Home
USER'S GUIDE - Xitron Technologies
Contents
1. BALLAST OUTPUT TUBE D TUBE C TUBE B TUBE A Figure 15 Example of Parallel Outputs from a Ballast Note that if a two tube ballast is being tested or only two tubes of a multi tube ballast are being monitored then use sections A and B for ballast 1 and sections C and D for ballast 2 Light Power Monitor Connections The following section describes the connections between the 2574R and the output s of A a light power monitor device When making connections ensure that there are no voltages present on the connections Refer to Figure 16 Connecting Test Components to the Analyser 91 e Connect the DC Voltage output of the Light Power Monitor to the rear panel s 10 pin connector at pins labeled LIGHT and LIGHT Observe correct polarity 85 250V 47 63Hz 3 15A A FUSET 3415A 250V C i LIGHT LIGHT IEEE4S8 ASVDC M5VDC START O O TUBE E FILAMENT LINE PARALLEL PRINTER vDC C GND WARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNECTION DETAI A BY QUALIFIED PERSONNEL ONLY XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA LIGHT POWER MONITOR CONNECTOR Figure 16 Light Monitor Connector e frequired connect the respective inputs of the Light Power
2. BALLAST OUTPUT TUBE D TUBE C TUBE B TUBE A Figure 12 Four pin Load Two pin Ballast Output Connections If one or more of the ballast s output wires is intended to drive two or more tubes in parallel then wire the ballast to the 2574R as if the 2574R were the tubes e Wire the output from the ballast to two or more sections of the 2574R connections in parallel as shown in Figure 13 Connecting Test Components to the Analyser 89 85 250V 47 63Hz 3 150 315A 250V PARALLEL PRINTER C BY QUALIFIED PEMBONNEL ONLY KITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA BALLAST OUTPUT TUBEC TUBEB Figure 13 Example of Parallel Outputs from a Ballast TWO PIN LOAD TWO PIN BALLAST OUTPUT This connection method applicable to all options This is the only connection method for option QS The loads should be connected as described in 2 PIN LOAD CONNECTIONS above In the instruments Ballast Type amp Wiring menu the ballast type should be set to 2 pin and the individual ballast wiring type set to 2 pin Other than for option QS the use of the 4 PIN LOAD 2 PIN BALLAST method is recommended For two pin tubes and ballasts wire each ballast output to each section s ballast connections as detailed in the next two figures Note Ensure that each connection from the ballast connect
3. Digital Input Configurations Pin Active eee Fin Act ive ae 24 HIGH START HIGH WON 235 RISE FAIL 13 19 HIGH WOME 22 HIGH NONE 18 HIGH MONE Zl FALL MIEL HIGH NOME Digital Inputs When Configured as ACTIVE The eight digital input pins pins 24 17 may be independently configured to one of the following selections when detected as being active Each input may be selected as active when HIGH logic 1 LOW logic 0 RISE transitions from logic 0 to logic 1 or FALL transitions from logic 1 to logic 0 Each input configured for HIGH or LOW active detection must remain at the configured level for at least 5ms Each input configured for RISE or FALL active detection must remain at each logic level for at least 5ms 38 2574 User s Guide 1 START Causes the 2574R to start the test procedure If this signal remains active after the test is completed then no further testing can be initiated until the signal returns to the unasserted condition If multiple inputs are configured for this purpose then all must be active for the test sequence to be started i e multiple inputs are AND ed This configuration is ignored on slave 2574R s DIGITAL INPUT 1 2 3 or 4 Causes the 2574R to continue an INTERACTIVE WAIT test step or to change a test procedure during an IF type test step that has been configured to use this input If multiple inputs are configured for this p
4. performing this step at any other time may lead to undesired results Sic bdo LL n m The user may specify the action to take if the load is found to be outside of the allowed tolerance e CONT SAME The remainder of this test sequence is performed with the originally selected specified load this load is flagged as failed at the end of the entire test sequence or when deselected in the sequence 58 2574 User s Guide e CONT ALT The load is changed without otherwise altering the ballast and the remainder of this test sequence is performed with an alternate load The failed load is immediately flagged as failed The user may select whether to use open then close or close then open switch timing when performing this type of change from the 1500 chassis front panel If no alternate load is found then the action taken will be the same as if the step had been programmed to continue without changing the load e RETEST ALT The failed load is immediately flagged and the entire test sequence is repeated If no alternate load exists for the configured load then the test sequence will fail due to the lack of suitable load IF STEP TYPE This step enables to user to externally affect the performance of test step in a sequence Normally the 2574R executes each test step in consecutive sequence if the selected control signal is active then the next test step performed will be that configured by the user The following contro
5. AEN Isolatio Filter amp AD Y Isolatio Filter amp AD S LE e eA px cn tig te d c UEM gy Pee rT e nu UU tas i Not Fitted in 257xQS Versions i Isolation Filter amp AD I I I Filter amp AD l LLL le Isolatio I Filter amp AD 3o o3 0 1 ohms 4 o4 0 1 ohms FIFOs A Tube DSP To Central Processor Figure 3 Tube Block Diagram 18 2574 User s Guide Installing and Maintaining the Analyser This chapter discusses the setup precautions and periodic maintenance for the 2574R Installation Arrange the 2574R instrument in a convenient position on your bench allowing for easy access to the connectors on the rear panel or mount the instrument in a standard 19 rack enclosure using the supplied rack mount brackets Ensure that no heavy instruments are placed on top of the case and that sufficient airflow is provided around the instrument The rear panel contains the connectors for attaching the instrument to power a printer and a PC There are no restrictions against signals being present on these connections when the 2574R is not powered WARNING SHOCK HAZARD NEVER CONNECT OR DISCONNECT ANY LIVE SIGNALS TO THE 2574R THIS CAN BE LETHAL TO YOU AND MAY DAMAGE THE INSTRUMENT A N WARNING IF THE POWER ANALYSER IS USED IN A MANNER NOT SPECIFIED BY XITRON TECHNOLOGIES INC THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED
6. power measurements or using the tube strike timing as desired see PREHEAT DETECTION LOAD CODE This is only available for loads not selected as OPEN 60 2574 User s Guide This is a 4 digit number describing the load to be selected by a 1500 chassis The F3 SELECT key may be used to view a scrollable list of available load codes and descriptions From within this sub menu the user may select any of the detected load selections If the code is set to 0015 or less then this inhibits any error messages if the load is not found in a 1500 chassis allowing the user to select multiple loads using the Digital I O interface output signals LOAD STATE This is only available for loads not selected as OPEN This may be OFF FIL filament only ON filament and tube load or AUTO automatically selected dependent on the strike condition For a 2 pin load module the FIL and OFF selections are identical Only the OFF and ON selections are available for a TUBE type load Setting the Step Code for the Digital Interface This allows the user to assign an 8 bit binary code to the test step This code may be used to control digital output pins see the INTERFACE menu description The code is selected as a 8 digit binary base 2 numeric the most significant bit being the leftmost displayed digit Setting the Test Limits This is only available in the Test Sequence mode The measurements made by the 2574R are split into logical groups
7. 0 01 0 005 0 3A 0 027 Total Tube and Filament Power Below 20KHz 0 15 0 05 PF 20KHz 500KHz 0 005 0 003 PF per KHz 500KHz 2MHz 0 0075 0 005 PF per KHz Add 0 05W 0 002W per KHz for total tube power Add 0 0075W 0 00025W per KHz for filament power Add 2 reading for voltages gt 400 Vrms not option M Multiply by 2 if option HID or HC multiply by 4 if both option HID and HC Multiply by 1 5 if option M Examples For a reading of 40W at 30KHz Load PF 0 96 the accuracy specification is 0 005 0 003 0 96 x 30KHz x 40W 0 05W 0 002W x 30KHz 0 2075W For a reading of 40W at 250KHz Load PF 0 96 the accuracy specification is 0 005 0 003 0 96 x 250KHz x 40W 0 05W 0 002W x 250KHz 1 3625W For a reading of 40W at 250KHz Load PF 0 8 the accuracy specification is 0 005 0 003 0 8 x 250KHz x 40W 0 05W 0 002W x 250KHz 1 425W Frequency Min Input 15V Accuracy 5KHz 2MHz 0 01 0 01KHz 20Hz 2KHz 0 01 0 1Hz Change to 30V for option HID 20V for option M
8. 103 Size amp Weight 103 Power Input 103 APPENDIX C SIGNAL SPECIFICATIONS 105 Ballast Inputs 105 Voltage 105 Current 105 Power 105 10 2574 User s Guide Ballast Outputs Option HID Option HI Option HC Option M Option F Frequency Voltage Current Power Frequency Voltage Current Power Frequency Current Power Current Power APPENDIX D MEASUREMENT SPECIFICATIONS Ballast Input Measurement Accuracy Ballast Output Measurement Accuracy Methods Voltage Current Power Tube Voltage Filament Voltage Tube and Filament Current Total Tube and Filament Power Frequency 105 106 106 106 106 106 106 106 107 107 107 107 107 107 107 107 108 108 108 109 109 110 110 111 112 113 113 114 114 115 115 Introduction 11 Introduction Scope The purpose of this user guide is to describe the capabilities application and maintenance of the 2574R Multi Tube Ballast Analyser System The 2574R analyzes both the electrical power being delivered to and returned from single tube ballasts multi tube ballasts and multiple single and multi tube ballasts The analysis can be performed one at a time or in automatic succession The rear panel provides the needed connections required for a wide variety of ballast testing and systems interfacing The analy
9. For example If PRINT is pressed while a Check submenu choice is highlighted then the complete list of the check parameters selected will print Sarung the 2574R A Press the ON button A startup screen will display for a few seconds This screen lists the model number option content firmware revision number date and time In the rare situation where non volatile data has become corrupted i e calibration configuration test sequence or test limit data then error messages are displayed within this screen using reversed text clear characters in a dark background e A test screen will display next for a few seconds In this screen you can check if the Measurement Line and Tube digital signal processors are detected You can select CONTINUE or RETEST Note The next screen you see after the DSP Retest screen is the same screen that was displaying when you last turned the analyser off WARNING IF THE POWER ANALYSER IS USED IN A MANNER NOT SPECIFIED BY XITRON TECHNOLOGIES INC THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED Viewing the Configuration Screen The Configuration screen allows you to select operating modes configure the modes set the date and time reset DC Zero and shows the most recent Calibration date Press the NEXT button as required until the Configuration screen displays Store 1 Mode GENERAL PURPOSE Configure Interfaces Date Oct 20 1999 10 39 52 DC zero Oct 20 1999 08 13 13 Cal are
10. HT isabled O 000Arms disabled COM disabled CURSOR CHANGE DONE Setting any of these to zero disables that particular detection Filament preheat measurements are started when any enabled signal is above the respective level and is terminated when all enabled signals are below these levels Printing Configuration Details Press the PRINT button while the Configuration screen is displaying to obtain a report containing the selected mode and all the configuration choices you have presently selected A textual or PCL2 printer is required for this operation Configuring a Test Sequence This submenu allows you to configure the complete test sequence to be performed on a step by step basis Initially step 1 is always displayed you may use the F4 STEP XX key to select the next step for display and or editing Editing of test steps is completed and the changes saved when either an END test step is edited or the NEXT key is pressed while using this menu A complete test sequence may contain up to 99 test steps All configured ballasts perform the same test procedure simultaneously starting at step number 1 The only exceptions to this is the INRUSH step which is sequentially performed on each ballast in turn The sequence continues performing test steps when all ballasts have completed their test steps Configuring the Analyser 53 The following paragraphs describe the configuration available for ea
11. Monitor to pins labeled 15V 15V 5V and Ground Interface Connections General There are many potential sources of interference when testing ballasts particularly ballasts of the HID type This interference can severely affect interface cabling of poor quality or with insufficient shielding Particularly in a high volume production environment it is highly recommended that all cable lengths be kept to a minimum and that the highest quality fully shielded cables be used IEEEA88 Interface A standard IEEE488 interface cable the use of a high quality fully shielded cable is highly recommended should be attached to the IEEE488 connector on the rear panel of the 2574R RJ45 Style 1500 Chassis Interface If configured to control one or more 1500 chassis using this interface using the 1510 controller interface in the 1500 chassis then these should be connected to the RJ45 style LOAD connectors on the 2574R rear panel Other than the order in which redundant load and switches are selected there is no particular importance to which connector s are used Redundant loads and switches are selected first from the lowest numbered load connector and the lowest lettered slot in that chassis 92 2574 User s Guide When connecting or disconnecting a 1500 chassis the 2574R may take up to 5 seconds to recognize the change A straight through 8 wire RJ45 cable should be used For cable routing longer than 10 feet the use
12. Signal Specifications Note Specifications subject to change without notice Ballast Inputs Voltage Withstand 1 5KVpk 600Vrms continuous 3KVpk 1 5K Vrms for lt 1 second Measurement 25 1500Vpk 25 450Vrms Burden 1Mohm Line or Neutral to Ground Current Withstand Arms 100Apk continuous per section 25Arms 200Apk for 100ms per section I5 Arms 350Apk for 100ms total Measurement SApk 10mA 3Arms per section 18Apk 40mA 11 Arms all sections total Burden lt 0 015ohm Power Measurement 0 3500W per ballast Frequency Measurement 40 600Hz Bandwidth User selectable 5KHz or 200KHz 3dB 106 2574 User s Guide Ballast Outputs Voltage Withstand 3KVpk 500Vrms continuous any pin to ground 3KVpk 1 5KVrms for 1 second any pin to ground 400Vpk 50Vrms continuous across filament 1KVpk 200Vrms for lt 100ms across filament Measurement 25 3KVpk 25 1500Vrms across tube decreasing linearly to 150Vrms at 2MHz across tube 1 50Vpk 1 30Vrms across filament Burden 20pF each pin 2 3 and 4 to ground 5pF pin 1 to ground 2pF between pins 500Kohm between pins 1 amp 4 10Kohm between pins 1 amp 2 and 3 amp 4 Current Withstand 20Apk 3Arms continuous each pin 50Apk 10Arms for lt 1 second each pin Measurement 1 5Apk 10mA 1Arms each pin Burden 0 1ohm each pin Power Measurement 0 2000W per tu
13. and DC Note that the measured highest tube peak voltages are cleared after being checked accumulating a new highest peak until the next CHECK step for this SECTION or the next INRUSH test step Printing Test Sequence and Limits Details Press the PRINT button while any of the Test Sequence step menus is being displayed to obtain a report containing a listing of the complete test sequence and applicable limits A textual or PCL2 printer is required for this operation 68 2574 User s Guide Viewing General Purpose Measurement Results If you have selected a General Purpose mode in the Configuration screen the display screens described below are available as selected by the NEXT key Displaying Numeric Measurement Results The Numeric Results screens continuously update alpha numeric measurement data for the configured ballasts and tubes e Press the F1 softkey to select a ballast by number that you have configured or select a tube by letter BALLAST 1 2 3 4or TUBE A B C or D e Press the F2 softkey to choose between the PRESENT screen and the STARTUP screens e Press the F3 softkey to choose between LEVELS and TIMING when displaying the STARTUP information e Use the F4 softkey to select either LINE ON or LINE OFF PRESENT Screen In the Numeric Results Present screen the line input measurements display in the left portion and the ballast output information is displayed in the right If a configured ballast
14. are nine sets of limits accessed by a CHECK test step as the LINE through 9 groups These measurements check against the actual measured values at the time of the CHECK test step LINE INPUT LEVELS Limits are possible for the measured line RMS current line current crest factor line power and line power factor Line Hrms Fu Line H CF gnore Line Power Ionore Line PF Ignore CURSOR CHANGE LINE 1 DONE LINE INPUT HARMONICS Limits are possible for the measured line current distortion line current K factor IEC61000 3 2 Class C tests and conformance to the requirements of ANSI C82 11 harmonics Line A xthd at Line H KF anore ANSI C32 11 Ionore IEC61000 3 2 Ianore CURSOR CHANGE LINE 1 DONE OVERALL Limits There are nine sets of limits accessed by a CHECK test step as the OVERALL 1 through 9 groups These measurements check against the actual measured values at the time of the CHECK test step Configuring the Analyser 63 Efficiency TH NM Power Loss gnore Output Power Ianore CURSOR CHANGE OVERALL 1 DONE OVERALL POWER amp EFFICIENCY Limits are possible for the measured ballast efficiency power loss and total output power STRIKE Limits There are three sets of limits accessed by a CHECK test step as the STRIKE 1 through 3 groups These measurements cannot be checked until after an INRUSH test step has completed and sufficient time has elapsed to ensure that the strik
15. capacitive current flow and CMRR measurement errors Particularly with high voltage e g HID and or high frequency ballasts there may be large RMS or peak current flows from the ballast prior to strike of the tube This can seriously detract from the accurate detection of tube strike The 2574R allows the user to use actual total tube power as the method for detecting strike and transition if desired This method virtually eliminates these errors It is recommended that first time users set this to Current Note that these settings cannot prevent the 2574R from making any of the standard measurements These settings only affect the strike and preheat detection systems TRANSITION LEVEL You may set the RMS current or power see above level in the tube which if detected at a higher level than the configured level is detected as the start of transition from glow to strike With regard to ANSI C82 11 this should typically be set to 9 of the nominal tube operating current When using power detection 25 of the nominal operating tube power is recommended note that the total tube power is used this includes filament power This level must be achieved before the full strike detection is enabled thus this setting should not be higher than the TUBE STRIKE detection setting It is recommended that an initial setting of 0 05Arms be used TUBE STRIKE You may set the peak current level or the total tube power which if sustained a
