Home
pDRIVE< MX eco Operating instructions Modbus
Contents
1. 8 9 10 11 12 13 14 15 Presentation of the status word sent at the bus Diagnostics of the operating state Presentation of the internal affecting drive state al D6 226 D6 227 2 Internal control word Internal condition 0 Fault Ready to switch on 1 Ready to run 2 Operation released 3 4 No Off 2 5 No Off 3 D M D M D M D M D M D M 92900 gt x0 ZTW1 Bit 8 ZTW1 Bit 9 ZTW1 Bit 10 ZTW1 Bit 11 ZTW1 Bit 12 ZTW1 Bit 13 ZTW1 Bit 14 ZTW1 Bit 15 Lock switching on Alarm f fref Control f gt level 4 H D D D D D D D D NR SR RSS SIC O M O M O M O M O M hex Lus 1 hex e I us EI HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Diagnostics of the Bus raw data o SH Ee ea n Te 0000 10000 Te eac Te Es en e Een e Ee eac n Ee ea n 6 Emam meo e Presentation of the incoming data words 1 10 at the bus esr SOC Esse Eez 6 Eeee ern E Ese ere Den e 0600 ern 6 Es erne S 06090 10090 E Presentation of the outgoing data words 1 10 at the bus 53 SIVH 00 00 v 0 LOd 8 54 HALS 8 PO1 034 00 00 Application examples 55 General In addition to the tvpical Bus operation
2. supply T Adapter 3 Bus termination RC 8 P01 302 Modbus splitter 8 PO1 303 Junction box Connection to further Modbus splitters gt pDRIVE lt MX Modbus options Option gt pDRIVE lt MODBUS T ADAP 03 8 P01 300 Option gt pDRIVE lt MODBUS T ADAP 10 8 P01 301 Option gt pDRIVE lt MODBUS R C 8 P01 302 Option gt pDRIVE lt MODBUS SPLITTER 8 P01 303 Option gt pDRIVE lt RS232 485 8 P01 304 Option gt pDRIVE lt MODBUS PLUG 8 P01 305 Option gt pDRIVE lt CABLE 3 BE 8 P01 122 Option gt pDRIVE lt CABLE 10 BE 8 PO1 123 Further recommended Modbus components Cable LAPPKABEL UNITRONICO BUS FD P LD 2x2 x0 22 When using the Modbus interface only connect pins 4 5 and 8 in order to avoid malfunction or damage of the gt pDRIVE lt MX eco 12 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 LED Indicator lamps Typically the diagnostics of the Modbus connection is executed by means of the matrix operating panel BE11 If no operating panel is available the actual bus state can be read out also using the built in LED keypad Modbus state LED Modbus state Bus state dark Modbus is not connected or inactive flashing WD LED flashes proportional to the number of the incoming and outgoing telegrams 100ms 13 SIVH 00 00 v 0 LOd 8 14 Process data area SIVH 00 00 ve0 LOd 8 15 Process data area The exchange of process data takes place using the Modbus request telegram c
3. Locum A Information quick at hand under www pdrive com 7 gt pDRI VE lt In addition to company specifications we have made available to you a detailed list of technical data for all our products as well as helpful software tools to set up the parameters of our inverters fa Ren 8 P01 034 00 00a HALS The right to make technical changes is reserved
4. o o jaw sta a EG to Jo lso le19 268 zm Oo j lo je er e 8 lg pe gs jer sa mo 00 so s Hz 96 Hz 96 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name C1 52 Value at OHz C1 53 Value at 100Hz Reference value switch C1 54 Ref val switch usage C1 55 Ref val switch selec C1 56 Ref val switch input A C1 57 Ref val switch input B Curve generator C1 61 Curve generator selec C1 63 Ref value O C1 64 Time At1 C1 65 Ref value 1 C1 66 Time At2 C1 67 Ref value 2 C1 68 Time At3 C1 69 Ref value 3 C1 70 Time At4 C1 71 Ref value 4 C1 72 Time At5 C1 73 Ref value 5 C1 74 Time At6 C1 75 Ref value 6 C1 76 Time At7 C2 Ramp frequency Frequency range C2 01 Minimum frequency C2 02 Maximum frequency Direction of rotation C2 03 Direction enable C2 04 Phase rotation Acceleration deceleration ramps C2 05 Acceleration ramp 1 C2 06 Deceleration ramp 1 C2 07 Acceleration ramp 2 C2 08 Deceleration ramp 2 C2 09 Switch 1st 2nd accel C2 10 Switch 2nd 1st decel C2 11 Start ramp C2 12 S ramp mode C2 13 S ramp C3 Cascade control Cascade control activation C3 01 Cascade mode Cascade state C3 02 Cascade state C3 03 Oper hours C Mot1 C3 04 Oper hours C Mot2 C3 05 Oper hours C Mot3 C3 06 Oper hours C Mot4 Basic settings C3 09
5. iw 06196 Ret vane emergenoy o be The settings of the bus reference values 2 9 are logical identical with those of bus reference value 1 see parameters D6 101 D6 104 Configuration of the fieldbus actual values Corresponding to the configured telegram length one to nine actual values are available in addition to the digital status word B ii 0 ww 1 1 ZTW 1 IW 6 1 ZTW 6 IW 2 1 ZTW 2 IW 7 1 ZTW 7 IW 3 1 ZTW 3 IW 8 1 ZTW 8 IW 4 1 ZTW 4 IW 9 1 ZTW 9 IW 5 1 ZTW 5 IW According to the set number of actual values D6 137 only relevant parameters are displayed in matrix field D6 in order to guarantee clear parameterization The gt pDRIVE lt MX eco provides analog outputs and serial fieldbus actual values to forward analog information of the actual values The size to be issued as well as their scaling can be freely configured 44 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Following process sizes can be transmitted as actual values Process size Value Unit Scaling 1 Output frequency Hz 100 0 2 Output frequency 100 0 3 Motor current Nominal current gt oDRIVE lt MX eco 4 Torque Nominal motor torque 5 Torque Nominal motor torque 6 Process torque Reference to parameter A2 19 7 Facility torque Reference to parameter A2 19 8 Power Nominal inverter power 9 Power Nominal inverter power 10 Motor voltage 100 0
6. m po n o e x ms p 9 mu je ms jim ma ju 9 pes ss pa sc 9 Unit Hz Hz hex Hz 96 Hz 96 hex Hz 96 Hz 96 hex Hz 96 Hz 96 hex Hz 96 69 Parameter name D6 119 D6 120 D6 121 D6 122 D6 123 D6 124 D6 125 D6 126 D6 127 D6 128 D6 129 D6 130 D6 131 D6 132 D6 133 D6 134 D6 135 D6 136 Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref value5 max value value5 emergency value6 selection value6 min value value6 max value value6 emergency value7 selection value7 min value value7 max value value7 emergencv value8 selection value8 min value value8 max value value8 emergencv value9 selection value9 min value value9 max value value9 emergency Fieldbus actual values Number actual values D6 137 D6 138 D6 139 D6 140 D6 141 D6 142 D6 143 D6 144 D6 145 D6 146 D6 147 D6 148 D6 149 D6 150 D6 151 D6 152 D6 153 D6 154 D6 155 D6 156 D6 157 D6 158 D6 159 D6 160 D6 161 D6 162 D6 163 D6 164 D6 165 D6 166 D6 167 D6 168 D6 169 D6 170 D6 171 D6 172 D6 173 70 Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act Act value1
7. 8 PO1 034 00 00 D6 174 Bit 11 STW1 selection 29 Ext fault 1 If a switch over from bus operation to terminal strip operation takes place the commands of the control word become ineffective The parameterized function Ext fault 1 is not effective any longer For this reason for control word bits that shall be effective both in the bus operation as well as the terminal operation bit 11 must be marked in parameter D6 179 Bit at term mode act ze Adjust parameter D2 15 DI at bus mode active on the other hand if a digital input should be effective in terminal operation as well as in bus operation If a control signal is configured both on a free bit at the bus as well as on the terminals which are active during bus operation the bus command will be preferred Configuration of status word bits 11 15 ERM awe TE ewes 0 Not used Limitation active 44 Output T4 1 Ready 7 Motor heating active 45 Output T5 2 Operation 25 Motorfluxing active 46 Output T6 3 Ready run 27 DC link charged 54 Bus STW bit 11 4 Trip 28 Line Contactor ON 55 Bus STW bit 12 5 Sum alarm 29 Motor contactor ON 56 Bus STW bit 13 6 Motor turns 30 C motor 1 ON 57 Bus STW bit 14 7 f fref 31 C motor 2 ON 58 Bus STW bit 15 8 Generator operation 32 C motor 3 ON 61 Digital input DI1 11 Shut down 33 C motor 4 ON 62 Digital input DI2 12 Panel mode active 36 Ala
8. HALS 8 PO1 034 00 00 Slave Request code CRC 16 address 1 byte 1 byte 1 126 byte 2 byte Creating CRC 16 CRC 16 is calculated according to the following method for checking the data security Initialize CRC 16 bit register to hex FFFF Execution from the first to the last byte of the message CRC XOR byte gt CRC Execute 8 times Move CRC by 1 bit to the right If output bit 1 execute CRC XOR A001 hex gt CRC End of execution End of execution The CRC value which is calculated that way is initially transferred with the low order byte and then with the high order byte Modbus functions request code Request code hex Reading of a single parameter p arameterization 03 hex Read Holding Registers No IG bil STAMMEN eres Process data parameters with consecutive ZTW IW logical address 06 hex Write Single Register Heb ora sihgie parameter Parameterization l Service for fieldbus diagnostics 08 hex Diagnostics requests with subcodes Diagnostics Request for writing and reading Process data 17 hex Read write multiple reg No several words with consecutive STW SW logical addresses ZTW IW Modbus function Broadcast Description Use Structure of the Modbus user data The available request codes of the Modbus provide services for various tasks Diagnostic functions request code hex 08 Using the request code 08 hex and its subcodes bus specific information can be read in order to
9. Motor contactor control 06 08 Motor contactorcontrol 75 205 Standby Mode C6 11 Standby mode C6 12 Off delay time C6 13 On delay time C6 14 Max level C6 15 Min level Impulse Counter C6 18 Pulse counter C6 19 Total counter C6 20 Counter average C6 21 Scaling C6 22 Time base pulse counter C6 23 Pulse type C6 24 Symbol pulse counter Ensuing parameter C6 25 Pulse counter unit Ensuing parameter C6 26 f correction D1 Analog inputs Analog input Ali D1 01 Al1 selection D1 02 Al1 level D1 03 Al1 min value D1 04 Al1 max value D1 05 Al1 filter time Analog input Al2 D1 08 Al2 selection D1 09 AI2 level D1 10 Al2 min value D1 11 Al2 max value D1 12 AI filter time Analog input AI3 D1 15 AI3 selection D1 16 AI3 level D1 17 AI3 min value D1 18 Al3 max value D1 19 AI3 filter time Analog input Al4 67 Parameter name D1 22 D1 23 D1 24 D1 25 D1 26 AI4 selection AI4 level AI4 min value AI4 max value AI4 filter time Frequency input D1 29 D1 32 D1 33 FP selection FP min value FP max value FP filter time D2 Digital inputs Logic Inputs D2 01 DI1 selection D2 02 DI2 selection D2 03 DIS selection D2 04 DI4 selection D2 05 DIB selection D2 06 DIG selection D2 07 DI7 selection D2 08 DIB selection D2 09 DI9 selection D2 10 DI10 selection D2 11 DI11 selection D2 12 DI12 selection D2 13 DI13 selection D2 14 DI14 selection D2 15 DI
10. 49 Calculation of the CRC algorithm see chapter Structure of the telegram page 4 16 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Response telegram gt pDRIVE lt MX eco gt Master se read E 1 byte 1 byte 1 byte 2 bytes 2 bytes 2 bytes Summary of the response telegram T ZIW 01B7 ITW1 4000hex f act 100 ITW2 4000hex P act 50 ITW3 4000hex T act 50 ITW4 4000hex I act 50 ITW5 0000hex no alarm ITW6 0000hex no fault If the Modbus should be used only for monitoring purposes the Read Holding Registers Multiple Read code 03 hex telegram should be used L In special cases the individual access to the respective elements of the process data is possible using commands 03 hex 06 hex and 10 hex The design of the device internal drive profile is based on the Profidrive profile VDIMDE 3689 The standardized information of the control and status word bits 0 10 require no further inverter internal settings The reference use the assignment of actual values and the use of the free bits 11 15 must be adjusted accordingly in matrix field D6 Fieldbus Also see chapter Structure of the Modbus user data page 5 17 Control word Assignment Bit 15 Bit 14 5 freelv configurable Bit 13 control bits for internal or external Bit 12 frequency inverter commands Bit 11 Bit 10 Control O K No control Bit 9
11. 527 or zm B 15066 zion ss o i04 rc Unit kHz mr ns Teee oz ssoo ww sz jeu Q seme o 4x0 a m ms fo le v m he o jo ho fe ms 217 8 lo 6500 rom ne e X Tr Heg uA SON SR E i AA sas ae 0 sce o 65000 mom ss mo o 1000 ms ss fais tb 19 o 6535 mH 1590 jac zm j 541 21D A see table 0 2 3500 kW ss jer 8 o 6500 rom mm 6 E le Ie 160 1406 NEN NUES IN RE H sus j 0 seee o 65000 mom sr zs t o 10900 ms ss zs tb io o 535 lm sso 28 zm j m po 6 E some Jw ms Io E wwe ma pe 6 E ms jar E lo Te m lm lo In 10800 I E et ms s e B wwe 1000 no lm ms lm m E 10 a 63 Parameter name B4 39 Stray reactance MO B4 40 Load default motor B5 Brake function Brake mode B5 01 Braking mode C1 Int reference Preset reference values C1 01 Pre set ref selection C1 02 Pre set reference 1 C1 03 Pre set reference 2 C1 04 Pre set reference 3 C1 05 Pre set reference 4 C1 06 Pre set reference 5 C1 07 Pre set reference 6 C1 08 Pre set reference 7 C1 09 Pre set reference 8 C1 10 Pre set reference 9 C1 11 Pre set refer
