Home

COwZ User's Guide - Queen's University Belfast

image

Contents

1. 3 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 gt amp TD TEST DATA COMPONENT LOG LOG inter extrapolation 15 1 Flag Fva or Fma Rhol NE 1 or 2 kg m3 34 Ag Data Pairs Pressure and Flowrate maximum 6 Lines minimum 3 Pairs maximum 18 Pairs s Pa m3 s Pa m3 s Pa m3 3 Filter 1 l 7 Filter 2 Filter 3 Filter 4 Filter 5 amp JE HORIZONTAL JET 58 II Cd Alfa zmo DO xl Tun dTO AO gt kg s m m m s K m2 JEje 1 1 1 0 0 45 0 00832 1 50 1 O JEje 2 1 05 250852 1025 0 00832 02 0 45 JEje 3 1 0 250852 0 5 0 00832 0 2 0 9 JEje 4 1 0 250852 05 0 00832 0 2 20 amp WL THERMAL BOUNDARY LAYER 59 Height Depth Width Cd Tw izb m m m IE K m amp WP THERMAL PLUME 60 Height Depth Width Cd Beta Hsf Z0 zl m m m IE w Im m amp HF HORIZONTAL FLOW 61 Height Width Cd m m HFhf 1 Ox 5 1 0 0 83 xHFhf 2 0 55 LA 0 83 Hrhf 3 0 55 1 0 0 83 HFhf 4 0 5 Ted 0 83 Hrhf 5 05 5 T 0 83 HFhf 6 Q5 Ll 0 83 35 83 83 83 83 83 83 83 83 93 8
2. ti p tg td tg 09 E 08 E 09 E 10 E 10 E 09 E 09 E 10 E 09 E 08 E 08 1005 3777 6871 6033 E 10 E 09 E 09 E 08 h 4 3 4 4 5 4 4 5 6 MUR NOI E Bo W 272E 0 702E 0 941E 0 906E 0 149E 0 944E 0 237E 0 701E 0 758E 0 0 E 00 0 E 00 0 E 00 0 E 00 0 E 00 686E 00 0 E 00 0 E 00 0 E 00 617E 00 161E 00 N N 5EEE ND 00 00 00 00 00 00 00 00 00 01 01 01 01 01 00 01 01 00 00 00 52 KE 21 hf 22 hf 23 hf 24 hf 25 hf 26 hf 27 hf 28 hf 29 hf 30 hf 31 hf 32 hf 33 hf 34 hf 35 hf 36 hf 37 hf 38 hf 39 hf 40 hf 41 hf 42 hf 43 hf 44 hf 45 hf 46 hf 47 hf 48 h 49 hf 50 hf 51 hf 52 hf 53 hf 54 hf 55 hf 56 hf 57 hf 58 RE 59 hf_60 hf_61 hf_62 hf_63 hf_64 hf_65 hf_66 hf_67 hf_68 hf_69 hf_70 hf_71 hf_72 hf_73 hf 74 hf 75 hf 76 hf 77 hf 78 hf 79 hf 80 hf 81 hf 82 hf 83 hf 84 hf 85 hf 86 vf 1 vf 2 vf 3 vi 4 vf 5 vf 6 vf 7 vf 8 vf 9 vf 10 vf 11 I ng Hj ng Hj taj ng onm mmm md kf foj kaj Voj kaj nj of Gr foj mm voj ofr voj ofr Gr Frj fr Tp fT koj foj f fI ofr kaj fr kmj fT fp tj f of Ng fr Grp m tj kaj foj np foj ong HF hf 21 hf 22 hf 23 hf 24 hf 25 hf 26 hf 27 hf 28 hf 29 hf 30 hf 31 hf 32 hf 33 hf 34 hf 35 hf 36 hf 37 hf 38 hf 39 hf 40 hf 41 hf 42 hf 43 hf 44 hf 45 hf 46 hf 47 hf 48 hf 49 hf 50 hf 51 hf 52 hf 53 hf 54 hf
3. For mean values replace S with T PZ S zone 40 zone 39 zone 38 zone 37 zone 36 zone 35 zone 34 zone 33 zone 32 zone 31 zone 30 zone 29 zone 28 zone 27 zone 26 zone 25 zone 24 zone 23 zone 22 zone 21 zone 20 zone 19 zone 18 zone 17 zone 16 zone 15 zone 14 zone 13 zone 12 zone 11 zone 10 zone 9 zone 8 zone 7 zone 6 zone 5 zone 4 zone 3 zone 2 zone 1 PZ T zone 40 zone 39 zone 38 zone 37 zone 36 zone 35 zone 34 zone 33 zone 32 zone 31 zone 30 zone 29 zone 28 zone 27 zone 26 zone 25 zone 24 zone 23 zone 22 zone 21 zone 20 zone 19 zone 18 zone 17 zone 16 zone 15 zone 14 zone 13 zone 12 zone 11 zone 10 zone 9 zone 8 zone 7 zone 6 zone 5 zone 4 zone 3 zone 2 zone 1 TZ S zone 40 zone 39 zone 38 zone 37 zone 36 zone 35 zone 34 zone 33 zone 32 zone 31 zone 30 zone 29 zone 28 zone 27 zone 26 zone 25 zone 24 TZ T zone 40 zone 39 zone 38 zone 37 zone 36 zone 35 zone 34 TZ Tzone 33 zone 32 zone 31 zone 30 zone 29 zone 28 zone 27 zone 26 zone 25 TZ Tzone 24 TZ TZ T T zone 23 zone 22 zone 21 zone 20 zone 19 zone 18 zone 17 zone 16 zone 15 zone 14 zone 13 zone 12 zone 11 zone 10 zone 9 zone 8 zone 7 zone 6 zone 5 zone 4 zone 3 zone 2 zone 1 zone 23 zone 22 zone 21 zone 20 zone 19 zone 18 zone 17 zone 16 zone 15 zone 14 zone 13 zone 12 zone 11 zone 10 zone 9 zone 8 zone 7 zone 6 zone 5 zone 4 zone 3 zone 2 zone 1 zone 33 zone 32 zone 31 zone 30 zone 29 zone 28 zone 27 zone 26 zone 25 zone 24 zone 23 zone
4. 01 01 00 00 00 00 00 00 01 01 01 00 00 00 54 zone 24 0 0 0 0 0 zone 25 0 0 0 0 0 zone 26 0 0 0 0 0 zone 27 0 0 0 0 0 zone 28 0 0 0 0 0 zone 29 0 0 0 0 0 zone 30 0 0 0 0 0 zone 31 2 943E 06 00 0 0 0 zone 32 0 0 0 0 0 zone 33 0 0 0 0 0 zone 34 0 0 0 0 0 zone 35 0 0 0 0 0 zone 36 0 0 0 0 0 zone 37 0 0 0 0 0 zone 38 0 0 0 0 0 zone 39 0 0 0 0 0 zone 40 0 0 0 0 0 zone 41 00 0 0 0 0 zone 42 0 0 0 0 0 zone 43 0 0 0 0 0 zone 44 0 0 0 0 0 zone 45 0 0 0 0 0 zone 46 0 0 0 0 0 zone 47 0 0 0 0 0 zone 48 0 0 0 0 0 zone 49 0 0 0 0 0 zone 50 0 0 0 0 0 zone 51 0 0 0 0 0 zone 52 0 0 0 0 0 zone 53 0 0 0 0 0 zone 54 0 0 0 0 0 zone 55 0 0 0 0 0 zone 56 0 0 0 0 0 zone 57 0 0 0 0 0 zone 58 0 0 0 0 0 zone 59 0 0 0 0 0 zone 60 0 0 0 0 0 Cave 0 00000000 kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk RARA A RA k k HA nput file cowz cif Model name 0 At time 2002junl2 00 00 00 Wednesday interval 0 seconds The maximum allowed see CIF amp PR CONTrol is 10000 NO poltrans ERRORS REPORTED 0 iterations with Solver 5 Zone ID pressure Temperature totalflow imbalance Pa C kg h kg h zone 1 23 688 9 586 37 98 3 961E 10 zone 2 23 688 9 579 34 64 3 364E 10 zone 3 23 688 9 567 36 76 1 507E 10 zone 4 23 687 9 603 31 09 2 117E 09 zone 5 23 688 9 540 29 09 2 504
5. 041 s416 301 353 326 50 898 634 007 313 955 ITI 321 143 885 623 ND w NN NN NN NN NN N NN NN N N NN N N NN N DN DN N to 37 57 33495 35 86 26 33 38 31 98 41 59 42 54 20 58 40 33 13579 SST 32 95 48 68 40 52 8 809 5 339 18 56 29 84 13 76 9 951 34 47 90 56 8 926 5 927 als 11 44 55 62 2 87 49 107 1 150 3 13213 120 9 83 84 44 46 61 48 81 52 106 40 02 59 92 85 62 96 71 173 1 146 3 137 2 88 32 40 59 62 82 84 97 85 name typ name C zone 2 zone 3 zone 4 zone 6 zone 7 zone 8 zone 10 zone 11 zone 12 zone 14 zone 15 zone 16 zone 18 zone 19 zone 20 zone 22 zone 23 zone 24 zone 26 zone 27 20 20 20 20 9 522 389 6 412 497 2 742 1 438 53 293 1 088 SECTI 5 91 4 073 816 4 804 9 965 31 316 3 888 5 084 8 013 9 737 7 756 6 949 4 005 3 941E 3 691 1 554 23 992 1 849 8 817 2 485 Saw 5 74 4 706 2 87 2 498 2 243 8 402 1 0113 1 109 1 492 8 786 5 086 1 883 zT l172 7 107 0 0 0 00 0 00 0 00 3 196 SI 321 6 019 7 682 kg 36E 0 8 36E 0 1 3E 0 16E 0 7 62E 0 95E 0 35E 0 1 99E 0 5 01E 0 E 11 E 09 E 10 E 09 E 10 E 09 E 09 E 09 E 09 E 10 E 09 E 08 E 10 E 10 E 09 E 10 E 10 E 11 E 10 E 09 E E EH I oo DOO OX 2d H o ti td tg td tg td ESPRESO CI o O O Les kap LO LO I I e
6. 10 This resulted in the revised structure for COwZ shown in Figure 7 In more detail and based on COMIS the sequence of steps involved when executing COwZ is shown in Figure 8 The more detailed description of each step and new aspects for COwZ are described in Zhengen s PhD thesis Ren 2002 Time Management System Figure 8 Execution steps of COwZ 3 2 How to get started Following the modular structure of COMIS most subroutines of COMIS have been modified but most of the names of routine are not changed and some subroutines have been added for the new features If you are working with COMIS 3 0 you only need copy the modified and new subroutines to replace the source code of COMIS The COwZ distribution CD contains all the source code COwZ with the existing input file cowz cif has been successfully compiled using Digital Visual Fortran version 5 0 and version 6 0 For this operating system the system reguirements are e Pentium Pentium Pro or Pentium II processor based computer e Microsoft Windows NT 4 0 or Windows 95 serial version only e 16 MB of RAM 32 MB preferred e 10 MB of available hard disk space e CD ROM drive To use COwZ under Digital Visual Fortran one must obtain the COwZ source code and recompile the programs for this system It includes three steps 1 to set active project under menu Project click Set Active project and name the project for example subzone and then click Add Files to Pr
7. DS DF Fl F2 F3 F4 WI ID RF PS related flow crack duct flow controllers testdata points fan duct fitting window openable passive stack new added prefixes are H JE WL WP HE VF BL BL horizontal flow balance between balance between jet thermal plume standard zone and thermal layer standard wall thermal layer vertical flow zone and thermal plume 4 3 2 Jets Keyword amp JE jet Header II Cd Alfa Zmo bo xl u0 dTO A0 C C kg s m m m s K m2 Example input JEje 1 1 1 0 1 0 0 13 0 4 0 4 0 1 2 0 0 2 Description Parameters Description Input Default Format II Number of jet types list in table 1 Integer 1 Cd Air mass flow coefficient for type 1 Real 0 25 Jets listed in table 2 Alfa Air flow exponent listed in table2 Real 0 5 zmo Air flow rate of the diffuser Real 0 2 bo Characteristic length of diffuser Real 0 1 listed in table 2 xl The centre line distance from the Real 1 0 diffuser ud The initial air flow velocity for jets Real 0 1 of type 2 to type 5 dTO The initial temperature difference Real 1 0 between the jet and the ambient fluid dTO for jets of type 2 to type 5 A0 The area of the diffuser for jets of Real 0 1 type 2 to type3 Number of Jet types Jet type I I l Fiv
8. 2 252E 08 1 925E 08 5 598E 10 2 122E 10 1 191E 09 4 721E 09 4 73E 11 6 855E 12 2 171E 09 2 082E 09 693E 10 4 08E 09 9 555E 09 4 686E 09 001E 10 032E 10 605E 09 4 172E 09 521E 10 993E 09 2 588E 08 3 748E 08 0 006362 0 001767 0 003833 0 004453 1 506E 10 1 774E 09 3 367E 09 3 989E 08 link kg h 99E 04 36E 04 37E 05 3E 04 16E 04 62E 05 95E 04 35E 04 58E 05 62E 04 1E 04 72E 05 33E 05 98E 05 8E 05 62E 04 22E 04 43E 05 99E 05 02E 06 44E 05 4E 06 67E 05 34E 04 19E 05 6E 06 81E 05 3 FEINO WE NRA DOW 271E 0 701E 0 942E 0 909E 0 747E 0 945E40 237E 0 698E40 158E 0 0 E 00 0 E 00 0 E 00 0 E 00 0 E 00 692E 00 0 E 00 0 E 00 0 E 00 616E 00 164E 00 0 E 00 0 E 00 0 E 00 0 E 00 076E 00 225E 00 0 E 00 56 hf 28 hf 29 hf 30 hf 31 hf 32 hf 33 hf 34 hf 35 hf 36 hf 37 hf 38 hf 39 hf 40 hf 41 hf 42 hf 43 hf 44 hf 45 hf 46 hf 47 hf 48 hf 49 hf 50 hf 51 hf 52 hf 53 hf 54 hf 55 hf 56 hf 57 hf 58 hrf 59 hf 60 hf 61 hf 62 hf 63 hf 64 hf 65 hf 66 hf 67 hf 68 hf 69 hf 70 hf 71 hf 72 hf 73 hf 74 hf 75 hf 76 hf 77 hf 78 hf 79 hf 80 hf 81 hf 82 hf 83 hf 84 hf 85 hf 86 vf 1 vf 2 vf 3 vi 4 vf 5 vf 6 vf 7 vf 8 vf 9 vf vf vf vf v vf vf VE vf 0 JO UO C NEO hf 28 hf 29 hf 30 hf 31 hf 32 hf 33 hf 34 hf 35 hf 36 hf 37 hf 38 hf 39 hf 40 hf 41 hf 42 hf 4
9. COMIS 3 0 User s Guide Available from the LawrenceBerkeley Laboratory Berkeley USA Feustel H E 1999 COMIS An international multizone air flow and contaminant transport model Energy and Buildings 30 3 18 Fisher D E 1995 An experimental investigation of mixed convection convection heat transfer in a rectangular enclosure PhD Thesis University of Illinois Urbana USA Khalifa A J N and Marshall R H 1990 Validation of heat transfer coefficients on interior building surfaces using a real sized indoor test cell Int J Heat Mass Transfer 33 10 2219 2236 Ren Z 2002 Enhanced modelling of indoor air flows temperatures pollutant emission and dispersion by nesting sub zones within a multizone model Unpublished PhD Thesis The Queen s University of Belfast September 2002 Walton G N 1997 CONTAM 96 users manual NISTIR 6065 National Institute of Standards and Technology USA 28 Appendix A Input file for the ventilated room COwZ Input File CIF Generated by z ren for COwZ Please send your remarks and questions to z rentqub ac uk amp CIF 1 COwZ Input File COwz cif amp PR UNITS Unit Conversion Definitions Name Input Output concentration kg kg mg kg see COMIS SET file in your simulation directory amp PR IDENtification 2 1 Problemname NE 2 Versionname lil amp PR SIMUlati