16. configuration menu 1 1 ru wo The available sets of pins are pins 16 13 12 9 8 5 and 4 1 In each set the higher number pin of the connector is the least significant bit of the code Each set can be configured as active high or active low logic Note that the state of all digital outputs is open circuit for a short period following power application The selections available for each set of 4 pins are as follows 1 NONE All bits are held in the inactive state 2 LOAD CODE A B C or D A 4 bit code representing the required load for the specified tube section This load binary code may be selected in the test steps using codes 0 through 15 of the 2574R and can be changed for each test step configured by the user Test steps using codes outside of the range 0 through 15 yield a code of 0 for this purpose 3 LINE SOURCE ENABLE Each of the 4 pins enable the presently selected line source A through D respectively The signals are independent of the line engage selection 4 LINE SWITCH ENGAGE Each of the 4 pins indicate the required on active or off inactive state of each line switch A through D respectively The signals are controlled by the 2574R as part of the test procedure or can be simultaneously switched by the user front panel or interface in the General Purpose modes 5 FILAMENT LOAD ENGAGE Each of the 4 pins indicate the required on active or off inactive state of each filament load
17. configured for IEEE488 control Pressing the F3 key in this situation allows the user to configure the specific IEEE488 address for each 1500 chassis connected to the 2574R It is not necessary to have the 1500 chassis connected to the 2574R or powered at this time The 1500 chassis communication type selection is either l 2 None Selecting that there are no 1500 chassis being controlled by the 2574R RJ45 Selecting that one or more 1500 chassis are to be controlled using the eight rear panel RJ45 connectors Any of the connectors may be used however using the lowest numbered available is recommended TEEE488 Selecting that the IEEE488 interface is enabled and configured as a controller using address 1 Note that this selection is not available if the IEEE488 interface has been enabled for 2574R CONTROL purposes also note that the address 1 is that used by the 2574R interface When this selection is being shown the F3 softkey shows SETUP Press the F3 key to configure the specific IEE488 addresses of the up to 8 1500 chassis to be controlled RS232 XXXXXXbaud Selecting that the RS232 interface is enabled and configured to control a single 1500 chassis Note that this selection is not available if the RS232 interface has been enabled for 2574R CONTROL purposes Ensure that both the 2574R and the 1500 chassis are configured for the same baud rate 34 2574 User s Guide Line Source Control This display line allo
18. delay 5 END Defining the Step Type This selects the type of step that is to be performed at this point in the sequence The available selections and a description of the activities performed are as follows 54 2574 User s Guide INRUSH STEP TYPE This step enables inrush detection and line balance detection if configured clears the startup profile and initializes all tube preheat and strike timing amp level measurements A timeout may be configured which if exceeded causes the detection of an OPEN BALLAST failure otherwise this test step is completed when the configured inrush period expires following line current detection and extended by the line balance detection if enabled The following notes apply 1 More than one INRUSH test step can be present in a test sequence Each application of line power to the ballast should have an INRUSH test step 2 Configuring an INRUSH step with a line switch state of OFF or a line voltage of OVrms with a controlled line source may yield undesired results 3 Setting a timeout value of zero disables the timeout This can result in test sequence lockup if an open ballast is tested requiring the user to abort the test manually 4 Any test steps performed prior to this step will not be included in the startup profile data Generally only DELAY steps would be found prior to the first INRUSH step these being used to pretest the ballast line input for short circuits prior t
19. following notes apply 1 This period may be extended by Line Balance Detection see below If this occurs only the inrush period is extended not the period for which ballast output timing measurements are disabled 2 Ifa value of less than 20ms is configured then the inrush measurements are performed over 20ms but the ballast output measurements are disabled for the configured time I e inrush measurements have a minimum of 20ms period enforced 3 This period starts when either General Purpose Mode A startup profile is not being collected and the peak line current changes from less than the detection level to more than the detection level in consecutive half line cycles Test Sequence Mode An INRUSH test step is started followed by any half line cycle peak line current of more than the detection level 4 For ballasts that consume zero line current at times during the striking of the tube the user must ensure that the startup profile period is sufficiently long to ensure that all such events are included Otherwise a second inrush detection will occur yielding erroneous inrush and strike measurements 5 The configured inrush period may be longer than the configured startup profile period if desired however this would be highly unusual Line Balance Detection You may select whether to wait for line balance and the percentage balance required If enabled the line inrush period is extended until either the percentage dif
20. in most applications However if the environment is particularly adverse and or humid clean as often as needed 22 2574 User s Guide Starting the Analyser This chapter describes the Front Panel and directs you to the Configuration screen that displays on the Front Panel This chapter covers the following subjects e Front Panel Interface e Starting the 2574R e Viewing the Configuration screen e Setting date and time e Resetting DC Zero Function e Selecting a Mode and Configuring Options Front Panel Interface The 2574R s front panel allows you to access screens select operating modes choose submenu options and view and print the analyser s results POWER This switch turns the power to the 2574R on and off NEXT This button stores any edits made and changes the screen to the next group of display screens in sequence Softkeys The F1 F2 F3 and F4 buttons allow you to select menu choices The functions of these softkeys are dependent on the screen that is presently displaying The softkeys give you access to additional displays within a group or allow you to change the display s format The present state or action of each softkey shows on the screen immediately above each button as a text label When no text is shown that key has no effect for that screen Starting the Analyser 23 PRINT This key performs a printout of the stored configuration of the 2574R in the selected operating or test mode
21. is selected then the ballast output information is the average for all tubes Any individual tube may also be selected INPUT 353 33Hz OUTPUT 60 DHZ 117 5U D 27985H 108 3U 0 3333H 7 3vthd i 44CF 45 6 thd 1 20ACF 34M 1 80URR 39 COM 1 54UCF S10PF Lead R12 35 277U 0 46238 SKF F34 3 3509 0 42524 TUBE A PRESENT LINE OFF Viewing General Purpose Measurement Results 69 The PRESENT screen continuously updates measurement results for the various tubes and configured ballasts Note that data will display only for those ballasts that have been configured Line Input Measurements Ballast Output Measurements Line Frequency Frequency lf configured as a high frequency output ballast Line Voltage RMS Tube Voltage The highest voltage between any two tube pins Line Current RMS Tube Current The RMS primary load current i e the sum of the current vectors in each pin of a 4 pin tube Line Current Distortion The 96 of Tube Voltage Distortion The of fundamental fundamental component component Line Current Crest Factor Tube Current Crest Factor May include or exclude the affects of output modulation Refer to Error Reference source not found Line Power real and imaginary Total Power Line Power Factor with a Ballast Efficiency lf ballast data has been selected Lead Lag indication by the F1 softkey Line Current K factor Filament voltages and currents for each filament l
22. sections A through D respectively The signals are controlled by the 2574R as part of the test procedure in the General Purpose modes these are either always active Auto Load or inactive Tube Load 6 TUBE LOAD ENGAGE Each of the 4 pins indicate the required on active or off inactive state of each tube load sections A through D respectively The signals are controlled by the 2574R as part of the test procedure in the General Purpose modes these are either always active Auto Load or inactive Tube Load 36 2574 User s Guide 7 TESTING FLAGS Each of the 4 pins indicate the present test in progress status for ballast 1 2 3 or 4 respectively The signals are asserted when a test procedure is actually being run Test Sequence modes on the respective ballast or are always asserted General Purpose modes Note that these signals are unasserted when a critical failure condition occurs test result code 4 or higher or the test is aborted TEST RESULTS 1 2 3 or 4 A 4 bit binary code representing the result of the test updated while running held when completed on ballast 1 2 3 or 4 The code is as follows No test result is available or in General Purpose mode A test is presently running with no failures All tests have passed only when completed A non critical test failed The test was aborted by the user A critical test failed the test was aborted An externally generated failure occurred The te
23. step 66 2574 User s Guide Filament rms FI Filament Udo anare Filament Arms Ianore Filament Ade Ignore Filament Hatt Ignore CURSOR CHANGE TUBE 1 DONE Limits are possible for the measured filament voltage levels RMS and DC current levels RMS and DC and power All configured filaments are measured against the same limits PHASING Limits There is one set of limits accessed by a CHECK test step as the PHASING group These measurements check against the actual measured values at the time of the CHECK test step Tube A 12 Phs a Tube A 34 Phs onore Tube B 12 Phs Ianore Tube B 34 Phs Ianore CURSOR CHANGE PHASING DONE Limits are possible for the measured filament phasing respective to the primary tube voltage Each filament is measured against separate limits SECTION Limits There are nine sets of limits accessed by a CHECK test step as the SECTION 1 through 9 groups These measurements check the measurements for the specified tube section against the actual measured values at the time of the CHECK test step Note that the specified tube load section need not be configured as a ballast load Configuring the Analyser 67 U41 Urms Fur W41 Upk surge lanore W41 Frequency Ianore 21 Urms Ignore 21 Udc Ignore N34 Urns Tqnore M34 de Ignore CURSOR CHANCE SECTION 1 DONE Limits are possible for tube voltage RMS and highest peak and filament voltage levels RMS
24. switch input should be connected to the output of the corresponding line source The user should take careful note of the L and N designations on the 1581 module as only the L side is switched Also ensure that the output of the line source is connected to the switch input otherwise the phase capability of the switch will be lost All line source selection switch outputs should be connected together and connected to the Line Source input of the 2574R Ensure that the L and N designations are maintained through this connection PROTECTING LINE SOURCE SWITCHES Most line sources have internal protection that is well below the maximum limit of the 1581 line switch 250A for 1 line cycle and thus no extra protection for multiplex connected line source selection switches is needed In some circumstances it may be required to place an in line fuse of high enough rating for normal operation to ensure that a line switch failure will not cause excessive line currents Using a 1500 Chassis with the 2574R 97 Ballast Line Switches Line switches can be configured in the 1500 to provide a line on off switch for individual ballasts CONFIGURING BALLAST LINE SWITCHES This is accomplished by using the MODULE F1 key on the 1500 and selecting that the desired module be set for a Switch type switch The module is then configured for the number J 2 3 or 4 corresponding to the ballast which the switch is controlling This number corresponds to th
25. the FA DONE key to save the changes and return to the Configuration menu screen Each test limit listed is displayed and edited using the same format e gnore Selects that this measurement will neither be checked nor included in test reports e Report Only Selects that this measurement will be included in test reports but will not be checked against limits Test amp Cont or Test amp Stop Selects that you want the measurement to be checked and continue testing or stop if it fails to meet the limits provided The limits against which the result are checked are e If both limits are provided the result is checked to verify if it lies between the set limits e If only the second limit is provided the result is checked that it is lower than the set limit e If only the first limit is provided the result is checked that it is higher than the set limit INRUSH Limits There is one set of limits accessed by a CHECK test step as the INRUSH group These measurements cannot be checked until after an INRUSH test step has completed and are available at any time until an INRUSH or an END test step is started This set of limits is not available in an INTERACTIVE WAIT step Inrush Apk EUN ugs 000 0 000 OR Inrush Arms gnore CURSOR CHANGE INRUSH DONE 62 2574 User s Guide LINE INRUSH LEVELS Limits are possible for the measured line RMS and peak inrush current measurements LINE Limits There
26. the complete 5 bit binary code Bits that have not been configured for this purpose are considered as being unasserted If set for code 00000 then no store recall is performed store 0 is invalid and a recall is only performed when the code recognized as having been changed This configuration is ignored on slave 2574R s INVALID This may be used to prevent unwanted side effects from slowly changing digital signals on the other inputs If multiple inputs are configured for this purpose then any assertion will cause the inputs to be ignored i e multiple inputs are OR ed Digital Inputs when configured as OFF All inputs are ignored Ethernet Interface When this option is not fitted this is set for Inactive and cannot be altered Configuring the Analyser 39 Configuring Ballast Line amp Loading This menu item is only available in the General Purpose mode This menu allows you to configure the line voltage and frequency and the ballast loading to be used while using the General Purpose mode of the 2574R Line source A 170 04 060 0Hz Load Tube A TUBE code 4000 OFF Load Tube B i Load Tube C Load Tube D Discharae for Ome CURSOR CHANGE DONE Line Settings This allows the user to configure the line conditions required First time users may disregard these settings LINE SOURCE SELECTION This is only used if the 2574R is controlling a 1500 chassis or for Digital Output control This allows the u
27. tube ballasts Use each of the sections A through D in order and one connection for each ballast e Two two tube ballasts Use sections A and C respectively e One ballast Use section A USING MULTIPLE LINE INPUTS FOR EACH BALLAST Wire each ballast line input to two or more ballast line connectors on the rear panel of the 2574R See Figure 6 For best results apply at least 0 01 of resistance in each connection to ensure that the current is properly shared between connections Connecting Test Components to the Analyser 83 SECTION D SECTION C SECTION B SECTION A BALLAST LINE INPUT 25 250V 47 63Hz 3 15A FUSET 3 15A 250V IEEE488 ASVDC 5VDc START TUBE E FILAMENT LINE svoc GND PARALLEL PRINTER WARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNECTION DETAILS A BY QUALIFIED PERSONNEL ONLY Figure 6 Multiple Line Input Ballast Connections four are shown Use the Multiple Input wiring for any of the following situations e The ballast s being tested have a power consumption of more than 1KW or e The test requires you to measure inrush currents of over 5Apk For Multiple Input connections choose one of the following e Two ballasts containing one or two tube Use sections A and B for one ballast and sections C and D for the oth
28. 2 x 100W 0 02W 0 22W For a reading of 100W at 50Hz one ballast line input being used PF 0 6 the accuracy specification is 0 275 x 100W 0 6 0 02W 0 478W Appendix D Measurement Specifications 113 POWER FACTOR PF gt 0 95 0 8 PF 0 95 PF lt 0 8 0 0006 0 0009 0 0014 0 0007 0 001 0 0016 Ballast Output Measurement Accuracy All specifications are typical above IMHz Options HID or F limit specifications to a maximum frequency of 100KHz Tube Voltage RMS MEASUREMENTS 0 1 0 005 per KHz reading 0 1V 0 001V per KHz Add 2 reading for voltages gt 400 Vrms not option M Change to 0 2V for option HID 0 15V for option M Example For a reading of 100V at 50KHz the accuracy specification is 0 1 0 005 x 50KHz x 100V 0 1V 0 001V x 50KHz 0 5V HARMONIC MEASUREMENTS Harmonics 10 limited by 450KHz max frequency Accuracy RMS measurement accuracy 0 5 reading x harmonic PEAK MEASUREMENTS RMS measurement accuracy 1V Add 10V above 500Vpk not option M Change to 2V for option HID 1 5V for option M CREST FACTOR MEASUREMENTS 0 01 1 Vrms Add 0 02 above 500Vpk not option M Change to 2 for option HID 1 5 for option M Example For a Tube Voltage of 100Vrms the accuracy specification is 114 2574 User s Guide 0 01 1 100 0 02 Filament Voltage This is not available in option
29. 4 DTR Data Terminal Ready Output from the 2574R high logic level when the 2574R is powered and the RS232 interface is enabled Pin 5 Ground return Connected to the 2574R chassis ground Pin 6 DSR Data Set Ready Input to the 2574R should be a high logic level for correct RS232 operation Pin 7 RTS Ready To Send Output from the 2574R high logic level when the 2574R is able to receive data from the computer Pin 8 CTS Clear To Send Input to the 2574R high logic level when the computer can accept data from the 2574R Pin 9 not connected Precautions Please read the following precautions before installing the 2574R A Ensure that all rear panel connections are not physically stressed and that all connectors are securely latched Ensure that no loose wires or metal objects can touch any unused connectors on the rear panel Ensure that the instrument has sufficient airflow around the bottom and top faces of the case Take particular care that the air vents in the 2574R s case are not blocked in any way 20 2574 User s Guide e f mounting the instrument in a system enclosure it is recommended that the enclosure have freely moving airflow around the 2574R A minimum free air space of at least 2 above and 0 5 below the casing of the 2574R unit is recommended WARNING ENSURE THAT THE POWER CORD USED TO PROVIDE THE 2574R S POWER HAS A CONTINUOUS GROUND CONNECTION FAILURE TO PROPERLY
