Home
User Manual - Spiral - Imperial College London
Contents
1. SUBDIVLSION OF ELEMENI 305 NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n31 0 000000E 00 0 360000E 04 nac O NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e54 n31 Jol qdp2 311 n31 W S S NUMBER OF IMPERFECT ELEMENTS 0 0 0 64174000E 03 2 0 101E 06 4 E SUBDIVLSION OF ELEMENT ERRAR K NUMBER OF NODES CREATED gt ll NOD NAME COORD S X Y RELATIV
2. PHASE NUMBER 1 TYPE LOAD CONTROL INCREMENT FACTOR 0 100000 01 NUMBER OF STEPS 295 VARIABLE LOAD OUTPUT FACTOR LEVEL CONV NORM ITERATIONS 0 40000000 01 0 Oe dL 07 1 2 0 80000000 01 0 0 242E 07 L S 0 12000000 00 0 1 4 0 16000000E 00 0 0 651E 07 1 5 0 20000000 00 0 0 114 06 1 6 0 24000000 00 0 0 209 06 1 0 28000000 00 0 0 407 06 1 8 0 32000000E 00 0 0 854 06 1 2 0 36000000 00 0 Q 135E LI 2 10 0 40000000E 00 0 O S9155 11 2 11 0 44000000E 00 0 2 12 0 48000000E 00 0 Us 2 13 0 52000000E 00 0 0 414E 08 2 14 0 56000000ET00 0 0 408E 07 2 15 0 56800000ET00 1 0 460E 06 1 16 0 56960000ET00 2 6 1 17 560992 000E 00 3 0252 06 0 18 0 57024000E 00 3 0 9 T4E 06 0 Phase 1 terminated PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION Y CONTROLLED NODE 4 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVEL CONV NORM ITERATIONS 19 0000522h Ue 5103213 0 O 98 06 Plastic hinge formed for element 2 at node 4 20 99099 9 191 5m 9I 0 567 93100ET00 0 0 3038 07 Plastic hinge formed for element 1 at node 4 21 141 0 56085432E 00 0 0 228 06 160 ANON UNUM qv INN OS ae eo NUMBER OF NODES CREATED 1 NOD NAME COORD
3. M NUMBER OF IMPERFECT ELEMENTS OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OO OO OO OO OO OO OO OOO O 45020000 03 45030000 03 45040000 03 45050000 03 45060000E 703 4507 0000 03 45080000 03 4909000064035 45100000 03 45200000 03 45300000 03 45400000 03 45500000 03 45600000 03 45 700000 03 45800000 03 45900000 03 46000000 03 46010000 03 46020000 03 46030000 03 46040000 03 260500008605 46060000 03 46070000 03 46080000 03 46090000 03 46100000 03 NODES CREATED 1 ELEMENTS CREATED COORD S X Y BO BO N BO BO BO BO BO BO BO ps pe pq pg P P Roh B BO BO BO BO BO RELATIVE TO END 1 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OOO OO OO O 0 000000 00 2 ELEMENT qdp2 0 18 7E 04 298 07 4 348 05 29 9507 420E 04 246 007 1 301804 2 929 T 21112 92 LoE 04 a ov LE 04 s e t 1918 04 440E 03 390914 434104 1398 5 24 04 L3 185 04 4 031904 240E 04 os 0 SUBDIVISION OF ELEMENT 40 NOD NAMES inz4 n26 O O O O O O O O O OQ 0 400000E 03 n26 n25 OF SUBDIVIDED ELEMENT
4. NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e45 cbp2 n24 n3 44 qdp2 n5 n2 4 p p NUMBER OF IMPERFECT ELEMENTS 0 246 0 49200000E 01 0 0 3055 04 1 0 0 49300000E 01 0 O 2555 04 1 247 0 49400000 01 0 583E 04 1 0 0 49500000 01 0 L 248 0 49600000ETOl 0 Oea EU 1 0 0 49700000E 01 0 0 424E 04 1 249 0 49800000 01 0 2225 04 1 0 0 49900000 01 0 9 1 420 0 50000000 01 0 0 434 04 200 9 6 Steel frame subject to explosion and fire loading This example illustrates the considerable influence of explosion on the fire resistance of steel frames even when the extent of structural damage due to explosion 15 relative small w kN m Y Y Y Y Y 9 y f f vg v 4m w kN m 4m 6m 6m 6m Figure 9 6 Steel frames subject to explosion and fire loading There are going to be used elasto plastic cubic elements t
5. 0 0 64172000E 03 2 0 317E 03 3 SUBDIVISION OF ELEMENT 48 K NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n29 0 000000E 00 0 320000 04 WW k S I NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 650 cbp2 n29 311 e49 qdp2 n2 8 n2 9 NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk xk xk k k k k k k k k k k lt k k lt k k xk k k k k k k k xk xk lt lt lt k lt lt lt lt lt lt lt lt lt lt lt lt k xk Xk X X X X X XK KK xk xk xk k xk x x x x x x x x lt 0 0 64173000E 03 2 0 392 07 4 EL ERRE C E SUBDIVISION OF ELEMENT 49 NUMBER OF NODES CREATED A ll NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n30 0 000000E 00 0 400000 03 Pe a a a SS a SS SS gt NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES ebp2 28 n30 52 qdp2 n30 n2 9 ppm 2 Z t FV NUMBER OF IMPERFECT ELEMENTS 0
6. NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 625 cbp2 3 n13 24 qdp2 n13 9 NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk xk xk k k k k k k k k ok k k k k k k k xk xk k k k k k x x x x lt lt lt k lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X Xk KK xk k xk k xk x x x x x x x x lt P c E CE SUBDIVISION OF ELEMENT 1 8 NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n14 0 000000E 00 0 333333E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 1 25 cbp2 4 n14 626 qdp2 n14 n10 a NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk k k k k k k k k k k lt k k k k k k k xk x x k k k k k x x x x x lt lt lt lt lt lt lt lt lt lt lt lt lt k k Xk X X X X xk X KK k k k k xk x x x x x x x x lt 0 225000005E 01 0 O 155SE 04 1 LLS 24600000E 01 0 0 814
7. NUMBER OF ELEMENTS CREATED 4 ELM NAME TYPE OF ELEMENT NOD NAMES Fel cbp2 1 1 162 inl 12 5 cbp2 n2 n3 4 n3 2 NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk x k k k k k k k k k k k lt k k k k k xk xk xk k k k k CK x x x x lt k lt lt lt lt lt lt lt lt lt lt lt lt k k k X X X k X X xk k k k k xk xk x x x x x x x lt xxx SUBDIVISION OF ELEMENT 2 A k k ek K NUMBER OF NODES CREATED 4 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT x n4 BOG 0 000000 00 2415 0 0030565151 0 0 000000 00 i 0 103636 04 0 000000 00 gt 175 n7 Qs l138182E 04 0 000000 00 NUMBER OF ELEMENTS CREATED 5 ELM NAME TYPE OF ELEMENT NOD NAMES pes cbp2 2 n4 4 5 cbp2 n5 06 cbp2 n6 n7 69 cbp2 n7 aa Yn I s n YP n rh or z s NUMBER OF IMPERFECT ELEMENTS a 0
8. SUBDIVLSION OF ELEMENI 3 NUMBER OF NODES CREATED 3 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 8 127333 03 0 000000E 00 n9 382000 03 0 000000E 00 n10 764000 03 0 000000E 00 NUMBER OF ELEMENTS CREATED 4 ELM NAME IYPE OF ELEMENI NOD NAMES e10 4 08 dell GDDZ 08 09 e12 09 010 e13 qdp2 n10 3 A as E NUMBER OF IMPERFECT ELEMENTS 0 5 0 10000000E 00 0 0 888E 07 3 SUBDIVLSION OF ELEMENT 4 NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n11 0 509333 03 0 000000E 00 se NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES el4 cbp2 n3 n11 615 cbp2 n11 2
9. NUMBER OF ELEMENTS CREATED 2 194 ELM e38 37 NUMBER OF IMPERFECT ELEMENTS ck k k k k k k k k Kk lt k k k k k xk x k k k k k k lt lt xk lt k lt lt k lt lt lt X lt lt lt lt lt lt k Xk Xk X X X X X X KK xk k k KK xk x x x x x x x x lt 120 0 121 0 122 0 T 23 0 124 0 Laa 0 126 0 127 0 128 0 129 0 130 0 131 0 1352 0 133 0 134 0 L 55 0 156 0 137 0 1 30 0 t39 0 140 0 141 0 142 0 143 0 144 0 145 0 OO COCO CO CO CO COCO CO CO CO CO CO CO CO CO CO COCO COCO CO CO OO OO OO COCO OO OO OO OO OO OO OO OO OO O QC QO O O O c ELEMENT qdp2 0 24000000 01 24100000 01 24200000 01 24300000ET01 24400000 01 24800000 01 24600000 01 24700000 01 24800000 01 24900000 01 1 29100000ET01 290200000ET01 2090000DETOT 25400000 01 429600000ET01 220 7000 00E O0 200 0 0000E 701 z299DODOUOET Od 26000000 01 26100000ET01 260200000ET01 A203900000E TOI 26400000 01 01 26600000 01 26700000 01 000000001 20900000ET04 27000000ETU 241100000ET 0l 21200000E
10. gt b gt d Unconfined d W D W Confined Section rcts 55 rcgs Description General purpose reinforced concrete I or T section No of materials 1 No of dimensions 2D analysis 6 2 Reinforcement layers Dimensions Bottom flange width b Bottom flange thickness ta Top flange width gt Top flange thickness t Web depth d Web thickness t 2D analysis Ai di for each reinforcement layer Application General reinforced concrete I or T sections Restrictions Symmetric section about the y axis dj 1s the distance of reinforcement layer bar 1 from the bottom fibre of the section 56 Section rcgs 57 cslb Description No of materials No of dimensions Dimensions Application Composite floor slab section 4 specified in this order Deck parallel to the rib Deck perpendicular to the rib Reinforcement Concrete 12 Depth of cover t Depth of rib h Rib geometric ratio r Thickness of steel deck ta Reinforcement area per unit length in local x direction tx Location of reinforcement in x direction above below reference mid plane d Reinforcement area per unit length in local y direction ty Location of reinforcement in y direction above below reference mid plane d The remaining 4 dimesions are for two additional reinforc
11. 0 Us 43100000 03 43200000 03 1 0 1 0 214 130 05 O O O O O O O O O O O O O O O O 423300000 03 423400000 03 43500000 03 43600000E 03 43700000 03 43800000 03 43900000 03 44000000 03 EB gt O O O O O O c 193 010 26 06 LOIE DS AU SB S EU 2205506 U SUBDIVISION OF ELEMENT 36 OPPAPPAPAPP NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n23 02000000800 0 200000 04 i poc NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES cbp2 23 n21 qdp2 n22 023 I NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk k k k k k k k k k k k k Kk k k k k k k k k x k k k x x x x lt x k lt lt k lt lt lt lt lt lt lt lt lt lt k xk X X X X X X X xk k k k k k xk x x x x x x lt 0 0 44100000 03 1 2 0 0 44200000 03 1 0 0 0 44300000 03 1 0 0 0 44400000 03 1 h s sd 0
12. 4 i Fully confined Unconfined h h cl d 7 Partially confined Y Y gt f 5 gt cl b c2 Section fnci 49 flxw Description No of materials No of dimensions Dimensions Application Restrictions Flexural wall section 4 specified in this order Reinforcement Unconfined region Partially confined region Fully confined region 2D analysis 5 2 Reinforcement layers on one side of z axis 3D analysis 5 3 Reinforcement bars in one y z quadrant Wall width B Confined width b Wall thickness Confined thickness t Depth of fully confined region 2D analysis for each reinforcement layer on one side of the Z axis 3D analysis A y z for each reinforcement bar in the positive y z quadrant Symmetric flexural walls Section is assumed symmetric about the y z origin hence only one side of the reinforcement need to be specified 50 Partially confined Unconfined 2 Fully confined B a gt gt C C Section flxw 51 recs Description No of materials No of dimensions Dimensions Application Restrictions Reinforced concrete column section 3 specified in this order Reinforcement Unconfined region Confined region 2D analysis 4 2 Reinforcement layers on one side of z axis 3D analysis 4 3
13. Element configuration Element forces before and after deflection Configuration and forces in local system of element type qph2 65 qdp2 Description Quartic elastic 2D beam column element utilising automatic q mesh refinement Subdivision pattern Relative lengths in ratio form of zones where inelasticity 1s checked for automatic mesh refinement Nodes 2 Imperfections Mosi Can be specified Characteristics Geometric and material nonlinearities Large displacement and beam column effect of perfect imperfect members One element type qdp2 is usually sufficient to represent a whole member Element gdp2 subdivides into elements cbp2 specified under cbp2 grp name if inelasticity is detected in the zones defined by the subdivision pattern pat name Accuracy increases with the number of sub elements type cbp2 specified in the subdivision pattern After subdivision elements cbp2 are inserted in the inelastic zones while the elastic zones are kept as element type qdp2 Application Adaptive modelling of inelastic members in plane frames Restrictions Applies only to cross sections with materials 801 stl2 amp 543 Group header cbp2 grp name Specifies the group identifier of elements type cbp2 used in automatic mesh refinement pat name An identifer referring to a subdivision pattern in the patterns module 66 t VosL Initial imperfection Element c
14. 9044 9698 0 0 32469935E 00 18089940 01 Oe 3256526 18089940 01 18089940 01 0 220763125 400 closed for element e3 at 18089940 01 32665710FE 00 18089940 01 90449698 01 335322902BT00 90449698 01 0 34162424 00 90449698 01 O 249067395400 90449698 01 35653912FE 200 90449698 01 0 3653 7081ET00 18089940 02 0 38688104 00 18089940 02 0 41356265E 00 18089940 02 0 44388832 00 18089940 02 Vet JT IZSZOCUETOU formed for element 4 at 18089940 02 0 5008 092 GL SEOUL 0 51444736 00 30179879EF01 05400 09595EF00 907 JEFO O 52 735930E 00 0 52866515 00 14552720800 0 53110568E 00 21245509799 3 10 90242272 TOU 125097598700 0 53341324 00 201790 0 53917 749E 00 617567 E 0O1 0 54493498E 00 162 O O O O O O O O O node 4 4 O O O O O O O node 4 N BFS NS NS Fa Fa i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 6 v4 1958 006 ESUE UD 19806E 06 1T90E 06 84E 06 401E 06 924 09 198 10 d 13010 2098 06 664 06 L211E D 7 Se JL SS 015 1 41241907 940E 06 2238 06 946E 06 2348 05 0728 006 4234 8 006 00 215 1 5 0428 06
15. gt o ka ls 2 F 4 qaa a 0 8 M F M M F M yl 7 a x y plane b x z plane Stiffness parameters and forces in local system of element type Ink3 87 Inks Description Nodes Characteristics Application Restrictions Group header yA 3D link element linking 6 DOF to 5 DOF nodes 3 Geometric nonlinearity Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Beam to slab connection The second node is a 5 DOF node belonging to plate shell elements with only two rotational DOF s including csl4 elements stiffness parameters numerical or rigid values for each of the spring stiffnesses and k in this order ko N A M M F RS F lt lt N N F F yl a x y plane b x z plane Stiffness parameters and forces in local system of element type Inks 88 3 Description Curve types Parameters Nodes Characteristics Application Restrictions Group header 3D joint element with uncoupled axial shear and moment actions Models used for the joint force displacement curves specified for F axial amp shear and M M amp M moment
16. PH pH pP P PH PH H PH H P H PH mH pP m B 84 0 160900000BETOI 0 Dia621E 06 1 0 0 16900000 01 0 0 793 096 1 OD 0 17000000ETO0I 0 v0 105E 0S 1 0 O 17100000RTO0l 0 150 095 1 86 0 4 720000 0 0 147E 05 1 SUBDIVLSION ELEMENT 1 KN ae OS NUMBER OF NODES CREATED T NOD NAME COORD S X Y RELATIVE TO END 1 OP SUBDIVIDED ELEMENT inl 0 000000 00 WU p p p NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES Fel cbp2 1 1 qdp2 inl 3 pm a NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk KC k k k k k k k k k k ok Kk k k k k k k k k k k k k k xk k lt lt k k lt k lt lt lt lt lt lt lt lt lt lt lt k x X X X X X x X KK k k k k k x x x x x x x x lt SUBDIVLSION OF ELEMENT 2 ae A NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n2 0 000000E 00 0 333333E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES
17. OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO COCO OO OO OO OO OO OO OO OO OO OO OO OO O CO QC QC QO O O O O 112 J 15000005 401 IILTS000D0ET I 00H 122500000ETUI 125 00000 4 212 125000000ETUI L5290000ETO0I 109000005801 vd OO 14000000 01 2 4250000 L4900000ET0l 14750000 01 1 2000000ETO01 5250000401 pot L160000000ET I l02950000ET0l 16500000 01 16 7500005101 2 TO0000005 T01 L T2500005ETO 1 17900000ET0l 177200000 lL90000000ET L34300 00H 01 410900000ETU 19000000ETO0l 2500005401 2 191509000 01 20000000ET0l1 2022 0 4 2 0500000ET 0 x20 OUQQUERTOL S LODOOUOETOUI 24200000 1 219500000ETO0lI 22000000ET UI 22200 0DOETO 22900000ET0l saa 1500005201 250000005401 32 0000E701 23900000ETU 24000000 01 24250000 01 2 29 2 06000 OU 24750000E 01 20000000E 01 22029000001 429900000ETOI pedo DUET 26000000ETO0l1 206029500000ET 0l OO OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO COCO OO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO QC QO QO O O O OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO CO
18. Gbp2 2 n2 e4 qdp2 n2 4 E E E NUMBER OF IMPERFECT ELEMENTS 0 w lt lt K KC k k k k k k k k k k k Kk k k k k k k k k k k k k k k k k lt lt k k lt k lt lt lt lt lt lt lt lt lt lt k x X X X X X X X KK k xk k k k x x x x x x x x lt 0 0 17300000E 01 0 0 317E 04 1 87 0 17400000 01 0 0 374 04 1 SUBDIVLSION OF ELEMENI 1e2 NUMBER OF NODES CREATED NOD NAME COORD S XY RELATIVE END 1 OF SUBDIVIDED ELEMENT n3 0 000000E 00 0 333333 01 lr a NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE ELEMENT NOD NAMES i x cbp2 n3 3 5 qdp2 01 03 188 NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk lt k k k k k k k k k k k k lt k k k k k k KR k k k k k k x x lt KKK lt KKK lt lt lt lt lt lt lt lt k k X X X X X x X KK xk xk xk xk k x x x x x x x x lt SUBDIVLSION OF ELEMENT 4 NUMBER OF NODES CREATED NOD NAME COORDS X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n4 900032571
19. NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk lt xk k k k k k k k k k k Kk k k k k k k k k k k k k x xk x x lt k lt k lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X KK xk Kk k k x x x x x x x x lt 176 KAERRA EERE NUMBER OF NODES CREATED NOD NAME n12 NUMBER OF ELEMENTS CREATED ELM NAME 16 17 NUMBER OF IMPERFECT ELEMENTS 1 COORDS XXX SUIS IHF US 2 TYPE ELEMENT 2 ebpz 0 RELATIVE TO 1 NOD NAMES n10 n12 SUBDIVISION OF ELEMENT e13 n12 3 SUBDIVIDED ELEMENT 0 000000 00 X X x w lt Kk k lt k k k k k k k k k k k k k k k k k k k xk k k k k k k k lt lt k k lt lt KKK lt lt lt lt lt lt lt lt k xk xk X X X X x X KK x xk xk k xk x x x x x x x x lt 11 12 13 14 gt 16 17 18 20 21 22 23 24 26 2 28 22 20 21 33 34 25 36 22 38 22 40 41 42 43 44 45 OO CO CO COCO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OCO OC O O OO 12500000 00 15000000ET0U0 1 900000ETU00 2 22900000E T00 22000000800 2 00 0000E TOU 4 500DO0ODOOET OUO 32 29000000ETQU 37500000 00 40000000E 00 42500000 00 45000000
20. OO CO OO CO OO OO OO OO OO OO OO OO OO O c RELATIVE TO END 1 O 000000E 00 GUE 04 307E 04 3005 04 poe LESS 3 415 04 2 432 904E 04 473E 04 AU E03 406 TE 05 IESUS ZUE 06 22105 095 c D 0080 5 LO R O C 42E 04 LO R OS B 22025 07 99 06 483 07 Loon 04 9741 04 52 4104 E5504 140E 05 23 242 04 2213 05 90 2E B3 406E 04 ve LOBOS 2051 03 442 ED eZ LIES 259 2 02 S00E 04 2907 04 2241 6 04 me oro s2oon 04 90 74 14 TE 0A ed SUBDIVISION OF ELEMENT 304 Q F2 BN BN NS U A OQ NN Fa FR Fa F2 Fa OO OO OQ Fa P P SN BS BFS OWN BO TODO OO 0 400000E 03 OF SUBDIVIDED ELEMENT NUMBER OF ELEMENTS CREATED 2 ELM NAME IYPE OF ELEMENI NOD NAMES e47 301 n28 e48 qdp2 028 311 p ya c ML M cnc M NUMBER OF IMPERFECT ELEMENTS 0
21. 16 1100 066 es s 21 Led LU 22 24 380 0 I0 23 12 220 2 de de 6 0 24 12 190 20 20 24 380 0 O LO 26 1 21215 it Structural nod name 1011 6 286 10 806 10 1012 Doa 0 004 LO 266 10 008 10 1014 O 207 10 8687 10 LOLS Lx 0 003 10 1016 16 2 DD 10 it restraints GI reckon nod name E 21 1 5 it element connectivity grp name gpl elm name nod name L 21 1011 T 1 1 1 L 1 D f 11 11 1 LOLL 1 1 0 1 5 T I 2 1 Ll 12 1011 1 1 1 4 148 26 16 applied loading proportional type force nod name 1 it phases Load control increment path 70 k displacement control nod name dire Z 1 Z iterative strategy number 10 initial reformations step reduction 10 divergence iteration maximum convergence convergence criteria tolerance 0 l16 5 rorce ref 1 moment ref 1 T Output frequency 1 local end 1016 direction Z 14 increment 0 24 3 10 1 8 value 1 path k k 149 30 20 9 1 2 Structural behaviour The nonlinear analysis is undertaken using one element per member the response shown in the figure illustrate the ability of this method to predict the lowest buckling mode and to trace the associated post buckling path when an imperfect dome is consider
22. NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 4 4 Y qdp2 2 4 Ki gt E u x SR r NUMBER OF IMPERFECT ELEMENTS 0 lt k k k k k k k k k k k k k k k k Kk k k k k k k xk xk x x lt lt k k lt lt lt lt lt lt lt lt lt lt lt k Xk X X X X X x X X k xk xk k xk xk x x x x x x x lt 0 0 1750000U0RETOI 0 0 727E 04 L 88 O T I6000005 01 0 0 624 04 1 0 O 17700000ETO0l 0 0 327E 04 1 SUBDIVLSION OF ELEMENT de NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 15 0 000000 00 0 666667 00 Wl ee 2 eee I NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 2 inl n5 qdp2 n5 n3 NUMBER OF IMPERFECT ELEMENTS 0 SUBDIVISION OF ELEMENT e7 ERER eo NUMBER OF NODES CREATED i
23. 1 NOD NAME COORD S X XY RELATIVE END 1 SUBDIVIDED ELEMENT n9 0 000000E 00 0 366667E 01 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 9 5 u qdp2 S n 9 5 M NUMBER OF IMPERFECT ELEMENTS 0 UN us SUBDIVISION OF ELEMENT 4 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n10 0 Q0Q00000E 00 3566656 B I F rn r NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES qel9 cbp2 n10 6 m 18 qdp2 4 n10 W NUMBER OF IMPERFE
24. 4 Top and seat angels For top angle 12 parameters e diameter Area of bolt shank e Total depth of angle Angle thickness Gauge length of beam leg Bolt clearance Minimum bolt pitch Gauge length of column leg e Distance from bolt line to free edge of column leg e Distance from bolt line to free edge of beam leg e Angle radius Diameter of M16 bolts Similar dimensions are needed for seat angle 11 parameters except for the diameter of M16 bolts 5 Combination of top seat and web angles Connection parameters for this type are the combination of web angle and top and seat angles 78 Nodes Application Restrictions Group header 6 Finplate e diameter e Bolt hole diameter e Total depth of plate e Plate thickness Gauge length Width of plate Minimum bolt pitch Diameter of M16 bolts After the connection parameters are entered another 14 parameters are needed 11 parameters for the connected members followed by Poisson ratio number of layers and a flag to indicate preload or non preload condition of the bolts Connected member parameters are Column depth Column flange width e Thickness of column flange e Thickness of column web Column radius Bolt pitch in column e Distance from bolt line to free edge of column flange e Distance from bolt line to fillet of column flange Beam depth e Thickness of beam f
25. L3 ogODOUDOE 02 Ue 1904749005ETUZ 0 0 1205 06 20 RUUUUUUUE Uz 15436450 402 0 0 16 LE 06 21 OUODUDUDE OZ QU 70900179 0 203E5 006 22 80000000 02 25422100154 0 9260 06 PAS oUODOODOE 02 0 75264686 02 0 24 0000000E 02 gt 29 0 0 446 06 25 oQOODOUDOE 0Z 751011715 02 0 0 599E 06 20 oUODOOUOESOZ 0 75004682 02 0 21 90000000 02 0 74699260 02 0 6946 11 28 80000000 02 O 74796602RET02 0 2d 000O00000E 02 4670196E 02 0 0 106E 10 30 80000000 02 Us 490944 5E4702 0 O36 60H 11 OUUUUUUUREsUz 274451750502 0 0043811 32 QOUODOODOE 02 O 743 74309E702 0 4628 Li 29 830000000E 02 2742621 FOZ 0 34 80000000 02 0 74406363 02 0 49228 L 35 80000000 02 74607299ET02 0 0 075E 11 36 oUODUOUOE OZ 072047279102 0 3 s80000000E 02 727577090 7 02 0 80000000 02 0 1928 00 39 0000000502 758550543610E 02 0 192E 09 40 oOOO00000E 02 0 0 7258 09 41 0 96304 15 02 0 OM 0 80000000 03 290254219502 1 92020 09 0 80000000 03 201040292 02 1 205 07 0 3 27 092 1 Q 911LE 09 0 oGQOODODOOE 02 0 62206621802 1 0 155 08 0 oDODOOUDOER U 05201179215 02 1 92425 02 0 80000000 03 722113145502 1 0 496 08 0 80000000 03 722225021092 1 TORO 0 0 0V000000E 0s 102 1 67 0 06 0 80000000 0