10. Direction Plan Area Velocity Profile Surrounding Angle Density Exponent Buildings Height deg 7 m 48 amp SCH METeo data 36 OPTIONAL DATASECTION 1 Dataset Name 2 Time Wind Temperature Humidity Barometer Pressure Speed Direction Absolute gt m sec deg oC g kg kPa amp POL DEScription 37 OPTIONAL DATASECTION No Name Molar Mol Cont Vapor Diffu Adsorp Desorp Mass Fraction Pressure sitity Ka Kd g mol mg g mm Hg m2 h m h 1 h 1 1 SF6 146 0 density linitial volume linitial kg l thickness area ml um m2 2 amp GAS RELease 67 OPTIONAL DATASECTION release Ttotal initial initial initial Cp Cv puncture discharge type mass pressure temp volume J gK J gK area coefficient kg Pa K m3 m2 po pipe pipe pipe friction liguid heat length dimemeter factor vaporization m m amp LIQ RELease 68 OPTIONAL DATASECTION Tank Tank tank puncture discharge liquid linitiallinitial tank type diameter length area coefficient density mass pressure m m m2 kg
11. E 04 E 04 E 04 E 04 E 04 E 03 E 03 E 04 E 04 E 04 E 04 E 05 E 05 E 05 E 05 E 05 E 05 E 05 E 05 E 05 E 05 E 05 E 04 E 05 E 05 E 05 E 04 E 05 E 06 E 05 E 04 E 05 E 06 E 05 E 04 E 03 E 04 E 04 E 04 E 03 E 04 E 05 E 04 E 03 E 04 E 04 E 04 E 03 E 04 E 05 E 04 E 01 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 Ss NN WWW HY N N N N J M U U On OD GA DO O V UT II O GC O OO O SO SI OVO O 19 69 O JI 3 3 992 927 181 0 KI KOS C OKO 4 0 638 738 108 0 0 0 0 0 947 828 E 00 E 00 E 00 198 358 DIT 574 276 894 131 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 0 492 322 199 996 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 01 E 01 E 00 E 00 E 00 E 00 E 00 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 00 E 00 E 0 E 0 E 00 E 00 E 00 E 00 E 00 E 00 E 01 53 VFvf 12 VFvf 13 VFvf 14 VFvf 15 VFvf 16 VFvf 17 VFvf 18 VFvf 19 VFvf 20 VFvf 21 VFvf 22 VFvf 23 VFvf 24 VFvf 25 VFvf 26 VFvf 27 VFvf 28 VFvf 29 VFvf 30 VFvf 31 VFvf 32 VFvf 33 VFvf 34 VFvf 35 VFvf 36 VFvf 37 VFvf 38 VFv
12. TI6 TI6 870 869 869 870 869 869 870 870 870 869 869 870 977 978 978 979 784 172 811 814 808 693 776 820 195 190 095 045 065 092 053 051 089 184 085 024 052 035 XO XO XO LO LO LO LO LO N N N N NN N N N N N N N RZ KAD POT ODO AA O 282 341 021 164 2293 272 041 176 299 352 o2 bili 899 635 008 313 956 178 321 143 886 624 M w N N N N N N NN N N NN NN NN NN NN NN NN N NN to 42 51 32 46 20 6 40 32 13 78 31 53 32 59 48 64 40 49 8 757 5 267 18 55 29 82 43 77 9 871 34 32 90 53 8 872 5 912 24 63 al sl 44 5 62 17 87 48 107 1 150 3 13243 120 7 83 83 44 4 61 44 81 5 106 40 02 59 95 85 69 96 7 173 1 146 4 1371 88 28 40 59 63 82 74 97 81 name typ name C zone 2 zone 3 zone 4 zone 6 zone 7 zone 8 zone 10 zone 11 zone 12 zone 14 zone 15 zone 16 zone 18 zone 19 zone 20 zone 22 zone 23 zone 24 zone 26 zone 27 zone 28 zone 30 zone 31 zone 32 zone 34 zone 35 zone 36 20 20 20 20 20 20 8 1 7 I 4 7 os 3 sv zl 3 dos 5 m o s3 sla 25 9 2 613E 09 1 807E 10 2 17E 09 4 199E 09 1 048E 08 4 896E 10 4 738E 10 3 134E 09 1 433E 09 4 064E 10 4 746E 10 1 5E 09 5 016E 09 6 505E 11 8 736E 10
13. 0 638 6 zone 20 0 Ds 0 0 588 1 zone 21 0 0 0 0 612 9 zone 22 0 0 0 0 641 7 zone 23 0 0 0 0 649 9 zone 24 0 0 0 Da 581 1 zone 25 0 0 0 0 368 9 zone 26 0 0 0 0 402 4 zone 27 0 0 0 0 697 5 zone 28 0 0 0 0 543 2 zone_29 0 0 5 0 0 420 4 zone_30 0 0 0 0 840 2 zone 31 2 943E 06 0 0 0s 864 6 zone 32 0 Do 0 0 543 2 zone 33 0 0 0 0 358 4 zone 34 0 0 0 0 423 6 zone 35 0 0 0 0 709 9 zone 36 0 0 0 0 543 2 zone 37 0 0 0 0 368 9 zone 38 0 Oks 0 or 378 8 zone 39 0 0 0 0 377 4 zone 40 0 0 0 Da 361 4 zone 41 0 0 0 0 381 7 zone 42 0 0 0 0 398 zone 43 0 0 0 0 372 7 zone 44 0 0 0 0 359 zone 45 00 0 0 0 358 4 zone 46 0 0 0 0 366 7 zone 47 0 0 0 0 363 zone 48 0 0 0 0 356 8 zone 49 0 0 0 0 416 6 zone 50 0 0 0 0 330 1 zone 51 0 0 0 0 337 2 zone 52 0 0 0 0 341 9 zone 53 0 0 0 0 315 06 zone 54 0 0 0 0 345 6 zone 55 0 0 0 0 353 7 zone 56 0 0 0 Ds 353 6 zone 57 0 0 0 0 315 6 zone 58 0 0 0 0 329 8 zone 59 0 0 0 0 33675 zone_60 0 0 0 0 341 4 Cave 493 92071533 Steady state solution 2002jun12 00 00 00 Wednesday Pollutant Nr 1 SF6 Zone ID Source Occupant Source NrOcc Sink Concentration kg s kg s kg s mg kg 1 00 1 00 1 00 0 100E 07 zone 1 0 0 0 0 598 2 zone 2 0 0 0 0 596 9 zone 3 0 0 0 0 595 8 zone 4 0 0 0 0 594 6 zone 5 0 0 0 0 570 zone 6 0 0 0 0 574 6 zone 7 0 0 0 0 592 8 zone 8 0 De 0 0 592 6 zone 9 0 0 0 0 614 5 zone
14. 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 63E 04 6 41E 04 8 09E 04 9 63E 04 9 89E 04 6 74E 04 2 58E 04 6 23E 04 8 24E 04 2 05E 04 74E 04 97E 04 11E 03 15E 03 83E 04 02E 04 66E 04 13E 04 04E 05 1 85E 05 3 82E 05 4 57E 05 4 94E 05 53E 05 48E 05 44E 05 7 15E 05 73E 05 6 77E 05 53E 04 6 06E 05 2 82E 05 9 03E 05 1 63E 04 3 02E 05 4 86E 06 3 69E 05 1 37E 04 NO SN o rn FH w w 5 32E 05 49E 04 18E 03 4 77E 04 29E 04 2 64E 04 1 16E 03 4 59E 04 9 33E 05 2 43E 04 1 49E 03 5 79E 04 1 03E 04 1 17E 04 48E 03 E 04 E 05 E 04 E 01 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 wou NON O UI al 11 U O O O OO UUI a a CO LO 40 40 10 40 40 40 40 40 40 O 10 10 10 10 10 OO Ss NN WWE N N N N J n 35 SLE 914 274 891 132 I XO GOD 4 491 311 197 996 0 628 734 109 0 0 0 0 0 991 828 635 0 207 0 0 0 0 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 01 E 01 E 00 E 00 E 00 E 00 E 00 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 00 E 00 E 00 E 00 E 00 E
15. 22 zone 21 zone 20 zone 19 zone 18 zone 17 zone 16 zone 15 zone 14 zone 13 zone 12 zone 11 zone 10 zone 9 zone 8 zone 7 zone 6 zone 5 zone 4 zone 3 zone 2 zone 1 FZ T zone 40 zone 39 zone 38 zone 37 zone 36 zone 35 zone 34 30 zone 33 zone 32 zone 31 zone 30 zone 29 zone 28 zone 27 zone 26 zone 25 zone 24 zone 23 zone 22 zone 21 zone 20 zone 19 zone 18 zone 17 zone 16 zone 15 zone 14 zone 13 zone 12 zone 11 zone 10 zone 9 zone 8 zone 7 zone 6 zone 5 zone 4 zone 3 zone 2 zone 1 FL S hf 30 hf 29 hf 28 hf 27 hf 26 hf 25 hf 24 hf 1 hf 2 hf 3 hf 4 hf 5 h 6 hf 23 hf 22 hf 21 hf 20 hf 19 hf 18 hf 17 hf 16 hf 15 hf 14 hf 13 hf 12 hf 11 hf 10 hf 9 hf 8 hf 7 vf 36 vf 35 vf 34 vf 33 vf 32 vf 31 vf 30 vf 29 vf 28 vf 27 vf 26 vf 25 vf 24 vf 23 vf 22 vf 21 vf 20 vf 19 vf 18 vf 17 vf 16 vf 15 vf 14 vf 13 vf 12 vf 11 vf 10 vf 9 vf 8 vf 7 vf 6 vf 5 v 4 v 3 vf 2 vf 1 bl 14 bl 13 bl 12 bl 11 bl 10 bl 9 bl 8 bl 7 bl 6 bl 5 bl 4 bl 3 bl 2 bl 1 FL Thf 30 hf 29 hf 28 hf 27 hf 28 hf 25 hf 24 vf 36 v 35 vf 34 hf 23 hf 22 hf 21 hf 20 hf 19 hf 18 hf 17 hf 16 hf 15 hf 14 hf 11 hf 10 hf 9 hf 8 hf 7 hf 6 hf 5 hf 4 hf 3 hf 2 hf 1 29 vf 28 vf 27 vf 26 vf 25 vf 24 vf 23 vf 22 vf 21 vf 20 vf 19 vf 18 vf 17 vf 16 vf 15 vf 14 vf 13 vf 33 vf 32 ht 13 hf 12 vf 31 vf 30 vf vf 12 vf 11 vf 10 vf 9
16. 41 20 0 0 0 5 1 1 0 45 0 0 zone 42 20 840 0357 1 570 545 0 0 0 0 zone 43 20 0 0 0 5 1 1 1 1 0 0 0 0 zone 44 20 00 05 54 1 L 1 0 1 0 zone 45 20 0 0 0 5 1 0 0 45 1 0 0 0 zone 46 20 0 0 0 5 1 0 0 45 1 0 0 zone 47 20 OD 05 10 11 1 0 0 zone 48 20 0 0 0 5 1 0 1 1 1 0 1 0 0 zone 49 20 0 0 0 5 1 0 0 45 0 0 le 0 zone 50 20 0 0 0 5 1 0 0 45 0 0 1 20 0 zone 51 20 0 0 0 5 1 0 1 1 0 0 b O 0 42 zone 52 zone 52 20 0 0 0 5 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 zone 53 zone 53 20 0 0 0 5 1 1 0 45 0 0 0 1 0 1 0 0 0 1 0 0 zone_54 zone_54 20 0 0 0 5 1 1 0 45 0 0 0 0 1 0 0 0 0 1 0 0 zone 55 zone 55 20 030 0 57 1211 1 0 0 0 0 1 0 0 0 0 1 0 0 zone 56 zone 56 20 0 0 05b 1 1 1 1 0 0 0 0 di 0 0 0 1 0 1 0 0 zone 57 zone 57 20 0 0 0557 1 07 0 A5 0 0 0 0 jp 0 1 0 1 0 0 1 0 0 zone 58 zone 58 20 0 0 0 5 1 0 0 45 0 0 0 0 1 0 0 1 0 0 1 0 0 zone 59 zone 59 20 0 0 0 5 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 zone 60 zone 60 20 0 0 0 5 1 0 1 1 0 0 0 1 0 0 1 0 1 0 140 0 amp NET ZL zone layers 19 OPTIONAL DATASECTION Zone Start Temp Hum Poll Volume Source Sink Flow To Flow Tol ID Height Grad Grad Grad Fract Fract Fract Next LY Zone Factor Factor Factor Factor m acm qr paupe WA tel OLEN d ol amp NET ZP zone pollutants 20 OPTIONAL DATASECTION Zone Pollutant nitial Source Sink I Concen ID kg kg k
17. 55 hf 56 hf 57 hf 58 hi 59 hf 60 hf 61 hf 62 hf 63 hf 64 hf 65 hf 66 hf 67 hf 68 hf 69 hf 70 hf 71 hf 72 hf 73 hf 74 hf 75 hf 76 hf 77 hf 78 hf 79 hf 80 hf 81 hf 82 hf 83 hf 84 hf 85 hf 86 VFvf 1 VFvf 2 VFvf 3 VFvf 4 VFvf 5 VFvf 6 VFvf 7 VFvf 8 VFvf 9 VFvf 10 VFvf 11 zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zone 27 zone 29 zone 30 zone 31 zone 33 zone 34 zone 35 zone 37 zone 38 zone 39 zone 41 zone 42 zone 43 zone 45 zone 46 zone 47 zone 49 zone 50 zone 51 zone 53 zone 54 zone 55 zone 57 zone 58 zone 59 zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 37 zone 38 zone 39 zone 40 zone 41 zone 42 zone 43 zone 44 zone 49 zone 50 zone 51 zone 52 zone 53 zone 54 zone 55 zone 56 zone 56 zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 9 zone 10 zone 11 zn zone 28 zone 30 zone 31 zone 32 zone 34 zone 35 zone 36 zone 38 zone 39 zone 40 zone 42 zone 43 zone 44 zone 46 zone 47 zone 48 zone 50 zone 51 zone 52
18. 60 4x3x5 sub zones three of which were flow element type Supply air flow was 24 m3 h 1 air change per hour and a pollutant source SF6 was a continuously injected tracer gas at 2 943 mg s at the centre of room The inputs to the simulation are the inside surface and inlet temperatures Table 5 Table 5 Input inside surface and inlet air temperatures C adapted from Castanet 1998 Case East South West North Floor Ceiling Inlet A 20 0 18 9 19 9 20 0 19 4 21 0 33 5 B 21 5 22 2 21 6 21 6 21 4 21 7 22 3 The input file COwZ CIF and output file COwZ COF are given in appendices A and B 27 6 References Alamdari F and Hammond G P 1983 Improved data correlations for buoyancy driven convection in rooms Building Services Engineering Research and Technology 4 3 106 112 Awbi H B and Hatton A 2000 Mixed convection from heated room surfaces Energy and Buildings 32 153 166 Castanet S Contribution a l tude de la ventilation et de la qualit de l air int rieur des locaux Ph D Thesis 1998 INSA de Lyon France CIBSE 1988 CIBSE Guilde 5 edition Chartered Institute of Building Services Engineers UK Dols W S 2001 A tool for modelling airflow amp contaminant transport ASHRAE Journal 23 3 35 42 Dorer V and Weber A 1995 COMVEN Programmer s Guide Available from the authors Viktor dorer empa ch last referenced May 2002 Feustel H E and Smith B V 1997
19. All the data or correlations are given in Chpater 4 of Zhengen s PhD thesis Ren 2002 Table 4 Formula for convection heat transfer coefficient a implemented in COwz 4 3 11 Flow element zone Keyword amp NET ZF flow element zone Header Zone ID Example input fzone 1 Description Parameter Description Input Format Default Zone ID Flow element zone identification string 8 Char 4 3 12 Supply parameters Keyword amp SUPPLY Header Supply zone number Nsu Supply Temperature Tsu Supply Concentration Csu EC kg kg Example input 23 2 20 0 0 0 Description Parameters Description Input Format Default Nsu Zone number of the diffuser supplying Integer l Tsu Air temperature of the diffuser supplying Real 0 0 Csu Concentration of the diffuser supplying Real 0 0 4 4 Description for source emission modelling COwZ has included three types of pollutant source emission model non boiling evaporation from liquid pools VOC emission from thin coating materials paints and gas and liquid releases The input data for source emission modelling are classified into three types parameters of pollutant for liquid spills and wet paints initial status and structure of pipelines tanks for gas releases from pipelines or tanks and initial status and structure of tanks for liquid releases from tanks They are descri