30. 4 A B C or D Viewing General Purpose Measurement Results 75 e Press the F3 softkey to select whether the Historical scrolling Profile or the Startup Profile is to be displayed Refer to the left column for date and time These numbers represent the last update of the displayed data division of time and the time scaling of the display horizontal The time scaling is configurable for history and startup data independently in the Measurement Timing submenu as discussed on page 44 e Use the F4 softkey to select either LINE ON or LINE OFF Printing Results Profile Plots Press the PRINT button to obtain a printout of the graphical content presently being displayed The Startup Data Plots include additional numerical data depending on the configuration and data being displayed at time of printing 76 2574 User s Guide Viewing Test Mode Measurement Results If you have selected a Test Sequence mode in the Configuration screen the display screens described below are available as selected by the NEXT key Displaying a Summary of the Test Results This screen shows e The status of the currently running or the last completed test sequence e The step presently being executed if any e The presently measured line voltage and frequency e The last measured check failures up to a maximum of three the last are always displayed from the current running or last completed test seque
31. A DONE key returns to the main configuration screen To make all of your changes permanent press F4 DONE in the main configuration screen When configuration changes are made then the following actions are taken by the 2574R Any measurements in progress in either mode are aborted All line switches and loads are disconnected if controlled All profiles and all inrush preheat and strike measurements are initialized If any interface changes are made then all interfaces are initialized The following paragraphs describe the various areas that may be configured by the user Configuring the Analyser 31 Configuring the Interfaces The Interface submenu allows you to configure the RS232 IEEE488 Digital I O 1500 switch chassis Ethernet and Parallel Printer interfaces This submenu is available in both operating modes Control address 2 Printer amp timeout 30s Slave 2524R NONE 1500 RI45 Line Source MONE Digital I 70 Outputs OFF Inputs OFF Ethernet DISABLED CURSOR CHANGE DONE It is recommended that first time users set the following e Remote Control set to IEEE488 at any desired address e Printer set to GRAPHICS and no timeout e Slave 2574R set to None e 1500 Chassis set to None e Line Source set to None e Digital Outputs and Inputs set to OFF e Ethernet set to Disabled Remote Control Interface This display line allows the user to select which if any interface is to be used
32. ARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNECTION DETAILS BY auALIFIEMERSONNEL ONLY XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA TUBED TUBEC TUBE B TUBEA Figure 7 Four pin Load Connections If you always use these tube connections then no further rewiring of the tubes will be required for all ballast connection types Also note that the four pin tube connection method allows for all combinations of ballast tube wiring i e parallel filaments parallel tubes series filaments series tubes and combinations of these The only differences in wiring will be what is needed to accommodate the ballast itself not the tube wiring l wa Ff YN To connect for testing four pin ballasts Wire each load to the tube connectors in each section of the rear panel as shown next to these connectors in Figure 7 If only one tube is to be used then use section A For two tubes use sections A and B For three tubes use sections A B and C Ensure that all four wires of each tube are ONLY wired to one rear panel section CAUTION IF EXCESSIVE VOLTAGE IS PRESENT BETWEEN THESE PINS THE INSTRUMENT MAY BE DAMAGED Ensure that the filaments are connected between pins I and 2 and 3 and 4 of the 2574R Note that separate connectors are used for each filament TWO PIN LOAD CONNECTIONS When only two pin ballasts are being used then connect the tubes as shown in Figure 6 and described below Connect
33. ASUREMENT RESULTS Displaying a Summary of the Test Results Partial Test Report Printout Displaying an Interactive Wait Step Status Displaying Test Result Details Full Test Report Printout Displaying Harmonics Measurement Results Displaying Results Profiles Printing a Startup or Sequence Profile CONNECTING TEST COMPONENTS TO THE ANALYSER Rear Panel Connections Ballast Test Connections Line Supply Connections 62 63 64 65 65 66 66 67 68 68 68 69 71 71 71 72 73 73 73 74 75 76 76 76 77 77 78 78 78 79 80 80 80 81 Contents Line Input Connections 81 Load Connections 83 Ballast Output Connections 85 Light Power Monitor Connections 90 Interface Connections 91 General 91 TEEE488 Interface 91 RJ45 Style 1500 Chassis Interface 91 Parallel Printer Connector 92 Digital I O Interface Connector 92 Ethernet Connector 92 USING A 1500 CHASSIS WITH THE 2574R 95 Redundancy 95 Adding and Removing Modules 95 Unused Modules 95 Line Switch Module 1581 96 Line Source Selection Switches 96 Ballast Line Switches 97 Auto Load Modules 1520 1530 and 1540 Families 97 Tube Load Switch Modules 1520 99 APPENDIX A INTERFACE SPECIFICATIONS 101 Front Panel 101 Parallel Printer 101 IEEE488 101 APPENDIX B PHYSICAL SPECIFICATIONS 103 Temperature amp Humidity
34. Applying Power the 2574R Insert the socket end of a power cord into the analyser Insert the plug end into an 85 250 volt AC 47 400 Hz outlet Ensure that a grounded power cord is used and that the power cord fully complies with the regulations pertinent to the country and district in which the instrument is being used Connecting a Printer to the 2574R Connect one end of your printer s cable to the PARALLEL PRINTER port and the other to the printer Use a standard IEC1284 compliant cable similar in type to the cable used to connect the printer to an IBM PC compatible computer Installing and Maintaining the Analyser 19 Connecting a PC to the 2574R using IEEE488 Attach the computer s IEEE488 cable connector to the 24 pin socket marked IEEE on the back panel using an IEEE488 compliant cable Connecting a PC to the 2574R using RS232 Attach the computer s RS232 cable connector to the 9 pin socket marked RS232 on the back panel The 2574R rear panel connector is a male connector having the following signals The 2574R is considered a DTE Data Terminal Equipment computers are normally a DCE Data Computer Equipment Pin 1 DCD Data Carrier Detect Input to the 2574R should be a high logic level for correct RS232 operation Pin 2 RXD Receive Data Input to the 2574R serial data path to the 2574R from a computer Pin 3 TXD Transmit Data Output from the 2574R serial data path from the 2574R to the computer Pin
35. Each group of measurement results may be checked against limits and most groups may have several different sets of limits configured Note the following 1 The selection of the set of limits for a CHECK or INTERACTIVE WAIT step is independently configured from the actual setting of the limits to apply 2 Each set of limits may be used in more than one CHECK and or INTERACTIVE WAIT step 3 It is recommended that the user print a complete test sequence by pressing the PRINT key if configured for a printer when any of the test sequence steps is being displayed In this manner the user can check that all required limits have been configured To set the limits to apply e Inthe Configuration screen press F1 EDIT e Press FI CURSOR to highlight one of the submenu options shown in the fourth line down e Press F2 CHANGE until the submenu you wish to configure displays This softkey will toggle through the available options one at a time Configuring the Analyser 61 e Press F3 SETUP to open the submenu screen e Ineach screen the name of the element you are configuring is shown on the left and the selectable settings are shown on the right Press FI CURSOR to highlight the settings e Press F2 CHANGE to display the various settings for each element Switch between F1 CURSOR and F2 CHANGE as required Press the F3 XXXX e g F3 INRUSH F3 LINE 1 etc softkey to change the specific set of checks if available Press
36. GROUND THE 2574R MAY RENDER THE INSTRUMENT UNSAFE FOR USE CAUTION VERIFY THAT THE POWER CORD FULLY COMPLIES WITH THE REGULATIONS PERTINENT TO THE COUNTRY AND DISTRICT IN WHICH THE 2574R IS BEING USED e Do not setup the 2574R near a source of line frequency magnetic fields such as powerful transformers The line frequency current transducers in the 2574R are of the Hall Effect type and can respond to strong external magnetic fields To test for the effect of these fields on the 2574R view the Numeric Measurement Results screen for each ballast with no applied signals and check that the ballast line input current is less than 0 5mArms For unaffected results position the 2574R at least 12 inches away from any AC power source and at least 6 inches away from any magnetic ballast e Use high quality shielded cables when interfacing the 2574R to a computer and or a printer The high voltage high frequency signals usually associated with high frequency ballasts can easily interfere with the signals on these interfaces which are not designed for significant interference rejection e Ensure that the wiring used to connect the ballast and tube to the 2574R has sufficient insulation for analysis of the voltage and frequency signals This is of particular importance when testing HID ballasts WARNING SHOCK HAZARD NEVER CONNECT NOR DISCONNECT ANY LIVE SIGNALS TO THE 2574R THIS CAN BE LETHAL TO YOU AND MAY DAMAGE THE INSTRUMENT Periodic Maint
37. IT The EDIT softkey changes to CURSOR and a softkey to the right reads CHANGE 3 Press CHANGE repeatedly until the desired configuration storage number is shown highlighted in the uppermost line of the display If this is performed in error then pressing the NEXT key aborts this procedure 4 Either press the RECALL or STORE softkey as desired The specified operation is performed a message being displayed while being performed and then the display returns to the non editing configuration screen The uppermost line always shows the most recently recalled or stored configuration number SELECT A MODE 1 As required press NEXT until the Configuration screen displays 2 Press EDIT The EDIT softkey changes to CURSOR and a softkey to the right will read CHANGE Note that the previously selected mode will be highlighted 3 Press CURSOR the presently selected mode is highlighted in the display 4 Press CHANGE until the mode you wish to select displays This softkey will toggle through the available options one at a time Note If you pass an option you desire continue to press CHANGE 5 Switch back and forth from CURSOR to CHANGE as required 6 Press DONE when complete CONFIGURE A SUBMENU OPTION 1 In the Configuration screen press EDIT 2 Press CURSOR to highlight one of the submenu options shown in the third line down 3 Press CHANGE until the submenu you wish to configure displays This softkey will toggle through
38. Oct 20 1999 24 2574 User s Guide The Configuration screen is characterized by the softkey EDIT in the F1 position EDIT is the only active softkey each time this screen first displays If you wish to select a new mode or modify a configuration in any way press EDIT Immediately the softkeys F1 through F4 will change functionality It is possible to lockout front panel editing by an IEEEA88 or RS232 command If this has been enabled then a password is required to actually change any data The password will have been set via the IEEE488 or RS232 command and should be entered when requested For more information refer to the Interface Command Guide for the 2574R Multi Tube Ballast Analyser Refer to the following softkey functional descriptions available in the Configuration screen F1 EDIT CURSOR Press EDIT to initiate a change to an item on this screen Press CURSOR to select the next editable item on the display The selected item will be highlighted F2 CHANGE Press CHANGE and the highlighted selection is changed to the next available option If you pass an option continue pressing CHANGE to return to that option F3 SETUP PRESET PERFORM VIEW Press SETUP while the Configure option is highlighted to open the submenu related to that configuration option Press PRESET while a submenu is open to display preset incremental options Press PERFORM to initiate the selected calibration to be performed Press VIEW to view i
39. Turn on phase Inrush Detect U sRpk Inrush Period 1 mz Line Balance CURSOR CHANGE COARSE DONE Start Phase This is only used if supported by the 1500 chassis being used for the specific line source and ballast You may select the line voltage phase at which all unpowered to powered transitions are to occur This may be selected between 0 and 359 in 15 COARSE or 1 FINE increments First time users should disregard this setting Inrush Detection Level You may set the peak line current which if exceeded signifies the start of line inrush Setting this at too high of a value may cause the 2574R to never detect the initial application of power to the ballast setting this too low may cause false detection caused by noise A level between 50mA and 500mA is recommended in most circumstances First time users should use a setting of 0 1 Apk unless a very low power ballast is being used in which case this should be reduced 46 2574 User s Guide Inrush Period You may select the period over which line inrush is expected to occur The 2574R automatically disables all other measurements during this period to ensure that measurements are not affected by transients occurring at this time It is not recommended to set this above 20ms unless specifically desired as the ballast output timing and strike detectors are disabled during this period It is recommended that first time users set this to 20ms The
40. XI TRON TECHNOLOGIES USER S GUIDE 2574R SYSTEM MULTI TUBE BALLAST ANALYSER Warranty 3 Warranty The Xitron Technologies instrument is warranted against defects in material and workmanship for a period of two years after the date of purchase Xitron Technologies agrees to repair or replace any assembly or component except batteries found to be defective under normal use during the warranty period Xitron Technologies obligation under this warranty is limited solely to repairing any such instrument which in Xitron Technologies sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center Transportation to the factory or service center is to be prepaid by the purchaser Shipment should not be made without prior authorization by Xitron Technologies The warranty does not apply to any products repaired or altered by persons not authorized by Xitron Technologies or not in accordance with instructions provided by Xitron Technologies If the instrument is defective as a result of misuse improper repair or abnormal conditions or operations repairs will be billed at cost Xitron Technologies assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment Special disclaimers apply to this instrument Xitron Technologies assumes no liability for secondary charges or consequential damages a
41. ancy Multiple modules may be fitted within the same system which are configured in the identical manner In this case the 2574R will automatically select the required switch found in the lowest numbered chassis and the lowest lettered slot within that chassis Line switches or loads can be flagged as being faulty either by the user or by test sequence activity and will be automatically skipped The load switches and line switches have been specially designed to reduce the possibility that a failed module will affect to operation of parallel wired redundant modules Adding and Removing Modules Modules may be inserted or removed from 1500 chassis whenever a test sequence is not being performed or chassis may be added or removed from the 2574R The 2574R may take up to 5 seconds to recognize the removal or addition of a chassis When inserting a new module into a chassis the user should use the REFRESH key on the 1500 chassis to cause the 1500 and 2574R to recognize the newly inserted module Unused Modules Unused load modules may be left disconnected however unused line switch modules should have their line input terminals shorted together to prevent interference causing their phase sensitive measurement from being incorrectly activated 96 2574 User s Guide Line Switch Module 1581 These modules allow the user to either switch the output of a line source or switch the line power input to a ballast The turn on phase of thes
42. as slaves for either multi tube or multi ballast testing If the IEEEAS88 interface is configured for 2574R CONTROL purposes then this selection is always Inactive When using multiple 2574R instruments in this manner the slave 2574R instruments should be configured by the user for IEEE488 2574R CONTROL operation using unique addresses for each instrument along with any additional local interface requirements All other aspects of the configuration of the slave instruments are automatically performed by the controlling 2574R without user intervention Note that any measurements or test results from any specific slave instrument can be obtained via the RS232 interface of the controlling instrument The available selections are 1 None No2574R slave control is exercised when configured in this manner the IEEEF488 interface being configured as otherwise selected 2 Multi Ballast In this case the IEEE488 interface is configured at address 1 as a controller The F3 key displays SETUP when this is selected allowing the user to select the actual addresses for up to 7 additional 2574R instruments to be controlled by this 2574R When configured in this manner the BALLAST TYPE amp WIRING for each slave instrument is configured identically to the controlling instrument slave 1 ballast being obtainable within the controlling instrument as ballasts 5 through 8 slave 2 as ballast 9 through 12 etc If a slave instrument cannot be locate
43. atts ALU BL C JU Light Monitor Input Voltage A 000e 0 B 0 000e 0 M 0 000e 0 CURSOR CHANGE DONE It is recommended that first time users disable the light monitor capability by setting the ballast to None You may select which ballasts tubes light level is being monitored and the linearization coefficients of the light monitor Configuring the Analyser 43 Configuring Measurement Options This submenu allows you to configure details regarding how measurements are made ce ed Inpu e200kHz Ballast lu Tube Crest Ek EXCLUDES MODULATION EC61000 3 2 WO TEST ANSI 82 11 NWO HARMONICS TEST CURSOR CHANGE DOME Ballast Input Signal Content You may select whether any DC line content is to be included or not and whether line measurement bandwidth is to be 5KHz or 200KHz Note that the bandwidth setting can considerably influence the peak line inrush current measurements It is recommended that first time users set DC INCLUDED and lt 5KHz bandwidth Note that the line current measurement devices are Hall Effect type transducers These have some temperature dependency regarding their DC offset the use of DC Offset correction is recommended see page 26 when set for DC Included Ballast Output Signal Content You may select whether any DC content is to be included or not in ballast output measurements It is recommended that first time users set DC INCLUDED Ballast Outpu
