VARYING_DATA GLOBAL LOCAL SPACE_VARYING_DATA stands for any key word representing spatial data In GLOBAL the data for the complete field is to be given specifying function values at all grid points In LOCAL however the user can specify rectangular boxes in which he can change the value of the space varying data For the case of 3D this definition is extended in such a way that the input for separate layers is possible GLOBAL Global data can be specified in two ways first by giving one value for the complete computational grid second by giving values for each grid point The order in which these values are to be given is specified by the layout flag GLOBAL LAYOUT ival CONST_VALUE val lt VARIABLE VALUES lt ival gt Explanation Layout indicator specifying the order in which the values from input file are assigned to the function value in a grid point Possible value
33. is e qual to a factor times the wind speed times the timestep Input description of SIMPAR This factor is specified by the user Note In case of space varying wind the wind can not be directly passed on to SIMPAR Therefore the user has to specify a wind SDS file from which SIMPAR can obtain the needed wind values It is the responsibility of the user that s he specifies the same wind SDS file as used in WAQUA because SIMPAR is unable to check this e Simulation of floating material combined with cyclical use of WAQUA fields within SIMPAR In the case of tidal water movements a varying wind may be used While the wind in WAQUA is only available over a restricted period of time a tide this wind variation in time but uniform in space has to be introduced in SIMPAR by a time sequence of winds or in case of space varying wind by a wind SDS file The wind driven displacement at the water surface will again be specified by a user given factor times the wind speed times the timestep The user has to take notice of the fact that it is not allowed to create or use WAQUA fields with wind involved if those fields are used in a later stage in cyclical calculations of a SIMPAR simulation 1 9 Momentaneous sources and continuous sources A simulation with SIMPAR can be based on momentaneous sources as well as continuous sources Momentaneous sources are the ones where all particles are released simultaneously Continuous sources are characte
34. ist for further reading nnen evennneeeeennnn 49 02 INDEX oss ben deter O E ONES 49 1 1 1 2 1 2 1 Version 10 43 January 2008 Input description of SIMPAR General directions for the use of SIMPAR Background information SIMPAR simulates the transport of floating particles and particles that behave like dissolved substances It is an off line program that calcul ates the movement of particles in two dimensions due to advection diffusion and wind Transport of particles by advection is based on a water movement model and is computed by interpolation fom the water velocities SIMPAR uses the same grid as the water movement model In this section a concise mathematical description of SIMPAR is given A more detailed description will be part of the technical documentation of SIMPAR The Directorate General for Public Works and Water Management frequently uses transport models to calculate the effects of different discharging sources on surface waters Policy plans and disasters may be computationally validated with it Matter transport of different compositions may be simulated with the so called particle model There are two possibilities for this particle model a random walk model or a fractional Brownian motion The particle model is based on a stochastic differential equation The equation contains two parts a drift part and a diffusion part The drift part is related to the water flow and the bottom topography The relevant