20. DOO O OO EONO lo O OO O 0 0 O HE SEB HO CHE O o 8 e e o OO OO O O O O o e KODRE HEAD IE O O 0 MO OO MAM DD LE OKO JO OO Mr O ee eee 9 9 ee DOO en Ng Ya 0 O OVO OVO O O OO O MIO O DO OVO O OO 0 o DP DO DOO CS O O xo o xo o 9 9 9 9 5 o 5 D OOO OS 0 O oo OO O O O OO DO o DD OD O DO O CO CO OO OOO e e e O DO C 46 vf 44 VFvf 44 zone 44 zone 56 0 0 0 0 0 0 10 v 45 VFvf 45 zone 45 zone 57 0 0 0 0 0 07 1 30 vf 46 VFvf 46 zone 46 zone 58 0 0 0 0 0 0 1 0 vf 47 VFvf 47 zone 47 zone 59 0 0 0 0 00 120 v 48 VFvf 48 zone 48 zone 60 0 0 O O 0 0 1 0 je 1 JEje 1 zone 53 OPa 0 0 0 0 00 1 je 2 JEje 2 zone 53 zone 54 0 0 0 0 0 0 1 JE 3 JEje 3 zone 54 zone 55 0 0 0 0 0 0 1 je 4 JEje 4 zone 55 zone 56 0 0 0 0 0 0 1 amp SCH WINdow schedules 25 OPTIONAL DATAS Schedule Time Opening Fraction Name i gt 5 amp SCH FAN schedules 26 OPTIONAL DATAS Schedule Time Fan Speed Name gt amp SCH TEMperature schedules 27 OPTIONAL DATAS Schedule Time Temp Name gt gt oC amp SCH HUMidity schedules 28 OPTIONAL DATAS Schedule Time Humidity Name C 5 g kg amp SCH SINk schedules 29 OPTIO
21. Diffusor Round 2 A1 A2 Angle 8 Contraction Round 2 A1 A2 Angle 9 Obstruction Round Duct Screen Hi Screen 10 Perforated Plate 2 T DP N DP 2 DD 2 11 Orifice A 1 A1 A2 12 DIN Orifice 2 A1 A2 T 13 Damper 1 Angle 1 Type Paraml Param2 pu according Type according Type amp F1 FLOWCONTROLLER IDEAL SYMMETRIC 10 1 fRangel Flowcontroller curve Maximum 1 line 2 pairs Data pairs Pression rise Flowrate Pa m3 s Pa m3 s 2 Fva Setpoint es m3 s 33 3 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 m3 s m3 s m3 s m3 s m3 s amp F2 FLOWCONTROLLER IDEAL NONSYMETRIC 14 1 Rangel Flowcontroller curve Maximum 1 line 2 pairs Data pairs Pression rise Flowrate Pa m3 s Pa m3 s 2 fRange2 Fva Setpoint Fva setpoint negative flow m3 s m3 s 3 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 m3 s m3 s m3 s m3 s m3 s amp WI WINDOW DOOR 14 1 Closed Cs Expn LVO Type Lwmax Lhmax Typel EEN l lt rectang Lextra 2 horizon Type2 pivoting Axis axis height kg s 1Pa m m 2 Typel CD Width Height Start opening Factor Factor Height factor Factor Type2 opening angle factor
22. HFhf 54 HFhf 55 HFhf 56 HFhf 57 HFhf 58 HFhf 59 HFhf 60 HFhf 61 HFhf 62 HFhf 63 HFhf 64 HFhf 65 HFhf 66 HFhf 67 HFhf 68 HFhf 69 HFh 70 HFhf 71 HFhf 72 HFhf 73 HFhf 74 zone 26 zone 27 zone 29 zone 30 zone 31 zone 33 zone 34 zone 35 zone 37 zone 38 zone 39 zone 41 zone 42 zone 4 zone 4 zone 4 zone 4 zone 4 zone 5 zone 5 zone 5 zone 5 zone 55 zone 57 zone 58 zone 59 zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 10 zone 7 zone 11 zone 8 zone 12 zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 37 zone 38 zone 39 zone 40 zone 4 zone 27 zone 28 zone 30 zone 31 zone 32 zone 34 zone 35 zone 36 zone 38 zone 39 zone 40 zone 42 zone 43 3 zone 44 5 zone 46 6 zone 47 7 zone 48 9 zone 50 0 zone 51 1 zone 52 3 zone 54 4 zone 55 zone 56 zone 58 zone 59 zone 60 zone 5 zone 6 zone 7 zone 8 zone 9 o oe zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 41 zone 42 zone 43 zone 44 1 zone 45 OVO OOO O OE o x xo lo 6 lo lo a gt DE O e e n OVO O O o e xu DD Or O ee xu O DO O O O OO xo xo o LC eo OD O 103 7609 OO O MM ee ee EMD OLD ee e n OOB DD DOO ODGO O C9 C9 ooj CO O GO OO OD ODGO GO O OO O O
23. OO ODO OS OO ew d fe OOOO DSO GO SO E ve 4 aj OOO OO OOO D DD DO DD 165 D O O O O O o E lo lo lo lo a DOO O amo o 8 7 A657 aj DOO o 8 xu DOO O e DO OOO O O O DO MM C C eo DOO OO O OO MAA O Ooo o 8 e OO Kao OO O OO DOO O DOO Ooo oo 0000000 OO OO SO OO O oo wi Me qu le DOO OCO OD OS 139 Se he ce O O O O O 0 O O O O C O O OLDO JOGO O OE o e o lo lo lo ce DO oo O ee o o eu ODO DO o xu DO DO o a BO CX Cy 0 OO xo o oe V eo DD C DE OO ox o eo o eo 00 C O ee 8 OS O O DO OO O OO OO O O O OO OO CS OD O OO moi OO ODO O O O O o e xu OO OO SS OQ LOS e o o ODO OD ODO OO ES OO OBO PRR HE EBEBEBE HHHHH HHHH HHHHH HHHH EHHH HHHH EHHH ee ER OO OO eo O OO O O O SS CO XU CO s ooo OO QUO OS OS O O OO ri SO O OS o e xu OOOOEEEEH REKE O O O DB DD O O OO O O O SOO DO o e b lo lo lo xe DD OO CO MV OOOO o 8 xu OO DD O o xu DD OD O O OO MM I o ONO O OO DOVO MM eee DD LD o 8 e OOOO OO sro OTO OQ DO OO O V CO DOGS GG OO O O oro peono GO E TE dle O QUO QD ODO OD O lan taho ter cej SOS O OOO O O O OO 45 hf 75 hf 76 hf 77 hf 78 hf 79 hf 80 hf 81 hf 82 hf 83 hf 84 hf 85 hf 8
24. Thirdly three zonal source emission models have been developed and implemented in COwZ The emission calculations use local scale input data rather than whole room average data and will therefore be more accurate in most circumstances 2 Subdivision of single rooms 2 1 Introduction Usually sub zones are rectangular parallelepipeds set side by side see Figures 1 and 2 This simplifies the subdivision of rooms that it makes it easy to line up each other But for nonrectangular rooms the sub zones may be other shape for example Figure 3 shows sub zones near a sloping ceiling Jet flow Supply air jet Boundary Thermal layer flow plume flow Heater Exhaust flow 7 Top West X Bottom Y Fig 2 Geometry of a sub zone in COwZ Fig 3 Geometry of a sub zone near a sloping ceiling When starting to subdivide a room it is necessary to identify the flow elements and their trajectories including penetration length width and height of the flow element The other parts of the room are treated as standard sub zones The flow elements should be contained in the corresponding flow element sub zones See next sub section for details The COwZ model allows different size sub zones The temperature and concentration within a sub zone are assumed to be uniform course grids large sub zones and high temperature and concentration gradients may make this assumption poor The size of sub zones mainly depends on the resolution acc
25. point for our work and the necessary functionality was added to COMIS The new model COMIS with sub zones is abbreviated to COwZ 1 2 The COwZ model COwZ involves nesting sub zones within a multizone model The main idea behind this method is that when a room or space in a building is not well mixed for example there is thermal or concentration stratification the room is sub divided into regions with similar air flow patterns and temperature regimes Other well mixed rooms are treated as single zones For clarity the term sub zone will be used to indicate a sub divided air space in an individual room Two types of sub zone are used standard sub zones and mixed sub zones Standard sub zones are assumed to have a uniform air temperature and pressure which does not differ markedly from their immediate neighbouring sub zones The important characteristic of these sub zones is that flow velocities and momentums between them are small and primarily driven by pressure differences Mass flows between adjacent sub zones are calculated in different ways for horizontal and vertical interfaces A mixed sub zone contains two parts one contains air belonging to the flow element and one contains air from the surroundings The driving forces of flow elements are jets thermal plumes boundary layers and fans etc Specific models have been developed to describe flows for some typical examples of these The equations for standard sub zones are reused to calcul
26. status of tanks Description of liguid releases e desorption Figure 9 Structure of data input file and the modifications for COwZ 13 The blocks on the left of the figure have been added to the input data sections associated with existing COMIS keywords The blocks on the right have been added to the input data sections with new keywords The description of the parameters is structured according to the sequence of data sections and data blocks given in the input file The input data are obtained by the routine inpdat which reads lines from the CIF file via INH together with the sequence number of the keyword for each data section and the sequence number of the data line after the keyword The parameters are stored in common blocks There have been many changes to the input file CIF which will be described below in detail For the parts that are not changed see the COMIS3 0 User s Guide Feustel and Smith 1995 4 2 Problem description 4 2 1 Simulation options Keyword amp PR SIMUlation options Header Simulation Option Keywords one keyword per line Keywords may be preceded by NO VENT ilation CONC entrations SET echo MSPILL LIQ liquid release POL lutant HEAT flow INPUT echo DEFAULT echo UNIT SSPILL liquid VOC coating GAS release SCHED time lt time gt START time STOP time For the following new simulation options each new keyword may be given on a single input line HEAT flow POL lutan
27. surface for heat convection 0 no 1 yes Real 0 0 1 0 0 0 ZTS South surface for heat convection 0 no l yes Real 0 0 1 0 0 0 ZTW West surface for heat convection 0 no l yes Real 0 0 1 0 0 0 ZIN North surface for heat convection 0 no l yes Real 0 0 1 0 0 0 ZTC Ceiling surface for heat convection 0 no l yes Real 0 0 1 0 0 0 ZTF Floor surface for heat convection 0 no l yes Real 0 0 1 0 0 0 21 4 3 10 Thermal description of rooms Keyword amp WHEAT room thermal description Header NRO Hr Dr Wr RTE RTS RTW RTN RTC RTF m m m TWE TWS TWW TWN TWC TWF Rach Uop Widz poj CO PELI EET PO EE TET else vim Example input 1 2 5 3 5 4 0 1 1 1 1 1 20 0 20 0 20 0 20 0 20 0 20 0 LO 01 0 1 Description Parameters Description Input Format Default NRO Room number for heat convection occurs Integer l Hr Height of the room Real 3 0 Dr Depth of the room Real 3 0 Wr Width of the room Real 3 0 RTE East surface convection status listed in Table 4 Integer l RTS South surface convection status listed in Table 4 Integer 1 RTW West surface convection status listed in Table 4 Integer 1 RTN North surface convection status listed in Table 4 Integer 1 RTC Ceiling convection status listed in Table 4 Integer 1 RTF Floor surface convection status listed i
28. vf 8 vf 7 vf 6 vf 5 vf 4 vf 3 vf 2 vf 1 bl 20 bl 19 bl 18 bl 17 bi 14 DL 13 bl 12 bl 11 bl 10 bl 9 bl 8 bl 7 bl 6 bl 5 bl 4 bl 3 bl 2 bl 1 amp PR CONTrol parameters 4 OPTIONAL DATA SECTION 1 Under T o l e r a n c e s Start Link Flow Relax Number Pressure ation absolut Relative CORR JAC i i of Ite Laminar Flow Factor EpsFA EpsFR EpsCJ rations DifLim 51 kg s kg s Pa 0 5 1 0e 6 1 0e 4 3 0e 11 1 1 0e 4 24441 use old No Pressure Max Number of Relative Max Number _ Pressures Initialization Iterations error for of allowed for thermal Iterations O Zero O Lin initial thermal simulation allowed Pressures 1 No initial simulation convergence for air 1 use flow Previous EpsTR UseOPz NoInit Nitt Miter H 0 10000 1 0e 5 10000 amp NET AIR flow components 5 Allowed prefixes ar CR FA DS DE Fl F2 F3 F4 WI ID crack duct flow controllers testdata points fan duct fitting window openable keep the KEYWORDS amp CR amp TD in this part amp NET AIR 31 amp CR CRACK 6 Cs Exp n Wall Properties U Value 1 E kg s 1Pa gt Im W m2 K Thickness 2 Filter 1 Filter 2 Filter 3 mE 5 4 Filter 4 Filter 5 amp FA FAN 7 li
29. zone 34 hf 30 h 29 h 28 hf 27 hf 28 hf 25 hf 24 VE 36 vf 35 vf 34 vf 33 vf 32 ARO OO VODO DK E I xk Xx OS O OG CC OEEO 195403E 0002 196032E 0002 195672E 0002 195790E 0002 195861E 0002 107110E 0003 874829E 0002 621852E 0002 445233E 0002 311676E 0002 246212E 0002 591946E 000 657949E 0002 585600E 0002 375190E 0002 884450E 000 375190E 0002 507190E 000 295520E 0002 815834E 000 219271E 000 371873E 000 889906E 000 177434E 0002 aaaaa kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg gt gt gt gt gt gt gt gt gt gt vd gt gt vd O 61