44. be Frequency Measurement 20 2KHz or 5KHz 2MHz Bandwidth Typically 20MHz 3dB Option HID Change Ballast Output specifications to Voltage Withstand 3KVpk 1K Vrms continuous each end of tube to ground 4 5KVpk 2K Vrms for lt 2 minutes each end of tube to ground Measurement 50 4 5KVpk 50 3K Vrms Burden lt 15pF each end of tube to ground 1Mohm across tube Appendix C Signal Specifications 107 Current Withstand 25Apk 6Arms continuous 50Apk 15Arms for lt 1 second Measurement 3Apk 20mA 2Arms Burden 0 050hm Power Measurement 0 8000W per tube Frequency Measurement 20 2KHz or 5KHz 100KHz Bandwidth Typically 2MHz 3dB Option HI Change ballast output voltage withstand specification from 3KVpk for 1 second to 4 5KVpk for 1 second Option HC Change ballast output current and power specifications to Current Withstand 20Apk 4 5Arms continuous each pin 50Apk 15Arms for lt 1 second each pin Measurement 3Apk 20mA 2Arms each pin Burden 0 05ohm each pin Power Measurement 0 4000W per tube When used with option HID changes ballast output current and power specifications to Current Withstand 30Apk 9Arms continuous 60Apk 20Arms for 1 second Measurement 6Apk 40mA 4Arms Burden 0 025ohm 108 2574 User s Guide Power Measurement 0 16000W per tube Option M Change ballast output voltage measureme
45. by a striking voltage When initially using AUTO loads e g with a 1500 load chassis a value of 100ms is recommended Configuring the Analyser 51 Configuring Preheat Detection This submenu allows you to configure the timing or levels used to obtain filament preheat measurement results Detect using md CURSOR CHANGE DONE First time users are recommended to select the Pre Strike Period selection this selects that the filament preheat measurements are made with the strike detection system Preheat Detection Method The following selections are available 1 Pre Strike Period If this is selected then the preheat period is taken as the period between the detection of the starting of ballast output until the detection of transition or strike 2 Using unfiltered levels If this is selected then the unfiltered real time measurements of each filament are used to detect filament preheat This method yields the best timing resolution 3 Using Averaged levels If this is selected then the averaged measurements of each filament are used to detect filament preheat This method yields poor timing correlation to tube strike but can be used with ballast having a large amount of output modulation 52 2574 User s Guide Voltage Current and Power Detection Levels These selections are only available if Pre Strike Period was not selected as the detection type see above Detect using rap Feo Detect 3
46. ch test step Step 1 INRUSH Sms Line zource A OO UU 000 Hz OM Load tube TUBE code 3000 0 Load tube OFEN Load tube OFEN Load tube OFEN Step code CUOOCO CURSOR CHANGE SELECT MEXT STEP Sb Notes for First Time Users When initially using the Test Sequence mode the user is recommended to use the simplest possible test sequence to gain experience Assuming the use of a 1500 chassis the following sequence is recommended 1 INRUSH This applies power to the ballast using a line switch in the 1500 if available The user should set the desired line voltage and frequency if controlled and set that line is ON Ballast loading should be set for AUTO loads using the code for the desired loading using an AUTO state 2 WAIT STRIKE This waits for the ballast to apply and hold the configured strike voltage The same line and load settings should be used as for the INRUSH step above 3 CHECK This should be configured to initialize the result averages wait for a period of time a few hundred milliseconds is recommended then apply limits to measurement results When deciding what limits to apply don t forget to set the limits as described later 4 If more than one area of measurements are to be checked e g line current and tube power then more than one CHECK step may be required Additional CHECK steps should be used following the first one above configured to not initialize result averages and with no
47. ction When Shorted Ballast is Detected Configuring Strike Detection TUBE Load Strike Detection Configuration AUTO Load Strike Detection Configuration Configuring Preheat Detection Preheat Detection Method Voltage Current and Power Detection Levels Printing Configuration Details Configuring a Test Sequence Notes for First Time Users Defining the Step Type Setting the Line Conditions Setting the Ballast Loading Conditions Setting the Step Code for the Digital Interface Setting the Test Limits INRUSH Limits LINE Limits 43 43 43 43 43 R R 45 45 45 46 46 47 47 47 48 48 48 49 50 51 51 52 52 52 53 53 58 59 60 60 61 62 8 2574 User s Guide OVERALL Limits STRIKE Limits PREHEAT Limits TUBE Limits FILAMENT Limits PHASING Limits SECTION Limits Printing Test Sequence and Limits Details VIEWING GENERAL PURPOSE MEASUREMENT RESULTS Displaying Numeric Measurement Results PRESENT Screen STARTUP Screens Printing Numeric Results Displaying Harmonics Measurement Results Ballast Output Harmonic Results Screen Ballast Line Input Harmonics Results Screen IEC61000 3 2 Harmonics Results Screen Printing Harmonics Results Displaying Results Profiles History and Startup Profile Screens Printing Results Profile Plots VIEWING TEST MODE ME
48. d at the specified address when the user interrogates its results then an error message is displayed at that time Configuring the Analyser 33 Multi Tube In this case the IEEE488 interface is configured at address 1 as a controller The F3 key displays SETUP when this is selected allowing the user to select the actual addresses for up to 7 additional 2574R instruments to be controlled by this 2574R When configured in this manner the BALLAST TYPE amp WIRING for each slave instrument is configured similarly to the controlling instrument slave 1 tubes being obtainable within the controlling instrument as tubes E through H slave 2 as tubes I through L etc Note that only 7 instruments can be effectively used in this manner and the seventh instrument can only effectively use two tubes If a slave instrument cannot be located at the specified address when the user interrogates its results then an error message is displayed at that time The line current measurements of each slave device are unused in this configuration however the line voltage must be present on each instrument 1500 Interface and Control This display line allows the user to select the method that the 2574R uses to communicate with 1500 line load switch chassis connected to the 2574R Up to 8 chassis may be controlled by the 2574R using the RJ45 or IEEE488 interfaces or one using the RS232 interface While this display line is selected the F3 key displays SETUP when
49. e 11 Example of Series Filament Outputs from a Ballast FOUR PIN LOAD TWO PIN BALLAST OUTPUT This connection method is not applicable to option QS This is the only connection method for option HID The loads should be connected as described in either 4 PIN LOAD CONNECTIONS or 2 PIN LOAD CONNECTIONS above 88 2574 User s Guide In the instruments Ballast Type amp Wiring menu the ballast type should be set to 2 pin and the individual ballast wiring type set to 4 pin This offers the advantage of higher current measurement capability over the 2 PIN LOAD 2 PIN BALLAST method described later Note Ensure that each connection from the ballast connects to both pins 1 and 2 or pins 3 and 4 of the 2574R If a one tube ballast is being tested or only one tube of a multi tube ballast is being monitored then use sections A through D respectively e Connect each ballast in sequence as shown in Figure 12 Use section A for ballast 1 use section B for ballast 2 etc Note that if a two tube ballast is being tested or only two tubes of a multi tube ballast are being monitored then use sections A and B for ballast 1 and sections C and D for ballast 2 85 250V 47 63Hz 3 150 B u a FUSET 3 15A 250V N t Ol PARALLEL PRINTER om XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA
50. e ballast number used in the 2574R Ballast Type amp Wiring menu If any switch is configured as a ballast line switch then the 2574R will raise an error and abort a test sequence if no ballast line switch can be found for the ballast being tested Normally the 2574R uses the desired line source switch to select the source and then turns on off the ballast using its configured line switch In the special case where no line switches are configured but line source selection switches are configured then the 2574R will control the power to the ballasts by using the line source switches In this case the line power to all ballasts will be simultaneously applied or removed WIRING BALLAST LINE SWITCHES Each ballast line switch input should be connected to the corresponding as set in the Ballast Type amp Wiring menu of the 2574R line connector of the 2574R rear panel The user should take careful note of the L and N designations on the 1581 module as only the L side is switched Each switch output should be connected to the line input terminals of the ballast being tested Auto Load Modules 1520 1530 and 1540 Families Auto Load modules provide resistive loading for each ballast output These are available in 100W 1520 200W 1530 and 300W 1540 variants and in two pin 15x2 and four pin 15x4 variants The 2574R draws no distinction between these modules These loads can be programmed by the 2574R as OFF FIL or ON and are in
51. e has occurred The WAIT STRIKE test step or a sufficiently long DELAY step may be used for this purpose Measurements are available at any time until an INRUSH or an END test step is started All configured tubes are measured against the same limits TUBE STRIKE LEVELS Limits are possible for the measured highest strike voltages peak and RMS the mean glow voltage level crest factor and frequency the highest post strike tube current peak and RMS and the mean glow current Strike Urms FI c Strike Upk gnore Glow Urms Tqnore low Ucf Ignore Glow Freq Ignore CURSOR CHANGE STRIKE 1 DONE 64 2574 User s Guide Strike Arms FI c Strike Apk gnore Glow Arms Ionore CURSOR CHANGE STRIKE 1 DONE TUBE STRIKE TIMING Limits are possible for the measured timing of startup delay glow period starting period transition period and strike delay Start Delay i Glow Perio gnore tarting Time Ianore Transition Ianore Strike Delay Ignore CURSOR CHANGE STRIKE 1 DONE PREHEAT Limits There are three sets of limits accessed by a CHECK test step as the PREHEAT 1 through 3 groups These measurements cannot be checked until after an INRUSH test step has completed and sufficient time has elapsed to ensure that the preheat has completely occurred Measurements are available at any time until an INRUSH or an END test step is started All configured filaments are measured against the same lim
52. e is under the control of the 2574R The F3 PRESET key may be used to select common line voltage settings LINE FREQUENCY This is only used if the specified source is under the control of the 2574R The F3 PRESET key may be used to select common line frequency settings Setting the Ballast Loading Conditions This allows the user to configure the ballast output loading for each tube for the duration of each step The letter designation corresponds to the section letters on the 2574R rear panel LOAD TYPE This may be either OPEN TUBE or AUTO If set to OPEN then the 2574R makes no assumptions regarding the loading for this ballast output If set to TUBE the 2574R assumes that an actual tube load is being used on this ballast output and the tube strike detection is performed accordingly Glow Transition and Strike detection of the ballast are performed using the real time measurements of tube current see STRIKE DETECTION Real time filament preheat measurements may be made using filament voltage current and or power measurements or using the tube strike timing as desired see PREHEAT DETECTION If set to AUTO then the 2574R attempts to control the loading on this ballast output using the load code and state described below Strike detection of the ballast is performed using the real time measurement of peak tube voltage see STRIKE DETECTION Real time filament preheat measurements may be made using filament voltage current and or
53. e switches can be programmed in the 2574R with the 1581 controlling the phase to within 1 degree for line frequencies in the range 30Hz to 500Hz Line switch modules have internal arrestor protection against voltages in excess of 1500Vpk The user may need to connect snubber capacitors across particularly inductive line source outputs or ballast line inputs to ensure than there is minimal interference from line switching transients Line Source Selection Switches Line switches can be configured in the 1500 to provide a line source selection multiplexer CONFIGURING LINE SOURCE SELECTION SWITCHES This is accomplished by using the MODULE F1 key on the 1500 and selecting that the desired module be set for a Source type switch The module is then configured for the letter A B C or D corresponding to the source that the switch is controlling This letter corresponds to the source selection letter used in the 2574R Ballast Line amp Load menu and in each Test Sequence Step menu If any switch is configured as a line source selection switch then the 2574R will raise an error and abort a test sequence if no source selection switch can be found for the configured line source letter selection required If no line switches are configured in this manner then the 2574R effectively ignores the line source selection letter it is also available from the digital I O interface WIRING LINE SOURCE SELECTION SWITCHES Each line source selection
54. e test sequence Each CHECK step should have this set to NEVER REPORT if no automatic report printout is desired the user may still manually command one using the PRINT key in the Test Summary or Detailed Results screens The available check limit collections are as follows if more than one group of selections is required then more than one CHECK step should be used INRUSH One set of limits is available e PREHEAT 1 2 or 3 Three sets of preheat levels and timing limits are available e STRIKE 1 2 or 3 Three sets of glow and strike levels and timing limits are available e LINE 1 through 9 Nine sets of line current power and harmonics including IEC1000 3 2 and ANSI C82 11 level limits are available e TUBE 1 through 9 Nine sets of tube voltage current filament voltage current power level limits are available For this set of checks the same limits are applied to all configured tubes see also SECTION below e SECTION 1 through 9 Nine sets of four tube voltage filament voltage power and frequency limits are available For this set of checks the limits are applied to a user specified specific tube section which need not have been configured in any specific ballast e OVERALL 1 through 9 Nine sets of total power power loss and power efficiency limits are available e PHASING One set of filament tube relative phasing limits is available Note the following Configuring the Analyser 57 1 Selecting
55. enance The periodic maintenance required for the 2574R involves a few simple precautions to ensure a long and productive life for the analyser Scheduled maintenance contracts are available for U S customers from Xitron Technologies Inc The maintenance precautions include e Performing annual external calibrations which include multiple operational tests e Using DC Zero function when measuring DC content or if a large change in ambient temperature is encountered gt 10 C Refer to Setting DC Zero Function shown on page 26 e Cleaning the display and rear panel surfaces regularly Clean the surfaces with all power and ballast signals removed from the 2574R Installing and Maintaining the Analyser 21 Use a soft cloth dampened with clean water and a small amount of pure liquid detergent Detergent should NOT form lather Ensure that the detergent does not have aromatic or ammonia additives Simple dish washing liquid is often the best to use for this purpose Dry surfaces with a soft cloth Ensure that a non abrasive cloth is used and that no lint is left on the surfaces or in the rear panel connectors Avoid allowing fluid to enter the 2574R especially through the rear panel If a small amount has entered the instrument allow the 2574R to stand for at least 4 hours before applying power or ballast signals The period between cleaning is dependent on the environment in which the 2574R is used Annual cleaning is sufficient
56. ent Specifications 111 Current RMS MEASUREMENTS 50 60Hz 0 1 reading 0 5mA 400Hz 0 18 reading 0 5mA Add 5mA when DC is included requires use of DC Zero calibration Multiply the mA portion by the number of sections used for ballast line input Examples For a reading of 100mA at 50Hz one ballast line input being used the accuracy specification is 0 1 x 100mA 0 5mA 0 6mA For a reading of 100mA at 50Hz four ballast line inputs being used the accuracy specification is 0 1 x 100mA 4 x 0 5mA 2 1mA HARMONIC MEASUREMENTS Harmonics 40 Accuracy RMS measurement accuracy 0 05 reading x harmonic PEAK MEASUREMENTS RMS measurement accuracy 5mA Multiply the mA portion by the number of sections used for ballast line input 112 2574 User s Guide CREST FACTOR MEASUREMENTS 4 sections or sectivrts i 2 sections 1 section a ie i 3 D O Oo L lt O 010 Amps RMS Power PF gt 0 95 0 8 PF 0 95 PF lt 0 8 0 225 PF 0 275 PF 0 23 PF 0 29 PF 400Hz 0 55 0 75 PF 1 15 PF Add 0 02W when DC is not included Add 0 05W when DC is included requires use of DC Zero calibration Add 0 1 reading for voltages gt 300Vrms Multiply by the number of sections used for ballast line input Examples For a reading of 100W at 50Hz one ballast line input being used PF 0 97 the accuracy specification is 0
57. er ballast e One ballast Use all four sections Load Connections This section describes the line connections between the 2574R and the tube s used for loads for the ballast s being tested Any type of load may actually be used as a load for the ballast The term tube does not imply that an actual tube must be used When making connections ensure that there are no voltages present on the connections There are many different methods of connecting the tubes and ballast outputs with the 2574R however the Four pin LOAD Connections and Two pin LOAD Connections cover the majority of applications and are recommended whenever possible With options QS or HID only the two pin tube option is available When testing ballasts having a load in excess of 1 5Apk 3Apk with option HC or HID 6Apk with both options HID and HC pin currents multiple tube connections may be made in parallel as if there were actually more tubes Contact Xitron Technologies for assistance if this is desired 84 2574 User s Guide FOUR PIN LOAD CONNECTIONS Use the connection method shown in Figure 7 and described below when testing four pin ballasts or multiple ballast types when some are of the four pin variety 85 250V 47 63Hz 3 15A LIGHT leeeass A5VDC 5VDC START O TUBE E FILAMENT LINE 5VDC GHD PARALLEL PRINTER om W