26. 4 7 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES qph2 1 01 qph2 01 4 gt NUMBER OF IMPERFECT ELEMENTS 2 ELM NAME TH LI 1841 11 1 L525015E 02 QOl525991E 02 2 246847E 02 0 246847 02 183324 01 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n2 0 867206E 03 284399 04 ee NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES qph2 4 2 qph2 2 2 NUMBER OF IMPERFECT ELEMENTS 2 ELM NAME Ti e3 0 247064E 02 247064 02 0 183647 01 4 EU RU 0 064 w lt K Kk KC k k k k k k k k k k k Kk k k k k k k k k k k k k k k lt k lt k k lt lt lt lt lt lt lt lt lt lt lt lt lt k lt x Xk X X X xk xk k k k xk xk x x x x x x x x lt RELATIVE TO 1 0 537226 03 22 0 501529 39EXT00 Plastic hinge formed for element e3 at Plastic hinge formed for element e2 at Plastic hinge formed for element 2 at Plastic hinge formed for element e4 at 23 Do05510062E TQ00 02525146322 Plastic hinge formed for element 3 at 24 19062
27. 8 3 4 Contours This menu option offers the following facilities discussed with reference to the initiating buttons Select Entities This allows the selection of entities associated with specific element types for contour plotting Note that this facility may not be available for some element types Furthermore the plotting of contours in the Graphics Display Area is controlled by the specification under General Settings Customize This enables the specification of the number of contours the associated colours and the corresponding numerical range whether manual or automatic An automatic contour range is established from the maximum and minimum values of the entities to be plotted 145 8 55 View This menu option offers the following facilities discussed with reference to the initiating buttons Scale This specifies the displacement mode scale to be used Two independent scale values can be specified for plotting the deflected shape 1 mode 0 and the eigenvalue modes 1 mode gt 0 For large displacement analysis the scale for the deflected shape mode 0 is normally specified as 1 For eigenvalue analysis a large scale gt gt 1 may need to be specified to distinguish the mode shape from the initial undeflected shape Select This allows the selection of any of the three stored views in addition to the previous view By default the three views correspond to normal views of the 1 X Y X Z an
28. NODAL ENTITIES This covers nodal displacements velocities and accelerations The last two should only be requested for dynamic analysis ELEMENT ENTITIES This covers 1 local element entities e g element forces and local displacements which depend on the element type and 11 stresses and strains the availability of which depend on the element type ENERGY GROUPS This allows the selection of energy components determined for pre defined energy groups ARITHMETIC EXPRESSIONS This is general utility which allows combination of entities corresponding to previous line graphs in arithmetic expressions The following definitions are valid combinations referring to the Y coordinate of line graph 1 the X coordinate of line graph 3 and the Y coordinate of line graph 2 Y 1 2 X3 6 Y2 2 Y X3 2 1 Such expressions should be typed in the dialogue box One application of this utility is for generating entities representing relative displacements rather than absolute nodal displacements Delete Curves This allows previous line graphs to be deleted This may be desirable if a curve is no longer required especially if it was originally intended for providing X and Y coordinates to be manipulated by the ARITHMETIC EXPRESSIONS utility described above Clear All This facility clears the contents of the current plot This allows the construction of a new plot 139 8 2 4 Customize This option facilitates the customis
29. References Uniaxial Concrete model for long term analysis 6 Type of analysis 1 linear viscoelastic 2 brittle viscoelastic Time of casting days Compressive strength N mm Tensile strength N mm Relative humidity of environment 0 Notional size of member mm The long term concrete model can be employed for long term analysis Two different options are allowed Linear viscoelastic concrete Brittle viscoelastic concrete In the linear viscoelastic analysis both creep and shrinkage phenomena are evaluated according to the CEB FIP Model Code 90 The Volterra s integral equation is solved by developing the relaxation function in series of exponential functions and applying the trapezoidal rule In the brittle viscoelastic analysis the concrete 1s considered linear viscoelastic in compression and in tension before cracking In cracked phase a brittle law is assumed and both creep and shrinkage are not taken into account 1 CEB 1993 CEB Bull N 213 214 CEB FIP Model Code 90 Comit Euro Internetional du B ton Lausanne Switzerland 1993 2 Amadio C Fragiacomo M and Macorini L A New Effective F E Formulation for Studying the Long Term Behaviour of Continuous Steel Concrete Composite Beams Proceedings of the Fifth World Congress Computational Mechanics WCCM V July 7 12 2002 Vienna Austria Editors Mang H A et al Publisher Vienna University of Technology
30. This module defines coordinates of structural nodes structural nodal coordinates nod name x y z nod name A node identifier which can be any alphanumeric string X y Z Global nodal coordinates Notes 7 15 only required for 3D analysis Incrementation can be used with this module 115 7 3 8 Non structural nodal coordinates This module defines coordinates of structural nodes non structural nodal coordinates nod name x y z nod name A node identifier which can be any alphanumeric string X y Z Global nodal coordinates Notes 7 15 only required for 3D analysis Incrementation can be used with this module 116 7 3 9 Element connectivity This module defines the connectivity of elements in a mesh configuration element connectivity elm name grp name nod name s elm name An element identifier which can be any alphanumeric string grp name An identifier referring to one of the groups declared in the groups module nod name 5 The element end nodes defined in the structural nodal coordinates or non structural nodal coordinates modules Notes Incrementation can be used with this module 117 7 3 10 Imperfections This module specifies imperfection levels within elements of specific types imperfections elm name values elm name The element which has the specified imperfection values values The imperfection values for the element Notes 118 7 3 11 Restraints This module defines
31. Y displacement 1 1 5 Displacements figure 9 5 2b Displacements of two storey The deformed shape given by ADAPTIC 1s the one shown in the figure where could be seen that the main effect of the earthquake is a translation of the structure figure 9 5 2b Deflected Shape of two storey 184 9 5 3 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 9 5 LO 6 12 4 Lo 2 MAXIMUM FRONT NODAL 4 ADDITIONAL FREEDOMS 0 VARIABLE LOADING CURRENT OUTPUT TIME LEVEL CONV NORM ITERATIONS 0 0 0 14 7 060 0 1 0 20000000E 01 0 Os SOE 06 0 0 30000000E 01 0 0 190E 05 0 2 0 40000000E 01 0 O ZHU D 0 0 0 S00000005 01 0 O 516E 05 0 0 000DUDDOE Q T 0 0 0 0 70000000E 01 0 Je L26505 0 4 0 80000000 01 0 2 95 0 0 0 90000000E 01 0 0 261 04 0 9 0O 10000000ETOU 0 0 449E 04 0 0 O II0DODUOESTUO 0 O 022i DA 0 6 0 12000000E 00 0 0 750 04 0 0 0 13000000E 00 0 0 795E 04 0 14000000ET00 0 04 0 0 0 15000000ETUO 0 0 485 04 0 8 0 16000000 00 0 0 0 0 17000000 00 0 0 509 04 0 9 0 18000000 00 0 0 6 092 L 0 0 1
32. amp 2 0 5 155 55 155 53 Thermal strain and temperatures O unused T Up 1 55 055 Requires the specification of the compressive strength the peak compressive strain the limit compressive strain at zero stress the thermal strain and their variations with temperature Note that and rs can be greater than 18 Stress A Strain Material model con6 19 9 Description No of properties Properties Application Restrictions Rotating crack elevated temperature model for concrete with linear compressive response 25 Young s modulus and temperatures ts Ls Possion s ratio and temperatures Vo 1 L 1 Tensile strength and temperatures f T D T to Softening slope and temperatures D L Thermal strain and temperatures Emp L I Plasticity based model of concrete taking account of tensile cracking and elevated temperature 20 Translation of yield surface r cracking in principal direction 1 E E p 4006 Tensile yield surface principal plane Post craking softening response E v f E Y T n _ T T T T T Material model con9 10 Description No of properties Properties Application
33. u o X F x w lt Kx K K x k ck k k k k k k k xk k lt k k k k k k k xk k k k xk k x x x lt lt k lt lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X KK xk xk xk k x x x x x x x x x lt O O O O O O O O O O O O O O O O O O O O O O O O 46110000E 03 sA6LZ0000ET03 16150000ET025 46140000 03 46150000 03 46160000 03 46170000 403 46180000 03 46190000 03 46200000 03 46300000 03 46400000 03 P BO O O O O O O O O O O O 216 590 185 gio TESS 44396504 2970 04 G0 7E 04 gt OB 524 04 118 O04 22D 4 Os Deal Ops e O O O O O O O ANON UNUM qv INN OS ae eo NUMBER OF NODES CREATED NUMBER OF ELEMENTS CREATED NUMBER OF IMPERFECT ELEMENTS NOD NAME 41127 BLM 45 44 1 COORD X X 1 0 000000 00 2 ELEMENT qdp2 0 SUBDIVISION OF ELEMENT e43 NOD NAMES 1027 7126 0 400000E 03 n25 in27 OF SUBDIVIDED ELEMENT RELL EE REN UNO GS X X X x w lt lt K Kk Kk k k k k k k k k k xk k lt k k k k k k k xk xk k k k xk x x x x lt k lt lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X xk k Kk k k xk x x x x x x x l
34. 00 47500000 00 50000000 00 O2500000ET U 99000000ETU00 4750000058300 60000000 00 62500000 00 05000000EsF 67500000E700 72500000 00 79000000 00 77500000 00 80000000E 00 82500000E 00 O9000000ETQU 87500000 00 90000000 00 929000DOET O 29000000800 9 5000005400 10000000ET01 10250000ETOl 109500000ETO LU T7950000ETUI LL10O00000ETO0I OO OO OO OO OO 0 COCO CO CO CO OO OO OO CO OO OO OO OO OO OO OO OO OOO OO OO OOO OO OO OOO O O OO OO OO OO OO 0 OO COCO OO OO OO CO OO OO OO OO OO OO OO OO OO OOO CO OO O O O OO c c 177 b 7 2198 06 17 758 095 3 011509 itt 65 090 Oso lt 20 6E 709 253 1 09 m 41 15 07 Jod 274 07 04D T 0807 ile sooo Esg 4788 07 03 06 pbs Do 5278 02 428 07 dL9 T1507 25 177 O 7 1735 07 1598 07 o9 38 07 22528 T 255 09 44196 1 9 02 oam so2Zon Ud O 2 2 i U 7 p N N R2 BO hO BO GO MO GO GO BO WN BO NM bw CO CO GW LNS NH NH NW hO NW CO 46 47 48 49 50 ot DE uo 54 593 26 og 58 99 60 61 62 2 5 64 222 66 67 68 69 70 zn T2 73 74 76 44 78 19 80 81 94 83 84 85 86 87 88 89 90 91 22 93 94 95 97 98 29 100 101 102 LQ 104 105 LOG
35. O O O O O O O O O O O c RELATIVE TO END 1 O O O O O O O O O O O O O O O 0O I00000ETOI 0 400000 01 S ELEMENT ebpz qdp2 0 601E 04 20 09 2245 04 23909 194 1 508 055 04 250 0I 04 0l6E 05 2 2 05 2 04 uO 287 04 1100 L0 78 04 220 oue 4 29E U4 405 04 1461 04 SUBDIVISION OF ELEMENT e14 NOD NAMES 07 52 2 0121 0 000000 00 O 000000E 00 n21 18 n22 OF SUBDIVIDED ELEMENT soka oc oo X F w lt K K Kk xk xk k k k k k k k k k k k k k k k k xk xk x xk k k x k x x lt lt lt k k lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X KK k k xk k xk x x x x x x x x lt 218 219 220 ZA 222 223 224 449 226 O O O O O O O O O O O O O O O O 453500000ET01 43600000E 01 423700000 01 423800000 01 423900000 01 44000000 01 44100000 01 44200000 01 44300000 01 44400000 01 44500000 01 44600000 01 44700000 01 44800000 01 44900000 01 45000000 01 45100000 01 45200000 01 O O OCO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 198 844E 05 t 280 04 8 2 179 2o Ee Joe 168
36. Po gt aa 4 re Pu M F M M M F M a x y plane b x z plane Imperfection and forces in local system of element type qel3 82 qph3 Description Nodes Subdivision Imperfections Characteristics Application Restrictions Group header Quartic plastic hinge 3D beam column element with an option for automatic subdivision 3 Automatic subdivision into two elements if a plastic hinge is detected within the element may be requested Vyost VyoJsL Vzo25L VzosL V s can be specified Geometric and material nonlinearities Suitable for members in which the spread of plasticity 1s not important and the section response is elastic plastic without strain hardening Rotational and axial plastic hinge displacements are allowed at the two ends of the element One element type qph3 is usually sufficient to model a whole member and the option of subdivision allows for the case of member buckling Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Large displacement plastic hinge analysis of space frames Not applicable to reinforced concrete or composite members Warping strains are not accounted for sec name An identifier referring to one of the cross sections declared in the sections module subdivision Gives the option for automatic subdivision plas
37. User Manual Revision 1 3b B A Izzuddin March 2009 Systems and Mechanics Section Department of Civil and Environmental Engineering Imperial College London SW7 2BU Table of Contents Page CHAPTER 1 INTRODUCTION 1 1 1 TYPE ANALY uuu 2 1 1 1 Static analysis proportional loading 2 1 1 2 Static analysis time history loading esses eene nnne essen nnn nene sss 2 1 1 3 2 1 1 4 est 2 12 STRUCTURAL MODELLING oon 3 1 2 1 PVG STIG 10222 Rr 3 1 2 2 1 2 3 Elasto Plastic Modelling sqa 3 1 2 4 Adaptive Elasto Plastic 3 1 2 5 Joints and Boundary LO 3 1 2 6 Dynamic Characteristics Modelling ee 4 CHAPTER 2 USINGADAP M se 5 2 1 Te 5 ADAPT ee E E E EE AE E EE EE EE E 5 2 5 CHAPTER 3 DATERIAEG MODES cee 6 CHAPTER 4 JOINT ELEMENT CURVES 33 CHAPTER 5 CROSS SECTION TEN 41 CHAPTER 6 NAN 00 CHAPTER 7 103 7 1 RROD 103 NR uuu 72222722 104 7 2 1 ro in u 105 7 2 2 106 72 2 a L a uum 107 7 3 INPUT MODULES
38. y rz nod name 1 2 D element connectivity g grp name grp2 elm name nod name 1 1 3 ge 1 1 1 1 E 2 2 2 1 E 2 4 6 5 6 grp name grp3 elm name nod name 10 3 qd J 3 T integration r scheme newmark beta 0 25 gamma 0 5 182 it linear curves start time 0 0 pr meme crvi1 file last line format earthquakel first line T1200 equilibrium stages end of stage 5 it 500 applied loading dynamic r 1 1 nod name direction type crv name value L 1 x acceleration crvi 9 81 iterative strategy number 10 initial reformations 7 step reduction 10 divergence iteration 7 maximum convergence 1 0 it convergence criteria tolerance it output frequency 2 it end Note 0 1 3 displacement ref rotation ref LU 1 0 The following picture shows the and elements in the data file 0 1 names that have been given to the nodes NS CN6 CN3 CN4 N3L 5 N4 CNI CN2 NI N2 figure 9 5 1 Nodes and elements of the two storey 183 9 5 2 Structural behaviour The nonlinear analysis 15 undertaken using one element per member The following figures show the dynamic response of the structure The displacements of the node 121 at the Y axes are almost inexistent compare into the ones at the X axes which vary with the time _ X displacement Time sec
39. 0 0 44500000 03 1 21 05 2 0 0 44600000 03 1 0 458E 08 1 0 0 44700000E 03 1 2520 3 0 0 0 44800000E 03 1 US 1 0 0 44900000 03 1 Usu EU L 70 0 45000000E 03 1 0 458 03 0 POT DO SUBDIVISION OF ELEMENT 37 NUMBER OF NODES CREATED 2 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n24 0 Q0Q0000E 00 0 400000E 03 i 025 0 000000 00 0 160000 04 NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES 639 2 n22 n2 4 41 cbp2 n25 023 240 qdp2 n24 25 W NUMBER OF IMPERFECT ELEMENTS 0 lt k k k k k k k k ok k Kk k k k k k k k k k k k k k x lt k k k k lt lt lt lt lt lt lt lt lt lt lt lt k x xk X X X xk X X x xk xk k k xk x x x x x x x x lt 0 0 45010000E 03 2 O 1 215 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OOO OO OO O O Ie NUMBER OF NOD NAME 026 i CM NUMBER OF ELM NAME x 42 43 pc e
40. 01 14800000 01 14900000 01 19000000ET 0l 125221000D0ETO 195200000ET0l 159000 00ESO0 T 15400000 01 125900000ET0l JL0000000ETU 15 400000ET I J 5000000E Loo 0OCOUE Ol 2 LOI00000ETUI 16200000 01 165300000ET01 16400000 01 1060900000ETO0 190600000ETO0lI 16700000ET01 OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO COCO CO CO COCO COCO CO CO OO OO OO OO OO OO OO OO OO OO OO O OO QC QC QO QO O O O OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO CO CO CO COCO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O O O 187 24 16 29 18 05 2008 06 2768 06 USE S06 I1 95 096 1041 095 2909 07 vb2 EAU 7 soo LESU lt 2600E 07 2405 07 4200 0 7 544 07 4 27 3199907 EU 44 221905 L496E 06 d 12 005 2 DDE UO 2254155015 4259 06 200 3B 060 4 52 41 00 3666 06 430E 06 462E 06 4958 00 2508 06 2041 05 4 10 04 05 208 100 404 711 090 0025 4756 s isto 022 845 06 901 06 948E 06 42141805 43371505 49415 06 2994 06 06 Jod E06 23 18905 2749 06 4OJLE DO 4 05 GE 4 006E 00 278 LE 06 9041 09 2488 06 540 06 548 06 lt 9 TE 0G P H PH mH pP PH PH PH H PH PH pP P H PH H PH P H PH pP
41. 04 sdo LE 04 TAR D4 1915 04 490 504 463E 04 2638205 OA 2 6BE U4 2130504 N UN IUIS ST Pe 0 dal 0 228 0 229 0 230 0 421 0 202 0 233 0 234 0 23 0 2 35 0 293 0 238 0 2439 0 240 0 241 0 2027 0 243 0 244 0 245 O COCO OO OO OO OO CO OO OO OO OO OO OO OO OO O OO O 45300000 01 45400000 01 45500000 01 45600000E 01 45700000 01 45800000 01 45900000 01 46000000 01 46100000 01 46200000 01 46300000 01 46400000 01 46500000 01 46600000 01 46700000 01 46800000 01 46900000 01 427000000 01 427100000 01 s4 7 Z00000E 01 427300000 01 47400000 01 SAT500000ETOI 47600000E 01 427700000 01 47800000 01 427900000 01 48000000 01 48100000 01 48200000 01 48300000 01 48400000 01 48500000 01 48600000 01 48700000 01 48800000 01 48900000 01 49000000E 01 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO C QC O O O O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OO OO OO C QC QC O O O O 405 31 04 ET JESUS ODE 05 09 58 905 04 1205 04 406 06 a D60E 04 2921 06 232180
42. 05 1 0 0 22 00000801 0 Us 1 114 0 22900000ET I 0 Oed o TESSU 1 192 0 LXI 0 116 PE AE LEIS POR AG NUN UNUM Uv Uv dica NUMBER OF NOD NAME ery 15 NUMBER OF ELM NAME 27 x 28 O O O 22900000ETO0l 23000000ETOI 239100000ET l CD O O O NODES CREATED CD O O O 4 04 jE 04 5258 04 240 04 SUBDIVISION OF ELEMENT e24 PPR COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 0 000000E 00 ELEMENTS CREATED 2 TYPE OF ELEMENT qdp2 NUMBER OF IMPERFECT ELEMENTS 0 NOD NAMES n13 n15 0 666667 00 015 19 X X X X X x w lt K K Kk xk k k k k k k k k k x k lt k k k k k k x x xk k k k k x x x lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt k k k X X X X X X KK xk k k k xk x x x x x x Xx x lt UNUM uv Ue dice NUMBER OF NOD NAME 116 NUMBER OF ELM NAME 29 x e30 NODES CREATED SUBDIVISION OF ELEMENT 26 COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 0 000000 00 ELEMENTS CREATED 2 TYPE OF ELEMENT NUMBER OF IMPERFECT ELEMENTS 0 NOD NAMES n14 n16 0 666667 00 016 010 X X F x xXx w lt K K lt k lt k k k k k k k k k k k lt k
43. 12 qdp2 n7 2 Ee l m S NUMBER OF IMPERFECT ELEMENTS 0 w lt K K K lt xk k k k k k k k k k k Kk k k k k k k xk k xk k k xk k x x lt x k k lt k lt lt lt lt lt lt lt lt lt lt k k X X X X X X X KK xk k xk k xk x x x x x x x x lt 15S0560005 02 0 J 0 Dao 0 0 453 03 2 15 0 180960008302 0 D 24 0 05 3 0 O 15S100000b5 02 0 0 107E 04 2 SUBDIVLSION OF ELEMENT 302 DG aR NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO OF SUBDIVIDED ELEMENT n8 0 000000 00 0 400000E 03 pcc EHE ua NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 613 Gbp2 211 08 el4 qdp2 n8 221 a SS NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk k k k k k k k k k k k k Kk lt k k k k x xk x k k k k xk x lt x x lt lt lt lt lt lt lt lt lt lt lt lt lt lt k Xk X X X X X X X xk k xk k xk k x x x x x x x x lt 14 0 18104000 02 0 0 322
44. Austria 3 Fragiacomo M finite element model for long term analysis of timber concrete composite beams submitted to Computer amp Structures Given by the ratio 2A u where 1s the cross section and u 15 the perimeter of the member in contact with the atmosphere 22 conl 1 Description No of properties Properties Application Restrictions Fixed crack elevated temperature model for concrete 24 Young s modulus and temperatures ts T Possion s ratio and temperatures v L Tensile strength and temperatures fo D L 1 Tensile softening slope and temperatures aio D T L Thermal strain and temperatures Sur L L Compressive strength and temperatures L L Normalised initial compressive strength Sc Normalised residual compressive strength Normalised strain increment beyond s Factor for biaxial compressive interaction Elastic shear retention factor Bs Factor scaling direct tensile stresses for shear interaction Normalised shear softening relative to direct tensile softening Ys Representation of tensile cracking and compressive nonlinearity including softening effects Modelling of crack opening and closure the latter being an important requirement under dynamic loading and fire conditions Consideration of the effects of elevated temperature both in terms of the resulting the
45. O O O O O O O O O 10 COORD CX OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O CO C O OO O OO O c Y RELATIVE TO END 1 600000 03 120000 04 180000 04 240000 04 300000 04 360000 04 420000 04 480000 04 540000 04 IYPE OF ELEMENI e21 cbp2 22 cbp2 e23 cbp2 e24 cbp2 e25 abp2 26 cbp2 212 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OO CO OC O O O OO 248 04 242 7 i 04 20241 04 21008009 slo US 193 03 S E 4A 798 03 05 3 SEH US UU LES sL 109E 03 164 03 4520 9 no LESUS 1008 03 2 doo 1254 02 stoa iss 0 to 2 03 148E 03 sL44E 03 SUBDIVISION OF ELEMENT 104 NOD NAMES 121 n12 013 0114 015 016 OO OO OO O O SUBDIVIDED ELEMENT 0 000000 00 0 000000 00 0 000000 00 0 000000 00 0 000000E T00 0 000000 00 0 000000 00 000000FE 00 0 000000 00 n12 013 0114 015 016 017 gt X o X F X x o ES RC z NUMBER OF IMPERFECT ELEMENTS 0 gt k l
46. This module specifies the type and the value of the applied loads applied loading initial loads nod name direction type value elm name type value proportional loads nod name direction type value time history loads nod name direction type crv name value elm name crv name value dynamic loads nod name direction type crv name value elm name type crv name value initial loads proportional loads time history loads dynamic loads These are static loads that are applied prior to any variable load They can be forces or prescribed displacements applied at nodes in the global directions These are static loads having proportional variation The magnitude of a load at any step is given by the product of its nominal value and the current load factor Proportional loads may be forces or prescribed displacements applied at nodes in the global directions These are static loads varying according to different load curves in the pseudo time domain The magnitude of a load at any given pseudo time is given by the product of its nominal value and the load factor obtained from its load curve at that pseudo time Time history loads may be forces or prescribed displacements applied at nodes in the global directions These are dynamic loads varying according to different load curves in the real time domain The magnitude of