30. zone 54 zone 55 zone 56 zone 58 zone 59 zone 60 zone 5 zone 6 zone 7 zone 8 zone 9 zone 10 zone 11 zone 12 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 41 zone 42 zone 43 zone 44 zone 45 zone 46 zone 47 zone 48 zone 53 zone 54 zone 55 zone 56 zone 57 zone 58 zone 59 zone 60 OPa zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 3 44 55133 S 1 34 2419 9 39 3 82 25 63 6 41 8 09 9 63 9 89 6 75 22359 6 23 8 23 04 73 98 11 15 84 01 66 14 06 1 86 3 83 4 57 4 98 52 47 43 7 16 69 6 76 353 6 07 2 8 9 05 5163 3 03 5 02 3 69 1 37 22 03 6 9 5 33 49 18 4 78 29 2 64 1 16 4 6 9 35 2 42 1 49 555119 1 02 1 16 49 5 75 9 13 N OVO VOH HO m Ww N ou AU O EU UI UI 01 U UI CO LO 40 140 1010 XO tO 40 40 10 E 05 E 06 E 05 E 04 E 05 E 06 E 05 E 04 E 04 E 04 E 04 E 04 E 04 E 04
31. 0 5 87E 00 0 E 00 26 vf 40 VFvf_40 zn zone 40 zn zone 52 20 5 87E 00 0 E 00 27 vf 41 VFvf 41 zn zone 4l zn zone 53 20 5 87E 00 1 431E 02 28 vf 42 VFvf_42 zn zone 42 zn zone 54 20 5 87E 00 5 327E 01 29 vf 43 VFvf 43 zn zone 43 zn zone 55 20 5 87E 00 4 07E 01 30 vf 44 VFvf_44 zn zone 44 zn zone 56 20 5 87E 00 0 E 00 31 vf 45 VEvf 45 zn zone 45 zn zone 57 20 5 87E 00 0 E 00 32 vf 46 VFvf 46 zn zone 46 zn zone 58 20 5 87E 00 1 935E 00 33 vf 47 VFvf 47 zn zone 47 zn zone 59 20 5 87E 00 0 E 00 34 vf 48 VFvf 48 zn zone_48 zn zone_60 20 5 87E 00 0 E 00 25 6 1 JEje 1 zn zone 53 sp OPa 20 1 08E 01 0 E 00 36 je 2 JEje 2 zn zone 53 zn zone 54 20 1 11E 03 1 127E 01 37 je 3 JEje 3 zn zone 54 zn zone 55 20 1 15E 03 1 594E 01 38 je 4 JEje 4 zn zone 55 zn zone 56 20 8 83E 04 2 376E 01 Outside concentration mg kg ExtNr SF6 convers 1 E 06 2002jun12 00 00 00 Wednesday Pollutant Nr 1 SF6 Zone ID Source Occupant Source NrOcc Sink Concentration kg s kg s kg s mg kg 1 00 1 00 1 00 0 100E 07 zone 1 0 0 0 0 596 6 zone 2 Us 9 0 0 595 4 zone 3 Dt 0 0 D 594 4 zone 4 0 0 0 0 593 4 zone 5 0 G2 0 0 563 2 zone_6 0 dx 0 0 91359 zone 7 0 0 0 0 591 9 zone 8 0 0 0 0 591 7 zone 9 0 0 0 s 612 9 zone 10 0 0 0 0 611 1 zone 11 0 0 0 0 606 4 zone 12 0 0 0 0 601 5 zone 13 0 0 0 Da 39646 zone 14 0 ih 0 0 616 7 zone 15 0 0 0 0 623 3 zone 16 0 0 0 0 579 9 zone 17 0 0 0 0 549 2 zone 18 0 0 0 0 644 3 zone 19 0 0 0
32. 0 0 0 1 0 0 0 hf 6 HFhf 6 zone 7 zone 8 0 0 0 0 00 AO 0 0 hf 7 HFhf 7 zone 9 zone 10 0 0 0 0 0 0 1 0 0 0 hf 8 HFhf 8 zone 10 zone 11 0 0 0 0 0 hf 9 HFhf 9 zone ll zone 12 0 0 0 0 0 0 1 0 0 0 hf 10 HFhf 10 zone 13 zone 14 0 0 0 0 0 10 2 20 0 0 hf 11 HFhf 11 zone 14 zone 15 0 0 0 0 0 205 450 0 0 hf 12 HFhf 12 zone 15 zone 16 0 0 0 0 0 07 1250 0 0 hf 13 HFhf 13 zone 17 zone 18 0 0 0 0 0 0 1 0 0 0 hf 14 HFhf 14 zone 18 zone 19 0 0 0 0 0 30 1 50 0 0 hf 15 HFhf 15 zone 19 zone 20 0 0 0 0 oso 150 0 0 hf_16 HFhf_16 zone 21 zone 22 0 0 0 0 0 0 1 0 0 0 hf 17 HFhf 17 zone 22 zone 23 0 0 0 0 0 0 1 0 0 0 hf 18 HFhf 18 zone 23 zone 24 0 0 0 0 0 0 1 0 0 0 hf 19 HFhf 19 zone 25 zone 26 0 0 0 0 0 0 1 0 0 0 hf 20 hf 21 hf 22 hf 23 hf 24 hf 25 hf 26 hf 27 hf 28 hf 29 hf 30 hf 31 hf 32 hf 33 nf 34 hf 35 nf 36 hf 37 hf 38 hf 39 hf 40 hf 4 hf 4 hf 4 hf 4 hf 4 U BOM H hf 4 h 4 hf 4 hf 49 hf 50 hf 51 hf 52 hf 53 CO On hf 54 hf 55 hf 56 hf 57 hf 58 hf 59 hf 60 hf 61 hf 62 hf 63 hf 64 hf 65 hf 66 hf 67 hf 68 hf 69 hf 70 hf 71 hf 72 hf 73 hf 74 HFhf 20 HFhf 21 HFhf 22 HFhf 23 HFhf 24 HFhf 25 HFhf 26 HFhf 27 HFhf 28 HFhf 29 HFhf 30 HFhf 31 HFhf 32 HFhf 33 HFhf 34 HFhf 35 HFhf 36 HFhf 37 HFhf 38 HFhf 39 HFhf 40 HFhf 41 HFhf 42 HFhf 43 HFhf 44 HFhf 45 HFhf 4 HFhf 4 HFhf 4 HFhf 4 HFhf 50 HFhf 51 HFhf 52 HFhf 53 O 0 DN
33. 0 0 0 0 zone 19 zone 19 20 0 0 05 11 11 0 0 1 0 0 0 0 0 0 zone 20 zone 20 20 0 29 075 T TZ T 0 0 lt 0 0 0 1 0 0 zone 21 zone 21 20 0 0 0 5 1 0 0 45 0 0 1 0 1 0 1 0 0 0 0 zone 22 zone 22 20 0 0 0 5 1 0 0 45 0 al 0 0 1 0 0 0 41 zone 23 il 0 0 zone 24 1 0 0 zone_25 1 1 0 1 0 zone 26 1 1 20 0 zone 27 1 1 0 0 zone 28 il 150 0 zone 29 1 0 10 zone 30 ch 0 0 zone 31 1 0 0 zone 32 1 0 0 0 zone 33 1 0 10 zone 34 1 0 0 zone 35 1 0 0 zone 36 1 0 0 zone 37 T 1 0 T zone 38 1 1 0 0 zone 39 1 1 0 0 zone 40 il 1 0 0 zone 41 1 0 1 40 zone 42 jh 0 0 0 0 zone 43 1 0 0 0 0 zone 44 1 0 0 zone 45 1 0 1 0 zone 4 il zone 4 Al zone 4 1 0 0 0 O I O zone 49 ch 1 0 1 zone 50 1 1 0 0 zone 51 il 150 0 zone 23 20 0 0 0 5 1 0 1 1 1 0 0 zone 24 20 0 0 2075 7 10 141 1 0 1 0 0 zone 25 20 0 0 0 5 1 0 0 45 0 0 0 zone 26 20 0 0 0 5 1 0 0 45 0 0 zone 27 20 02 0 0 5 150 1 1 0 0 zone 28 20 0 0 0025 140 1201 0 13 0 0 zone 29 20 0 0 0 5 1 1 0 45 0 0 zone 30 20 0 0 0 5 1 1 0 45 0 0 0 zone 31 20 0 0 0 5 1 1 1 1 0 0 0 zone 32 20 0 0 0 5 1 1 1 1 1 0 0 0 zone 33 20 0 0 0 5 1 0 0 45 1 0 0 0 0 zone 34 20 0 0 0 5 1 0 0 45 1 0 0 0 0 zone 35 20 0 0 0 5 1 0 1 1 1 0 0 0 0 zone 36 20 0 0 0 5 1 0 1 1 1 0 1 0 0 zone 37 20 0 0 0 5 1 0 0 45 0 0 0 zone 38 20 0 0 0 5 1 0 0 45 0 0 0 zone 39 20 0 0 0 5 1 0 1 1 0 0 zone 40 20 0 0 0 5 1 0 1 1 0 1 0 0 zone
34. 00 E 00 E 00 E 0 E 0 E 0 E 0 E 0 E 00 E 00 E 0 E 0 E 00 E 00 E 00 E 00 E 00 E 00 E 01 E 01 E 00 E 01 E 00 E 00 E 00 E 00 9 751E4 1 167E 57 05 vf 19 VFvf 19 zn zone 19 zn zone 31 20 5 91E 00 4 776E 00 06 vf 20 VFvf 20 zn zone 20 zn zone 32 20 5 91E 00 7 278E 01 07 vf 21 VFvf 21 zn zone 21 zn zone 33 20 5 91E 00 0 E 00 08 vf 22 VFvf 22 zn zone 22 zn zone 34 20 5 91E 00 1 152E 01 09 vf 23 VFvf 23 zn zone 23 zn zone 35 20 5 91E 00 0 E 00 0 vf 24 VFvf 24 zn zone 24 zn zone 36 20 5 91E 00 0 E 00 1 vf 25 VFvf 25 zn zone 25 zn zone 37 20 5 89E 00 0 E 00 2 vf 26 VFvf_26 zn zone 26 zn zone 38 20 5 89E 00 3 596E 00 3 vf 27 VFvf_27 zn zone 27 zn zone 39 20 5 89E 00 5 218E 00 4 vf 28 VFvf 28 zn zone 28 zn zone 40 20 5 89E 00 1 042E 01 5 vf 29 VFvf 29 zn zone 29 zn zone 41 20 5 89E 00 0 E 00 6 vf 30 Vrvf 30 zn zone 30 zn zone 42 20 5 89E 00 7 171E 00 7 vf 31 VFvf 31 zn zone 31 zn zone 43 20 5 89E 00 1 983E 00 8 vf 32 VFvf 32 zn zone 32 zn zone 44 20 5 89E 00 0 E 00 9 vf 33 VFvf_33 zn zone 33 zn zone 45 20 5 89E 00 0 E 00 20 vf 34 VFvf_34 zn zone 34 zn zone 46 20 5 89E 00 3 687E 00 21 vf 35 VFvf_35 zn zone 35 zn zone 47 20 5 89E 00 2 214E 00 22 vf_36 VFvf_36 zn zone 36 zn zone 48 20 5 89E 00 8 198E 00 23 vf 37 VEVE 37 zn zone 37 zn zone 49 20 5 87E 00 0 E 00 24 vf 38 VFvf_38 zn zone 38 zn zone 50 20 5 87E 00 1 917E 00 25 vf 39 VFvf 39 zn zone 39 zn zone 51 2
35. 055 VEvf 3 0 5 VFvf 4 0 5 AVEVE 5 0 5 VFvf 6 0455 VFvf 7 035 VEv 8 05 VEvf 9 0 5 VFvf 10 Q 5 VFvf_11 015 VFvf 12 055 VFvf 13 0 5 VFvf 14 0 5 VFvf 15 0 5 VFvf 16 0 5 VFvf 17 0 5 VFvf 18 0 5 VFvf 19 0 5 VFvf 20 0 5 VFvf 21 0 5 VFvf 22 0 5 VFvf 23 0 5 VFvf 24 0 5 VFvf 25 04 5 VFvf 26 0 5 VFvf 27 0 5 VFvf 28 0 5 VFvf 29 Q5 XVFV 30 0 55 VFvf 31 0 5 VFvf 32 45 45 45 45 45 45 45 45 45 45 45 45 LAS 45 0 0 0 0 0 0 39 0 5 1 1 d cd 0 83 0 5 1065 VEv 33 0 5 1 0 0 45 0 83 0 5 0 5 VFvf 34 0 5 1 0 0 45 0 83 0 5 05 XVEV 35 0 5 1 0 qo 0 83 0 5095 VEv 36 0 5 1 0 TA 0 83 0 5 055 VrFvf 37 0 5 1 0 0 45 0 83 OB 0 5 VEvf 38 0 5 1 0 0 45 0 83 0 5 0 5 VrFvf 39 0 5 1 0 1 1 0 83 0 5 055 VFvf 40 04 5 1 0 1 1 0 83 Oro 20 5 VFvf 41 0 5 TT 0 45 0 83 035 1055 VFvf 42 05 5 1 1 0 45 0 83 0 5 0 5 VEv 43 0 5 141 t i 0 83 0 5 0 5 VFvf 44 0 5 T 1 1 0 83 0 5 0 5 VEv 45 0 5 1 0 0 45 0 83 0 5 0 5 VEv 46 0 5 1 0 9345 0 83 Ob ES VFvf 47 0 5 1 0 1 1 0 83 Dad 10 5 VEvf 48 0 55 1 0 Tel 0 83 0 5 95 amp BL BALANCE WITH LAYER 63 Height Depth Width Cd Tw 211 z12 m m m IC K Im m amp TRANSITion 16 ReLam ReTurb gt 2300 3500 amp NET HVAC 17 OPTIONAL DATAS OPTIO
36. 10 O 0 0 D 612 7 zone 11 0 a 0 0 607 7 zone 12 0 0 0 0 602 7 zone 13 0 0 0 0 598 2 zone 14 0 0 0 0 618 2 zone 15 0 0 0 0s 624 8 zone 16 0 0 0 0 581 1 zone 17 0 Wa 0 0 549 7 zone 18 0 0 0 Os 644 3 zone 19 0 0 0 Da 639 3 zone 20 90 0 0 0 589 3 zone 21 0 0 0 0 614 5 zone 22 0 0 0 0 642 9 zone 23 0 05 0 0 651 1 zone 24 0 0 0 0 582 3 zone 25 0 0 0 0 368 6 zone 26 0 Dus 0 0 499 5 zone 27 0 0 0 0 698 6 zone 28 0 0 0 0 544 2 zone 29 0 0 0 0 421 4 zone 30 0 0 0 Da 842 6 zone 31 2 943E 06 0 0 0 866 7 zone 32 0 0 0 0 544 2 zone 33 0 0 0 0 358 8 zone 34 0 0 0 0 423 2 zone 35 0 0 5 0 05 710 9 0 0 0 0 2 544 zone 37 0 0 0 0 368 6 zone 38 00 0 0 0 378 5 zone 39 0 0 0 0 377 2 zone 40 0 0 0 0 361 7 zone 41 0 0 0 0 381 9 zone 42 0 0 0 0 398 3 zone 43 0 0 0 0 372 8 zone 44 0 0 0 0 359 3 zone 45 0 0 0 0 358 8 zone 46 0 0 0 0 367 1 zone 47 0 0 0 0 363 6 zone 48 0 0 0 0 35742 zone 49 0 0 0 0 315 8 zone 50 0 0 0 0 330 3 zone 51 00 0 0 0 337 4 zone 52 0 0 0 0 342 zone 53 0 0 0 0 315 8 zone 54 0 0 0 0 345 8 zone 55 0 0 0 0 353 8 zone 56 0 0 0 0 353 8 zone 57 0 0 0 0 315 8 zone 58 0 0 0 0 330 zone 59 0 0 0 0 336 6 zone 60 0 0 0 0 341 5 Cave 494 59893799 kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk A AA Mean Values KeyWord Li
37. 2002 For example Figure 4 shows a ventilated room with a two dimensional isothermal ceiling jet Mixed sub zones Standard sub zones Jet flow element Non flow element part X Fig 4 Sub zones with jet models There is a flow element a two dimensional isothermal ceiling jet in this room To subdivide this room at first the penetration length and the height of the jet flow in section are needed to be estimated by equations 1 and 2 See Ren s thesis for details In this short room the jet reaches the end wall and exhausts through the outlet Then the standard sub zones can be identified l 4 1H 1 h x 0 16x 2 where H is the height of the room and x is Cartesian coordinate Figure 4 shows a example of subdividing this room into 60 4x3x5 sub zones three are mixed sub zones 1 2 and 3 and the others are standard sub zones To ensure that a mixed sub zone is large enough to encompass the flow element part for example see Figure 5 for sub zone 2 the depth AY and height AZ of the mixed sub zone 1 should be AY gt ly and AZ gt h x 3 where is the width of the diffuser Fig 5 Dimensions of sub zone 2 Air flow rates between adjacent standard sub zones are described below For air flow across vertical interfaces EE 4 For air flow across horizontal interfaces Mi Coin Pi p p g p h p h 2 o pi glpih p h 2 m Con
38. 3 83 83 83 293 83 83 83 83 83 ER 83 83 83 83 83 83 83 03 83 36 Fhf 36 0 5 Fhf 37 0 5 Fhf 38 0 5 Fhf 39 0 5 Fhf 40 1 0 0 0 483587272 Fhf 41 0 467174545 Fhf 42 0 427054545 Fhf 43 0 5 Fhf 44 0 5 Fhf 45 0 5 Fhf 46 0 5 Fhf 47 0 5 Fhf 48 0 5 Fhf 49 0 5 Fhf 50 0 5 Fhf 51 0 5 Fhf 52 0 5 Fhf 53 0 5 Fhf 54 0 5 Fhf 55 0 5 Fhf 56 0 5 Fhf 57 0 5 Fhf 58 0 5 Fhf 59 0 5 Fhf 60 0 5 Fhf 61 0 5 Fhf 62 0 5 Fhf 63 0 5 Fhf 64 Ts 0 0 0 45 45 45 45 45 45 45 45 45 45 Lied LA 085 0 83 83 83 83 37 0 5 1 1 0 83 HFhf 65 025 gl 0 83 HFhf 66 0 5 0 45 0 83 xHFhf 67 0 5 0 45 0 83 HFhf 68 005 Asi 0 83 HFhf 69 0 5 1 1 0 83 HFhf 70 0 5 0 45 0 83 HFhf 71 0 5 0 45 0 83 HFhf 72 05 ud 0 83 HFhf 73 Door al 0 83 HFhf 74 0 5 0 45 0 83 HFhf 75 0 5 0 45 0 83 HFhf 76 0 5 1 1 0 83 HFhf 77 QB Ara 0 83 HFhf 78 0 5 0 45 0 83 HFhf 79 0 5 0 45 0 83 HFhf 80 052 pcd 0 83 HFhf 81 0 Ap 0 83 HFhf 82 0 5 0 45 0 83 HFhf 83 0 5 0 45 0 83 HFhf 84 ES gl 0 83 HFhf 85 Ob pum 0 83 HFhf 86 0 1 0 2 0 83 amp VF VERTICAL FLOW 62 Height Depth Width Cd Hi Hj m m m LE Im Fm VFvf 1 0 5 1 0 0 45 0 83 0 5 0 5 VFvf 2 0 5 1 0 0 45 0 83 U S
39. 3 hf 44 hf 45 hf 46 hf 47 hf 48 hf 49 hf 50 hf 51 hf 52 hf 53 hf 54 hf 55 hf 56 hf 57 hf 58 hE 59 hf 60 hf 61 hf 62 hf 63 hf 64 hf 65 hf 66 hf 67 hf 68 hf 69 hf 70 hf 71 hf 72 hf 73 hf 74 hf 75 hf 76 hf 77 hf 78 hf 79 hf 80 hf 81 hf 82 hf 83 hf 84 hf 85 hf 86 VFvf 1 VFvf 2 VFvf 3 VFvf 4 VFvf 5 VFvf 6 VFvf 7 VFvf 8 VFvf 9 VFvf_ VFvf_ VFvf_ VFvf_ VFvf_ VFvf_ VFvf_ VEVE VFvf_ ng Hj r mj r ng kaj np om Nf kaj i kaj taj gu kaj foj a Grp kaj foj kaj Voj ng Hd hrdo brj Grp Grp Ng kaj vaj kaj nj hrdo fr ng foj foj kaj Voj oz voj foj Gr foj Grp foj fip Grp Hg Voj of bj Ng Nf kmj Pj T ng 0 JO UO GA NH O zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zone 37 zone 38 zone 39 zone 41 zone 42 zone 43 zone 45 zone 46 zone 47 zone 49 zone 50 zone 51 zone 53 zone 54 zone 55 zone 57 zone 58 zone 59 zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 37 zone 38 zone 39 zone 40 zone 41 zone 42 zone 43 zone 44 zone 49 zone 50 zone 51 zone 52 zone
