Home
GAMESS-UK USER'S GUIDE and REFERENCE MANUAL Version
Contents
1. bin csh f setenv ed2 scr1 user namgmain setenv ed3 scr1 user namgdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title na7mgt ecp open shell singlet rhf mult 1 charge 1 super off bypass zmat angs mg na 1 ri r2 2 90 r2 290 3 72 r2 290 4 72 r2 290 5 72 na na na HR RK KR RK na 8 GRAPHICAL ANALYSIS OF NICKEL TETRACARBONYL 18 na 1 r2 2 90 6 72 na 1 ri 3 90 2 180 variables ri 3 0286740 r2 3 194799 end basis ecpdz na ecpdz mg d mg 1 0 0 175 end ecp na na mg mg runtype scf open 1111 level 0 3 1 0 enter EOF 8 Graphical analysis of nickel tetracarbonyl The following example illustrates features of the Graphical Analysis module in analysing the ground state SCF wavefunction of Ni CO 4 Let us assume the following job has been used in constructing this wavefunction bin csh f setenv ed2 scri user nicomain setenv ed3 scri user nicodump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF title ni co 4 3 21g SCF total energy 1947 868687 zmat angstrom ni c 1 nic c 1 nic 2 109 471 c 1 nic 2 109 471 3 120 0 c 1 nic 2 109 471 4 120 0 x 21 0 1 90 0 3 180 0 o 2 co 6 90 0 1 180 0 x 3 1 0 1 90 0 2 180 0 o 3 co 8 90 0 1 180 0 x 41 0 1 90 0 5 180 0 o 4 co 10 90 0 1 180 0 x 5 1 0 1 90 0 4 180 0 o 5 co 12 90 0 1 180 0 variables nic 1 831 co 1 131 end level 1 5 8 GRAPHICAL ANALYS
2. bin csh f cd scri user setenv ed2 nh3main setenv ed3 nh3dump setenv table TABLE scr1 wab GAMESS UK bin gamess lt lt EOF restart title nh3 3 21g mrdci energies 1r 55 6393336 2r 55 4116210 bypass scf charge 1 mult 2 Zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end runtype ci mrdci 21 TABLE CI CALCULATIONS ON THE AMMONIA CATION 46 adapt tran table select symmetry 1 spin 2 cntrl 9 conf 14123 12 13124 12 roots 2 thresh 5 5 ci diag extrap 3 dthr 0 0001 0 0001 natorb cive 1 2 prop cive 1 2 14 123 12 13 124 12 moment 36 1 36 2 1 enter EOF The orbitals employed in the Cl calculation will be taken from the default section associated with the open shell RHF module section 5 that containing the energy ordered canonicalised open shell vectors written on termination of the SCF process Note that the table keyword will activate generation of the Table Cl data base to be used in the subsequent steps below In this case the data base will be written to the file TABLE in scr1 for subsequent use A copy of this data base is available on the DEC PW433AU and may be accessed directly thus setenv table scri wab GAMESS UK libs TABLE Now let us consider dividing the above CI calculation The following points should be noted in this division e The SETENV lines indicate those FORTRAN data sets that
3. ch 2 hcc 3 180 0 ch 1 hcc 3 0 0 2 ch 1 hcc 3 180 0 variables cc 1 40 ch 1 10 hcc 118 0 end basis 6 31g runtype optimize xtol 0 0001 enter EOF rprpprppypaa verre Analytic Force Constants bin csh f cd scri user setenv ed2 c2h4main setenv ed3 c2h4dump scr1 wab GAMESS UK bin gamess lt lt EOF restart title ethylene 6 31g ground state vibrational frequencies zmatrix angstrom cc ch 2 hcc ch 2 hcc 3 180 0 ch 1 hcc 3 0 0 2 ch 1 hcc 3 180 0 variables cc 1 40 HEH F Fo o Nere 15 MP2 ANALYTIC FORCE CONSTANTS FOR ETHYLENE ch 1 10 hcc 118 0 end basis 6 31g runtype hessian enter EOF 15 MP2 Analytic Force Constants for Ethylene 32 We consider below computing the analytic force constants for C2Hg initially optimising the molecule at the MP2 level followed by the force constant calculation Note again the use of the XTOL directive in the optimisation job to ensure a higher degree of optimisation than that derived using the default XTOL MP2 Geometry Optimisation bin csh f cd scri user setenv ed2 c2h4main setenv ed3 c2h4dump scr1 wab GAMESS UK bin gamess lt lt EOF title ethylene 6 31g MP2 optimised total energy 78 3272309 zmatrix angstrom cc ch 2 hcc ch 2 hcc 3 180 0 ch 1 hcc 3 0 0 2 ch 1 hcc 3 180 0 variables cc 1 40 ch 1 10 hcc 118 0 end basis 6 31g runtype optimize scftype mp2 xtol 0 0001 enter EOF HEH PF on o M H
4. end basis 4 31g runtype saddle jorgensen powell maxjor 55 recalc off rfo off cutoffs optprint on xtol 0 0018 enter EOF 12 HSiP HPSi Transition State Location This example is concerned with locating the transition state in the HPSi HSiP isomerisation process and calculating the associated vibrational frequencies We provide sample jobs using both numerical and analytical techniques in the transition state location and subsequent force constant evaluation Note that the latter example is computationally the most efficient and should certainly be adopted for small medium sized molecules 12 1 Numerical Force Constants In the first step we perform an initial SCF for subsequent use in the saddle point calculation Closed shell SCF Job bin csh f 12 HSIP HPSI TRANSITION STATE LOCATION 27 setenv ed2 scri user hpsimain setenv ed3 scri user hpsidump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF title psih saddle point zmat ang p x11 0 si 1 psi 2 90 0 h 1 ph 2 90 0 3 hpsi variables psi 2 053 type 3 ph 2 44 type 3 hpsi 51 02 type 3 end enter EOF In the subsequent location of the transition state note the use of TYPE 3 which causes the program to calculate the complete force constant matrix numerically before commencing the search for the saddle point and the use of XTOL to provide more stringent optimisation criteria in view of the subsequent force constant evaluation
5. bypass scf charge 1 mult 2 zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end runtype ci mrdci adapt bypass tran bypass select bypass symmetry 1 spin 2 cntrl 9 TABLE CI CALCULATIONS ON THE AMMONIA CATION conf 14123 12 13124 12 roots 2 thresh 5 5 ci bypass diag extrap 3 dthr 0 0001 0 0001 enter EOF Table CI Job V CI Wavefunction Analysis bin csh f cd scri user setenv ed2 nh3main setenv ed3 nh3dump setenv ftn036 nh3diag scr1 wab GAMESS UK bin gamess lt lt EOF restart ci title nh3 3 21g mrdci energies ir 55 6393336 2r 55 4116210 bypass scf charge 1 mult 2 Zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end runtype ci mrdci adapt bypass tran bypass select bypass symmetry 1 spin 2 cntrl 9 conf 14123 12 13124 12 roots 2 thresh 5 5 ci bypass diag bypass extrap 3 dthr 0 0001 0 0001 natorb cive 1 2 prop 50 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt 51 cive 1 2 14 123 12 13 124 12 moment 36 1 36 2 1 enter EOF 22 ECP CASSCF and Direct CI Calculations on NiCCH This example illustrates the use of CASSCF and Direct Cl calculations in the framework of ECP studies The molecular system under investigation is NiCCH5 with a 5 reference direct Cl calculation
6. cd scri user setenv ed2 c2h4main setenv ed3 c2h4dump scr1 wab GAMESS UK bin gamess lt lt EOF restart title ethylene MP2 6 31g ground state polarisability zmatrix angstrom cc ch 2 hcc ch 2 hcc 3 180 0 ch 1 hcc 3 0 0 h 2 ch 1 hcc 3 180 0 variables cc 1 40 ch 1 10 hcc 118 0 end basis 6 31g runtype polarisability scftype mp2 enter EOF HP FF Fa o verre Direct MP2 Calculation of Pyridine 34 We show below the data for performing a direct MP2 calculation on the C5HsN molecule conducted in a 6 31G basis set Note the use of the MEMORY pre directive in requesting a memory allocation of 4 MWords bin csh f cd scri user setenv ed3 pyred3 scr1 wab GAMESS UK bin gamess lt lt EOF title pyridine 6 31gt direct mp2 zmat angstrom 1 0 1 0 2 90 1 0 2 90 3 90 c4n 3 90 2 180 1 0 1 90 3 0 0 KN OM MM D G Ka K RK KR 18 CASSCF GEOMETRY OPTIMISATIONS 30 5 1 0 1 90 4 0 0 5 ch4 6 90 1 180 1 c2n 2 c2nz 3 180 1 c2n 2 c2nz 3 0 0 9 c2c3 1 ccn 2 180 10 c2c3 1 ccn 2 180 9 c2h6 1 nch2 2 0 0 10 c2h6 1 nch2 2 0 0 11 c3h5 9 c2c3h 1 180 12 c3h5 10 c2c3h 1 180 variables c4n 2 7845546 ch4 1 0823078 c2n 1 3372389 c2nz 120 641858 c2c3 1 3944571 ccn 122 662269 c2h6 1 0814291 c3h5 1 0809550 nch2 116 400433 c2c3h 120 158516 end basis 6 31g scftype direct mp2 enter EOF rPpppypaaan a pw 18 CASSCF Geometry Optimisations We consider below a CASSCF calculatio
7. roots 1 1 thresh 30 10 ci diag title pyridine imir ground state dz 3s2p2d rydberg basis extrap 3 natorb civec 1 putq aos 2 enter EOF 3 6M 1R Table CI Job for the X A State bin csh f cd scri user setenv ed2 pyred2 setenv ed3 pyred3 setenv ftn031 pyrtran setenv table scri wab GAMESS UK libs TABLE 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE63 scr1 wab GAMESS UK bin gamess lt lt EOF restart title pyridine dz bond centred functions super off nosym bypass scf zmat angstrom 10 c2c3 1 ccn 2 180 9 c2h6 1 nch2 2 0 0 10 c2h6 1 nch2 2 0 0 11 c3h5 9 c2c3h 1 180 12 c3h5 10 c2c3h 1 180 bq 1 1 39 3 90 2 180 variables c4n 2 7845546 ch4 1 0823078 c2n 1 3372389 c2nz 120 641858 c2c3 1 3944571 ccn 122 662269 c2h6 1 0814291 c3h5 1 0809550 nch2 116 400433 c2c3h 120 158516 end n x 11 0 x 11 0 2 90 x 11 0 2 90 3 90 c 1 c4n 3 90 2 180 x5 1 0 1 90 3 0 0 x5 1 0 1 90 40 0 h 5 ch4 6 90 1 180 c 1 c2n 2 c2nz 3 180 c 1 c2n 2 c2nz 3 0 0 c 9 c2c3 1 ccn 2 180 C h h h h basis dz h 1 0 1 0 dzn dz c s bq 1 0 0 021 s bq 1 0 0 008 s bq 1 0 0 0025 p bq 1 0 0 017 p bq 1 0 0 009 d bq 1 0 0 015 d bq 1 0 0 008 end 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE64 runtype ci mrdci adapt bypass tran freeze discard bypass 6040 1 to 6 1 to 4 8060 38 to 45 23 to 28 select cntrl 22 spin singlet s