58. every 512us nominally Power Measurements Averaged digitally multiplied voltage and current samples Peak Measurements Sample based continuous coverage peak hold Line Harmonics Measurements 2K or 8K point DFT automatically synchronized to 2 cycles 16 cycles for IEC61000 3 2 Class C testing of fundamental within 0 01 with continuous coverage of input signal Sampling is anti alias filtered by gt 50dB by combination of passive and digital filtering Tube Harmonics Measurements 64 to 256 point DFT automatically synchronized to fundamental 110 2574 User s Guide Frequency Measurements Continuously tracking variable width adaptive bandpass filter based period measurement of voltage signals Software Upgrade Software field upgradable via IEEE488 interface latest released revisions of software available via Internet using Xitron Technologies FTP site or e mail Manufacturing amp Design ISO9001 and US FDA certified Ballast Input Measurement Accuracy Voltage RMS MEASUREMENTS 50 60Hz 0 1 reading 0 1V 400Hz 0 15 reading 0 1V Add 0 2V when DC is included Add 0 1 reading for voltages gt 300Vrms Example For a reading of 220V at 50Hz the accuracy specification is 0 1 x 220V 0 1V 0 32V HARMONIC MEASUREMENTS Harmonics 40 Accuracy RMS measurement accuracy 0 05 reading x harmonic PEAK MEASUREMENTS RMS measurement accuracy 1V Appendix D Measurem
59. f a hyphen displays with F12 or F34 this means measured filament voltage is out of phase with primary tube voltage for the selected tube F1 STARTUP Screens There are two STARTUP screens in which you can review levels or timing measurements This data is updated when the initial draw of line current from the ballast is detected e Press the F1 softkey to select the ballast by number that you have configured or select the tube by letter BALLAST 1 2 3 4 or TUBE A B C or D e Press the F2 softkey to choose between the PRESENT screen and the STARTUP screen e Press the F3 softkey to choose between LEVELS and TIMING e Use the F4 softkey to select either LINE ON or LINE OFF The information that displays on the Startup Levels screen covers the following measurement details 70 2574 User s Guide Inrush Preheat Ou COSAPK 0 322RHnrms dems O 414Arms 1 4332H l 4 3Urmz O 00 4Arms Strike 7 pk Post Stri ke CARD E 385RHrms Crest Factor 7 11 Glow Voltage BALLAST 1 STARTUP LEVELS LINE OW Highest Peak and RMS line input current during the configured inrush period for the selected ballast Of al a L CO ds The average RMS voltage current and power levels during the preheat period configured as either the pre strike period or by level detection The average RMS voltage and current tube levels during the pre transition period following the detection of output signals f
60. fect Transducers Input Output signals Random Access Memory Functional Description 15 Load Contrgt 4 Based 7 SO I Hs Load Sonto je a Interface N Processor RS232 Load Gun 22 LA N Ma aa Digital Load Contr E x Vo c di 257xR Only 2 35 AR Ol wg o 5 5 e 5 5 Light All 257x Fl 0 A Monitor IEEE488 CM Li i E V is OE Parallel Printe oltage Central N S Cunen Processor Line Load 2 Tube Switch Control Tube Voltage amp Curren DSE Display amp i 9 Keyboard 8 j Tube Voltage EE amp Current Figure 1 Overall Block Diagram 16 2574 User s Guide Line Source o _ N To Central Processor 128K x 24 RAM IO Line DSP Figure 2 Line Block Diagram Filter amp AD amp FIFO Filter amp AD amp FIFO Filter amp ADG amp FIFO Filter amp ADG amp FIFO Filter amp ADG _ amp FIFO Li Filter amp AD amp FIFO Light Monitor Functional Description 17 Ballast 1o Tube o 1 0 1 ohms 2 2
61. ference in the measured positive and negative peak line current is less than the configured limit or the configured timeout has expired see below It is recommended that first time users disable this setting LINE BALANCE PERCENTAGE The percentage balance is the maximum percentage imbalance between consecutive positive and negative peaks of line current before continuing This is selectable in the range 1 to 50 Configuring the Analyser 47 LINE BALANCE TIMEOUT You may select the maximum length of time that the 2574R will wait for line balance to be detected After the expiration of this time the 2574R continues as if line balance had been achieved This selection is only available if line balance detection has been enabled Configuring Line Short Detection This submenu allows you to configure the 2574R to detect a short circuit ballast or a ballast that consumes excessive line power Short detect 0Rpk disabled or LUO 00RHnPnms amp disabled or OOCDON disabled CURSOR CHANGE DONE If supported by the configured line source being controlled by the 2574R the line source is also polled to detect any tripping of its internal current limit Any such trip is also detected as a shorted ballast All ballasts configured as being powered by the affected line source are flagged in this situation It is recommended that first time users set each detection level to zero to disable line short detection Shor
62. for remotely controlling the 2574R The available selections are 1 IEEEASS Address XX Selecting that the IEEE488 interface is enabled and talks listens at the specified address in the range 0 through 30 Note that if the IEEEA88 interface is used in this manner then this interface cannot be selected for either 1500 chassis or line source control 2 RS232XXXXXXbaud Selecting that the RS232 interface is enabled and talks listens at the specified baud rate up to 115200 Note that the RS232 interface can only be used for one purpose 3 None Selecting that neither the IEEE488 nor RS232 interfaces are to be used for this purpose The 2574R can only be controlled via the front panel 32 2574 User s Guide Printer Interface This display line allows the user to select the type of printer if any and the timeout to be used when printing information The printer type selection is either 1 NONE Selecting that no printer is connected The front panel PRINT key is inactive and any configured test report printouts are not performed 2 TEXT Selecting that a text only printer is connected Only textual printouts either using the PRINT key or configured test reports are performed 3 GRAPHICS Selecting that the connected printer supports both text and graphics using the PCL2 standard Slave 2574R Control This display line allows the user to select whether further 2574R instruments are to be controlled by this 2574R
63. for your application using the guidelines given here for Single and Multiple Line Inputs USING A SINGLE LINE INPUT FOR EACH BALLAST The single line connections are at the top of the rear panel sections labeled A through D See Figure 5 Wire each ballast line input to a separate ballast line connection 82 2574 User s Guide SECTION D SECTION C SECTION B SECTION A BALLAST LINE INPUT 85 250V 47 63Hz 3 15A gt FUSET 3 15A 250V 220 LIGHT IEEE488 15VDC 15VDC Tunc 2 E L 5VDC PARALLEL PRINTER F I GHD bd o o j WARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNECTION DETAILS BY QUALIFIED PERSONNEL ONLY XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA Figure 5 Single Line Input Ballast Connections Use the Single Line Input configuration in any of the following situations e More than two ballasts are being tested or e The ballast s being tested have very low power consumption less than 10W with an inrush less than 5A or e The ballast s being tested have a power consumption of less than 1KW It is not necessary to measure inrush currents in excess of 5A and the actual inrush current is less than SOApk For Single Line Input connections choose one of the following connection methods e Four or fewer one
64. g air movement without unnecessary fan noise CAUTION THE DISPLAYED TEMPERATURE IS NOT THE TEMPERATURE OF THE LOAD RESISTORS USE EXTREME CARE WHEN EXTRACTING A LOAD MODULE WHICH HAS BEEN RECENTLY USED THE OPERATIONAL TEMPERATURE OF THE RESITIVIE LOADS MAY EXCEED 100C Using a 1500 Chassis with the 2574R 99 Tube Load Switch Modules 1520 The 12520 module provides a basic four pole switch enabling the user to switch tube loads or any other type of load desired These load modules are similar to the auto load modules above but do not have a factory programmed primary ID code but have a user programmed primary ID code instead The alternate and parallel code capabilities are the same as for the auto loads These loads can be programmed by the 2574R as ON or OFF only and are intended to be used for switching actual tube loads using the TUBE load type in the 2574R menus Appendix A Interface Specifications 101 Appendix A Interface Specifications Note Specifications are subject to change without notice Front Panel Liquid Crystal Display 240 x 64 High Speed Graphics LCD with CCD Backlight 5 x 1 35 viewing area Keyboard T wo fixed purpose buttons four softkeys Parallel Printer Printer Interface Parallel IEEE1284 Format Unformatted text or PCL2 user selectable Data Rate Up to 24000 characters per second limited by printer Compatible Printers Required for textual printouts any 80 charac
65. g the entire sequence respectively Viewing Test Mode Measurement Results 79 Printing a Startup or Sequence Profile Pressing the PRINT key while displaying any of the startup or sequence profile screens initiates a graphical printout requires a PCL2 compliant printer of the presently displayed profile plot 80 2574 User s Guide Connecting Test Components to the Analyser This chapter describes the various connectors on the 2574R rear panel and wiring test setups For a complete listing of precautions refer to the chapter on Installing and Maintaining the Analyser found on page 18 Rear Panel Connections A The rear panel contains all the connectors required for testing multiple types of ballasts including connectors for the ballasts power sources There are no restrictions against signals being present on these connections when the 2574R is not powered WARNING SHOCK HAZARD NEVER CONNECT OR DISCONNECT ANY LIVE SIGNALS WHEN THE 2574R IS POWERED THIS CAN BE LETHAL TO YOU AND MAY DAMAGE THE INSTRUMENT WARNING IF THE POWER ANALYSER IS USED IN A MANNER NOT SPECIFIED BY XITRON TECHNOLOGIES INC THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED Ballast Test Connections AN Ballast test connections include Line Supply and Line Input Tube Load and Ballast Output This Ballast Test Connections section describes all the possible test connections When making connections ensure that there are no vol
66. hing during this period then the strike and preheat measurement results may be made invalid It is recommended that first time users set this to between 1 second and 10 seconds according to the expected strike and stabilization time of the tube loads and ballast History Profile This display line is only present if the General Purpose mode is selected You may select the rate at which to profile ballast line and output results for historical data logging purposes It is recommended that first time users set this to a rate of 1 second per division or longer Sequence Profile This display line is only present if the Test Sequence mode is selected You may select the period over which to profile the ballast line and output results following starting a test sequence Configuring the Analyser 45 Result Average You may select the period over which the 2574R averages measurement results This setting does not affect any profiled data or measurements obtained When using a high frequency ballast this should be set to a minimum of 5ms output modulation lt 5 10ms output modulation lt 10 or 20ms or more output modulation 21096 The value chosen is the time constant of settling of measurement results It is recommended that first time users set this to 20ms Configuring Line Inrush Detection This submenu allows you to configure the levels and timing used to apply line power to the ballast and to detect line inrush
67. his selection is not available for options QS or HID The number of pins per tube actually driven by the ballast Note that if you select 2 Pins then all filament results are disabled You may separately select whether the loads have 2 or 4 pins see below 42 2574 User s Guide Ballast Wiring Four display lines allow you to select how each of the ballasts and loads are physically connected to the 2574R line and tube measurement sections See also the Ballast Test Connections section later in this document LINE WIRING This allows the user to specify which rear panel line section s is are used for the line measurements for each ballast Ballasts for which no line wiring is specified are disabled If multiple sections are wired for single ballast then the current signals are automatically vector added to obtain the actual ballast line current LOAD WIRING This allows the user to specify which rear panel line section s is are used for the load measurements for each ballast Ballasts for which no load wiring is specified do not have any load measurements made LOAD PINS This selection is not available for options QS or HID and is not available if the Number of Pins per Tube setting is 4 pins This allows the user to specify whether a 2 pin ballast is being loaded with a 2 pin or 4 pin load Configuring a Light Monitor This submenu allows you to configure a light monitor Ballast vell Monitored Light Level W
68. igital outputs changing and is unasserted at least 1 microsecond after all changes have been completed Digital Outputs When Configured as MUX The Digital outputs are configured as 16 output pins shown below Configuring the Analyser 37 The output pins are used such that pins 16 through 9 contain sequenced binary codes always active high containing each of the STATIC available data other than the OUTPUT INVALID code Pins 8 through 5 contain a binary code active high indicating the data present on pins 16 through 9 Pin 4 is a pulsed clock signal at least 100ns wide with both leading and trailing edges at least 100ns within the stable period of the other digital outputs The address pins 8 5 and the data pins 16 13 and 12 9 are as follows see above for a description of each data output format Addresses not listed below are reserved for future use Address 0 LOAD CODE A pins 16 13 and LOAD CODE B pins 12 9 Address 1 LOAD CODE C pins 16 13 and LOAD CODE D pins 12 9 Address 2 LINE SOURCE ENABLE pins 16 13 and LINE SWITCH ENGAGE pins 12 9 Address 3 FILAMENT ENGAGE pins 16 13 and TUBE ENGAGE pins 12 9 Address 4 TESTING pins 16 13 and RESULTS 1 pins 12 9 Address 5 RESULTS 2 pins 16 13 and RESULTS 3 pins 12 9 Address 6 RESULTS 4 pins 16 13 and TEST FAIL pins 12 9 Address 7 TEST STEP CODE pins 16 9 Address 8 WAIT FAIL pins 16 13 pins 12 9 are undefined DIGITAL INPUTS
69. ime between the initial detection of ballast output signals and the start of tube transition The period of time between the initial detection of tube current and sustained tube strike The period of tube transition The period of time between the detection of initial line current draw and sustained tube strike Printing Numeric Results Press the PRINT button while either the PRESENT STARTUP LEVELS or STARTUP TIMING screens are displaying to obtain a Numeric Measurements report containing results regarding the configured ballast and tubes Displaying Harmonics Measurement Results Press the NEXT button to display the Harmonics Results screens These display barcharts showing the harmonics measurements of line voltage line current tube voltage or tube current The results are specific to the ballast or tube drive you select Ballast Output Harmonic Results Screen Refer to the upper right portion of the display for additional information concerning the selected ballast or tube e Press the F1 softkey to select whether the ballast line or tube measurements are displayed e Press the F2 softkey to select whether the voltage or current harmonics are displayed 72 2574 User s Guide e Press the F3 softkey to select whether the display shows absolute units or a percent of the fundamental harmonic HD 45 1 96 261 T FUND 60 0H2 TH TUBE A WOLTS ABSOLUTE LINE OW Absolute units of fundame
70. ing Test Components to the Analyser 85 85 250V 47 63Hz 3 15A gt FUSET 315A 250V PARALLEL PRINTER o o IARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNECTION DETAILS BY QUALIFIED PERBONNEL ONLY XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA TUBED TUBEC TUBE B TUBEA Figure 8 Two pin Load Connections wv fF YN To connect for testing two pin ballasts Connect each load to all four tube connections in each section of the rear panel similarly to the illustration shown in Figure 8 Each end of the load is connected to two connections on the rear panel i e wire one end of the tube to pins 1 and 2 and the other end to pins 3 and 4 If only one tube is to be used then use section A For two tubes use sections A and B For three tubes use sections A B and C Ensure that both wires of each tube are ONLY connected to one rear panel section Ballast Output Connections This section describes the connections between the 2574R and the output s of the ballast s being tested When making connections ensure that there are no voltages present on the connections A There are many different methods of connecting the tubes and ballast outputs with the 2574R Two methods that cover the majority of applications are the Four pin LOAD Connections and Two pin LOAD Connections These two methods are
71. its Preheat Urms FI Preheat Arms gnore Preheat Watts Ianore Preheat Delay Ignore Preheat Time Ianore Preheat Dwell Ignore CURSOR CHANGE PREHEAT 1 DONE FILAMENT PREHEAT LEVELS Limits are possible for the measured mean voltage current and power during the preheat period Configuring the Analyser 65 FILAMENT PREHEAT TIMING Limits are possible for the measured timing of the period delay and post strike dwell TUBE Limits There are nine sets of limits accessed by a CHECK test step as the TUBE 1 through 9 groups These measurements check against the actual measured values at the time of the CHECK test step All configured tubes are measured against the same limits TUBE VOLTAGES Limits are possible for the measured tube voltage level RMS crest factor distortion modulation and frequency Tube Urms FI Tube lof gnore Tube Uthd Ionore Tube mod Ignore Tube Freq Ignore CURSOR CHANGE TUBE 1 DONE TUBE CURRENT amp POWER Limits are possible for the measured tube power and current level RMS and DC crest factor distortion and modulation Tube Arms Fu Tube Ade anare Tube Hcf Ianore Tube Athd Ignore Tube Amod Ignore Tube Watts Ianore CURSOR CHANGE TUBE 1 DONE FILAMENT Limits There are nine sets of limits accessed by a CHECK test step as the FILAMENT 1 through 9 groups These measurements check against the actual measured values at the time of the CHECK test
72. l signals are available Step 1 URN PASSED GOTO 1 Line SOUrCE 0 04 O00 0Hz Oh Load tube TUBE code 4000 OFF Load tube H Load tube Load tube Step code 0000 COCC CURSOR CHANGE NEXT STEP e FAIL Selects that the selected test step will be the next executed if a non critical failure has been detected in any ballast Sic bdo CI T e PASSED Selects that the selected test step will be the next executed if no failures have been detected in any ballast DIGITAL INPUT 1 2 3 or 4 Selects that the selected test step will be the next executed if the selected digital input is detected as being asserted e ALWAYS The selected test step is always the next executed END STEP TYPE This test step has no options and signifies the end of the test sequence There may be only one END step Setting the Line Conditions This allows the user to configure the line conditions for the duration of each step Configuring the Analyser 59 LINE SOURCE SELECTION This setting is ignored if the 2574R is not controlling a 1500 chassis or if the chassis does not include line source selection switches The allows the user to specify which of up to four line sources are to be used A B C or D If the 2574R is configured to control one or more 1500 chassis then an error message is displayed if the selected source does not have a corresponding switch in a 1500 chassis LINE VOLTAGE This is only used if the specified sourc
