Home
THE EXTERNALIZED SURFACE USER'S GUIDE v4
Contents
1. XHUG_ROOT _ 5 XHUG_SURF _ 5 XLATO NAM_CARTESIAN NAM CONF_PROJ XLATCEN NAM CONF PROJ GRID XLATMAX _ XLATMIN LONLMAT_ XLONO NAM_CARTESIAN NAM CONF_PROJ XLONCEN NAM CONF PROJ GRID XLONMAX NAM_LONLMAT REG XLONMIN NAM_LONLMATREG XRIMAX NAM SURF ATM XRM COAST NAM OOVWVER UE line deerit eus XRM COVER NAM COVER XRPK NAM CONF_PROJ XSST_UNIF NAM_PREP SEAFLX XTG DEEP NAM_PREPISBA XTG ROOT NAM PREP ISBA o E EAT oe eeu XTG SURF PREP ISBA o Ep a XTI BLD NAM PREP TEB XTIL ROAD NAM PREP TEB XTIME NAM PREP FLAKE _ _ 5 51 XUNIF EMIS ROAD 5 44 _ _ NAM PREP SURF ATM 43 XUNIF EMIS ROOF 54 _ _ NAM PREP_WATFLX 46
2. 77 How to use 77 How to use ECOCLIMAPIT 77 How to use 1D Oceanic Model 78 How to initialize variables from grib file 78 How to initialize main ISBA scheme options 78 user defined surface parameters 78 A 7 1 Uniform values prescribed 1d example without patches 78 7 2 Uniform values prescribed 1d example with patches 82 A 7 3 Surface parameters read from external files 90 Chapitre 1 Overview of the externalized surface sequence The externalized surface facilities do not contain only the program to run the physical surface schemes but also those producing the initial surface fields before the run and the diagnostics during or after the run All these facilities are listed below and they separate in 4 main parts 1 1 The sequence 1 PGD routine pgd_surf_atm f90 this program computes the physiographic data file called PGD file below At this step you perform 3 main tasks a You choose the surface schemes you will use b You choose and define the grid for the surface c The physiographic fields are defined on this grid Therefore the PGD file contains the spatial characteristics of the surface and all the physio graphic data necessary to run the int
3. ATYPE 2 2 ARI CEMIS_PGD_FILE 2 co_12 asc PGD FILETYPE 2 ASCLLV CEMIS_PGD_NAME 3 DMSE NEMIS_PGD_TIME 3 0 CEMIS_PGD_COMMENT 3 dms_cte AREA 3 SEA CEMIS ATYPE 3 ARI CEMIS_PGD_FILE 3 dms asc CEMIS_PGD_FILETYPE 3 ASCLLV Chapitre 3 Initialization of the prognostic fields 3 1 Overview of fields computation PREP The prognostic fields temperature humidity ice snow etc are averaged or interpolated on the specified grid by the program PREP They are stored in the surface file The computation is done separately for each surface scheme During the PREP facility 1 You initializes the date of the surface 2 You initializes the prognostic variables of the chosen sea scheme 3 You initializes the prognostic variables of the chosen lake scheme 4 You initializes the prognostic variables of the chosen vegetation scheme 5 You initializes the prognostic variables of the chosen town scheme Here are presented the initialization procedures for the schemes that need such information for example scheme IDEAL does not need any information here but modificaton of the code source init_ideal_flux f90 Note that for each scheme and for some for each variable of the scheme it is possible to initialize the prognostic fields either form an operationnal or research model or using prescribed usually unif
4. 18 CFTYP D ROOF NAM DATA TEB 18 CFTYP D WALL NAM DATA TEB 19 CFTYP_DG 15 CFTYP_DMAX NAMDATAISBA 17 CFTYP_EMIS NAMDATAISBA 15 CFTYP EMIS ROAD NAM DATA TEB 18 CFTYP_EMIS_ROOF NAM DATA TEB 18 CFTYP_EMIS_WALL NAM DATA TEB 19 CFTYP_F2I NAMDATAISBA 17 CFTYP_GAMMA NAM DATA 8 16 8 17 CFTYP_GMES 17 CFTYP H INDUSTRIES 19 CFTYP H TRAFFIC NAM DATA TEB 19 CFTYP H TREE NAMDATAISBA 17 CFTYP HC ROAD NAM DATA TEB 18 CFTYP HC ROOF NAM DATA TEB 18 CFTYP HC WALL NAM DATA TEB 19 CFTYP LAI 8 15 CFTYP_LAIMIN NAM DATAISBA 17 CFTYP_LE_INDUSTRIES NAM DATA TEB 542509 0 19 CFTYP_LE_TRAFFIC NAM DATA err true 19 CFTYP_NATURE NAMCERAQC crede ter Bans Me 12
5. 2 8 Namelist for FLake scheme 2 9 Namelist to add user s own fields 2 10 Namelist for chemistry anthropogenic emissions Initialization of the prognostic fields 3 1 Overview of fields computation PREP 3 N N 10 11 11 11 11 21 23 23 25 27 28 29 30 31 32 33 39 37 38 39 41 3 2 Date initialization and default input data file for allschemes 3 9 Sea scheme SHAPLX 2he s s yp pee eee eae pea eee a X 3 4 Lake scheme WATFLX 3 5 Lake scheme FLAKE 3 6 Vegetation scheme ISBA 827 Town scheme sanga duaa a ee te How to run the externalized surface physical schemes 41 SURF_ATM general options available over all tiles 42 SEAFLX sea scheme options 43 FLAKE lake scheme options 4 4 ISBA vegetation scheme options How to run the externalized surface chemical schemes 5 1 Chemical settings control 5 2 Chemical anthropogenic emissions 5 3 Chemical deposition over ocean 5 4 Chemical deposition over lake
6. 43 54 46 NMONTH SST NAM DATA SEAFLUX 20 NPATCH Sad obesondy cv eve vele emp e el 35 NPOINTS 5 eat HAE OV aie 29 NRGRI oL ve ERR 30 NTIME 15 NAM DATA SEAFLUX 20 NTIME COUPLING NAMSEAFLUXn 57 NYEAR NAM PREP FLAKE 48 _ _ 5 51 _ _ 44 NAM PREP SURF ATM 42 45 9 54 NAM PREP WATFLX 46 NYEARSST NAM_DATA SEAFLUX 20 NZSFILTER nan sd tenue V Qa ER Re lt 33 R RLOCEN NAMGEM items 30 RMUCEN NAMGEM voci en PvE vectes ne 30 RSTRET eau ter AME EY 30 x XBETA NAM CONF PROJ 25 XCGMAX NAMS3ISBATI 62 XCISMIN NAMCSUREATM UE uya 56 XDELTA MAX NAM SURF ATM XDX NAM SURF ATM XEDD NAM SURF ATM XEDK NAM SURF ATM XENV NAMEZS thu EM vested u dtd XFLX MSS FDG FCT NAM SURF DST ur epe iR e XHUG DEEP _ 5
7. 54 46 225 566 ses 50 CTYPE_TS NAM PREPZTEB e REI ens 53 CTYPE_WG ua vs poe 50 CTYPE_WS 53 CWATER NAM PGD SCHEMES 21 I IDXRATIO NAM INIFILE CARTESIAN 27 NAML INIFILE_CONF_PROJ 26 IDYRATIO NAMLINIFILE_CARTESIAN 27 NAM INIFILE CONF PROJ 26 IXOR NAMLINIFILE_CARTESIAN 27 NAM INIFILE_CONF_PROJ 26 IXSIZE NAMLINIFILE_CARTESIAN 27 NAM INIFILE CONF PROJ 26 IYOR NAMLINIFILE_CARTESIAN 27 NAM INIFILE CONF PROJ 26 IYSIZE NAMLINIFILE_CARTESIAN 27 NAM INIFILE CONF PROJ 26 L LALDTHRES NAMSURF_ATM 56 LALDZOH NAM SURF ATM sante o ES ennuis 56 LCH BIO FLUX NAM CH ISBAn 4 een m esr er a 64 LCH_SURF_EMIS SURED iii 63 LCLIM_LAI 2 32 LCOEF NAM DIAG SURFn 69 LDIAG GRID NAMDIAG SURF_ATMn 67 LDIAG OCEAN NAM DIAG OCEANn 71 LDRAG_COEF_ARP NAMSURF_ATM 56 LFLOOD N AM
8. M_PREP_SEAFLUX MPREPSURF_ATM pr ra NAAA MPREP_WATFLUX eng Deep M SGHZISBAn i vert 5 eerte ru MSURFATM pe 4xGu E as MESURE Pt err M SURF SED 3 _ 5 94 C CALBEDO 2 5 2 22 7 4 lt 0 CCIDRY CCH DRY DEP NAM_CHSEAFLUXn NAM_CH WATFLUXNn CCHEM SURF FILE NAM CH SUR PASE P CCPSURF CDUMMY PGD AREA NAMDUMMY PGD CDUM NAM DUMMY PGD CDUMMY PGD _ MMY PGD FILETYPE _ CDUMMY PGD NAME CDU NAM CH EMIS PGD CEMIS_PGD_ATYPE NAM CH EMIS PGD CEMIS PGD COMMENT NAM GCH EMIS PGD parle beers CEMIS_PGD_FILE NAM CH_EMIS PGD ut ere CEMIS_PGD_FILETYPE 15 PGD CEMIS_PGD_NAME NAM CH EMIS PGD CEMISPARAM
9. Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LWAT SBL activates surface boundary multi layer scheme over inland water 3 5 Lake scheme FLAKE Namelist NAM_PREP_FLAKE This namelist information is used to initialize the FLAKE sea scheme temperature XTS_WATER_UNIF real none XUNIF_T_SNOW real 273 15 XUNIF_T_ICE real min 273 15 XTS_WATER XUNIF_T_MNW real depends on XTS_WATER XUNIF_T_BOT real depends on XTS_WATER XUNIF_T_B1 real depends on XTS_WATER NIF H SNOW real 0 NIF_H_ICE real 0 or 0 01 if XTS_WATER j 273 15 NIF H ML real 3 NIF H B1 real 1 CFILE FLAKE string of 28 characters CFILE in NAM PREP SURF ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB NYEAR integer NMONTH integer NDAY integer XTIME real LWAT SBL logical XTS_WATER_UNIF uniform prescribed value of water surfac