8. 0 h 5 ch4 6 90 1 180 c 1 c2n 2 c2nz 3 180 c 1 c2n 2 c2nz 3 0 0 c 9 c2c3 1 ccn 2 180 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE67 c 10 c2c3 1 ccn 2 180 h 9 c2h6 1 nch2 2 0 0 h 10 c2h6 1 nch2 2 0 0 h 11 c3h5 9 c2c3h 1 180 h 12 c3h5 10 c2c3h 1 180 bq 1 1 39 3 90 2 180 variables c4n 2 7845546 ch4 1 0823078 c2n 1 3372389 c2nz 120 641858 c2c3 1 3944571 ccn 122 662269 c2h6 1 0814291 c3h5 1 0809550 nch2 116 400433 c2c3h 120 158516 end basis dz h 1 0 1 0 dz n dz c s bq 1 0 0 021 s bq 1 0 0 008 s bq 1 0 0 0025 p bq 1 0 0 017 p bq 1 0 0 009 d bq 1 0 0 015 d bq 1 0 0 008 end runtype ci mrdci adapt bypass tran freeze discard bypass 6040 1 to 61to 4 8060 38 to 45 23 to 28 select cntrl 22 spin singlet symmetry 4 conf 25 65 1 2 3 4 32 33 44 45 46 62 2 33 47 1 2 3 4 5 32 44 45 46 62 25 63 1 2 3 4 32 33 44 45 46 62 2 33 48 1 2 3 4 5 32 44 45 46 62 2 8 62 1 2 3 4 5 32 33 44 45 46 24 FULL CI CALCULATIONS 68 7 62 1 2 3 4 5 32 33 44 45 46 33 50 1 2 3 4 5 32 44 45 46 62 5 64 1 2 3 4 32 33 44 45 46 62 33 49 1 2 3 4 5 32 44 45 46 62 6 62 1 2 3 4 5 32 33 44 45 46 5 33 38 65 1 2 3 4 32 44 45 46 62 5 33 38 63 1 2 3 4 32 44 45 46 62 33 47 62 65 1 2 3 4 5 32 44 45 46 5 33 34 65 1 2 3 4 32 44 45 46 62 7 33 38 62 1 2 3 4 5 32 44 45 46 33 47 62 63 1 2 3 4 5 32 44 45 46 8 33 38 62 1 2 3 4 5 32 44 45 46 5 33 34 63 1 2 3 4 32 44 45 46 62 33 48 62 63 1 2
9. 0 39257378 2 0000000 6 2 0 39257378 2 0000000 7 1 0 05704423 0 0000000 8 2 0 09936415 0 0000000 9 3 0 09936415 0 0000000 10 1 0 15573442 0 0000000 11 1 0 25156032 0 0000000 12 3 0 29518660 0 0000000 13 2 0 29518660 0 0000000 14 1 0 57290305 0 0000000 15 4 0 66957865 0 0000000 16 1 0 66957865 0 0000000 17 2 0 84348942 0 0000000 18 3 0 84348942 0 0000000 19 1 1 01733643 0 0000000 20 2 1 05237116 0 0000000 21 3 1 05237116 0 0000000 22 1 1 24301610 0 0000000 23 1 1 45883277 0 0000000 24 1 1 80402496 0 0000000 25 4 2 36534068 0 0000000 26 1 2 36534068 0 0000000 27 2 2 62307878 0 0000000 28 3 2 62307878 0 0000000 29 1 3 16009549 0 0000000 30 1 4 37857805 0 0000000 31 1 45 42979631 0 0000000 We wish to perform a CASSCF calculation in which the inner shell and O2s orbitals the 10 30 remain doubly occupied with the active space including the formally vacant SCF virtual MOs the 50 and 27 This example utilises the vectors from the closed shell SCF calculation We wish to perform the CASSCF calculation under RUNTYPE CI specification where having performed the 6 electrons in 6 orbital CASSCF we use the natural orbitals in carrying out a second order Cl using the Direct Cl module Specifically we aim to use a reference space in the Cl consisting 19 CASSCF 2ND ORDER CI CALCULATIONS ON BEO 40 of all CSFs which can be generated by distributing 6 electrons in 6 MOs i e the CASSCF space This may be achieved in a single run through the follo
10. 0000000 0 0387 ni 0000000 0 0840 ni 0000000 0 0240 ni 0360414 42 7200 1938645 11 7600 4596238 3 8170 5599305 1 1690 ni 0000000 0 2836 end KH ph O OO p Hd EIKE HB pseudo nonlocal nihay ni cc maxcyc 30 level 2 5 15 1 0 vectors hcore enter EOF Closed shell SCF Restart Data bin csh f cd scri user setenv ed2 mainnips setenv ed3 dumpnips setenv ed0 scri wab GAMESS UK libs ecplib 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt scr1 wab GAMESS UK bin gamess lt lt EOF restart new title ni cch2 1a1 rhf restart hay s ni bar s nm ecp s mult 1 bypass super force zmat angstrom ni c i nica x 21 0 1 90 0 c 2 cacb 3 90 0 1 180 0 x 41 0 2 90 0 3 0 0 h 4 hcb 2 hcc 5 90 0 h 4 hcb 2 hcc 5 90 0 variables nica 2 0895 cacb 1 3604 hcb 1 1047 hcc 122 646 end basis s h 0 032828 13 3615 0 231208 2 0133 0 817238 0 4538 sh 1 000000 0 1233 sc 1 000000 0 4962 sc 1 000000 0 1533 pc 0 018534 18 1557 0 115442 3 9864 0 386206 1 1429 0 640089 0 3594 pc 1 000000 0 1146 s ni 0 4372528 0 6778 1889453 0 1116 ni 0000000 0 0387 ni 0000000 0 0840 ni 0000000 0 0240 ni 0360414 42 7200 1938645 11 7600 4596238 3 8170 5599305 1 1690 ni 0000000 0 2836 KH pO O O O p nd KHA KH nn 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt end pseudo nonlocal nihay ni cc maxcyc 40 level 3 0 10 1 0 swap 45 6 8 8 10 10 11 en
11. 0812894 9658559 9101853 3438675 4943459 8664887 5381892 6957586 w H H 01 GO K HA WAH HA XA HOA OH HA HOA HK 2d Aa Od HO KA d KHA HK HD OO H KH CO 0 0 DD OD DQ O QD O OO O O DQ O O O O O O OO O O O O O O O O O O O O O O O Oa Oa o E Hoo od oO EPE nn on Fh nn on Fa o fh nan kn KOREA o Fa hb bh ha bn o 10 DIRECT SCF CALCULATIONS 24 9 1872029 6 0381561 0 4734880 1 0 h 7 5522104 7 5798978 2 5757500 1 0 h end basis sto3g scftype direct enter EOF Direct SCF Geometry Optimisation of Be CsHs bin csh f scr1 wab GAMESS UK bin gamess lt lt EOF title be c5h5 2 sto3g optimised total energy 394 2789851 au zmatrix angstrom x 1 fxa c 2 xc 1 xxc c 2 xc 1 xxc 3 cxc c 2 xc 1 xxc 4 cxc c 2 xc 1 xxc 3 cxe c 2 xc 1 xxc 6 cxc x 2 xx 3 xxc 4 xxc h 2 hx 8 hxx 3 hcx h 2 hx 8 hxx 4 hcx h 2 hx 8 hxx 5 hcx h 2 hx 8 hxx 6 hcx h 2 hx 8 hex 7 hcx x 2 fxt 3 xxc 4 xxc c14 xc 1 xxc 3 cxxc c14 xc 1 xxc 15 cxc c 14 xc 1 xxc 16 cxc c14 xc 1 xxc 15 cxc c 14 xc 1 xxc 18 cxc x 14 xx 15 xxc 16 xxc h 14 hx 20 hxx 15 hcx h 14 hx 20 hxx 16 hcx h 14 hx 20 hxx 17 hcx h 14 hx 20 hxx 18 hcx h 14 hx 20 hxx 19 hcx be 2 fxa 3 xxc 4 xxc variables fxa 1 47 fxt 3 37 XC 1 22 hx 2 12 hxx 88 4 constants cxc 72 0 cxxc 36 0 xxc 90 0 hex 0 0 XX 1 0 end basis sto3g 11 HCN HNC TRANSITION STATE LOCATION 20 runtype optimize scftype direct level 2 0 10 1 4 enter EOF 11 HCN HNC Tran
12. CI CALCULATIONS ON THE AMMONIA CATION charge 1 mult 2 zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end runtype ci mrdci adapt bypass tran bypass select symmetry 1 spin 2 cntrl 9 conf 14123 12 13124 12 roots 2 thresh 5 5 ci bypass diag bypass extrap 3 dthr 0 0001 0 0001 enter EOF Table CI Job III CI Hamiltonian Construction bin csh f cd scri user setenv ed2 nh3main setenv ed3 nh3dump setenv table TABLE setenv ftn031 nh3tran setenv ftn033 nh3sel01 setenv ftn034 nh3sel02 setenv ftn035 nh3ham scr1 wab GAMESS UK bin gamess lt lt EOF restart ci title nh3 3 21g mrdci energies ir 55 6393336 2r 55 4116210 bypass scf charge 1 mult 2 Zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables 21 TABLE CI CALCULATIONS ON THE AMMONIA CATION roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end runtype ci mrdci adapt bypass tran bypass select bypass symmetry 1 spin 2 cntrl 9 conf 14123 12 13124 12 roots 2 thresh 5 5 ci diag bypass extrap 3 dthr 0 0001 0 0001 enter EOF Table CI Job IV Diagonalisation bin csh f cd scri user setenv ed2 nh3main setenv ed3 nh3dump setenv ftn035 nh3ham setenv ftn036 nh3diag scr1 wab GAMESS UK bin gamess lt lt EOF restart ci title nh3 3 21g mrdci energies ir 55 6393336 2r 55 4116210
13. adapt bypass tran freeze discard bypass 6040 1 to 6 1 to 4 8060 38 to 45 23 to 28 select cntrl 22 spin singlet symmetry 1 conf 2 62 65 1 2 3 4 5 32 33 44 45 46 2 33 34 1 2 3 4 5 32 44 45 46 62 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE66 581 62 63 33 38 33 35 571 33 37 591 2 32 33 44 45 46 62 2 4 5 32 33 44 45 46 2 4 5 32 44 45 46 62 2 4 5 32 44 45 46 62 2 32 33 44 45 46 62 2 4 5 32 44 45 46 62 2 32 33 44 45 46 62 2 62 64 4 5 32 33 44 45 46 2 33 36 4 5 32 44 45 46 62 2 5111234 32 33 44 45 46 62 2 2 2 4 4 4 4 4 4 Ka G M BN HK RH RH M N N G N G N N N W DD WA WA WWW HM 33 39 123 32 44 45 46 62 32 34 123 33 44 45 46 62 32 38 123 33 44 45 46 62 5 8 33 38 1 32 44 45 46 62 33 38 62 65 4 5 32 44 45 46 32 33 34 38 4 5 44 45 46 62 33 34 62 65 4 5 32 44 45 46 32 38 62 63 4 5 33 44 45 46 5 7 33 38 1 32 44 45 46 62 roots 10123456789 10 thresh 30 10 ci diag title pyridine 21mi0r ial dz 3s2p2d rydberg basis extrap 3 enter EOF N HR BS DASS UN N N N GQ C1 Qn MH 5 19M 10R Table CI Job for the A States bin csh f cd scr1 user setenv ed2 pyred2 setenv ed3 pyred3 setenv ftn031 pyrtran setenv table scr1 wab GAMESS UK libs TABLE scr1 wab GAMESS UK bin gamess lt lt EOF restart title pyridine dztrydberg basis super off nosym bypass scf zmat angstrom n x 11 0 x 11 0 2 90 x 11 0 2 90 3 90 c 1 c4n 3 90 2 180 x5 1 0 1 90 3 0 0 x5 1 0 1 90 40
14. c2 180 cx 90 end basis sto3g scftype rhf open 1111 enter EOF Two Pair GVB Job bin csh f setenv ed2 scri user gvbmain setenv ed3 scr1 user gvbdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF gvb scf with two pairs bypass integral evaluation restart bypass title 1 imino 2 4 pentadiene energy 245 1146628 mult 1 9 TWO PAIR GVB CALCULATION ON 1 IMINO 2 4 PENTADIENE accuracy 20 7 super force nosym charge 1 zmat angs C c iri c 2 r2 1al c 3 r3 2 a2 1 cx c 4 r4 3 a3 2 c2 n 1 r5 2 a4 3 c2 h 1 r6 2 a5 3 c1 h 2 r7 3 a6 7 c2 h 3 r8 4 a7 8 c2 h 4 r9 5 a8 9 c2 h 5 r10 4 a9 10 c1 h 5 r11 4 a10 11 c2 h 6 r12 1 a11 7 c1 h 6 r13 1 a12 13 c2 variables ri 1 3463261 r2 1 4632685 r3 1 3961480 r4 1 3568062 r5 1 3416773 r6 1 0748794 r7 1 0669518 r8 1 0811641 r9 1 0707072 r10 1 0729928 rii 1 0747118 r12 0 9971261 r13 0 9985437 al 118 2539432 a2 122 8419092 a3 119 3229511 a4 125 9857684 a5 119 9766875 a6 122 1120978 a7 116 3317717 a8 120 9014063 a9 121 5606571 a10 121 8124933 a11 120 9303349 a12 121 8324395 constants c1 0 c2 180 cx 90 end basis sto3g runtype scf scftype gvb 2 enter EOF 10 DIRECT SCF CALCULATIONS 10 Direct SCF Calculations 23 In the first example below we show a direct SCF calculation in which the input geometry in cartesian coordinates is converted to z matrix representation the second calculation features geom