40. 5 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 37 zone 38 zone 39 zone 4 zone 4 zone 4 zone 4 zone 4 zone 4 zone 4 zone 4 zone 4 zone 4 0 JO MB W NE 9 zone 50 zone 51 zone 52 zone 53 zone 54 zone 55 zone 57 zone 58 zone 59 zone 60 0 0 OO MO o 8 xu OD PE SO O OOOO OO MAM OLD EP DOD OO OKO o ee o o o 0 O CX C PD MODO OO DD GOLO ODO O O DTO 0 o O 0 0 DO MOD MO O O xo o xo 9 9 9 9 9 t ee D CO DO DO xo e o oe eU o DM OVO GO DO O O OO CO G2 O OO O OSLO O ODO ee e e O O 0 0 0 O O 0 o e s O ap OO ML GD AI am A anlan CO CD MAM C OO GOO OO oo a o 9 9 9 57 a e o o 0 OCS OO DO OD OO O OO OO OO O Oooo 0 o OQ SO SO O CS O O O MAP O O O O O xo e o o n o OO O DO OD OO OO DOO O Oooo ODO SO QLO O E o e e 0 o DO O DV DO o e xu OO PO NO GO O MAM ODD DO O DO OO en er Sel NU OOO eee 0 OO DD OVO OO O OO OO O SO O COS O 0 o O OE MO O OD BO DO xo o o 9 9 eee ee DD DITO OD OD O e xo co o oe eU o OVO DD OO MOD O O O SS BO OO CO CQ O OO O O e e eu o DD O HHHH HHHHHHH HHHH HHHH EHHHHH Ja ODLO DO O O Or Oooo DO O DO OVO O OO 0 E HE EPBPEBEEBEBEBEBE HHHHHHH o OS O
41. 53 zone 54 zone 55 zone 56 zone 56 zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 9 zone zone zone zone zone zone zone zone zone 0 JOU EW NH O zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn sp zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zone 38 zone 39 zone 40 zone 42 zone 43 zone 44 zone 46 zone 47 zone 48 zone 50 zone 51 zone 52 zone 54 zone 55 zone 56 zone 58 zone 59 zone 60 zone 5 zone 6 zone 7 zone 8 zone 9 zone 10 zone 11 zone 12 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 41 zone 42 zone 43 zone 44 zone 45 zone 46 zone 47 zone 48 zone 53 zone 54 zone 55 zone 56 zone 57 zone 58 zone 59 zone 60 OPa zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
42. 6 vf 1 vf 2 vf 3 vf 4 VEO vf 6 v 7 vf 8 vf 9 vf 10 vf 11 vf 12 vf 13 vf 14 vf 15 vf 16 vf 17 vf 18 vf 19 vi 20 vf 21 vf 22 Vi za vf 24 vf 25 vf 26 vf 27 v 28 vf 29 vf 30 vf 31 vf 32 Vf 33 vf 34 vf 35 vf 36 K GC vf 38 vf 39 vf 40 vf 41 vf 42 vf 43 HFhf 75 HFhf 76 HFhf 77 HFhf 78 HFhf 79 HFhf 80 HFhf 81 HFhf 82 HFhf 83 HFhf 84 HFhf 85 HFhf 86 VFvf 1 VFvf 2 VFvf 3 VFV 4 VFvf 5 VFV 6 VFvf 7 VFvf 8 VEvf 9 VEvf 10 VFvf 11 VFvf 12 VFvf 13 VFvf 14 VFvf 15 VFvf 16 VFvf 17 VFvf 18 VFvf 19 VFV 20 VFvf 21 VFvf 22 VFvf 23 VFvf 24 VFvf 25 VFvf 26 VFvf 27 VFvf 28 VFvf 29 VFvf 30 VFvf 31 VFvf 32 VFvf 33 VFvf 34 VFvf 35 VFvf 36 VFvf 37 VFV 38 VFvf 39 VFvf 40 VFvf 41 VFvf 42 VFvf 43 zone 42 zone 46 zone 43 zone 47 zone 44 zone 48 zone 49 zone 50 zone 51 zone 52 zone 53 zone 54 zone 55 zone 56 zone 56 zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 9 zone 10 zone 11 zone 12 zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 37 zone 38 zone 39 zone 40 zone 41 zone 42 zone 43 zone 53 zone 54 zone 55 zone 56 OPa zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 2
43. COwZ User s Guide Zonal Indoor Source Emission and Dispersion Model Version 1 February 2003 Zhengen Ren and John Stewart The School of Computer Science and QUESTOR Centre The Queen s University Belfast 16 Malone Road Belfast BT7 INN UK PREFACE Development of the COwZ model COMIS with sub Zones was funded by a grant from the Queen s University Environment Science and TechnOlogy Research QUESTOR Centre which is an industry university co operative research centre The aim of this project was to develop improved and more practical methods for modelling indoor air guality which includes emission transport and dispersion of indoor pollutants The approach taken was to nest sub zones within a multizone model COMIS and add the necessary functionality to the combined program In addition to inheriting all the features of COMIS COwZ has the capability to predict air flows within rooms heat transfer and pollutant dispersion between and within rooms and pollutant source emission rates within rooms This COwZ User s Guide contains an overview of the COwZ project subdivision of single rooms and the construction of the input file needed to run the calculation program COwZ particularly concentrating on those aspects which are new for COwZ See the COMIS User s Guide edited by Feustel and Smith 1997 for those aspects which are not modified Contents 1 IA W U Introduction 1 1 General 1 2 The COwZ model Subdivis
44. E 10 zone 6 23 688 9 528 31 4 682E 10 zone 7 23 688 9 542 38 07 1 595E 09 zone 8 23 688 9 554 20 44 1 782E 09 zone 9 23 688 9 584 37 53 2 081E 11 zone 10 23 688 9 572 33 97 9 374E 10 zone 11 23 688 9 554 35 86 5 934E 10 zone 12 23 687 9 592 265 35 041E 09 zone 13 17 776 9 688 37 98 2 889E 11 zone 14 17 716 9 769 31 98 2 097E 10 zone 15 17 776 9 805 41 63 2 263E 09 55 zone 16 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 37 zone 38 zone 39 zone 40 zone 41 zone 42 zone 43 zone 44 zone 45 zone 46 zone 47 zone 48 zone 49 zone 50 zone 51 zone 52 zone 53 zone 54 zone 55 zone 56 zone 57 zone 58 zone 59 zone 60 link A i mo Zell Sa skm A BS OO BJ O A O O DB DB O Om mm OD Om OO UT U 0 nr name type hf 1 hf 2 hf 3 hf 4 hf 5 hf 6 hf 7 hf 8 h 9 hf o hf_ hf hf hf hf_ nf hf o hf o hf_ hf_20 hf 21 hf 22 hf 23 hf 24 hf 25 hf 26 hf 27 0 JO UO GA b i ODO 0 0 JO UV W NH 0 JOU GA NEO N N N NN ND N Ov Us C0 I9 EB OW LO N J ng P ng Hj maj kj gd mamm foj nup foj a hf 1 hf 2 hf 3 hf 4 hf 5 hf 6 hf 7 hf 8 hf 9 hf hf o hf hf hf hf o hf o hf o hf o hf o hf 20 hf 21 hf 22 hf 23 hf 24 hf 25 hf 26 0 JOU BW NH O o hf_27 776 176 176 176 176 176 176
45. NAL DATAS ECT TON ECTION 40 18 Zone Name Temp Ref Vol Abs A01 A02 Heat ID Height m3 Hum source H D W Hps ae il oC m m g kg m2 m2 W 1 IZR ZTE ZTS ZTW ZTN ZTC ZTF Schedue pfe sc names 211 T H zone 1 zone 1 20 0 0 0 5 1 0 0 45 0 000 1 1 0 1 0 0 0 0 1 0 zone 2 zone 2 20 0 0 0 5 1 0 0 45 0000 1 1 50 0 0 0 0 O zone 3 zone 3 20 0 0 0 5 1 0 1 1 0 000 ih 1 0 0 0 0 0 0 zone 4 zone 4 20 0 0 0 5 1 0 1 1 0 000 1 1 0 0 0 1 0 0 1 0 zone 5 zone 5 20 0 0 0 5 1 1 0 45 0 0 O 1 0 1 0 0 0 0 1 20 zone 6 zone 6 20 0 0 0 5 1 1 0 45 0 O 1 0 0 0 0 0 1 0 zone 7 zone 7 20 0 00 S Ts LAT A 0 0 alt 0 0 0 0 0 1 zone 8 zone 8 20 OAI 154 zb 0 0 d 0 0 0 1 0 0 0 zone_9 zone_9 20 0 0 0 5 1 0 0 45 0 0 T 0 1 0 1 0 0 0 1 0 zone 10 zone 10 20 0 0 0 5 1 0 0 45 0 0 1 0 0 i 0 0 1 0 zone 11 zone 11 20 0 0 0 5 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 zone 12 zone 12 20 0 0 0 5 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 zone 13 zone 13 20 0 0 0 5 1 0 0 45 0 0 T 1 0 1 0 0 0 0 zone 14 zone 14 20 0 0 0 5 1 0 0 45 0 1 4 0 0 0 0 0 0 zone 15 zone 15 20 040 0 5 150 1 1 0 1 1 0 0 0 0 0 0 zone 16 zone 16 20 0 0 0 5 1 0 1 1 0 T 1 0 0 0 1 0 0 0 zone 17 zone 17 20 0 0 0 5 1 1 0 45 0 1 0 1 0 0 0 0 0 zone 18 zone 18 20 0 0 0 5 1 1 0 45 0 0 li 0 0
46. NAL DATAS Schedule Time Sink Factor Name gt 5 5 amp SCH SOUrce schedules 30 OPTIONAL DATAS Schedule Name C Time Source Factor Or Number of Occupants gt oo De eee O GOGO OO 0 0 0 0 0 0 0 0 0 0 0 0 BETON ECTION ECTION ECTION ECTION EC TALON 47 OPTIONAL DATASECTION l amp SCH OCCupant schedules 31 Schedule Time Zone Activity Level ID Factor Name gt gt amp CP BUILding reference height for Cp data 32 OPTIONAL DATAS Height m ECTION OPTIONAL DATASECTION amp CP VALUes 33 1 Dataset Name 2 Facade Winddirection first line Elemno Cp Values second and following lines 0 deg deg deg deg deg deg deg deg deg amp ENV BUIlding related parameters 34 OPTIONAL DATASECTION 1 Altitude Angle Building Geographic Position North to X Axis Latitude N Longitude R m deg deg ES deg W 0 0 43 0 0 ENV WINd and meteo related parameters 35 OPTIONAL DATASECTION Altitude 1 Ref Height Wind Velocity for Wind Speed Meteo Station Profile Exponent m m m 2 Wind Wind
47. Zo Name Value Unit PZ T zone 40 0 597898E 0001 Pa PZ T zone 39 0 597817E 0001 Pa PZ T zone 38 0 597753E 0001 Pa PZ T zone 37 0 597727E 0001 Pa PZ T zone 36 0 118695E 0002 Pa PZ T zone 35 0 118695E 0002 Pa PZ T zone 34 0 118695E 0002 Pa TZ T zone 40 0 213407E 0002 c TZ T zone 39 0 212805E 0002 C TZ T zone 38 0 211660E 0002 io TZ T zone 37 0 210344E 0002 C TZ T zone 36 0 200516E 0002 C TZ T zone 35 0 200242E 0002 C TZ T zone 34 0 200852E 0002 TZ T zone 33 0 201860E 0002 TZ T zone 32 0 200893E 0002 C TZ T zone 31 0 200505E 0002 C TZ T zone 30 0 200527E 0002 C TZ T zone 29 0 200928E 0002 TZ T zone 28 0 200648E 0002 C TZ T zone 27 0 200450E 0002 TZ T zone 26 0 200937E 0002 C TZ T zone 25 0 201911E 0002 TZ T zone 24 0 197951E 0002 C TZ T zone 23 0 198199E 0002 C TZ T zone 22 0 197761E 0002 TZ T zone 21 0 196937E 0002 C TZ T zone 20 0 198084E 0002 C TZ T zone 19 0 198134E 0002 TZ T zone 18 0 198120E 0002 TZ T zone 17 0 197721E 0002 c TZ T zone 16 0 197846E 0002 e TZ T zone 15 0 198047E 0002 C TZ T zone 14 0 197684E 0002 c TZ T zone 13 0 196886E 0002 C TZ T zone 12 0 195918E 0002 C TZ T zone 11 0 195542E 0002 TZ T zone 10 0 195723E 0002 C TZ T zone 9 0 195843E 0002 TZ T zone 8 0 195538E 0002 c TZ T zone 7 0 195424E 0002 C TZ T zone 6 0 195279E 0002 taj kaj FH ora 1 rj Hj Hj Mm 1 zone 5 zone 4 zone 3 zone 2 zone 1 zone 40 zone 39 zone 38 zone 37 zone 36 zone 35
48. ate air flows from the surroundings Mass and energy balances are made for each zone sub zone The solution of the non linear system of equations based on mass and energy balances for each zone sub zone provides the pressure and temperature fields When source strength is known or a source emission model has been used concentration fields can also be calculated for pollutants based on the conservation of mass for each contaminant species in each zone sub zone The new program contains three significant developments not present in other multizone models Firstly a zonal model which allows individual rooms to be arbitrarily sub divided into smaller sub zones was nested within COMIS which is described in next section This allows resolution of airflow rates temperatures and pollutant concentrations within rooms The key task was to calculate the airflow rates between adjacent sub zones Fourteen new flow links were added to the 13 already available in COMIS Collectively these methods can calculate airflow for a range of cases of practical interest Secondly a suitable thermal model has been developed and incorporated in COwZ to account for the effects of temperature on airflow and contaminant emission and dispersion After an extensive review 19 convection coefficient correlations were incorporated Two solution methods were implemented for the thermal energy eguations one for whole buildings and the other for single sub divided rooms