10. XU F_VEG IF_VEG F_VEG F_VEG F_VEG F_VEG F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI IF_LAI F_LAI F_ZO E 20 F_ZO F_ZO F 20 F_ZO F_ZO F_ZO F_ZO F_ZO 5 7 5 8 5 9 5 10 5 11 5 12 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 F_ZO 5 11 IF_ZO 5 12 F_EMIS 5 1 F_EMIS 5 2 F_EMIS 5 3 F_EMIS 5 4 F_EMIS 5 5 F_EMIS 5 6 F_EMIS 5 7 F_EMIS 5 8 F_EMIS 5 9 F_EMIS 5 10 F_EMIS 5 11 F_EMIS 5 12 F_VEG 6 1 F_VEG 6 2 F_VEG 6 3 F_VEG 6 4 F_VEG 6 5 F_VEG 6 6 IF_VEG 6 7 F_VEG 6 8 F_VEG 6 9 F_VEG 6 10 F_VEG 6 11 F_VEG 6 12 F_LAI 6 1 F_LAI 6 2 F_LAI 6 3 F_LAI 6 4 F_LAI 6 5 IF_LAI 6 6 F_LAI 6 7 F_LAI 6 8 F_LAI 6 9 F_LAI 6 10 F_LAI 6 11 F_LAI 6 12 20 6 1 20 6 2 XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_
11. 04 gt VEGTYPE_05 gt VEGTYPE_06 gt VEGTYPE_07 gt 08 gt 09 10 VEGTYPE 11 VEGTYPE 12 VEG_01 DAT VEG_02 DAT VEG_03 DAT VEG_04 DAT VEG_05 DAT VEG_06 DAT VEG_07 DAT VEG_08 DAT VEG_09 DAT VEG_10 DAT VEG_11 DAT VEG_12 DAT gt LAI_01 DAT gt LAI_02 DAT LAT_03 DAT LAT_04 DAT LAT_O5 DAT LAT_06 DAT LAT_07 DAT gt LAI_08 DAT gt LAI_09 DAT LAI_10 DAT 220 10 DAT 220 11 DAT 11 DAT 12 DAT gt Z0_01 DAT Z0_02 DAT Z0_03 DAT Z0_04 DAT gt 20 05 Z0_06 DAT Z0_07 DAT Z0_08 DAT Z0_09 DAT Z0_12 DAT gt EMIS_01 DAT EMIS_02 DAT EMIS_03 DAT EMIS_04 DAT gt EMIS_05 DAT EMIS_06 DAT EMIS_07 DAT EMIS_08 DAT EMIS_09 DAT EMIS_10 DAT EMIS_11 DAT EMIS_12 DAT DG_1 DAT DG_2 DAT DG_3 DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT CFTYP_VEGTYPE 1 CFTYP_VEGTYPE 2 CFTYP_VEGTYPE 3 CFTYP_VEGTYPE 4 CFTYP_VEGTYPE 5 CFTYP_VEGTYPE 6 CFTYP_VEGTYPE 7 CFTYP_VEGTYPE 8 CFTYP_VEGTYPE 9 CFTYP_VEGTYPE 10 CFTYP_VEGTYPE 11 CFTYP_VEGTYPE 12 FTYP_VEG 1 1 FTYP_VEG 1 2 YP_VEG 1 3 FTYP_VEG 1 4 FTYP_VEG 1 5 FTYP_VEG 1 6 FTYP_VEG 1 7 FTYP_VEG 1 8 FTYP_VEG 1 9 4 FTYP_LAI 1 1 FTYP_LAI 1 2 FTYP_LAI 1 3 FTYP_LAI 1 4 FTYP_LAI 1 5 FTYP_LAI 1 6 FTYP_LAI 1 7 FTYP_LAI 1 8 FTYP_LAI 1 9 FTYP_ZO 1 1 FTYP_ZO
12. 2222222222222 2222 222222222222 222 2222222222222 222 2 2 2 2 2 2 2 222 2 2 lt F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_LAI F_LAI F_LAI F_LAI FLAT F_LAI F_LAI F_LAT F_LAI F_LAI F_LAI F_LAI F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO 1 7 1 8 1 9 1 10 1 11 1 12 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 14 1 12 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 F_ZO 1 11 F_ZO 1 12 F_EMIS 1 1 F_EMIS 1 2 F_EMIS 1 3 F_EMIS 1 4 F_EMIS 1 5 F_EMIS 1 6 F_EMIS 1 7 F_EMIS 1 8 F_EMIS 1 9 F_EMIS 1 10 F_EMIS 1 11 F_EMIS 1 12 F_VEG 2 1 F_VEG 2 2 F_VEG 2 3 F_VEG 2 4 F_VEG 2 5 F_VEG 2 6 F_VEG 2 7 F_VEG 2 8 F_VEG 2 9 F_VEG 2 10 F_VEG 2 11 F_VEG 2 12 F_LAI 2 1 F_LAI 2 2 F_LAI 2 3 F_LAI 2 4 F_LAI 2 5 F_LAI 2 6 F_LAI 2 7 F_LAI 2 8 F_LAI 2 9 F_LAI 2 10 F_LAI 2 11 F_LAI 2 12 F_ZO 2 1 F_ZO 2 2 P4 PS PS PS 4 PS
13. PGD can use files to build accurate physiographic fields from geographical information This is possible only if the grid chosen can be linked to geographical coordinates latitude and longi tude i e if the grid type is LATLONREG or CONF PROJ The files that can be used are file describing the type of cover of the surface This describes where are located the different cover types forests towns seas etc At the time being the file provided contains the ecoclimap data 215 land covers on the world with a resolution of 30 PGD computes the fraction of surface coverage occupied by each type in the grid mesh From this information the surface parameter convenient for the surface schemes such as building fraction leaf area index etc are deduced using correspondance arrays a parameter has always the same value for a given cover type anywhere in the world A file containing the orography The resolution of the file is 30 on the world This allows to compute the model orography and the following subgrid scale orographic characteristics the surface of frontal obstacle A over the surface of the grid mesh S in each direction 35 Ait 8 Ai S Aj S 3 Aj S used to compute the directional zoe y the half height of these obstacles 2 h 2 hi 2 h 2 used to compute the direc tional zoe f These 8 parameters are used to compute the total ro
14. BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV mesophyll conductance ratio d biomass d lai minimum LAI e folding time for senescence cuticular conductance maximum air saturation deficit critical normilized soil water content for stress parameterization height of trees m kg kgms 1 Ecosystem respiration parameter leaf aera ratio sensivity to nitrogen lethal minimum value of leaf area ratio nitrogen concentration of active biomass TEB scheme Over urban areas all surface parameters have to be specified by the user in namelist NAM_DATA_TEB Fortran type defaut NIF_BLD_HEIGHT NAM BLD HEIGHT TYP BLD HEIGHT NIF WALL O HOR NAM WALL O HOR TYP WALL O HOR NIF_ZO_TOWN CFNAM ZO TOWN 70 NIF_ALB ROOF NAM ALB ROOF TYP ALB ROOF NIF_EMIS ROOF NAM EMIS ROOF TYP_EMIS_ROOF NIF_HC_ ROOF CFNAM HC ROOF CFTYP_HC_ROOF XUNIF TC ROOF CFNAM TC ROOF CFTYP_TC_ROOF NIF_D_ROOF NAM D ROOF TYP D ROOF NIF ALB ROAD NAM ALB ROAD TYP ALB ROAD NIF EMIS ROAD NAM EMIS ROAD TYP EMIS ROAD NIF HC ROAD CFNAM HC ROAD CFTYP HC ROAD XUNIF TC ROAD CFNAM TC ROAD CFTYP TC ROAD XUNIF D ROAD CFNAM D ROAD CFTYP D ROAD real character character real character characte
15. XUNIF_CV XUNIF RUNOFFB NAM DATAISBA 16 XUNIF D ROAD XUNIF SAND NAM DATA TEB 18 NAM ISBAG dde ren SE XUNIF_D_ROOF XUNIF_SEA NAM DATA TEB 18 XUNIF D WALL XUNIF SEABATHY NAM DADA TEB aaah eri 19 XUNIF_DEPTH_BS XUNIF_SEFOLD NAM DATA FLAKE 37 NAM DATAISBA XUNIF_DG XUNIF T B1 NAM DATA 15 _ _ XUNIF_DMAX XUNIF T BOT NAM DATA 8 17 _ _ XUNIF_EMIS XUNIF_T_BS NAM DATA ISBA 15 NAM DATA FLAKE XUNIF_T_ICE NAM PREP FLAKE 47 XUNIF_T_MNW NAM PREP FLAKE 47 XUNIF_T_SNOW NAM PREP_FLAKE 47 XUNIF_TC_ROAD NAM DATA TEB 18 XUNIF_TC_ROOF NAM DATA TEB 18 XUNIF_TC_WALL NAM DATA TEB 19 XUNIF_TOWN NAM FRAC sense na REFERRE AE A 12 XUNIF_VEG 8 15 XUNIF_VEGTY
16. amp NAM_PGD_SCHEMES CNATURE ISBA CSEA SEAFLX CTOWN TEB CWATER WATFLX amp NAM_ZS XUNIF_ZS 0 amp NAM_ISBA XUNIF_CLAY 0 4 XUNIF_SAND 0 2 XUNIF_RUNOFFB 0 5 CISBA 3 L CPHOTO NON NPATCH 1 NGROUND_LAYER 3 amp NAM_PREPFILE CPREPFILE PREP amp NAM_PREP_SURF_ATM NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_SEAFLUX XSST_UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_WATFLUX XTS_WATER_UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_TEB XTI_ROAD 285 XTI_BLD 285 XTS_ROAD 285 XTS_ROOF 285 XTS_WALL 285 XWS ROAD O XWS_ROOF O NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM ISBA XHUG_SURF XHUG_ROOT XHUG_DEEP XTG_SURF 285 XTG_ROOT 288 XTG_DEEP 292 NYEAR 2004 ooo NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_ISBA_SNOW amp NAM_IO_OFFLINE amp NAM_DIAG_SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM_SGH_ISBAn amp NAM_ISBAn amp NAM_CH_ISBAn amp NAM_SEAFLUXn amp NAM_CH_SEAFLUXn amp NAM_CH_WATFLUXn amp NAM_CH_TEBn 7 2 Uniform amp NAM_DATA_ISBA CSNOW 3 L LPRINT T CFORCING_FILETYPE CSURF_FILETYPE CTIMESERIES_FILETYPE LWRITE_COORD T LSET_FORC_ZS T LSURF _BUDGET N