35. itten numbers via het keywoord groep en het aantal deeltjes ligt alles vast group 1 12 Met het keyword contsrcs worden de continue bronnen opgegeven Voor elke groep worden een positie het aantal deeltjes dat per minuut wordt losgelaten en het lozingsinterval in de tijd opgegeven contsrcs srcl data Version 10 43 January 2008 SE Se Se E E E E Se Examples xyzerd 51250 00 405750 00 25 npart 1 timint 4920 5640 tisstd 19940101 tisstt 060000 tisend 19940101 tisent 120000 als er getrackt moet worden geven we dit aan door het keywoord tracks tracks nu volgt voor nptrac deeltjes welke deeltjes dat precies zijn per deeltje het groepsnummer en het elementnummer i e het volg nummer in die groep grelmt 1 grelmt 1 4 grelmt 1 7 grelmt 1 0 grelmt 2 00 grelmt 2 300 grelmt 2 500 met het keywoord times geven we aan dat we de begin en eindtijd van de berekening willen opgeven times via het keywoord comp en de twee tijden voor begin en eindtijd is de rekenperiode vastgelegd als alternatief kunnen ook de absolute data en tijden worden vastgelegd comp 4920 5640 stdate 19940101 sttime 060000 endate 19940101 endtim 120000 met het keywoord wind wordt de wind gespecificeerd deze waarden worden alleen gebruikt in het geval van cyclische snelheidsvelden met wind wind algemeen wspeed 2 00 wangle 90 00 wconvf 2 00 specifi
36. jes titrac 10 datftw 19920929 timftw 044000 datltw 19920929 timltw 102000 Volgende keyword is sources Hier wordt voor elke bron aangegeven waar de oorsprong ligt Wij gaan uit van 1 momentane bron sources x y z coordinaten van de momentane bron z doet niet ter zake 41 User s guide SIMPAR 42 xyzcrd 43550 00 375100 00 0 xyzcrd 43595 00 374815 00 0 numbers keyword om aantal deeltjes op te geven in de momentane groep numbers group er is 1 bron met 250 geloosde deeltjes vast group 1 250 tracks keyword dat aangeeft dat er deeltjes gevolgd moeten worden tracks Voor nptrac deeltjes opgeven welke deeltjes uit de gehele groep het zijn Aangenomen wordt dat dit de eerste nptrac deeltjes uit de groep zijn grelmt 1 1 grelmt 1 2 grelmt 1 3 grelmt 1 4 grelmt 1 5 grelmt 1 6 grelmt 1 2 grelmt 1 8 grelmt 1 9 grelmt 1 10 grelmt 1 11 grelmt 1 12 grelmt 1 13 grelmt 1 14 grelmt 1 15 grelmt 1 16 grelmt 1 L7 grelmt 1 18 grelmt 1 LS grelmt 1 20 grelmt 1 21 grelmt 1 22 grelmt 1 23 grelmt 1 24 grelmt 1 25 grelmt 1 26 grelmt 1 27 grelmt 1 28 grelmt 1 29 grelmt 1 30 grelmt 1 31 grelmt 1 32 grelmt 1 33 grelmt 1 34 grelmt 1 35 grelmt 1 36 grelmt 1 37 grelmt 1 38 grelmt 1 39 grelmt 1 40 grelmt 1 41 grelmt 1 42 grelmt 1 43 g
37. lation The end time of the WAQUA cycle may be specified by the user see above It must fall at or before the last WAQUA map time When the end of the WAQUA cycle is reached the SIMPAR simulation continues with WAQUA velocities situated one step after the WAQUA cycle start time WIND optional o By means of the KEYWORD WIND the windaspects are incorporated in the simulation process Wind is only relevant in case cyclic velocity fields in combination with wind are implemented WIND WSPEED val WANGLE val WCONVE val lt TIMVAL val val val gt lt lt WNDVAL val val val val gt General wind situation Global wind speed in a dimension specified by WUNIT See User s guide WAQPRE 2 7 3 Default 0 Global wind direction in degrees from 0 to 360 Wind direction is measured clockwise from north where wind coming from north equals to 0 wind coming from east equals 90 and so on Default 0 Wind conversion factor which is defined by the user Default 1 Wind time series From the time given on a certain line until the time given on the next line wind speed and wind angles are specified Before the first data line the general wind situation rules After the last data line the wind situation lasts until the end of the simulation Specifies time interval minutes WSPEED and WANGLE DATIME must have a value of 1 in this case Example TIMVAL 1000 1 90 TIMVAL 1600
38. n at all gt Illustration of mass disintegration Furthermore it is possible to define more than one property Le a second property can be defined which represents the temperature Each property has its own rate of disintegration The properties are specified groups wise So each particle group has its own properties with the corresponding rates When defining more than one property the first property property with sequence number 1 has to be the mass SIMPAR keeps record of the properties through their sequence number Therefore in case of multiple properties the user himself has to keep in mind what each property stands for It is not allowed to use a negative rate of disintegration A negative value would imply increase rather than