49. bed below 4 4 1 Pollutant parameters In COMIS the input data for pollutant descriptions POL DES are pollutant sequence number name and molar mass In COwZ single and multi component contaminants are considered in source emission models For single component pollutants following the keyword POL DES the additional input data are vapour pressure liquid density initial pool volume initial pool area diffusion coefficient adsorption rate constant and desorption rate constant For multi component pollutants following the keyword POL DES TVOC Total Volatile Organic Compound is listed first sequence number 1 and the components of the mixture then follow in sequence 2 3 etc For TVOC the mixture the input data are name product density initial thickness initial area content fraction adsorption rate constant and desorption rate constant For each component the input data are sequence number name molar mass molar fraction vapour pressure diffusion coefficient adsorption rate constant and desorption rate constant Keyword amp POL DEScription Header No Name Molar Mol Cont Vapour Diffusivity Adsorp Desorp Mass Fraction Pressure Ka Kd g mol mg g mm Hg m h m h 1 h Density kg l Initial volumejthickness Initial area ml um m7 Example input 1 C3H7OH 60 096 1000 0 31 67499 0 036 0 0 0 0 0 9 500 0 12 24 Descriptio
50. der Release Total Initial Initial Initial Cp Cv Punct Disch Type Mass Pressure Temp Volume Area Coeff kg Pa K m Vek VeK m Pipe length Pipe diameter Pipe friction factor Liquid heat Vapor m m J kg Example input 1 50 0 20000 0 300 0 20 0 1043 0 7429 0 0001 0 8 20 0 0 20 0 7 1 1E5 25 Description Parameters Description Input Format Default Release type Gas release from pipelines 1 tanks 2 Integer lor 2 Default Total mass Total pollutant mass in pipeline tank Real 0 0 Initial Initial gas pressure in the pipeline tank Real 0 0 pressure Initial Initial gas temperature Real 0 0 temperature Initial Initial gas volume in the pipeline tank Real 0 0 volume Cp Pollutant heat capacity at constant pressure Real 1043 0 Cv Pollutant heat capacity at constant volume Real 742 0 Puncture Puncture area where gas releases from Real 0 0 area Discharge Discharge coefficient for orifice Real 0 8 coefficient Pipe length Length of the pipeline Real 0 0 Pipe Diameter of the pipe Real 0 0 diameter Pipe friction Friction factor of the pipe Real 0 7 factor Liquid heat Heat of vaporization of the pollutant liquid Real 0 0 vaporization 4 4 3 Initial status and structure of tanks for liquid releases For liquid releases from tanks the pollutant name and molar mass follow the keyword POL DES and the other parameters follo
51. e types of jets listed in Table 2 2 Circular vertical thermal jets when the momentum and gravity forces act in the same directions 3 Circular vertical thermal jets when the momentum and gravity forces act in the opposite directions 4 Plane vertical thermal jets when the momentum and gravity act in the same directions 5 Plane vertical thermal jets when the momentum and gravity forces act in the same directions Table 1 Jet types which are classified for calculation of mass flow rate used in COwZ Jet type Flow Power Characteristic length bo coefficient Ca Alfa m Two dimensional Thickness of the diffuser isothermal ceiling jet 0 25 0 5 Wall non isothermal Thickness of the diffuser horizontal jet 0 25 0 5 Plane turbulent free Half thickness of the horizontal jet 0 3728 0 5 diffuser Circular turbulent Diameter of the circular horizontal jet 0 32 1 0 jet Radial jet Half width of two spaced 0 445 1 0 circular discs Circular vertical thermal Thickness of the diffuser jet Plane vertical jet Thickness of the diffuser Table 2 Input data of Ca Alfa and bo for jets 4 3 3 Thermal boundary layer flow Keyword amp WL thermal boundary layer flow Header Height Depth Width Cd Tw zl m m m C K m Example input WLwl 1 1 0 1 5 1 0 0 04 33 0 1 0 Description Parameters Description Input Default Format Height Heig
52. f 39 VFvf 40 VFvf 41 VFvf 42 VFvf 43 VFvf 44 VFvf 45 VFvf 46 VEV 47 VFvf 48 JEje 1 JEje 2 JEje 3 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 91E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 89E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 87E 00 08E 01 11E 03 15E 03 84E 04 LO LO LO 40 O 40 O O O LO LO to OFFER NAAT AA AA AA VI UI AA aa a 0 I AA AA 010101010101 VI 01 a U U UT 2 633E 01 0 E 00 7 22E 01 0 E 00 0 E 00 0 E 00 0 E 00 4 911E 00 7 282E 01 0 E 00 1 401E 01 0 E 00 0 E 00 0 E 00 3 655E 00 5 341E 00 1 039E 01 0 E 00 7 136E 00 2 038E 00 0 E 00 0 E 00 3 751E 00 2 172E 00 8 118E 00 0 E 00 1 911E 00 0 E 00 0 E 00 1 431E 02 326E 01 4 083E 01 0 E 00 0 E 00 1 94E 00 0 E 00 0 E 00 0 E 00 1 127E 01 1 594E 01 2 376E 01 a 00 00 0 E 00 Outside concentration mg kg ExtNr convers 2002jun11 00 00 00 Zone ID Source Occupant Source N o D 0 JO Us Q0 IO LB O SF6 1 E 06 kg s Tuesday Pollutant Nr kg s 1 00 o QO DO DO DA GO C O Di KI OO 00 I DO C3 CO AEI ND EE OCIO GT BASTI E SO NrOcc Sink TO ON OPO DA OI OP PEDO ETECO GEE kg s 1 00 KI GSO O QC IO O DOG NOD OO p xU Conce mg kg 0 100E oO O DO PAO O DO EET o 1 SF6 ntration 07 01 00 00 00 00 00 00
53. f resolution and macroscopic scale models including multizone and zonal models Multizone programs typically operate using the approximation that conditions inside a room zone are uniform and then model the air flow through links or flow paths between zones A model is set up by identifying all of the zones of concern and the links between those zones and with the outside air The links are specified by their flow properties and flow rates determined by the pressure differences across the links The network of links is then described by a series of flow eguations which are solved simultaneously to provide a mass conserving solution COMIS Feustel 1999 together with the CONTAM series Walton 1997 and Dols 2001 probably represent state of the art in multizone models Multizone models are simpler guicker and cheaper to use than CFD But they cannot predict detailed airflow temperature and concentration distributions within single rooms of a building So for practitioners who focus on the macroscopic features of airflow and contaminant dispersal among rooms not within rooms multizone models are effective tools A zonal model is an intermediate approach between CFD and multizone models In this approach a room is divided into several macroscopic homogeneous zones in which mass and heat conservation must be obeyed The model will provide some information about thermal airflow within a room and it should be relatively easy for users to define the p
54. g s kg s zone 31 0 0 2 943e 6 0 0 amp NET EXTernal node data 21 OPTIONAL DATASECTION External Node No Facade Elem No Outside Conc Factor gt 5 USA amp NET ZT zone thermal properties OPTIONAL DATASECTION Zone Conductivity Density Capacity Wall Thickness ID aa W mK kg m3 kJ kg K m amp NET ZF flow element zone 65 Zone Pressure KED Pa amp WHEAT room thermal description 66 Nzr Hr Dr Wr RTE RTS RTW RIN RIC RIF MTI m m Cl IC 0 TT 11 1 1 1 Zr Bids 3b 32 2 2 2 2 2 TWE TWS TWW TWN TWC TWF Rach Uop Widz C IEC Ife IEC tte IIC b 1 m s m 20 0 18 9 1959 20 0 21 0 19 4 1 0 amp NET LINks 22 Link Type Zone No Height Own Act 3Dflow Schedule Name 5char or T Junct Ref Link No Name From To From To Height Val Press No Angle 1 10 IG IG m fm m Pa deg h 1 HFhf 1 zone 1 zone 2 0 0 0 0 002 0 0 0 hf 2 HFhf 2 zone 2 zone 3 0 0 0 0 020 10 0 0 hf 3 HFhf 3 zone 3 zone 4 0 0 0 0 0 0 1 0 0 0 hf 4 HFhf 4 zone 5 zone 6 0 0 0 0 0 0 1 0 0 0 hf 5 HFhf 5 zone 6 zone 7 0 0 0
55. ht of thermal layer zone Real 1 0 Depth Depth of thermal layer zone Real 1 0 Width Width of thermal layer zone Real 1 0 Cd Flow coefficient for laminar flow Real 0 0024 Cd 0 0024 and for turbulent flow Cd 0 0021 Tw Wall temperature Real 20 0 zl The distance from the leading edge Real 1 0 of the thermal boundary layer 4 3 4 Thermal plume Keyword amp WP thermal plume Header Height Depth Width Cd Beta Hsf zo ZI m m m W m m Example input WPwp 1 0 5 0 5 1 0 0 006 1 0 300 0 0 4 1 0 Description Parameters Description Input Default Format Height Height of thermal plume zone Real 0 5 Depth Depth of thermal plume zone Real 0 5 Width Width of thermal plume zone Real 0 5 Cd Flow coefficient listed in table 3 Real 0 006 Beta Air flow exponent listed in Table 3 Real 1 0 Hsf Heat emission from the heat source Real 300 0 Z0 The location of the virtual origin ofthe flow Real 0 0 ZI Height of the plume Real 0 0 Thermal plume type Coefficient Ca Power Beta Circular plume 0 006 5 3 Plane plume 0 014 1 Wall plume 0 0032 5 3 Table 3 Input data for C and Beta for thermal plumes 4 3 5 Horizontal flow Keyword amp HF air flow between two horizontal standard subzones Header Height m Width m Cd m Pa s Example Input HFhf 1 0 2 1 1 0 83 Descri
56. ig 5 Ay X X JAZ AX AZ but when AY and the jet is two dimensional there is no mass transfer between the flow element and the adjacent standard sub zone in the y direction so the mass transfer interface area between the non flow element part in mixed sub zone 2 and the adjacent sub zone i is given by see Fig 5 A l gt ar 2 h x AZ Lu 2 In the z direction from equation 5 the air flow rate between the non flow element part in mixed sub zone 2 and standard sub zone j is 8 p PNP Pah p h 2 m C pA4 p p h HO j 2 15 jh EN Cp p g 0 h p h 2 and Aj AX AY h _ AZ h x AZ h x 2 This method can be extended to other mixed sub zones with different flow elements The proposed overall implementation structure follows the modular structure of COMIS After data input the pressures in each standard sub zone and the non flow element part of the mixed sub zone are initialised and then updated by solving a system of non linear mass balance eguations using the Newton Raphson The iteration ends when convergence is achieved 3 Getting started an overview of COwZ 3 1 Model structure COMIS comprises more than two hundred and thirty subroutines working together to simulate air flows and pollutant transport between rooms The outline structure of the original COMIS 3 0 system preciously called COMVEN is shown in Figure 6 Do
57. ing edge of Real 0 5 thermal layer 20 4 3 8 Link between standard subzone and thermal plume Keyword amp BP air mass balance link between standard subzone and thermal plume Header Cd Hsf Beta Z0 Z1 Z2 m Pa s W m m m Example input BPbp 1 0 006 300 0 1 0 0 5 0 5 1 0 Description Parameters Description Input Format Default Cd Air flow coefficient listed in Table 3 Real 0 006 Hsf Heat emission of thermal plume heat source Real 300 0 Beta Air flow exponent listed in Table 3 Real 1 0 Z0 Location of the virtual origin of the flow Real 0 0 Z1 Height of bottom section of thermal plume Real 0 0 Z2 Height of top section of thermal plume Real 0 5 4 3 9 Zones Keyword amp NET ZONes Headers Zone Name Temp Ref Vol m Abs A01 A02 Heat s ID C height H D W Hum m mf Hps m m g kg W IZR ZTE ZTS ZTW ZTN ZTC ZTF Schedue names T H Example input zone l zone 1 20 0 0 0 0 2 1 1 0 5 0 0 0 5 0 5 100 0 1 0 0 1 0 0 0 1 0 0 0 1 0 CO2 Description for the added inputs Parameters Description Input Format Default A01 Initial area of pollutant source Real 0 0 A02 Initial area of pollutant sink Real 0 0 Hps Heat source Real 0 0 IZR Room number where heat convection occurs Integer l ZTE East
58. ion of single rooms 2 1 Introduction 2 2 Implementing sub zones in COwZ Getting Started An Overview of COwZ 3 1 Model structure 3 2 How to get started Input Data Description and Input Format 4 1 Structure input file 4 2 Problem description 4 2 1 Simulation options 4 2 2 Problem output options 4 2 3 Problem control parameter definition 4 3 Network description 4 3 1 Air flow components 4 3 2 Jet 4 3 3 Thermal boundary layer flow 4 3 4 Thermal plume 4 3 5 Horizontal flow 4 3 6 Vertical flow 4 3 7 Link between standard subzone and thermal boundary layer 4 3 8 Link between standard subzone and thermal plume 4 3 9 Zones 4 3 10 Thermal description of rooms 4 3 11 Flow element zones 4 3 12 Supply parameters 4 4 Description for source emission modelling 4 4 1 Pollutant parameters 4 4 2 Initial status and structure of pipelines tanks for gas releases 4 4 3 Initial status and structure of tanks for liquid releases Input Example References Appendix A Appendix B 12 12 14 14 15 15 16 16 16 18 19 19 20 20 21 22 22 23 23 24 24 25 26 27 28 29 51 1 Introduction 1 1 General Two main categories of mathematical model widely used to predict indoor air flows temperature and pollutant concentration distributions are microscopic scale models which use computational fluid dynamics CFD to calculate the values of all relevant parameters at closely spaced points in all parts of the flow field with a high degree o