47. Z a X displacement Y displacement 50 0 50 100 150 200 250 300 Displacements mm figure 9 2 2a Static response of K frame Here is shown the ability of this method to predict the lowest buckling mode and to trace the associated post buckling path when an imperfect K frame is considered The figure illustrates that the higher displacements of the structure are in the X direction of the frame When is arrived to a certain value of load the displacement increase with fewer loads and with minor load you can obtain higher displacements The following figure illustrates the response of modelling K frame with the plastic hinge approach 158 Figure 9 2 2b Deformed shape modelling with the plastic hinge approach It is evident that the introduction of small imperfections activates the lowest buckling mode which involves a deflection shape like is shown in the figure In the absence of these imperfections the K frame deflects fully symmetric about symmetry axes 159 923 Output file This is the output file given by ADAPTIC ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt T 2 3 4 MAXIMUM FRONT NODAL 3 ADDITIONAL FREEDOMS 0 VARIABLE LOADING
48. l9160000ET02 191604000ET02 Loloo000ET Z JCA 2000bTDZ li9176000ET02 18184000 02 Loloo000ET Z 2 1960005202 lo02400000ET02 18240000 02 sleZzcQU00ETOZ 119320000ET02 168500000802 18400000 02 18440000 02 18480000 02 19520000ET027 L0560000ET Z Lo06D0DOUETUZ 18640000 02 10600000ET 02 19720000ET02 Le 7600005402 L109000000ETUZ 18840000 02 l0690000ETOZ 19920000ET02 102960000ETU2 49000DOUETUZ 19040000 02 91200005ET02 19160000ET02 19200000ETU2 19240000 02 2 22 30 7 19360000 02 19400000ET02 19440000 02 19480000 02 1995200006027 419960000ETUZ 196000000ETUZ 19640000 02 196980000ET0Z2 19 7200005302 L19760000ET02 19840000 02 L90900000ET02 OO OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO COCO OO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO QC QO QO O O O OO OO OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO COCO CO CO CO COCO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O m 4005 09 BT 20991804 148 04 UV n me le oo SE LEA OS 458E 04 268 04 23 2 2 J 0806 2004 4105 24 051805 IiUUE 03 560E 04 296904 09 04 184 05 1956 03 4209 05 24
49. 150 200 250 300 350 400 450 500 Displacements mm figure 9 4 2b Displacements of fixed ended beam column The deformed shape that experiments the beam subject at those loads 15 the following one figure 9 4 2b Deflected Shape of fixed ended beam column 174 943 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 2 5 MAXIMUM FRONT NODAL 3 ADDITIONAL FREEDOMS 0 INITIAL LOADING INITIAL LOADING CURRENT OUTPUT FACTOR TIME LEVEL CONV NORM ITERATIONS 1 0 10000000 01 0 00000000 00 0 0 303E 07 VARIABLE L O A DING CURRENT OUTPUT TIME LEVEL CONV 5 2 00000080 0 1 9 0 50000000 01 0 0 584 06 1 4 0 75000000E UI 0 0 MOO LZ 2 SUBDIVLSION OF ELEMENT T Jo S DISP UXORIS NN NUMBER OF NODES CREATED 3 NOD NAME COORD S X Y RELATIVE TO 1 OF SUBDIVIDED ELEMENT 1 944783202 0 000000 00 2 og20U DET U5 0 000000ET O n3 0 764000 03 0 000000 00 a ig
50. 204805 9418 096 ye 4 91 0 7 3026 07 4924 09 Oo LEO 2015 07 00E 07 a 9042 09 NM NY O WO CO OO CO Oy OY 9 3 Lee s frame The Lee s frame shown in the figure 9 3 1s subjected to an end force P The buckling forces for this frame where also obtained with ADAPTIC where the following values were reported using 3 elements 0 2L 0 8 L 1 L 120em p E 720 ton Mass per unit length 04x10 2 A L 3 cm Cross section figure 9 3 Geometry and loading of Lee s frame 163 9 3 1 Data file analysis 2d statics control start it it materials mat name model properties matl stll 0 720 3 0 100 1 0 00 it sections type rss sec name mat name dimensions sectl 240 it groups type of element 12 grp name sec name grpl sectl it structural nod en x 0 00 0 00 2202 120 00 3 24 00 120 00 4 120 00 120 00 it restraints nod name direction 1 4 xy element connectivity elm name grp name nod f 1 grpl L 2 1 1 2 applied loading proportional loads nod name direction type 2 Y force Condition lf cnd name limits 1 240 4 0 disp cnd name nod name direction 2 3 X 3 3 y phases Load Control increment path steps 0 2 1 k 20 automatic control type cnd name nodal transla
51. 49 15000000 00 4J41310196E T025 0 Qs293E 08 50 Lo00000OORT O U 114935396ET03 0 25210 00 ol 1o000000U0ETU0 U llo0p4lD0ETUS 0 O 352E 08 6 0 0 0 395 098 Do 150000005 00 0 12016827 03 0 54 15000000 00 L2109 72 TEVTUJ 0 7524 7E 08 ate 15000000E 00 L23014 29ET03 0 0 5509 56 15000000ET00 24129217455 03 0 0 7728 0965 57 I SDODOOORTOO 0 12700463 03 0 0 9725 05 58 10000000RT00 0 12867421 403 0 92 15000000 00 412032202 02 0 2 2171 07 60 15000000 400 98521926455 403 0 O 240E 7 61 19000000EbT 00 9 0 Uo og 154 IN BO ND B ho NIN 9 2 K frame subject to vertical load The k frame shown in the figure is subjected to an end force P where load application in the middle of the upper frame The buckling forces for this frame where also obtained with ADAPTIC where the following values were reported using 4 elements Transverse beam 219 4 37 210x10 N mm 414N mm 2790 mm Diagonal members 101 7 x 3 30mm 210 10 N mm 335 4600 mm figure 9 2 Geometric configuration of K frame 155 9 2 1 Data file analysis 20 Statics materials mat name model properties mati 0 210 6 0 335e3 0 00 mat2 3511 0 210 6 0 414e3 0 00 sections type chs sec name mat name dimens
52. CO OO OO COCO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OOO OO OO O O 178 2429877 sti 28307 8 907 O9ZE 07 UO 290009 2394 DT 40 942 005 22 LOE 7 41 2210 7 22201907 4 11 2 018 106 44 7 95 090 1055 095 0540 243401999 D T 48 Od iu Dy 2232 07 Se 7 oo Bel EU UN nu diues 411 06 1445 09 077 2 pL 1745 07 oo EU 145E 06 2029501 cess so 4 34 0 7 54195505 222807 9 05 SAX E DD s491E 07 soo OL GEOG 908E 08 Pa B n 487 06 2248 06 42 320E 07 46 75 03 CZE U 1 BO BO 5 BO NO BO BO BO BO CO BO BO BO BO BO BO ho BO hO BS DO NS Ee ee LO 7 OS 109 110 111 112 24 152 114 115 116 To Lle 119 120 147 144 152 2 124 126 127 129 L29 130 21 132 133 134 1 20 136 13 7 138 139 140 ld 142 144 145 146 147 148 149 150 151 Loz 193 wog 155 I 156 Los 160 161 162 1193 164 165 166 LO7 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO OO OO COCO OO OO OO OO OO OO OO OO OO OO OO OO O OO C QC Q O O O 21000000ET I
53. F V Initial F ru V Imperfecton M X d gt X Element configuration Element forces before and after eflection Configuration and forces in local system of element type qel2 63 2 Description Nodes Subdivision Imperfections Characteristics Application Restrictions Group header Quartic plastic hinge 2D beam column element with an option for automatic subdivision 2 Automatic subdivision into two elements if a plastic hinge is detected within the element may be requested be specified Geometric and material nonlinearities Suitable for members in which the spread of plasticity is not important and the section response is elastic plastic without strain hardening Rotational and axial plastic hinge displacements are allowed at the two ends of the element One element type qph2 is usually sufficient to model a whole member and the option of subdivision allows for the case of member buckling Large displacement plastic hinge analysis of plane frames Not applicable to reinforced concrete or composite members sec name An identifier referring to one of the cross sections declared in the sections module Subdivision Gives the option for automatic subdivision plastic hinge elements tltrue consider element subdivision flfalse ignore element subdivision 64 M 2 YA 1 Initial imperfection M 1 Vost Voas
54. General Facilities The main items of the graphics region in the ADAPTIC_graphs application are shown in Figure 8 2 1 The mouse buttons can be used to manipulate the appearance size and position of each of the components as discussed below Moving Each of the items may be moved using the left mouse button with a single click to activate moving followed by a click and drag to move to the desired position Resizing This facility only applies to the Graph Area item It can be performed using the right mouse button with a single click to active resizing followed by a click and drag of the bottom right corner to the desired position Application Area Gr aph Area Le gend Y title X title Figure 8 2 1 Graphics region of ADAPTIC_graphs application 137 8 2 2 File This menu option offers the following facilities discussed with reference to the initiating buttons Data File This invokes a form which allows the selection of the data file corresponding to the analysis that has been performed Select the file filename dat from the list of files in the directory where the analysis has been performed where filename stands for the file identifier e g one storey Save This button provides the means for storing plot information in a plot file for later retrieval This is quite important for storing a permanent description of the plot so that future modification can be per
55. LOAD pp 147 9 1 1 148 9 1 2 EEEE ESE ERE 150 9 1 3 I 152 9 2 K FRAME SUBJECT TO VERTICAL i 155 9 2 1 I IQ 156 9 2 2 DIFHCIRFOL DEDOVIOBE 158 9 2 3 QU HD AD 160 9 3 ER 163 9 3 1 TO u E u ___ __ _______ 164 9 3 2 Je 166 9 3 3 168 9 4 FIXED ENDED BEAM COLUMN 00 escien iine n idan UNEA een AOAN SaNa CaN asin ka aon Aa dadn kiai adai aea tiki Saa 171 9 4 1 WA 172 9 4 2 _____64_ __6_6_6_ _____6_ ___ _ ___6 174 9 4 3 QU E 175 9 5 TWO ST ORE MN E ________________ __ s 181 9 5 1 182 9 5 2 SU 184 9 5 3 DEL mr PEN 185 9 6 STEEL FRAME SUBJECT TO EXPLOSION AND FIRE LOADING enne 201 9 6 1 Doe T 202 9 6 2 SD E AEE EE E E E E E E E EE E E 205 9 6 3 OD 207 9 7 ET 222 11 Chapter 1 INTRODUCTION ADAPTIC is an adaptive static and dynamic structural analysis program which has been developed to provide an efficient tool for the nonlinear analysis of steel and composite frames slabs shells and integrated structures The program features are
56. NUMBER OF NODES CREATED SUBDIVISION OF ELEMENT 20 0 NUMBER OF ELEMENTS CREATED 1 ELM NAME TYPE OF ELEMENT NOD NAMES 1 32 cbp2 n11 12 C u EE ae 22 04 02 et NUMBER OF IMPERFECT ELEMENTS 0 lt k k k k k k k k k Kk k k k k k k k k k k k k k k k k lt lt k k k lt lt lt lt lt lt lt lt lt lt lt k x X X X X X xk X KK xk k xk k xk xk Kk x x x x x x lt Qs Us 40100000 03 40200000 03 1 0 0 213 149E 07 ON O OO O O O O O O NUMBER OF NOD NAME 21 gt gt NUMBER OF ELM 34 de33 NUMBER OF IMPERFECT ELEMENTS O O O O O O O O O 40300000E 03 40400000E 03 40500000E 03 40600000E 03 40700000E 03 40800000E 03 40900000E 03 41000000E 03 42000000 03 NODES CREATED 1 ELEMENTS CREATED COORD S 45 7 C 40 OU C 9 t3 RELATIVE TO END 1 0 000000 00 2 ELEMENT qdp2 0 2668205 2638 00 2 16 05 05 2098 05 lt 68 05 2698 05 800 B 655 213159059 SUBDIVISION OF ELEMENT e15 NOD NAMES inzl n8 OO O O O O O O 0 280000E 04 19 021
57. O O O O J J OO OO OO OO OO O1 O O O O O O COCO CO COCO CO CO CO CO CO CO CO CO CO COCO CO CO CO CO CO COCO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O QC QC QC QO O O c 46660000 03 46670000 03 46680000 03 46690000 03 46700000 03 46800000 03 46900000 03 47000000E 03 48000000E 03 49000000E 03 90000000ETO025 91000000ET03 220000006905 000000ETOS 54000000 03 9 90 DODUOET 0 56000000E 703 928000000E 03 60000000 03 ol1000000ET025 o200O0UUDETDS 00 000 000 ET 0 64000000 03 64010000 03 64020000 03 6403000086403 64040000 03 64050000 03 64060000 03 64070000 03 64080000 03 e240 900008703 64100000 03 64110000 03 64120000 03 621 3000086905 64140000 03 64150000 03 64160000 03 64161000 03 64162000 03 64163000 03 64164000 03 64165000 03 64166000 03 64167000 03 64168000 03 64169000 03 64170000 03 64171000E 03 NUMBER OF NODES CREATED NOD NAME n28 1 COORDS XY MNINNNNNNNNNNEFF FF FF F2 F2 OO O OO OO 0 O CCC CO Ce 0 O COO Or DWN OO OO 0 CO CO CO CO CO CO CO CO
58. Reinforcement bars in one y z quadrant Section depth Stirrup depth h 5 Section width Stirrup width b 2D analysis for each reinforcement layer on one side of the Z axis 3D analysis 27 for each reinforcement bar in the positive y z quadrant Symmetric reinforced concrete columns Section is assumed symmetric about the y z origin hence only one side of the reinforcement need to be specified 22 Confined Ay Unconfined h ha Y lt x cl lt x b gt Section FCCS 53 rcts Description No of materials No of dimensions Dimensions Application Restrictions Reinforced concrete T section 3 specified in this order Reinforcement Unconfined region Confined region 2D analysis 8 2 Reinforcement layers 3D analysis 8 3 Reinforcement bars on one side of y axis Slab thickness D Beam depth D Confined depth in slab d Confined depth in beam d Slab effective width Beam width Confined width in slab b Confined width in beam 2D analysis Ai di for each reinforcement layer 3D analysis A d z for each reinforcement bar on one side of the y axis Modelling of R C beams with an effective slab width Symmetric section about the y axis dj 1s the distance of reinforcement layer bar 1 from the bottom fibre of the section 54
59. SUBDIVIDED ELEMENT o X X X x w lt K Kk Kk lt xk k k k k k k k k k k k k k k k k x k x k k k k k xk x x lt lt lt k k lt lt lt lt lt lt lt lt lt lt k Xk X Xk X X X KKK KKK k xk x x x x x x x x lt O O O O O O O O f NUMBER OF NOD NAME 22 te E E E E E E E E NUMBER OF ELM NAME 35 de36 NUMBER OF IMPERFECT ELEMENTS O O O O O O O O O 42100000 03 42200000 03 42300000 03 42400000 03 42500000 03 42600000 03 42 700000 03 42800000 03 42900000 03 43000000 03 NODES CREATED 1 ELEMENTS CREATED COORD S X Y PB CO de cx e vu x RELATIVE TO END 1 0 000000 00 2 TYPE ELEMENT qdp2 0 soo 425E 04 4 05 91D y 4 58 09 90 170 09 Bc 5 2072 09 41195908 SUBDIVISION OF ELEMENT 1e33 NOD NAMES n8 n22 Q 0 400000E 03 022 OF SUBDIVIDED ELEMENT ot o o X ox x
60. Xk KK xk k xk k xk x x x x x x x x lt P c E CE SUBDIVISION OF ELEMENT 6127 NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 011 0 000000 00 0 400000E 03 m NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES cbp2 17 0111 20 qdp2 n11 2 NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk k k k k k k k k k k lt k k k k k k k xk x x k k k k k x x x x x lt lt lt lt lt lt lt lt lt lt lt lt lt k k Xk X X X X xk X KK k k k k xk x x x x x x x x lt d L15112000RT02 0 0 480E 04 3 0 U Ioll6000mBT02 0 16 018 T20000EFU2 0 20 0 3 0 161234000b5 02 0 0 583E 04 2 210 17 18 L9 20 Al 22 23 24 25 26 21 28 29 30 al J2 22 34 35 36 Sd 39 40 41 42 43 44 45 46 47 OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO OO COCO COCO OO OO OO OO OO OO OO OO OO OO O CO QC QC QC QO O O lo0132000EBTUZ 190136000ET02 18140000 02 518144000 02 18148000 02 CUE FOZ ID0I00000EBTU2
61. and only the first four characters in the header key words are necessary However if more than four characters of a key word are employed the ADAPTIC data input module checks for the consistency of all characters Names or numbers employed for example as identifiers for elements or nodes can be up to 8 character long However if this number is exceeded only the first 8 characters are considered The following symbols are used for describing the ADAPTIC data syntax Note that these symbols are used in the rest of this manual only for delivering information and they must not be used within an ADAPTIC data file Symbol Description Parantheses used to include a list of items Exclusive OR For example 2d is equivalent to a single entry which can be either 2d or 3d Brackets used to include optional item s For example z means that entry 7 18 optional lt entry gt Specifies the entry type For example lt integer gt indicates an integer data entry A Indicates that the entries for the previous key word 1 the header can be defined by assignment outside the header line For example mat name model properties indicates that the following two data modules mat name model properties ml stll 210e9 300e6 0 01 and model 501 mat name properties ml 210e9 300e6 0 01 are equivalent 103 7 2 General Facilities This sections describes general facilities which are available with a
62. convergence criteria for the iterative procedures The convergence criteria is based either on the out of balance norm or the maximum iterative displacement increment convergence criteria tolerance force ref moment ref displacement ref rotation ref work ref maximum tolerance tolerance force ref moment ref displacement ref rotation ret work ref maximum tolerance E real real gt real gt lt real gt real gt lt real gt lt real gt The required convergence tolerance for each load time step The force reference value used in calculating the convergence Applicable to convergence criteria based on the out of balance norm The moment reference value used in calculating the convergence Applicable to convergence criteria based on the out of balance norm The displacement reference value used in calculating the convergence Applicable to convergence criteria based on the maximum iterative displacement increment The rotation reference value used in calculating the convergence Applicable to convergence criteria based on the maximum iterative displacement increment The work reference value used in calculating the convergence Applicable to convergence criteria based on the energy norm The maximum tolerance to which a solution may be relaxed to if the specified tolerance could not be satisfied with the iterative strategy This 1 used
63. described briefly hereafter The initial development of ADAPTIC was driven by the needs of the offshore industry for an accurate yet efficient nonlinear analysis of offshore jackets subject to extreme static and dynamic loading This motivated the development of pioneering adaptive nonlinear dynamic analysis techniques for framed structures accounting for geometric and material nonlinearity which formed the basis of Prof Izzuddin s PhD thesis and which were extensively applied in nonlinear structural analysis under earthquake loading Since then the program has been extensively developed to deal with other extreme loading such as fire and blast as well as numerous additional structural forms such as R C and steel decked composite slabs cable and membrane structures and curved shells Most of these novel developments have been published in leading international scientific and professional journals as well as in international conferences see http www imperial ac uk people b izzuddin publications This version of the manual V1 1 covers mainly the frame analysis capabilities of ADAPTIC The more recent developments dealing with slabs and shells will be described in forthcoming versions of the manual Therefore the following discussions focus on the nonlinear analysis of plane and space frames Inelastic analysis of steel frames may be performed by either of two methodologies The first Is an approximate solution using ideal plastic hin
64. in conjunction with tol relax level Default 0 131 Notes A tolerance and maximum tolerance equal to zero is equivalent to an iterative procedure in which a fixed number of iterations is performed for each load or time step without consideration of convergence 132 7 3 20 Output This module specifies the frequency of numerical output output frequency lt integer gt stress local displacements no local displacements eigenvalue interval lt integer gt frequency stress no local displacements eigenvalue interval Provides the frequency of the numerical output 0 all equilibrium steps including step reduction levels 1 all equilibrium steps without step reduction levels n output every n equilibrium steps Specified if element stresses are required Applicable only to specific element types Indicates whether the local displacements of elements are output which is true by default Indicates the output interval for eigenvalue analysis during dynamic analysis 133 7 3 21 Lanczos eigenvalue This module specifies the number of required eigenvalues and the range of natural frequencies of interest The Lanczos eigenvalue algorithm is utilized lanezos eigenvalue number of eigenvalues integer steps integer w min real w max lt real gt shift lt real gt starting vector nod name direction value number of eigenvalues steps w min w
65. max shift starting vector nod name direction value The number of required eigenvalues The number of Lanczos steps to converge to the eigenvectors Minimum natural frequency of interest Maximum natural frequency of interest The frequency shift during the solution of the eigenvalue problem Initial vector used by the Lanczos algorithm to derive eigenvectors Node name considered in the starting vector The global direction which is given the specified values The value of the entry in the starting vector corresponding to the nod name in the global direction 134 Notes The number of steps must be less or equal to the total number of freedoms for the structure w min w max and shift are in rd sec shift must be between w min and w max A random starting vector 15 generated if the starting vector module is not specified 135 Chapter 8 POST PROCESSING 8 1 Start Up After the analysis has been completed a post processing application may be started to study the structural response graphically Two graphics post processing applications are available 1 ADAPTIC_ graphs for plotting X Y graphs This is activated as follows prompt adaptic g filename dat svg 2 ADAPTIC shapes for plotting deflected shapes This is activated as follows prompt adaptic s filename dat svs The above applications are discussed separately in the following sections 136 8 2 ADAPTIC_graphs 8 2 1
66. number of lines generated so far 107 7 3 Input Modules This sections describes the input modules available within ADAPTIC 108 7 3 1 Analysis This module specifies the analysis type analysis 2 eigenvalue dynamic static 2d Two dimensional analysis 3d Three dimensional analysis eigenvalue Eigenvalue analysis dynamic Dynamic analysis static Static analysis Notes 109 7 3 2 Default parameters This module specifies some default parameters Notes default parameters mass damping parameter real stiffness damping parameter mass damping parameter stiffness damping parameter real gt Parameter used to specify mass proportional damping without the need for damping elements Applies to mass elements cnm2 Parameter used to specify stiffness proportional damping without the need for damping elements Applies to elements bk20 110 7 33 Materials This module specifies material identifiers referring to a particular model and model properties Notes materials mode properties properties A material identifier referring to the specified model and properties The material name can be any alphanumeric string The material model used The model should be one of those specified in Chapter 3 The material model properties The number of properties must be as indicated in Chapter 3 for the correspondin