15. keep the mainfile and dumpfile with file names h2omain and h2odump would require the following job input bin csh f setenv ed2 scri user h2omain setenv ed3 scri user h2odump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF titlelh20 3 21g scf zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end enter EOF or if using the cd command bin csh f cd scri user setenv ed2 h2omain setenv ed3 h2odump 3 SEQUENCE OF CALCULATIONS ON WATER scr1 wab GAMESS UK bin gamess lt lt EOF titlelh20 3 21g scf zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 Vend enter EOF with the scratchfile ed7 omitted from the setenv commands Alternatively instead of setting the names of the files through the setenv command it is possible to use file pre directives within the body of the GAMESS UK input Thus the following bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF titlelh20 3 21g scf file ed2 h2omain file ed3 h2odump zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end enter EOF achieves the same as using the setenv command For all the following examples either setenv commands run in the shell or file directives in the GAMESS UK input can be used inter changably 3 Sequence of Calculations on Water In this example we include a se
16. o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end basis dz runtype ci fullci 14 5 5 enter EOF Valence electron Job bin csh f cd scri user setenv ed2 h2omain setenv ed3 h2odump setenv ftn008 files scr1 wab GAMESS UK bin gamess lt lt EOF core 8000000 restart new title h20 DZ basis valence full ci super off nosym bypass zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end basis dz runtype ci active 2 to 14 end core 1 end fullci 13 44 enter EOF The following points should be noted e the use of setenv to allocate the FORTRAN stream ftn008 e the use of the core pre directive to specify memory requirements
17. on NiCCH 23 Table CI Calculations of the Electronic Spectra of Pyridine 24 Full Cl calculations 18 20 23 25 26 26 28 30 31 32 33 34 35 38 41 44 51 59 68 1 INTRODUCTION 2 1 Introduction In the present section we consider initially execution of GAMESS UK on a Linux workstation although these notes are intended as a more general guide to running the code under the Unix operating system Throughout this description we make the following assumptions e the user will in general submit jobs from a disk partition different to that where the direct access files used by GAMESS UK will be cited typically the latter will be striped For the purpose of the present notes we assume that the various files involved will be routed to the partition scrl user where the directory user has been created prior to job submission using the command mkdir thus mkdir scri user e that all job inputs reside in the user s home directory or subdirectory thereof and that all job output is to be routed back to that directory e We assume the user is submitting jobs directly to the background e In Part 13 we discuss execution of GAMESS UK using the prepared script rungamess e all of the commands in these notes belong to the C shell Note that all data input for the Unix implementation of GAMESS UK may be presented in ei ther upper or lower case In the examples below we have used lower case input thro
18. performed using a CASSCF wavefunction for the lowest triplet state Five data files are presented below 1 Start up closed shell SCF calculation for the A state Note the SUPER directive for compatibility with the subsequent open shell calculation The ECP library file scr1 wab GAMESS UK libs ecplib is allocated to LFN ed0 with the NIHAY and C non local ECPs requested under control of the PSEUDO directive 2 Restart SCF job with appropriate use of the SWAP directive to converge the closed shell SCF 3 RHF calculation for the 3A state 4 CASSCF calculation for the 3A state 5 5 reference Direct Cl calculation for the 3A state Closed shell SCF Start up Job bin csh f cd scri user setenv ed2 mainnips setenv ed3 dumpnips setenv ed0 scri wab GAMESS UK libs ecplib scr1 wab GAMESS UK bin gamess lt lt EOF title ni cch2 1a1 rhf hay s ni bar s nm ecp s mult 1 super force zmat angstrom ni 1 nica 21 0 1 90 0 2 cacb 3 90 0 1 180 0 4 1 0 2 90 0 3 0 0 4 hcb 2 hcc 5 90 0 4 hcb 2 hcc 5 90 0 variables nica 2 0895 PE Kk aka 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt cacb 1 3604 hcb 1 1047 hcc 122 646 end basis sh 0 032828 13 3615 0 231208 2 0133 0 817238 0 4538 sh 1 000000 0 1233 sc 1 000000 0 4962 sc 1 000000 0 1533 pc 0 018534 18 1557 0 115442 3 9864 0 386206 1 1429 0 640089 0 3594 pc 1 000000 0 1146 s ni 0 4372528 0 6778 1889453 0 1116 ni
19. r1 3 90 2 180 variables ri 3 0286740 r2 3 194799 end basis sto3g scftype uhf vectors 5 enter EOF Note that we are using the energy ordered open shell RHF eigenvectors to initiate the UHF calculation as written to the default section 5 by the Open shell RHF Job Had this section not been specified using the VECTORS directive then the closed shell SCF MOs would been used in default 6 Extended Basis Set Calculations of Na Mg In this example we use the STO 3G calculation on Na7Mg performed above as a starting point for a more extensive basis set calculation In particular the set of closed shell vectors is restored under control of GETQ with the STO 3G Dumpfile used as a foreign Dumpfile We then perform an RHF calculation on the open shell singlet state of Na7Mg using the integrals calculated in the closed shell case Note that the OPEN directive is now required for this low spin state Closed shell SCF Job bin csh f setenv ed2 scr1 user namgmain setenv ed3 scri user namgdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF dumpfile ed3 500 title 6 EXTENDED BASIS SET CALCULATIONS OF NA7MG na7mgt 4s3p 4s3pid scf energy 1330 808742 mult 1 charge 1 super off noprint vectors zmat angs mg na iri na 1 r2 2 90 na 1 r2 2 90 3 72 na 1 r2 2 90 4 72 na 1 r2 2 90 5 72 na 1 r2 2 90 6 72 na 1 r1 3 90 2 180 variables ri 3 0286740 r2 3 194799 end b
20. to be localised For the purpose of the example below it is assumed that orbitals 2 and 3 are the bond orbitals The CHARGE and MULT directives are required to override the values set in the preceding job on the doublet cation 3 SEQUENCE OF CALCULATIONS ON WATER 8 bin csh f setenv ed2 scri user h2omain setenv ed3 scri user h2odump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title lmos for h20 ground state geometry charge 0 mult 1 zmat angs o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end runtype analyse local 2 to 5 end vectors 1 enter 5 EOF 5 The localised orbitals are restored from section 5 and the NOGEN facility used to generate the virtual pairs of the two bond orbitals The SWAP directive has been used to move the localised bond orbitals to the top of the occupied orbital list The NOGEN facility reorders the orbitals so that the GVB pairs occur together Note the ADAPT OFF specification now required when using localised orbitals as the input orbital set bin csh f setenv ed2 scri user h2omain setenv ed3 scri user h2odump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title water gvb calculation using localised orbitals adapt off zmat ang o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end scftype gvb 2 vectors nogen 5 swap 25 3 4 4 SCF CALCULATIONS ON CUBANE NITROBENZENE AND TRI
21. 0 90 4 0 0 90 1 180 c2nz 3 180 c2nz 3 0 0 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE60 c9 c2c3 1 ccn 2 180 c 10 c2c3 1 ccn 2 180 h 9 c2h6 1 nch2 2 0 0 h 10 c2h6 1 nch2 2 0 0 h 11 c3h5 9 c2c3h 1 180 h 12 c3h5 10 c2c3h 1 180 bq 1 1 39 3 90 2 180 variables c4n 2 7845546 ch4 1 0823078 c2n 1 3372389 c2nz 120 641858 c2c3 1 3944571 ccn 122 662269 c2h6 1 0814291 c3h5 1 0809550 nch2 116 400433 c2c3h 120 158516 end basis dz h 1 0 1 0 dzn dz c s bq 1 0 0 021 s bq 1 0 0 008 s bq 1 0 0 0025 p bq 1 0 0 017 p bq 1 0 0 009 d bq 1 0 0 015 d bq 1 0 0 008 end enter EOF 2 1M 1R Table CI Job for the X A State An examination of the SCF output reveals the following symmetry adapted basis functions given the Cy geometry and DZ plus Rydberg basis set IRREP NO OF SYMMETRY ADAPTED BASIS FUNCTIONS 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE61 Thus the orbital reordering performed by the Table Cl module will yield the sequence numbers 1 45 for the a MOs 46 57 for the b MOs 58 85 for the b MOs and 86 91 for the a MOs We are both freezing and discarding orbitals in the subsequent Cl calculations Confining this to both a and b MOs the first six orbitals of aj symmetry and first four orbitals of ba symmetry are to be frozen and the eight highest energy orbitals of aj symmetry and six highest of b are to be discarded Thus the final sequenc