17. arpifs AN 20030101 00 CTYPE CGRIB CFILE WATFLX arpifs AN 20030101 00 CTYPE CGRIB CFILE ISBA arpifs AN 20030101 00 CTYPE CGRIB gt CSNOW 23 1 initialize main ISBA scheme options CRUNOFF WSAT CROUGH ZO4D CSCOND NP89 5 CALBEDO DRY CC1DRY DEF CSOILFRZ DEF CDIFSFCOND DEF CCPSURF DRY CSNOWRES DEF CCH_DRY_DEP WES89 A 7 user defined surface parameters Ecoclimap is not used LECOCLIMAP F Information is not read from databases but the usern defines his own surface parameters Uniform field is used in this 1D case A 7 1 Uniform values prescribed 1d example without patches amp NAM_DATA_ISBA NTIME 12 XUNIF_VEGTYPE 1 XUNIF_VEGTYPE 2 XUNIF_VEGTYPE 3 XUNIF_VEGTYPE 4 XUNIF_VEGTYPE 5 II kB P4 P4 P4 PS PS PS PS PS 4 PS 2222222222222 2222 2222222222 22 22 2 2222222222242 222222 2422222284 F_VEGTYPE 6 F_VEGTYPE 7 F_VEGTYPE 8 F_VEGTYPE 9 F_VEGTYPE 10 F_VEGTYPE 11 F_VEGTYPE 12 F_VEG 1 1 F_VEG 1 2 F_VEG 1 3 F_VEG 1 4 F_VEG 1 5 F_VEG 1 6 F_VEG 1 7 F_VEG 1 8
18. seconds LISBA CANOPY activates surface boundary multi layer scheme over vegetation Namelist NAM PREP SNOW This namelist defines the type of snow scheme used in ISBA scheme dest val CSNOW string of characters 095 3 L CSNOW type of snow scheme Possible snow schemes are 1 D95 Douville et a1 1995 snow scheme 2 3 L Boone and Etchevers 2000 three layers snow scheme 3 Bogatchev and Bazile 2005 Arpege operational snow scheme 3 7 Town scheme TEB Namelist NAM_PREP_TEB This namelist information is used to initialize the T EB urban scheme variables road roof and wall temperature profiles water intercepted by roofs and roads snow building internal temperature Fortran type default value XWS_ROAD XWS_ROOF CFILE_WS CTYPE_WS XTS ROAD XTS ROOF XTS WALL XTLBLD XTI ROAD CFILE TS CTYPE TS CFILE_TEB CTYPE NYEAR NMONTH real real string of 28 characters string of 6 characters MESONH GRIB real real real real real string of 28 characters string of 6 characters MESONH GRIB string of 28 characters string of 6 characters MESONH GRIB integer integer none none CFILE_TEB in this namelist CTYPE in this namelist none none none none none CFILE_TEB in this namelist CTYPE in this namelist CFILE in NAM PREP SURF ATM CFILETYPE in PREP SURF ATM NDAY integer
19. string of 6 characters MESON GRIB NYEAR NMONTH NDAY XTIME LISBA_CANOPY integer integer integer real logical XHUG SURF uniform prescribed value of soil water index SWI for the surface soil layer This prescribed value if defined has priority on the use of CFILE WG and CFILE_ISBA data XHUG ROOT uniform prescribed value of soil water index SWI for the root zone soil layer s This prescribed value if defined has priority on the use of CFILE WG and CFILE ISBA data XHUG DEEP uniform prescribed value of soil water index SWI for the deep soil layer s This prescribed value if defined has priority on the use of CFILE WG and CFILE_ISBA data CFILE_WG name of the file used to define the soil water profiles The use of a file or prescribed value of XHUG_SURF XHUG_ROOT and XHUG DEEP has priority on the data in CFILE_WG file CTYPE WG type of the CFILE_WG file if the latter is provided CTYPE WG must then be given The following values are currently usable MESONP the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model XTG SURF uniform prescribed value of temperature for the surface soil layer supposed at a
20. 12 or 36 between 0 and 1 DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV time dimension vegetation fraction file name file type eaf area index file name file type roughness length file name file type emissivity file name file type Fortran default value XUNIF_DG CFNAM_DG CFTYP_DG XUNIF_ROOTFRAC CFNAM ROOTFRAC CFTYP_ROOTFRAC real character LEN 28 character LEN 6 DIRECT BINLLF BINLLV ASCLLV real character LEN 28 character LEN 6 DIRECT BINLLF BINLLV ASCLLV soil layer thickness root fraction parameters depending on number of patches only Fortran type default_value XUNIF_RSMIN CFNAM RSMIN CFTYP_RSMIN XUNIF_GAMMA CFNAM GAMMA CFTYP GAMMA XUNIF_WRMAX_CF CFNAM WRMAX CF CFTYP WRMAX CF XUNIF_RGL CFNAM RGL CFTYP RGL XUNIF CV CFNAM CV CFTYP CV XUNIF Z0 0 Z0H CFNAM Z0 0 20H CFTYP Z0 O Z0H XUNIF ALBNIR VEG CFNAM ALBNIR VEG CFTYP ALBNIR VEG NIF ALBVIS VEG NAM ALBVIS VEG TYP ALBVIS VEG NIF ALBUV VEG NAM ALBUV VEG TYP ALBUV VEG NIF ALBNIR SOIL NAM ALBNIR SOIL TYP ALBNIR SOIL NIF_ALBVIS_SOIL NAM ALBVIS SOIL TYP ALBVIS SOIL NIF_ALBUV_SOIL CFNAM ALBUV SOIL CFTYP ALBUV SOIL real characte
21. ASCLLV ASCLLV gt ASCLLV gt ASCLLV ASCLLV amp NAM_FRAC amp NAM_PGD_GRID amp NAM_LONLAT_REG amp NAM_PGD_SCHEMES amp NAM_ZS amp NAM_ISBA amp NAM_PREPFILE amp NAM_PREP_SURF_ATM amp NAM_PREP_SEAFLUX amp NAM_PREP_WATFLUX amp NAM_PREP_TEB CFNAM_H_TRAFFIC CFNAM_LE_TRAFFIC CFNAM_H_INDUSTRY CFNAM_LE_INDUSTRY LECOCLIMAP F CFNAM_SEA CFNAM_WATER CFNAM_NATURE CFNAM_TOWN CGRID LONLAT XLONMIN XLONMAX XLATMIN XLATMAX NLON NLAT CNATURE CSEA SEAFLX CTOWN TEB H_TRAFFIC DAT LE_TRAFFIC DAT H_INDUSTRY DAT LE_INDUSTRY DAT SEA DAT WATER DAT NATURE DAT TOWN DAT REG 2 2 CWATER WATFLX XUNIF_ZS 0 XUNIF_CLAY XUNIF_SAND XUNIF_RUNOFFB CISBA CPHOTO NPATCH NGROUND_LAYER ooo aon 3 L gt NON J CPREPFILE PREP NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XSST_UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XTS_WATER_UNIF NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XTI_ROAD 285 XTI_BLD 285 XTS_ROAD 285 XTS_ROOF 285 XTS_WALL 285 XWS ROAD O XWS_ROOF O NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 285 TRAFFIC CFTYP_LE_TRAFFIC CFTYP_H_INDUSTRY CFTYP_LE_INDUSTRY CFTYP_SEA C
22. CV DAT ALBNIR_VEG DAT ALBVIS_VEG DAT ALBUV_VEG DAT ALBNIR_SOIL DAT ALBVIS_SOIL DAT ALBUV_SOIL DAT GMES DAT RE25 DAT BSLAI DAT LAIMIN DAT SEFOLD DAT GC DAT DMAX DAT F2I DAT H TREE DAT NITRO DAT CF_NITRO DAT CNA_NITRO DAT ALB_ROOF DAT EMIS_ROOF DAT HC_ROOF DAT HC_ROOF DAT HC_ROOF DAT TC_ROOF DAT TC_ROOF DAT TC_ROOF DAT D_ROOF DAT D_ROOF DAT D_ROOF DAT ALB ROAD DAT EMIS_ROAD DAT HC_ROAD DAT HC_ROAD DAT HC_ROAD DAT TC_ROAD DAT TC_ROAD DAT TC_ROAD DAT D_ROAD DAT D_ROAD DAT D_ROAD DAT ALB_WALL DAT EMIS_WALL DAT HC_WALL DAT HC_WALL DAT HC_WALL DAT TC_WALL DAT TC_WALL DAT TC_WALL DAT D_WALL DAT D_WALL DAT D_WALL DAT Z0_TOWN DAT BLD DAT BLD_HEIGHT DAT WALL_O_HOR DAT CFTYP_ROOTFRAC 1 1 CFTYP_ROOTFRAC 1 2 CFTYP_ROOTFRAC 1 3 CFTYP_RSMIN 1 20 0 ZOH 1 1 CFTYP_WRMAX_CF 1 CFTYP_RGL 1 CFTYP_CV 1 P_ALBNIR_VEG 1 P_ALBVIS_VEG 1 P_ALBUV_VEG 1 P_ALBNIR_SOIL 1 CFTYP_ALBVIS_SOIL 1 CFTYP_ALBUV_SOIL 1 CFTYP_GMES 1 CFTYP_RE25 1 CFTYP_BSLAI 1 CFTYP_LAIMIN 1 CFTYP_SEFOLD 1 CFTYP_GC 1 CFTYP_DMAX 1 CFTYP_F21 1 CFTYP_H_TREE 1 CFTYP_CE_NITRO 1 CFTYP_CF_NITRO 1 CFTYP_CNA_NITRO 1 CFTYP_ALB_ROOF CFTYP_EMIS_ROOF CFTYP_HC_ROOF 1 CFTYP_HC_ROOF 2 CFTYP_HC_ROOF 3 CFTY