73. layed If a store is presently empty then Empty is displayed next to the store number and the RECALL operation is inhibited Press F3 RECALL when the desired store number is highlighted The instrument now recalls the configuration from the user set store number First Time Use of the 2574R It is recommended that the first time user of the 2574R should initially use the General Purpose mode of operation with a single ballast and actual tube loads Each of the following sections show the recommended configuration for first time users Setting the Operating Mode The 2574R may be operated in General Purpose mode or in Test Sequence mode General Purpose Mode This mode allows the 2574R to perform continuous measurements on one or more ballast s This is the recommended mode for first time users The 2574R can be configured to control a line power switch for each ballast either using 1500 chassis or user built The 2574R can control the output voltage and frequency of one or more line power sources The 2574R can be configured to automatically time the selection of the tube portion of a resistive load either using 1500 chassis or user built or can be configured to use actual tube loads Configuring the Analyser 29 If the 2574R is configured to control either a line switch or a line source then the 2574R front panel or interface can be used to turn on off the line power to the ballast The startup of the ballast is auto
74. ling Configurations Up to 20 complete configurations of the 2574R may be stored in the instrument in a non volatile manner Each stored configuration is independent and complete Stores are numbered from 1 through 20 inclusive It should be noted that the configuration being used is also stored in a non volatile manner separately to the numbered storage system Each store contains a complete configuration e Operating Mode e Instrument Configuration e Test Sequence Definition e Test Limits Storing a Configuration As required press NEXT until the Configuration screen displays 28 2574 User s Guide Press F1 EDIT The EDIT softkey changes to CURSOR and the F2 softkey to the right changes to read CHANGE The last used store number is highlighted Press F2 CHANGE until the number of the store in which you wish to save the configuration is displayed If a store is presently empty then Empty is displayed next to the store number Press F4 STORE when the desired store number is highlighted The instrument now stores the present configuration in the user set store number Recalling a Configuration As required press NEXT until the Configuration screen displays Press F1 EDIT The EDIT softkey changes to CURSOR and the F2 softkey to the right changes to read CHANGE The last used store number is highlighted e Press F2 CHANGE until the number of the store from which you wish to recall the configuration is disp
75. llast output Any load module may have a Parallel Code programmed by the user using the MODULE key on the 1500 This identifies that this load should be engaged by the 2574R whenever the specified code is configured in the 2574R test sequence or Ballast Line amp Load menu Any number of modules may be so configured WIRING LOAD MODULES The pair of two pin connectors on the load module should be wired to the corresponding pair of two pin connectors for the load in the configured section of the 2574R rear panel There is no specific orientation of the pairs of pins When switching in the tube load following strike detection of the ballast some ballasts may output a large current surge into the suddenly switched load In this case this large current surge typically several amps for several tens of microseconds will shorten the life of the switch may cause interference problems and is not truly representative of a real load In these situations passing the wiring to each end of the load module through a ferrite bead is recommended one or two turns is usually sufficient to correspond to the tube inductance of a typical tube load LOAD MODULE TEMPERATURE Each auto load module has the temperature of the air surrounding the resistive loads measured The range lowest and highest within the chassis measured is displayed on the 1500 front panel The 1500 automatically temperature regulates the loads to maintain the required amount of coolin
76. matically determined by the 2574R when the ballast initially draws line current Test Sequence Mode This mode allows the 2574R to perform a sequence of tests on one or more ballast s applying differing line voltages frequencies and loading conditions as programmed by the user The 2574R can be configured to control a line power switch for each ballast either using 1500 chassis or user built The 2574R can control the output voltage and frequency of one or more line power sources If the 2574R is configured to control either a line switch or a line source then the 2574R can perform testing or both running and startup conditions under different line voltage and frequency conditions Power application to each ballast is automatically sequenced in this configuration to reduce the inrush requirement on the line source or the 2574R can be configured to operate separate line sources for each ballast Otherwise the test sequence is automatically started when line current draw is initially detected for each ballast The 2574R can be configured to automatically time the selection of the filament and tube portions of resistive loads either using 1500 chassis or user built or can be configured to use actual tube loads or to control resistive loads in an exact timed manner Individual control of each ballast output s load is provided when used with a 1500 chassis Interactive wait periods can be programmed by the user to allow for user adj
77. n made Step 1 MM MM Line z ournce 0 04 O00 0Hz OW Load tube TUBE code 4000 OFF Load tube H Load tube Load tube Step code 0000 ODOC CURSOR CHANGE DETAILS WEST STEP The user may specify both a minimum and maximum time for this type of test step with periods between Oms and 30 minutes Sic bdo Cl rH Cont inue Per iod ms Check LINE S set 1 CURSOR CHANGE DONE The user may specify a set of results to check while waiting see the CHECK step description below If configured the actively checked results configured are displayed in a specific INTERACTIVE ACTION screen together with the pass fail status of those results Any failure during this step is ignored The F3 CONTINUE softkey can be used to manually complete this test step or a digital input pin can be used CHECK STEP TYPE This step enables the user to program that specific measurements taken on the ballast are to be compared against user set limits 56 2574 User s Guide Init averages li Dela mE Chec INMRLIEH Print report ALWAYS CURSOR CHANGE DONE The user may also specify to initialize the measurement result averages at the beginning of the step The user may configure a delay of between Oms and 30 minutes prior to performing the actual test limits checks The user may also configure independently for each CHECK step whether the results will be included in a test report printed after completion of th
78. nactive and to configure the specific uses of each section of the digital I O interface using the F3 SETUP key when configured as active Setting the interface inactive does not affect the stored configured use of each I O section this information is still available for use when subsequently made active The interface consists of 16 TTL compatible digital outputs and 8 TTL compatible digital inputs The inputs have 10Kohm pull up resistors to 3 3V and can tolerate signals up to 5V The outputs are actively maintained at either logic level using 0V 3V logic levels TTL compatible These signals are available in the rear panel of the 2574R on a 25 pin male D type connector each pin being configurable in the relevant menu Pin 25 is the chassis ground common signal return DIGITAL OUTPUTS Digital Outputs may be configured as nactive Mux or Static Digital Outputs when Configured as OFF All outputs are held in the high logic state No further configuration is possible however any individual configurations made while set for Mux or Static are retained for later use Configuring the Analyser 35 Digital Outputs when Configured as STATIC ui Output Conf i aur at i ons in tive Purpose 13 HIGH D il 4 HIGH J HIGH MONE 1 HIGH NONE CURSOR CHANGE DONE The Digital outputs are configured as four sets of 4 pins each Each set of four pins can be independently configured by using the F3 SETUP key to access the digital output
79. nce While this screen is being displayed the F4 key allows the user to START or ABORT a PASSED TESTS Line Voltage 118 1 60 OHz FALLAST 1 START Partial Test Report Printout Pressing the PRINT key while displaying this screen causes a printout of the test results for all CHECK steps Only checks configured as to be checked or reported are included in this report but the selection of whether to print or not is ignored Viewing Test Mode Measurement Results 77 Displaying an Interactive Wait Step Status The 2574R will automatically display an Interactive Wait display screen while performing an INTERACTIVE WAIT test sequence step This screen shows the test sequence step number being performed the status of the check being performed while waiting if any and the actual measurements that are being checked if any PASS WAIT STEP 3 BALLAST 1 CONTINUE ABORT While this screen is being displayed the F4 key allows the user to START or ABORT a test sequence and the F3 key allows the user to continue from the INTERACTIVE WAIT step When the step is completed the display automatically returns to that being displayed when the INTERACTIVE WAIT step was initiated Displaying Test Result Details This screen shows all measurements collected during CHECK steps in the currently running or last completed test sequence Line Arms 0 700 inot checked Line A CF 1 44 not checked Line P
80. nd in any event Xitron Technologies liability for breach of warranty under any contract or otherwise shall not exceed the original purchase price of the specific instrument shipped and against which a claim is made Any recommendations made by Xitron Technologies or its Representatives for use of its products are based upon tests believed to be reliable but Xitron Technologies makes no warranties of the results to be obtained This warranty is in lieu of all other warranties expressed or implied and no representative or person is authorized to represent or assume for Xitron Technologies any liability in connection with the sale of our products other than set forth herein Instrument Serial Number 4 2574 User s Guide Document Part Number MO 2574R M Revision A Copyright CopyrightO 1999 Xitron Technologies All rights reserved All rights reserved No part of this publication may be reproduced transmitted transcribed stored in a retrieval system or translated into any language in any form without prior written consent from Xitron Technologies This product manual is copyrighted and contains proprietary information which is subject to change without notice The product displays and manual text may be used or copied only in accordance with the terms of the license agreement XITRON TECHNOLOGIES is a registered trademark of Xitron Technologies All other trademarks or registered trademarks are acknowledged as the exclusi
81. nformative data that cannot be altered by the user Note If the date and time of the last DC zero correction was highlighted then the presently measured DC offsets will be used for correction factors in future measurements A message is displayed if the DC offsets are too large F4 DONE Press DONE to store the changes and return to the primary Configuration screen Selecting Modes and Configuring Options The operation of the 2574R is primarily controlled by the selected mode There are two modes the General Purpose mode and the Test Sequence mode The General Purpose modes enable the 2574R to continuously perform ballast measurements These modes accommodate ballast developmental tasks The Test Sequence modes enable the 2574R to perform a prescribed sequence of tests on a tube and or ballast for quality control Additional configuring is done by choosing test parameters that configure the selected mode These selectable settings are accessible from the Configure submenu screens as described above Starting the Analyser 25 Up to 20 complete configurations of the 2574R can be stored in the instrument and recalled at any time via front panel IEEE488 RS232 or Digital I O interfaces The presently active configuration is separately maintained also in a non volatile manner RECALL A PREVIOUSLY STORED CONFIGURATION OR STORE THE PRESENT CONFIGURATION 1 As required press NEXT until the Configuration screen displays 2 Press ED
82. ng Configurations Storing a Configuration Recalling a Configuration First Time Use of the 2574R Setting the Operating Mode General Purpose Mode Test Sequence Mode Changing the Operating Mode Configuring the Instrument Configuring the Interfaces Remote Control Interface Printer Interface Slave 2574R Control 1500 Interface and Control Line Source Control Digital I O Interfaces Ethernet Interface Configuring Ballast Line amp Loading Line Settings Load Settings Ballast Discharge Period Configuring the Ballast Type amp Wiring Ballast Type Ballast Wiring Configuring a Light Monitor 22 22 23 23 23 24 26 26 26 27 27 27 27 28 28 28 28 29 29 30 31 31 32 32 33 34 34 38 39 39 39 40 41 4l 42 42 Contents 7 Configuring Measurement Options Ballast Input Signal Content Ballast Output Signal Content Ballast Output Crest Factor Measurements IEC61000 3 2 ANSI C82 11 Configuring Measurement Timing Startup Profile History Profile Sequence Profile Result Average Configuring Line Inrush Detection Start Phase Inrush Detection Level Inrush Period Line Balance Detection Configuring Line Short Detection Short Apk Detection Level Short Arms Detection Level Short Watts Detection Level A
83. ng tested or only two tubes of a multi tube ballast are being monitored then use sections A and B for ballast 1 and sections C and D for ballast 2 If one or more of the ballast filament drives is intended to drive two or more tube filaments in parallel then wire the ballast to the 2574R as if the 2574R is the tubes e Wire the filament output from the ballast to two or more sections of the 2574R connections in parallel as shown in Figure 10 Connecting Test Components to the Analyser 87 85 250V 47 63Hz 3 15A PARALLEL PRINTER BY QUALIFIED PSR ONNEL ONLY FILAMENT DRIVE FILAMENT DRIVE BALLAST OUTPUT FILAMENT DRIVE TUBE C TUBE B Figure 10 Example of Parallel Filament Outputs from a Ballast If one or more of the ballast s filament drives is intended to drive two or more tube filaments in series then wire the ballast to the 2574R as if the 2574R were the tubes e Wire the filament output from the ballast to two or more sections of the 2574R connections in parallel as shown in Figure 11 85 250V 47 63Hz 3 15A gt FUSET 3 15A 250V PARALLEL PRINTER WARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNEC TBDN DEM A BY QUALIFIED PERS MINEL ONLY FILAMENT DRIVE FILAMENT DRIVE BALLAST OUTPUT FILAMENT DRIVE Figur
84. npowered or ON following strike Ballast Discharge Period This setting only applies to AUTO loading Configuring the Analyser 41 This allows you to set the length of time that the full loading when using AUTO load type will be held after removing line power to the ballast Some ballasts require that the load be maintained after power is removed to ensure that the output stage is fully discharged Configuring the Ballast Type amp Wiring This submenu allows you to configure characteristics regarding the ballast and ballast wiring to the 2574R First time users should carefully configure these settings according to the ballast being tested Ballast lutput HR 2 tubes 4 pins Ballast 1 line HE tubes HB Ballast 2 line tubes Ballast 3 line tubes Ballast 4 Line tubes CURSOR CHANGE DONE Ballast Type BALLAST OUTPUT FREQUENCY The frequency range of the ballast output either low or high frequency Use the LF setting if the ballast output is below 2KHz use the HF setting if the ballast output is above 5KHz NUMBER OF TUBES The number of tubes actually driven by the ballast Not all tubes need be measured by the 2574R see Ballast Wiring below If less than this number of tubes are configured to be measured then the 2574R automatically multiplies the total power measured in the configured tubes to obtain an estimate of the actual total output power of the ballast NUMBER OF PINS PER TUBE T
85. nt specification to Measurement 30 1500Vpk 30 1000Vrms across tube decreasing linearly to 150Vrms at 2MHz across tube 50Vpk 1 30Vrms across filament Option F Change ballast output frequency specification to Measurement 20 2KHz or 5KHz 100KHz Bandwidth Typically 2MHz 3dB Appendix D Measurement Specifications 109 Appendix D Measurement Specifications Unless otherwise indicated all performance specifications are valid throughout the specified operating temperature range for a period of one year following a 15 minute warm up period All accuracy specifications include all accuracy affecting error sources including noise common mode rejection inter tube coupling etc Note Specifications subject to change without notice Methods Technique Up to 5 real time DSPs each 100MIPS triple width pipeline 24 bit L1 burst cached All results continuously updated in all modes of operation Analog Digital Conversion 12 bit at 100KSPS to 1 5MSPS quasi randomly dithered simultaneous sampling of all inputs within the set of line signals and within each tube Line Amplitude Measurements Automatically synchronized to cycle of fundamental with continuous coverage of input signal Results updated every 1 2 cycle of line High Frequency Tube Amplitude Measurements Automatically synchronized to 1 cycle of fundamental with continuous coverage of input signal Results updated
86. ntal Note The display shows the message NO HARMONICS AVAILABLE if the line frequency or voltage is insufficient for harmonics measurements e Use the F4 softkey to select either LINE ON or LINE OFF Ballast Line Input Harmonics Results Screen A vertical bar displays for each harmonic logarithmically scaled over two decades indicating the amplitude or relative amplitude of each harmonic The scaling at the uppermost mid and lowermost points are numerically displayed in the left margin of the graph 0 b3h THD 16 5 j 076A I 3833333333333333333333333333333333333333333333333333 S 4 88RESERSSRERERERESSSERRESSSESSSSESES itp a aes 2325 27 28 3 33 35 37 38 FALLAST 1 LINE A ABSOLUTE LINE OW Refer to the upper right portion of the display for additional information concerning the selected ballast or tube e Press the F1 softkey to select whether the line or tube measurements are displayed e Pressthe F2 softkey to select whether the line voltage or line current harmonics are displayed Viewing General Purpose Measurement Results 73 e Press the F3 softkey to select whether the display is relative to the fundamental harmonic or in absolute units Absolute units 96 of fundamental IEC61000 3 2 TREE ee E The IEC61000 3 2 Class C results can be observed if configured for these measurements e Press the F1 softkey to select whether the line or tube measurements are displayed e Press the F2 softkey to