67. requires 36 parameters in total to describe Young s modulus the proportional limit the yield strength the thermal strain and their variations with temperature The nine parameters used to define the proportional limit and its variation with temperature is illustrated in figure The other parameters are defined in the same sequence 1 ay p3 Material model 81110 14 conl Description No of properties Properties Application Notes Trilinear concrete model with optional tensile response and quadratic initial compressive response 4 Secant compressive stiffness Compressive strength Compressive softening stiffness Residual compressive strength 1527 Initial tensile stiffness E Tensile strength f Tensile softening stiffness Value of a Ea Ea 0191 Simplified uniaxial modelling of concrete material is the initial tangent modulus in compression gt 0 implies a quadratic initial compressive response Stress A f t Strain Material model conl 15 con2 Description Uniaxial constant confinement concrete model No of properties 4 Properties Concrete compressive strength Concrete tensile strength f Crushing strain Confinement factor Application Uniaxial modelling of concrete assuming constant confinement Restrictions Parameter units must be in Newtons and Milli
68. respectively Each of these models may be any of those described in Chapter 4 Parameters for each of the six models specified for F E M 4 Nodes 1 and 2 must be initially coincident Node 3 1s only used to define the x axis of the joint and can be a non structural node The y axis lies in a plane defined by the x axis and node 4 which also can be a non structural node The orientation of the joint x axis after deformation 15 determined by its initial orientation and the global rotations of node 1 Space frame analysis Can be used to model pin joints inclined supports elasto plastic joint behaviour soil structure interaction and structural gaps through employing appropriate joint curves Element has a zero initial length since nodes 1 and 2 must be coincident Cannot be used to model coupled axial shear and moment actions curve types Defines curve types for joint elements parameters Defines parameters for the joint elements 89 X z 1 2 lies in x y plane Z d gt lt Before deflection Y X After deflection Configuration and forces for element type Jel3 90 3 Description Nodes Characteristics Application Restrictions Group header Concentrated lumped 3D mass element Models lumped mass for dynamic analysis Allows full 3x3 translational mass matrix to be defined Lumped element mass specifi
69. start time crv name cl time 18 12 F o 15 1240 crv name c2 time 20 1220 applied loadi initial loa elm name f 101 1 r 3 dynamic load elm name 102 104 202 302 elm name 104 202 302 equilibrium s G ED grp2 grp name grp3 gpm2 nod name 12121 LO Z 300 i nod name 211 20 2 100 1 curves for time history loads L9 load fa nod name 101 111 10 10 300 300 nod name 201 211 10 10 100 100 ctor 1 40 D ut 0 0 load factor 0 0 ng d type udi 11 udli type tmp2 tmp2 Cages end of stage 155 20 640 670 D integration Scheme hilb alpha 0 3 2 er value 0 5 0 0 0 0 crv name el el c1 el crv name CZ CZ steps 50 45 62 30 2 2 value 0 125 0 125 125 0 125 U value BL 422 22 375 1 6404 1000 0 203 9 19 212 1000 3636 875 145404 249 0 1000 E 63 0 6404 0 beta 1 21 gamma 0 8 iterative number 10 initial 10 step 10 dive 10 maxi 0 1 8 convergence criteria tolerance 0 5e 3 force ref 300e3 moment ref 300e6 it frequency 2 it end Note and elements In the data file N131 231 331 31 QD107 QD108 QD109 QD203 QD303 QD306 N121 N221 N321 421 00104 00105 00106 QD202 QD302 QD305 N111 N211 N311 N411 00101 00102 00103 00201 00301 00304 N10 N201
70. 0 T W W gs V4 Wa 0x4 Uy V5 W5 0 9 5 27137 13 RM u V w 0 0 u v w 0 0 l Wit Ya 2 uj Vi Wi Opio Oy Va wa ATAT T AT ap L Temperature distribution for csl4 100 bk20 Description Nodes Characteristics Application Restrictions Group header 20 noded 3D brick element 20 Models 3D continuum large displacement problems using Green s strain Applies to static dynamic and elevated temperature analysis Allows direct specification of material density and Rayleigh damping parameters for dynamic analysis Static dynamic analysis of 3D continuum problems Works with material models beth bnsi bnsk and tpth mat name An identifier referring to one of the materials declared in the materials module gauss points optional total number of gauss points defaults to 27 3x3x3 density optional material density used for dynamic analysis defaults to zero damping parameter two optional parameters for mass and s ffness proportional Rayleigh damping respectively default to the values of mass damping parameter and stiffness damping parameter specified in the default parameters module 101 Nodal ordering for bk20 102 Chapter 7 DATA SYNTAX 7 1 Introduction A header oriented syntax is utilized in ADAPTIC data files Data modules are identified by means of unique headers
71. 0 01 209600000ETO0I 2991700000ETO I 299000000ETO0l 20900000801 o00000D0DDETUI 290100000ETOI 20200000801 263500000ETO01 36400000 01 20500000ETOI 290600000ETOI 26700000ETU01 36800000 01 20900000ET01 3000000EE01 3 T LOOCQURTOL so 2O0000E 01 sof SUQQQ0ETOL 37400000 01 DOOUUUETOL 21600000ET04 27 700000ETU0l1 231900000ET01 24900000830 o90000000ETO 38 L00000 amp 01 coo 200000801 230300000ET01 38400000 01 00900000ETOI 2060D0D0DUETU 50 00000ETO01 30600000E701 30 900000E701 20000 0CE OL 39100000F5 0 1 so 72000008 01 29900000ETO 39400000 01 395000005 T01 39600000F5101 39 700000ETO 1 332800000ETO0l 2299000 00ESO T 40000000E 01 40100000E 01 40200000E 01 40300000E 01 40400000 01 40500000 01 40600000E 01 40700000E 01 40800000 01 40900000E 01 41000000E 01 41100000 01 41200000 01 41300000 01 OO 0 CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO CO CO CO OO OO OO OO OO OO OO OO OO OO OO O OO OO OO OO OCO OO O O OO COCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO OO CO COCO CO OO OO OO OO OO OO OO OO OO OO OO OO O CO QC QC QO QO O O O 197 2 06 668E 06 1690E 05 400E 06 2439E 06 404E 06 Ud OO 7E 06 O7 78905 8900 5065 090 55 26 220E 04 44
72. 0 57000000 00 296 00000UETO00 4299M000000ET 00 o0000000E TO0D0 61000000 00 62000000 00 063000000ET00 64000000 00 s65000000E700 66000000 00 67000000 00 2068000000800 09000000E TU00 qUODODDUOETODO 71000000 00 72000000 00 4000000E 00 75000000 00 76000000 00 77000000 00 H9000DODETOU 129000000E T00 80000000 00 81000000 00 82000000 00 9 000000E700 84000000 00 8G5S0D000000543 00 86000000 00 87000000 00 88000000 00 90000000E T00 QJILO00000ETO00 92000000 00 2 2000000E 00 94000000 00 s J9000000EF00 96000000 00 97T000000ETOU 99000000ET00 99000000ET 00 j E000OODOOERTOI L0100000ETO0l 10200000ET01 10400000 01 L0500000ETO0l 10600000 01 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO OO OO OO OO OO OO OO OO OO O QO QC QC QO QO O O O 0 CO CO CO CO COCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO OO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OOO OO OO O O 186 1521 05 D 1908 06 2222 05 2498 05 222 176 2428 06 22 18 00 0 gt 6 LE 06 758905 164 06 146 06 442 38 05 108 06 098 096 311 05 05 19806 226206 1208706 1928 05 134 06 1 37805 122620
73. 0 20600000 01 0 4558 05 0 0420 0 0 4227 05 1 104 0 0 442E 05 1 0 Z0 7000008701 0 0 464E 05 1 TES 0 21000000ET 0 0 496E 05 1 0 O z 1000005101 0 Ue IZ ESOS 1 106 Uc2l200000ETU 0 94222 09 1 0 0 21200000ETO0 0 72245 05 1 107 0 21400000 01 0 752 1 0 O 0 0 4 78 95 1 108 O z21600000BE 0O1 0 0 447E 05 0 2 01 0 O 1 109 Us 21S000005F 01 0 0 410 05 1 0 O 209000008701 0 O 1 110 02200000 DUET Ul 0 L 0 0 22100000ET I 0 25242 05 1 FEL 2 FOL 0 ocUoE U 5 1 SUBDIVISION OF ELEMENT 5 AUS NUMBER OF NODES CREATED 2 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n7 0 000000 00 A n8 0 5590000ETUOI 0 000000 00 190 NUMBER OF ELEMENTS CREATED i 3 ELM NAME TYPE OF NOD NAMES e13 3 07 15 Gbp2 08 4 14 qdp2 07 08 p Recte cl M z NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk Kk xk k k k k k k k lt k k k k k k KKK k x x k k k xk x x x x lt k lt lt lt lt lt lt lt lt lt lt lt lt k KK X X X KKK KK xk k k k k xk x x x x x x x lt 0 0 22300000E 01 0 0 809E 05 WO SUBDIVLSION OF ELEMENT 3 V ERRARE kO a NUMBER OF NODES CREATED x
74. 0 293E 03 2 SUBDIVLSION OF ELEMENI 5 J KEREK K NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n6 0 000000E 00 0 800000E 03 nac O a NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e10 cbp2 06 n3 qdp2 inl 06 W s NUMBER OF IMPERFECT ELEMENTS 0 SUBDIVISION OF ELEMENT e8 as NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO 1 OF SUBDIVIDED ELEMENT 07 O 0000008400 0 400000E 03 i WW NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 11 n5 n7
75. 0008502 0 0 841 05 0 0 UseU SUUURTUe 0 29265 03 0 5 0 18032000ETUZ 0 0 843 05 0 Z SUBDIVLSION OF ELEMENT 202 NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT nl 0 000000 00 0 400000 03 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES yel cbp2 111 inl qdp2 1 121 p p NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk Kk xk xk k k k k k k k k x k k k k k k k xk xk xk xk k k k k x x x x lt lt lt lt lt lt lt lt lt lt lt lt lt lt k Xk X X X X X X X X xk k xk k xk x x x x x x x x lt 0 19020000ETUZ 0 140 03 0 6 0 18040000 02 0 2 05 1 0 0 18044000E 02 0 Us LOE 625 1 207 ANON UNUM qv INN OS ae eo SUBDIVISION OF ELEMENI 1e2 RELL EE REN UNO GS NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n2 0 000000 00 0 320000 04 gt a s NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e4 cbp2 n2 12
76. 005 1245 05 4 14 0 05 2501 04 424E 04 134E 04 344E 04 4 095R 05 2 9 0104 0 9 41401504 LBS 564 05 464 05 Be 280 04 L9 7 04 915121615 40d 9E U5 6208 05 sog LE 09 95 LB 620E 05 40290 05 DJ4E UD 4022 05 JU EOD 203 TESS 0 463 05 JAS ESUS SB A E703 302104 2 45020 04 P H PH mH PH PH H PH P pP P PH H PH P H PH HP pP P PH pH pP P PH PH H PH H pP PH H PH pP H H 207 0 209 0 409 0 210 0 ali 0 aLa 0 29 0 214 0 2129 0 216 0 217 OO OO OO O O O O O O O O O O O O 41400000 01 41500000 01 41600000 01 421700000 01 41800000 01 41900000 01 42000000 01 A2100000ET l 42200000 01 42300000 01 42400000 01 42500000 01 42600000 01 42700000 01 42800000 01 42900000 01 423000000 01 425100000ET l 43200000 01 423300000 01 423400000 01 NUMBER NODES CREATED NUMBER OF ELEMENTS CREATED NUMBER OF IMPERFECT ELEMENTS NOD NAME 1271 022 ELM NAME e39 e41 e40 2 COORDS XY OO
77. 00e 04 323680e 03 104278e 04 000000e 00 000000e 00 000000e 00 000000e 00 c smallest near 155 node smallest in the middle element connectivity h elm name grp name nod name 1 grp2 j 2 2 a 4 3 it linear curves curves for time history loads Start time 0 0 crv name cl time load factor 1 S LeU 5 L applied loading 1 initial nod name direction type value force 0 1005 4 r 1 0 0 1 time history nod name direction type crv name value 4 x disp el 40 0 it equilibrium stages end of stage steps 540 200 use default iterative strategy convergence criteria 1 tolerance 0 1e 5 force ref 0 1 6 moment ref 0 1 8 outpout m frequency 0 stress all equilibrium steps including step reduction levels Note The following picture shows the names that have been given to the nodes and elements In the data file 1 N2 N3 N4 1 QE2 QE3 figure 9 4 1 Nodes and elements of fixed ended beam column 173 9 1 2 Structural behaviour The nonlinear analysis is undertaken using one element per member The following figures show the static response of fixed ended beam column The nodes 1 and 4 only experiments rotation The nodes 2 experiments a small displacement in X axes and a bigger one in the Y axes and does not exist any rotation Y displacement Load KN 100
78. 06 41571805 17 18 056 ci 719 00 1925 09 3E 06 204 06 22412 06 4418 06 012 z A UG 242098065 24TE 090 21008 00 2608 06 A 2616 lt L 06 2350410 5 26248 G 2 00 05 4 4 1 9 05 219 090 22618 06 429 118 05 0 4405890565 222 98 06 2520 05 sa LI E 0G 42051505 4998 00 2U00b 090 SA A E706 24 026 22451 10565 21088 06 lt 30 6E 06 P H HP P H PH mH pP PH PH H PH PH pP P H PH H PH P H PH pP PH pP P PH PH H PH H pP PH H PH pP H H m B OO COCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO COO COCO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO L10700000ET01 L09800000ETO0l1 L0200000ET 0l 1 1 L200000ET01 1 1L3900000E 01 LI400000ET I l19500000ETO0l SAL700000E TO0I JL000000ETOI L11200000ET0l L2000000ET01 12100000ETU l 12200000ET01 12500000ET01 L2400000ET l 129900000ET04 4 J12000000E TU 512 400000ET0l 12800000 01 12 0000051401 L3000000EF01 L L S 1O0DO0BETO 1 41 54200000ET01 1539000008301 13400000ET01 sL3900000EF01 13000000ETU 152700000ET 0l 15000000ETO0l 19200000E T0l 14000000 01 14100000 01 14200000 01 14300000 01 14400000 01 14500000 01 14600000 01 14700000
79. 07 2 24 0 18880000 01 2 0 499E 06 2 25 0 18920000 01 2 0 340 09 3 26 0 18928000 01 3 0 144E 08 2 27 1093 60 3 S9255B 08 2 20 0 18944000 01 3 QL45E 06 2 29 J6S9520005 01 0 462 07 3 Phase 1 terminated PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION X CONTROLLED NODE 2 VARIABLE DISPLACEMENT LOAD 168 OUTPUT INCREMENT FACTOR LEVEL ITERATIONS 30 0 12676487 01 0 09 al 0 253529 T7T4ET 01 0 1989025045bT01 32 23070584902 166 923401 0 0 114 10 Dus 0 00705 94 1807784 7E 01 0 0 405E 11 34 0 50 70594 IIE 39 70594 2 J 1602035372RT01 0 2698 06 36 0 10141190 02 13300448 01 cw le UU SJ U202023795T01 0 12478470 01 0 614E 07 30 220200227202 5 1 0 443 06 39 UL 0 10386773ETO0I 1 40 920202779 00 T coq 41 5209564 7595700 0 84608354 00 lt O G 42 0 40564759E 00 0 79871870 00 2 43 0 40564759 00 E400 2 0s 924E 09 44 0 40564759E 00 0 63150114 00 2 0 342E 11 Current control type terminated PHASE NUMBER 2 NODAL DISPLACEMENT
80. 1 xe 1 2 gt NUMBER OF IMPERFECT ELEMENTS 0 w lt lt K Kk Kk k k k k k k k k k xk k lt k k k k k k k xk xk k k k xk x x x x lt k lt lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X xk k Kk k k xk x x x x x x x lt 7 160460008 02 0 0 168E 04 1 0 015298 936 0 0 367E 04 1 8 0 18056000 02 0 155E 05 0 Os 1o0600005 02 0 Us 1 J 180640008402 0 0 408 03 1 0 0 18068000 02 0 2595R D95 2 10 228272000402 0 0 100 04 2 SUBDIVLSION OF ELEMENT 1e3 NUMBER OF NODES CREATED 3 NOD NAME COORD S X Y RELATIVE TO END l OF SUBDIVIDED ELEMENT n3 0 000000ET00 0 120000 04 n4 0000005200 160000 04 5 0 000000 00 0 200000 04 NUMBER OF ELEMENTS CREATED 4 ELM NAME TYPE OF ELEMENT NOD NAMES cbp2 n3 n4 s Neg cbp2 n4 n5 gt qdp2 01 03 qdp2 n5 n2 mr m IS NUMBER OF IMPERFECT ELEMENTS 0 k lt k k k k k k k k ok k k k k k k k k xk k k k k k k k k k k k k k k lt lt lt x lt lt lt lt lt lt k lt X X X X X X X k xk xk k k k x x x x x x x x lt 0 0 18076000E 02 0 0 638E 04 2 0 18080000 02 0 0 130E 03 2 0 0 18084000 02 0
81. 108 7 3 1 ___ __ ___6________ __ _ 109 72 2 WO 770 pe IVE i ee 111 7 3 4 112 Xy E 113 7 3 6 774 TN nodal COOTOINGICS osi d 115 7 3 8 Non 116 9 Oy 1 5 au 117 TCV OCCU A 118 000 119 PNE ____ _______ ____ 120 ____ 121 IS 123 02 APC 124 2220 126 OCR OE eee ee m 127 2 129 CONV CF ONC um a 131 OIG uu ecto _____ _______ __ 133 22271 TNC TOS 134 CHAPTER 8 POST PROCESSING u i u 136 8 1 SI 136 8 2 DR 137 8 2 1 General 137 8 2 2 138 8 2 3 6 77 139 5 2 4 Ce 140 8 3 141 8 3 1 CE 141 8 3 2 _ ____ _ ____ _________6_6____ _ 0 143 5 3 3 144 8 3 4 CO 145 8 3 5 740 CHAPTER 9 147 9 1 SPACE DOME SUBJECT TO VERTICAL APEX
82. 12ET01 0 49180805E 00 Plastic hinge formed for element 3 at 25 22012425Et01 0 45116331E 00 Plastic hinge formed for element 4 at 26 22612425BT01 04423233 795700 27 220LZ425n70 1 0 40365272 00 28 45224849 01 0 297739561ET00 29 45224849 01 0436011033ET00 30 45224849 01 0 34784546 00 161 SUBDIVISION OF ELEMENT 1 UNO GS OF SUBDIVIDED ELEMENT 0 1755868 04 SUBDIVISION OF ELEMENT 2 0 node 4 node 11 node 4 node n2 0 node 4 0 node 3 0 node 5 O O O O X X X x Os O O O O O 3541 00 2008 00 2668 06 447 06 498 06 02 5E 10 6 a OE O JOOLE 00 oco o o o X F CO 01 31 JA 33 34 29 36 37 29 40 Plastic hinge 41 42 43 44 45 46 Plastic hinge 47 48 49 s 21 24 2 54 Ja 56 25 Plastic hinge 58 99 60 61 62 63 64 65 66 67 68 45224849 01 2 23067433 700 33159941800 9044 9698 0 249221599295 00 90449698 01 0 315265 70E 00 90449698 01 0 31143394 00 90449698 01 0 30938842E 00 90449698 01 D SGUDISTILBSTUD 90449698 01 U 309529004FE 00 904496 98 0310882 75 9E 00 90449698 01 0 31326084 00 closed for element e2 at 90449698 01 02 2 2650563 90449698 01 0 220
83. 159 160 161 162 102 164 165 106 167 168 169 170 L72 173 174 175 176 OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO OO OO OO OO OO O OO OO OO OO OO OO OOO OOO 29200000 01 p2950000D0ETOA 29400000 01 4A9900000ETO0I 29600000ET I 29 700000E 01 299000000ET01 2927000 00ETO 20000000ETO0I 30200000ET01 242305900000ETO0I 30400000 01 20500000ET0l 50600000ETU0I 30700000 01 30800000 01 oU020DUDDETU 4 24 2100000E TU 21200000ET01 31300000 01 31400000 01 2Eo00ODDOETUd 2S16000000ETU0l o4 VO0Q00E 01 2SL000000ET01 9L200000ET01 234000000ET01 321000008E 01 22200000ET 0l 24900000ETO0l 32400000 01 UL 32600000 01 7000005201 32800000 01 s34 0000CE OL 53000000E T04 2 2995200000ET 01 923000000 33400000 01 3900000ET01 29000000ET I 29400000ETO0l1 299000000ES0 1 34000000 01 34100000 01 34200000 01 34300000 01 34400000 01 0000 34600000 01 34700000 01 34800000 01 34900000 01 239200000ET 01 0 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO I OO OO QC QO O O
84. 172 22 1 9100 6 sao 8 06 042 06 20 75 06 2 11 491909 49125 00 018 105 70E 07 420 0 1001506 344 06 2168 06 250 22921805 I0 9 Jd 98D C00E U7 4049 07 50 0E 00 01 2 220415900 4 24 8909 17415 09 IZUB DO 2008 06 2001 09 1528 09 2D 2 41 52 98 09 2140 10 L LOBE LO OL4E 07 29 75 09 22291500 297989 4 05 58 500 7 06 em elon US N BO NS BO BD GO CO CO GO GO Go BNO BRO BO ND CO CO GLO NO NO Nm NS GO GO BO PO RO BO OO Go GO N BO FPP eS MN pg NN NP PP PP 168 170 171 172 174 Lo 176 177 178 179 180 181 102 Los 184 195 186 Lo 188 189 190 191 1 22 L93 194 193 136 197 1 20 199 200 201 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO 41750000 01 42000000 01 42250000 01 42500000 01 42750000 01 423000000 01 43250000 01 4 3 500000E 01 423750000 01 44000000 01 44250000 01 44500000 01 44750000 01 45000000 01 45250000 01 45500000ET01 45750000 01 46000000 01 402 0000ET01 Z6500000ET I 46750000 01 427000000 01 SAIT1250000ET 47500000E 01 47750000E 01 48000000 01 48250000 01 490500000ET01 48750000 01 49000000E 01 d9200000ET 49500000 01 49750000E TOI 990000D0D 0ETU CO OO O
85. 3 929780052502 1 2291 11 0 80000000 04 07025056 3ET02 2 92212 9 09 0 80000000 04 25729212102 O 10 5802 0 80000000 04 252921720402 2 0 345 08 0 80000000 04 942721412402 2 2 1906E 07 0 80000000 04 922717802 70 02 2 1928 00 0 80000000 04 02941152065 2 Oo Loe 1 0 0000000F 05 0 965204 76E 02 0 146E 10 0 O0U00ODUOE 05 752000922705 092 25202 95 0 S00000005 05 Q 957035550BT02 S Q 2178 09 0 oOODODOOE 05 020008174202 _ 0 109 08 0 ODUUDUDUUOE U 242927212525 04 e 0 5035 09 0 80000000 05 229205454502 9 Us bg 0 80000000 05 Ue 72215 707 02 2 2245 06 0 QUODODU UE 0 5 2 294238520 02 e 636 10 GW NO BO BO hO NS GO CO CO CO GO 9 GO GO Phase 2 terminated PHASE NUMBER 3 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION 2 CONTROLLED NODE 1 153 DISPLACEMENT INCREMENT 300000 01 NUMBER OF STEPS 20 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVEL CONV ITERATIONS 42 TOLLUUCOETUS 0 0 2248 08 43 15000000ET00 0 10278682 03 0 94230 72 44 15000000 00 0 10449112 03 0 J 2552 06 45 15000000 00 1662101060803 0 222205 00 46 I9000000bT00 Q I1U0794250ET03 0 2478 08 47 9000000E3 00 01096952 ET 05 0 259108 48 195000000ET00 0 11143082 03 0 20425 02
86. 43 58905 54 06 474E 04 0 09 sopd E 06 6I 2 309 D T 4065 00 rod 4308 07 266 03 vd 2i 4 340E 03 67E 03 a eS 2o 2291 1013 pod4E 03 260698 04 366E 04 423 172 2 i soo GRSA 41091504 403 04 s LU LBS 227 104 ES o zd 50 04 d5oE 04 0 0 O F N Fa Pa S BN Fa F2 P 0 1592000002 48 O O960000657T02 0 0 20000000B5 02 49 Z0000000ET02Z 0 0 40000000E 02 50 0 50000000ET02 0 0 60000000E 02 ol 0 PU0DODOUETUZ 0 0 90000000ET02 92 090000000802 0 0 10000000ET05 22 0 11000000E 03 0 54 0 0 14000000E 03 25 015000000 0 0 0 16000000E 03 56 On I13T0ODUDUUDETUS 0 0 19000000ETUS D 7 0 1 9000DDOET U S 0 0 20000000F 03 Jg 0 21000000ET05 0 O 2200000050 99 0 23000000ETUS 0 0 24000000E 03 60 20000000E703 0 0 20000000E 03 61 0 27 000000E 5 0 0 2S0000005F 03 62 Ui 290 0D000E OS 0 0 30000000E 03 63 0 31000000ET05 0 0 3200000050 64 0 523000000ETUS 0 0 34000000E 03 NUMBER OF NODES CREATED F NUMBER OF ELEMENTS CREATED x 9 NOD NAME 12 013 0114 015 016 017 018 019 020
87. 45 Description Partially encased composite I section No of materials 4 specified in this order I section Unconfined region Partially confined region Fully confined region No of dimensions 6 Dimensions Flange width b Flange thickness t Web depth d Web thickness t Unconfinement ratio 1 Partial confinement ratio Application Partially encased composite I sections with three different concrete materials to represent confinement effects r 2 t b t amp r 22t b ty where t and are the thickness of the unconfined and confined parts of the section respectively 46 1 Fully confined Lic p p Unconfined d t 7 1 Partially confined Section pnci 47 Description Fully encased composite I section No of materials 4 specified in this order I section Unconfined region Partially confined region Fully confined region No of dimensions 9 Dimensions Flange width b Flange thickness t Web depth d Web thickness t Partial confinement ratio Stirrup width Section width b Stirrup depth Section depth h Application Fully encased composite I sections with three different concrete materials to represent confinement effects r 2 t b where t is the depth of the partially confined part beyond the section flange 48
88. 48 21 58 04 71 05 1928 04 04 4031804 9221 05 41 3 951804 220 105 LS 28E 04 4008 04 RU 684E 05 460E 04 43904 UB 4 96504 443E 04 loi 04 104E 04 Poor ta 04 317E 04 SUBDIVISION OF ELEMENT e12 pm p mp p HB p p mp p PB BH P K NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n23 0 000000 00 0 200000E 01 SS SS a Se SS Sa a eS Se E Se a E SS ee NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 43 2 n2 3 n4 42 qdp2 06 023 D T tr NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk Kk k xk k k k k k k k k k k Kk k k xk k k k x xk k k k xk k x x x x lt lt k k lt lt lt lt lt lt lt lt lt lt k k X X X X X Xk X xk X xk xk k x x x x x x x x lt 0 0 49100000 01 0 1565 04 1 SUBDIVISION OF ELEMENT e10 199 NUMBER OF NODES CREATED 1 NOD NAME COORD 5 X Y RELATIVE TO END l OF SUBDIVIDED ELEMENT n24 0 000000 00 Jeg FOL
89. 9000000ETU00 0 O 206H 06 1 10 0 20000000ET00 0 0 556E 09 1 0 210000005 00 0 0 SIDE U6 1 11 0 Z2Z2000000E700 0 1 0 230000005E400 0 132E 07 1 12 0 24000000E 00 0 149E 07 1 0 0 25000000ET00 0 U 1602 90 1 13 0 26000000 00 0 7908 07 1 0 0 27000000E 00 0 20778207 1 14 0 28000000E 00 0 735 07 1 0 29000000E700 0 27105 77 1 LS 0 30000000E 00 0 92540220027 1 0 0 231000000ETO0O 0 Os 0 1 16 0 32Z2000000E700 0 O 1595 0 7 1 0 0 3 3000000E700 0 Qs 7010 7 1 17 0 34000000E 00 0 Qu L993E 07 1 0 0 355000000ET00 0 0 248E 07 1 18 04 29000DOURTOO 0 Or 1 0 0 37000000E 00 0 0 bis 1 19 0 38000000E 00 0 0 0 39000000ETU0 0 95005 07 1 20 0 40000000E 00 0 1 0 0 41000000E 00 0 7202 185 024 1 21 0 42000000E 00 0 a OM 1 0 0 43000000 00 0 840E 07 1 Z 2 0 44000000E 00 0 Us TLE DI 1 0 0 45000000E 00 0 125 06 1 43 24 29 26 21 26 29 30 21 32 22 34 29 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 92 252 OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO OO OO OO OO OO OO OO OO OO OO O OO CO QC Q O O 46000000E 00 47000000E 00 48000000E 00 49000000E 00 9UOO0ODOETOD 91L000000E T00 52000000 00 sO 000U0UCE 00 54000000 00 499000000 E300 56000000 0