22. 0 0 t7 120 0 t8 120 0 pi 90 0 p2 180 0 p3 0 0 p5 0 0 p6 0 0 p7 0 0 end maxcyc 20 enter EOF Closed shell SCF Job for C6H2 NO 3CH3 bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF title 2 4 6 tri nitro toluene 3 21g basis noprint distance basis vectors hessian Zmat angstrom x C 1 ri C 1 r2 2 al C 1 r2 2 al 3 180 Cc 1 r3 2 a2 3 0 5 STO 3G CALCULATIONS ON NA7MG 11 C 1 r3 2 a2 3 180 x 1 1 2 90 3 180 C 1 r4 7 90 2 180 n 3 r5 2 a3 1 180 o 9 r6 3 a4 2 O o 9 r7 3 a5 2 180 n 4 r5 2 a3 1 180 o 12 r6 4 a4 2 O o 12 r7 4 a5 2 180 x 8 1 1 90 6 0 n 8 r8 15 90 1 180 o 16 r9 8 a6 5 0 o 16 r9 8 a6 5 180 x 2 1 1 90 4 0 C 2 r10 19 90 1 180 h 20 r11 2 a7 19 90 h 20 r12 2 a8 21 120 h 20 r12 2 a8 21 120 h 5 r13 8 a9 6 180 h 6 r13 8 a9 5 180 variables ri 1 431 r2 1 367 r3 1 397 r4 1 395 al 60 38 a2 120 67 r5 1 521Nr8 1 505 r6 1 277 r7 1 278 r9 1 277 a3 123 52 a4 121 19 a5 116 17 a6 117 53 r10 1 529 r11 1 087Nr12 1 082 a7 110 07 a8 109 7 r13 1 086 a9 121 26 end enter EOF 5 STO 3G Calculations on Na Mg In this calculation we perform an STO 3G calculation on Na Me followed by an RHF and then UHF calculation on the triplet state Note the use of the SUPER directive to ensure an integral file format compatible with the use of BYPASS in the subsequent RHF and UHF calculations Closed shell SCF Job bin csh f setenv ed2 scr1 user nam
23. 00000 044678 p ng 039884 50 9665 223321 11 4364 514536 3 21935 p ng 1 00000 0 914433 p mg 1 00000 0 16 d mg 1 00000 0 175 s na 003064 6902 67 022198 1059 04 095576 255 445 280448 77 3172 452587 26 8224 29313 10 0718 s na 1 000000 2 17902 s na 1 000000 689482 s na 1 0 040274 p na 042422 38 9438 229433 8 71012 509774 2 42053 p na 1 00000 661896 p na 1 0 065 end open 1111 maxcyc 40 enter EOF 7 ECP calculations of Na Mg In this example on Na7Mg we perform a local ECP calculation using the Hay Wadt ECP s together with the associated double zeta basis sets augmented by a d function on Mg Having carried out the closed shell SCF calculation we perform an RHF calculation on the singlet state of Na7Mgt using the integrals calculated in the closed shell case Note that we are re using the files from the previous example Closed shell SCF Job bin csh f 7 ECP CALCULATIONS OF NA MGt setenv ed2 scr1 user namgmain setenv ed3 scri user namgdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF title na7mgt ecp LANL ecp closed shell singlet charge 1 super off zmat angs mg na iri na 1 r2 2 90 na 1 r2 2 90 3 72 na 1 r2 2 90 4 72 na 1 r2 2 90 5 72 na 1 r2 2 90 6 72 na 1 r1 3 90 2 180 variables ri 3 0286740 r2 3 194799 end basis ecpdz na ecpdz mg d mg 1 0 0 175 end ecp na na mg mg level 1 0 enter EOF Open shell RHF Job
24. 3 4 5 32 44 45 46 roots 10123456789 10 thresh 30 10 ci diag title pyridine 19mi0r 1a2 dz 3s2p2d rydberg basis extrap 3 enter EOF AAR AAA BBR KM M M M M 24 Full CI calculations We consider below Full Cl calculations of the XTA state of the H2O molecule In the first in stance we consider correlating all electrons We then perform a valence only calculation freezing the Ols orbital through the ACTIVE and CORE directives specifying a total of 8 electrons on the FULLCI data line All electron Job bin csh f cd scri user setenv ed2 h2omain setenv ed3 h2odump setenv ed6 h2otran setenv ftn008 files scr1 wab GAMESS UK bin gamess lt lt EOF title h20 DZ basis full ci super off nosym zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end basis dz runtype ci fullci 145 5 enter EOF Assuming the above job did not complete in the time allocated and dumped to disk in a con trolled fashion the following job would act to continue the processing assuming that the FOR 24 FULL CI CALCULATIONS 69 TRAN file file8 had been saved along with the Mainfile Dumpfile and Transformed integral file Restarting the Full CI job bin csh f cd scri user setenv ed2 h2omain setenv ed3 h2odump setenv ed6 h2otran setenv ftn008 files scr1 wab GAMESS UK bin gamess lt lt EOF restart ci title h20 DZ basis restart full ci super off nosym zmat angstrom
25. 43536 refgen 141516 242526 343536 refgen 141516 242526 343536 refgen 141516 242526 343536 refgen 141516 242526 343536 vectors i enter 20 21 EOF Note that the vectors specification is requesting that the closed shell SCF eigenvectors be used to initiate the MCSCF calculation The MCSCF natural orbitals routed to section 10 of the Dumpfile in default will be used as the orbitals for the Direct Cl calculation 21 Table CI calculations on the Ammonia Cation We consider below a Table CI calculation of the X2A state and 12A state of the ammonia cation In the first instance we consider performing the calculation in two steps initially the 21 TABLE CI CALCULATIONS ON THE AMMONIA CATION 45 open shell SCF calculation followed by the MRD CI 2 reference state calculation We then sub divide the Cl calculation into 5 separate steps performing the symmetry adaption integral transformation followed by configuration selection construction of the Cl Hamiltonian the diagonalisation and finally the subsequent analysis of the Cl wavefunctions Open shell SCF Job bin csh f cd scri user setenv ed2 nh3main setenv ed3 nh3dump scr1 wab GAMESS UK bin gamess lt lt EOF title nh3 3 21g scf energy 55 53325817 hartree super off nosym charge 1 mult 2 zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end enter EOF Table CI Job
26. 868687 9 TWO PAIR GVB CALCULATION ON 1 IMINO 2 4 PENTADIENE x 5 1 0 1 90 0 4 180 0 o 5 co 12 90 0 1 180 0 variables nic 1 831 co 1 131 end runtype analyse graphics gdef type 2d title square 2d grid ni co 4 total density calc type dens title ni co 4 total density section 151 plot type line title ni co 4 total density vectors 1 enter EOF 9 Two Pair GVB Calculation on 1 imino 2 4 pentadiene Closed shell SCF Job bin csh f setenv ed2 scri user gvbmain setenv ed3 scr1 user gvbdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF open shell rhf sto3g check super force title 1 imino 2 4 pentadiene energy 245 073477 super force nosym mult 1 accuracy 20 7 charge 1 Zmat angs C c iri c 2 r2 1al c 3 r3 2 a2 1 cx c 4 r4 3 a3 2 c2 n 1 r5 2 a4 3 c2 h 1 r6 2 a5 3 c1 h 2 r7 3 a6 7 c2 h 3 r8 4 a7 8 c2 h 4 r9 5 a8 9 c2 9 TWO PAIR GVB CALCULATION ON 1 IMINO 2 4 PENTADIENE h 5 r104 a9 10 cl h 5 r11 4 a10 11 c2 h 6 r12 1 a11 7 c1 h 6 r13 1 a12 13 c2 variables ri 1 3463261 r2 1 4632685 r3 1 3961480 r4 1 3568062 r5 1 3416773 r6 1 0748794 r7 1 0669518 r8 1 0811641 r9 1 0707072 r10 1 0729928 rii 1 0747118 r12 0 9971261 r13 0 9985437 al 118 2539432 a2 122 8419092 a3 119 3229511 a4 125 9857684 a5 119 9766875 a6 122 1120978 a7 116 3317717 a8 120 9014063 a9 121 5606571 a10 121 8124933 ali 120 9303349 a12 121 8324395 constants c1 0
27. CONTENTS i Computing for Science CFS Ltd CCLRC Daresbury Laboratory Generalised Atomic and Molecular Electronic Structure System GAMESS UK USER S GUIDE and REFERENCE MANUAL Version 8 0 June 2008 PART 12 GAMESS UK under UNIX M F Guest J Kendrick J H van Lenthe and P Sherwood Copyright c 1993 2008 Computing for Science Ltd This document may be freely reproduced provided that it is reproduced unaltered and in its entirety Contents 1 Introduction 2 2 Single Point SCF Calculation 4 3 Sequence of Calculations on Water 6 4 SCF Calculations on Cubane Nitrobenzene and Trinitrotoluene 9 5 STO 3G Calculations on Na Mg 11 6 Extended Basis Set Calculations of Na Mg 13 7 ECP calculations of Na Mg 16 CONTENTS 8 Graphical analysis of nickel tetracarbonyl 9 Two Pair GVB Calculation on 1 imino 2 4 pentadiene 10 Direct SCF Calculations 11 HCN HNC Transition State Location 12 HSiP HPSi Transition State Location 12 1 Numerical Force Constants 000 eee 12 2 Analytic Force Constants 00 13 Use of Bond centred Functions 14 SCF Analytic Force Constants for Ethylene 15 MP2 Analytic Force Constants for Ethylene 16 MP2 Polarisability for Ethylene 17 Direct MP2 Calculation of Pyridine 18 CASSCF Geometry Optimisations 19 CASSCF 2nd order Cl Calculations on BeO 20 MCSCF 2nd order Cl Calculations on BeO 21 Table Cl calculations on the Ammonia Cation 22 ECP CASSCF and Direct Cl Calculations
28. GAMESS UK bin gamess lt lt EOF restart new title water at casscf level 3 21g basis set zmat angstrom o h1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end scftype casscf config print doc 1 to 5 uoc 6 7 end superci 1 to 8 newton 9 to 20 hessian 9 to 20 simul 9 to 20 enter EOF 18 CASSCF GEOMETRY OPTIMISATIONS 37 Assuming the above job terminated prior to convergence the calculation might be restarted as follows bin csh f cd scri user setenv edi h2oedi setenv ed2 h2omain setenv ed3 h2odump setenv ed4 h2oed4 setenv ed6 h2o0ed6 setenv ed9 h2o0ed9 setenv ed10 h2oed10 scr1 wab GAMESS UK bin gamess lt lt EOF restart scf title water at casscf level 3 21g basis set Zmat angstrom o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end scftype casscf config bypass doc 1 to 5 uoc 6 7 end superci 1 to 2 newton 3 to 20 hessian 3 to 20 simul 3 to 20 vectors 6 7 enter 6 7 EOF where the default sections housing the CASSCF vectors and ci coefficients sections 6 and 7 respectively created in the startup job are explicitly declared above and CONFIG processing is bypass ed Having completed the single point calculation the following might be used to perform a geometry optimisation at the CASSCF level Note that it is now necessary to SAVE the data set associated with ED11 if restarts are envisaged bin csh f cd scri user setenv edi h2oed1 setenv ed2 h2omain setenv ed3