23. ROAD M DATA TEB HC ROOF M DATA TEB HC WALL M DATA TEB gt M DATA ISBA LAIMIN M DATA ISBA LE INDUSTRIES M DATA TEB LE TRAFFIC M DATA TEB RE25 M DATA ISBA E 9 M DATA ISBA ROOTFRAC M DATA ISBA RSMIN M DATA ISBA SEA M FRAC SEFOLD M DATA ISBA SST M DATA SEAFLUX TC ROAD M DATA TEB TC_ROOF M DATA TEB TC WALL M DATA TEB VEG M DATA ISBA VEGTYPE M DATA ISBA WALL O HOR M DATA TEB WRMAX CF M DATA ISBA Z0 M DATA ISBA Z0_O Z0H M DATA ISBA Z0 TOWN M DATA TEB ALB ROAD M_DATA_TEB ALB ROOF M DATA TEB gt gt CFTYP_ALB_WALL gt M DATA TEB CFTYP ALBNIR SOIL gt M DATA ISBA CFTYP ALBNIR VEG gt M DATA ISBA CFTYP ALBUV SOIL N gt M DATA ISBA CFTYP_ALBUV_VEG NAM DATA 16 CFTYP_ALBVIS_SOIL NAM DATA TSBA 16 CFTYP_ALBVIS_VEG TSBA 16 CFTYP_BLD NAM DATA TEB 18 CFTYP BLD HEIGHT NAM DATA TEB series at eoe Vere 18 CFTYP_BSLAI 8 17 CFTYP_CE_NITRO 8 17 CFTYP_CF_NITRO NAMDATAISBA 17 CFTYP_CNA_NITRO NAM_ DATA ISBA 17 CFTYP_CV 16 CFTYP D ROAD NAM DATA TEB
24. character LEN 3 1000 ART MMY PGD FILETYPE 1000 character LEN 6 1000 Only the first NDUMMY PGD NBR values in these arrays are meaningfull NDUMMY _PGD_NBR number of dummy fields CDUMMY_PGD_NAME list of the dummy fields you want to initialize with your own data You can give any name you want This is a way to describe what is the field This information is not used by the program It is just written in the FM files CDUMMY _PGD _FILE list of the names of the files containing the data for the fields you have specified in COUMMY_PGD_NAME CDUMMY _PGD _FILETYPE list of the types of the files containing the data for the fields you have specified in CDUMMY_PGD_NAME DIRECT LATLON BINLLF BINLLV ASCLLV CDUMMY_PGD_AREA area of meaningfullness of the fields you have specified in CDUMMY PGD NAME CALL NAT TWN WAT respectively for everywhere natural areas town areas sea inland waters land natural cover town For example oceanic emission of DNS is relevant on SEA CDUMMY PGD ATYPE type of averaging during PGD for the fields you have specified in CDUMMY_PGD_NAME CARP respectively for arithmetic inverse and logarithmic averaging 2 10 Namelist for chemistry anthropogenic emissions Namelist NAM_CH_EMIS_PGD This namelist is used to initialize chemistry componen
25. character LEN 6 DIRECT BINLLF BINLLV ASCLLV NETCDF YNCVARNAME character LEN 28 I The amplitude of the filtered signal for each wavelength AAz is i cos 27 A 1 XUNIF_SEABATHY uniform value of bathymetry imposed on all points real meters If XUNIF_SEABATHY is set file YSEABATHY is not used YSEABATHY data file name If XUNIF_SEABATHY is set file YSEABATHY is not used If neither XUNIF_SEABATHY and YSEABATHY is set then bathymetry is set to Zero YSEABATHYFILETYPE type of data INETCDF YNCVARNAME name of variable to be read in NETCDF file 2 7 Namelist for ISBA scheme Namelist NAM_ISBA NPATCH integer between 1 and 12 CISBA character LEN 3 12 12 8 12 DIF string of characters NON AGS AST LST NIT NGROUND_LAYER integer gt 0 XUNIF_CLAY real between 0 and 1 YCLAY character LEN 28 YCLAYFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_SAND real between 0 and 1 YSAND character LEN 28 YSANDFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_RUNOFFB real YRUNOFFB character LEN 28 YRUNOFFBFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_WDRAIN real YWDRAIN character LEN 28 YWDRAINFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV NPATCH number of patches used in ISBA One patch corresponds to aggregat
26. sequent ameliorations of the scheme 2 3 Definition of the grid Note that all the namelists presented in this section are ignored if the grid is imposed in the fortran code from an atmospheric model This is the case when one already have defined the atmospheric grid and one want to be sure that the surface has the same grid For example this is what happens in MESONH program PREP IDEAL CASE when no physiographic surface file is used If you are in this case ignore all the namelists presented in this section and only the name lists for cover and the following ones have to be used 2 3 1 Choice of the grid type Namelist NAM PGD GRID This namelist defines the grid type either specified or from an existing surface file default value CGRID string of 10 characters CONF PROJ YINIFILE string of 28 characters none YFILETYPE string of 6 characters none CGRID type of grid and projection It is used only if a file is not prescribed see below The different grid possibilities are 1 GAUSS this grid is a gaussian grid global grid that may be stretched rotated CONF PROJ this grid is a regular grid in meters in x and y perpendicular directions on conformal projection plan Mercator Lambert or polar stereographic CARTESIAN this grid is a regular grid in meters in x and y perpendicular directions with no reference to real geographical coordinates
27. write in files with particular formats are added 1 2 1 in offline mode In this case several types of files can be used ASCII files not efficient in term of storage but completely portable netcdf files that can be used by the program code OFFLIN BINARY files increases the efficiency of the system LFI files increases the efficiency of the system This special format is used in meso NH and Arome models for surface fields FA files This special format is used for Arpege and Aladin models currently PGD and PREP steps may be done using any of the format listed above and also the run produces time series of each variable prognostic or diagnostic in ASCII NETCDF LFI or FA files and the output instant of the run in an ASCII LFI or FA file The namelists are all included in the namelist file named OPTIONS nam 1 2 2 in MESONH In this case MESONH FM files are used The parallelization of the surface fields is done during the reading or writing of the fields by the FMREAD and FMWRIT routines Initialization of surface fields integrated in MESONH programs In MESONH there are usually 2 ways to produce initial files depending if you want to use real or ideal atmospheric conditions However from the surface point of view there is no difference between these 2 main possibilities of fields real e g from operationnal surface scheme in an operationnal model or ideal e g uniform whatever
28. 10 XUNIF ALBNIR VEG 12 0 3 XUNIF ALBVIS VEG 12 0 1 XUNIF ALBUV VEG 42 0 0425 XUNIF ALBNIR SOIL 12 0 3 ALBVIS SOIL 12 0 1 XUNIF ALBUV SOIL 12 0 06 XUNIF_GMES 12 0 003 XUNIF_RE25 12 0 0000003 XUNIF_BSLA 12 0 06 XUNIF_LAIMIN 12 0 3 XUNIF_SEFOLD 12 5184000 XUNIF_GC 12 0 00025 XUNIF_DMAX 12 0 1 XUNIF_F2I 12 0 3 XUNIF_H_TREE 12 20 XUNIF_CE_NITRO 12 3 79 XUNIF_CF_NITRO 12 9 84 XUNIF CNA NITRO 12 1 3 XUNIF_D_WALL 1 XUNIF_D_WALL 2 XUNIF_D_WALL 3 XUNIF_ZO_TOWN XUNIF_BLD XUNIF_BLD_HEIGHT XUNIF_WALL_O_HOR XUNIF_H_TRAFFIC XUNIF_LE_TRAFFIC XUNIF_H_INDUSTRY XUNIF_LE_INDUSTRY H H m H H HE h F Ome p FRAC LECOCLIMAP XUNIF_SEA XUNIF_WATER XUNIF_TOWN XUNIF_NATURE t 4 RA amp NAM_PGD_GRID CGRID LONLAT REG amp NAM_LONLAT_REG XLONMIN XLONMAX XLATMIN XLATMAX NLON NLAT amp NAM_PGD_SCHEMES CNATURE ISBA CSEA SEAFLX CTOWN TEB gt CWATER WATFLX amp NAM_ZS XUNIF_ZS amp NAM_ISBA XUNIF_CLAY XUNIF_SAND 0 37 XUNIF_RUNOFFB 0 5 CISBA 2 1 NIT NPATCH 12 NGROUND_LAYER 113 1 51 N amp NAM PREPFILE CPREPFILE PREP amp NAM_PREP_SURF_ATM NYEAR NMONTH NDAY XTIME 1986 1 1 0 amp NAM PREP SEAFLUX XSS