90. ATADOUOUETOI s amp T 900000ETOUI 424 199000ET01 20000000E 01 20290000ETUI 28500000E 01 20420000 ETU 29000000ETO01 5250000301 29900000ETOI 29 7 50000ETU 508000000ETOI 230250000ET01 30500000ET01 s30 7500005301 21000000ET04 oLSVOQQ0ETOL 31 790000EFU1 000000EF01 222 29000000ETU S944 99000ETOl 2000000E 01 333000006701 33 750000BE TO1 34000000E 01 34250000 01 34500000 01 22 7950000ETUI 000000E 01 229900000ET01l 2396000000E T0l 00ETU4 306 7500005301 23 000000 01 139 2 4 9000D0ETOT so 1500005201 2S0000000E 301 2904000 00ET 230900000ET 0l 39 90000BTU 29000000ET0l 092900006 TOL 39500000 01 D L 40000000E 01 40250000 01 40500000 01 40750000 01 421000000 01 41250000 01 41500000 01 0 OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO CO CO COCO OO CO OO OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCO COCO CO OO OO COCO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO CO OCO OO O O 179 05 400E DO 457 08 495 09 1904 09 22 24 1076 42 00 9900E UO0 soda 4 52 0 Bir O06 2261 08 22 9 22498 0898 28 05 21245 75 025
91. CONTROL GLOBAL DIRECTION Y CONTROLLED NODE 3 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVEL CONV NORM ITERATIONS 45 0 67338419E 00 LESTOO 0 0 842 12 46 0 67338419 00 0 049506 70E F00 0 0 341E 10 477 0 67338419 00 0 50485740E 00 0 297 08 48 0 67338419 00 0 45652421 00 0 U TOlE LI 49 0 13467684 00 0 44621774 00 0 752E 08 50 0 13467684E 00 0 43564685 00 1 0 145E 07 al 0 13467684E 00 0 424 18342 00 1 295F 07 54 0 13467684 00 0 41359499 00 0 628 07 0 13467684 00 0 40204378 00 ib 0 141 06 54 0 67338419E 00 Ue 33693690400 0 905Fi 10 29 0 13467684 00 1 56 0 13467684 00 0 305601535R5bT00 2202 00 Su 0 13467684 00 0 28855344 00 i1 0 605F 07 58 0 13467684 00 0269717110800 i lz22E 06 539 0 13467684 00 245899930RTO00 1 0 141E 06 60 0 13467684E 00 0 22547457 00 1 U2 61 0 13467684 00 0 13773 790E 00 ji 0 448E 11 62 0 13467684 00 1 0 454E 07 ps 0 15410827E 00 2 95904 77 64 Uu 09 5935 7 BD 0 14468054 00 2 Qa L23E 706 65 EUL 0 13410380 00 2 U SOLE 06 66 Deezer 5 0 12184021 00 2 2 294 11 67 RESUL U 410607207 3E 2 9585 1 79 68 Ay cic 94075 2 0 245 09 69 0 529070 755Rh 02 7902734645 01 gt 0 22 8706 70 bu 0 659112846 01 3 0 146 08 Current control type t
92. CT ELEMENTS 0 lt k k k k k k k k k k k k k k k k k k k k k k k k k lt lt lt k k lt lt lt lt lt lt lt lt lt lt lt lt k x X X X X X X X xk lt xk k k xk x x x x x x x x lt xx SUBDIVISION OF ELEMENT 6 NUMBER OF NODES CREATED 2 NOD NAME COORD S X Y RELATIVE TO 1 OF SUBDIVIDED ELEMENT 191 011 0 500000 00 0 000000 00 112 0 000000 00 a E NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES 20 5 1 11 1 22 cbp2 n12 6 21 qdp2 n11 n12 EN ETE REE EE EE EP EE EE E E EE E E EE EE TEE EE EE EE NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk k k xk k k k k k k k k k Kk lt k k k k k k k k k k k k k k lt lt lt k k lt lt lt lt lt lt lt lt lt lt lt lt k lt xk X X X X X X KK xk xk xk k k xk x x x x x x x lt 112 0 22400000 01 0 0 608E 05 1 E sk SUBDIVLSION OF ELEMENT 16 NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n13 0 000000E 00 0 333333E 00
93. DELS The ADAPTIC library includes a number of uniaxial material models which can be used to model steel concrete and other materials with similar behavioural characteristics The models and their applicability are briefly described below with full details given in next pages Model Applicability 51 Bilinear steel model with kinematic strain hardening stl2 Multisurface steel model con simple trilinear concrete model con2 Constant confinement concrete model con3 Variable confinement concrete model Cubic elasto plastic formulations cbp2 cbp3 utilise the full inelastic characteristics of the above models Quartic plastic hinge formulations qph2 qph3 utilise only the yield characteristics of the models The elastic formulations utilise only the elastic characteristics of the models This section describes the material models available in ADAPTIC Each model is referred to by a unique name displayed at the top of the following pages and requires the specification of a number of properties in the order indicated stll Description No of properties Properties Application Bilinear elasto plastic model with kinematic strain hardening 3 Young s modulus Yield strength oO Strain hardening factor Uniaxial modelling of mild steel Stress A ae Strain Material model 8111 stl2 Description No of properties Properties Application Restrictions Multi surface mode
94. Detailed elasto plastic modelling based on the inelastic uniaxial material response can be performed using cubic elasto plastic elements cbp2 cbp3 which accurately model the spread of plasticity across the cross section through the utilisation of material monitoring point To represent the spread of inelasticity along the member length a number of cubic elements usually over 5 are required per member 1 2 Adaptive Elasto Plastic Modelling Adaptive analysis can be applied in the elasto plastic analysis of steel frames to reduce the modelling task which previously required a fine mesh of cubic elements all over the structure and to enable the analysis to be performed quite efficiently The concept of adaptive analysis entails the utilisation of elastic quartic element qdp2 qdp3 which would sub divide into inelastic cubic elements cbp2 cbp3 when inelasticity is detected during analysis The analysis 1s started using only one quartic element per member with element refinement performed automatically when necessary in zones along the element which are pre defined by the user 1 2 5 Joints and Boundary Conditions Joint behaviour can be modelled by means of joint elements jel2 jel3 with de coupled axial shear and moment actions These joint elements can have any orientation and may utilise a number of force displacement relationships described in Chapter 4 The joint elements may also be used to model special boundary condition
95. E 04 3 SUBDIVLSION OF ELEMENI 14 NUMBER OF NODES CREATED 209 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 19 0 000DOOBTUD 0 320000 04 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 16 ebp 9 221 a qdp2 n8 9 lc EN 2 a NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk k k xk k k k k k k k k k Kk lt k k k k k k Ko k k k k k k xk x lt lt k lt lt k lt lt lt lt lt lt lt lt lt lt k k X X X X xk xk xk KK k xk xk k xk xk x x x x x x x lt 0 0 18108000E 02 0 0 335E 04 3 SUBDIVLSION OF ELEMENT 9 ee NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n10 0 000000 00 0 400000 03 W a M NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES e18 cbp2 n10 06 17 qdp2 1 10 NUMBER OF IMPERFECT ELEMENTS 0 w lt K K Kk xk xk k k k k k k k k ok k k k k k k k xk xk k k k k k x x x x lt lt lt k lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X
96. E TO 1 OF SUBDIVIDED ELEMENT n32 0 000000E 00 0 320000E 04 r ee NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 56 cbp2 n32 n31 55 qdp2 2 132 A NUMBER OF IMPERFECT ELEMENTS 0 w lt K K k xk k k k k k k k k k x k k k k lt k k xk k k k k k k k xk x x lt lt k k lt lt lt lt lt lt lt lt lt lt lt k xk X X X X X X X xk k xk k k xk x x x x x x x x lt 0 0 64175000E 03 2 0 172E 06 4 SUBDIVLSION OF ELEMENT e52 NUMBER OF NODES CREATED 1 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n33 0 000000E 00 0 240000E 04 a ee NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 58 33 29 qdp2 n30 n3 3 NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk k k k k k k k k k k k k Kk k lt k k k k k k Kk k k k k k k Kk k k k lt k k lt lt lt lt lt lt lt lt lt lt k k X X X X X X xk KK xk xk xk k xk x x x x x x x x lt 0 0 64176000E 03 2 0 243E 06 4 0 0 64177000E 03 2 0 436E 03 0 0 64178000E 03 2 0 723E 05 2 SUBDIVLSION OF ELEMENI e55 NUMBER OF NODES CREATED 220 NOD NAME COORD S X Y RELATIVE
97. LEMENTS 0 0 0 64192000ETQ3 2 225 05 6 ol 0 641 6Z000E703 4 O 1518100 10 221 9 7 Apexes a b f g h i j k 1 Indicates the kind of analysis required Introduces the characteristics of the materials the name the material model and the properties which are different for each material model Chapter 3 Introduces the type of section the name material and dimensions Defines the groups There you define the element type the group name and the name give to the section Defines the coordinates of the structural nodes Defines the global coordinates of structural nodes non structural nodes Defined the nodal restraints The f command indicates the name of the first nodes which has restraints and the r command 15 refereed to the increment of this and how many times it has to increment the nod name Defines the connectivity of elements in a mesh configuration First is indicated the group name At the f command 15 the name of the element and the extreme nodes of it and at the r command is defined the increment of the nod name th
98. MENT FACTOR 0 700000E 02 NUMBER OF STEPS 14 VARIABLE LOAD OUTPUT FACTOR LEVEL CONV NORM ITERATIONS 1 O 50000000E 01 0 0 546 10 2 2 0 10000000E 02 0 2 D 0 15000000b5 02 0 01628 09 Z 4 0 2 00000008 02 0 Cae S 2 5 U Z20000000E 02 0 a 2 6 0 30000000ET02 0 2 2 7 0 35000000 02 0 0 266E 08 2 OU 40000000E 02 0 s 2 g 045000000E 02 0 2 10 0 50000000ET02 0 U 7 2 11 0 55000000ET02 0 Ue 2551 0 2 12 0 60000000E 02 0 0 S60BE 11 5 0 65000000 02 0 0 915b 11 3 14 70000000E 8 0 R 3 PHASE NUMBER NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION RZ CONTROLLED NODE 1 DISPLACEMENT INCREMENT 240000 00 NUMBER OF STEPS 30 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVEL CONV NORM ITERATIONS 0 90000000E 03 247492972702 4 80 74 8 0 02 751705 3 0 s80000000E 03 Os ii 0 604 06 2 0 29 0000000E 03 6063 OR FOZ 1 75 2 0 90000000E 03 0 75407861 02 Z 0 90000000E 03 907943566055 FUZ 1 2 152 0 80000000 03 1 34200 10 0 80000000 03 1 U o0oUEB LI 0 30000000 03 O 7542S20605 02 1 O 11 15 oOODODOOE 0 01549115102 0 900E 11 L 80000000E 02 972944521502 0 O 5945 07 L7 80000 000E 02 Use 755205 DETUZ 0 0 930507 18 80000000 02 0
99. N301 N401 8 The following picture shows the names that have been given to the nodes QD204 QD205 QD206 figure 9 6 1 Nodes and elements 204 9 6 2 Structural behaviour This example illustrates the considerable influence of explosion on the fire resistance of steel frames even when the extent of structural damage due to explosion 15 relative small For both loading scenarios elevated temperatures initiate buckling in the internal column at T 475 C However the explosion fire scenario is associated with a much reduced overall fire resistance of 642 in comparison with that of the fire only scenario T 894 representing a reduction of 28 This reduction is mainly attributed to deterioration in vertical resistance of the side column due to explosion damage leading to redistribution of vertical loading to the internal column and an earlier overall failure of the system The deflected shapes for the two loading scenarios are shown in the following figure a fire loading b explosion loading figure 9 6 2a Final deflected shape after a fire loading b explosion The deformed shape if we consider explosion and fire loading given by ADAPTIC shows that the combination of both efforts 205 figure 9 6 2b Final deflected shape after explosion and fire loading In addition to the analysis of the struct
100. NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n6 0 000000E 00 0 666667E 00 NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 189 NUMBER OF IMPERFECT ELEMENTS 0 w lt lt K Kk x xk ck k k k k k k k k Kk k k k Kk k k k xk x x k k k k CK x x lt lt k lt lt lt lt lt lt lt lt lt lt lt lt k xk X X X X X X X KK k xk xk k xk x x x x x x x x lt 89 Jel T90ODOORTOI 0 0 204E 04 1 0 7900000801 0 Qs230E 04 1 90 0 L9000000ETO01 0 2936 04 1 0 0 18100000ET0I 0 gt 1 91 010200000 UT 0 2 20 IE 05 0 O G 0 7529 05 1 92 0 18400000 01 0 1 0 0 198500000ET01 0 0 7338 06 1 925 0 18600000 01 0 4258 05 L 0 0 l0TO00UDDUETUT 0 11 7E 04 1 94 l199DOUDODETUJ 0 6S0E 06 1 0 0 169000008702 0 1024 04 1 35 0 19000000ETO01 0 212 04 1 0 0 19100000 01 0 1158 0424 L 96 0 192000 DUET 0 0 541 05 1 0 0 0 254 05 1 9 7 0 19400000E 01 0 72242 09 1 0 295 00000 0 U 2666205 1 98 1 9600000 0 SlJE 05 0 0 19 TODUDUETUT 0 7T0E 05 1 29 Qs19350U0000E401 0 0 405E 05 1 0 O 0 UU Ret 1 100 0 Z0000000E 01 0 0257 b 1 0 0 ZUIO0UOUETOI 0 0 268E 04 L 101 0 Z0Z00000E 01 0 95215 04 1 0 2540200 Har Ud 0 coL Bem 1 102 0 20400000 01 0 0 39905 1 0 0 20500000ET0l 0 0 424E 05 1 L03
101. O OO COCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO COCO OO OO OO OO OO OO OO OO OO OO OO OO O OO CO QO QO O O O 196 21 5 Eeg SZ40E 05 5 04 I9IBE 05 I5 B0 5 LS 2FE 04 sLAGE 05 s990 E 05 BAUS 2091504 daS EUS 4X 75 065 9159905 US 041 107 L 2 44 268005 14 16 06 Z4125 095 SILORE D6 a du 04E 05 LZ T ED sd d ESQ Ld gt iL SSE OS 2208205 i 228 05 424 UEUS a OBSS LE 5 22 2 DE TUS S22 B 241 5B 05 LoS E709 65 140E 05 pd LOE 05 UU SE UD IUE D LUS ESUS 960E 090 2295 06 gt 2 18 065 coy o6 0928 06 0798 06 P H PH mH pP PH PH H PH PH pP P H PH H PH P H PH pP PH pH pP P PH PH H PH H pH P H PH mH pP m B NA 178 179 180 rol 194 192 184 125 ES 187 188 109 190 LoT L92 1 194 195 18215 197 199 pog 200 201 202 205 204 205 206 CO COCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO OO OO COCO OO OO OO OO OO OO OO OO OO OO OO I OO OO OO OO OO OO O 2299000D0ETOJ 3540000
102. O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O OO OOO OO OOO O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O CO C O O O O O O 180 20 2 2105 098 4 9 958 909 0210 7 200022 11 08 1401 09 2 59 59 220 9l Do 94 15 0 2241 09 19245 02 DB 2465 09 LU 1045 08 po celis OZE 09 2999 10 242 0 11 d 42150 9 dz 9 0 sO 758909 1645 09 Uo 2 2 1 0 486 09 4243509 og RO DO Bo CO BO NW NM NM NM GW NM CO NO 9 5 Two storey This example illustrates the influence of an earthquake on the resistance of steel frames 4m 4m 6m figure 9 5 Steel frames subject to earthquake 181 9 5 1 Data file analysis 2d dynamics materials 5 mat name model properties 1 5611 0 210 12 0 300 9 0 100 1 sections type rss sec name mat name dimensions sectl matl Us LO Oe patterns pat name ratios patl l o dl groups type 2 grp name sec name monitoring points grpi sectl 30 type qdp2 grp name cbp2 grp name pat name patl type cnm2 grp name mass 20000 T structural e nod an x Y 1 0 0 0 0 r i 6 0 DAT I 0 0 4 0 2 T restraints f direction
103. PE OF ELEMENT NOD NAMES cbp2 n11 n18 e34 qdp2 n18 n12 NUMBER OF IMPERFECT ELEMENTS 0 k k k k k k k k k xk k Kk k k k k k k k xk k k k k xk xk x lt x lt lt lt k lt lt lt lt lt lt lt lt lt lt k xk X X X X X X X k k xk xk k k xk x x x x x x x lt 119 0 23800000E 01 0 0 148E 04 1 SUBDIVLSION ELEMENT e34 NUMBER OF NODES CREATED NOD NAME COORD 5 X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n19 0 300000 01 0 000000 00 W Y NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES cbp2 n19 n12 ub ico qdp2 n18 n19 NUMBER OF IMPERFECT ELEMENTS 0 0 0 23900000E 01 0 0 838E 05 1 SUBDIVISION OF ELEMENI 2 8 NUMBER OF NODES CREATED 7 NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n20 0 000000E 00 0 200000 01 y
104. Rayleigh damping Dynamic analysis of plane frames al should be set to zero for dynamic analysis involving ground excitation otherwise damping would be proportional to absolute rather than relative frame velocity sec name An identifier referring to one of the cross sections declared in the sections module mass length Mass per unit length parameters Defines parameters of Rayleigh damping elements E 158 2 2 2 1 Fa 1 X Forces for element type rld2 76 jbc2 Description Types Material name Parameters 2D 3D joint element with coupling between axial force and moment but uncouple with shear Three entries are required 1 steel for bare steel or composite for composite connection 2 connection type flush endplate extended endplate web angles top and seat combined web top seat finplate 3 behaviour of panel zone either rigid if panel zone behaviour is omitted or flexible if the flexibility of the panel zone 18 included Three material properties are required by using material model genl The first material provides the properties of the connecting elements e g plates angle The second material is the properties of bolts The thirds material 15 the properties of the connected member 1 column and beam Number of parameters vary according to connection type e Flush endplate 13 parameters e Exte
105. T0l 24900000ETUOl 27400000 01 s amp l OOUQQ0E OL 27600000 01 s T 00000E OL gt 01 z2 19000 00801 2S0000005E 01 sZ2Z0L00000E701 s2oZ00000ETOL 2 830000 28400000 01 290900000ETOUI 28600000E 01 229 QQ0000E 01 28800000E 01 209DODOUETO 2 72 000000E 01 29100000ET 01 CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO COCO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O O NOD NAMES n20 tnis CO OO CO CO CO CO COCO CO CO CO CO CO CO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OOO O O 195 BD 2422005 O1 9B 05 667E 06 AIZBE UD DJ OE U05 4 18 005 2928 09 4217904 soos 065 212 105 04 06 240 2095 4 5015505 4 324 71 05 IOIE DO 2 E05 1906E 05 sb ue BUD o2 Be 05 3500805 en 012 21 0 05 242 1 05 u 05 2 47 TESUS AJLE 09 401E 05 446E 05 4434 19 OU EDS sA GIES so 20 OB UD io 3904 E 5 344E 05 iab 4928 05 Ob lt a BS 19 020 HB P H PH pP PH PH PH H P P H PH H PH PH pP PH H PH pP pP P H PH PHP H PH H PH H H H 146 147 148 149 150 pod 152 103 154 155 159 low 150
106. TO END 1 OF SUBDIVIDED ELEMENT n34 0 000DOOBTUD 280000 04 s Ka H Ss NUMBER OF ELEMENTS CREATED 2 ELM NAME TYPE OF ELEMENT NOD NAMES 260 n34 n32 qdp2 311 034 P NUMBER OF IMPERFECT ELEMENTS 0 w lt K Kk k k k k k k k k k k k k Kk Kk lt k k k k k k k k k k k k k x lt lt k lt lt lt lt lt lt lt lt lt lt lt lt lt k X X X X X X xk xk KK k xk xk k xk x x x x x x x x lt 0 0 64179000 03 TE 95 4 0 0 64180000 03 2 0 319 04 2 0 0 64181000 03 2 J 599 0 4 SUBDIVLSION ELEMENT e57 RELL REE NUMBER OF NODES CREATED 2 NOD NAME COORD S X Y RELATIVE END 1 OF SUBDIVIDED ELEMENT n35 0 000000 00 0 400000 03 036 0 000000 00 0 200000 04 m WL L L L L NUMBER OF ELEMENTS CREATED 3 ELM NAME TYPE OF ELEMENT NOD NAMES ebp2 n30 n35 263 ebp2 n36 n33 62 2 035 036 a SS SS NUMBER OF IMPERFECT E
107. Z 22 0 Usd LZ 2 12920990BT01l OU 74909 00 0 U 44 E 12 94 OL OLA DOE 0 2 99 14925992501 50221917240 0 90525 06 26 200927 T BT 027004422hT00 0 0 252R 09 23 200947 JT 20250155 22BRT00 0 22 a Ol 6155605655 5ET0O0O 0 2535 LO 29 22900927132T01 5004 1 0 1 100 e 75201 LE OD 0 042008 LOL 200927 TOL 0 46R 11 102 NU 0 12 103 402239009000 0 2 40 12 104 a 17404930 0 0 240R 12 105 38 4530 730E 00 0 0 03 75 12 106 TU L 3416124 98 00 0 107 sooo BL 51 1142415400 0 108 0250084 TORT L 4149370J43BT00 0 1 109 229092713101 2454 1 0 l6m 10 25852 qu TOI 0 14728 717150E 00 0 Dodd meu Lil 2009027 SBTUI 0 Qs oc Le D 112 0 90974690ET00 0 29 909 0 15494444 01 0 0178 09 114 22401 0 75210 76 170 C0 9 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO PO CO CO CO CO CO CO CO CO CO CO N WW CO CO CO CO WWW CO 9 4 Fixed ended beam column The fixed ended beam column shown in the figure 9 4 15 subjected to two vertical symmetric forces P and to an horizontal force The buckling forces for this fra
108. a load at any given time is given by the product of its nominal value and the load factor obtained from its load curve at that time Dynamic loads can be forces or 124 Notes accelerations applied at the nodes in the global directions nod name The node at which the load 15 applied nod name The node at which the load 15 applied direction The direction of the applied load displacement along global X axis displacement along global Y axis z displacement along global Z axis rx rotation about global X axis rotation about global Y axis rz rotation about global Z axis type Defines the type of the applied load force applied force displacement applied displacement velocity v applied velocity acceleration a applied acceleration element specific keyword for element loads elm name The element subjected to loading value Nominal value of the applied load crv name The load curve defining the variation of dynamic or time history loads The load curve must be declared in the 1inear curves module proportional loads time history loads and dynamic loads cannot be used in the same analysis initial loads can be used in static or dynamic analysis but the module 1s optional The load type can either be orce or displacement for both static and dynamic analysis In dynamic analysis only velocity and acceleration can be used to indicate initial conditions but these are o
109. a normal view whereas P indicates a perspective view Output Number Indicator This displays the current output number as well as the corresponding eigenvalue mode if any in view For example Output 3 refers to the actual deflected shape in output number 3 Output 5 M2 refers to mode 2 of output number 5 with auto display slider contol given to varying the output number while Output 5 M2 refers to the same mode and output number with auto display slider contol given to varying the mode number A single click with the left mouse button enables specification of output number and eigenvalue mode Output Number Selector This allows output number selection using a slider which is more convenient for a quick browse through the deflected shapes Auto Display Speed Selector This enable the speed of automatic display for deflected shapes to be controlled using a slider Contour Display Area This area displays the contour colours and scale and is activated by the General Settings button A single click with the mouse buttons on the contour display area has the following functionality Lef button customisation of contours Right button turn on off contour information in the Graphics Display Area 142 8 3 2 File This menu option offers the following facilities discussed with reference to the initiating buttons Data File This allows the selection of the data filename provided the application i
110. ading 167 933 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 2 2 MAXIMUM FRONT NODAL 2 ADDITIONAL FREEDOMS 0 VARIABLE LOADING PHASE NUMBER INCREMENT FACTOR NUMBER OF STEPS LOAD CONTROL 0 200000E 01 VARIABLE LOAD OUTPUT FACTOR LEVEL CONV NORM ITERATIONS 1 0 10000000 00 0 0 489E 09 3 2 0 20000000 00 0 0 926 08 3 3 0 300000008400 0 0 304E 07 3 4 0 40000000 00 0 3 5 0 50000000 00 0 7B 07 3 6 0 60000000 00 0 O 14E 07 3 7 0 70000000E 00 0 0 205E 0 J 3 8 0 80000000E 00 0 0 3435 07 3 9 0 90000000E 00 0 0 4595E 07 3 10 0 10000000 01 0 3 11 D LILOOOGOUOE TUI 0 0 118E 06 LZ 0 12000000 01 0 0 1957E 096 3 0 13000000 01 0 0 242 58 095 3 14 0 14000000 01 0 0 244 06 0 15000000 01 0 0 245E 06 3 16 0 16000000 01 0 0 434 06 3 0 17000000 01 0 152E E Pl 4 18 0 180000005 01 0 0 100E 08 4 19 0 18200000 01 1 3 20 0 18400000 01 1 2529 11 3 zd 1 0 19T7E 09 22 0 18800000 01 1 U 003E 07 3 23 0 18840000 01 2 736