29. IS OF NICKEL TETRACARBONYL enter EOF Examination of the output reveals the following symmetry designation MOLECULAR POINT GROUP ORDER OF PRINCIPAL AXIS SYMMETRY POINTS POINT POINT POINT 1 2 3 3 3 0 0000000 0 0000000 0 0000000 FEO k k k kkk kk MOLECULAR SYMMETRY FEO k k k kkk kk TD 0 0 0000000 0 0000000 0 0000000 1 0000000 1 0000000 0 0000000 and the following atomic coordinates 0 0000000 0 0000000 0 0000000 NI 1 9976836 1 9976836 1 9976836 C 1 9976836 1 9976836 1 9976836 C 1 9976836 1 9976836 1 9976836 C 1 9976836 1 9976836 1 9976836 C 3 2316433 3 2316433 3 2316433 0 3 2316433 3 2316433 3 2316433 0 3 2316433 3 2316433 3 2316433 0 3 2316433 3 2316433 3 2316433 0 19 The following job may be used to construct a total density plot of the SCF wavefunction in a plane containing the Ni atom and two carbonyl groups with the Ni at the centre of the plot a contour plot will be generated on line printer output bin csh f setenv ed2 scr1 user nicomain setenv ed3 scr1 user nicodump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title ni co 4 3 21g SCF total energy zmat angstrom ni nic nic 2 109 471 nic 2 109 471 3 120 0 nic 2 109 471 4 120 0 1 0 1 90 0 3 180 0 co 6 90 0 1 180 0 1 0 1 90 0 2 180 0 co 8 90 0 1 180 0 1 0 1 90 0 5 180 0 co 10 90 0 1 180 0 oOo KO KO Kk an na non A Ae Ae LQ LM KM KA RH KH KH 1947
30. LOCK is used to retain the initial SCF configuration throughout the search Transition State Job bin csh f setenv ed2 scri user hpsimain setenv ed3 scri user hpsidump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart new bypass title psih lt gt hpsi saddle point zmat angs P x 11 0 si 1 psi 2 90 0 h 1 ph 2 90 0 3 hpsi variables psi 2 053 type 3 ph 2 44 type 3 hpsi 51 02 type 3 end runtype saddle lock xtol 0 0005 enter 2 EOF Finally we present the job for numerical evaluation of the force constants at the optimised ge ometry Note the use of restart in requesting usage of the geometry from the Dumpfile rather 12 HSIP HPSI TRANSITION STATE LOCATION 28 than from the data file Numerical Force Constant Job bin csh f setenv ed2 scri user hpsimain setenv ed3 scri user hpsidump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title psih lt gt hpsi saddle point numerical fcm zmat angs P x 11 0 si 1 psi 2 90 0 h 1 ph 2 90 0 3 hpsi variables psi 2 053 type 3 ph 2 44 type 3 hpsi 51 02 type 3 end runtype force vectors 2 lock enter 3 EOF 12 2 Analytic Force Constants In the first step we perform the computation of the trial hessian under RUNTYPE HESSIAN control for subsequent use in the saddle point calculation Computing the trial Hessian bin csh f cd scri user setenv ed2 hpsimain seten
31. NITROTOLUENE9 end enter EOF 4 SCF Calculations on Cubane Nitrobenzene and Trinitro toluene We show below the job files for three straightforward closed shell SCF calculations providing more examples of z matrix specification and reliance on the default options in such calculations In each case the direct access files will be deleted on job completion Closed shell SCF Job for C4F4 bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF title sk c4f4 3 21g Zmat angs x ci ri cei r2 2 90 ci ri 3 90 2 180 ci r2 4 90 3 180 x21 1 90 3 O f 2 r3 6 90 3 180 x41 1 90 3 O f4 r3 8 90 3 180 x 3 d 1 90 40 f 3 r3 10 90 4 180 KBL 1 90 40 f 5 r3 12 90 4 180 variables ri 1 2 r2 1 3 r3 1 313 end enter EOF Closed shell SCF Job for C HsNOx gt bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF title c6h5 no2 3 21g accuracy 20 7 noprint Zmat angstrom c 4 SCF CALCULATIONS ON CUBANE NITROBENZENE AND TRINITROTOLUENE10 n 1 rcn x 2 1 0 1 90 0 c 1 rcc1 2 t1 3 pl c 1 rcc1 2 t1 3 p1 c 4 rcc2 1 t2 2 p2 c 5 rcc2 1 t2 2 p2 c 7 rcc3 5 t3 1 p3 o 2 rnoi 1 t5 3 90 0 o 2 rnol 1 t5 3 90 0 h 4 rchi 1 t6 2 pd h 5 rchi 1 t6 2 pd h 6 rch2 4 t7 11 p6 h 7 rch2 5 t7 12 p6 h 8 rch3 7 t8 14 p7 variables rcn 1 49 rcc1 1 37 rcc2 1 43 rcc3 1 37 rnoi 1 21 rchi 1 084 rch2 1 084 rch3 1 084 ti 120 0 t2 120 0 t3 120 0 t5 120 0 t6 12
32. PHjg and the geometry optimisation of Be C5Hs o Determination of the transition state for the HCN HNC isomerisation reaction This example demonstrates usage of the three saddle point algorithms available the default trust region method plus the synchronous transit and Simons Jorgensen algorithms Location of the transition state for the HPSi HSiP isomerisation and subsequent force constant evaluation Specification of bond centred functions located at the midpoint of the C N bond in the HCN HNC transition state SCF geometry optimisation and analytic force constants of Ca H MP2 geometry optimisation and analytic force constants of CoH4 MP2 geometry optimisation and polarisability of C2H4 Direct MP2 calculation of CzHsN in a 6 31G basis CASSCF geometry optimisation of the XTA state of H20 CASSCF 2nd order CI calculations of the X X state of BeO MCSCF 2nd order CI calculations of the X X state of BeO Table CI calculation of the X A and 17A states of the ammonia cation NH cation ECP calculation on NiCCH with CASSCF and Direct CI calculations of the lowest triplet state wavefunction Table Cl calculations typical of those performed in the calculation of electronic spectra In this case we are studying the disposition of the lowest A and 1 A states of pyridine The sequence of calculations involve the determination of the lowest 10 states of each category performed in a DZ plus rydberg basis Full Cl calc
33. R KR MP2 Analytic Force Constants bin csh f cd scri user setenv ed2 c2h4main setenv ed3 c2h4dump scr1 wab GAMESS UK bin gamess lt lt EOF restart 16 MP2 POLARISABILITY FOR ETHYLENE title ethylene MP2 6 31g ground state vibrational frequencies freq 847 7 941 6 994 1 1091 6 1267 4 1414 5 freq 1525 2 1729 7 3241 3 3259 2 3336 6 3359 8 zmatrix angstrom cc ch 2 hcc ch 2 hcc 3 180 0 ch 1 hcc 3 0 0 2 ch 1 hcc 3 180 0 variables cc 1 40 ch 1 10 hcc 118 0 end basis 6 31g runtype hessian scftype mp2 enter EOF prppoaa M HR Ka 16 MP2 Polarisability for Ethylene 33 We consider below computing the molecular polarisability of C2H4 initially optimising the molecule at the MP2 level followed by the property calculation Note again the use of the XTOL directive in the optimisation job to ensure a higher degree of optimisation than that derived using the default XTOL MP2 Geometry Optimisation bin csh f cd scri user setenv ed2 c2h4main setenv ed3 c2h4dump scr1 wab GAMESS UK bin gamess lt lt EOF title ethylene 6 31g MP2 optimised total energy 78 3272309 zmatrix angstrom 1 cc 1 ch 2 hcc 1 ch 2 hcc 3 180 0 2 ch 1 hcc 3 0 0 2 ch 1 hcc 3 180 0 variables cc 1 40 ch 1 10 hcc 118 0 end basis 6 31g runtype optimize E BbB B a 17 DIRECT MP2 CALCULATION OF PYRIDINE scftype mp2 xtol 0 0001 enter EOF MP2 Polarisability 17 bin csh f
34. RIDINE59 22222221220 22222221211 100 100 vprint 100 0 01 maxcyc 10 enter EOF 23 Table CI Calculations of the Electronic Spectra of Pyri dine This example demonstrates the use of the Table Cl module in the calculation of the low lying states of Pyridine Specifically we are involved in determining the disposition of the first ten 1A and LA states using a common set of orbitals the XYA SCF MOs in a DZ plus Rydberg basis set of 91 functions Five job files are presented below 1 Start up closed shell SCF calculation for the XTA state Note the SUPER directive for compatibility with the subsequent CI calculation Note also the particular syntax for siting the DZ basis on H the third and fourth data fields are to provide an unscaled hydrogen basis since the default specification will scale the two components by 1 2 the more contracted and 1 15 the more diffuse component 1M 1R Table CI calculation of the XTA state 6M 1R Table Cl calculation of the XTA state 21M 10R Table Cl calculation of the ten lowest tA states 19M 10R Table CI calculation of the ten lowest Ag states 1 Closed shell SCF Job bin csh f cd scri user setenv ed2 pyred2 setenv ed3 pyred3 scr1 wab GAMESS UK bin gamess lt lt EOF title pyridine dz bond centred functions super off nosym zmat angstrom 1 0 ch4 c2n 1 1 1 1 5 1 0 5 5 1 1 c2n O O PH RN OM N N D 90 90 3 90 90 2 180 90 3 0
35. asis s mg 005004 5609 67 037083 841 969 171495 191 263 444597 53 2621 480060 16 6003 s mg 352170 2 97082 692921 1 00728 s mg 1 00000 113641 s mg 1 000000 044678 p mg 039884 50 9665 223321 11 4364 514536 3 21935 p mg 1 00000 0 914433 p mg 1 00000 0 16 d mg 1 00000 0 175 s na 003064 6902 67 022198 1059 04 095576 255 445 280448 77 3172 452587 26 8224 29313 10 0718 s na 1 000000 2 17902 s na 1 000000 689482 s na 1 0 040274 6 EXTENDED BASIS SET CALCULATIONS OF NA7MG p na 042422 38 9438 229433 8 71012 509774 2 42053 p na 1 00000 661896 p na 1 0 065 end maxcyc 40 vectors getq ed3 1 1 enter EOF Open shell RHF Job bin csh f setenv ed2 scr1 user namgmain setenv ed3 scr1 user namgdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF dumpfile ed3 500 restart open shell scf using closed shell vectors from above bypass integral evaluation title na7mgt 4s3p 4s3p1d triplet rhf energy 1330 766950 super off bypass mult 1 charge 1 zmat angs mg na iri na 1 r2 2 90 na 1 r2 2 90 3 72 na 1 r2 2 90 4 72 na 1 r2 2 90 5 72 na 1 r2 2 90 6 72 na 1 r1 3 90 2 180 variables ri 3 0286740 r2 3 194799 end basis s mg 005004 5609 67 037083 841 969 171495 191 263 444597 53 2621 480060 16 6003 s mg 352170 2 97082 692921 1 00728 s mg 7 ECP CALCULATIONS OF NA MGt 16 1 00000 113641 s mg 1 0