59. llutant names ii ACC I A kk kk kk kk A RARA A kk kk kk kk kk kk kk kk kk kk kk kk kk AAA Check Schedule and Pollutants Ck kk S A kk kk A A A M M AAA A kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx Check Are all used schedules defined kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkka THE OUTPUT STARTS HERE kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk M x RA k k nput file cowz cif Model name 0 At time 2002jun11 00 00 00 Tuesday interval 86400 seconds The maximum allowed see CIF amp PR CONTrol is 10000 CER WARNING Pollutant transport calculation Tau zone lt 100 sec Delta t set to 1 sec NO poltrans ERRORS REPORTED O iterations with Solver 5 Zone ID pressure Temperature totalflow imbalance Pa C kg h kg h zone 1 23 688 19 586 38 4 251E 10 zone 2 23 688 19 579 34 66 9 804E 10 zone 3 23 688 19 567 36 79 2 663E 09 zone 4 23 687 19 603 31 08 9 736E 10 zone 5 23 688 19 540 29 06 4 928E 10 zone 6 23 688 19 528 31 01 3 646E 10 zone 7 23 688 19 542 38 06 3 344E 09 zone 8 23 688 19 554 20 42 3 876E 10 zone 9 zone 10 zone 11 zone 12 zone 13 zone 14 zone 15 zone 16 zone 17 zone 18 zone 19 zone 20 zone 21 zone 22 zone 23 zone 24 zone 25 zone 26 zone 27 zone 28 zone 29 zone 30 zone 31 zone 32 zone 33 zone 34 zone 35 zone 36 zone 37 zone 38 zone 39 zone 40 zone 41 zone 42 zone 43 zone 44 zone 45 zone 46 z
60. m3 kg Pa 49 amp SUPPLY 69 OPTIONAL DATASECTION Supply supply Supply zone no Temperature Concentration Nsu Tsu OC Csu kg kg 53 3345 0 0 amp SCH POL outdoor concentration data 38 OPTIONAL DATASECTION 1 DATASET NAME 2 Time Pollutant Concentration Iu Nol No2 No3 No4 Nob kg kg kg kg kg kg kg kg kg kg amp OCCUPANt description 39 OPTIONAL DATASECTION No Sex Age Height Mass Activity Cigarets 65 qui a m kg W m2 1 h amp NORM CR Standard temperature for crack data 44 OPTIONAL DATASECTION Standard Temperature for the Crack Data default 20 C deg C 20 102 3 1 EOC 50 Appendix B Results output COwZ Version 1 0A kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk Reading Input File KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK CER WARNING At amp PR SIMUlation 5 output pollutants are requested At amp POL DES there is only 1 Output is reduced to 1 pollutant KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK Checking HVAC T Junction data KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK Looking for RF components 5 kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk AAA A Looking for Po
61. n Parameters Description Input Format Default No Number of pollutant component in a solvent Integer 1 Molar mass Name of pollutant String lt 20 char Polluta Mol Con Molar fraction for each component of TVOC Real 1000 0 Fraction Content fraction for TVOC Vapour Vapour pressure of pollutant Real 0 0 Pressure Diffusivity Diffusion coefficient of pollutant Real 0 0 Ka Adsorption rate constant of pollutant Real 0 0 Kd Desorption rate constant Real 0 0 Density Density of pollutant Real 0 0 Initial Vol Initial pool volumelinitial paint thickness Real 0 0 Thickness Initial area Initial pool arealinitial paint area Real 0 0 4 4 2 Initial status and structure of pipelines tanks for gas releases For gas releases from pipelines tanks the pollutant name and molar mass are provided following the keyword POL DES and the other parameters following the keyword GAS REL The additional input data are release type pipeline or tank initial total mass in the pipeline tank initial gas pressure of the pipeline tank initial gas temperature initial gas volume of the pipeline tank pollutant heat capacity at constant pressure pollutant heat capacity at constant volume puncture area discharge coefficient length of pipe pipe friction factor pipe diameter and heat of vaporization of the liquid Keyword amp GAS RELease Hea
62. n Table 4 Integer 1 TWE Internal east surface temperature Real 20 0 TWS Internal south surface temperature Real 20 0 TWW Internal west surface temperature Real 20 0 TWN Internal north surface temperature Real 20 0 TWC Internal ceiling surface temperature Real 20 0 TWF Internal floor surface temperature Real 20 0 Rach Air change rate of the room Real 0 0 Uop Air velocity at the nozzle opening Real 0 0 Widz Width of the nozzle opening Real 0 0 22 No ofa Heat convection Formula for heat convection coefficient a configuration Wall surfaces Ceilings Floors correlation 1 Adiabatic 0 0 0 2 Steady state CIBSE CIBSE CIBSE natural convection 3 Natural convection Alamdari and Alamdari and Alamdari and excluded heating Hammond for Hammond for Hammond for devices vertical surfaces horizontal horizontal surfaces surfaces 4 Natural convection Khalifa and Khalifa and Awbi and caused by heating Marshall for Marshall for Hatton for devices vertical surfaces ceilings floors 5 Ceiling jets in Fisher for walls Fisher for Fisher for floors isothermal rooms ceiling 6 Free horizontal jets in Fisher for walls Fisher for Fisher for floors isothermal rooms ceiling 7 Mixed convection Awbi and Hatton Awbi and Awbi and for walls Hatton for Hatton for floor ceiling 1 CIBSE 1988 2 Alamdari and Hammond 1983 3 Khalifa and Marshall 1990 4 Fisher 1995 5 Awbi and Hatton 2000
63. n of new features and re named COwZ CIF The COMIS 3 0 User s Guide gives a detailed description of data input Feustel and Smith 1997 The general structure of the input file and the modifications for COwZ are shown in Figure 9 Simulation options New flow paths e thermal energy e pollutant source emission Output options e emission rate liquid pool area and tank pressure Problem parameter definition e maximum number of iterations and relative error for thermal energy simulation e jets E e thermal plumes Problem description e thermal boundary layers e horizontal flows e vertical flows e links between standard sub zones and thermal boundary layers e links between standard sub zones and thermal plumes HVAC Standard and mixed sub zones Zones Room thermal description iii Room numbers Initial areas of source and sink heat sources and identification of heat Links e room number and convection status for dimensions six wall surfaces e six surface heat convection status and wall temperatures Schedules P Cp Values Parameters of Envi Food nvironment condition pollutant Description of gas releases a R e structure of pipelines tanks e initial Meteo description e Initial status of volume thickness pipelines tanks e content e initial area Pollutant description e vapour pressure e diffusivity e structure of tanks e absorption Occupant description e Initial
64. ne3 co 4 linel flag line2 Pminimum line4 line7 datapairs last line is always th filter lin 1 Flag izi l lt use Polynomial C0 C5 2 use Data pairs to calculate C0 Cni Flag Exp Polynom RhoI NfI Cm kg m3 rpm kg st1Pa Exp n Intercept m3 s Slope m3 s Pa Pmax Pa cl m3 s Pa Pa2 13 I Pa4 Pressur Ris vs FlowRate 4 Fan Curv los Data Pair Pa m3 s minimum 3 Pairs s Pa m3 maximum 4 Lines maximum 12 Pairs s Pa m3 s 8 Filter 1 gt Filter 2 Filter 3 Filter 4 32 amp DS DUCT Straight 8 1 Ducts straight part one Fitting I Diaml Diam2 Rough Lduct Zeta Type Paraml Param2 m m mm m I acc t acc t 2 Specific Duct Leakage kg s m2 1Pa 5 Cs ExpN 3 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 E gt DF DUCT Fitting 9 Type Name No of Param Parameter Description Paraml Param2 1 Entry Round 2 t D L D 2 with Screen 1 Screen 3 Hood 2 Type Angle Round 1 Rectangular 2 4 Exit Round 5 with Screen 1 Screen 6 Elbow 1 r D d
65. ng MB Arithmetic mean of building mean age of air RB RMS of building mean age of air NB nominal time constant of building mean age of air EB ACH efficiency of building LB Ventilation heat loss energy of building The new output options are TZ Each zone temperature PT Pressure of storage tanks or pipelines GA Source emission rate of indoor pollutant PA Area of liquid pool 4 2 3 Problem control parameter definition Keyword amp PR CONTrol parameters OPTIONAL DATABLOCK Header 2 use old No Pressure Max Relative error Max Number pressure Initialization Number of for thermal of Iterations 0 zero pressure O lt Lin initial Iterations simulation allowed for 1 use previous I No initial allowed for convergence air flow 2 recalculateair density thermal after every iteration step simulation UseOPz Nolnit Nitt EpsTR Miter The added parameters are Nitt and EspTR which are described below Parameters Description Input Format Default value Nitt If a solution is not found before the Integer 10000 given number of allowed iteration steps the program breaks and reports that the output for this step may be wrong EspTR Temperature relative tolerance per Real 1 0e 5 zone 4 3 Network description 4 3 1 Air flow components MAIN Keyword amp NET AIR flow components 4 COMIS allowed prefixes are CR FA
66. oject to add all the files to the program subzone 2 to build subzone exe under menu Build click Build subzone exe which includes linking and compiling the program and 3 to execute subzone exe under menu Build click Execute subzone exe and get results To use COwZ under other operating systems users should refer to the installation and compilation of COMIS COMIS 3 0 User s Guide edited by Feustel and Smith 1997 To begin working with COwZ it is recommended that users read this User s Guide for the new features and the User s Guide for COMIS 3 0 for those features which have not been modified It is strongly recommended that users first become familiar with COMIS before using COwZ We have not attempted to include here all the background knowledge and experience needed to use COMIS After compiling COwZ users need to modify the input file which is described in the next section There is usually no need to recompile the program for different studies 4 Input data description and input format 4 1 Structure of input file The designers of COMIS paid special attention to data input and output methods Feustel and Smith 1997 Although there are several enhanced versions of COMIS with graphical user interfaces in this study the basic version 3 0 of the program written in Fortran 77 with text based inputs and outputs is used The input file of COMIS a simple text editor based input file was modified for the implementatio