111. asto plastic curve Unloading is performed kinematically to the extension of the second branch of the reloading curve Elasto plastic joint action Structural gaps The following parameters represent a curve with zero resistance until a specific negative displacement D 1s achieved 0 0 Qa 0 ja 0 0 D All k s must be positive amp must not be more than k for the positive and negative displacement regions Force f d Displacement Force displacement curve astr 36 rigid Description Parameters Characteristics Application Restrictions Rigid curve type None Rigid curve Constrains a local freedom to zero Avoids numerical problems that can occur with the lin curve type using a large stiffness Force ee Displacement Force displacement curve rigid 37 contact Description Contact curve type Parameters dy amp do Characteristics Gap contact curve with a gap between dp and do Application Modelling of gaps with arbitrary lower upper limits Restrictions Force do Displacement Force displacement curve contact 38 plastic Description Parameters Characteristics Application Restrictions Plastic curve type Rigid plastic curve with plastic limits Modelling of rigid response with arbitrary lower upper plastic limits Displacement F
112. ation of the graph characteristics Fonts This allows the modification of the font name size and style for the axes titles axes labels and legend text Axes This facility can be used to modify the axes attributes including thickness colour etc It also allows individual axes to be modified in terms of minimum and maximum values step size scaling factor etc Lines Each line graph can be customised using this facility with regard to thickness style colour the use of points activation de activation the output range of interest the corresponding legend text etc Legend The legend can be customised with regard to visibility as well as the number of legend columns 140 8 3 ADAPTIC_shapes 3 1 General Facilities The main components of the ADAPTIC_shapes application are shown in Figure 8 3 1 The functionality of each component is described hereafter Graphics Display Area This is the main graphics area where the structure is displayed Each of the three mouse buttons has a click and drag functionality which 1 modified by the Shift key and which depend on whether normal or perspective view 15 selected For normal view Lef button Lef button Shift Right button Right button Shift Middle button Middle button Shift For prespective view Lef button Lef button Shift Right button Right button Shift Middle button Middle button Shift rotate about planar axes origin centred in struct
113. coupled axial shear and moment actions Curve types Models used for the joint force displacement curves specified for F axial V shear and M moment respectively Each of these models may be any of those described in Chapter 4 Parameters Parameters for each of the three models specified for F V and M Nodes 3 Characteristics Nodes 1 and 2 must be initially coincident Node 3 is only used to define the x axis of the joint and can be a non structural node The orientation of the joint x axis after deformation 15 determined by its initial orientation and the global rotation of node 1 Application Plane frame analysis Can be used to model pin joints inclined supports elasto plastic joint behaviour soil structure interaction and structural gaps through employing appropriate joint curves Restrictions Element has a zero initial length since nodes 1 and 2 must be coincident Cannot be used to model coupled axial shear and moment actions Group header curve types Defines curve types for joint elements parameters Defines parameters for the joint elements 70 TE F X y p al after deflection 1 before deflection 1 2 Forces for element type Jel2 71 cnm2 Description Concentrated lumped 2D mass element Nodes Characteristics Models lumped mass for dynamic analysis Allows full 2x2 translational mass matrix to be defined Lumped element
114. d 111 Y Z planes Store This allows the storage of the current view into one of the three available views Customize This enables customisation of the current view including 1 axes orientation 11 zoom centre 111 zoom scale and normal perspective specification 146 Chapter 9 EXAMPLES 9 1 Space dome subject to vertical apex load The dome space structure shown in the figure has been widely considered in the verification of nonlinear analysis methods for 3D frames The aim here is to be able to predict the lowest buckling mode of the dome 0 76 a Cross section All dimension in m 10 885 21 115 a Plan Elevation figure 9 1 Configuration of space dome subject to vertical apex load In order to illustrate the behaviour of the structure under a increasing load here 15 going to be use ADAPTIC which has the capability of predicting the large displacements static and dynamic behaviour of elastic and inelastic plane and space frames 147 9 1 1 Data file it analysis 3d static it materials mat name model properties beth 205900 QU sections type rss sec name mat name dimensions sectl matl 253570 1 22 it groups type gel3 grp name sec name gpl sectl it SLEuUc tural Dou Ti 2 1 0 0 0 1I 6 286 00 066 12 2502 xmi La 6 290 L0 509 14 O 1124997 15 214212 0 003
115. d for any iteration Default 1000 129 Notes arc flow iteration Iteration number after which the normal flow method 15 appled with arc length control Default number of iterations Using number of initial reformations equal to the number of iterations is equivalent to Newton Raphson strategy Using a number of initial reformations equal to is equivalent to the modified Newton Raphson strategy The solution is considered to be diverging if after the divergence iteration the convergence of the current iteration is greater than that of the previous iteration This check is not applied during the scaled iterations stage and for a number of subsequent iterations equal to divergence iteration orifa relaxed solution within maximum tolerance has been found Scaling of iterative displacement corrections 15 applied after divergence if the remaining number of iterations exceeds scaled iterations this technique can be used to overcome convergence oscillations The increment is reduced by the step reduction factor if convergence full or relaxed 15 not achieved divergence occurs maximum convergence IS exceeded The original increment can be reduced for up to three levels The normal flow option for arc length control can improve convergence characteristics but does not guarantee that the displacement increments correspond exactly to the specified arc length 130 7 3 19 Convergence criteria This module defines
116. de approximate modelling of steel members The plastic hinge capability 1s not extended to reinforced concrete sections Elastic formulations utilise constant elastic rigidities for bending axial and torsional actions derived for given cross sectional configurations As such they are only accurate for steel members since they do not account for concrete cracking This section describes the cross section types available in ADAPTIC Each type 1s referred to by a unique name displayed at the top of the following pages and requires the specification of a number of materials and dimensions in the order indicated 4 rss Description Rectangular solid section No of materials 1 No of dimensions 2 Dimensions Width b Depth Application Rectangular solid sections of uniform material A Section rss 42 chs Description No of materials No of dimensions Dimensions Application Thin circular hollow section 2 Outer diameter D Tube thickness t Circular hollow sections of uniform material Section chs 43 Description No of materials No of dimensions Dimensions Application General purpose I or T section 0 Bottom flange width Bottom flange thickness ta Top flange width Top flange thickness 05 Web depth d Web thickness t I or T sections of uniform material 44 Section Isec
117. e extreme nodes and when it has to stop Indicates the kind of load and the direction of each one This module phases 15 used to trace the load deflection curve for the proportional loading This module specifies the iterative strategy applied during a load or time step Defines the tolerance at the iterative calculating process and the reference value in calculating the convergence Specifies the frequency of numerical output This module specifies levels within elements of specific types This module specifies the conditions which govern the termination of the automatic control phrase under a proportional static loading regime gt This modules defines subdivision patterns utilised in automatic mesh refinement This module specifies piecewise linear load curves for dynamic or time history loading This module specifies the time scheme for dynamic analysis and its parameters 222 5 This module defines of intervals at which structural equilibrium is established 223
118. ed Here is been obtained how the vertical apex deflection varies while the load increases 2 un 2 4 6 Vertical Apex Deflection figure 9 1 2 a Response of space dome structure As 18 shown in the figure there is a first path where the displacements of the structure are almost proportional to the load but when is arrived to a certain value of load the displacement are nonlinear and they increase more than the load It is evident that the introduction of small imperfections activates the lowest buckling mode which involves a planar rotational mode like is shown in the figure In the absence of these imperfections the dome deflects fully symmetric about the dome apex papers 150 figure 9 1 2 b F inal deflected shape of space imperfect dome 151 913 Output file ADAPTIC also give an output file where can be found the way that the program calculates the structure ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 1 LI 21 26 Z 12 22 14 La 1 6 25 3 2 4 24 5 MAXIMUM FRONT NODAL 5 ADDITIONAL FREEDOMS 0 VARIABLE LOADING PHASE NUMBER 1 TYPE LOAD CONTROL INCRE
119. ed according to one of M default M M M amp M M 0 M M M default My M M 0 M M M M M xy XZ M Allows specification of mass proportional damping at group level Dynamic analysis of space frames shells and 3D continuum membrane structures mass Element mass damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module 91 Forces for element type cnm3 92 Description Damping parameters Nodes Characteristics Application Restrictions Group header Concentrated dashpot 3D viscous damping element Three translational and three rotational damping coefficients specified in this order Cx Cy Cz Cxx Czz Models nodal viscous damping for dynamic analysis Dynamic analysis of space frames and shells Dynamic analysis of 3D continuum membrane structures should be specified as zero for shell nodes should not be specified 3D continuum membrane analysis damping parameters Defines dashpot damping parameters Forces for element type cnd3 3 Description Nodes Characteristics Application Restrictions Group header Linear 3D mass element 2 Simplified modelling of uniformly distributed mass for dynamic analysis Assumes the mass
120. efore the load curve is applied Default 0 The line number in file corresponding to the first entry of the load curve Default 1 The line number in file corresponding to the last entry of the load curve Default lt end of file gt A FORTRAN format specification by which the load curve entries are read from file Default lt free format gt Load factors of all load curves are taken as zero at the start time 121 The time entries of a load curve recalled from a file are shifted by the value of delay which must always be positive The load factor for such curves is zero between start time and start time delay This module is only applicable when using time history loads dynamic loads defined in the applied loading module 122 7 3 14 Integration scheme This module specifies the time integration scheme for dynamic analysis and its parameters integration scheme scheme newmark beta lt real gt gamma lt real gt scheme hilber hughes taylor alpha lt real gt beta lt real gt gamma lt real gt scheme The time integration scheme alpha HHT parameter gt 1 3 Default 0 0 Newmark beta Newmark HHT parameter Default 0 25 1 a gamma Newmark HTT y parameter Default 0 5 a Notes This module is only applicable for dynamic analysis defined by the existence of dynamic loads applied loading module 123 7 3 45 Applied loading
121. ement layers in x and y directions Composite floor slab cross section consisting of ribbed reinforced concrete acting compositely with trapezoidal steel decking 58 Section cslb 59 Chapter 6 ELEMENT TYPES This section describes the element types available in ADAPTIC Each type 15 referred to by a unique name displayed at the top of the following pages and requires the specification of a number of entries for its groups connectivity and other modules 60 2 Description Cubic 2D elastic element with uncoupled bending and axial actions Nodes 2 Characteristics Accounts for large nodal displacements but requires a number of elements to represent a member with significant beam column action Application Elastic analysis of plane frames Restrictions Unable to model concrete cracking Group header sec name An identifier referring to one of the cross sections declared in the sections module M 2 y i F F _ EV Lai M y X 2 m 1 gt x x Element configuration Element forces before and after deflection Configuration and forces in local system of element type cbe2 61 cbp2 Description Monitoring points Nodes Characteristics Application Restrictions Group header Gauss Point Cubic elasto plastic 2D beam column element 25 points usually adequate depends on section type 2 Geometric and material nonlinearitie
122. erminated 169 CO CO CO PO PO WN C0 CO W DN P2 CO hh OC CO PO PO 9 9 CO CO PHASE NUMBER 2 NODAL DISPLACEMENT CONTROL GLOBAL DIRECTION Y CONTROLLED NODE 2 VARIABLE DISPLACEMENT LOAD OUTPUT INCREMENT FACTOR LEVEL CONV NORM ITERATIONS 71 01 0 57646662 01 0 0 884E 08 74 0 36441746 01 0 0 848E 00 13 315 0 0 9498E 10 74 23250157 522222610 95021002 01 0 0 34 24312900 00 Ca 094 o2 0 Le TO 32315966E 1 00 IU0032000E 0U1 0 JA 32515906htTD0 L19888 2IE UU 0 U 6UZE 06 78 64631932 00 lo0lo0227LlEBT00 0 S065 19 640519520700 gt 296 35 0 opom l1l 80 4 63 208 EtU 52402203300 0 1 81 2546319 5ZE 700 A 144 70 0 1322 12 GA G4631932Et00 SUDOTOZURTUD 0 2222 12 02 046519252BT00 99040DDOOE TUO 0 o TE 12 84 64631932 00 BO 0 95 00 85 L29203 606 01 40956541545 00 0 Ost 535 09 86 Ooo Ol 45112304 00 0 7292 11 87 2 48654527E 00 0 l124m8 10 88 129260966801 0 89 sl 2926300701 24242477 0 U ae 90 12926380 532202744275 0 91 701 Sa 0 Qs 2 L
123. ettlement through using a displacement load at a support nodal freedom 111 Static analysis proportional loading These are loads which vary proportionally according to one load factor The behaviour of a structure under proportional loading can be studied in the post ultimate range using the displacement control strategy These loads cannot be applied with time history loads within the same analysis 1 1 2 Static analysis time history loading These are loads which can vary independently in the time or pseudo time domain As such if the structure has reached a stage where the loads cannot be incremented as specified by the user the analysis is terminated since the program cannot establish how the user would want to continue the analysis Time history loads are useful for modelling cyclic loading under various force or displacement regimes 113 Dynamic analysis Dynamic loads can be specified in a similar way to time history loads and can be applied forces or prescribed accelerations Note that the latter allow the modelling of ground excitation which is different from the case of static analysis where support motion is indicated by means of prescribed displacements The ability to model loads varying independently in the time domain allows asynchronous excitation to be represented with relative ease 114 Eigenvalue analysis Eigenvalue analysis is performed using the efficient Lanczos algorithm which requires as input the number
124. formed with relative ease Save files for the ADAPTIC graphs application are automatically given svg extension Retrieve This button retrieves svg plot files that have been previously saved Print Export This button allows 1 the output of the plot description to an Encapsulated PostScript EPS file which can be imported into word processing applications or i1 the export of numerical data as X Y columns within a text file which can be used for further processing and plotting in spreadsheet applications Exit This allows ADAPTIC graphs application to be terminated Before exiting make sure you have saved your plot file if necessary 138 8 2 3 Graphs Three facilities can be accessed using this menu option as discussed below New Curve This allows the selection of X and Y entities for a new line graph After selecting the entities described hereafter the Done button must be pressed followed by the Plot button for displaying the new line graph TIME LOAD FACTORS Allows the selection of time or load factor depending on the type of analysis as well as CPU time and output number for plotting The output numbers are explicitly indicated for the various steps of the nonlinear analysis in the output file filename out FORCES AT PRESCRIBED FREEDOMS Allows the selection of forces at restrained or prescribed freedoms The latter are defined as any freedom subject to a displacement or time history acceleration load
125. g model 111 7 3 4 Sections This module specifies cross section identifiers referring to a section type constituent materials and section dimensions Notes sections sec name sec name type dimensions dimensions The name of the section which has the given properties The name can be any alphanumeric string The section type This must be one of the available types given in Chapter 5 Specifies the material s used The specified entry s should be one of the material identifiers declared in the materials module Dimensions of the section The number of dimension must be as defined in Chapter 5 for the corresponding section type 112 7 3 5 Patterns This modules defines subdivision patterns utilised in automatic mesh refinement The specified ratios indicate the number of potential subelements and their relative lengths patterns pat name ratios pat name A pattern identifier ratios Integer values denoting relative lengths of zones where inelasticity 1s checked The number of integers implicitly defines the number of zones Notes 113 7 3 6 Groups This module defines properties for element groups The number and nature of group properties depend on the type of elements for which the group 1 being established groups type of element lt element type gt _ grp name group header 114 7 3 7 Structural nodal coordinates
126. ge elements while the second is a more accurate solution employing elements which account for the spread of plasticity across the section depth and along the member length For reinforced concrete and composite frames inelastic analysis 1s performed using the second approach only The loading can be either applied forces or prescribed displacements accelerations at nodal points The loads can vary proportionally under static conditions or can vary independently in the time or pseudo time domains The latter variation can be utilised for static or dynamic analysis 1 1 Types of Analysis Loads can be applied at the nodal positions for the translational and rotational freedoms in the three global directions X 7 A load can be an applied force or prescribed displacement acceleration The only restriction on the application of loads is that a load corresponding to a structural freedom should only be specified once and that the loaded freedom should not be restrained This requires that ground excitation for example should be specified as an applied acceleration at the ground nodal freedoms and that these freedoms should not be restrained Static loads applied only once to the structure at the start of analysis Any further loads applied during proportional or time history loading are applied incrementally on top of these loads The initial loads are useful for modelling the structure dead weight Also they can model initial support s
127. he initiating buttons Output Number This specifies the output and mode numbers to be displayed Output number 0 refers to the initial undeflected configuration with other numbers referring to various equilibrium states obtained during nonlinear analysis For a specific output number mode number O refers to the actual deflected shape of the equilibrium state while other mode numbers refer to eigenvalue modes if any have been obtained for this equilibrium state Auto Display This enabes an animation of the structural response or the eigenvalue modes through sequential automatic display of deflected shapes modes Animation control can be given in the General Settings over varying the output numbers for a specific mode for the deflected shape or the mode numbers for a specific output number O for the initial configuration The speed of animation is controlled by the Auto Display Speed Selector The animation can be interrupted with a single mouse click with any button anywhere within the application window Customize This allows the display of various element types to be customised mainly in terms of 1 basic or full plotting 11 range of element to be excluded from view 111 plotting divisions over element iv line colour fill colour vi line thickness and appearance of nodal and element labels The customisation can be applied selectively for individual element types or uniformly for all element types 144
128. ifier nod name The node name for which the displacement condition applies direction The direction for which the displacement condition applies X displacement along global X axis displacement along global Y axis displacement along global Z axis rx rotation about global X axis rotation about global Y axis rz rotation about global Z axis Notes Multiple direction specification is not allowed in this module This module is only applicable when using proportional loads in the applied loading module 120 7 313 Linear curves This module specifies piecewise linear load curves for dynamic or time history loading Notes linear curves start time lt real gt crv name lt name gt time load factor file lt file name gt delay lt real gt first line lt integer gt last line lt integer gt format lt format specification gt start time crv name time load factor file delay first line last line format Specifies the start time at which all load curves have a zero value This entry must be less than the first TIME entry of all load curves A curve identifier Time or pseudo time column of entries Load factor column entries corresponding to the time enteries The name of the file in which the load curve is stored This option can be used if the load curve is stored in a file The time delay from the start time b