decrease which is not the 1 13 1 13 1 Version 10 43 January 2008 Input description of SIMPAR intention of the disintegration functionality So TCHAR should always be at least zero In case of mass disintegration the use of continuous sources is prohibited Concentration Besides particle tracks and mass disintegration SIMPAR can also make concentration calculations Concentration grid The concentration calculations are made on a subgrid the so called total concentration grid G1 completely independent on the curvilinear WAQUA grid as illustrated in figure 5 and 6 The concentration grid is laid on the rectangular area where the small square grid space size CELLDX i
39. n meters is chosen and the number of grid spacves in the two dimensions CONLEN and CONWID are chosen The grid direction for CONLEN from left to right corresponds to the x RD direction The upward direction for CONWID corresponds to the y RD direction User s guide SIMPAR 1 13 2 14 la T HH UIT EL TE CON WID n SE ee SL bebe gt i Gi f C oe K L L E E x Fig 5 Overview of the total concentration grid G1 y 7 IRE STEIN i Et j WAQUA grid Grid of i ai EN reala adet gt G2 gt Concentration an D ET e eg S HH H e U D a 2 psfwid Fig 6 Overview of the structure of the grid G2 i for particle I where the spread function is defined Each particle lies in the center of its own G2 i The particle positions are rounded to the bottm left corner of the small squares of G1 These concentration profiles can be calculated by using histogram like functions or by using pointspread functions The user can choose to run a simulation with histograms with pointspread functions or without any concentration profiles This choice is made by means of the keyword IPSF see User Input Pointspread function method But because the exact physical coordinates of the particles are known it is beneficial to use these Therefore the concentration calculations are made on the concentration grid see 1 13 1 This concentration grid is based on the part
40. ner process The equations 1 may be conceived as a symbolic notation of the next stochastic integral equations 5 The position bf the particle is a stochastic process in which the probability density function e for satisfies the following Fokker Planck equation 6 with initial condition Y A W Heemink has demonstrated cf Ref 1 that there exists a relation between the probability density p satisfying the Fokker Planck Version 10 43 January 2008 5 User s guide SIMPAR 8 1 2 2 2 1 2 2 3 equation and the concentration c in the Eulerian advection diffusion egation as used in WAQUA namely mm This means that the particle movement satisfies the Eulerian advection diffusion equation i e both models start from the same physical assumptions the differences are only numerical in nature Fractional Brownian motion The user can choose for the diffusion part to be based on the fractional Brownian motion in stead of the Wiener process This choice is made by means of keyword IHURST see User Input When 1 2 lt hurst factor lt 1 the motion is persistent meaning that the probability that a particle continues to move in the same direction it came from is large the spreading of the particles is larger For hurstfactor 1 2 we have the random walk movement When 0 lt hurst factor lt 1 2 the motion is anti persistent meaning that the probability that a particle will choose a different
41. ngen tot 25 Standaard is 10 set maxwarn 25 Het programma kent 4 hoofdkeywords Het eerste hoofdkeywoord is particles particles particles heeft een aantal onderkeywoorden om te beginnen integers In dit blok geeft de gebruiker alle integer constanten waarmee het model wordt gestuurd op integers Met ndim wordt de dimensie aangegeven Voor WAQUA is dat altijd 2 Voor SIMPAR op dit moment ook ndim 2 met imodel wordt aangegeven welk type model moet worden gebruikt voor de particles 1 betekent drijvend transport 2 betekent opgelost transport 3 betekent opgewerveld transport nog niet werkend imodel 1 met itpar wordt het aantal iteraties dat maximaal wordt berekend per tijdstap en per particle aangegeven Geadviseerd wordt om dit op twee te zetten itpar 2 met nparg geeft de gebruiker het aantal groepen van deeltjes dat zal worden onderscheiden aan Het betreft hier de momentane bronnen Verderop worden de continue bronnen opgegeven nparg 1 met nptrac geeft de gebruiker het aantal deeltjes aan dat zal worden gevolgd i e getrackt nptrac 7 met imove geeft de gebruiker het type van de particle beweging aan 1 betekent alleen advectie 2 betekent advectie en diffusie imove 1 met ifield geeft de gebruiker het type windveld aan O betekent geen extra wind in SIMPAR ook al heeft de gebruiker wind gespecificeerd 1 betekent extra standaar