12. 96 Nominal voltage motor 11 Speed Nominal speed at fmax C2 02 12 Speed Nominal speed at fmax C2 02 15 int f ref before ramp 100 0 16 int f ref after ramp 100 0 17 PID reference val 96 100 0 18 PID actual value 96 100 0 19 PID deviation 96 100 0 20 PID output 100 0 23 int ref switch over 100 0 24 Calculator 100 0 96 100 0 25 Curve generator 100 0 26 Counter average 100 0 27 Total counter 100 0 28 Speed machine 100 0 33 1000 V DC 36 Thermal load BR 100 0 37 Thermal load VSD 100 0 39 Reserve 100 0 41 Position value HIGH 10 V 4000 hex 42 Reserve 10 V or 20 mA 4000 hex 43 Reserve 20 mA 4000 hex 44 Bus SW 1 10V or 20 mA 4000 hex 45 Bus SW2 D1 33 lt 4000 hex 47 Bus SW 4 100 0 48 Bus SW 5 100 0 49 Bus SW 6 100 0 50 Bus SW 7 100 0 51 Bus SW 8 100 0 52 Bus SW 9 100 0 55 Al 1 100 0 56 Al 2 100 0 57 AI 3 100 0 58 Al 4 100 0 Integer See table alarm index given in the appendix 59 Frequency input 100 0 Integer See table alarm index given in the appendix 45 D6 138 Act value1 selection TD 1 Output frequency 0 Not used 18 PID actual value 96 44 Bus SW 1 1 Output frequency 19 PID deviation 96 45 Bus SW 2 2 JOutput frequency 20 PID output 47 Bus SW4 3 Motor current 23 int ref switch over 48 Bus SW 5 4 Torque 24 Calculator 49
13. Bit 8 Bit 7 Reset Bit 6 Release reference value Lock reference value Bit 5 Release ramp integrator Lock ramp integrator Bit 4 Release ramp output Lock ramp output Bit 3 Release operation Lock operation Bit 2 Operating condition OFF 3 Fast stop Bit 1 Operating condition OFF 2 Impulse inhibit Bit 0 On OFF 1 18 High 1 Low 0 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Description of control word bits Bit Value Meaning 1 Operating condition Impulse inhibit 2 Operating condition 0 OFF 3 Note Is accepted when the drive state is 7 Ready to switch on and changes to drive state 3 Ready to run if the DC link is charged At active line contactor control Change to drive state 2 Charge DC link after successful charging the drive state changes to 3 Ready to run When the command has been accepted the drive state changes to 13 OFF 1 active and thus the drive is shut down along the deceleration ramp When the output frequency reaches zero Hz the drive state changes from 0 Not ready to switch on to 1 Ready to switch on if the basic state bit 1 O bit 2 1 bit 3 1 and bit 10 1 is present If a renewed OFF 1 On command occurs during deceleration the inverter tries to reach the given reference value along the acceleration ramp Thereby the drive state changes to 7 Run At active line contactor control the line contactor is swit
14. Bus SW 6 5 Torque 25 Curve generator 50 Bus SW 7 6 Process torque 26 Counter average 51 Bus SW 8 7 Facility torque 27 Total counter 52 Bus SW 9 8 Power 28 Speed machine 53 Reserve 9 Power 33 54 Reserve 10 Motor voltage 36 Thermal load BR 55 Al 1 11 Speed 37 Thermal load VSD 58 Al 4 12 Speed 39 Reserve 59 Frequency input 15 int f ref before ramp 41 Position value HIGH 16 int f ref after ramp 42 Reserve 17 PID reference val 96 48 Reserve Selection of the size which should be transmitted at bus actual value 1 300 300 96 or Hz D6 140 Act value1 max value a 50 96 or Hz 300 300 96 or Hz The two parameters D6 139 Act value1 min value and D6 140 Act value1 max value are used for linear scaling of the transmitted bus actual value D6 139 assigns the minimum value to the actual value point O 96 0 dec 0000 hex D6 140 assigns the maximum value of a process size to the actual value point 100 96 16384 dec 4000 hex The scaling of the process size and their unit can be seen from the table above Settings example for bus actual value 1 Process size Scaling D6 139 Act value1 D6 140 Act value1 Scaling of the output signal min value max value 8 Power 100 96 Nom 0 96 100 96 4000 hex 16384 dec at motor power 100 96 Py motor e g 90 kW max presentable range 200 96 Process value 20
15. MA gt pDRIVE lt Operating instructions Modbus NA gt pDRIVE lt MX eco 4V BEE pDRIVE MX multi eco Modbus General remarks The following svmbols should assist vou in handling the instructions Advice tip General information note exactly The requirements for successful commissioning are correct selection of the device proper planning and installation If you have any further questions please contact the supplier of the device Capacitor discharge Before performing any work on or in the device disconnect it from the mains and wait at least 15 minutes until the capacitors have been fully discharged to ensure that there is no voltage on the device Automatic restart With certain parameter settings it may happen that the frequency inverter restarts automatically when the mains supply returns after a power failure Make sure that in this case neither persons nor equipment is in danger Commissioning and service Work on or in the device must be done only by duly qualified staff and in full compliance with the appropriate instructions and pertinent regulations In case of a fault contacts which are normally potential free and or PCBs may carry dangerous voltages To avoid any risk to humans obey the regulations concerning Work on Live Equipment explicitly Terms of delivery The latest edition General Terms of Delivery of the Austrian Electrical and Electronics Industry Association form the
16. all inverters are controlled via fieldbus also a Mixed operation i e simultaneous use of bus control and conventional control via terminals is available due to the simple configuration of the reference and actual values and the free areas of the control and status word Following all three basic control tvpes are described in form of block diagrams A mixed operation of these variants is certainly possible Controlling the MX by means of the fieldbus interface gt Pure bus operation The whole control and diagnostics of the inverter is carried out by means of the bus coupling The possibility to implement conventional control elements is not used disconnecting switch the pDRIVE MX eco has to be supplied with an external 24 V buffer In order to address an inverter via fieldbus also during mains cut off line contactor control voltage Control electronics Control electronics Modbus CANopen PC Modbus CANopen PC 24V Buffer voltage Modbus 56 HALS 8 P01 034 00 00 HALS 8 P01 034 00 00 Controlling the MX alternativelv bv means of the fieldbus interface or the terminals gt Control source switch over The inverter is controlled depending on a digital signal at the terminals or the bus via the bus control word or digital commands at the inverter terminals Further information about the selection of the control source are given in matrix field E4 and the presetting of macro 4
17. se B 1002 sta gt oO o lsEB 11004 sec Oo T io 3D zm oO A O ioo se Bop o so B ioo 31 m B 1100 a2 m B pon ss gt 8 25 mm Z XxX j o lsF4 m T pos ss m B oi se pos Iar GB I ow se m Oo Be e gt i Bum Den See pors sta gt B 1109 fes 0 poo arc B 11021 fso 0 287 IF J xXx o se og arr B Ho 1400 gt B 1025 aor B oe 0 z 11026 42 om 4s oO fT poa s e ol ma 46 0 io jo sso Bos Wege 3b poo jw HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name E6 115 Time module 2 T2 signal A selection E6 117 T2 function T2 time setting E6 119 T2 output E6 120 T2 selection E6 121 Time module 3 E6 122 T3 signal A selection E6 123 TS3 function E6 124 T3 time setting E6 125 T3 output E6 126 T3 selection E6 127 Time module 4 E6 128 T4 signal A selection E6 129 T4 function E6 130 T4 time setting E6 131 T4 output E6 132 T4 selection E6 133 Time module 5 E6 134 T5 signal A selection E6 135 T5 function E6 136 T5 time setting E6 137 T5 output E6 138 T5 selection E6
18. 0 0 sws 0 Not active 1 Active In order to recognize a communication problem at the serial fieldbus interface two different monitoring routines are available Watch dog timing The watch dog timing checks the fieldbus interface for a cyclical signal of the active bus master or scanner and therefrom it is a check of the bus hardware cable break malfunction of the master componert The monitoring time depends on the existing network configuration like the number of subscribers set baud rate a s o It is automatically transmitted from the master to the slave by means of the parameterization telegram or it has to be set at the inverter Loss of control In contrast to the watch dog timing the control monitoring checks the data content of the serial data traffic If a malfunction occurs at the fieldbus master or its respective PLC all outgoing data are set to zero Fail Save Mode Therefore the slave receives a telegram with data content zero periodically whereby the triggering of the watch dog timing is prevented In order to recognize this state and to take suitable measures a monitoring of control can be activated with parameter D6 02 typical for Profibus DP If parameter D6 02 Control requested is set to 1 Active the inverter monitors bit 10 of the control word If this bit equals state Low loss of control is detected HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 D6 03 Bus error beh
19. 0 1 1 7 Run x 1 x x 0 1 1 0 1 1 1 19 Lock switching on x 1 x x 1 x x 0 0 0 0 20 Fault x 1 x x 0 x x 1 0 0 0 O Bit state zero 1 Bit state one X Bit state is undefined 26 8 P01 034 00 00 HALS 8 PO1 034 00 00 Description of status word bits Bit Value Meaning Note 0 1 Ready to switch on The drive state is 7 Ready to switch on The inverter is locked At active line contactor control the main contactor is switched off Not ready to switch on The drive state is 0 Not ready to switch on or 19 Lock switching on 1 Ready to run The drive state is 3 Ready to run That means that there is voltage on the power part and there are no faults But the inverter is still locked At active line contactor control the Run message already occurs during charging gt drive state 2 Charge DC link o Not ready to run 1 2 Operation released The drive state is 4 Operation released 5 Ramp output released 6 Ramp released 7 Run 13 OFF 1 active or 14 OFF 3 active The inverter is operating with impulse enable and there is voltage on the output terminals EON Operation locked 3 1 Fault The drive is not in operation due to a fault The drive state is 20 Fault After successful trouble shooting and reset of the fault the drive state changes to 19 Lock switching on 0 Feuedes 4 no OFF 2 i OFF 2 Impulse inhibit An OFF 2 impulse inhibi
20. 139 Time module 6 E6 140 T6 signal A selection E6 141 T6 function E6 142 T6 time setting E6 143 T6 output E6 144 T6 selection F1 Info Identification of the device F1 01 Drive reference Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter F1 02 Nominal power F1 08 Nominal current F1 04 Nominal voltage F1 05 Drive serial number F1 06 X Facility description Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter F1 07 APP software Ensuing parameter Ensuing parameter Log address Adjust ability Host 40 zm 0 102 408 o po wa wa 00 io 0 jew 290 122 Setting range Factor AN per us X E eo ET X esoo s pes us X De fe X 0 um o o o o gt RR al al o o o o 2000000090 SOX Unit TT Parameter name Tvpe F1 08 F2 Log address Adjust dec hex ability min max Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Service notice Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter 000090 O RI O RI KI RI O RI KI kI O RI KI RI O RI KI RI O RI KIS RI O RI Tes
21. 8N1 8N2 Setting Data bits Parity bit Stop bit Bit byte 801 10 8E1 10 8N1 9 8N2 8 No 2 10 41 D6 15 Modbus time out 3 aq 5s 0 300 s The watchdog for the Modbus connection is set depending on the existing network configuration such as the number of subscribers the selected baud rate and so on If the time between two telegrams from the master exceeds the set value there is a communication problem with the master The behaviour of the gt pDRIVE lt MX eco in case of a timeout can be set by means of parameter D6 03 Bus error behaviour If 0 0 seconds are set the watchdog function is inactive Configuration of the fieldbus reference values Corresponding to the configured telegram length one to nine reference values are available in addition to the digital control word Ba gms SO ws 1 1 STW 1 SW 6 1 STW 6 SW 2 1 STW 2 SW 7 1 STW 7 SW 3 1 STW 3 SW 8 1 STW 8 SW 4 1 STW 4 SW 9 1 STW 9 SW 5 1 STW 5 SW According to the set number of reference values D6 100 only relevant parameters are displayed in matrix field D6 in order to guarantee clear parameterization The references for the different functions of the gt pDRIVE lt MX eco can be provided in different ways see chapters reference sources reference value distributor in the Description of functions One way is the usage of fieldbus reference values Thereby the reference values are provided by means of automation
22. D6 15 Modbus time out D6 20 CANopen address D6 21 CANopen baud rate D6 30 DP slave address D6 31 DP baud rate D6 32 Slave state D6 33 On after off 1 D6 34 Request master D6 35 DP master address D6 36 Config buffer 1 D6 37 Config buffer 2 D6 38 Config buffer 3 D6 39 DP diagnostic buffer 1 D6 40 DP diagnostic buffer 2 D6 41 Group number D6 42 Global command Fieldbus references D6 100 No of Bus ref values D6 101 Ref value1 selection D6 102 Ref value1 min value D6 103 Ref value1 max value D6 104 Ref value1 emergency D6 105 Ref value2 selection D6 106 Ref value2 min value D6 107 Ref value2 max value D6 108 Ref value2 emergency D6 109 Ref value3 selection D6 110 Ref value3 min value D6 111 Ref value3 max value D6 112 Ref value3 emergency D6 113 Ref value4 selection D6 114 Ref value4 min value D6 115 Ref value4 max value D6 116 Ref value4 emergency D6 117 Ref value5 selection D6 118 Ref value5 min value Log address Adjust Setting range dec hex ability min max 790 mr 0 80 zo 01 s me x we ss ss AAA 1004 m 8 ms ss oro 00 1 1 O ioi ss lt302 sie sos ls7 gt GB LX 1304 58 ho Hee lsw 9 mo 100 m ja E ir e BI STE 0999 ST L iss em 8 e 2s ES PEE ee