129. increment path steps automatic control type path cnd name load control Represents the load control option displacement control Represents the displacement control option automatic control Represents the automatic displacement control option increment Specifies the increment in the load factor for load control the increment of displacement for displacement control the increment of arc length path Specifies the sign of the increment continue follow the previous loading path reverse r unload relative to the previous loading path keep keep the sign of the increment as specified This cannot be used for arc length control steps The number of steps used to apply the increment nod name elm name The name of the node or element used for displacement control Omission of this implies arc length control Note that arc length control cannot be used for the first phase direction The global direction in which the displacement control will be applied type The automatic control type 127 nod control elm control arc length control translation rotation 2 The direction specification x y z 1s used only for are length control and can represent any combination of the available translational freedoms x y and or z The name of the stopping condition used in the automatic control option The specified condition should be declared in the condi
130. ions sectl OW gh Jsa sect2 mat2 219 0 4 37 groups type qph2 grp name sec name subdivision 1 sectl t grp2 sect2 f it Struclurat nodal nod f 1 0000 0 0000 0 r 1 2 1900 UDOUDIO 1 E i3 0000 0 4600 0 r 1 0000 0 2 restraints nod name direction 1 xTy il 1 b KEY TLS p 2 1 element connectivity elm name 4 1 4 E l 3 c 1 L3 3 4 il 1 d 1 it imperfection elm name values 1 240 E 3 0 2 ONES 4 8 3 6 it applied loading proportional nod name direction 4 Y force Condition disp cnd name nod name direction 1 4 Y phases load Goutro increment path steps grp name 156 value 0 100 7 limits 300 0 0 0 TO k 25 automatic control type path cnd name nodal translation C il tuse default iterative strategy iterative strategy k number 10 initial reformations 10 step reduction 10 divergence iteration 6 maximum convergence 0 1 5 convergence criteria 1 tolerance 0 1 5 force 0 5e 6 moment 0 1 8 output m frequency 0 end Note The following picture shows the names that have been given to the nodes and elements in the data file figure 9 2 1 Nodes and elements of the K frame 157 9 2 2 Structural behaviour The nonlinear analysis is undertaken using one element per member the response shown in the figure 9 2 2a shows the static response of K frame
131. isotropic material model with thermal strains 3 Young s modulus Possion s ratio Coefficient of thermal expansion a Can be used for 1D 2D and 3D elements 27 bnsi Description Biaxial triaxial elasto plastic material model with isotropic strain hardening No of properties 5 Properties Young s modulus Possion s ratio Yield strength Oy Strain hardening parameter Plastic strain at onset of hardening Application Can be used for 1D 2D and 3D elements Stress Z uE 5 4 v Eh Strain Material model bnsi 28 bnsk Description Biaxial triaxial elasto plastic material model with kinematic strain hardening No of properties 5 Properties Young s modulus Possion s ratio Yield strength Strain hardening parameter Plastic strain at onset of hardening Application Can be used for 1D 2D and 3D elements Stress Strain Material model bnsk 29 tpth Description No of properties Properties Application Triaxial elasto plastic material model with kinematic strain hardening and elevated temperature effects 30 Young s modulus and temperatures Ee B L L l Yield strength and temperatures 0 9 1 D T Plastic strain at onset of hardening L L Strain hardening parameter H5 1 D T Possion s ratio and temperatures Vos V V 1 D Thermal strain a
132. k k k k k k k k k k k k k k lt k lt k lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X KK xk k k k xk x x x x x x x x lt O O O O O sa S 00000801 23400000 01 2299000 1 000008401 O O O O NUMBER OF NODES CREATED x NOD NAME 17 1 O O O O 0 3 9 15 904 18 14 902 5 SUBDIVISION OF ELEMENT 30 COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT 0 000000 00 NUMBER OF ELEMENTS CREATED ELM NAME 2 TYPE ELEMENT 193 NOD NAMES 0 200000ET01 0b e31 qdp2 n16 17 22 3 NUMBER OF IMPERFECT ELEMENTS 0 aaa SUBDIVLSION OF ELEMENT e21 LL I NUMBER OF NODES CREATED NOD NAME COORD S X Y RELATIVE TO END 1 OF SUBDIVIDED ELEMENT n18 0 100000 01 0 000000 00 a EE a E NUMBER OF ELEMENTS CREATED 2 ELM NAME TY
133. l for cyclic plasticity 42 Young s modulus E Plastic strains used for curves description Ep2 55 Virgin stress plastic strain properties QURE AME NN INN KaKa Cyclic stress plastic strain properties A NM E MM NL Weighting function properties Wi Wo Ws W Cyclic behaviour of steel modelling hardening softening and mean stress relaxation No descending branch beyond ultimate point ie K gt 0 gt 0 Virgin curve x Weighting function W gt e e e Ki 4 5 K K denotes slope of virgin curve pl p2 Epa 5 Plastic strain 1 W W denotes slope of weighting function W W pl ps Plastic strain Material model stl2 513 Description No of properties Properties Application Overstress Rate sensitive bilinear elasto plastic model with kinematic strain hardening 5 Young s modulus Yield strength oO Strain hardening factor Rate sensitive parameter s Rate sensitive parameter 2 Uniaxial modelling of mild steel Material model stl3 10 stl4 Description No of properties Properties Application Restrictions Bilinear material model 20 Young s modulus and temperatures used for trilinear description Yield strength and temperatures for trilinear descrip
134. lange e Thickness of beam web 3 2D used similar to jel2 4 3D used similar to jel3 Plane frame analysis Space frame analysis Can be used to model steel and composite joints Element has a zero initial length since nodes 1 and 2 must be coincident type Defines the type of connection and contribution of shear panel mat name 5 Defines the material for the connecting elements bolts and connected member parameters Defines parameters for the joint and depends on the connection types 79 cbp3 Description Monitoring points Nodes Characteristics Application Restrictions Group header Cubic elasto plastic 3D beam column element 100 points usually adequate depends on section type 3 Geometric and material nonlinearities Numerical integration performed over two Gauss points A number of monitoring areas used at each Gauss section to monitor material direct stress and strains Predicts global member behaviour based on a material stress strain relationship A number of elements per member usually over 5 must be used for reasonable accuracy in inelastic modelling Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Modelling of inelastic members in space frames The elastic torsional rigidity is used which is approximate for composite and R C sections Warping strai
135. ll data modules unless indicated otherwise 104 7 2 1 Continuation The ampersand amp symbol can be used to continue data entry on the next line 105 Telek Comments Comments can be added anywhere in the data file using the hash symbol All entries following a on the current line are ignored 106 7 2 3 Incrementation The automatic incrementation facility can be used with some data modules This is indicated where applicable The general syntax is given below f entry 1 gt lt entry gt r lt 1 1 gt lt inc 1 gt rep 1 gt r lt range 2 gt lt inc 1 2 gt lt inc n 2 gt rep 2 gt r lt range m gt lt inc lm gt inc n m gt lt rep m gt entry 1 gt range j gt inc 1 gt lt j gt Notes ith entry on the first data line used for generation Range of previously generated lines to be used for further incrementation Syntax of range j 1s first 1 gt last j gt for example 4 8 The increment to be used in the generation of the ith entries If entry 1 gt 1s a character string then lt 1 J gt must be a dash The number of times each line in the range range gt 1s incremented The defaults for optional arguments are range gt 1 total number of lines generated so far first j gt 1 lt last j gt total
136. mass specified according to one of M default M M amp My 0 M M default 0 M M M Allows specification of mass proportional damping at group level Application Dynamic analysis of plane frames Restrictions Group header mass Element mass damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module Forces for element type cnm2 12 cnd2 Description Concentrated dashpot 2D viscous damping element Damping parameters Two translational and one rotational damping coefficients specified in this order Nodes 1 Characteristics Models nodal viscous damping for dynamic analysis Application Dynamic analysis of plane frames Restrictions Group header damping parameters Defines dashpot damping parameters E F x Forces for element type cnd2 73 2 Description Linear 2D mass element Nodes 2 Characteristics Simplified modelling of uniformly distributed mass for dynamic analysis Assumes the mass to lie on a rigid straight line between the two end nodes Allows specification of mass proportional damping at group level Application Dynamic analysis of plane frames Restrictions Group header mass length Mass per unit length damping parameter optional parameter mass proportional Rayleigh damping defa
137. me where obtained using 3 elements P P Section 4 qQil4x23mm M 1910mm 1910mm 1910mm figure 9 4 Geometry of fixed ended beam column 171 9 4 1 Data file analysis 20 Statics materials mat name model properties amp 0 210000 06 0 100000 02 0 600000 02 0 210000 01 0 187850 03 0 101150 06 0 433500 05 0 289000 03 0 306340 03 0 115600 04 0 12041 7 04 0 335240 03 0 187850 03 0 101150 06 0 433500 05 0 289000 03 0 306340 03 0 115600 04 0 12041 7 04 0 335240 03 0 000000 00 0 000000 00 0 000000 00 0 000000 00 0 000000 00 0 000000 00 0 000000 00 0 000000 00 sections type chs Circular hollow section sec name mat name dimensions sectl 114 0 243 patterns subdivision patterns for elelments qdp2 pat name palos pati 12345 5 subelements pat2 o 2 1 2 3 5 subelements groups type cbp2 grp name sec name monitoringsspolmcs grpl sectl 40 type 2 grp name cbp2 grp name pat name grp2 peti grp3 pat2 it structural nodal nod name x y 1 0 0 2 1910 0 0 0 3 239040450 40 4 9120 0 D VU restraints nod name direction 1 x y 7 4 172 O O O O O O O O O O O O O b d 42 properties for multisurface steel model follow 0 200000e 02 amp 306000e 01 260100e 03 867000e 04 323680e 03 104278e 04 260100e 03 8670
138. metres The confinement factor must be greater or equal to 1 un un O N O f Un 9 e Q 8 u P Compressive strain Material model con2 16 cons Description Uniaxial variable confinement concrete model No of properties 10 Properties Concrete compressive strength Concrete tensile strength f Crushing strain Poisson s ratio of concrete v Yield stress of stirrups oO Young s modulus of stirrups Strain hardening of stirrups Diameter of stirrups 9 Stirrups spacing S Diameter of concrete core Application Uniaxial modelling of concrete accounting for variable confinement effects which are influenced by the core area within the stirrups stirrups size and material and stirrups spacing Restrictions Parameter units must be in Newtons and Millimetres Compressive stress t Compressive strain Material model con3 17 Description No of properties Properties Application Restrictions Trilinear compressive concrete model for elevated temperature with zero tensile response 28 f Compressive strength and its reduction factors r M 1 0 f 2 Tan 2 T 2 Db Ts 8 KT Peak compressive strain and temperature factors r 2 6 0 Ti It I 2 amp T Limit compressive strain and temperature factors r
139. nd 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Adaptive modelling of inelastic members in space frames Applies only to cross sections with materials 501 stl2 803 Warping strains are not cbp3 grp name Specifies the group identifier of elements type cbp3 used in automatic mesh refinement pat name An identifer referring to a subdivision pattern in the patterns module 85 V 0 5L 025 2055 2 Z LLL YD s t V M Po gt lt gt lt L t gt gt aa 20 N F M F M 71 y2 a x y plane b x z plane Imperfection and forces in local system of element type qdp3 86 Ink3 Description 3D link element with discrete axial rotational springs Nodes 3 Characteristics Geometric nonlinearity Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Application Rigid link Elastic bar with pinned ends Restrictions Group header stiffness parameters numerical or rigid values for each of the spring stiffnesses Koyo and this order yA A 2 2 gt gt L Koy2 672
140. nd temperatures En L T 3D brick elements 30 Stress Material model tpth Cont d 31 Strain E o i P Material model tpth 32 Chapter 4 JOINT ELEMENT CURVES This section describes the force displacement curves available in ADAPTIC for use by joint elements Each curve is referred to by a unique name displayed at the top of the following pages and requires the specification of a number of parameters 33 lin Description Parameters Characteristics Application Restrictions Linear elastic curve type ko Linear elastic curve Elastic joint action characteristics Force A Displacement Force displacement curve lin 34 Description Trilinear symmetric elasto plastic curve type Parameters k d amp k specified in this order Characteristics Trilinear symmetric elasto plastic curve Unloading is performed kinematically to the extension of the second branch of the curve Application Elasto plastic joint action Restrictions All k s must be positive k amp k must not be more than k Force Displacement Force displacement curve smtr 35 astr Description Parameters Characteristics Application Restrictions Trilinear asymmetric elasto plastic curve type k d k d k amp ky d k d k specified in this order Trilinear asymmetric el
141. nded endplate 26 parameters Double web angles 12 parameters Top and seat angles 23 parameters Combination of top seat and web angles 34 parameters e Finplate 8 parameters m Flush end plate Bolt diameter Area of bolt shank e Thickness of bolt head e Thickness of nut e Thickness of washer e Distance from endplate edge to bolt head nut washer edge Distance of bolt head nut washer whichever 15 appropriate e Distance from edge of bolt head nut washer to fillet of endplate to beam web e Total depth of endplate e Thickness of endplate Endplate width 77 Minimum bolt pitch Coefficient for the computation of the effective width for the bolt row below the beam tension flange 2 Extended end plate The geometrical properties of the extended endplate are double the properties of the flush endplate accounting for different orientation of the T stub components but the details and order are the same The only exception is for the last parameter where the length of the extended part of the endplate is required 3 Double web angles e diameter Area of bolt shank Total depth of angle Angle thickness Gauge length of beam leg Bolt clearance Minimum bolt pitch Gauge length of column leg e Distance from bolt line to free edge of column leg e Distance from bolt line to free edge of beam leg e Angle radius Diameter of M16 bolts
142. nly applicable to dynamic freedoms i e those associated with mass damping elements or support excitation proportional loads Or time history loads must be used in static analysis for which the load type can either be orce or displacement dynamic loads must be used in dynamic analysis for which the load type can either be orce or acceleration Element loads cannot be applied as proportional loads 125 7 3 16 Equilibrium stages This module defines stages of time intervals at which structural equilibrium is established equilibrium stages end of stage steps end of stage Defines the end time of a stage steps The number of steps within a stage Notes The time step size for a stage is equal to the difference between the end time of the current stage and that of the previous stage divided by the number of steps of the current stage For the first stage the time step size is equal to the difference between the end of the first stage and the start time defined in linear curves This module is only applicable when using time history loads dynamic loads defined in the applied loading module 126 7 3 17 Phases This module defines the control phases used to trace the load deflection curve for proportional loading Three types of control are available load displacement and automatic control phases load control increment path steps displacement control nod name elm name direction
143. nodal restraints restraints nod name direction elm name freedom nod name The node to be restrained direction Specifies the direction in which the defined node is restrained x displacement along global X axis displacement along global Y axis displacement along global Z axis rx rotation about global X axis rotation about global Y axis rz rotation about global Z axis elm name The element to be restrained freedom The element additional freedom to be restrained e g fa5 and fal2 for freedoms 5 and 12 Notes In two dimensional analysis only x y and rz directions can be specified Multiple freedoms can be specified by one entry e g x y ry indicates restraints in the three directions x y and ry Incrementation can be used with this module 119 7 3 12 Conditions This module specifies the conditions which govern the termination of the automatic control phase under a proportional static loading regime These conditions are expressed in terms of limits on the load factor or displacements at specific freedoms conditions limits disp cnd name nod name direction limits Used for the load factor condition option with the entry representing the condition identifier limits Specifies the minimum and maximum limits disp cnd name Used for the displacement condition option with the entry representing the condition ident
144. ns are not accounted for sec name An identifier referring to one of the cross sections declared in the sections module monitoring points Defines the number of points for monitoring stresses and strains within a cross section 80 A 2 1 2 gt 5 L M F M lt lt a a M M F plane Forces local system of element type cbp3 81 b x z plane gel3 Description Nodes Imperfections Characteristics Application Restrictions Group header Quartic elastic 3D beam column element 3 VYyo25L Yy05L VYy075L Vz025L Yz05L V s can be specified Geometric nonlinearities Large displacements and beam column effect of perfect imperfect members One element type qel3 is usually sufficient to represent the beam column effect and large displacement response of a whole elastic member Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Geometric nonlinearities in elastic space frames Unable to model concrete cracking Warping strains are not accounted for sec name An identifier referring to one of the cross sections declared in the sections module gt lt gt lt t 2 V vost M t T V ost M y a
145. ns for the normal rotations This is achieved through the use of hierarchic additional freedoms which are defined in this order mE T f F u ive w 9 u A For the bilinear form only the first 8 additional freedoms are used with the remaining 26 additional freedoms employed in addition for the quadratic form Individual additional freedoms may be restrtained as described in the restraints module Elevated temperature may be specified using element load type tmp7 specified in this order D AT D AL LT AT POD where and indicate respectively temperatures and temperature increments between the bottom of the cover and the top of the slab Realistic modeling of composite floor slabs under extreme loading including fire conditions sec name An identifier referring to a cross section of type cslb declared in the sections module type one of the following left edge rib cover central rib and right edge rib gauss points 3 entries representing number of gauss points in the local x y and z directions respectively options optional parameter indicating the element order bilinear 121 defaults to bilinear 99 1 HD IV Element types for csl4 I left edge rib II cover III central rib IV right edge rib NER Jj 3 W3 0 3 0 3 4 Mra Mra 3 U4 V4 W4 9 4 0 4 U3 V3 W3 9
146. o resolve this example The material model of steel used in this example covers the effects of the elevated temperature creep and high strain rate 201 Here temperatures are incremental over ambient temperature properties 31 19 4 65e 3 20 2 1e5 0 84e5 90 297 22 0 0 25292 280 0 01052 7350 2122 4 193 2 OD 9949 90 54 LL S A 73 9 6 1 Data file analysis 2d dynamics materials mat name model mati 5518 sections type isec mat name matl sec name dimensions secl 252 5 2120 294 9 Sec2 152 4 6 8 152 4 sec3 203 2 11 0 203 2 patterns pat name ratios pati groups type cbp2 grp name grote grp2c type 2 grp name sec name secl sec2 sec3 cbp2 grp name grpl TES T type cnm2 grp name mass gpm1 23 4 gpm2 46 8 D nod name f TO 0 0 r 10 7410 100 6000 0 D restraints nod name direction f 101 X VEZ 100 S D element connectivity elm name t 101 1 1 r 3 grp name 111 100 10 MOnNLLOring points 40 40 40 pat name patl patl patl y 0 0 4000 0 3 Oe 2 nod name 211 100 2 10 2 202 680 OUS 2900 Tos 1090 880 LeU elm name f 401 D 1 2 D elm name Lt 301 rt 2 D grp name elm name t L101 i p E x D grp name elm name L201 1 Jo linear curves
147. of modes within the range of frequencies of interest as well as the number of iterative steps This algorithm can also be used with dynamic analysis where the frequencies and modes are obtained during analysis using the tangent stiffness 1 2 Structural Modelling The following sections describe how various analysis assumptions can be modelled using the ADAPTIC elements which are discussed in detail in Chapter 6 Note that different assumptions can be utilised in the same analysis for different members of the structure Note also that similar element types usually exist for 2D and 3D analysis distinguished by the last number in the element type identifier e g qph2 amp qph3 1 2 1 Elastic Modelling Quartic elastic elements qel2 qel3 can be used to model the beam column effect and large displacements for selected structural members One quartic element 1s capable of representing the beam column action and large displacements for a whole member 1 2 2 Plastic Hinge Modelling Quartic plastic hinge element qph2 qph3 have the same elastic representation power of elements qel2 qel3 but can represent material inelasticity through the utilisation of zero length plastic hinges at the element end nodes The introduction of these plastic hinges depends on the interaction between the bending moments at the element ends and the axial force established from the specification of the element cross section 1 2 3 Elasto Plastic Modelling