29. 6 0 00002 XUNIF ZO 0 ZOH 4 10 XUNIF ZO 0 ZOH 5 10 XUNIF ZO 0 ZOH 6 10 XUNIF ALBNIR VEG 4 0 3 XUNIF ALBNIR VEG 5 0 3 XUNIF ALBNIR VEG 6 0 3 XUNIF ALBVIS VEG 4 0 1 XUNIF ALBVIS VEG 5 0 1 XUNIF ALBVIS VEG 6 0 1 XUNIF ALBUV VEG 4 0 0425 XUNIF ALBUV VEG 5 0 0425 XUNIF ALBUV VEG 6 0 0425 XUNIF ALBNIR SOIL 4 0 3 XUNIF ALBNIR SOIL 5 0 3 XUNIF ALBNIR SOIL 6 0 3 XUNIF ALBVIS SOIL 4 0 1 XUNIF ALBVIS SOIL 5 0 1 XUNIF ALBVIS SOIL 6 0 1 XUNIF ALBUV SOIL 4 0 06 XUNIF ALBUV SOIL 5 0 06 XUNIF ALBUV SOIL 6 0 06 XUNIF GMES 4 0 003 XUNIF_GMES 5 0 003 XUNIF_GMES 6 0 003 XUNIF_RE25 4 0 0000003 XUNIF RE25 5 0 0000003 XUNIF_RE25 6 0 0000003 XUNIF_BSLA 4 0 06 XUNIF_BSLAI 5 0 06 XUNIF_BSLAI 6 0 06 XUNIF_LAIMIN 4 0 3 XUNIF_LAIMIN 5 0 3 XUNIF_LAIMIN 6 0 3 XUNIF_SEFOLD 4 5184000 XUNIF_SEFOLD 5 5184000 XUNIF_SEFOLD 6 5184000 XUNIF_GC 4 0 00025 XUNIF_GC 5 0 00025 XUNIF_GC 6 0 00025 XUNIF DMAX 4 0 1 XUNIF _DMAX 5 0 1 XUNIF _DMAX 6 0 1 XUNIF_F2I 4 0 3 XUNIF_F2I 5 0 3 XUNIF_F2I 6 0 3 XUNIF_H_TREE 4 20 XUNIF_H_TREE 5 20 XUNIF_H_TREE 6 20 XUNIF_CE_NITRO 4 3 79 XUNIF_CE_NITRO 5 3 79 XUNIF_CE_NITRO 6 3 79 XUNIF_CF_NITRO 4 9 84 XUNIF_CF_NITRO 5 9 84 XUNIF_CF_NITRO 6 9 84 XUNIF_CNA_NITRO 4 1 3 XUNIF_CNA_NITRO 5 1 3 XUNIF_CNA_NITRO 6 1 3 XUNIF
30. NAM SURF DS eant e E ERES NAM SURF SLT E DES CFILE NAM PREP SURF ATM CFILE FLAKE _ _ CFILE_ISBA _ 5 CFILE SEAFLX NAM_PREP SEAFLX CFILE TEB NAM PREP TEB CFILE TG _ 5 CFILE TS NAM PREP TEB oe mme nee ous CFILE WATFLX NAM PREP WATFLX CFILE WG N CFILE WS N CFILETYPE CFLAKE FLUX CFLAKE SNOW 2 gt 2 Hj 2 gt gt Hj Hj Hj 2 2 2 gt gt Q 2 E Q 2 E Q 2 E nj Hj Z 2 lt gt gt BLD nj 2 2 g gt gt BSLAI Q 2 gt Z gt Z gt Z gt Z gt Z Z Z Z Z Z Z Z Z Z gt Z gt Z gt Z gt Hj uj FW TP LA M gt gt gt gt Q 2 lt CV Q a gal Hj 2 2 E gt gt D ROOF Q Z D WALL Q j 2 lt gt gt DG Q rrj 2 gt DMAX Q 5 2 E MIS Q 2 E gt zj Q Hj ba gt gt Q Z F2I gt lt Q Z gt Q Q Q 2 Z gt z gt z gt z gt Z gt z gt Z gt Z gt Z gt Z gt Z gt Z gt Z
31. NAM DIAG TEBn 71 LSURF_VARS NAMDIAG SURFn 69 LTEB CANOPY NAM PREP TEB 54 LTRIP NAMSGHISBAn 60 LWAT SBL NAM PREP SEAFLUX 46 48 N N2M NAM DIAG SURFn 68 NDAY NAM_PREP FLAKE 48 _ 5 51 NAM_PREP SEAFLX 44 _ _80 _ 43 NAM PREP TEB haqq oper 54 NAM PREP WATFLX 46 NDAY SST NAM_DATA SEAFLUX 20 NDGLG NAMDIM cade rene ne nee dans 30 NDUMMY PGD NBR NAM DUMMY PG Dire ren ine de 38 NEMIS_PGD_NBR NAM CH EMIS PGD 39 NEMIS_PGD_TIME NAM CH EMIS PGD 39 NGROUND LAYER NAMISBA siii eit 36 NIMAX 27 NAM CONF PROJ GRID 25 NJMAX NAM_CARTESIAN 27 NAM CONF PROJ GRID 25 NLAT NAM CARTESIAN 28 NLON 28 NMONTH NAM PREP FLAKE 48 NAM PREPJSBA A Re RH Us 51 NAM PREP SEAFLX 44 NAM PREP SURF ATM
32. PS 2222222222222 2222 222222222222 222 22 2 2 2 tutu 222 2 2 2 2 2 2 2 4242422424224 20 20 20 20 20 20 20 20 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 F_ZO 6 11 F_ZO 6 12 F_EMIS 6 1 F_EMIS 6 2 F_EMIS 6 3 F_EMIS 6 4 F_EMIS 6 5 F_EMIS 6 6 F_EMIS 6 7 F_EMIS 6 8 F_EMIS 6 9 F_EMIS 6 10 F_EMIS 6 11 F_EMIS 6 12 F_VEG 7 1 F_VEG 7 2 F_VEG 7 3 F_VEG 7 4 F_VEG 7 5 F_VEG 7 6 F_VEG 7 7 F_VEG 7 8 F_VEG 7 9 F_VEG 7 10 F_VEG 7 11 F_VEG 7 12 F_LAI 7 1 F_LAI 7 2 F_LAI 7 3 F_LAI 7 4 F_LAI 7 5 F_LAI 7 6 F_LAI 7 7 F_LAI 7 8 F_LAI 7 9 F_LAI 7 10 F_LAI 7 11 F_LAI 7 12 F_ZO 7 1 F_ZO 7 2 F_ZO 7 3 F_ZO 7 4 F_ZO 7 5 F_ZO 7 6 20 7 7 20 7 8 20 7 9 F ZO 7 10 F ZO 7 11 F ZO 7 12 EMIS 7 1 F EMIS 7 2 F EMIS 7 3 F EMIS 7 4 F EMIS 7 5 F EMIS 7 6 F_EMIS 7 7 F_EMIS 7 8 F_EMIS 7 9 F_EMIS 7 10 O O O O O O O O O O O O O O O O O O O O O O O O O G G G Q O OO O O O O O O O O O O O O O O O O O O O O O 00000000000000 O CO XUNIF_ZO 10 3 XUNIF_ZO 10 4 XUNIF_ZO 10 5 XUNIF_ZO 10 6 XUNIF_ZO 10 7 XUNIF_ZO 10 8 XUNIF_ZO 10 9 XUNIF_ZO 10 10 XUNIF_ZO 10 11 XUNIF_ZO 10 12 XUNIF_EMIS 10 1 XUNIF_EMIS 10 2 XUNIF EMIS 10 3 XUNIF EMIS 10 4 XUNIF EMIS 10 5
33. real meters 2 3 6 Gaussian grids These namelists define the projection in case CGRID GAUSS Namelist NAMDIM Fortran type default value NDGLG Namelist NAMRGRI Fortran type default value NRGRI nonc Namelist NAMGEM Fortran name default value RMUCEN RLOCEN RSTRET NDGLG number of pseudo latitudes NRGRI number of pseudo longitudes on each pseudo latitude circle starting from the rotated pole RMUCEN sine of the latitude of the rotated pole RLOCEN longitude of the rotated pole radian RSTRET stretching factor must be greater than or equal to 1 2 4 Land cover fractions Namelist NAM_COVER This namelist gives the information to compute the surface cover fractions default valve XUNIF_COVER array of 573 reals 20 and 1 YCOVER character LEN 28 YFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XRM COVER real gt 0 XRM COAST real 20 LRM_TOWN logical XUNIF_COVER specified values for uniform cover fractions For each index i between 1 and 573 9 is the fraction of the it ecosystem of ecoclimap The same fraction of each ecosystem is set to all points of the grid The sum of all ecosystem fractions must be equal to one XUNIF_COVER i 1 If XUNIF COVER is set it has priority on the use of an ecosystem file see next item YCOVER In the case of grid without any reference
34. the repatition of mass flux could be derive from the friction velocity case of AMMA or EXPLI or imposed case of Dal87 alf98 She84 or PaG77 See the code init dstn f90 MesoNH or init dstn mnh AROME ALADIN for values associated to these parameterizations Note that if the defaut value is change it is necessary to uses the same modes in the dust initialisation in the atmospheric model It concerns the value of XINIRADIUS initial radius XINISIG standard deviation and CRGUNITD mean radius definition to have the same aerosol size distribution emitted and in the atmosphere It is possible to do it directly in the fortran code modd dust mnh in case of aladin arome modd dust f90 for MesoNH or for MesoNH only change the values of these variables in NAM AERO CONF prep real case or prep ideal_case XFLX_MSS_FDG_FCT Value of the o factor representing the ratio of the vertical mass flux over the horizontal mass flux in the saltation layer use only If CVERMOD NONE This o factor depend on the size distribution of the aerosol consider in the model New parameterization of the dust emission formulation In development not recommended to uses it in this version Chapitre 5 How to run the externalized surface chemical schemes Here are described the options available during the run of the several schemes for emission and deposition of chemical species Note that all the scheme
35. 1 2 FTYP_ZO 1 3 TYP_ZO 1 4 TYP_ZO 1 5 20 1 6 20 1 7 Z0 1 8 20 1 9 20 1 10 20 1 11 20 1 12 4 CFTYP_EMIS 1 1 CFTYP_EMIS 1 2 CFTYP_EMIS 1 3 CFTYP_EMIS 1 4 CFTYP_EMIS 1 5 CFTYP_EMIS 1 6 CFTYP_EMIS 1 7 CFTYP_EMIS 1 8 CFTYP_EMIS 1 9 EMIS 1 10 EMIS 1 11 EMIS 1 12 CFTYP_DG 1 1 CFTYP_DG 1 2 CFTYP_DG 1 3 FTYP_VEG 1 10 FTYP_VEG 1 11 FTYP_VEG 1 12 FTYP_LAI 1 10 FTYP_LAI 1 11 FTYP_LAI 1 12 ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV
36. 275 real none YZS character LEN 28 7 default orography is 0 YFILETYPE character LEN 6 BINLLF none ASCLLV COROGTYPE character LEN 3 AVG SIL ENV XENV real 0 NZSFILTER integer 1 _75 uniform value of orography imposed on all points real meters If XUNIF_ZS is set file YZS is not used YZS data file name If XUNIF ZS is set file YZS is not used If neither XUNIF_ZS and YZS is set then orography is set to zero YFILETYPE type of data file DIRECT BINLLF BINLLV ASCLLV COROGTYPE type of orography string of 3 characters mean orography 25 envelope relief defined from mean orography and subgrid orography standard deviation as Zs X ENV x o SIL silhouette relief defined as the mean of the two subgrid silhouettes in directions x and y if two main directions can be defined for the grid chosen MAX maximum orography over grid box avoid averaging in case of sea land grid box XENV enhance factor in envelope orography definition real NZSFILTER number of iterations of the spatial filter applied to smooth the orography integer 1 iteration removes the 2Az signal 50 of the 4Ax signal 25 of the 6Az signal etcl Namelist NAM SEABATHY This namelist defines the bathymetry file XUNIF SEABATHY real YSEABATHY character LEN 28 YSEABATHYFILETYPE
37. 3 XUNIF_D_ROOF 1 XUNIF_D_ROOF 2 XUNIF_D_ROOF 3 NROAD_LAYER XUNIF_ALB_ROAD XUNIF_EMIS_ROAD XUNIF_HC_ROAD 1 ROAD 2 ROAD 3 ROAD 1 ROAD 2 ROAD 3 D ROAD 1 D ROAD 2 D ROAD 3 NWALL LAYER XUNIF ALB WALL XUNIF EMIS WALL HC WALL 1 WALL 2 WALL 3 WALL 1 WALL 2 XUNIF_TC_WALL 3 XUNIF_D_WALL 1 XUNIF_D_WALL 2 XUNIF_D_WALL 3 XUNIF_ZO_TOWN XUNIF_BLD XUNIF_BLD_HEIGHT XUNIF_WALL_O_HOR XUNIF_H_TRAFFIC XUNIF_LE_TRAFFIC XUNIF_H_INDUSTRY 05 0425 15 05 0425 001 00000015 25 0 1536000 1 II Q 4 85 0 24 2 8 3 0 2 0 97 2110000 2800000 2900000 51 08 05 05 A d 0 2 XUNIF_LE_INDUSTRY LECOCLIMAP F XUNIF_SEA XUNIF_WATER XUNIF_TOWN XUNIF_NATURE oe 0 97 2110000 2800000 2900000 51 08 05 05 gt 1 2 0 2 0 97 2110000 2800000 2900000 51 08 05 05 5 FOR ono amp NAM_PGD_GRID CGRID LONLAT REG amp NAM_LONLAT_REG XLONMIN 0 XLONMAX 0 XLATMIN 0 XLATMAX 0 NLON 1 NLAT 1
38. ASCLLV ASCLLV ASCLLV ASCLLV amp NAM_DATA_TEB CFNAM_ROOTFRAC 1 1 CFNAM_ROOTFRAC 1 2 CFNAM_ROOTFRAC 1 3 CFNAM_RSMIN 1 CFNAM_ZO_0_ZOH 1 CFNAM_GAMMA 1 CFNAM_WRMAX_CF 1 CFNAM_RGL 1 CFNAM_CV 1 CFNAM_ALBN CFNAM_ALBV R_VEG 1 S_VEG 1 CFNAM_ALBUV_VEG 1 CFNAM_ALBN CFNAM_ALBV R_SOIL 1 S_SOIL 1 CFNAM_ALBUV_SOIL 1 CFNAM_GMES 1 CFNAM_RE25 1 CFNAM_BSLAI 1 CFNAM LAIMIN 1 CFNAM SEFOLD 1 GC 1 CFNAM_DMAX 1 CFNAM F2I 1 CFNAM_H_TREE 1 CFNAM CE NITRO 1 CF NITRO 1 CFNAM_CNA_NITRO 1 NROOF_LAYER 3 CFNAM_ALB_ROOF CFNAM_EMIS_ROOF CFNAM_HC_ROOF 1 CFNAM_HC_ROOF 2 CFNAM_HC_ROOF 3 CFNAM_TC_ROOF 1 CFNAM_TC_ROOF 2 CFNAM_TC_ROOF 3 CFNAM_D_ROOF 1 CFNAM_D_ROOF 2 CFNAM_D_ROOF 3 NROAD_LAYER 3 CFNAM_ALB_ROAD CFNAM_EMIS_ROAD CFNAM_HC_ROAD 1 CFNAM_HC_ROAD 2 ROAD 3 CFNAM ROAD 1 CFNAM ROAD 2 CFNAM ROAD 3 CFNAM D ROAD 1 CFNAM D ROAD 2 CFNAM D ROAD 3 NWALL LAYER 3 CFNAM_ALB_WALL CFNAM_EMIS_WALL CFNAM_HC_WALL 1 CFNAM WALL 2 WALL 3 CFNAM TC WALL 1 CFNAM WALL 2 CFNAM WALL 3 CFNAM D WALL 1 CFNAM D WALL 2 CFNAM D WALL 3 CFNAM 20 TOWN CFNAM_BLD CFNAM_BLD_HEIGHT CFNAM_WALL_O_HOR ROOTFRAC_1 DAT ROOTFRAC_2 DAT ROOTFRAC_3 DAT RSMIN DAT 220 0 ZOH DAT GAMMA DAT WRMAX_CF DAT RGL DAT
39. F_VEG 1 9 F_VEG 1 10 F_VEG 1 11 F_VEG 1 12 F_LAI 1 1 F_LAI 1 2 F_LAI 1 3 F_LAI 1 4 F_LAI 1 5 F_LAI 1 6 F_LAI 1 7 F_LAI 1 8 F_LAI 1 9 F_LAI 1 10 F_LAI 1 11 F_LAI 1 12 F_Z0 1 1 20 1 2 20 1 3 20 1 4 Z0 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 1 10 Z0 1 11 70 1 12 EMIS 1 1 EMIS 1 2 F_EMIS 1 3 F_EMIS 1 4 F_EMIS 1 5 F_EMIS 1 6 F_EMIS 1 7 F_EMIS 1 8 F_EMIS 1 9 F_EMIS 1 10 F_EMIS 1 11 F_EMIS 1 12 F_DG 1 1 F_DG 1 2 F_DG 1 3 F_ROOTFRAC 1 1 F_ROOTFRAC 1 2 F_ROOTFRAC 1 3 F_RSMIN 1 F_GAMMA 1 F_WRMAX_CF 1 F_RGL 1 F_CV 1 ZO 0 ZOH 1 F_ALBNIR_VEG 1 a O1 O1 O1 O1 O1 O1 O1 O1 A A 97 Q O cO o O SCORNNNNNANNANN amp NAM_DATA_TEB amp NAM_FRAC XUNIF_ALBVIS_VEG 1 XUNIF_ALBUV_VEG 1 XUNIF_ALBNIR_SOIL 1 XUNIF_ALBVIS_SOIL 1 XUNIF_ALBUV_SOIL 1 XUNIF_GMES 1 XUNIF_RE25 1 XUNIF_BSLAI 1 XUNIF_LAIMIN 1 XUNIF_SEFOLD 1 XUNIF_GC 1 XUNIF_DMAX 1 XUNIF_F21 1 XUNIF_H_TREE 1 XUNIF_CE_NITRO 1 XUNIF_CF_NITRO 1 XUNIF_CNA_NITRO 1 NROOF_LAYER XUNIF_ALB_ROOF XUNIF_EMIS_ROOF XUNIF_HC_ROOF 1 XUNIF_HC_ROOF 2 XUNIF_HC_ROOF 3 XUNIF_TC_ROOF 1 XUNIF_TC_ROOF 2 XUNIF_TC_ROOF
40. SGH ISBAN ED RR UU 60 LFRAC NAM DIAG SURF_ATMn 67 LISBA CANOPY NAMPREPB SBA ee vendeur aan env 51 LNOSOF NAM SUNmP ATM oua met aces eh 56 LNOWRITE CANOPY NAM WRITE SURF ATM 56 LNOWRITE COVERS NAM WRITE SURF ATM 56 LNOWRITE_TEXFILE NAM WRITE SURF ATM 56 LOCEAN CURRENT NAM PREP SEAFLUX 45 LOCEAN MERCATOR NAM_PREP SEAFLUX 45 LPGD NAMDIAG ISBAn 70 LPGD FIX NAMDIAG ISBAn 70 LPRECIP NAMSEAFLUXn 57 LPROGSST NAMSEAFLUXn 57 LPWEBB 57 LPWG 57 LRAD BUDGET 69 LRESET_BUDGETC NAMDIAG ISBAn 70 LRM TOWN NAM COVER nn de share ved 31 LSEA SBL NAM_PREP SEAFLUX 45 LSEDIMENTS 525 2 25 22 2 2 2 59 LSST_DATA NAM_DATA SEAFLUX 20 LSURF_BUDGET NAM DIAG SURFn 68 LSURF_BUDGETC NAMDIAG ISBAn 70 LSURF_MISC_BUDGET NAM DIAG FLAKEn 71 NAMDIAG ISBAn 70
41. XTIME real LTEB CANOPY logical XWS ROAD uniform prescribed value of soil water interception for the road reservoir This prescribed value if defined has priority on the use of CFILE WS and CFILE_TEB data XWS ROOF uniform prescribed value of soil water interception for the roof reservoir This prescribed value if defined has priority on the use of CFILE WS and CFILE_TEB data CFILE WS name of the file used to define the soil water reservoirs The use of a file or prescribed value of XWS ROAD and XWS ROOF has priority on the data in WS file CTYPE WS type of the CFILE_WS file if the latter is provided CTYPE_WS must then be given The following values are currently usable MESONP the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model XTS ROAD uniform prescribed value of surface temperature for road supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data XTS ROOF uniform prescribed value of surface temperat
42. XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF mot 20 20 20 20 20 20 20 20 20 20 _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG LAI LA LA LAI LA LA LAI LAI LA LA LAI LA 20 20 20 20 20 20 20 20 20 20 20 20 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 OOOoOOo0o000000000000000000000000n 00000000000000000000o0o0o0ooooooooooooooocoo cec PS PS 4 PS PS PS 4 4
43. XUNIF EMIS WALL XTIME SST NAM DATA TEB NAM DATA SEAFLUX 20 XUNIF_EXTCOEF_WATER XTS ROAD NAM DATA FLAKE NAM PREP TEB andy EER RA en 53 XUNIF_F2I 5 _ 1 5 NAM PREP2TEB 53 XUNIF GAMMA XTS WALL NAM DATAISBA NAM PREP TEB eren e ene 53 XUNIF_GC XTS WATER UNIF NAM DATAISBA 47 XUNIF_GMES 46 _ 1 5 XTSTEP XUNIF H B1 coat eren rr eno OU de 62 _ _ XUNIF ALB ROAD XUNIF_H_ICE NAM DATA TEB 18 _ _ XUNIF ALB ROOF XUNIF_H_INDUSTRIES NAM DATA TEB 18 NAM DATA TEB XUNIF ALB WALL XUNIF H SNOW NAM DATA TEB 19 _ _ XUNIF ALBNIR SOIL XUNIF H TRAFFIC NAM DATA TISBA 16 NAM DATA TEB XUNIF ALBNIR VEG XUNIF_H_TREE NAM DATAISBA 16 _ 1 5 XUNIF_ALBUV _SOIL XUNIF HC ROAD NAM DATAI