23. Limitation active 2 A limitation function is active The set acceleration or deceleration ramp cannot be Hamp adaption maintained and is automatically extended The operating hours counter A5 01 for motor M1 has exceeded the set time interval A5 02 N gt Service M1 The operating hours counter A5 04 for motor M2 has sevice ME exceeded the set time interval A5 05 N al The operating hours counter A5 08 for the power part of the Service Power On 26 device device is supplied with mains voltage has exceeded the set time interval The operating hours counter A5 10 for the power part fan has exceeded the set time interval A5 11 8 The Simulation mode F2 45 is activated 9 The PC program Matrix 3 executes a parameter download N RI NO bh N Co Service fan N Simulation active N Download active One or several function modules are incompletely 0 parameterized the end of each function group belonging together must be a time module wo E6 incomplete The selected function cannot be combined with the actual Wrong control mode 3 controli mode Para Set 1 36 Faulty Eprom zone for parameter set 1 Para Set 2 37 Faulty Eprom zone for parameter set 2 IGBT 3 gt 38 IGBT overtemperature determined by the thermal mathematical inverter model These alarm info messages can be read out under address 43 dec 002B hex 82 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Tr
24. No of cascade pumps C3 10 Manual auto switch Log address Adjust ability 300 300 Setting range Factor Cs A 100 300 300 et p ofa su hu 0 mo jo eso s 300 Unit Hz 96 ETT Hz 96 us sme 0 ho lo 690 s 300 Hz 96 le48 zee to jo leso ls 300 Hz 96 1650 28A E to lo eo ls Hz 96 ess mc i wo fo 690 s 300 Hz 96 a lsee wo Jo je Is es mre e p po 300 es ms 0 e jo so eo f tB o 0 seo e ms l 8 o lo seo 1662 me 0 o o seo s mr o o ls m ms io o jsw r o o ol o N Hz lee5 29 a pto o 600 ls 1666 f a Oo pa Jg omo B J jpg co Zi ms le e E 110 16 Ox alas gt O qe GR EE lee9 2D 9 e 4 160 e gt j 65 Parameter name C3 11 Oper mode C Mot1 C3 12 Oper mode C Mot2 C3 13 Oper mode C Mot3 C3 14 Oper mode C Mot4 C3 15 Switching mode Switching points pressure C3 18 Max PID deviation C3 19 Overdrive limit Switching points frequency C3 22 Frequency C Mot1 on C3 23 Frequency C Mot1 off C3 24 Frequency C Mot2 on C3 25 Frequency C Mot2 off C3 26 Frequency C Mot3 on C3 27 Frequency C Mot3 off C3 28 Frequency C Mot4 on C3 29 Frequency C Mot
25. assignment E2 01 E2 06 E2 11 which is planned for the general use has detected an overtemperature TH 3 gen gt gt The thermal mathematical motor model has reached the set die trigger level for motor M1 The thermal mathematical motor model has reached the set 3M2 gt trigger level for motor M2 Stall protection 2 The stall protection has triggered due to a rotor blockade or a p highiv overloaded starting See parameters E2 42 to E2 45 Underload 5 The underload function E2 61 has recognized a motor underload Speed check fault 54 The function n monitoring E1 38 has recognised an overspeed Feed in lt lt 55 The function Feed in monitoring E1 49 has triggered AT fault 1 56 Fault at the execution of the autotuning routine Config fault 5 ae application software incompatible or changed power An external fault is signalized via a digital input function see a B E3 34 to E3 38 Ext fault 2 9 An external fault is signalized via a digital input function see E3 41 to E3 45 Contactor fault Line contactor control defect response monitoring O Motor contactor err c 1 Motor contactor control response monitoring active OQ N Motor contactor err o Motor contactor control release monitoring active The digital input function ON lock E3 48 caused a protective o ON lock shut down Internal SW error 64 Internal software fault e g defect parameter settings Power rating fault 65 Unclear power part as
26. before transmitting the start command bit O 1 After connecting the mains bootup of the drive the basic state bit O 0 bit 1 2 1 must be provided in order to reach drive state Ready to switch on 23 State machine Profidrive Bootup 01 l 19 Lock switching L 1 19 Lock switching on I i a ON y TA fiso OFF 2 bel O Not ready to switch on operation 7 E fis 0 14 OFF 3 active 20 Fault Control OK OFF 3 OFFI basic state Fault 13 OFF 1 active au y S All states 1 Ready to switch on gt Cw On JA ON ON after OFF1 released also OFF 3 Y ba 2 Charge DC link a T Hardware Hardware Ready Not Ready Lock operation Y pa 3 Ready to run A Rel ti 3 Release operation Lack operation yy 4 Operation released gt Release ramp output Nh unm ry 5 Ramp output released gt gt gt Release ramp Ramp hold Y f 6 Ramp released gt gt Release SW Lock SW Y 7 Run gt Lowest priority gt gt Top priority 24 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Main refe
27. bit 7 is set to high as an error flag request 80 hex In the error code byte details regarding the existing fault can be found Structure of the error telegram Slave Response code Error code CRC 16 Address 80 request code Lo Hi 1 byte 1 byte 1 byte 2 bytes Error code Description 00 No error 01 Unknown request code 02 Inadmissible logical or physical address 03 Faulty data size byte word or faulty number of data Request cannot be executed due to Parameter is of type actual value 04 Parameter cannot be changed during operation Parameter cannot be changed due to double assignment The parameterizing station F6 03 is not set to Modbus 05 Request length faulty 06 Access not permitted Rules for processing of requests responses The master makes a request and has to wait for the response telegram of the respective slave before it can formulate a new request The master has to check the response to a request made dependent on the response code In case of a positive response code request response Evaluation of the parameter number Evaluation of the parameter value In case of a negative response code request 80hex Evaluation of the error code Requests or responses must be completely transferred in one telegram Combined requests are not possible n case of responses which include actual values the inverter always replies the actual value when repeating
28. devices PLC which transmit the required reference values serial to the activated fieldbus interface PER ae sen H forme 0 Not used 6 PID reference val 1 f reference 1 Hz 7 PID actual value 96 2 f reference 2 Hz 15 Request 96 3 f correction Hz The output of the reference source Bus SW1 can be set as source for different uses according to the reference value distributor Parameter D6 101 Ref value1 selection assigns the reference value to the desired use see also chapter reference sources reference value distributor in the Description of functions EBHETerwur esae H esw 300 300 96 or Hz 300 300 96 or Hz The two parameters D6 102 Ref value1 min value and D6 103 Ref value1 max value are used for linear scaling of the transmitted reference value D6 102 assigns an output value to the reference point at 0 96 0 dec 0000 hex D6 103 assigns it to the reference point at 100 96 16384 dec 4000 hex 42 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 The unit of the reference value is scaled according to the reference use D6 101 Ref value1 selection for all frequency values in Hz while the remaining signals are scaled in 96 Bus SW 1 scaling Scaled 4 bus signal Hz 50 Hz D6 102 0 D6 103 50 D6 102 15 D6 103 50 CO00h m 10096 L 0 96 100 l Z4 dl f f D6 102 D6 103 Ref v
29. in matrix field B2 Control electronics Control electronics CANopen PC 24V Buffer voltage Modbus Control commands for switch over as well as for start stop commands disconnecting switch the pDRIVE MX eco has to be supplied with an external 24 V buffer In order to address an inverter via fieldbus also during mains cut off line contactor control voltage 57 Controlling the MX bv means of the fieldbus interface and the terminals of the device Mixed operation The whole control and diagnostics of the inverter is carried out bv means of the bus coupling However also additionallv external information for inverter operation additional reference values control signals or svstem information which do not directiv affect the drive are implemented in the automation concept using the standard terminals or the terminal extension 1011 or 1012 An external supply of the inverter electronics with 24 V buffer voltage is necessary if the system information have to be exchanged furthermore via the DP master even if the inverter is cut from the mains Inverter MX Inverter MX Control electronics 1012 Control electronics Modbus CANopen PC Modbus CANopen PC 24V Buffer voltage Modbus Analog and digital in and outputs of the frequency inverter and of the terminal extension card 1011 or 1012 Example 1 Use of the MX internal PID process controller Reference value provided se
30. management B2 01 Active parameter set B2 02 Macro selection 478 De m B2 03 Parameter mode ee ot B2 04 Create backup 1801 79 B2 05 Restore backup sg o 8 B2 06 Copy parameter set teen com fen B2 07 Name parameter set 1 Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter B2 08 Name parameter set 2 Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter B3 Inverter data Line voltage B3 01 Mains voltage Motor control B3 02 Control mode B3 03 Starting voltage B3 04 V f V1 B3 05 V f f1l B3 06 V f V2 B3 07 V f f2 B3 08 V f V8 B3 09 V f f3 B3 10 V f V4 B3 11 V f f4 B3 12 V f V5 B3 13 V f f5 B3 17 Starting torque amp U 96 83 18 Slip compensation m fm b iso Tx 83 19 Vmax field weakening so e A h m0 o v B3 20 Dynamic 1 51 he CM ho lo 25 B321 Dynamio2 so mo jo jo General settings B3 24 Stop mode Emu TS 83 25 decel persistant rec ss o amp o b o 3 26 _ decel persistant time sis o 8 jo 1900 B327 Motor fluxing su ba 0 62 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name B3 30 Skip frequency B3 31 Noise reduction B3 32 Vmot optimization B3 35 Catch on the fly B3 36 A Allowed c
31. the response telegrams For write requests the value which is transmitted in the response must be evaluated the request is canceled if the value remains the same or if a fault occurs After changing a parameter a storage command must be sent in order to protect the data against voltage loss The storage command takes place when writing value 1 to the logical address 0028 hex 40 dec 33 Examples Reading of the shaft power parameter A2 07 address 006B hex 107 dec Request telegram Master gt gt pDRIVE lt MX eco Slave Code Parameter Number of address parameters 0 os oo of Jto Hi Response telegram gt pDRIVE lt MX eco gt Master Slave Code Number of Parameter CRC bytes value w e lol e Parameter value 007B hex 123 dec Scaling Real value transferred value factor for factor see chapter Parameter list of the gt pDRIVE lt MX eco from page 60 P 123 10 12 3kW Programming of the parameterizing station on Modbus F6 03 setting 2 address 047A hex 1146 dec Request telegram Master gt gt pDRIVE lt MX eco Slave Code Parameter Parameter CRC address value o o oa 7A 00 o ie H Response telegram gt pDRIVE lt MX eco gt Master Slave Code Parameter Parameter CRC address value o o oa a amp is NGO It is necessary to set parameter F6 03 Parametrising station to setting 2 Modbus in order to be qualif
32. to transmit information using the digital outputs of the frequency inverter bit 10 STW must be 1 l This additional information bit 11 15 are added to the control word in the corresponding numerical format Use Free control bits Possible reference values Inverter internal f reference 2 f reference 1 2nd ramp f reference 2 External fault f correction PID active PID ref value Mains ON OFF PID actual value for the complete list see matrix filed D6 Inverter external Relay and digital outputs of the basic card Analog output of the basic card or or the option card 1011 or 1012 the option card gt pDRIVE lt 1012 25 Status word HALS Assignment Bit 15 Bit 14 5 freelv configurable Bit 13 status bits for internal or external Bit 12 frequency inverter messages Bit 11 Bit 10 f n gt f level f n lt f level Bit 9 Control requested No control rights requested Bit 8 f n f n ref f n f n ref Bit 7 Alarm No alarm Bit 6 Lock switching on No Lock switching on Bit 5 No OFF 3 OFF 3 Emergency stop Bit 4 No OFF 2 OFF 2 Impulse inhibit Bit 3 Fault No fault Bit 2 Operation released Operation locked Bit 1 Ready to run Not ready to run Bit 0 Ready to switch on Not ready to switch on High 1 Low 0 0 Not ready to switch on x 1 x x 0 x x 0 0 0 0 1 Ready to switch on x 1 x x 0 x x 0 0 0 1 3 Ready to run x 1 x x 0 x x 0
33. 0 100 8000h C000h transmitted bus value hex t 1 D6 139 D6 140 46 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 D6 141 Act value1 filter time 3 a 0 15 0 30 s During the measurement of dynamically changing values such as current or torque it may be a good idea to filter the actual value which should be transmitted already in the inverter The measurement value can be stabilized before transmission by setting an appropriate filter time at the output filter At setting 0 0 seconds the filter is deactivated 47 D6 170 Act value9 selection aq 0 Not used D6 171 Act value9 min value D6 172 Act value9 max value D6 173 Act value9 filter time The settings of the bus reference values 2 9 are logical identical with those of bus reference value 1 see parameters D6 138 D6 141 Configuration of control word bits 11 15 570 s amaret Sd S we 56 0 Not used 29 Ext fault 1 Mains cut out 11 f ref reverse 30 Ext fault 2 57 ON lock 14 Motor pot 32 Emergency oper 58 Locking 15 Motor pot 35 PID active 59 Feedb motor contactor 16 Pre set A 36 PID lock 60 Motor heating 17 Pre set B 37 PID wind up 61 Operation with IR 18 Pre set C 40 Feed in pressure OK 64 Pulse counter input 19 Pre set D 41 Level OK 65 Pulse counter reset 22 f reference 2 Hz 42 Level 66 n monitoring 23