67. on options Simulation Option Keywords One keyword per line Keywords may be preceded by NO VENT ilation POL utant HEAT flow CONC entrations INPUT echo DEFAULT echo SET echo UNIT SSPILL liguid MSPILL VOC coating GAS release LIO liguid release SCHED time lt time gt START time CONT REUSE STOP time KEEP VENTILATION POLUTANT HEAT 29 STARTtime 20020611 00 00 00 STOPtime 20020612 00 00 00 amp PR OUTPut options 3 Output Option Keywords One keyword per line Keyword Link Zones Define data to be Stored append S for Storing each value PZ TZ MZ FZ WA En Sn GA Zones Pressure zon FL Links Flow link Zones Temp zone TL Links Temp link Zones Moisture zone SL Links Status Zones Flow zone HA Outdoor Humidity Velocity TA Air Temp Zones Concentr On Zones Poll Source Zones Poll Sink PE Points Wind Pressure for Gas n 1 lt n lt 5 PT lt Pressure of storage tank Source emission rate PA Humidity zone Infil zone ACH Age of air zone Ach index zone area of liguid pool Flow matrix building Arithmetic men of building mean age of air RMS of building mean age of air nominal time constant of building mean age of air ACH efficiency of building Ventilation heat loss energy of building Outdoor infil building Outdoor ach building
68. one 47 zone 48 zone 49 zone 50 zone 51 zone 52 zone 53 zone 54 zone 55 zone 56 zone 57 zone 58 zone 59 zone 60 link 28 23 23 687 176 Dod ve SF sd Sel i mj nr name type h 1 hf 2 hf 3 hf 4 hf 5 hf 6 ntf hf 8 hf 9 hf o hf hf hf 0 1 2 3 hf 14 hf 15 6 7 8 9 0 hf hf hf hf o hf 2 DO TAU EW N HO 0 JOU B W N HH N Kg P ng Hj taj kaj gd faj Grp Grp mm Pj hf 1 hf 2 hf 3 hf 4 hf 5 hf 6 hf 7 hf 8 h 9 hf o hf o hf hf hf hf hf o hf hf hf hf 2 S BS O O BJ OOO B B BI 0 I I OO OO O M UT U a 688 688 688 1 5116 176 176 176 176 176 176 176 176 176 176 870 870 869 870 869 869 870 870 870 869 869 870 0 1 2 3 4 5 6 7 8 9 0 977 978 978 979 976 SCART 978 979 977 978 978 979 07 06 06 05 07 06 05 07 06 05 from typ zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn zn 585 513 954 292 689 168 804 785 sal 1 3 813 813 809 694 176 820 s795 192 093 045 065 093 052 050 089 188 086 024 052 033 164 279 341 020 LO O O LO LO O O O O O LO LO LO LO LO N N NN N N NN N N ND DN N K KI KINO UO NI IYO IG AG 259 212
69. p Meh pih 5 where Cis the discharge coefficient and p refers to the density of incoming air A is the cross sectional area and g is gravitational acceleration p and h are the pressure and height of the sub zone respectively Air flow rate g x at interface x for the jet can be calculated by equation 6 q x 0 254 E 6 where by is the height of the diffuser In this section the focus is on calculating the air flow rates for the non flow element air As shown in Figure 4 for mixed sub zone 2 the non flow element part will have air mass transfer with mixed sub zone 7 and 3 in x direction and with standard sub zone j in z direction It also has air mass transfer with two adjacent standard sub zones in the y direction The calculations of these air flow rates are described below From equation 4 the air flow rate m between the non flow element air of mixed sub zones 2 and is ma Cy PA 3 P1 pala e 7 17 P3 and Aj AY x AZ loh x1 h x 0 16x Similarly the air flow rate m23 between the non flow element air of mixed sub zones 2 and 3 is Mp3 C PAy3 Po pre 8 27 P3 and A z AY x AZ l h x h x 0 16x In the y direction when the depth of mixed sub zone 2 AY is larger than Zo the air flow rate between the non flow element part of mixed sub zone 2 and standard sub zone i ma can be estimated by eguation 4 where the interface area is given by see F
70. ption Parameters Description Input Format Default Height Height of the interface Real 0 5 Width Width of the interface Real 0 5 Cd Air flow discharge coefficient Real 0 83 4 3 6 Vertical flow Keyword amp VF air flow between two vertical standard subzones Header Height Depth Width Cd Hi Hj m m m m Pa s m m Example input VFvf 1 0 2 1 1 0 5 0 83 0 2 0 8 Description Parameters Description Input Format Default Height Height of zone Real 0 5 Depth Depth of zone Real 1 0 Width Width of zone Real 0 5 Cd Air flow discharge coefficient Real 0 83 Hi Height of zone i Real 0 5 Hj Height of zone j Real 0 5 4 3 7 Link between standard subzone and thermal boundary layer Keyword amp BL air mass balance link between subzone and thermal boundary layer Header Height Depth Width Cd Tw Z11 Z2 m m m m Pa s K m m Example input BLbl 1 0 5 1 0 0 5 0 0024 30 0 0 5 1 0 Description Parameters Description Input Format Default Height Height of thermal layer zone Real 0 5 Depth Depth of thermal layer zone Real 1 0 Width Width of thermal layer zone Real 0 5 Cd Air flow coefficient Real 0 0024 Tw Temperature of wall Real 20 0 ZM Bottom section distance from the leading edge Real 0 0 of thermal layer Z12 Top section distance from the lead
71. rer and Weber 1995 A general outline of how COMVEN works can be found in the Programmer s Guide of COMVEN Dorer and Weber 1995 More detailed information is given in the source code and especially in the respective comment lines To extend COMIS for the new technigue a number of modifications to COMIS were made 1 the input file was extended 2 three significant new capabilities were added a sub zonal air flows within rooms b heat transfer modelling c pollutant source emission modelling 3 the database was modified to contain new links pollutant properties etc and 4 the output files were extended COMERAL SHELL System programs Spreadsheet Graphics Text processing Database Air flow components Wind pressure coefficient Input file Output file Graphic file CIF COF CGO COMIN COMVEN COMOUT Interactive Air amp contami Graphical Input program nant transport postprocessing Figure 6 The general structure of COMIS adapted from Dorer and Weber 1995 COwZ SHELL System programs Spreadsheet Database Air flow components Graphics Wind pressure coefficients Text processing New links Pollutant properties op i m CIF Emission rates etc CGO COwZ Air amp contami COMIN nant transport COMOUT Graphical postprocessing Interactive Input program Heat transfer Source emission Figure 7 The general structure of COwZ
72. roblem It could easily be incorporated into building thermal analysis software and multizone infiltration models Zonal models are always based on two main assumptions that we are able to predict the main driving flows boundary layer jet or thermal plume and we have a sufficiently good empirical knowledge of these phenomena to calculate their characteristics There is still much work needed to improve knowledge about these Current zonal models are only applied to single rooms with a limited set of driving forces It would be a significant step forward to add the potential to pre dict varying conditions inside one or more rooms to a multizone model which predicts conditions throughout a building and accounts for the influence of the external atmosphere Multizone models include such boundary and driving conditions as ex infiltration through windows doors cracks and ventilation systems It would be necessary to enhance any candidate zonal model to cope with all of the potential flow paths in a parent multizone model COMIS Conjunction Of Multizone Infiltration Specialists is a multizone air flow and contaminant transport model with a modular structure developed by an international collaborative research effort under the auspices of the International Energy Agency It is the most popular public domain multizone model and there is obvious potential for it to become a standard for multizone air flow modelling COMIS has been chosen as the starting
73. t SSPILL liguid MSPILL VOC coating GAS release LIQ liquid release Calculation with thermal simulation model COMIS 3 0 only allows the calculation of ventilation and concentrations Pollutants are taken into account if no source emission model is given the emission rate is a constant or varies with a factor Source emission modelling for single component evaporation from a liquid pool Source emission modelling for multi component solvent evaporation from a liquid pool Source emission modelling for VOC emission from paint Source emission modelling for gas release from storage tanks or pipelines Source emission modelling for liquid release from storage tanks or pipelines 4 2 2 Problem output options Keyword amp PR OUTPut options Header Keyword Link zones Define data to be stored append S for Storing each value or T for mean values for the Total simulation period PZ Zones Pressure zone FL Links Flow link HZ Zones Humidity zone TZ Zones Temp zone TL Links Temp link IZ Zones Infil zone FZ Zones Flow zone SL Links Status AZ ACH WA Wind Velocity HA Outdoor Humidity MZ Zone Age of air zone Cn Zones Concentr TA Air Temp EZ Zones Ach index zone Sn Zones Poll Sink Qn Zones Poll Source PE Points Wind pressure PT Pressure of storage tank GA Source Emission rate PA Area of liquid pool HZ Humidity zone IZ Infil zone FB Flow matrix buildi
74. uracy of user s requirement gradients of temperature and or concentration and type of the sub zone standard or flow element sub zone For flow element sub zones usually the temperature gradients are larger for example a thermal plume or a thermal boundary near a hot wall surface small sub zones are needed but large enough to contain the flow element For a thermal boundary flow element sub zone the size is between 0 1 0 5m For a thermal plume the width of the sub zone is determined by the width of the thermal plume usually 0 1 1 0m For a jet the size of the sub zones is determined by the local height thickness of the jet flow usually 0 1 1 5m For standard sub zones the temperature and concentration gradients are usually smaller without pollutant sources the size is between 0 25 1 5m If pollutant source presents smaller sub zones are needed 2 2 Implementing sub zones in COwZ In COwZ a building is described by a set of nodes interconnected by flow paths links Each node zone or sub zone represents a room or part of a room COwZ has three types of zone undivided rooms standard sub zones and mixed sub zones Undivided rooms have been addressed in COMIS This section will focus on the implementation of sub zones in COwZ In a sub divided room two types of sub zone are used standard sub zones and mixed sub zones Models have been developed to describe flows between adjacent standard and mixed sub zones Ren
75. w the keyword L O REL The additional input data are cylindrical tank types vertical or horizontal tank diameter length of the horizontal tank puncture area discharge coefficient liquid density initial liquid mass remaining in the tank and the initial gas pressure of the tank Keyword amp LIQ RELease Header Tank Tank Tank Puncture Discharge Liquid Initial Initial Type Diameter Length Area Coeff Density Mass Pressure 1 m m Lie E kg m ke Pa Example input 1 2 0 60 0 0001 0 5 1 2 2 0 13000 26 Description Parameters Description Input Format Default Tank type Vertical 1 horizontal 2 tank Integer lor 2 1 Tank diameter Diameter of the tank Real 1 0 Tank length Length of the tank Real 1 0 Puncture area Area of the releasing puneture Real 0 0 Discharge Discharge coefficient of a pollutant Real 0 8 coefficient from a puncture Liguid density Density of the liguid pollutant Real 1 2 Initial mass Initial liquid mass remaining in the Real 1 0 tank Initial pressure The initial gas pressure of in the tank Real 0 0 3 Input Example To make things somewhat clearer this section uses an example based on a real experimental room with forced air ventilation which is shown in Figure 4 The measurements were performed by Castanet 1998 at INSA de Lyon France The room was 3 1x3 1x2 5 m and modelled by

Download Pdf Manuals

image

Related Search

Related Contents

SILICONE MULTI TOOL  Panasonic BH-606 Bluetooth Headset User Manual  j chabas  MF-40S  PET2+ Rev 1-2 manual format  und Bedienungsanleitung DuoFern Aktor (9473/9474)  "取扱説明書"  安全のために必ずお守りください    MANUALE DI ISTRUZIONI PER L`USO E LA MANUTENZIONE USE  

Copyright © All rights reserved.
Failed to retrieve file