36. d enter EOF Open shell SCF Job bin csh f cd scri user setenv ed2 mainnips setenv ed3 dumpnips setenv ed0 scri wab GAMESS UK libs ecplib scr1 wab GAMESS UK bin gamess lt lt EOF restart new title ni cch2 3a1 rhf hay s ni bar s nm ecp s mult 3 super force bypass zmat angstrom ni c 1 nica x 2 1 0 1 90 0 c 2 cacb 3 90 0 1 180 0 x 4 1 0 2 90 0 3 0 0 h 4 hcb 2 hcc 5 90 0 h 4 hcb 2 hcc 5 90 0 variables nica 2 0895 cacb 1 3604 hcb 1 1047 hcc 122 646 end basis s h 0 032828 13 3615 0 231208 2 0133 0 817238 0 4538 sh 1 000000 0 1233 sc 1 000000 0 4962 sc 1 000000 0 1533 poc 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt 0 018534 18 1557 0 115442 3 9864 0 386206 1 1429 0 640089 0 3594 pc 1 000000 0 1146 s ni 0 4372528 0 6778 ni ni ni n n KH pO O OO p nd HA KH p end pseudo 1889453 0 1116 0000000 0 0387 0000000 0 0840 0000000 0 0240 0360414 42 7200 1938645 11 7600 4596238 3 8170 5599305 1 1690 0000000 0 2836 nonlocal nihay ni cc scftype gvb maxcyc 50 level 2 0 3 0 15 1 0 1 0 open 2 swap 11 12 14 15 end enter EOF 2 55 Eigenvector utilisation in the above job will drive off the default sections of the Dumpfile with the open shell SCF module using the closed shell SCF vectors from section 1 to initiate the SCF process and writing the SCF open shell orbitals to sections 4 and 5 th
37. e energy ordered SCF MOs These latter orbitals will be used below to instigate the CASSCF processing CASSCF Job bin csh f cd scri user setenv setenv setenv setenv setenv ed2 mainnips ed3 dumpnips ed0 scri wab GAMESS UK libs ecplib ed6 trannips ed4 lfornips scr1 wab GAMESS UK bin gamess lt lt EOF restart new title 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt ni cch2 3a1 c2v cas at opt 3 2 2 0 hay s ni bar s nm ecp s mult 3 super off nosym zmat angstrom ni c 1 nica x 21 0 1 90 0 c 2 cacb 3 90 0 1 180 0 x 41 0 2 90 0 3 0 0 h 4 hcb 2 hcc 5 90 0 h 4 hcb 2 hcc 5 90 0 variables nica 2 0895 cacb 1 3604 hcb 1 1047 hcc 122 646 end basis s h 0 032828 13 3615 0 231208 2 0133 0 817238 0 4538 sh 1 000000 0 1233 sc 1 000000 0 4962 sc 1 000000 0 1533 pc 0 018534 18 1557 0 115442 3 9864 0 386206 1 1429 0 640089 0 3594 pc 1 000000 0 1146 s ni 0 4372528 0 6778 1889453 0 1116 ni 0000000 0 0387 ni 0000000 0 0840 ni 0000000 0 0240 ni 0360414 42 7200 1938645 11 7600 4596238 3 8170 5599305 1 1690 ni 0000000 0 2836 end pseudo nonlocal nihay ni cc KH pO O OO p nd HA KH nn 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt scftype casscf config print fzc 1 to 7 doc 8 to 9 alp 10 to 11 uoc 12 to 14 end superci 1 to 12 newton 13 to 20 hessian 13 to 20 simul 15 to 20 vectors 5 swap 14 15 end enter EOF Di
38. e numbers for the active orbitals in the Cl are 1 31 for the ay MOs 32 43 for the bj MOs 44 61 for the b MOs and 62 68 for the a MOs The CONF data line specifying the reference configuration is based on the associated sequence numbers of these active orbitals bin csh f cd scri user setenv ed2 pyred2 setenv ed3 pyred3 setenv ftn031 pyrtran setenv table scr1 wab GAMESS UK libs TABLE scr1 wab GAMESS UK bin gamess lt lt EOF restart title pyridine dz bond centred functions super off nosym bypass scf Zmat angstrom 90 90 3 90 90 2 180 90 3 0 0 90 4 0 0 90 1 180 c2nz 3 180 c2n c2nz 3 0 0 c2c3 1 ccn 2 180 10 c2c3 1 ccn 2 180 9 c2h6 1 nch2 2 0 0 10 c2h6 1 nch2 2 0 0 11 c3h5 9 c2c3h 1 180 12 c3h5 10 c2c3h 1 180 bq 1 1 39 3 90 2 180 variables c4n 2 7845546 ch4 1 0823078 c2n 1 3372389 c2nz 120 641858 c2c3 1 3944571 ccn 122 662269 c2h6 1 0814291 c3h5 1 0809550 nch2 116 400433 c2c3h 120 158516 Ro on RB o M N XD H HK LG M N HP FF FAN 00 a Hk Kk AM Kk KB 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE62 end basis dz h 1 0 1 0 dz n dz c s bq 1 0 0 021 s bq 1 0 0 008 s bq 1 0 0 0025 p bq 1 0 0 017 p bq 1 0 0 009 d bq 1 0 0 015 d bq 1 0 0 008 end runtype ci mrdci adapt tran freeze discard 6040 1 to 61 to4 8060 38 to 45 23 to 28 select cntrl 22 spin singlet symmetry 1 conf 01234 5 32 33 44 45 46 62
39. etry optimisation of Be C5H5 2 using the direct SCF module bin csh f setenv ed3 scr1 user dscfdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF direct scf generate zmatrix sto3g basis title test2a energy 1550 28679356 charge 2 geometry distance angles torsions 2 9512196 1 0815728 1 1603816 1 6367703 2 1566895 3 5011251 2 9474874 1 7359097 1 3150929 4 1957289 0 3417469 0 0532604 0 3292201 1 4442971 2 9721287 3 3279629 5 1750163 4 8159917 6 8815215 5 4889849 7 5612331 7 4278090 7357642 5713092 8017770 0224823 3530583 9321304 7897779 7021385 1302965 6050313 1 5715523 3 9184431 3 1659952 6 0342521 4 4900093 9 4719556 9 3293820 1547624 9700376 5363478 8475562 4797763 6669663 6433853 7242063 4125382 9182102 5022051 8272799 9011224 1126500 1997957 8049798 9122805 4971112 7942026 1460386 0739323 3945431 1285958 7094915 1679189 8328410 6784964 9668945 7121829 8380024 7576698 5640081 9124352 8124121 1913356 6456571 1460285 5440252 5891096 3287565 5385361 8467927 5624978 4976155 4827273 0782554 1090391 8702785 4054688 1895255 1681491 0783133 6802213 9534701 0197182 8751357 8035825 8646838 3379417 4363625 5896385 6502323 4875662 7463198 6479587 1498644 2970693 0617741 0564767 3499893
40. gmain setenv ed3 scri user namgdump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF title na7mgt sto 3g closed shell scf energy 1314 828516 mult 1 super force charge 1 Zmat angs ng 5 STO 3G CALCULATIONS ON NA7MG na iri na 1 r2 2 90 na 1 r2 2 90 3 72 na 1 r2 2 90 4 72 na 1 r2 2 90 5 72 na 1 r2 2 90 6 72 na 1 r1 3 90 2 180 variables ri 3 0286740 r2 3 194799 end basis sto3g level 1 5 101 0 maxcyc 40 enter EOF Open shell RHF Job bin csh f setenv ed2 scr1 user namgmain setenv ed3 scr1 user namgdump setenv ed7 scr1 user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title na7mgt sto 3g triplet scf energy 1314 900851 super force bypass mult 3 charge 1 Zmat angs mg na iri na i r2 2 90 na 1 r2 2 90 3 72 na 1 r2 2 90 4 72 na 1 r2 2 90 5 72 na 1 r2 2 90 6 72 na 1 r1 3 90 2 180 variables ri 3 0286740 r2 3 194799 end basis sto3g maxcyc 40 enter EOF UHF Job bin csh f setenv ed2 scr1 user namgmain setenv ed3 scr1 user namgdump setenv ed7 scr1 user ed7 6 EXTENDED BASIS SET CALCULATIONS OF NA7MG 13 scr1 wab GAMESS UK bin gamess lt lt EOF restart super force title na7mgt sto 3g triplet uhf energy 1314 901919 mult 3 charge 1 bypass Zmat angs mg na 1 ri na 1 r2 2 90 na 1 r2 2 90 3 72 na 1 r2 2 90 4 72 na 1 r2 2 90 5 72 na 1 r2 2 90 6 72 na 1
41. h lt gt hpsi saddle point force constants zmat angs p 13 USE OF BOND CENTRED FUNCTIONS 30 x 11 0 si 1 psi 2 90 0 h 1 ph 2 90 0 3 hpsi variables psi 2 053 ph 2 44 hpsi 51 02 end runtype hessian vectors 2 lock enter 2 EOF 13 Use of Bond centred Functions In this example we demonstrate the use of bond centred functions s p cited at the mid point of the C N bond in the HCN HNC transition state bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF title hcn hnc basis dunning 9s5p 3s2p bond s p p h zmat angstrom c bq 1 rcn2 x 2 1 0 1 90 0 n 2 rcn2 3 90 0 1 180 0 x 11 0 2 90 0 3 0 0 h 1 rch 5 90 0 4 phi variables ren2 0 5991 rch 1 2128 phi 71 2 end basis sv h h 0 0 7 bq 0 1 0 bq 0 0 7 sv c KA O HA Ka tO sv n end enter EOF 14 SCF ANALYTIC FORCE CONSTANTS FOR ETHYLENE 31 14 SCF Analytic Force Constants for Ethylene We consider below computing the analytic force constants for CjHg initially optimising the molecule at the SCF level followed by the force constant calculation Note the use of the XTOL directive in the optimisation job to ensure a higher degree of optimisation than that derived using the default XTOL Geometry Optimisation bin csh f cd scri user setenv ed2 c2h4main setenv ed3 c2h4dump scr1 wab GAMESS UK bin gamess lt lt EOF title ethylene 6 31ig geometry optimisation zmatrix angstrom cc ch 2 hcc
42. h2odump setenv ed4 h2oed4 setenv ed6 h2o0ed6 setenv ed9 h2o0ed9 setenv ed10 h2oed10 setenv ed11 h2oed11 19 CASSCF 2ND ORDER CI CALCULATIONS ON BEO 38 scr1 wab GAMESS UK bin gamess lt lt EOF restart new title water geometry optimisation at casscf level Zmat angstrom o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end runtype optimise scftype casscf config bypass doc 1 to 5 uoc 6 7 end superci 1 to 5 newton 6 to 20 hessian 6 to 20 simul 6 to 20 enter EOF Again the default CASSCF vector and Cl coefficient sections from the initial energy calculation will be used by default in the optimisation job 19 CASSCF 2nd order CI Calculations on BeO First we consider below a CASSCF calculation on the X 5 state of BeO characterised by the configuration 10220230240 17 1 The initial closed shell SCF using a DZP basis was conducted with the following job bin csh f cd scri user setenv ed2 beomain setenv ed3 beodump scr1 wab GAMESS UK bin gamess lt lt EOF super off nosym title beo dzp zmat angstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp enter EOF An examination of the closed shell SCF output reveals the following symmetry adapted basis information 19 CASSCF 2ND ORDER CI CALCULATIONS ON BEO 39 IRREP NO OF SYMMETRY ADAPTED BASIS FUNCTIONS 1 1 20 45769692 2 0000000 2 1 4 72825831 2 0000000 3 1 1 15792230 2 0000000 4 1 0 46629250 2 0000000 5 3