34. 0 Is 73 Log address T Adjust Setting range Parameter name Factor 2 Unit dec hex ability min max E313 Al2 4mA monitor ss ere 0 E3 14 Al2 mA response me ss 1l 1 E315 _AI2 emergency val mA E3 16 _AIS mA monitor ss 0 E3 17 AIS 4mA response 1899 s3 gt 0 E3 18 AS emergency val oo s io Ja eo E39 AM AmA monitor lt 9 00 E3 20 Ald 4mA response 1902 se 00 E3 21 Al4 emergency val E3 22 FP f monitoring feos ws wo E328 FP monitoring resp les jss zm 1l E324 FP emergency val so jsa wo o o w Loss of line phase Es 27 Mains phase monitoring 907 Jes Behaviour at undervoltage E3 29 V lt response E3 30 Allowed V lt time E3 31 Max V lt time External fault E3 37 Time setting E3 38 Ext fault 1 name Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter E3 41 Ext fault 2 monitor E3 42 Ext fault 2 response E3 43 Start delay time E3 44 Time setting E3 45 Ext fault 2 name Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter Ensuing parameter ON lock E3 48 ON lock activation E3 49 ON lock response E3 50 Time setting Alarm categories E351 _ Alarm category 1 CE 0110 E3 54 Alarm
35. 4 off Switching dynamic C3 32 Switch on delay C3 33 Turn off delay C3 34 Overdrive time C3 35 Min switch over time Change of motor C3 38 Motor change C3 39 Change master drive C3 40 Time frame C3 41 Time master drive Cd PID configuration Monitoring of PID values C4 01 PID reference value C4 02 PID actual value C4 03 PID deviation C4 04 PID output Basic setting C4 07 Control mode C4 08 Control sense C4 09 Proportional gain C4 10 Integration time C4 11 Derive time C4 12 Max D part C4 13 Output level min C4 14 Output level max C4 17 Frequency tracking C4 18 Ref value acceleration C4 19 Ref value deceleration Compensation of pressure drop C4 22 Pressure drop C4 23 Start compensation C4 24 Compensation dynamic Advanced functions C4 32 PID lock C4 33 Wind up behaviour C4 34 PID multiplier C4 35 PID divisor 66 678 2A6 679 2AF ar a Adjust ability min max T 10 0 300 pto fo 15300 s HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Log address Adjust Setting range Parameter name Tvpe id Factor E dec hex ability min max C436 PID offset C4 37 Process unit 716 2CC txt Ensuing parameter 717 2CD txt C6 Special functions Economy mode Unit C6 01 Economy mode C6 02 Max fluxing reduction C6 03 V f level Motor heating C6 05 Motor heating C6 06 Heating current Line contactor control CGU Torri domeonio 1724 2p4 z j
36. 6 S 100 H A4 03 AI2 ref value 96 127 BR opo 1 A4 04 AI2 ref value scaled 128 o X jo Hz A4 05 AI3 ref value 129 opo T A4 06 AI3 ref value scaled 130 Xi 100 j H A4 07 AM ref value 9 131 ss X jo T lt A4 08 Ald ref value scaled 132 xi mo Hz 60 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name A4 09 FP ref value in kHz A4 10 FP ref value scaled Monitoring of digital reference sources A4 11 Motor pot ref value A4 12 MX wheel ref value A4 13 Pre set reference Monitoring of internal reference sources A4 14 Ref value switch over A4 15 Calculator A4 16 Act value selection A4 17 Curve generator Monotor logic input A4 18 DI state basic device A4 19 DI state 1011 A4 20 DI state IO12 Monitoring of bus reference sources A4 21 Bus reference 1 scaled A4 22 Bus reference 2 scaled A4 23 Bus reference 3 scaled A4 24 Bus reference 4 scaled A4 25 Bus reference 5 scaled A4 26 Bus reference 6 scaled A4 27 Bus reference 7 scaled A4 28 Bus reference 8 scaled A4 29 Bus reference 9 scaled A5 Counter Operating hours A5 01 Operating hours motor1 A5 02 Interval motor 1 A5 03 Interval counter M1 A5 04 Operating hours motor2 A5 05 Interval motor 2 A5 06 Interval counter M2 A5 07 Power on hours A5 08 Interval power on A5 09 Interval count PowerOn A5 10 Operating hours fan A5 11 Interval fan A5 12
37. Control source 2 50 C motor 1 ready 67 Parameter locked 24 2nd ramp 51 C motor 2 ready 25 Reference value B 52 C motor 3 ready 26 Panel operation 53 C motor 4 ready Parameter D6 174 assigns a digital input function to bit 11 of the control word A description of this function can be found in the gt pDRIVE lt MX eco Description of functions matrix field D2 B EXPTE 8 we 570 aa sm anen we Berm ESE e jewws Berta ESTE e 10900 Setting possibilities see D6 174 Beames 1 090 O 0 STW1 Bit 11 O a 1 STW1 Bit 12 O a 2 STW1 Bit 13 D 7 d 3 STW1 Bit 14 O a 4 STW1 Bit 15 D 79 When the control source selection see Matrix field E4 is used to switch between terminal and fieldbus operation it might be necessary to have Individual bits 11 15 of the bus control word active despite the fact that the control source has been switched to the terminals This exception from switch over can be configured bv the appropriate selection with parameter D6 179 Bit at term mode act Example External fault In case of a process fault the inverter is shut down svstematicallv using bit 11 of the control word This behaviour should be also guaranteed in case of controlling the drive via local operation bv means of terminal commands Digital input DI4 can be used to switch between terminal strip operation and bus operation 48 HALS 8 P01 034 00 00 HALS
38. Interval counter fan A5 13 Clear intervall counter Energy meter A5 14 MWh meter mot A5 15 kWh meter mot A5 16 MWh meter gen A5 17 kWh meter gen AG Display configuration Configuration of the display A6 01 Selection upper field A6 02 Selection middle field A6 03 Selection lower field A6 04 View all parameters Log address Adjust EY Setting range Factor Unit 134 86 o 100 Hz 96 ms gs E So Treo nas em E ho Te lg lm E 10 rm mm e E jo es 719 je jo m mw je ho mw pa lm im E 142 leE omo J Es qs Gale A ee ee ma foo 010 PO Hz Hz 147 93 100 Hz E eE ER hm Lis uw ls ho Im no je 10 TE ns lg w je ng le ho mera ns e I 6 w Tre Mes eR OY I 11 ee 0001 466 ws A 8 o lioooo n ss ds O Xx h J jp iss Je O PR h An o ws A h Jo lioooo n S CN A ON GI A ee 110 LS 0 40 ws C Jo ioooo In iso dF TERA J wmo Ar H ee jA T T mr mm O 10000 hala L h w e Te 61 Log address Adjust abilitv Setting range Parameter name Factor Unit A6 05 Limitations B1 Language selection Language selection B1 01 Select language puru gt gt B2 Macro configuration Parameter
39. NIN IN N N N R NI NIN ININ IN N N III SI SEI SE SI SEI IE FS tO IO LO tO tO LO LO IO LO LO tO tO tO tO tO SA aa 312 8 5 1812 28 8 18 AS T8 58818 amp 5 9 5 2 9 8 Hj S IVH 00 00 ve0 LOd 8 37 SIVH 00 00 v 0 LOd 8 38 Inverter settings SIVH 00 00 ve0 LOd 8 39 Settings of the serial communication properties General fieldbus settings Parameter group D6 Fieldbus is used for configuration of all fieldbus connections which are possible with the gt pDRIVE lt MX eco The two fieldbus connections CANopen and Modus are available as standard Further fieldbuses like e g Profibus DP can be realized by means of optional PCBs which can be built in According to the used bus which is selected with parameter D6 01 only parameters for this bus are displayed in matrix field D6 PRG EXT E 8 pws 0 No bus 1 Modbus 2 CanOpen 3 Profibus The desired fieldbus svstem is activated bv means of parameter D6 01 Bus selection The activation influences the principle data exchange between the bus subscribers in respect of the transmitted process data reference actual values and the parameterization service In order to use the bus control word of the respective bus profile for the control of the gt pDRIVE lt MX eco Control source 1 or 2 E4 01 E4 02 must be set to Bus See also parameter group E4 of the gt pDRIVE lt MX eco Description of functions EWWEjowaewem
40. RC address value O 06 os 11 3A 98 Lo Hi 35 Reading of drive reference F1 01 address 000B hex 11 dec The drive reference is a parameter of type text It is to be read in ASCII coded form Corresponding to the expected length of text the start address and a certain number of ensuing parameters has to be read See the parameter list in the appendix Request telegram Master gt gt pDRIVE lt MX eco Slave Code Parameter Number of CRC address parameters oA 03 00 OB 00 os H Response telegram gt pDRIVE lt MX eco gt Master Slave Code Number of Parameter Parameter Parameter Parameter bytes value 1 value 2 value 3 value 4 Evaluation of the parameter values If you string the characters decoded with ASCII together you get the drive reference MX eco4V1 5_ in the case of this type only ten characters are used 36 HALS 8 P01 034 00 00 ASCII code table ISO IEC 10 367 Basic GO Set Latin Alphabet No 1 supplementarv set Char hex Char hex Char hex Char hex Char hex Char Space hex rd od ocd Blojojojojojl l i i Jojecjojojojojoj jejsjsjojzjejajzjE TINJDIXIWLJOJjn IWXIDITIMIO QILLJL iNjojsrjio N L O LUILJjo OJOJOJO OJOJO OJO O O OJO JO JO ajajajaj a Q QO ala u A E el Cn ES lN lmls lO oO TIMJO W LL L L L L LLLI lt lt L LI L lt lt DD 101010100 mid alm m m m o o o o O O N
41. active the inverter will be locked and the drive state changes to 0 Not ready to switch on Thereby at active line contactor control the main contactor is switched off If the basic state bit 1 0 bit 2 1 bit 3 1 and bit 10 1 is given the drive state changes to 1 Ready to switch on If the drive state is 14 OFF 3 active the procedure is executed all the same Release ramp output Drive state 5 Ramp output released Lock ramp output When the command has been accepted the output of the ramp function generator is set to zero The drive stops with maximum current and maximum DC link voltage The drive state changes to 4 Operation released Release ramp Drive state 6 Ramp output released integrator Stop ramp integrator When the command has been accepted the output of the ramp function generator is set to zero The drive stops with maximum current and maximum DC link voltage The drive state changes to 4 Operation released to 7 Run Lock reference value When the command has been accepted the input of the ramp function generator is set to zero As a result the drive decelerates along the set ramp The drive state changes to 6 Ramp released The reset command is accepted at the positive edge when the drive state is 20 Fault If there is no fault anymore the drive state changes to 79 Lock switching on If a fault is still remaining the drive state
42. alue1 min value Ref value1 max value 0 65535 hex In case of setting D6 03 Bus error behaviour to 3 Emerg ref val amp alarm the set emergency reference value is used during a bus fault The unit of the emergency reference value corresponds to that of the min max scaling It is not possible to assign reference paths twice If you try to assign a second reference source to a use which is already allocated in the reference value distributor the parameterization will prevent this and a corresponding alarm message will be shown in the display D6 105 Ref value2 selection D6 106 Ref value2 min value D6 109 Ref value3 selection D6 110 Ref value3 min value D6 111 Ref value3 max value D6 113 Ref value4 selection D6 114 Ref valued min value D6 115 Ref valued max value 43 D6 117 Ref value5 selection 0 Not used EMES ae oe Te E 06009 et vanes emergenoy o bw 20000 69990 E we e na ae mw bpo 06109 na aen rer ss pe ie 06106 na aen emergenoy O6 pm 20006 wer em amp we E na aet mae 0 0 fo Denar na vauermaxvave wo 06000 na vaueremergenoy le dome B 9990 ET6Ejp ww NM top D6 131 Ref value8 max value A 010191 sm LEE cwws ETA Per vaueomin aw b TS ner vaso mana 0 0 0
43. at bus mode active D3 Analog outputs Analog output AO1 D3 01 AO1 selection D3 02 AO1 level D3 03 AO1 min value D3 04 AO1 max value D3 05 AO1 filter time Analog output AO2 D3 08 AO2 selection D3 09 AO2 level D3 10 AO2 min value D3 11 AO2 max value D3 12 AC filter time Analog output AO3 D3 15 AOS3 selection D3 16 AOS level D3 17 AO3 min value D3 18 AO3 max value D3 19 AOS3 filter time D4 Digital outputs Logic outputs D4 01 R1 selection D4 02 R2 selection 68 Log address Adjust Setting range Type Factor dec hex ability min max 1766 ja 757 8 GO 300 300 mo ze wo jo ls be pe 1 ee za 8 wo jo jo ms fpe oo jo ls Ew leo SS poo em sm eg x ms jer m 00 es sz 110 jo ls pe s DS pe pu amp 0 I He sy wo jo ls Es He L9 ms s zm 0 ms sc 110 p ls HALS 8 PO1 034 00 00 HALS 8 PO1 034 00 00 Parameter name D4 03 R3 selection D4 04 DO1 selection D4 05 DO2 selection D4 06 R4 selection D4 07 DOS selection D4 08 DO4 selection D4 11 DO invertation D6 Fieldbus Fieldbus configuration D6 01 Bus selection D6 02 Control requested D6 03 Bus error behaviour D6 04 Bus error delay time D6 10 Modbus address D6 11 Modbus baud rate D6 12 Modbus format D6 13 Modbus frame count D6 14 Modbus CRC errors