42. number of particles that are to be released per minute The user has a choice to specify a start stop time and the drain interval of the continuous source If these times are not specified the continuous source will be active during the whole computation period specified in KEYWORD TIMES see section 3 4 1 6 As an alternative the user also can specify relative times TIMINT value of DATIME must be 1 in this case or absolute calendar dates and times TISSTD TISSTT TISEND and TISENT value of DATIME must be 2 in this case TIMINT val val TISSTD val TISSTT val TISEND val TISENT val 3 4 1 9 DIFFUSION Version 10 43 January 2008 The Input File of SIMPAR Specifies the begin and end time in minutes of the drain interval of the continuous source Specifies the start datum of the continuous source draining format yyyymmdd Specifies the absolute start time of the continuous source draining format hhmmss Specifies the end datum of the continuous source draining format yyyymmdd Specifies the end datum of the continuous source draining format yyyymmdd DIFFUSION optional By means of the keyword DIFFUSION the user may specify diffusion coefficients for SIMPAR This keyword is only relevant when dissolved particle transport is chosen imodel 2 see 3 4 1 1 When the keyword DIFFUSION is omitted and imodel 2 SIMPAR tries to copy the diffusion coefficients from the WAQUA SDS
43. pecify when all particles positions must be written to disk for the first time and when last DATIME must have a value of 2 in this case 0 Specifies the starting date of writing format yyyymmdd O Specifies the absolute starting time of writing format hhmmss o Specifies the date when to finish writing format yyyymmdd o Specifies the absolute time when to finish writing format hhmmss PARAA val PARAB val PARAC val D Version 10 43 January 2008 PARAA PARAB and PARAC specify the standard deviation of the random displacement of a particle in respectively the horizontal velocity direction in a velocity direction perpendicular to this direction in the horizontal plane and in the vertical direction It can be interpreted as an XYZ system or a 3 dimensional system The vertical direction is not yet operational As an indication of magnitude the WAQUA diffusion coefficient may be selected Default PARAA 0 Default PARAB 0 Default PARAC 0 25 User s guide SIMPAR WOPFAC val TFTRAC val TITRAC val TLTRAC val DATFTW val TIMFTW2 val DATLTW2 val TIMLTW2 val CELLDX val PSFWID val HURST val TFCONC val 26 D Specifies the influence of wind in conjunction with floating constituents The wind factor is a percentage constant that represents an additional displacement of floating constituents caused by wind Default WOPFAC 0 TFTRAC TITRAC and TLTRAC specif
44. re given in the following order m n mo n mo n2 m no The function values at the other grid points enclosed by the box will be determined VARIABLE_VALUES lt val gt O O by means of bilinear interpolation Inside the box for each grid point a function value is specified The order in which the values are to be given is set by LAYOUT under key word GLOBAL For example GLOBAL CONST_VALUES 40 5 LAYOUT 4 LOCAL BOX MNMN 10 5 50 CONST_VALUES 38 or GLOBAL CONST_VALUES 0 LAYOUT 3 LOCAL BOX MNMN 10 5 11 VARIABLE_VALUES 2 Ee 100 7 273 2 0 2 4 E 20 3 3 1 3 2 SET NOECHO 3 3 SET MAXWARN 3 4 Version 10 43 January 2008 The Input File of SIMPAR The Input File of SIMPAR The input of the SIMPAR program is described in this chapter General Information For general information about the conventions being used for the data fields the reader is referred to section 2 1 1 of this user s guide Echo The first statement in the input file may set the echo environment This means that the contents of the input file will or will not be sent to the user s standard output in general the message file Tell SIMPAR that no echo of input file contents is needed Warnings The number of warnings in the message file may be restricted to a user defined number Default is 10 Sets the number of warnings in the message file Main keywords T