43. ion might be restarted as follows bin csh f cd scri user setenv ed2 beomain setenv ed3 beodump setenv ed4 beoed4 setenv ed6 beoed6 setenv ed13 beoed13 scr1 wab GAMESS UK bin gamess lt lt EOF restart scf super off nosym title beo dzp zmat angstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp scftype mcscf thresh 4 mcscf orbital 3cor1 doci doc3 doc2 uoci uoc2 uoc3 end dont sort enter EOF 21 TABLE CI CALCULATIONS ON THE AMMONIA CATION 44 Now let us consider performing the MCSCF calculation under RUNTYPE CI specification where having performed the 6 electrons in 6 orbital CASSCF we use the natural orbitals in carrying out a second order CI using the Direct Cl module Specifically we aim to use a reference space in the Cl consisting of all CSFs which can be generated by distributing 6 electrons in 6 MOs i e the CASSCF space This may be achieved in a single run through the following job specification bin csh f cd scri user setenv ed2 beomain setenv ed3 beodump scr1 wab GAMESS UK bin gamess lt lt EOF restart new super off nosym title beo dzp mcscf 2nd order ci 6 electrons in 6 mos zmat angstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp runtype ci active 4 to 31 end core 1 to 3 end scftype mcscf thresh 4 mcscf orbital 3cor1 doci doc3 doc2 uoci uoc2 uoc3 end direct 6 6 22 conf 222000 refgen 141516 242526 343536 refgen 141516 242526 3
44. must be retained between separate runs of the program We assume below that the TABLE data base is available from the previous job thus omitting the TABLE step e Note the use of the BYPASS keyword on the various steps comprising the Table Cl proce dure Such a keyword is required on both those steps already completed and those steps to be handled in a subsequent run of the program Table CI Data I Symmetry Adaption and Integral Transformation bin csh f cd scri user 21 TABLE CI CALCULATIONS ON THE AMMONIA CATION setenv ed2 nh3main setenv ed3 nh3dump setenv table TABLE setenv ftn031 nh3tran scr1 wab GAMESS UK bin gamess lt lt EOF restart title nh3 3 21g mrdci energies ir 55 6393336 2r 55 4116210 bypass scf charge 1 mult 2 zmat angstrom n h 1 roh h 1 roh 2 theta h 1 roh 2 theta 3 theta 1 variables roh 1 03 hessian 0 7 theta 104 2 hessian 0 2 end runtype ci mrdci adapt tran select bypass symmetry 1 spin 2 cntrl 9 conf 14123 12 13124 12 roots 2 thresh 5 5 ci bypass diag bypass extrap 3 dthr 0 0001 0 0001 enter EOF Table CI Job II Configuration Selection bin csh f cd scri user setenv ed2 nh3main setenv ed3 nh3dump setenv table TABLE setenv ftn031 nh3tran setenv ftn033 nh3sel01 setenv ftn034 nh3sel02 scr1 wab GAMESS UK bin gamess lt lt EOF restart ci title nh3 3 21g mrdci energies 1r 55 6393336 2r 55 4116210 bypass scf 21 TABLE
45. n on the XTA state of H20 using a full valence criterion in specifying the active space so that the formally vacant SCF virtual MOs 4a and 2b2 are permitted variable occupancy This example utilises the vectors from the closed shell SCF calculation of Example 1 bin csh f cd scri user setenv ed2 h2omain setenv ed3 h2odump scr1 wab GAMESS UK bin gamess lt lt EOF restart new title water at casscf level 3 21g basis set zmat angstrom 0 h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end scftype casscf config print 18 CASSCF GEOMETRY OPTIMISATIONS 36 doc 1 to 5 uoc 6 7 end superci 1 to 8 newton 9 to 20 hessian 9 to 20 simul 9 to 20 enter EOF The following points should be noted e It is not possible to use BYPASS in the above given the data for the SCF job of Example 1 This would have resulted in generation of a P supermatrix which is not usable in a CASSCF run see Part 2 Table 1 e CASSCF calculations require two scratch FORTRAN data sets FTO1 and FT02 In the above we have assumed that the CASSCF calculation completes in the time allocated with the associated direct access files allocated in default scratch status The following job is typical of that required if restarts of the CASSCF step are envisaged bin csh f cd scri user setenv edi h2oedi setenv ed2 h2omain setenv ed3 h2odump setenv ed4 h2oed4 setenv ed6 h2o0ed6 setenv ed9 h2o0ed9 setenv ed10 h2oed10 scr1 wab
46. ngstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp scftype mcscf thresh 4 mcscf orbital 3cor1 doci doc3 doc2 uoci uoc2 uoc3 end enter EOF The following points should be noted e The MCSCF Natural orbitals will be routed to section 10 of the Dumpfile on convergence the default section used for NO output e Integral evaluation has been bypassed as the initial SCF job specified the necessary integral format for the subsequent SCF 20 MCSCF 2ND ORDER CI CALCULATIONS ON BEO 43 In the above we have assumed that the MCSCF calculation completes in the time allocated with the associated direct access files allocated in default scratch status The following job is typical of that required if restarts of the MCSCF step are envisaged bin csh f cd scri user setenv ed2 beomain setenv ed3 beodump setenv ed4 beoed4 setenv ed6 beoed6 setenv ed13 beoed13 scr1 wab GAMESS UK bin gamess lt lt EOF restart new super off nosym title beo dzp bypass zmat angstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp scftype mcscf thresh 4 mcscf orbital 3cor1 doci doc3 doc2 uoci uoc2 uoc3 end enter EOF Note that the symmetry adapted list of integrals are sorted at the outset of processing to ED13 and this file should be preserved across restart jobs given that the DONT SORT data line is presented to the restart job Assuming the above job terminated prior to convergence the calculat
47. quence of job files for performing various calculations based on the H20 example given above 1 This run utilises the vectors made above Both bond length and bond angle are to be optimised bin csh f setenv ed2 scri user h2omain setenv ed3 scri user h2odump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart new title water optimisation at scf level 3 21g basis set zmat angstrom o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 3 SEQUENCE OF CALCULATIONS ON WATER T end runtype optimise enter EOF 2 This example would be used to complete if necessary the run started in 1 bin csh f setenv ed2 scri user h2omain setenv ed3 scri user h2odump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart optimise title water optimisation at scf level 3 21g basis set zmat angstrom o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end runtype optimise enter EOF 3 This example performs an open shell RHF calculation at the optimised geometry from 2 note the RESTART usage bin csh f setenv ed2 scri user h2omain setenv ed3 scri user h2odump setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF restart title h20 doublet bi state ground state geometry charge 1 mult 2 zmat angs o h 1 oh h 1 oh 2 hoh variables oh 0 956 hoh 104 5 end enter EOF 4 The valence shell scf mos are
48. rect CI Job bin csh f cd scri user setenv ed2 mainnips setenv ed3 dumpnips setenv ed0 scri wab GAMESS UK libs ecplib setenv ed5 cinips setenv ed6 trannips scr1 wab GAMESS UK bin gamess lt lt EOF restart new title ni cch2 3a1 mrsdci 3 2 2 0 hay s ni bar s nm ecp s mult 3 super off nosym bypass scf zmat angstrom ni nica 1 0 1 90 0 cacb 3 90 0 1 180 0 1 0 2 90 0 3 0 0 hcb 2 hcc 5 90 0 4 hcb 2 hcc 5 90 0 variables nica 2 0895 cacb 1 3604 hcb 1 1047 hcc 122 646 end BF FH ka KA BAHA N N FH basis sh 0 032828 13 3615 0 231208 2 0133 0 817238 0 4538 sh 1 000000 0 1233 22 ECP CASSCF AND DIRECT CI CALCULATIONS ON NICCH gt sc 1 000000 0 4962 sc 1 000000 0 1533 pc 0 018534 18 1557 0 115442 3 9864 0 386206 1 1429 0 640089 0 3594 pc 1 000000 0 1146 s ni 0 4372528 0 6778 1889453 0 1116 ni 0000000 0 0387 ni 0000000 0 0840 ni 0000000 0 0240 ni 0360414 42 7200 1938645 11 7600 4596238 3 8170 5599305 1 1690 ni 0000000 0 2836 end pseudo nonlocal nihay ni cc runtype ci core KH pO O OO p ed KIKE He end active 1 to 40 end scftype casscf config print fzc 1 to 7 doc 8 to 9 alp 10 to 11 uoc 12 to 14 end superci 1 to 12 newton 13 to 20 hessian 13 to 20 simul 15 to 20 direct 20 14 26 spin triplet conf 222222222110000 222222221200010 222222221110100 22222222011020 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PY
49. riables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end enter In this case the job might equally well be submitted directly with the following command scr1 wab GAMESS UK bin gamess lt datain gt amp myjob log amp e Now consider the changes to myjob required to route the direct access files from the user s own directory to the disk partition scrl in particular to the directory scr1 user Assuming this directory has been created by the user thus 2 SINGLE POINT SCF CALCULATION 5 mkdir scri user this may be achieved either by using the cd command at the outset of myjob so as execute the job in the required directory thus cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF titlelh20 3 21g scf zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end enter EOF in which case the direct access files will be deleted on job termination or through the setenv command thus bin csh f setenv ed2 scri user ed2 setenv ed3 scri user ed3 setenv ed7 scri user ed7 scr1 wab GAMESS UK bin gamess lt lt EOF titlelh20 3 21g scf zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end enter EOF In this case the files created in scr1 user will not be deleted on job termination This provides of course the mechanism for keeping files between separate runs of the program with the file names assigned though the setenv values Thus to