44. atch direction B3 37 Sensibility B3 40 Output filter B3 41 Fan control B3 42 Auto tune at power on B3 43 Automatic SC test B3 44 Operation with IR B4 Motor data Motor selection B4 01 Motor type B4 02 Motor selection B4 03 Start tuning Motor data M1 B4 05 Nominal power M1 B4 06 Nominal current M1 B4 07 Nominal voltage M1 B4 08 Nominal frequency M1 B4 09 Nominal speed M1 B4 10 Nominal slip M1 B4 11 No of pole pairs M1 B4 12 Stator resistor M1 B4 13 Rotortime constant M1 B4 14 Fluxing current M1 B4 15 Stray reactance M1 B4 16 Data M1 Motor data M2 B4 17 Nominal power M2 B4 18 Nominal current M2 B4 19 Nominal voltage M2 B4 20 Nominal frequency M2 B4 21 Nominal speed M2 B4 22 Nominal slip M2 B4 23 No of pole pairs M2 B4 24 Stator resistor M2 B4 25 Rotortime constant M2 B4 26 Fluxing current M2 B4 27 Stray reactance M2 B4 28 Data M2 Motor data default macro MO B4 29 Nominal power MO B4 30 Nominal current MO B4 31 Nominal voltage MO B4 32 Nominal frequency MO B4 33 Nominal speed MO B4 34 Nominal slip MO B4 35 No of pole pairs MO B4 36 Stator resistor MO B4 37 Rotortime constant MO B4 38 Fluxing current MO Log address dec hex Adjust ability Factor Setting range min max 16 58 28 Oo 159 27 1520 28 gt B 1521 9 gt l s gt 154 20 gt 8 15266 20 gt oO T 1506 2 gt oO
45. aviour li 2 3 1 Trip lil Trip Last ref val amp alarm Emerg ref val 8 alarm sn 1 9 6 fs 0 3200 6 Parameter D6 03 defines the behaviour of the inverter if a bus error occurs Depending on the process demands one of the following reactions can be selected Setting Behaviour in case of a bus fault 1 2 3 Trip Fault shut down with the message Bus fault The alarm message Bus fault is set The drive still remains in operation and uses the last valid reference value of this source instead of the missing bus reference value If the bus connection is available again the bus reference value is used and the alarm message is reset Last ref val amp alarm The alarm message Bus fault is set The drive still remains in operation and uses the value according setting SW1 9 emergency Emerg ref val 8 alarm value see matrix field D6 instead of the missing bus reference value If the bus connection is available again the bus reference value is used and the alarm message is reset Modbus settings Von 0 0 8 bh 0 247 Address of the Modbus subscriber When the address is set to 0 the Modbus server is deactivated internallv The address 0 is used bv the Modbus master for broadcast telegrams BEE H Ten 24 28 32 36 4800 baud 9600 baud 19200 baud 38400 baud em 0 1 pea 2 3 Wins 5 801 8E1
46. basis of our deliveries and services Specifications in this instructions We are always anxious to improve our products and adapt them to the latest state of the art Therefore we reserve the right to modify the specifications given in this instructions at any time particular those referring to measures and dimensions All planning recommendations and connection examples are non binding suggestions for which we cannot assume liability particularly because the regulations to be complied depend on the type and place of installation and on the use of the devices Regulations The user is responsible to ensure that the device and its components are used in compliance with the applicable regulations It is not permitted to use these devices in residential environments without special measures to suppress radio frequency interferences Trademark rights Please note that we do not guarantee that the connections devices and processes described herein are free from patent or trademark rights of third parties HALS 8 P01 034 00 00 E E Option Modbus for the frequency inverters gt pDRIVE lt MX eco This instructions describe the functions software version APSeco A04 16 and higher Theme Page MOdbUS nica il 3 Function Modbus mess inoren tnaa eri atarian 4 Hardware ree fee deg 9 Process data area 15 Process data area e net ARR ER RI eF REARS 16 Control Word asien arg 18 Main reference value Auxiliary referenc
47. category 2 wo wc 0110 amp E3 57 Alarm category 3 le se 0110 64 Control configuration Control logic E4 01 Control source 1 1944 o gt E4 02 Control source 2 ws 19091 74 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name E4 03 3 wire control E5 Keypad Panel operation E5 01 Local mode E5 02 Local reset E5 03 Keypad stop button Parametertransfer with keypad E5 04 Copy MX gt Keypad E5 05 Copy Keypad gt MX E6 Function blocks Comparator C1 C4 E6 01 Comparator C1 E6 02 C1 signal A selection E6 03 C1 signal A filter time E6 04 C1 signal B selection E6 05 C1 signal B ref value E6 06 C1 signal B filter time E6 07 C1 function E6 08 C1 hvsteresis band E6 09 C1 output E6 10 Comparator C2 E6 11 C2 signal A selection E6 12 C2 signal A filter time E6 13 C2 signal B selection E6 14 C2 signal B ref value E6 15 C2 signal B filter time E6 16 C2 function E6 17 C2 hysteresis band E6 18 C2 output E6 19 Comparator C3 E6 20 C3 signal A selection E6 21 C3 signal A filter time E6 22 C3 signal B selection E6 23 C3 signal B ref value E6 24 C3 signal B filter time E6 25 C3 function E6 26 C3 hysteresis band E6 27 C3 output E6 28 Comparator C4 E6 29 C4 signal A selection E6 30 C4 signal A filter time E6 31 Cd signal B selection E6 32 C4 signal B ref value E6 33 Cd signal B filter time E6 34 Cd function E6 35 Cd hyste
48. ched off if the drive state changes to 7 Ready to switch on OFF 2 command canceled When the command has been accepted the inverter will be locked and the drive state changes to 19 Lock switching on At active line contactor control the main contactor is switched off If the basic state bit 1 0 bit 2 1 bit 3 1 and bit 10 1 is given the drive state changes to 7 Ready to switch on The OFF 2 command can also be triggered by means of the terminal function Impulse enable OFF 3 command canceled When the command has been accepted the drive state changes to 14 OFF 3 active and the drive is shut down as quickly as possible with maximum current and maximum DC link voltage When the output frequency reaches zero Hz the drive state changes to 19 Lock switching on Thereby at active line contactor control the main contactor is switched off If the OFF 3 command bit 2 1 is canceled during deceleration fast stop is executed all the same 19 Bit 3 20 Value Meaning Note l Lock operation 1 1 1 1 1 Reset z Operation released When the command has been accepted the inverter is released Impulse enable in drive state 3 Ready to run and afterwards the drive state changes to 4 Operation released When the command has been accepted the inverter will be locked and the drive state changes to 3 Ready to run If the drive state is 13 OFF 1
49. correction F4 21 fref val before ramp Log address Adjust Setting range Factor T E dec hex E lt abilitv min max 11092 444 Oooo Too T mas no omo E I mu u hes le 1 8 Tor 5 He o ho 1302 hE sos hF E UN M sos jist m mel 207 133 B 308 hs m 309 ws m 310 hs m 312 138 m 0110 mer pe Hom 4A Hom jus e Be 316 13D 1 1 ur mh 1 gm lo I 21 e 6 lo m lo m lo m lo ms us E lo Unit 79 Parameter name f ref val after ramp Log address Adjust abilitv Setting range Factor F4 23 f ref val after PID act F4 24 f ref val after loc rem F4 25 f ref val after f corr F4 29 PID output sss 140 A PX to F4 38 limit 342 A X Power part F4 44 DO voltage ls44 hss e Rx h FA45 IGBT overload time ee 19 8 68 F4 50 Fan status bie b ee State option cards F4 56 Option1type 3850 ltsE zm mp F4 57 Option2type 3591 hse m Sto F4 60 Status APP lss4 F4 61 Status MC 355 he RE t F4 62 Status LCD keypad lsse t4 gt E h F6 Code Securitv settings F6 01 Code 11a Jas CN D h Jo 9999 F6 02 Code value lt145 479 CN h Jo fow F6 03 _ Parametrisin
50. d It is coupled at the RJ45 socket next to the terminals see chapter Modbus connection page 10 In the Modbus network the frequency inverter is operated as slave The used profile is designed on the basis of the Profidrive profile VDI VDE 3689 Principle function The data transfer in a Modbus network takes place via the serial device interface RS485 2 wire with a master slave method Only the Modbus master can send commands request to the other bus subscribers Depending on the command the reaction response of the individual slave devices is either to send the desired data or to confirm the execution of the desired operation function During transfer of the data request and response constantly alternate The master sends commands to the slave device This slave sends data only when prompted to do so by the master device The data exchange thus follows a fixed scheme The sequence is always seen from the viewpoint of the Modbus master The commands are embedded in the transferred data frame in the form of function codes The request of the master contains a function code that represents a command to be executed for the slave device In the process the transferred data bytes contain all information required for the execution of the command The error check bytes enable the slave unit to check the integrity of the data received The response of the slave device contains the function code of the request as an echo The data bytes
51. d as serial interface for the fieldbus systems Modbus and CANopen as well as to couple the PC software Matrix 3 When building up a Modbus network only the signals of pins 4 5 and 8 may be used 10 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Consequently connection is possible in two different ways 1 Using the optional Modbus T adapter The Modbus T adapter provides two RJ45 sockets for further bus wiring On both sockets which are connected in parallel only pins 4 5 and 8 are connected so that also pre assembled cables 1 1 connection can be used The Modbus T adapter is available in two different lengths 8P01300 Modbus T adapter with 0 3 m connecting cable 8PO1301 Modbus T adapter with 1 m connecting cable T Adapter T Adapter Interface converter with active bus termination incl supply 8 P01 304 Bus termination RC 8 PO1 302 When no Modbus T adapter is used please ensure that only the three pins 4 5 and 8 at the RJ45 connector of the bus connection are connected Using the PHOENIX CONTACT VARIOSUB RJ45 QUICKON connector is a simple and capable solution to establish a connection between the bus subscriber and the Modbus splitter 8 PO1 303 Passive Modbus splitter 8 PO1 306 RJ45 Connector VARIOSUB RJ45 QUICKON 11 Example of a bus structure with Modbus splitter loolooloo EE loolooloo LIIIII Bus termination
52. e values 25 Status WOId hc ort ats imn 26 Main actual value Auxiliary actual values 29 Parameterization ee ee essere eee 31 Generale i in 32 Inverter settings 39 Bus Diagnostics 3333 51 Diagnostics of the control status word 52 Diagnostics of the Bus raw data seene 53 Application examples eee eee eee 55 Generali ir 56 PADD OIG IK EE 59 Parameter list of the gt pDRIVE lt MX eco 60 Inverter messages nanna 81 The instructions in hand cover the topics operation parameterization and diagnostics of the gt oDRIVE lt MX eco Modbus interface Moreover the principles of the Modbus architecture and their main components are explained in detail Use this instructions additionally to the device documentation Description of functions and Mounting instructions In order to address an inverter via fieldbus also during mains cut off line contactor control disconnecting switch the pDRIVE MX eco has to be supplied with an external 24 V buffer voltage When using the Modbus interface only connect pins 4 5 and 8 in order to avoid malfunction or damage of the gt pDRIVE lt MX eco l SIVH 00 00 v 0 LOd 8 Modbus SIVH 00 00 ve0 LOd 8 Function Modbus All frequency inverters of the gt pDRIVE lt MX eco range support the fieldbus system Modbus as standar
53. ec Description ISL fault 34 Communication fault on the internal serial link MTHA fault 35 Asic for time measurement defect undervoltage time determination Overspeed 6 The motor has exceeded the maximum allowed Overspeed level E2 50 There is a fault in the area of the internal monitoring for function Safe Standstill PWR Communication fault at option card gt pDRIVE lt 1012 Security hold CO Oo IO12 comm failue 602 co Opt comm fault Communication fault at an option card gt o al al al al al B Co C de N wo e o O N Wrong otion board Defect or unknown option card used gt Bus fault gt N Param config fault Parameter settings invalid gt Reference fault AI2 3 At analog input AI2 the reference value fell below 3 mA A T Reference fault AI3 At the analog input AIS the reference value fell below 3 mA gt Reference fault Al4 5 At the analog input Al4 the reference value fell below 3 mA At the frequency input FP the reference value fell short by 50 of the setting fmin gt Reference fault FP The thermistor PTC or thermal switch assigned to motor M1 TH M1 3 gt gt 47 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature The thermistor PTC or thermal switch assigned to motor M2 TH M2 3 gt gt 48 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature The thermistor PTC or thermal switch see motor