44. XUNIF EMIS 10 6 XUNIF EMIS 10 7 XUNIF EMIS 10 8 XUNIF EMIS 10 9 XUNIF EMIS 10 10 XUNIF EMIS 10 11 XUNIF EMIS 10 12 XUNIF VEG 11 1 XUNIF VEG 11 2 XUNIF VEG 11 3 XUNIF VEG 11 4 XUNIF VEG 11 5 XUNIF VEG 11 6 XUNIF VEG 11 7 XUNIF VEG 11 8 XUNIF VEG 11 9 XUNIF VEG 11 10 XUNIF VEG 11 11 XUNIF VEG 11 12 XUNIF LAI 11 1 XUNIF LAI 11 2 XUNIF LAI 11 3 XUNIF LAI 11 4 XUNIF LAI 11 5 XUNIF LAI 11 6 XUNIF LAI 11 7 XUNIF LAI 11 8 XUNIF LAI 11 9 XUNIF LAI 11 10 XUNIF LAI 11 11 XUNIF LAI 11 12 XUNIF ZO 11 1 XUNIF ZO 11 2 XUNIF ZO 11 3 XUNIF ZO 11 4 XUNIF ZO 11 5 XUNIF ZO 11 6 XUNIF ZO 11 7 XUNIF ZO 11 8 XUNIF ZO 11 9 XUNIF ZO 11 10 XUNIF ZO 11 11 XUNIF ZO 11 12 XUNIF EMIS 11 1 XUNIF EMIS 11 2 XUNIF EMIS 11 3 XUNIF EMIS 11 4 XUNIF EMIS 11 5 XUNIF EMIS 11 6 XUNIF EMIS 11 7 XUNIF EMIS 11 8 XUNIF EMIS 11 9 EMIS 11 10 CO ne P4 P4 PS PS PS PS 4 4 PS 2222222222222 2222 2222222222242 222 222222
45. filename character LEN 6 temperature at the outer edge of the thermally real 3 active layer of the of the bottom sediments character LEN 28 filename character LEN 6 DIRECT BINLLF BINLLV real b depth of the sediments layer character LEN 28 filename character LEN 6 DIRECT BINLLF ASCLLV BINLLV extinction coefficient of solar radiation in water character LEN 28 filename character LEN 6 DIRECT BINLLF ASCLLV BINLLV 2 9 Namelist to add user s own fields Namelist NAM DUMMY PGD This namelist allows to incorporate into the physiographic file any surface field You can treat up to 999 such fields These fields will be written on all the files you will use later after prognostic fields initialization or during and after run etc Their name in the files are DUMMY GRnnn where nnn goes from 001 to 999 During the execution of the programs these fields are stored in the XDUMMY_FIELDS first dimension spatial dimension second dimension total number of fields in the module MODD DUMMY SURF FIELD n You must modify the fortran source where you want to use them MMY PGD NBR integer 0 MMY_PGD_NAME 1000 character LEN 20 1000 7 MMY PGD FILE 1000 character LEN 28 1000 MMY PGD COMMENTN 1000 character LEN 40 1000 MMY PGD AREA 1000 character LEN 3 1000 ALL MMY PGD ATYPE 1000
46. given The following values are currently usable the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model name of the file used to define any TEB variable The use of a file or pres cribed value XWS_ROAD XWS ROOF 5 ROAD XTS ROOF XTS WALL XTI BLD XTI ROAD CFILE_WS or CFILE TS has priority on the data in CFILE_TEB file CTYPE type of the CFILE_TEB file if the latter is provided CTYPE must then be given The following values are currently usable MESONP the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmosp
47. gt AM PREP ISBA AM PREP TEB NAM PREP SURF ATM NAM FLAKEn BLD HEIGHT M DATA TEB M DATA ISBA CE_NITRO M DATA ISBA CF_NITRO M DATA ISBA CNA NITRO M DATA ISBA M DATA ISBA D ROAD M_DATA TEB M_DATA TEB TEB 1 5 DATA ISBA DATA ISBA MIS ROAD DATA TEB MIS ROOF DATA TEB EMIS WALL M_DATA TEB M DATA ISBA _GAMMA M_DATA_ISBA M DATA ISBA ALB ROAD ALB ROOF M DATA TEB ALB WALL M DATA TEB ALBNIR SOIL M DATA ISBA ALBNIR VEG M DATA ISBA ALBUV SOIL M DATA ISBA ALBUV VEG M DATA ISBA ALBVIS SOIL M DATA ISBA ALBVIS VEG M DATA ISBA Q 2 gt Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z O Z Q Z O Z Q Z O Z O Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Q E E Z gt z gt Z gt z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt Z gt 2 gt S gt S AD S gt S gt S gt S gt S gt S gt S gt ep ep S ep ep ep S ep S S gt S gt S gt S gt S gt gt Q j H lt Q 4 lt M GMES M DATA ISBA H INDUSTRIES M DATA TEB TRAFFIC M DATA TEB H TREE M DATA ISBA
48. gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt NAM_CARTESIAN M CH CONTROLn M GCHCEMIS PGD 5 ELE e gy qa ayay tains M CH WATFLUXNn M CHS ORILAM M CONF PROJ M CONF PROJ GRID M COVER sie pleads DATA _ M_DATA SEAFLUX M DATA PEB 22 usapu uapa kaa MDIAG FLAKEn MDIAG ISBAn MDIAG OCEANn MDIAG SURF_ATMn MDIAGSURFn M3DIAGZTEBnm MDUMMY PGD 2 MEELAI EM ose over M INIFILE CARTESIAN M INIFILE CONF PROJ eee a eer sas is Sinden EG OR ERES M_LONLAT_REG M PGD GRID usure eye ees M PGD SCHEMBS an aa M PODPI E oe eue L tu yka M PREPISBA jest REESE M PREP_ISBA_SNOW
49. of CFILE SEAFLX data CFILE SEAFLX name of the file used to define the Sea surface Temperature The use of a file or prescribed value XSST UNIF has priority on the data in CFILE_SEAFLX file CTYPE type of the CFILE SEAFLX file if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model the file type is NETCDF file coming from MERCATOR NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LSEA SBL activates surface boundary multi layer scheme over sea LOCEAN_MERCATOR oceanic variables initialized from MER
50. the treatment done for the atmospheric fields This is allowed because the same externalized routines corresponding to PGD and PREP are used In the case of realistic atmospheric fields the MESONH programs calling the surface are 1 PREP PGD it uses the PGD facility of the surface 2 PREP_NEST_PGD surface fields are only read and rewritten except the orography that is modified the modification of the orography itself is considered as an atmospheric model routine as orography is also a field of the atmospheric model 3 PREP REAL CASE it uses the PREP facility of the surface that can produce either ideal or realistic surface fields 4 SPAWNING it does not produce surface fields any more The surface fields will be recreated during the PREP REAL CASE step following the SPAWNING In the case of ideal atmospheric fields the MESONH program calling the surface is 1 PREPIDEAL CASE it uses both the PGD and PREP facilities of the surface Ideal or realistic the latter only in conformal projection physiographic fields can be either produced or read from a file Then the prognostic surface variables either ideal or realistic can be computed by PREP If you use MESONH atmospheric model the input and output surface files are the same as the atmospheric ones so there is no need to specify via surface namelists any information about the input or output file names Namelist NAM_PGDFILE Note however that in PREP_P
51. 1 gt XRPK gt 0 Lambert projection from south pole 0 Mercator projection from earth center IxXRPK 0 Lambert projection from north pole XRPK 1 polar stereographic projection from north pole XBETA rotation angle of the simulation domain around the reference longitude real Namelist NAM_CONF_PROJ_GRID This namelists defines the horizontal domain in case CGRID CONF PROJ XLATCEN real XLONCEN real NIMAX integer NJMAX integer XDX real XDY real XLATCEN latitude of the point of the center of the domain real decimal degrees XLONCEN longitude of the point of the center of the domain real decimal degrees NIMAX number of surface points of the grid in direction z NJMAX number of surface points of the grid in direction y XDX grid mesh size on the conformal plane in x direction real meters XDY grid mesh size on the conformal plane in y direction real meters Namelist INIFILE CONF PROJ This namelists defines the horizontal domain from an existing surface file in which grid type is CONF PROJ If nothing is set in the namelist a grid identical as the one in the file is chosen default value IXOR integer 1 IYOR integer 1 IXSIZE integer YINIFILE size IYSIZE integer YINIFILE size IDXRATIO integer 1 IDYRATIO integer 1 IXOR first point I index according to the YINIFILE grid left to and out of the new physical domain IYOR first poi