45. relmt 1 44 grelmt 1 45 grelmt 1 46 grelmt 1 47 grelmt 1 48 grelmt 1 49 grelmt 1 50 grelmt 1 Sg grelmt 1 52 grelmt 1 S grelmt 1 54 grelmt 1 99 grelmt 1 56 grelmt 1 57 Version 10 43 January 2008 D Q O Q Q Q Q Qu O Q Q Q Q Qu D Q Q Q Q Qu O Q Q Q Q Qu D Q Q Q Q Qu D Q Q Q Q Qu O Q Q Q Q Qu O Q Q Q Q Qu D Q Q Q Q Qu D Q Q Q Q Qu O Q Q Q Q Qu D Q Q Q Q Qu Q Q Q Q Qu Q re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re re lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt 1mt lmt lmt 1mt lmt lmt lmt lmt Imt lmt lmt lmt lmt lmt lmt lmt Imt lmt lmt lmt lmt lmt lmt lmt 1mt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt 1mt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt lmt Examples 43 User s guide SIMPAR 44 D 0 Q OO OO 0 0 D Q Q OO OO OO O O O L O Q Q OO OO OO QQ O L D Q Q OO OO OO O O O L D Q Q OO OO OO OO O L D Q Q OO OO OO QQ O uU LO Q OQ OQ OQ OQ OQ O O O OL Q re re re re re re re re re re re re re re re re re re re re re re re re re re re re re r
46. rised by a continous release of particles during a certain time period which may vary in intensity 1 10 Geographical aspects The position of the sources is represented by geographical coordinates x y with Paris as point of reference In SIMPAR these coordinates are transformed to model n m coordinates The transformation to spherical coordinates is not yet implemented 1 11 Release of particles in the environment 1 11 1 Source or group Particles are released in groups From a certain geographical position more than one group of particles might be released One group may contain a variable number of particles Version 10 43 January 2008 11 User s guide SIMPAR 1 11 2 NOTES Particle property SIMPAR has arrays PROPAR and GRPROP in which the physical and chemical properties of the particles are stored Only mass is implemented as a particle propery other properties can de added Mass disintegration With the introduction of particle properties in SIMPAR it is possible to take mass disintegration into account Mass m is defined as a particle property The initial property value the mass must be given by the user and also the rate of disintegration is given by the user by means of the TCHAR keyword see User Input The disintegration itself is an exponential decrease m m paar where a small value for TCHAR means fast disintegration and a high value means slow disintegration TCHAR 0 means no disintegratio
47. s WAQUA requires that these coordinate lines are orthogonal Are the transformation coefficients of the x y cartesian system to the curvilinear system L The curvilinear grid is furnished by WAQUA in the SDS file Coordinate transformation of the random walk model When using a curvilinear grid the mathematical equations have to be adapted The relations between the components of the water velocity Jin the x y plane and the components h thel plane are given by Substitution of the transformations gives the following equations of the random walk model lt drift part gt lt diffusion part gt in which 14 1 4 1 4 1 1 4 2 1 5 Version 10 43 January 2008 Input description of SIMPAR lt flow velocity gt lt additional velocity caused by spatial variation of water depth and diffusion gt 2D 2D Gi and Gaas Sz Em E angle between the direction of flow and the local direction Boundary treatment in SIMPAR Open boundaries When a particle passes an open bounary it is halted and removed from the calculations Closed boundaries When during the advective displacement the particle is about to pass a closed boundary the calculation is renewed with half a timestep This process is repeated until the particle remains within the model area see Fig 4 If during the random step the particle would cross the boundary the particle is