54. ence 10 C1 12 Pre set reference 11 C1 13 Pre set reference 12 C1 14 Pre set reference 13 C1 15 Pre set reference 14 C1 16 Pre set reference 15 C1 17 Pre set reference 16 Motor potentiometer C1 18 Motor pot selection 605 25D C1 19 Motor pot control C1 20 Motor pot min value C1 21 Motor pot max value C1 22 Motor pot accel time C1 23 Motor pot decel time C1 24 Motor pot ref storage C1 25 Motor pot tracking Panel reference sources C1 29 MX wheel selection C1 30 MX wheel min value C1 31 MX wheel max value C1 34 MX wheel single step C1 35 Store MX wheel ref Calculator C1 38 Calculator selection C1 39 Calculator input A C1 40 Calculator input B C1 41 Calculator function C1 42 Reference value C1 43 Multiplier C1 44 Divisor C1 45 Calculator min value C1 46 Calculator max value Actual value selection C1 49 Actual value usage C1 50 Actual value selection C1 51 Actual value filter time 64 Log address Adjust ability Setting range Factor 397 18D szo aa gt 8 ms pe 9 100 300 300 G EC Lu Unit Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 Hz 96 le x e o Jo leo leo me t o jo feso s le1 28 gt B le12 264 zm Bo m x sa xe o o ls ls mr
55. evaluate the quality of transmission statistically Request telegram Master gt gt pDRIVE lt MX eco Slave 08016 address oenex Mm to Mm to to 1 byte 1 byte 2 bytes 2 bytes 2 bytes Response telegram gt pDRIVE lt MX eco gt Master Slave 08016 address oenex Mm to Mm to i 1 byte 1 byte 2 bytes 2 bytes 2 bytes Subcode Request data Response data Description 00 XX YY XX YY The request causes an echo at the respective slave The response telegram of the slave is a copy of the request telegram 0A 00 00 00 00 Reset counter UC 00 00 actual value of the Reading out the CRC Error Message counter counter number of the faulty received telegrams OE 00 00 actual value of the Reading out the telegram counter counter number of the telegrams received from the slave independent of the type of telegram Parameterization of the gt pDRIVE lt MX eco request code hex 03 06 By means of the services Read 03 hex and Write 06 hex of parameters all inverter internal parameters can be accessed via their logical address For details see chapter Parameterization page 31 Monitoring and control of the gt pDRIVE lt MX eco request codes hex 03 17 By means of the services Read 03 hex and Write Read 17 hex of multiple registers access to device internal addresses of the control word and status word as well as to the available reference values and actual values is possible Therewith pure
56. g station pas wa fee gt F6 04 Impulse inhibit aar 47B gt F6 05 _ Service code us me lo 5999 HALS 8 P01 034 00 00 System parameters Store parametervaues 140 Factors depending on the device gt pDRIVE lt devices MX eco 4V0 75 4V7 5 MX eco 4V11 4V75 MX eco 4V90 4V630 80 HALS 8 PO1 034 00 00 Alarm Info messages Matrix operating panel Force active Emergencv op active Ext fault 1 or free editable text E3 38 Ext fault 2 or free editable text E3 45 Undervoltage Reference fault Al2 Reference fault Al3 Reference fault Al4 Bus fault Reference fault FP Feed in lt ON lock from DI Speed check fault 3M1 gt 3M2 gt Overspeed Inverter messages Alarm index dec Description The force mode is active see F2 01 Force operation The inverter is switched over to the status Emergencv operation via a digital input command See parameter E3 10 e An external fault is signalized via a digital input function see E3 34 to E3 38 It is processed as an alarm message corresponding to the setting of E3 35 Ext fault 1 response An external fault is signalized via a digital input function see E3 41 to E3 45 It is processed as an alarm message corresponding to the setting of E3 42 Ext fault 2 response There is an undervoltage situation This leads to an alarm message corre
57. ical motor model has reached the set alarm level for motor M1 See parameter E2 19 M1 response The thermal mathematical motor model has reached the set alarm level for motor M2 See parameter E2 31 M2 response The overspeed protection E2 48 has triggered and signalizes an alarm corresponding to the setting of the parameter E2 49 Overspeed response 81 Matrix operating panel Alarm index dec Description The thermistor PTC or thermal switch assigned to motor M1 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature As a result an alarm message is activated corresponding to the set reaction for the respective thermistor TH 9 M1 gt The thermistor PTC or thermal switch assigned to motor M2 see motor assignment E2 01 E2 06 E2 11 has detected an overtemperature As a result an alarm message is activated corresponding to the set reaction for the respective thermistor TH 3 M2 gt e The thermistor PTC or thermal switch see motor assignment E2 01 E2 06 E2 11 which is planned for the general use has detected an overtemperature An alarm message is as a result activated corresponding to the reaction setting for the respective thermistor TH 9 Ext gt N o The underload function E2 61 recognises a motor underload and activates an alarm message corresponding to the setting of E2 62 Underload response Underload N A IO
58. ied for adjusting other parameters via Modbus 34 HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Programming of the digital input DI1 on Motorpot D2 01 setting 14 address 02FF hex 767 dec Request telegram Master gt gt pDRIVE lt MX eco Slave Code Parameter Parameter CRC address value LA o o rF o oe 9 Response telegram gt pDRIVE lt MX eco gt Master in case of accepted request Slave Code Parameter Parameter CRC address value LA o v r oo ojo a Response telegram gt pDRIVE lt MX eco gt Master in case of non executable request Slave Response Error code CRC 16 code Response code 86 parameterizing error request 06 80 86 Error code 04 parameter value cannot be written Adjusting parameters is only permitted during impulse inhibit You try to assign the digital function Motorpot twice or the parameterization station is not set to Modbus Adjustment of an analog value D3 04 AO1 max value 150 address 0311 hex 785 dec Request telegram Master gt gt pDRIVE lt MX eco Slave Code Parameter Parameter CRC address value oa o n 534 9 tol A Parameter value for transferred value real value factor for factor see chapter Parameter list of the gt pDRIVE lt MX eco from page 60 150 00 100 15000 15000 dec 3A98 hex Response telegram gt pDRIVE lt MX eco gt Master Slave Code Parameter Parameter C
59. ip messages Matrix operating panel Undervoltage V gt gt at deceleration Line overvoltage DC charging fault DC missing Precharging fault Line fault 1p Line fault 2 3p Motor short circuit Motor earth fault Motor earth fault 1 Overcurrent IGBT 3 gt gt Motor phase fault 3p Motor phase U lost Motor phase V lost Motor phase W lost Inverter overtemp Unknown MC PTC short circuit PTC open circuit ASIC Init fault IGBT fault Motor short circuit Current measure defect MC E zones invalid CPU fault Trip index dec Description There is an undervoltage situation See parameter E3 29 V response The DC link voltage has exceeded the hardware protection level of 825 V due to a deceleration Extend deceleration ramps or activate motor brakes B5 01 Braking mode The DC link voltage has exceeded the protection level of 756 V As the fault evaluation only occurs with impulse inhibit a line overvoltage situation takes place 04 The charging process of the DC link could not be completed The frequency inverter is operated at the intelligent gt gt DRIVE lt LX rectifier The DC link voltage made available by this rectifier has shut down Fault of the soft charge device half controlled thyristor bridge Only for devices larger than gt pDRIVE lt MX eco 4V18 Loss of one mains phase Loss of two or three mains phases 10 Phase short circuit at the output shut down due to overcurrent Ea
60. is furthermore 20 Fault The reset command can also be triggered by means of the terminal function Ext reset as well as by means of the Stop Reset key on the keypad 0 no meaning Release reference When the command has been accepted the given reference value at the value input of the ramp function generator is released The drive state changes HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Bit Value Meaning Note 8 Jog 1 start Command not provided 0 Jog 1 off Command not provided 9 Command not provided o Jog 2 off Command not provided 10 1 Control O K When the command has been accepted the DP slave is controlled via the bus interface The process data become valid This bit must be set in order to accept control commands and or the free bits as well as analog signals 0 No control When the command has been accepted all data are processed depending in status bit 9 Control requested Control requested 1 gt Behaviour according to bus fault lfthe DP slave requests control furthermore the frequency inverter switches over to fault state with the fault message BUS COMM depending on the setting of parameter D6 03 Bus error behaviour In this case an alarm message is always set Control requested 0 gt Data to 0 only I O or panel operation 21 Summarv of the most important control commands ON Start with controlled acceleration OFF 1 Stop according to the set decelerati
61. lt MX eco gt Master The addresses FA 103 hex are used to read out information provided by the gt pDRIVE lt MX eco like status word and actual values The number of the inverter internal and actually handled actual values can be preset by means of parameter D6 137 Number actual values The actual values are configured by means of parameters D6 138 D6 170 Word PZD1 PZD2 PZD3 PZD4 PZD5 PZD6 PZD7 PZD8 PZD9 PZD10 Configuration D6 138 D6 142 D6 146 D6 150 D6 154 D6 158 D6 162 D6 166 D6 170 PZD Process data word ZTW Status word 16 bit chain of commands 11 bits corresponding to Profidrive profile 5 bits freely usable IW Actual value 16 bit display 200 200 96 resolution 2 14 A detailed description of the control word and status word can be found in chapter Process data area page 16 Structure of the network The tvpical Modbus topologv corresponds to an RS485 2 wire serial bus network with drop lines The individual subscribers are connected using a 2 wire screened twisted cable tvp Cat 5 wherebv only the signals D1 D2 and Common are connected According to the Modbus recommendations both bus lines are to be connected with one 650 62 resistor against 5 V and ground when installing the master At both ends of the bus segment the bus cable is to be terminated with a 120 O resistor and a serially connected 1 nF capacitor At every bus segment a maximum
62. monitoring as well as complete control of the pDRIVE MX eco is possible The device internal drive profile is designed on the basis of the Profidrive profile VDI VDE 3689 Unlike the telegram structure predefined by the Profidrive profile PPO types 1 5 the lengths of the telegrams can be freely defined for both directions master slave slave gt master in Modbus As a result the telegram length can be optimized according to the existing requirements of the process Example of a Modbus user data telegram Master Slave PZD1 PZD2 Control word 1 ref value STW f ref Slave gt Master le ZIW fa Pa Tu La Alarm Trip index index HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Master gt gt pDRIVE lt MX eco For control of the gt gt DRIVE lt MX eco the addresses 51D 526 hex are used The number of the inverter internal and actually used reference values can be preset by means of parameter D6 100 No of Bus ref values The reference values are configured by means of parameters D6 101 D6 133 Word PZD1 PZD2 PZD3 PZD4 PZD5 PZD6 PZD7 PZD8 PZD9 PZD10 Configuration D6 101 D6 105 D6 109 D6 113 D6 117 D6 121 D6 125 D6 129 D6 133 PZD Process data word STW Control word 16 bit chain of commands 11 bits corresponding to Profidrive profile 5 bits freely usable SW Reference value 16 bit display 200 200 96 resolution 21 gt pDRIVE
63. n be freely used by the user When the frequency inverter is parameterized appropriate this digital information can be derived from inverter internal operating states corresponding to the digital outputs as well as totally separated from the inverter functions by means of the digital inputs of the frequency inverter This additional information bit 11 15 are added to the status word automatically Use Free status word bits Actual values Inverter internal Ready Output frequency Run Output frequency Ready run Output current Fault Torque for the complete list see matrix filed D6 for the complete list see matrix filed D6 Inverter external DI1 DI6 Analog inputs of the basic card or the DI7 DI10 or DI11 DI14 option card gt pDRIVE lt 1012 29 SIVH 00 00 v 0 LOd 8 30 HALS 8 PO1 034 00 00 Parameterization 31 General Using the 03hex Read Holding Register and 06 Write Single Register Modbus services each parameter in the inverter can be read or written via the bus The request initiated bv the master read write is transferred to the inverter via the Modbus The inverter processes the request and sends a corresponding response Inside the inverter the parameterization is processed as a background task There the parameter requests are processed in a time optimized manner i e a request is accepted and at the same time a response is provided for retrieval tvp 10 50 ms Req