148. onfiguration before and after deflection Configuration and forces in local system of element type qdp2 67 Element forces Ink2 Description 2D link element with discrete axial rotational springs Nodes 2 Characteristics Geometric nonlinearity 3 independent spring stiffnesses each taking either a constant numerical value or a rigid value Application Rigid link Elastic bar with pinned ends Restrictions Group header stiffness parameters numerical or rigid values for each of the spring stiffnesses and in this order M F x Element configuration Element forces before and after deflection Configuration and forces in local system of element type Ink2 68 spe2 Description Stiffness parameters Nodes Characteristics Application Restrictions Group header Linear 2D nodal spring element Two global translational stiffnesses and one rotational stiffness can be specified in the following order Ko K K 1 Models elastic boundaries for plane frame analysis Requires the definition of only one node with the other node assumed fixed against translation and rotation Plane frame boundaries Cannot be used to join two elements For that purpose use jel2 stiffness parameters Defines stiffness parameters l F gt lt Forces for element type spe2 69 Jel2 Description 2D joint element with un
149. orce displacement curve plastic 39 radcont Description Parameters Characteristics Application Restrictions Radial contact curve d amp d or d amp di Coupled gap contact curve between local v and w freedoms Elliptical gap Contact between concentric circular tubular members for which the gap is defined by a circle Element type jel3 To be used simultaneously for local v and w freedoms Contact gap for curve radcont 40 Chapter 5 CROSS SECTION TYPES The ADAPTIC library also includes a number of pre defined cross section types described briefly below Type Description rss Rectangular solid section chs Circular hollow section isec General purpose I or T section nci Partially encased composite I section Fully encased composite I section rccs Reinforced concrete column section rcts Reinforced concrete T section fixw Reinforced concrete flexural wall section The degree of accuracy in modelling the above sections depends on the formulation utilising the cross section Cubic formulations cbp2 cbp3 provide detailed modelling of a cross section through its discretisation into a number of areas where the uniaxial material response is monitored according to the previous material models Plastic hinge formulations qph2 qph3 derive a plastic interaction surface between the cross sectional bending moments and axial force which is combined with the associated flow rule to provi
150. portionality constants a amp a2 of mass and stiffness respectively specified in that order 3 Models Rayleigh damping effects All rld3 elements must have the same constant a amp a7 to model conventional Rayleigh damping Nodes 1 and 2 define the element connectivity and its local x axis The y axis lies in a plane defined by the x axis and node 3 which can be a non structural node Dynamic analysis of plane frames al should be set to zero for dynamic analysis involving ground excitation otherwise damping would be proportional to absolute rather than relative frame velocity sec name An identifier referring to one of the cross sections declared in the sections module mass length Mass per unit length parameters Defines parameters of Rayleigh damping elements 97 Forces for element type rld3 98 csl4 Description Nodes Characteristics Application Restrictions Group header 2 D flat shell element for composite floor slabs 4 Geometrically orthotropic slab 4 noded composite and R C slab element with additional rib and cover freedoms It deals with the nonlinear analysis of composite floor slabs enabling the modelling of material nonlinearities and geometric orthotropy through a modification of the Reissner Mindlin hypothesis The element can be used in a basic form employing bilinear shape functions or in a higher order form employing quadratic shape functio
151. rmal strains and the change of material properties 23 cn gt O cn ye m O Y xyc io Yt Y Material model 11 Cont d 24 E v f a f V T 0 r Material model 11 25 genl Description No of properties Properties Application Restrictions Material properties for connection components connected member at elevated temperature 45 Ultimate strength temperatures and reduction factors for quadlinear description Young s modulus temperatures and reduction factors 2 25 12221322 Reduced strain hardening coefficient temperatures and reduction factors bliss Yield strength temperatures and reduction factors T bodas Naot 247 aa 1 4 r T 2 4 Strain hardening coefficient temperatures and reduction factors 15 75 5 7 5 145 AERE 1 45 745 Requires the specification of the compressive strength the peak compressive strain the limit compressive strain at zero stress the thermal strain and their variations with temperature Note that and rs can be greater than Can be used to define material properties for joint element jbc2 26 beth Description No of properties Properties Application Elastic
152. s Numerical integration performed over two Gauss points A number of monitoring areas used at each Gauss section to monitor material direct stress and strains Predicts global member behaviour based on a material stress strain relationship A number of elements per member usually over 5 must be used for reasonable accuracy in inelastic modelling Modelling of inelastic members in plane frames sec name An identifier referring to one of the cross sections declared in the sections module monitoring points Defines the number of points for monitoring stresses and strains within a cross section M 2 y F MENT M D gt Element configuration Element forces before and after deflection Configuration and forces in local system of element type cbp2 62 gel2 Description Nodes Imperfections Characteristics Application Restrictions Group header t V lt M 0 5L Y Quartic elastic 2D beam column element 2 Geometric nonlinearities Large displacements and beam column effect of perfect imperfect members One element type qel2 is usually sufficient to represent the beam column effect and large displacement response of a whole elastic member Geometric nonlinearities in elastic plane frames Unable to model concrete cracking sec name An identifier referring to one of the cross sections declared in the sections module N
153. s such as inclined supports soil structure interaction and structural gaps through choosing appropriate terms for the force displacement relationships 1 2 6 Dynamic Characteristics Modelling The dynamic characteristics of the structure namely mass and damping are modelled by means of non structural elements which must be included for dynamic analysis to be performed The dynamic element types are Type Description cnm2 cnm3 Lumped mass elements Inm2 Inm3 Linear distributed mass elements cbm2 cbm3 Cubic distributed mass elements 2 cnd3 Dashpot damping elements 1192 Rayleigh damping elements Chapter 2 USING ADAPTIC 2 1 ADAPTIC Data File In order to perform nonlinear structural analysis using ADAPTIC the problem data is stored in a data file which the program reads and processes Such data specifies the structural configuration and the loading applied to structure and must follow the syntax described in the Data Syntax chapter ADAPTIC data files must have a dat extension e g one storey dat SW_2 1 dat new data file may be created through modifying an existing data file or through typing the data from scratch The former approach is usually more convenient especially for parametric studies when only some data entries require modification 2 2 Starting ADAPTIC ADAPTIC currently runs on Linux workstations where it is started using the following command prompt adaptic filename Note tha
154. s started on the command line without a filename specification 1 e prompt adaptic s Save This button provides the means for storing plot information in a plot file for later retrieval This is quite important for storing a permanent description of the plot so that future modification can be performed with relative ease Save files for the ADAPTIC shapes application are automatically given a svs extension Retrieve This button retrieves svs plot files that have been previously saved Print This button allows the output of the plot description to an Encapsulated PostScript EPS file which can be imported into word processing applications General Settings This button enables disables the display of 1 the initial shape alongside the deflected shape 11 node and element labels 111 contours and customisation of auto display slider control The initial shape and labels are enabled by default for the undeflected configuration Control can be given to Auto Display and the Output Number Selector Slider to vary either the output number for a specific mode or the mode number for a specific output number Also a increment of output mode numbers can be specified for Auto Display Exit This allows the ADAPTIC shapes application to be terminated Before exiting make sure you have saved your plot file if necessary 143 8 33 Shapes This menu option offers the following facilities discussed with reference to t
155. t O O O O O O O O O O O O O O O O O O O O O O 46410000 03 46420000 03 46430000 03 46440000 03 46450000 03 46460000 03 46470000 03 46480000 03 46490000 03 46500000 403 46600000 03 NUMBER NODES CREATED NUMBER OF ELEMENTS CREATED NUMBER OF IMPERFECT ELEMENTS BLM e46 ii TYPE ELEMENT 0 BO N BO BO BO Bh BO O O O O O O O O O O 2 7 OE DS a TIBUS UE US 4o LE 03 IJ Be L 4261282103 SUBDIVISION OF ELEMENT e44 n26 O O O O O O O O O MN eae UC w lt K K Kk lt k k k k k k k k k ok k Kk k k k k k k k k k k k x k x x lt x lt k lt lt lt lt lt lt lt lt lt lt lt lt k k X X X X X X X KK k k xk k xk x x x x x x x x lt O O O O O O O O O O O O O O O O O O O O O O O O O O O 46601000 03 46602000 03 46603000 03 46604000 03 46605000 03 46606000 03 46607000 03 46608000 03 46609000 03 46610000 403 46620000 03 46630000 03 46640000 03 46650000 403 N WWW WW WW CO CO CO O O O O O O O O O O O O 217 99 78104 24 TIBUS TE 0E 05 1158 09 443 05 JAODE US LUSESUS 410 04 O O O O O O O O O
156. t filename does not include the dat extension e g storey ADAPTIC can also be run in the background using the following command prompt adaptic filename gt filename log amp where filename 1log 1 a file which stores the job progress The execution of ADAPTIC invokes two successive stages The first 1 a data reading stage where the problem details are read from the data file and several temporary files are created which incorporate problem and plotting information The second is the analysis stage where the information is retrieved from the temporary files and the nonlinear analysis 1s undertaken as specified If the program seems to hang up before entering the reading stage make sure that the two files param inc and stat x are removed from the working directory 2 3 ADAPTIC Output Files Upon successful completion of an ADAPTIC run three additional files corresponding to filename should exist filename out filename num amp filename plt The first file echoes the data file and contains the solution progress log The second file contains the numerical results at all requested load time steps The third file ls a plot file used by the post processing programs Numerical results may be obtained through direct extraction from i1ename num Graphical visualisation of the results is also available through a number of post processing programs described in the Post Processing chapter Chapter 3 MATERIAL MO
157. t k k k k k k k k k Kk Kk k k k k k xk xk k xk k k k k x x x x k k lt lt lt lt lt lt lt lt lt lt lt lt k X xk X X X X Xk X KK xk xk xk k xk x x x x x x x x lt ON ON ON O O O O O O O O C O O O O O O O O O O O O 34100000 03 34200000 03 34300000 03 34400000 03 34500000 03 34600000 03 34700000 03 34800000 03 34900000 03 35000000 03 36000000 03 241000000ET0 2 3800000050 99000000ETU0 5 40000000E 03 NUMBER OF NODES CREATED O O O O O F ii EE O O O O O O O O O O O O 210 E06 108205 311 05 sIUGE U5 DB rl o DEC D 42 04R 05 1 502 E05 ED 4119 3806 EU 284 03 2091 03 po IE SUBDIVISION OF ELEMENT 17 O ki OO O O O QO O O O Hn US ae as 0 L NUMBER OF ELEMENTS CREATED ELM NAME TYPE OF ELEMENT NOD NAMES e31 cbp2 inl n10 ee eee NUMBER OF IMPERFECT ELEMENTS 0 w lt lt Kk Kk k xk k k k k k k k k k k Kk k k k k k k xk k k k k xk x x x x x lt lt lt lt lt lt lt lt lt lt lt lt lt lt k Xk Xk X X X X X X KK xk xk k xk k x x x x x x x x lt K ee
158. tic hinge elements tltrue consider element subdivision flfalse ignore element subdivision 83 V 0 5L 025 2055 2 Z LLL YD s t V M Po gt lt gt lt L t gt gt aa 20 N F M F M zl y2 a x y plane b x z plane Imperfection and forces in local system of element type qph3 84 Description Subdivision pattern Nodes Imperfections Characteristics Application Restrictions Group header Quartic elastic 3D beam column element utilising automatic mesh refinement Relative lengths in ratio form of zones where inelasticity 1s checked for automatic mesh refinement 3 Vyost V 025L VzosL V can be specified Geometric and material nonlinearities Large displacement and beam column effect of perfect imperfect members One element type qdp3 is usually sufficient to represent whole member Element qdp3 subdivides into elements cbp3 specified under cbp3 grp name if inelasticity is detected in the zones defined by the subdivision pattern pat name Accuracy increases with the number of sub elements type cbp3 specified in the subdivision pattern After subdivision elements cbp3 are inserted in the inelastic zones while the elastic zones are kept as element type qdp3 Nodes 1 a
159. tion Strain hardening factor and temperatures for trilinear description His H2 Thermal strain and temperatures 05 05 Requires the specification of Young s modulus the yield strength the strain hardening factor the thermal strain and their variations with temperature 11 oA yl y2 gt La T H gt To T T To Material model stl4 12 5115 Description No of properties Properties Application Restrictions Creep model 28 The first 20 properties are the same as those of the bilinear model Material constants for modelling creep C D F G AH R In addition to the 20 parameters for the bilinear material model 8 more parameters are required to specify the creep response of the material 13 51110 Description No of properties Properties Application Restrictions Elliptical model 36 Young s modulus and corresponding temperatures Er Es Bas Ti be T lE Yield strength and corresponding temperatures f Tas Lo Tyas Proportional limit and corresponding temperatures i p2 p3 p4 pl 2 3 4 ps Thermal strain and corresponding temperatures Gu Ong On Eos Toas al 2 gt 7 37 7 042
160. tion e Lay iterative strategy number 5 164 value 0 10 1 Jimits 0 12e 3 0 12e 3 0 12 3 0 12 3 initial reformations 5 step reduction 5 divergence iteration 4 maximum convergence 0 1e3 convergence criteria 1 tolerance 0 1 5 force 0 2 1 mome 0 1 3 output m frequency 0 Note The elements and the nodes that are used are shown in the figure 9 3 1 QE2 QE3 O N2 N3 N4 QE1 ONI figure 9 3 1 Nodes and elements of Lee s frame 165 9 3 2 Structural behaviour The nonlinear analysis 15 undertaken using one element per member The following figures show the static response of Lee s frame The node 1 only experiments rotation as could be seen in the figure It has the same behaviour as the node 4 The nodes 2 and 3 have similar behaviour pm g X displacement Displacement cm Y displacement figure 9 3 2a Static response of Lee s frame at node 3 This is the deformed shape of the Lee s frame As it could be seen nodes 1 and 4 only experiment rotation and the displacements of node 2 are bigger than the displacements of node 3 even the develop in the time follows the same tendency 166 LJ E figure 9 3 2b Deflected shape of Lee s frame The real deflected shape of Lee s frame when the load increase vary like 15 shown in the following figure figure 9 5 2c Deflected shape of Lee s frame during static lo
161. tions module cnd name Notes The path entry always be keep for the first phase automatic control can not be the first phase 128 7 3 18 Iterative strategy This module specifies the iterative strategy applied during a load or a time step iterative strategy number of iterations initial reformations step reduction divergence iteration scaled iterations tol relax level maximum convergence arc flow iteration number of iterations initial reformations step reduction divergence iteration scaled iterations tol relax level maximum convergence lt integer gt lt integer gt lt integer gt lt integer gt lt integer gt lt integer gt lt real gt lt integer gt The maximum number of iterations performed for each increment Default 10 The number of initial reformations of the tangent stiffness matrix within an increment Default 10 The step reduction factor used when convergence is not achieved Default 5 The iteration after which divergence checks are performed Default 6 Number of iterations gt 2 after divergence over which the iterative displacement corrections are gradually scaled from zero to their full value Default 1 scaling off Step reduction level O to 3 from and above which tolerance relaxation between tolerance and maximum tolerance 1s allowed Default 0 The maximum convergance value allowe
162. to lie on a rigid straight line between the two end nodes Allows specification of mass proportional damping at group level Dynamic analysis of space frames mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module Forces for element type Inm3 94 cbm3 Description Cubic 3D distributed mass element Nodes 2 Characteristics Models uniformly distributed mass in dynamic analysis Uses an Updated Lagrangian formulation with a cubic shape function for the transverse displacement and a linear distribution for the axial displacement Allows different axial m and transverse m distributed mass Mass per unit length specified according to one of m default m m m m Allows specification of mass proportional damping at group level Application Dynamic analysis of space frames Restrictions Group header mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module 95 Forces for element type 3 96 43 Description Mass length Parameters Nodes Characteristics Application Restrictions Group header Rayleigh damping 3D element Mass per unit length Two pro
163. ults to the value of mass damping parameter specified in the default parameters module Y 2 y Forces for element type Inm2 74 cbm2 Description Cubic 2D distributed mass element Nodes 2 Characteristics Models uniformly distributed mass in dynamic analysis Uses an Updated Lagrangian formulation with a cubic shape function for the transverse displacement and a linear distribution for the axial displacement Allows different axial m and transverse m distributed mass Mass per unit length specified according to one of m default m m m ID Allows specification of mass proportional damping at group level Application Dynamic analysis of plane frames Restrictions Group header mass length Mass per unit length damping parameter optional parameter for mass proportional Rayleigh damping defaults to the value of mass damping parameter specified in the default parameters module F y2 Y A E 2 p 2 2 1 Fa n X Forces for element type cbm2 75 rld2 Description Mass length Parameters Nodes Characteristics Application Restrictions Group header Rayleigh damping 2D element Mass per unit length Two proportionality constants a amp a2 of mass and stiffness respectively specified in that order 2 Models Rayleigh damping effects rld2 elements must have the same constant a amp a to model conventional
164. ure rotate about out of plane axis ZOOM in zoom out move pan rotate camera about planar axes origin centred at focal point rotate camera about out of plane axis move camera forwards backwards zoom camera in out pan camera in plane move scene in plane Graphics Display Area Orientation Tool View Indicator _ Output Number Indicator Output Number Selector gt Auto Display Speed Selector Contour Display Area File Shapes Contours View 7 Output 47 Figure 8 3 1 Components of ADAPTIC_shapes application 141 Orientation Tool This tool displays the orientation of the global structural reference axes in the current view The four arrow buttons can be used to change this orientation by 1 selecting a global axis for incremental rotation 11 specifying the increment of rotation 111 applying positive rotation increments and or iv applying negative rotation increments A single click with the mouse buttons on the orientation display area has the following functionality Lef button controlled customisation of current view Right button turn on off axes orientation in the Graphics Display Area View Indicator This displays the current view number 1 2 or 3 The presence of indicates that the current view is a subsequent modification of a stored view whereas indicates that the current view is a precursor to a stored view Furthermore N indicates
165. ure it is going to be considered the CPU time demand over the displacements at the node 121 which is the one that experiments higher displacements Z o m X displacement Y displacement 40 60 80 100 120 140 160 180 200 Displacements mm figure 9 6 2b Final deflected shape after explosion and fire loading 206 963 Output file ELEMENT ASSEMBLY ORDER gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt 201 101 202 1101 104 2109 1102 107 1105 105 302 303 T202 108 109 306 1206 206 1106 LUG 3035 73 102 301 1201 409 11 3 12 304 1204 204 1104 MAXIMUM FRONT NODAL 6 ADDITIONAL FREEDOMS 0 INITIAL LOADING INITIAL LOADING CURRENT OUTPUT PACTOR TIME LEVEL CONV NORM ITERATIONS 1 0 10000000ETUl 0 18000000 02 0 04985 07 VAR TAB LE LOA DING CURRENT OUTPUT TIME LEVEL CONV NORM ITERATIONS 0 0 18004000 02 0 Us 5 00 0 2 ouUUSUUUETU2 0 O 6192 05 0 0 0 18012000 02 0 U 6 6 8 05 0 3 FU Z 0 05 0 0 22020002 0 O 0 4 28024
Download Pdf Manuals
Related Search
Related Contents
TABLA DE RETENCION DOCUMENTAL Jersey 2.0.1 User Guide USER`S MANUAL DeLOCK 3.5 External Enclosure SATA HDD > USB 3.0 D971-3TR8 - Cessna Support Lirio by Philips Suspension light 40253/31/LI Fluency Direct User`s Guide Copyright © All rights reserved.
Failed to retrieve file