50. sition State Location Transition state calculation for the HCN HNC isomerisation process The first job uses the default trust region algorithm the second the synchronous transit algorithm and the third the Jorgensen Simons algorithm bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF title hcn 4 31G saddle point zmat angs c x 11 0 n 1 cn 2 90 0 h 1 ch 2 90 0 3 hcn variables cn 1 1484 type 3 ch 1 5960 type 3 hcn 90 0 type 3 end basis 4 31g runtype saddle enter EOF Saddle point for HCN using the synchronous transit algorithm note the definition of the minima required on the variable definition lines and the LSEARCH directive The default saddle point method does nor require minima definition see above bin csh f cd scr1 user scr1 wab GAMESS UK bin gamess lt lt EOF title hcn saddle point synchronous transit zmat angs c x 11 0 n 1 cn 2 90 0 h 1 ch 2 90 0 3 hcn variables cn 1 1484 minima 1 1371 1 1597 ch 1 5960 minima 1 0502 2 1429 hcn 90 0 minima 180 0 0 0 end 12 HSIP HPSI TRANSITION STATE LOCATION 26 basis 4 31g runtype saddle lsearch 0 4 enter EOF Saddle point for HCN using the Jorgensen Simons algorithm bin csh f cd scri user scr1 wab GAMESS UK bin gamess lt lt EOF title hcn hnc ts search jorgensen simons zmat angs c x 11 0 n 1 cn 2 90 0 h 1 ch 2 90 0 3 hcn variables cn 1 1484 type 3 ch 1 5960 type 3 hcn 90 0 type 3
51. ted basis information IRREP NO OF SYMMETRY ADAPTED BASIS FUNCTIONS 1 1 20 45769692 2 0000000 2 1 4 72825831 2 0000000 3 1 1 15792230 2 0000000 4 1 0 46629250 2 0000000 5 3 0 39257378 2 0000000 6 2 0 39257378 2 0000000 7 1 0 05704423 0 0000000 8 2 0 09936415 0 0000000 9 3 0 09936415 0 0000000 10 1 0 15573442 0 0000000 11 1 0 25156032 0 0000000 12 3 0 29518660 0 0000000 20 MCSCF 2ND ORDER CI CALCULATIONS ON BEO 13 2 0 29518660 0 14 1 0 57290305 0 15 4 0 66957865 0 16 1 0 66957865 0 17 2 0 84348942 0 18 3 0 84348942 0 19 1 1 01733643 0 20 2 1 05237116 0 21 3 1 05237116 0 22 1 1 24301610 0 23 1 1 45883277 0 24 1 1 80402496 0 25 4 2 36534068 0 26 1 2 36534068 0 27 2 2 62307878 0 28 3 2 62307878 0 29 1 3 16009549 0 30 1 4 37857805 0 31 1 45 42979631 0 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 42 We wish to perform a CASSCF calculation in which the inner shell and O2s orbitals the 10 30 remain doubly occupied with the active space including the formally vacant SCF virtual MOs the 5o and 27 This example utilises the vectors from the closed shell SCF calculation bin csh f cd scri user setenv ed2 beomain setenv ed3 beodump scr1 wab GAMESS UK bin gamess lt lt EOF restart new super off nosym title beo dzp bypass zmat a
52. ughout Note that it is a trivial matter to convert data from under control of the dd command Thus if upper case data input resides in the file upper the following command dd if upper of lower conv lcase will perform the necessary conversion to leave the required lower case input in the file lower Note that the executable for GAMESS UK is assumed to reside in the file scr1 wab GAMESS UK gamess The following examples will be considered 1 Single point SCF calculation of water using the default basis 2 Sequence of calculations on water including starting and restarting geometry optimisation of the neutral molecule an RHF calculation on the 7B cation boys localisation and 2 pair GVB calculation of the neutral molecule 3 Closed shell SCF calculations on C4F4 CsH5NO3and CgH2 NO3 3CHs 4 STO 3G calculation of Na7Mg together with an RHF and UHF calculation of the triplet state 5 Extended basis set calculation on Na7Mgt with SCF calculation of the singlet state preceding an RHF calculation of the triplet state 1 INTRODUCTION 3 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ECP calculation on Na7Mgtin a double zeta valence basis with SCF calculation of the singlet state preceding an RHF calculation of the triplet state 2 pair GVB calculation on 1 imino 2 4 pentadiene CH2 CH 4 NH7 Graphical analysis of the XTA state of Ni CO 4 STO 3G direct SCF calculations on C OjgN
53. ulations of the XTA state of H20 2 SINGLE POINT SCF CALCULATION 4 2 Single Point SCF Calculation Let us consider a simple SCF run for H20 in a 3 21G basis and describe the various mechanisms available for running the job in terms of the citing of direct access files involved and the routing of job output Note at the outset that GAMESS UK reads from stdin and writes to stdout so that both input and output may be controlled by the standard means e Let us assume that the following lines reside in the file myjob scr1 wab GAMESS UK bin gamess lt lt EOF titlelh20 3 21g scf zmat angstrom o h 1 roh h 1 roh 2 theta variables roh 0 956 hess 0 7 theta 104 5 hess 0 2 end enter EOF and are submitted to the background through the command myjob gt amp myjob log amp This will result in the files used by GAMESS UK in this case ED2 ED3 and ED7 being created in the user s own directory for the duration of the run and deleted on job ter mination The output from the job and any system diagnostics will be routed to the file myjob log Note that the user may assign execute attributes to the file myjob using the chmod command thus chmod 700 myjob e Note that it is also possible to read the data from a separate file so that myjob would comprise the single line scr1 wab GAMESS UK bin gamess lt datain where datain contains just the GAMESS UK data thus titlelh20 3 21g scf zmat angstrom o h 1 roh h 1 roh 2 theta va
54. v ed3 hpsidump scr1 wab GAMESS UK bin gamess lt lt EOF title psih trial hessian SCF zmat ang P x 11 0 si 1 psi 2 90 0 h 1 ph 2 90 0 3 hpsi variables psi 2 053 ph 2 44 hpsi 51 02 end 12 HSIP HPSI TRANSITION STATE LOCATION 29 runtype hessian enter EOF In the subsequent location of the transition state note the use of the FCM keyword on the RUNTYPE data line to restore the trial hessian computed in the first job and the use of XTOL to provide more stringent optimisation criteria in view of the subsequent force constant evalu ation LOCK is used to retain the initial SCF configuration throughout the search Transition State Job bin csh f cd scri user setenv ed2 hpsimain setenv ed3 hpsidump scr1 wab GAMESS UK bin gamess lt lt EOF restart new title psih lt gt hpsi saddle point location using trial hessian zmat angs D x 11 0 si 1 psi 2 90 0 h 1 ph 2 90 0 3 hpsi variables psi 2 053 ph 2 44 hpsi 51 02 end runtype saddle fcm xtol 0 0005 vectors 1 lock enter 2 EOF Finally we present the job for analytic computation of the force constants at the optimised geometry under control of runtype hessian Note the use of restart in requesting usage of the geometry from the Dumpfile rather than from the data file Analytic Force Constant Job bin csh f cd scri user setenv ed2 hpsimain setenv ed3 hpsidump scr1 wab GAMESS UK bin gamess lt lt EOF restart title psi
55. wing job specification bin csh f cd scri user setenv edi beoedi setenv ed2 beomain setenv ed3 beodump setenv ed4 beoed4 setenv ed5 beoed5 setenv ed6 beoed6 setenv ed9 beoed9 setenv ed10 beoed10 scr1 wab GAMESS UK bin gamess lt lt EOF restart new title beo dzp casscftci 6 electrons in 6 mos bypass zmat angstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp runtype ci active 4 to 31 end core 1 to 3 end scftype casscf thresh 4 config print fzc 1 to 3 doc 4 to 6 uoc 7 to 9 end superci 1 to 8 newton 9 to 20 hessian 9 to 20 simul 9 to 20 direct 6 6 22 conf 222000 refgen 141516 242526 343536 refgen 141516 242526 343536 refgen 141516 242526 343536 refgen 141516 242526 343536 refgen 141516 242526 343536 refgen 141516 242526 343536 enter EOF 20 MCSCF 2ND ORDER CI CALCULATIONS ON BEO Al 20 MCSCF 2nd order CI Calculations on BeO First we consider below a MCSCF calculation on the X X state of BeO characterised by the configuration 1072073074071 14 2 The initial closed shell SCF using a DZP basis was conducted with the following job bin csh f cd scri user setenv ed2 beomain setenv ed3 beodump scr1 wab GAMESS UK bin gamess lt lt EOF super off nosym title beo dzp zmat angstrom be o 1 beo variables beo 1 300 hessian 0 7 end basis dzp enter EOF An examination of the closed shell SCF output reveals the following symmetry adap
56. ymmetry 1 conf 01234 5 32 33 44 45 46 62 O 1 2 3 4 5 32 38 44 45 46 62 O 1 2 3 4 5 32 33 44 45 46 65 4 32 33 38 39 12345 44 45 46 62 4 32 39 62 65 12345 33 44 45 46 4 33 38 62 65 12345 32 44 45 46 roots 1 1 thresh 30 10 ci diag title pyridine 6mir ground state dz 3s2p2d rydberg basis extrap 3 natorb civec 1 putq aos 2 enter EOF 4 21M 10R Table CI Job for the A States bin csh f cd scri user setenv ed2 pyred2 setenv ed3 pyred3 setenv ftn031 pyrtran setenv table scr1 wab GAMESS UK libs TABLE scr1 wab GAMESS UK bin gamess lt lt EOF restart title pyridine dztrydberg basis super off nosym bypass scf zmat angstrom 90 90 3 90 c4n 3 90 2 180 1 0 1 90 3 0 0 1 0 1 90 4 0 0 ch4 6 90 1 180 PRR O O o N N DH eH OM M HM D QH H Q RH RK 23 TABLE CI CALCULATIONS OF THE ELECTRONIC SPECTRA OF PYRIDINE65 1 c2n 2 c2nz 3 180 1 c2n 2 c2nz 3 0 0 9 c2c3 1 ccn 2 180 10 c2c3 1 ccn 2 180 9 c2h6 1 nch2 2 0 0 10 c2h6 1 nch2 2 0 0 11 c3h5 9 c2c3h 1 180 12 c3h5 10 c2c3h 1 180 bq 1 1 39 3 90 2 180 variables c4n 2 7845546 ch4 1 0823078 c2n 1 3372389 c2nz 120 641858 c2c3 1 3944571 ccn 122 662269 c2h6 1 0814291 c3h5 1 0809550 nch2 116 400433 c2c3h 120 158516 end PEER 0000 basis dz h 1 0 1 0 dz n dz c s bq 1 0 0 021 s bq 1 0 0 008 s bq 1 0 0 0025 p bq 1 0 0 017 p bq 1 0 0 009 d bq 1 0 0 015 d bq 1 0 0 008 end runtype ci mrdci
Download Pdf Manuals
Related Search
Related Contents
Asahi Pentax PZ-20 Instruction Manual LCD Monitor User Manual E719SDA/E719SD Ilford FP4 PLUS ダウンロード(PDF 0.92MB) 電気のプロが、節電対策をご提案。 perfectION Guidebook Calcium LG Electronics LH-E9674 Stereo System User Manual 取扱説明書 1070-150 Rev. B5 PQ Copyright © All rights reserved.
Failed to retrieve file