48. s for LAYOUT and their meaning are 1 function values at grid points mi ni m n 1 m n gt m 1 n m 1 n gt m n m2 n2 columns first column is left column values from bottom to top 2 function values at grid points mi ni mj 1 n mo n m n 1 m n 1 m n gt m gt n gt rows first row is bottom row values from left to right 3 function values at grid points m2 n m2 n 1 mo n mo 1 n EN m 1 n2 E I A m n columns first column is right column values from bottom to top 4 function values at grid points m gt n m gt 1 n m n m2 n 1 m n 1 m gt n gt m n2 rows first row is bottom row values from right to left 5 function values at grid points m n m m 1 m n1 m 1 n gt m 1 n mo n mo n columns first column is left column values from top to bottom 6 function values at grid points m n2 m 1 n m gt n m n 1 m gt m 1 m n m gt n1 rows first row is top row values from left to right Assume the limits of the box are given by m n and mo n2 with m lt m and n lt no In the case of global input n 1 n NMAX m 1 and m MMAX The number of required function values is then niot Mion Where Dez number of enclosed n grid points m n 1 M number of enclosed m
49. um en tijd kan worden opgegeven tfparw 4920 tiparw 10 tlparw 5640 datfpw 19940101 timfpw 060000 datlpw 19940101 timlpw 120000 standaarddeviatie van de random verplaatsing op de horizontale snelheidsrichting paraa 10 standaarddeviatie van de random verplaatsing in de richting normaal op de horizontale snelheidsrichting parab 10 standaarddeviatie van de random verplaatsing in de verticale richting nog niet in gebruik parac 10 met de variabele wopfac wordt de invloed van de wind beschreven in het geval van een drijvende stof De windfactor is een percentage dat de extra verplaatsing ten gevolge van de wind aangeeft voor o drijvende stof op te geven in wopfac 5 met de variabelen tftrac titrac en tltrac wordt aangegeven op welke tijdstippen de posities van de variabelen die getrackt worden moeten worden weggeschreven weer hetzelfde alternatief met betrekking tot datum en tijd t trac 4920 titrac 20 tltrac 5640 datftw 19940101 timftw 060000 datltw 19940101 timltw 120000 het volgende keywoord is sources Hiermee wordt voor elke groep aangegeven nparg waar de oorsprong van de groep ligt sources met het woord xyzcrd worden de x y z coordinaten gegeven van de momentane bronnen xyzcrd 51250 405750 25 via het keyword numbers geven we aan dat we op willen geven hoeveel deeltjes in elke momentane groep z
50. y the points in time at which the positions of the particles that have been tracked should be written to disk DATIME must have a value of 1 in this case explicitly or by default When NPTRAC gt 0 and DATIME 1 TFTRAC TITRAC and TLTRAC must be specified Specifies the starting time point of particles tracking in minutes after the start of the simulation Specifies the time interval in minutes Specifies the time when to finish particles tracking in minutes after the start of the simulation As an alternative the user also can specify absolute datum s and times DATFTW and TIMFTW DATLTW and TIMLTW are in date time format and specify when all tracking positions have be written to disk for the first time and when at last DATIME must have a value of 2 in this case When NPTRAC gt 0 and DATIME 2 DATFTW TIMFTW TITRAC DATLTW and TIMLTW must be specified Specifies the starting date of tracking format yyyymmdd Specifies the absolute starting time of tracking format hhmmss Specifies the date when to finish tracking format yyyymmdd Specifies the absolute time when to finish tracking format hmmss Specifies the size of the concentration gridcell Should be smaller than the size of the normal gridcell Default 100 0 Specifies the half width of the pointspread function The width of the pointspread function 2 psfwid should be greater than the concentratin gridsize Default 300 0 Specifies the Hurst factor
Download Pdf Manuals
Related Search
Related Contents
Epson PowerLite 822+ T。SHーBA Bond Manufacturing 66874 Instructions / Assembly Istruzioni per l`uso Chief ER-12 racks Portege 3500 User`s Manual Instrucciones de servicio Varilla medidora mecánica de estatura Ethnicity: Introductory User Guide ViewSonic VA2026w User's Manual Examenul de bacalaureat naţional 2015 Proba C de evaluare a Copyright © All rights reserved.
Failed to retrieve file