64. ode 17 hex Therefor the status word with 1 9 actual values is sent as a response telegram to the master when the inverter receives a data telegram consisting of the control word and 1 9 reference values Tvpicallv these telegrams are sent bv the master cyclically to the individual slaves The achievable cycle time depends on the bus structure the number of bus subscribers and the transmission rate Inside the inverter the data are processed in a background task typically 10 50 ms Example of a process data telegram to the slave with address 10 Read process data Status word 6 actual values log address of ZTW 250 dec OOFA hex Write process data Control word 1 reference value log address of STW 1309 dec 051D hex STW 047F SW 4000 hex 100 Master gt Slave PZD1 202 Control word 1 ref value STW f Slave Master Status word 6 act values SM UA des des dec jal Request telegram Master gt gt pDRIVE lt MX eco Slave Request Start address Number of Start address Number of words to address read words to be read write be written ZTW ZTW IW STW STW 4 SW 1 bvte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes Number of write bytes 1 byte Summary of the request telegram Slave Code ZIW Number of TW address Number of Number Word 1 Word 2 CRC address parameters parameters of bytes oA 17 oo FA co or o5 tb oo O2 04 04 7F 40 00 so
65. of 32 subscribers including repeater can be operated The maximum line extension amounts to 1000 m at 19 2 kBaud Principally the drop lines must be kept as short as possible max 20 m for a single line 40 m in total in case of centralized distribution Master Slave 1 Slaven Technical key data of a Modbus network Maximum number of subscribers 247 in all segments Maximum number of subscribers per segment 32 including the repeater Bus cable Screened 2 x twisted two wire line Characteristic impedance 100 120 Q Distributed capacitance 60 nF km Loop resistance 160 O km Wire cross section 0 22 mm Bus connection RJ45 screened pin assignment 4 5 8 Bus termination Every bus segment has to be terminated using a serial connection of R 120 Q and C 1 nF Galvanic isolation No Modbus over serial line V1 pdf Edition 2002 c Detailed information regarding the Modbus specification can also be found under www modbus org HALS 8 P01 034 00 00 Hardware SIVH 00 00 ve0 LOd 8 Modbus connection Modbus gt pDRIVE lt BE11 A Y EX cm y N NNSNNNSV Plug assignment Pin assignment of the RJ45 device interface Pin Socket CANopen signals Supply voltage for the Matrix 3 interface converter RS232 485 8 PO1 124 The RJ45 socket in the duct next to the control terminals can be use
66. of the response slave to master depend on the function code used and are provided by the slave device The error check bytes enable the master to check the validity of the received data The structure of the sent data is defined in various Modbus protocols In addition to the Modbus RTU master slave communication in binary code there are also the formats Modbus ASCII and Modbus PLUS The pDRIVE MX eco devices support the Modbus RTU protocol Structure of the telegram The telegram structure of a Modbus frame always consists of the address of the slave being addressed the desired request code a data field of variable length and a 16 bit CRC to guarantee data consistency The end of the telegram is recognized by a pause 2 3 5 bytes The structure of a byte can be set using parameter D6 12 Modbus format The transfer of the telegrams takes place according to the master slave system through the entry of the desired slave address in confirmed form If a value of zero is used as the slave address the telegram applies for all slaves broadcast service The permissible address range of the individual slaves is 1 247 There may not be two or more devices with the same address at the bus can use the address 248 When using this address the slave responds independent of its address To set up a single point connection network consists of only one master and one slave the master 2 which is set by D6 10 HALS 8 P01 034 00 00
67. og address Adjust ability Setting range min max Factor 300 es s wo jo Im 300 ms xe e wo jo 300 e se 8 wo jo Im 300 ms so l 6 l E wo hs aw m E 4 ass jer 8 jo je ss 90 10 jo 190 mo je jo ms jo jo mi for ma je o jo jo ms s 4 s bu o jo ww ss 36 J a 9 1 J 182 ls4A gt Bl le43 ls4B G h fo fso 184 Jac B 1865 jao le46 jue BB sa Ja iq cm ae sso A G fo 1300 ss 38 gt sso ss gt B J 1851 ss Oo a2 384 zm Bo 1859 1355 G j Jo so Unit Hz Hz Hz Hz Hz Hz Hz Hz S rpm rpm rpm S S S S HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name E2 15 THS3 verification Thermal mathematical motor model E2 18 M1 overl monitoring E2 19 M1 response E2 20 Mn Imax at OHz E2 21 M1 Imax at f nom E2 22 M1 therm f limitation E2 23 M1 motor time E2 24 M1 cooling temp E2 25 M1 alarm level E2 26 M1 trigger level E2 27 M1 thermal load E2 30 M2 overl monitoring E2 31 M2 response E2 32 M2 Imax at OHz E2 33 M2 Imax at f nom E2 34 M2 therm f limitation E2 35 M2 motor time E2 36 M2 cooling tem
68. on ramp OFF 2 Impulse inhibit free wheeling OFF 3 Emergency stop deceleration at current or DC link voltage limit Reset Use of a free bit e g 13 during operation Canceling Lock switching on 22 0000010001111111 A7F 0000010001111110 ATE corresponds with the basic state 0000010001111101 47D results in drive state Lock switching on l 0000010001111011 47B results in drive state Lock switching on l xxxxxixxixxxxxxx e g 480 0000010001111111 47F 0010000000000000 2000 0010010001111111 247F G EN 15 Lock switching on e g asic state start command 0000010001111110 ATE 0000010001111111 47F HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Simplified state machine For standard control with the commands Start Stop along the inverter internal acceleration deceleration ramps Impulse inhibit Emergencv stop Reset of a fault Legend Drive state Bootup Step enabling xxxxx 10001111111 Not ready to switch on condition Basic state transmit Basic state Ready to switch on x0000c10001111110 Lock switching on transmit Start Pulse inhibit Fast stop transmit OFF 2 The commands Impulse inhibit OFF 2 Fast stop OFF 3 as well as a fault which has been reset always result in drive state Lock switching on In order to reach drive state Run it is necessary to send the basic state bit O 0 bit 1 2 1
69. p E2 37 M2 alarm level E2 38 M2 trigger level E2 39 M2 thermal load Stall protection E2 42 Stall protection E2 43 Stalling time E2 44 Stalling frequency E2 45 Stalling current Overspeed protection E2 48 Overspeed monitoring E2 49 Overspeed response E2 50 Overspeed level E2 51 Time setting Loss of motor phase E2 54 Motor phase monitor Underload protection E2 61 Underload monitor E2 62 Underload response E2 63 Underload level n E2 64 X Underload level fn E2 65 Underload level fn E2 66 Underload start time E2 67 Time setting E2 68 Filter time E3 Fault configuration Behaviour in case of faults E3 01 Reaction at a trip E3 03 Auto reset E3 04 Auto reset selection E3 06 Auto reset trials E3 07 Period Emergency operation E3 09 Enable emergency op E3 10 Emergency op active Loss of reference value Log address Adjust ability Setting range Factor Unit lss jw S 1 ss Bus ar 199 hb o E es ls p fr o 90 o lsse jo lso jm ss po p w wo m qu Gp Is RU 5 85 8 E 1864 30 0 la E 1381 LLL 1866 32 CM D t Jo fwo He qu i jo sw 1 868 sea ho fo 800 le ue amp amp 9 leo m min sazo 36 A h lo lso Fc je 37 A m jo 30m l872 38 A fo fso as jut Xx t ss ss o jo 19
70. rence value Auxiliarv reference values Depending on the setting of parameter D6 100 No of Bus ref values 1 9 reference values are available in the Modbus user data protocol The meaning of the individual reference value words 16 bits each is defined by parameterization of the bDRIVE MX eco using the Matrix surface The reference values can be divided into two groups inverter internal reference values like e g f reference PID actual reference value and suchlike according to the reference use forwarding to the analog outputs for external use without influencing the inverter control bit 10 STW must be 1 l The reference values are linear scaled values with 16 bit display That is 0 96 0 0 hex 100 96 214 4000 hex Therefrom a presentable data range of 200 200 96 with a resolution of 27 0 0061 96 results Binary Hexadecimal Decimal 200 0000 10000000 00000000 8000 32768 The reference values are scaled by means of parameterization in matrix field D6 All reference values are scaled in Hz or Using bits 11 15 of the control word According to the Profibus profile bits 11 15 are not defined and therefore they can be freely used by the user When the frequency inverter is parameterized appropriate this digital information can be used for inverter internal control signals corresponding to the use of the digital inputs or totally separated from the inverter functions in order
71. resis band E6 36 C4 output Logic module L1 L6 E6 46 Logic 1 E6 47 LM1 signal A selection E6 48 LM1 signal B selection E6 49 LM1 signal C selection E6 50 LM1 function Log address Adjust ability Setting range Factor O O 4 1806 70E 1950 3866 gt oO lsB7 gt oO Unit o as to lo fso ls joss lsB9 oO l ss jes p wo je 99 s 19566 sec BB 1957 lsBD to Jo leso 27 quw Xx j 19566 see gt Oo 1959 see gt xo so 0 ho ho s e pa E 9 be x 9 om sw pm 0 100 beer o D d es lsee wo o e pm le Em ms je sr s ws se ho fo ho s iss lsee sm scs 8 wo je 99 s 1972 sce 93 s Gto Jo leso pe uv xl y4 lscE gt BB ys sr gt 0 lge lso TEE 97 sons oC 99 sos to lo fso ls so 0 m ss 0 io jo eo ple RA 75 Parameter name E6 51 LM1 output reverse E6 52 _ LM1 output E6 53 Logic 2 E6 54 LM signal A selection E6 55 LM signal B selection E6 56 LM2 signal C selection E6 57 LM function E6 58 LM2 output reverse E6 59 LM 2 output E6 60 Logic 3 E6 61 LM3
72. rial from the fieldbus Actual value A sensor provides a 0 10 V analog signal directly for the control terminals of the inverter Example 2 A screw conveyor is connected and disconnected by means of a filling level indicator The filling level indicator provides two floating ground signals which can be directly integrated in the telegram to the DP master by means of the digital inputs DI1 and DI2 of the inverter and thus they are available for the control program of the system 58 HALS 8 P01 034 00 00 Appendix SIVH 00 00 ve0 LOd 8 59 Parameter list of the gt pDRIVE lt MX eco Log address Adjust Setting range l Parameter name Tvpe c Factor i Unit dec hex ability min max A2 Motor values Motor values A201 Speed S mm sm A2 07 Shaft power in kW no se E wwe w A2 17 Symbol for A2 13 1C6 pt 2 Ensuing parameter 1CA A2 18 Unit for A2 13 1C8 Ensuing parameter 1C9 2 A220 Mupler T lt Ag21 pvsor T Ag22 Offset T e he O qu po mw A2 23 Symbol for A2 19 Ensuing parameter A2 24 Unit for A2 19 Ensuing parameter A225 Active motor n4 jr xe Ll A3 Inverter values Inverter values A3 01 Output frequency 117 e A3 02 Inverter load 118 A3 03 Mains voltage 119 A3 04 DC voltage 120 A3 05 Thermal load VSD 121 A3 06 Active pulse frequency 122 7A A4 Reference values Monitoring of analog inputs A4 01 Alf ref value 26 125 mM ho A4 02 AT ref value scaled 12
73. rm cat 1 63 Digital input DIS 13 Motor 1 active 37 Alarm cat 2 64 Digital input DI4 14 Motor 2 active 38 Alarm cat 3 65 Digital input DI5 15 Param set 1 active 41 Output T1 66 Digital input DIG 16 Param set 2 active 42 Output T2 19 Safe standstill active 43 Output T3 Parameter D6 197 assigns the respective digital state information to bit 11 of the status word A description of the individual digital output functions can be found in the gt pDRIVE lt MX eco Description of functions matrix field D4 Setting possibilities see D6 179 49 SIVH 00 00 v 0 LOd 8 50 Bus Diagnostics SIVH 00 00 ve0 LOd 8 51 Diagnostics of the control status word Diagnostics STW Bus Inverter D6 218 D6 219 NOV E GM GO STW1 Bit 0 o m 8 STW1 Bit 8 O M STW1 Bit 1 O M 9 STW1 Bit 9 O M STW1 Bit 2 O M 10 STW1 Bit 10 o m STW1 Bit 3 D 7 2 11 STW1 Bit 11 O M STW1 Bit 4 O M 12 STW1 Bit 12 O M STW1 Bit 5 OD M 13 STW1 Bit 13 O M STW1 Bit 6 nig 14 STWI Bit 14 D Mm STW1 Bit 7 15 STWI Bit 15 D g8 Presentation of the control word received at the bus Diagnostics ZTW Inverter Bus D6 222 D6 223 Bus ZTW hex gt Bus ZTW bin NO OBR GM DO ZIWI ZTW1 ZTW1 ZTW1 ZIWI ZTW1 ZIWI ZTW1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 D DD D D D D D ooo o o o
74. rth fault at the output 11 Registration by means of the software only for devices up to and including gt pDRIVE lt MX eco 4V75 The differential current determined from the three motor phases is larger than 25 96 of the nominal current of the inverter N Overcurrent at the output 13 Registration by means of the software only with devices up to and including gt pDRIVE lt MX eco 4V75 IGBT overtemperature determined by the thermal mathematical inverter model Loss of the three motor phases Loss of motor phase U Loss of motor phase V Loss of motor phase W Inverter overtemperature overload cooling problem N 0 Unknown power part 21 Short circuit at a thermistor sensor PTC N 2 A thermistor sensor PTC is open N wo Asic on the motor control cannot be initialised The desaturation protection of an IGBT has triggered 5 The registration of this fault occurs only with devices larger than gt pDRIVE lt MX eco 4V75 The automatically running test routine B3 43 Automatic SC test has detected a short circuit at the output N N Fault of the current transformer its voltage supply or the evaluation electronics The registration of this fault occurs only with devices larger than gt pDRIVE lt MX eco 4V75 32 Motor control EEProm defect Internal electronic fault CO 0 CO CO ajajajaja a Par o o o o cjo oj o gt A al N 83 Matrix operating panel Trip index d