87. o fully powering the ballast 5 Alltube strike and filament preheat measurements are both initialized and enabled by the action of an INRUSH step Following strike and or preheat measurement completion these results are held until another INRUSH step is executed DELAY STEP TYPE This step enables the user to insert a delay period into a test sequence Typically this would be used to enforce delays to allow the line source to settle or for performing low voltage pretests on ballasts The user may specify delay periods between 5ms and 30 minutes WAIT STRIKE STEP TYPE This step enables the user to program that the test sequence holds until ballast strike has been detected All tubes on all ballasts must have achieved strike prior to this step being completed The user may specify both a minimum and maximum time for this type of test step with periods between Oms and 30 minutes In the case of resistive loads strike is detected for each ballast output following the expiration of the configured delay time following the detection of the configured strike voltage In the case of tube loads strike is detected for each ballast output following initial detection of the configured strike current Configuring the Analyser 55 INTERACTIVE STEP TYPE This step enables the user to program a pause in the test sequence waiting for an external event to occur using a specifically configured digital input or for user adjustments to have bee
88. of shielded cabling is recommended Parallel Printer Connector The 25 pin D type connector on the rear panel of the 2574R is wired to enable the use of a standard PC compatible computer interface cable to a printer Digital I O Interface Connector This is a 25 pin D type connector The pinout is shown earlier in this manual Ethernet Connector This is a standard 1OBaseT connector 93 Connecting Test Components to the Analyser sisseu NOS 1613 jo3u62 ue Mp Sz yey SISSBUD OOS Jed SB NPOW zi peo 00S sanpo peo OOSL gt ohy EEO arise Jad syseyeg jno 4 01 df awaya cezsa 333l sjndu singing J8 UU esas Giga Heed E BINS 2v e2nos Jv e21nos sa npop u jMs uon ejes 8341n05 DOS SajnpojN UNINS aur OOSL WV3O9VIG 2018 WALSAS 00Sl Hv4SC ov eunos 9v s823Jno3 eur jnoj 01 dn Using a 1500 Chassis with the 2574R 95 Using a 1500 Chassis with the 2574R The 1500 chassis provides a very flexible systems capability for product testing of ballasts The 2574R can control one or more 1500 chassis by means of the proprietary RJ45 style interface the IEEEA88 interface or the RS232 interface The method of configuration of both the 1500 loads and switches and the 2574R is independent of the interface method The 1500 chassis can contain several different types of modules Redund
89. ower 8 71M inot checked Line PF 0 95817 inot checked STEF 3 BALLAST 1 LEVELS START 78 2574 User s Guide Tube Urms 104 4 inot reported Tube Weft 1 496 inot reported Tube Uthd 45 94 inot reported Tube Umod 0 04 not reported Tube Freq 60 00 inot reported STEP 6 TUBE A VOLTAGES START Tube Arms 0 394A inot reported Tube Ade 0 000A inot reported Tube Act 1 716 not reported Tube Athd 16 64 not reported Tube Amod 0 04 not reported Tube Watts of aod not reported STEP 6 TUBE A CURRENTS START The F1 key allows the user to select the CHECK step from which the data is to be displayed The F2 and F3 keys allows the user to select the ballast and or ballast output for which the data is to be displayed and the particular data to be displayed Full Test Report Printout Pressing the PRINT key while displaying this screen causes a printout of the test results for all CHECK steps All check results are included whether configured to be checked or reported or ignored are included in this report Displaying Harmonics Measurement Results These display barcharts showing the harmonics measurements of line voltage line current tube voltage or tube current at the present time These displays are the same as described for the General Purpose mode Displaying Results Profiles The STARTUP and SEQUENCE Profile screen displays a time profile of measurements obtained during startup and durin
90. ower measurements or using the tube strike timing as desired see PREHEAT DETECTION If set to AUTO then the 2574R attempts to control the loading on this ballast output using the load code and state described below Strike detection of the ballast is performed using the real time measurement of peak tube voltage see STRIKE DETECTION Real time filament preheat measurements may be made using filament voltage current and or power measurements or using the tube strike timing as desired see PREHEAT DETECTION LOAD CODE This is only available for loads not selected as OPEN This is a 4 digit number describing the load to be selected by a 1500 chassis The F3 SELECT key may be used to view a scrollable list of available load codes and descriptions From within this sub menu the user may select any of the detected load selections If the code is 0015 or less then this inhibits any error messages if the load is not found in a 1500 chassis allowing the user to select multiple loads using the Digital I O interface output signals LOAD STATE This is only available for loads not selected as OPEN This may be OFF FIL filament only ON filament and tube load or AUTO automatically selected dependent on the strike condition For a 2 pin load module the FIL and OFF selections are identical Only the OFF and ON selections are available for a TUBE type load If set for AUTO then the actual loading is either FIL prior to strike and when u
91. recommended whenever possible Notes E For the 2571QS 2572QS 2573QS and 2574QS model variations only the two pin tube option is available When testing ballasts having a load in excess of 2Apk pin currents multiple tube connections may be made in parallel as if there were actually more tubes Contact Xitron Technologies for assistance if this is desired 86 2574 User s Guide 3 Ingeneral the wiring from the ballasts outputs is as if the 2574R were the tube loads for the ballast 4 When testing four pin ballast the actual phasing of pins 1 and 2 or pins 3 and 4 is not important FOUR PIN LOAD FOUR PIN BALLAST OUTPUT This connection method is not applicable to options QS or HID The loads should be connected as described in 4 PIN LOAD CONNECTIONS above In the instruments Ballast Type amp Wiring menu the ballast type should be set to 4 pin If a one tube ballast is being tested or only one tube of a multi tube ballast is being monitored then use sections A through D respectively e Connect each ballast in sequence as shown in Figure 9 Use section A for ballast 1 and section B for ballast 2 etc 85 250V 47 63Hz 3 15A gt 315A 250V FILAMENT DRIVE BALLAST OUTPUT TUBE C TUBE B FILAMENT DRIVE Figure 9 Example of Four pin Load Four pin Ballast Output Connections Note that if a two tube ballast is bei
92. riods ballast outputs measured in 512s periods Introduction 13 Wide bandwidth ballast output frequencies of up to 2MHz can be accurately measured harmonics up to 450KHz Uninterrupted coverage of ballast input and output signals sampled at high speed up to 2M sample sec ensures accurate peak detection for inrush currents and striking voltages All pins on each tube are measured for voltage and current ensuring the ballast is fully tested Very low capacitive burden ensuring that the ballast is tested in normal conditions Built in printer interface enables a comprehensive test report to be printed in a semi automatic test environment or for recording results in an engineering environment 14 2574 User s Guide Functional Description This chapter illustrates the 2574R Ballast Analyser s functionality using block diagrams Theory of Operation The 2574R is high performance test equipment for testing ballasts Within the analyser voltage and current signals are converted to digital data using DSP chips where the signals are sampled automatically and periodically A to D converters scale and sample data For an overview of the analyser refer to the block diagrams shown in Figure 1 through Figure 3 The abbreviations used in the diagrams represent the following components or functions ADC DSP FIFO Hall IO RAM Analog to Digital Converters Digital Signal Processor First In First Out Memory Hall Ef
93. rom the ballast and the frequency of these signals at the end of this period The highest peak and RMS tube voltage signals measured prior to achieving a sustained strike The highest peak and RMS tube currents measured after the start of the transition period The voltage crest factor at the end of the pre transition period e Press the F1 softkey to select the ballast by number that you have configured or select the tube by letter BALLAST 1 2 3 4 or TUBE A B C or D e Press the F2 softkey to choose between the PRESENT screen and the STARTUP screen e Press the F3 softkey to choose between LEVELS and TIMING e Use the F4 softkey to select either LINE ON or LINE OFF The information that displays on the Startup Timing screen covers the following measurement details Viewing General Purpose Measurement Results 71 Output Startup O 02715 detected levels Preheat Period 1 2797s start Pends Preheat Dwell Tube Glow 1 6765 t t1 212 Tube Starting 1 7972 talow strike Tube Transition 0 1705 ctz 7stri ke Tube Strike 1 818s t0 strike gt BALLAST 1 STARTUP TIMING LINE ON Startup Timing Results The period of time after the detection of initial line current draw until the detection of ballast output signals The period of time over which preheat filament measurements have been made The time from the detection of sustained tube strike to the end of the preheat period The period of t
94. s QS or HID RMS MEASUREMENTS 0 1 0 005 per KHz reading 0 02V 0 0002V per KHz Example For a reading of 3V at 50KHz the accuracy specification is 0 1 0 005 x 50KHz x 3V 0 02V 0 0002V x 50KHz 0 0315V Tube and Filament Current RMS MEASUREMENTS 0 15 0 005 per KHz reading 0 5mA Add 0 5mA PF per 100V across tube per 1OOKHz if PF lt 0 85 Change to 1mA for option HID or HC 2mA for options HID and HC Examples For a reading of 300mA at 50KHz tube voltage 100Vrms PF 0 95 the accuracy specification is 0 15 0 005 x 50KHz x 300mA 0 5mA 1 25mA For a reading of 300mA at 250KHz tube voltage 100Vrms PF 0 95 the accuracy specification is 0 15 0 005 x 250KHz x 300mA 0 5mA 4 7mA For a reading of 300mA at 250KHz tube voltage 100Vrms PF 0 8 the accuracy specification is as above 0 5mA 0 8 x 100V 100V x 250KHz 100KHz 7 2625mA HARMONIC MEASUREMENTS Harmonics 10 limited by 450KHz max frequency Accuracy RMS measurement accuracy 0 5 reading x harmonic PEAK MEASUREMENTS RMS measurement accuracy 5mA Change to 10mA for option HID or HC 20mA for options HID and HC Appendix D Measurement Specifications 115 Crest Factor Measurements 0 01 0 005 Arms Change to 0 01 for option HID or HC 0 02 for options HID and HC Example At a current reading of 300mA the accuracy specification is
95. s to only pin 2 or pin 4 of the 2574R If one or more of the ballast output wires is intended to drive two or more tubes in parallel then wire the ballast to the 2574R as if the 2574R were the tubes e Wire the output from the ballast to two or more sections of the 2574R connections in parallel as shown in Figure 14 90 2574 User s Guide 85 250V 47 63Hz 3 15A FUSET 345A 250V e O7 H PARALLEL PRINTER R XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA BALLAST OUTPUT TUBE D TUBE C TUBE B TUBE A Figure 14 Two pin Load Two pin Ballast Output Connections If a one tube ballast is being tested or only one tube of a multi tube ballast is being monitored then use sections A through D respectively e Connect each ballast in sequence Use section A for ballast 1 use section B for ballast 2 etc as shown in Figure 15 85 250V 47 62Hz 3 15A Y j N H jb c A FUSET 345A 250V 1 c B i A d source Hy O Y T f z IEEE4SS TUBE TUBE UBE TUBE TUI XLI u G o rz rz no a m AL BAD sex E FILBMERT JB I5 7 2 Es ks PARALLEL PRINTER NING THIS EQUIPMENT JO BE CONNECTED REFGR TO DOCUMENTATION FOR CONNECTIONBoE fu AN BY QUALIFIED P INNEL ONLY XITRON TECHNOLOGIES INC SAN DIEGO CA MADE IN USA
96. select the IEC61000 3 2 with linear scaling relative to the 100 of specification level for each harmonic e Use the F4 softkey to select either LINE ON or LINE OFF DE MM OROEN ee TT BH H m AMTTEERM 353733 BALLAST i TEC 1000 LINE ON ig Printing Harmonics Results Press the PRINT button to obtain a full printout of the barchart content presently being displayed This requires a graphical PCL2 compliant printer Displaying Results Profiles Press the NEXT button to display the graphical Results Profile screens The History screen displays measurement profiles continuously in accordance with a configured timescale The Startup Profile screen displays a time profile of the multiple measurements obtained during startup 74 2574 User s Guide 1 16 Wo 8 OX 0X5 ch 0M OCT 20 I3 17 00 Loi i1 i i 20 0 HEz DIU 0 00 DES MERC eee ERE COS EL FREE BALLAST 1 LINE Arms STARTUP LINE OW Note Historical and Startup data is cleared whenever their configurations are changed History and Startup Profile Screens These display screens show ongoing historical results or a startup profiles for configured ballasts tubes tube filaments and light monitor Press the F1 softkey to select whether information regarding a ballast line input or an individual ballast tube output is to be displayed Press the F2 softkey to select what kind of measurement to display Your choices are 1 2 3 0r
97. ser displays results in numeric and graphic waveform formats Results include voltage current and power harmonics and plots of measured results vs time Available Models and Options This manual primarily describes the 2574R The 2571R 2572R and 2573R models are similar to the 2574R but with measurement capability for tube A 2571R tubes A and B 2572R tubes A B and C 2573R Whereas the 2574R has measurement capabilities for A B C and D Line measurements are available for all four inputs in all models All models have all connectors fitted to the rear panel You may connect signals through connectors that are not measured by the model in use in a normal manner without any effects on the ballast Option QS This is a reduced cost option allowing only two pin tube connections not available with option HID Option HID Allows only two pin tube connections has higher tube current 3Apk and voltage measurement 4 5KVpk capabilities higher tube voltage withstand 3K Vpk 1K Vrms continuous 4 5K Vpk 2 5K Vrms for lt 2 minutes 12 2574 User s Guide Option HC Extends tube current measurement capabilities to 3Apk 6Apk with option HID Option HI Extends tube voltage withstand capabilities to 4 5K Vpk standard with option HID Option F Restricts specifications up to 100KHz specifications unchanged below 100KHz with a controlled 2MHz 3dB bandwidth Option M Gives improved tube voltage measurement acc
98. ser to specify which of up to four line sources are to be used A B C or D If the 2574R is configured to control one or more 1500 chassis then an error message is displayed if the selected source does not have a corresponding switch in a 1500 chassis LINE VOLTAGE This is only used if the specified source is under the control of the 2574R The F3 PRESET key may be used to select common line voltage settings LINE FREQUENCY This is only used if the specified source is under the control of the 2574R The F3 PRESET key may be used to select common line frequency settings Load Settings This allows the user to configure the ballast output loading for each tube The letter designation corresponds to the section letters on the 2574R rear panel 40 2574 User s Guide First time users should set each load section being used as TUBE type with code 0000 and selected as ON Unused load sections should be set to OPEN LOAD TYPE This may be OPEN TUBE or AUTO If set to OPEN then the 2574R makes no assumptions regarding the loading for this ballast output If set to TUBE the 2574R assumes that an actual tube load is being used on this ballast output and the tube strike detection is performed accordingly Glow Transition and Strike detection of the ballast are performed using the real time measurements of tube current see STRIKE DETECTION Real time filament preheat measurements may be made using filament voltage current and or p
99. st was aborted due to the lack of a line source switch The test was aborted due to the lack of a load 9 The test was aborted because an open ballast was detected 10 The test was aborted because a shorted ballast was detected 11 15 Reserved for future use TEST FAIL FLAGS Each of the 4 pins indicate the pass inactive or failed active state of the presently running or last completed test for ballast 1 through 4 respectively The signals are always asserted in the General Purpose mode Referring to the TEST RESULTS codes listed above 3 and above constitute a failure for this purpose CSADNFWNK c TEST STEP CODE An 8 bit code defined by the user for each test step being executed The code is always set to zero when no test step is being executed a General Purpose mode is selected or when programmed as such by the user see the description of TEST STEPS later in this manual The user separately configures the upper 4 bits and the lower 4 bits of the code WAIT FAIL FLAGS Each of the 4 pins indicate the pass inactive or failed active state of the test condition of the presently running INTERACTIVE WAIT test step for ballast 1 through 4 respectively The signals are always unasserted when not running an INTERACTIVE WAIT test step or in the General Purpose mode OUTPUT TIMING PULSE Only the higher numbered pin is used in this configuration The signal is asserted at least 1 microsecond prior to any of the other d
100. t Apk Detection Level This setting allows the user to set the maximum peak line current that the ballast may draw from the line at any time Setting this to a value of 0 disables this detection If this value is set higher than the maximum measurable peak current then the maximum measurable value is used Short Arms Detection Level This setting allows the user to set the maximum RMS line current that the ballast may draw from the line at any time other than the initial inrush period after application of line Setting this to a value of 0 disables this detection If this value is set higher than the maximum measurable RMS current then the maximum measurable value is used 48 2574 User s Guide Short Watts Detection Level This setting allows the user to set the maximum line power that the ballast may draw from the line at any time other than the initial inrush period after application of line Setting this to a value of 0 disables this detection If this value is set higher than the maximum measurable watts then the maximum measurable value is used Action When Shorted Ballast is Detected This selection is only available when the 2574R is configured in Test Sequence mode In the General Purpose mode an error message is temporarily displayed on the front panel when this occurs this is maintained if the 2574R can take no remedial action This setting configures the 2574R for the action to take regarding any other ballasts being tes