75. s je E 0 Hsee lsee wo o ls 5 Hes 100 7992 lso p wo je ls s Hes 1901 91 ms sa wo jo jw d Unit HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Log address just Setting range Parameter name Type AU Factor Koil Unit dec hex ability min max Assignment free bits STW D6 174 Bit 11 STWI selection 1397 ss 8 D6 175 Bit 12 STW1 selection poe jse 8 D6 176 Bit 13 STWI selection ne er D6 177 Bit 14 STWI selection io 58 8 D6 178 Bit 15 STWI selection pi ls79 8 D6 179 Bitatterm mode act mo jsa 0110 Assignment free bits ZTW D6 197 Bit 11 ZTW1 selection uo sec D6 198 Bit 12 ZTWI selection pan so 1 D6 199 Bit 13 ZTWI selection 1422 58E lp D6 200 Bit 14 ZTWI selection D6 201 Bit 15 ZTWI selection Diagnosis STW BUS gt VSD D6 218 Bus STW hex D6 219 Bus STW bin Diagnosis ZTW VSD gt BUS D6 222 Bus ZTW hex D6 223 Bus ZTW bin D6 224 Bus ZTW2 hex D6 225 Bus ZTW2 bin Diagnosis of the operating state D6 226 Internal control word D6 227 Internal condition Diagnosis BUS gt VSD D6 228 PRx 01 D6 229 PRx 02 D6 230 PRx 03 D6 231 PRx 04 D6 232 PRx 05 D6 233 PRx 06 D6 234 PRx 07 D6 235 PRx 08 D6 236 PRx 09 D6 237 PRx 10 D6 238 SRx 01 D6 239 SRx 02 D6 240 SRx 03 D6 241 SRx 04 Diagnosis VSD g
76. selection value1 min value value1 max value value1 filter time value2 selection value2 min value value2 max value value2 filter time value3 selection value3 min value value3 max value value3 filter time value4 selection value4 min value value4 max value value4 filter time value5 selection value5 min value value5 max value values filter time value6 selection value6 min value value6 max value value6 filter time value7 selection value7 min value value7 max value value filter time value8 selection value8 min value value8 max value value8 filter time value9 selection value9 min value value9 max value value9 filter time Log address Adjust Setting range T es Factor 2 dec hex abilitv min max 300 Hz 7949 sr jo 6596 mex pea 50 300 TR 300 TR har jus 1 o 65906 rex pae jum 300 TR 300 TR mess 57 1 o 65906 mex 71952 se 300 TR 300 TR Less jus 8 po 65906 mex ms sc 300 TR 300 TR so sar Mb 65906 rex mo ju met 151 9 sa 1594 p wo o ls s Hes ss E 1 Hsee se PO 0 wo o ls Is is lse Hem sc 0 wo je ls h Hes jim Here Be 8 wo je ls s 197 jer 79800 ju 0 wo je ls s hs jus L I Hs se wo je ls s Ha
77. signal A selection E6 62 LMS signal B selection E6 63 LMS signal C selection E6 64 LM3 function E6 65 LM3 output reverse E6 66 LMS output E6 67 Logic 4 E6 68 LM4 signal A selection E6 69 LM4 signal B selection E6 70 LMA signal C selection E6 71 LMA function E6 72 _ LM4 output reverse E6 73 LM4 output E6 74 Logic 5 E6 75 LM5 signal A selection E6 76 LM5 signal B selection E6 77 LM5 signal C selection E6 78 LM5 function E6 79 LM5 output reverse E6 80 LM5 output E6 81 Logic 6 E6 82 LM6 signal A selection E6 83 LM6 signal B selection E6 84 LM6 signal C selection E6 85 LM6 function E6 86 LM6 output reverse E6 87 LM6 output Flip Flop E6 94 SR module 1 E6 95 SR1 signal S selection E6 96 SR1 signal R selection E6 97 SR1 function E6 98 SR1 output E6 99 SR module 2 E6 100 SR2 signal S selection E6 101 SR2 signal R selection E6 102 SR2 function E6 103 SR2 output Time device E6 109 Time module 1 E6 110 T1 signal A selection E6 111 T1 function E6 112 T1 time setting E6 113 T1 output E6 114 T1 selection 76 Log address Adjust Setting range Type Tue Factor 2 dec hex abilitv min max arum 1991 lspF Oo 1992 so zm oO js jsi gt 8 pa n MEA ms xs 1996 lsE4 gt Oo 1997 se gt Oo 1998 se gt oO 1999 fs gt Oo T lee9 he j io 38 oO 11001
78. signment 84 1 A bus fault occurred due to exceeded run time or loss of control HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Matrix operating panel Incompatible MC Flash fault APP Indus zone fault Eprom fault APP Limitation active Ramp adaption 24V fault Trip index dec Description Motor control is not compatible to the application software 67 Flash Eprom on the application software defect Value for calibration on the application software defect EEProm on the application software defect 71 A limit function is active 2 The set acceleration or deceleration ramp cannot be maintained and is automaticallv extended 73 Problem with the external 24 V buffer voltage These trip messages can be read out under address 72 dec 0048 hex 85 gt pDRIVE lt Schneider Electric Power Drives Schneider Electric Power Drives GmbH Ruthnergasse 1 A 1210 Vienna Phone 43 0 1 29191 0 Fax 43 0 1 29191 15 www pdrive com a company of Schneider Electric gt pDRIVE lt stands for intelligent high performance As one of the leading providers of inverters and motors we know from experience that quality without compromising consolidated advice and more flexible service lead to longstanding research and expertise Therefore we dedicate an essential part of our activities to permanently optimising processes and developing solutions for target groups which will meet even the highest demands
79. sponding to the setting of E3 29 V lt response At the analog input Al2 the reference value fell below 3 mA This leads to an alarm message corresponding to the setting of E3 13 Al2 4mA monitor and E3 14 Al2 4mA response At the analog input Al3 the reference value fell below 3 mA This leads to an alarm message corresponding to the setting of E3 16 AI3 4mA monitor and E3 17 AI3 4mA response At the analog input Al4 the reference value fell below 3 mA This leads to an alarm message corresponding to the setting of E3 19 Al4 4mA monitor and E3 20 Al4 4mA response According to the setting of D6 03 Bus error behaviour a bus fault caused by exceeded runtime or a loss of control leads to an alarm message At the frequency input FP the reference value fell short by 50 96 of the setting fmin This leads to an alarm message corresponding to the setting of E3 22 FP f monitoring and E3 23 FP monitoring resp o o o o o o N o al B wo o N O al AB wo N According to the setting of E1 49 Feed in monitoring and E1 50 Feed in mon reaction the trigger of the feed in monitoring leads to an alarm message The digital input function ON lock E3 48 signalizes a problem which leads to an alarm message corresponding to the setting of E3 49 ON lock response The function n monitoring E1 38 leads to an alarm message corresponding to the setting of E1 45 n monitoring response N The thermal mathemat
80. t BUS D6 242 PTx 01 D6 243 PTx 02 D6 244 PTx 03 D6 245 PTx 04 D6 246 PTx 05 D6 247 PTx 06 D6 248 PTx 07 D6 249 PTx 08 D6 250 PTx 09 D6 251 PTx 10 D6 252 STx 01 D6 253 STx 02 D6 254 STx 03 71 Parameter name D6 255 STx 04 E1 Process protection Limitations E1 01 I max VSD E1 05 T max motor E1 07 Tlim activation E1 13 P max motor Behaviour at limitations E1 17 Reaction at limitation E1 18 Time setting E1 19 Ref after acc extension E1 21 Reaction at deceleration E1 22 Time setting E1 23 Ref after dec extension Skip frequencies E1 25 Skip frequency 1 E1 26 Hysteresis 1 E1 27 Skip frequency 2 E1 28 Hysteresis 2 E1 29 Skip frequency 3 E1 30 Hysteresis3 E1 31 Skip frequency 4 E1 32 Hysteresis 4 Speed monitoring E1 38 n monitoring E1 39 Pulse rotation E1 40 Filter time E1 41 Detected speed E1 42 Ratio factor E1 43 Calculated slip E1 44 Tolerance E1 45 n monitoring response E1 46 Time setting Feed in monitoring E1 49 Feed in monitoring E1 50 Feed in mon reaction E1 51 Time setting E2 Motor protection Thermistor control E2 01 TH1 motor allocation E2 02 THT activation E2 03 THT response E2 04 THI time setting E2 05 THI verification E2 06 TH2 motor allocation E2 07 TH2 activation E2 08 TH2 response E2 09 TH2 time setting E2 10 TH2 verification E2 11 TH3 motor allocation E2 12 THG activation E2 13 THS3 response E2 14 THG time setting 72 L
81. t command is given 5 no OFF 3 OFF 3 emergency An OFF 3 emergency stop command is given stop 6 1 Lock switching on The inverter has drive state 19 Lock switching on This state occurs in consequence of the commands OFF 2 OFF 3 and Lock operation as well as after successful resetting of a fault This drive state is canceled by means of bit O STW 0 The drive state Lock switching on is canceled by means of bit 1 of the control word OFF1 ON EN No lock switching on 7 There is an alarm message resetting is not required o roam 8 1 f n f n ref Comparison of reference and actual value for frequency or speed A tolerance of 0 5 Hz is accepted 0 f n f n ref 27 v 0 28 Meaning Control requested No bus operation f 2 f level f lt f level Note If the frequency inverter is parameterized for bus operation by means of parameter D6 01 control via bus the inverter asks the DP master for assumption of control after mains connection or connecting an external 24 V buffer voltage As long as the master does not assume control an alarm message ZTW bit 7 is given If the inverter is disconnected from the bus communication because of switching to panel mode key on the keypad bit 9 is reset to zero Ifthe master does not send Control OK STW bit10 0 an alarm message is set Ifthe drive is switched to remote mode bus operation again the automation s
82. t routines Force operation F2 01 F2 02 F2 03 F2 04 F2 05 F2 06 F2 07 F2 08 F2 09 F2 10 F2 11 F2 12 F2 13 F2 14 F2 15 F2 16 F2 17 F2 18 F2 19 F2 20 F2 21 F2 22 F2 23 F2 24 F2 25 F2 26 F2 27 F2 28 F2 29 F2 30 F2 31 F2 32 F2 33 F2 34 F2 35 F2 36 78 kHz HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Parameter name F2 37 Force value AO2 F2 38 Force AO3 F2 39 Force value AO3 Test routines F2 40 Start IGBT test F2 41 Test charging circuit F2 45 Simulation mode F2 46 Software reset F3 Fault memory Fault memory F3 01 Number of faults F3 02 Review F3 03 Fault number F3 04 Fault cause F3 05 Operating hours F3 06 Min sec F3 07 Reference value Hz F3 08 Actual value Hz F3 09 Output current F3 10 DC voltage F3 11 Thermal load VSD F3 12 Control mode F3 13 Operating status F3 14 Alarm message F3 15 Drive state F3 16 Control word bus F3 17 Bus statusword F4 Diagnosis Data Logger F4 01 Data logger channel 1 F4 02 Data logger channel 2 F4 03 Data logger channel 3 F4 04 Time base F4 05 Rating channel 1 F4 06 Rating channel 2 F4 07 Rating channel 3 State logic inputs F4 10 DI state basic device F4 11 DI state 1011 F4 12 DIstatelO12 state logic outputs F4 13 DO state basic device F4 14 DO state IO11 F4 15 DO state IO12 Analog checkpoints F4 16 f reference 1 Hz F4 17 f rreference 2 Hz F4 18 f reference after sel F4 19 f ref val after FW REV F4 20 f
83. uest and response telegram are of following data tvpe Read parameter value Request telegram Master gt gt pDRIVE lt MX eco Slave Request Parameter address Nambercot parsmeters CRC 16 address to be read 3 hex Hi Lo Hi Lo Lo Hi 1 byte 1 byte 2 bytes 2 bytes 2 bytes Response telegram gt pDRIVE lt MX eco gt Master Slave Number of read bytes Parameter value 1 1 byte 1 byte 1 byte 2 bytes Write parameter value Request telegram Master gt gt pDRIVE lt MX eco Request Parameter address Parameter value CRC 16 Slave address oshexj Hi to m to Lo Wi 1 bvte 1 byte 2 bytes 2 bytes 2 bytes Response telegram gt pDRIVE lt MX eco gt Master Suradi ResponsejParameter address Parameter value CRC 16 oehex Hi to M to Hille 1 byte 1 byte 2 bytes 2 bytes 2 bytes The individual parameters are accessed via their internal logical addresses Addresses are valid in the range of 0 2047 11 bits and they are mentioned in the parameter list which is provided in the appendix The address is used in the request telegram as well as in the response telegram If a write request could be performed successfully the transferred parameter value and the original request code appear in the response telegram as an echo 32 HALS 8 P01 034 00 00 HALS 8 P01 034 00 00 In case of requests that can not be executed an error telegram is sent to the master It contains the original request code but
84. ystem has to answer with Control OK within 2 seconds Otherwise the drive is switched back to panel mode automatically Function not provided Function not provided HALS 8 P01 034 00 00 HALS 8 PO1 034 00 00 Main actual value Auxiliarv actual values Depending on the setting of parameter D6 137 Number actual values 1 9 actual values are available in the Modbus user data protocol The meaning of the individual actual values is defined bv parameterization of the gt pDRIVE lt MX eco using the Matrix surface The actual values can be divided into two groups inverter internal actual values like e g actual value of speed torque a s o according to the analog outputs of the frequency inverter assumption of the analog inputs for external use by means of the DP master without influencing the inverter control Bit 10 STW must be 1 The actual values are linear scaled values with 16 bit display That is 0 96 0 0 hex 100 96 214 4000 hex Therefrom a presentable data range of 200 200 96 with a resolution of 27 0 0061 96 results Binary Hexadecimal Decimal 200 0000 10000000 00000000 8000 32768 The actual values are scaled by means of parameterization in matrix field D6 The scaling of the individual actual values is fixed for each output value See matrix field D6 Using bits 11 15 According to the Profibus profile bits 11 15 of the status word are not defined and therefore they ca
Download Pdf Manuals
Related Search
Related Contents
tese final - Universidade do Minho Manual do utilizador HVL-F60M Evaporative Cooling Humidifier Controles de usuario Copyright © All rights reserved.
Failed to retrieve file