101. t Crest Factor Measurements This is ignored for ballasts configured as LF in the Ballast Type amp Wiring menu You may select whether to include the effects of output modulation or not in the measurements of tube voltage and current crest factor It is recommended that first time users set INCLUDE MODULATION IEC61000 3 2 You may select whether to perform IEC61000 3 2 Class C testing or not If IEC61000 3 2 testing is selected then all line harmonics measurement are made over 16 cycles of line thus harmonics testing speed and bandwidth is considerably affected by this selection The 2574R does not check whether the line power level is above the minimum level for class C testing 44 2574 User s Guide It is recommended that first time users set NO TEST ANSI C82 11 You may select whether line current harmonics testing to the requirements of ANSI C82 11 is to be made available or not It is recommended that first time users set NO HARMONICS TEST Configuring Measurement Timing This submenu allows you to configure the timing used to obtain measurement results Startup Profile for History Profile at mz diu C257 Result Average over Oms CURSOR CHANGE DONE Startup Profile You may select the period over which to profile the ballast line and output results following initial application of power to the ballast Note that if line power is manually removed i e not using the 2574R commanded line switc
102. t a higher level than the configured level is detected as the completion of tube strike Note that is the value set is too high then the tube may never be detected as being struck by the ballast If unsure of this setting initially use a value that is known to be low enough When using power detection 90 of the nominal operating tube power is recommended note that the total tube power is used this includes filament power 50 2574 User s Guide It is recommended that an initial setting of 0 2Apk be used then the startup profile can be used to obtain a more useful level for strike detection if desired AUTO Load Strike Detection Configuration STRIKE OUTPUT You may set the ballast output peak voltage level that must be initially achieved before starting the delay prior to engaging the primary tube load Note that if this value set is too high then strike detection may never occur If unsure of this setting initially use a value that is known to be low enough When initially using AUTO loads e g with a 1500 load chassis a value of 300Vpk is recommended Higher settings may be used if it is known that the ballast outputs a higher peak strike voltage LOAD DELAY You may set the delay before engaging the primary tube load after detecting a ballast output peak tube voltage exceeding the configured peak voltage strike detection level This setting simulates the delay that an actual tube exhibits before striking after being driven
103. tages present on the connections Each test setup consists of two basic steps which can be done in either order e Step one make the physical wire connections to the 2574R s rear panel e Step two select the appropriate mode of operation Refer to the chapters on Configuring the Analyser and Error Reference source not found All of the rear panel test connections use locking 0 156 spaced connectors Additional connectors and pins may be ordered through Xitron Technologies or through Molex directly Connecting Test Components to the Analyser 81 Component Xitron Technologies Molex part numbers part numbers 10 Pin Connector CONFO00100001 35156 1000 CONF00020000 35156 0200 CONA00000022 50217 9001 Line Supply Connections Connect the 2574R rear panel s AC SOURCE connector to the power source for the ballast being tested The Line connector goes to L and the Neutral connector goes to N See Figure 4 AC SOURCE 85 250V 47 63Hz 3 15A FUSET 3 15A 250V PARALLEL PRINTER WARNING THIS EQUIPMENT TO BE CONNECTED REFER TO DOCUMENTATION FOR CONNECTION DETAILS A BY QUALIFIED PERSONNEL ONLY Figure 4 Line Supply Connections Line Input Connections There are many different methods of connecting the ballast line inputs to the analyser Choose the method most suitable
104. ted at the time that a shorted ballast is detected The available selections are 1 ABORT All test sequences on the unaffected ballasts are aborted and flagged as aborted unless already flagged as failed The test sequence proceeds immediately to the END step 2 RETEST This is only effective if the ballasts have individual line switches being controlled by the 2574R If this is selected then the entire test procedure is restarted from step 1 but without the affected ballast being tested The user may configure a delay between removing all power from the ballasts until restarting the tests on the unaffected ballasts Configuring Strike Detection This submenu allows you to configure the levels used to detect tube strike This menu is in two sections The first section allows the user to configure the levels at which the 2574R will detect transition and strike when using actual tube loads The second section allows the user to configure strike detection when using resistive timed loads Configuring the Analyser 49 TUBE Load Strike Detection Configuration DETECTION METHOD The 2574R can be configured to detect tube strike by either current or power measurements Tube Loads using Mile Transition 0 ODURP ms Strike 0 DOCORPE Rut o Loads Detect Level OOOCOUp k Load Delay ms CURSOR CHANGE DONE The use of current measurements has been the standard for some time but this method can be seriously compromised by
105. tended to be used as the AUTO load type in the 2574R menus Each module is built with a specific tube resistive value and if a four pin type filament resistive value Each different combination of values and power levels are factory programmed with a different 4 digit ID number The user cannot change this number and the specific load required in a test sequence or in general purpose mode may be specified by means of this 4 digit code Factory programmed codes are in the range 2000 and above 98 2574 User s Guide CONFIGURING LOAD MODULES The user must configure the 1500 with details regarding to which load section of the 2574R it is connected This is accomplished by selecting the MODULE key on the 2574R to select the desired modules and then setting the section letter A B C or D to correspond to the letter of the section of the 2574R to which it is wired USING ALTERNATE CODES The user may specify an Alternate ID code for any specific load module This indicates top the controlling 2574R that this module is to be used for this code if no module is factory programmed primary code with this code The user may program the module to have an alternate code of any value by using the MODULE key on the 1500 front panel USING PARALLEL CODES In some situations the user may wish a ballast output to be simultaneously loaded by more than one load module Normally the 2574R may only select that one load module is engaged for each ba
106. ter wide or more by 66 character long or more ASCII parallel text printer Required for graphical printouts PCL Hewlett Packard DeskJet family Hewlett Packard LaserJet family other PCL level two or higher compatible parallel printer with 75dpi or greater raster graphics print resolution IEEE488 Interface TEEE488 1 Certain commands conform to IEEE488 2 Addressing Single address user selectable via front panel between 0 and 29 inclusive Capabilities SH1 AHI T6 L4 SRI RL1 PPO DCI DTI C1 E2 350ns min T1 102 2574 User s Guide Max Talk Data Rate gt 300 000 bytes per second Max Listen Data Rate gt 100 000 bytes per second Command Set ASCII textual command sequences Results Any results may be obtained at any time from the interface as ASCII textual numeric data Additionally status and state interrogatives are provided for on the fly determination of product status Appendix B Physical Specifications 103 Appendix B Physical Specifications Note Specifications subject to change without notice Temperature amp Humidity Operating 0 C to 40 C lt 85 RH 40 C non condensing Storage 30 C to 65 C lt 95 RH 40 C non condensing Size amp Weight Size HxWxD 4 x 11 x 10 Weight 8V5lbs 3 9Kg Power Input Voltage 80 265 Vrms auto selecting Frequency 50 60 400Hz 60V A maximum Appendix C Signal Specifications 105 Appendix C
107. the 2574R Connections and interfaces may remain in place but ensure that no ballast or light monitor signals are present If necessary press the NEXT button on the 2574R front panel until the Configuration screen displays Press F1 CURSOR until the DC Zero date and time information is highlighted on the display Press F2 PERFORM The 2574R automatically adjusts the internal DC zero offsets within 1 second and updates the date and time information If DC Zero Error displays then one or more of the DC zero offsets is too large and corrective action should be taken Calibration Date The calibration date automatically updates whenever calibration is completed If you highlight this option the PERFORM button displays Configuring the Analyser 27 Configuring the Analyser This chapter describes the operating modes and their submenu options This chapter covers the following subjects regarding the 2574R e Selecting an Operating Mode e Configuring Options Password Protection The 2574R may be password protected against unauthorized changes by means of a command via the IEEE488 or RS232 interface When activated the user is restricted to viewing the configuration of the 2574R and recalling configurations that have already been stored in the 2574R A user defined password is required in order to change any configuration information When initially shipped from Xitron Technologies this password is disabled Storing and Recal
108. the available options one ata time The options available are dependent on the configured mode 4 Press SETUP to open the submenu screen 26 2574 User s Guide 5 7 In each screen the name of the element you are configuring is shown on the left and the selectable settings are shown on the right Press CURSOR to highlight the settings Press CHANGE and PRESET when available to display the various settings for each element Switch between CURSOR and CHANGE as required Samples of the Configure submenu screens are shown in Operating the Analyser in General Purpose Modes and Test Modes To store your change press DONE for each submenu screen when complete Setting the Date and Time 1 In the Configuration screen press EDIT The EDIT softkey changes to CURSOR and a softkey to the right will read CHANGE Press CURSOR to highlight month day year and hour minute second Time is in 24 hours minutes and seconds When the selection you wish to modify is highlighted press CHANGE This softkey will toggle through the available options one at a time Note If you pass an option you desire continue to press CHANGE Holding down the F2 softkey will automatically step through the options 4 2 Switch back and forth from CURSOR to CHANGE as required Press DONE when complete Setting DC Zero Function l 2 Ensure that the 2574R has been powered for at least 15 minutes Remove all analog signals from
109. to initialize the averages and selecting a delay of zero may result in unwanted results a delay of at least 3 times the configured result average period is recommended 2 This test step also serves to save the measurements and perform statistics for the specified result collections for interface retrieval and data reporting 3 The same sets of limits are available for the INTERACTIVE WAIT steps also but no measurements are saved for this type of test step 4 Each limit may be programmed see the TEST LIMITS configuration details later in this document for the action to be taken IGNORE REPORT ONLY CONTINUE IF FAIL or STOP IF FAIL and the limits to apply 5 Ifthe user wishes to check measurement results in several areas then several CHECK steps may be needed The additional CHECK steps should follow the first one but set to not initialize result averages and with no delay LOAD TEST STEP TYPE This step enables the 2574R in conjunction with a configured 1500 chassis to check that the configured load resistances are valid This step type is ignored if configured for tube loads Step 1 Bua 2 CONT SAME Line z ournce 0 04 O00 GHz OM Load tube QUEE code 4000 OFF Load tube Load tube Load tube Step code 0000 OCDOC CURSOR CHANGE NEXT STEP The user may specify the percentage limits for the measured load resistance values It is expected that this step will be performed when the ballast has settled with full loading
110. uracy for tube voltages above 500Vpk limits tube voltage measurement range to 1 5K Vpk not available with option HID Features The 2574R Ballast Analyser s features include the following Simple interface Displays all relevant ballast measurements on a single screen Displays ballast input or output harmonics in an easy to read bargraph format IEC61000 3 2 Class C results are also available with a pass fail indication Data logging of many ballast measurements over periods from seconds to days Results may be obtained either graphically via front panel or printout or numerically via IEEEA88 or RS232 interface with 200 point time resolution Fully automatic ballast startup and tube striking detection and data logging Results may be obtained either graphically via front panel or printout or numerically via TEEE488 or RS232 interface with down to 1ms time resolution Automatic selection of resistive loads to simulate real tubes Fully automatic test sequencing and complete comparison of measurements against limits Including the selection of different 1500 series load modules and engagement of 1500 series line switch modules Ability to operate up to 7 additional 2574R instruments for parallel ballast testing controlled via one front panel IEEE488 and RS232 interface IEEEA88 or RS232 control of up to 4 external AC sources Allows single user interface High Speed operation with ballast input measured in cycle pe
111. urpose then all must be active for the test sequence to be continued i e multiple inputs are AND ed This configuration is ignored on slave 2574R s ABORT Causes the 2574R to abort any running test procedure If multiple inputs are configured for this purpose then any assertion will cause the test sequence to be aborted i e multiple inputs are OR ed Note that a test sequence cannot be started if this signal is active This configuration is ignored on slave 2574R s HOLD Causes the 2574R to hold any running test procedure If multiple inputs are configured for this purpose then any assertion will cause the test sequence to be held i e multiple inputs are OR ed Note that a test sequence cannot be started if this signal is active When held asserted on slave 2574R s running a test sequence this effectively prevents the affected 2574R from participating in the test procedure being run by the controlling 2574R all results taking the NOT MEASURED status for the affected instrument FAIL 1 2 3 4 or ALL Causes the 2574R to immediately critically fail External Failure the specified ballast or all ballasts If multiple inputs are configured for this purpose then any assertion will cause the test sequence to be failed i e multiple inputs are OR ed Note that a test sequence cannot be started if any of these signals are active RECALL b0 b1 b2 b3 or b4 Causes the 2574R to recall the specified configuration store number formed by
112. ustments within the ballast s being tested with continuously applied limits available while the adjustments are being made Changing the Operating Mode e As required press NEXT until the Configuration screen displays e Press EDIT The EDIT softkey changes to CURSOR and a softkey to the right will read CHANGE e Press CURSOR the presently selected mode is highlighted in the display e Press CHANGE until the mode you wish to select displays This softkey will toggle through the available options one at a time e Switch back and forth from CURSOR to CHANGE as required e Press DONE when complete 30 2574 User s Guide Configuring the Instrument The third line of the Configuration screen allows the user to choose a configuration area to edit using a submenu In the Configuration screen press F1 EDIT Press F1 CURSOR to highlight one of the submenu options shown in the third line down Press F2 CHANGE until the submenu you wish to configure is highlighted This softkey toggles through the available options one at a time Press F3 SETUP to open the submenu screen In each screen the name of the element you are configuring is shown on the left and the selectable settings are shown on the right Press FI CURSOR to highlight the settings Press F2 CHANGE and F3 PRESET when available to display the various settings for each element Switch between FI CURSOR and F2 CHANGE as required In each submenu screen the F
113. ve property of their respective owners In the interest of continued product development Xitron Technologies reserves the right to make changes in this guide and the product it describes at any time without notice or obligation Xitron Technologies Incorporated 6295 Ferris Square Building D gt San Diego California 92121 ANSI RAB Telephone 619 458 9852 oms m Fax 619 458 9213 E z 2 E mail sales 9 xitron tech com BS EN 1350 3001 10654 E mail support xitron tech com Cerficale No 96002 Contents 5 Contents INTRODUCTION Scope Available Models and Options Option QS Option HID Option HC Option HI Option F Option M Features FUNCTIONAL DESCRIPTION Theory of Operation INSTALLING AND MAINTAINING THE ANALYSER Installation Applying Power the 2574R Connecting a Printer to the 2574R Connecting a PC to the 2574R using IEEE488 Connecting a PC to the 2574R using RS232 Precautions Periodic Maintenance STARTING THE ANALYSER Front Panel Interface POWER 22 22 22 6 2574 User s Guide NEXT Softkeys PRINT Starting the 2574R Viewing the Configuration Screen Selecting Modes and Configuring Options Setting the Date and Time Setting DC Zero Function Calibration Date CONFIGURING THE ANALYSER Password Protection Storing and Recalli
114. ws the user to select the method that the 2574R uses to communicate with up to 4 line sources While this display line is selected the F3 key displays SETUP It is not necessary to have the line source s connected to the 2574R or powered at this time Note that the line source is controlled for output voltage output frequency and output on off status as available The line source communication type selection is either 1 None Selecting that there are no line sources being controlled by the 2574R 2 TEEE488 Selecting that the IEEE488 interface is enabled and configured as a controller using address 1 Note that this selection is not available if the IEEE488 interface has been enabled for 2574R CONTROL purposes also note that the address 1 is that used by the 2574R interface Press the F3 key to configure the specific IEE488 address and line source type of each up to 4 line source being controlled 3 RS232 XXXXXXbaud Selecting that the RS232 interface is enabled and configured to control a single line source Note that this selection is not available if the RS232 interface has been enabled for 2574R CONTROL or 1500 CHASSIS purposes Ensure that both the 2574R and the line source are configured for the same baud rate Press the F3 key to configure the specific line source type of the line source being controlled Digital I O Interfaces This display line allows the user to make the Digital Input and Output interface Active or I
Download Pdf Manuals
Related Search
Related Contents
Extrait du livre - Editions Ellipses GPX HM3817DTBLK Défense, mode d`emploi Contrastes entre terre et ciel SMARTDAC+ STANDARD Universal Viewer User`s Manual AOC A20E221 20 in. EDTV-Ready LCD Television - AOC Press AudioSculpt USER`S MANUAL - BTD Car Tools Untitled - PartyDJ HuronTel Internet Security Services FAQs Copyright © All rights reserved.
Failed to retrieve file