52. 2 0 2 0 97 2110000 2800000 2900000 1 51 0 08 0 05 5184000 F_BSLAI F_LAIMIN F_SEFOLD F_GC F_DMAX F_F2I F_H_TREE F_CE_NITRO F_CF_NITRO UNIF_CNA_NITRO XUNIF_RSMIN XUNIF_GAMMA XUNIF_WRMAX_CF XUNIF_RGL XUNIF_CV 20 0 ZOH P4 P4 PS XUNIF_ALBNIR_VEG XUNIF_ALBVIS_VEG XUNIF_ALBUV_VEG XUNIF_ALBNIR_SOIL XUNIF_ALBVIS_SOIL XUNIF_ALBUV_SOIL XUNIF_GMES 0000003 XUNIF_RE25 XUNIF_BSLAI XUNIF_LAIMIN XUNIF_SEFOLD XUNIF_GC XUNIF_DMAX XUNIF_F2I XUNIF_H_TREE XUNIF_CE_NITRO XUNIF_CF_NITRO XUNIF_CNA_NITRO 8 0 06 8 0 3 8 5184000 8 0 00025 8 0 1 8 0 3 8 20 8 3 79 8 9 84 8 1 3 11 40 11 O 11 0 2 11 100 11 0 00002 11 10 11 0 3 11 0 1 11 0 0425 11 0 3 11 0 1 11 0 06 11 0 003 11 0 0000003 11 0 06 11 0 3 11 5184000 11 0 00025 11 0 1 11 0 3 11 20 11 3 79 11 9 84 11 1 3 XUNIF_BSLAI 9 0 06 XUNIF_LAIMIN 9 0 3 XUNIF_SEFOLD 9 5184000 XUNIF_GC 9 0 00025 XUNIF_DMAX 9 0 1 XUNIF_F2I 9 0 3 XUNIF_H_TREE 9 20 XUNIF_CE_NITRO 9 3 79 XUNIF_CF_NITRO 9 9 84 XUNIF CNA NITRO 9 1 3 XUNIF_RSMIN 12 40 XUNIF_GAMMA 12 0 XUNIF_WRMAX_CF 12 0 2 XUNIF_RGL 12 100 XUNIF_CV 12 0 00002 XUNIF_ZO_0_ZOH 12
53. 22 22 222 2 2 2 2 2 2 2 22 2 Sut F_EMIS 3 11 0 98 XUNIF_EMIS 7 11 0 98 XUNIF_EMIS 11 11 0 98 F_EMIS 3 12 0 98 XUNIF_EMIS 7 12 0 98 XUNIF_EMIS 11 12 0 98 F_VEG 4 1 0 XUNIF_VEG 8 1 0 XUNIF_VEG 12 1 0 F_VEG 4 2 0 XUNIF_VEG 8 2 0 XUNIF_VEG 12 2 0 F_VEG 4 3 0 XUNIF_VEG 8 3 0 XUNIF_VEG 12 3 0 F_VEG 4 4 0 XUNIF_VEG 8 4 0 XUNIF_VEG 12 4 0 F_VEG 4 5 0 5 XUNIF_VEG 8 5 0 5 XUNIF_VEG 12 5 0 5 F_VEG 4 6 0 9 XUNIF_VEG 8 6 0 9 XUNIF_VEG 12 6 0 9 F_VEG 4 7 0 9 XUNIF_VEG 8 7 0 9 XUNIF_VEG 12 7 0 9 F_VEG 4 8 0 9 XUNIF_VEG 8 8 0 9 XUNIF_VEG 12 8 0 9 F_VEG 4 9 0 9 XUNIF_VEG 8 9 0 9 XUNIF_VEG 12 9 0 9 F_VEG 4 10 0 XUNIF_VEG 8 10 0 XUNIF_VEG 12 10 0 F_VEG 4 11 0 XUNIF_VEG 8 11 0 XUNIF_VEG 12 11 0 F_VEG 4 12 0 XUNIF_VEG 8 12 0 XUNIF_VEG 12 12 0 F_LAI 4 1 0 XUNIF_LAI 8 1 0 XUNIF_LAI 12 1 0 F_LAI 4 2 0 XUNIF_LAI 8 2 0 XUNIF_LAI 12 2 0 F_LAI 4 3 0 XUNIF_LAI 8 3 0 XUNIF_LAI 12 3 0 F_LAI 4 4 0 XUNIF_LAI 8 4 0 XUNIF_LAI 12 4 0 F_LAI 4 5 1 XUNIF_LAI 8 5 1 XUNIF_LAI 12 5 1 F_LAI 4 6 3 XUNIF_LAI 8 6 3 XUNIF_LAI 12 6 3 F_LAI 4 7 3 XUNIF_LAI 8 7 3 XUNIF_LAI 12 7 3 F_LAI 4 8 3 XUNIF_LAI 8
54. 2M 1 LFRAC T LPGD LSURF_EVAP_BUDGET LSURF_MISC_BUDGET LSURF_BUDGETC LSURF_MISC_BUDGET CRUNOFF WSAT CROUGH 2040 CSCOND NP89 CALBEDO DRY CC1DRY DEF CSOILFRZ DEF CDIFSFCOND DEF CSNOWRES DEF CCPSURF DRY CCH_DRY_DEP WES89 CSEA_ALB TA96 CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 ududdgd Hd NETCDF NETCDF j values prescribed NTIME 12 VEGTYPE 1 XUNIF_VEGTYPE 2 XUNIF_VEGTYPE 3 XUNIF_VEGTYPE 4 XUNIF_VEGTYPE 5 XUNIF_VEGTYPE 6 VEGTYPE 7 VEGTYPE 8 VEGTYPE 9 VEGTYPE 10 VEGTYPE 11 XUNIF_VEGTYPE 12 XUNIF_VEG 1 1 XUNIF_VEG 1 2 XUNIF_VEG 1 3 XUNIF_VEG 1 4 XUNIF_VEG 1 5 XUNIF_VEG 1 6 1d example with patches XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG 5 1 5 2 5 3 5 4 5 5 5 6 XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG 9 1 9 2 9 3 9 4 9 5 9 6 P4 P4 P4 PS PS PS PS 4 PS
55. 8 3 XUNIF_LAI 12 8 3 F_LAI 4 9 3 XUNIF_LAI 8 9 3 XUNIF_LAI 12 9 3 F_LAI 4 10 0 XUNIF_LAI 8 10 0 XUNIF_LAI 12 10 0 F_LAI 4 11 0 XUNIF_LAI 8 11 0 XUNIF_LAI 12 11 0 F_LAI 4 12 0 XUNIF_LAI 8 12 0 XUNIF_LAI 12 12 0 F_ZO 4 1 0 01 XUNIF_ZO 8 1 0 01 XUNIF_ZO 12 1 0 01 F_ZO 4 2 0 01 XUNIF_ZO 8 2 0 01 XUNIF_ZO 12 2 0 01 F_ZO 4 3 0 01 XUNIF_ZO 8 3 0 01 XUNIF_ZO 12 3 0 01 F_ZO 4 4 0 01 XUNIF_ZO 8 4 0 01 XUNIF_ZO 12 4 0 01 F_ZO 4 5 0 05 XUNIF_ZO 8 5 0 05 XUNIF_ZO 12 5 0 05 F_ZO 4 6 0 15 XUNIF_ZO 8 6 0 15 XUNIF_ZO 12 6 0 15 F_ZO 4 7 0 15 XUNIF_ZO 8 7 0 15 XUNIF_ZO 12 7 0 15 F_ZO 4 8 0 15 XUNIF_ZO 8 8 0 15 XUNIF_ZO 12 8 0 15 F_ZO 4 9 0 15 XUNIF_ZO 8 9 0 15 XUNIF_ZO 12 9 0 15 F_ZO 4 10 0 01 XUNIF_ZO 8 10 0 01 XUNIF_ZO 12 10 0 01 F_ZO 4 11 0 01 XUNIF_ZO 8 11 0 01 XUNIF_ZO 12 11 0 01 F_ZO 4 12 0 01 XUNIF_ZO 8 12 0 01 XUNIF_ZO 12 12 0 01 F_EMIS 4 1 0 98 XUNIF_EMIS 8 1 0 98 XUNIF_EMIS 12 1 0 98 F_EMIS 4 2 0 98 XUNIF_EMIS 8 2 0 98 XUNIF_EMIS 12 2 0 98 F_EMIS 4 3 0 98 XUNIF_EMIS 8 3 0 98 XUNIF_EMIS 12 3 0 98 F_EMIS 4 4 0 98 XUNIF_EMIS 8 4 0 98 XUNIF_EMIS 12 4 0 98 F_EMIS 4 5 0 98 XUNIF_EMIS 8 5 0 98 XUNIF_EMIS 12 5 0 98 EMIS 4 6 0 98 XUNIF_EM
56. CATOR if T LOCEAN CURRENT initial ocean state with current if F ucur 0 vcur 0 3 4 Lake scheme WATFLX Namelist NAM PREP WATFLUX This namelist information is used to initialize the WATFLX sea scheme temperature default value XTS_WATER_UNIF real none CFILE_WATFLX string of 28 characters CFILE in NAM_PREP_SURF_ATM CTYPE string of 6 characters CFILETYPE in NAM_PREP_SURF_ATM NYEAR integer NMONTH integer NDAY integer XTIME real LWAT SBL logical XTS_WATER_UNIF uniform prescribed value of water surface temperature supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_WATFLX data CFILE WATFLX name of the file used to define the Sea surface Temperature The use of a file or prescribed value XTS_WATER_UNIF has priority on the data in CFILE_WATFLX file CTYPE type of the CFILE_WATFLX file if the latter is provided CTYPE must then be given The following values are currently usable MESONP the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 Arpege french forecast model 3 ALADIN Aladin french forecast local model 4
57. CFTYP_RE25 CFTYP_RGL CFTYP_ROOTFRAC CFTYP_RSMIN CFTYP_SEA CFTYP_SEFOLD CFTYP SST CFTYP TC ROAD CFTYP TC ROOF CFTYP TC WALL CFTYP TOWN CFTYP VEG CFTYP VEGTYPE CFTYP WATER CFTYP WRMAX CF CFTYP Z0 CFTYP Z0 0 Z0H CFTYP Z0 TOWN CGRID CHORT CISBA CKSAT CLAMBERT CNATURE COROGTYPE CPHOTO CRAIN CROUGH CRUNOFF CSCOND CSEA CSEA ALB CSEA FLUX NAM DATA ISBA NAM DATA ISBA NAM DATA ISBA NAM DATA ISBA NAM DATA ISBA NAM DATA SEAFLUX NAM DATA TEB NAM DATA TEB NAM DATA TEB NAM FRAC NAM DATA ISBA NAM DATA ISBA CFTYP WALL O HOR NAM DATA TEB NAM DATA ISBA NAM DATA ISBA NAM DATA ISBA NAM DATA TEB NAM PGD GRID NAM SGH ISBAn NAMLISBA NAM SGH ISBAn NAM PGD SCHEMES NAMLISBA NAM SGH ISBAn NAMLISBAn NAM SGH ISBAn NAMLISBAn NAM PGD SCHEMES NAM SEAFLUXn NAM SEAFLUXn CSNOW NAM PREP ISBA SNOW 51 CSNOWRES NAM ISBAn oat eren erra inde e de 61 CSOILFRZ NAM ISBAT 4 61 CTOPREG NAMSGHISBAn 60 CTOWN NAM PGD SCHEMES 22 CTYPE 48 51 5 44
58. FTYP_WATER CFTYP_NATURE CFTYP_TOWN gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV amp NAM_PREP_ISBA amp NAM_PREP_ISBA_SNOW amp NAM_IO_OFFLINE amp NAM_DIAG_SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM_SGH_ISBAn amp NAM_ISBAn amp NAM_CH_ISBAn amp NAM_SEAFLUXn amp NAM_CH_SEAFLUXn amp NAM_CH_WATFLUXn amp NAM_CH_TEBn XHUG XHUG XHUG XTG_ XTG_ROOT XTG_DEEP NYEAR NMON NDAY XTIM _SURF ROOT DEEP SURF ooo TH 25 21600 CSNOW 23 1 LPRINT T CFORCING_FILETYPE CSURF_FILETYPE CTIMESERIES_FILETYPE LWRITE_COORD T LSET_FORC_ZS T LSURF_BUDGET T N2M 1 LFRAC T LPGD LSURF_EVAP_BUDGET LSURF_MISC_BUDGET LSURF _BUDGETC LSURF_MISC_BUDGET CRUNOFF WSAT CROUGH 2040 CSCOND NP89 CALBEDO DRY CCiDRY DEF CSOILFRZ DEF CDIFSFCOND DEF gt CSNOWRES CCPSURF DRY CCH_DRY_DEP WES89 CSEA_ALB TA96 CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 mada 4 NETCDF gt Index Namelist description z Z z zz z z zz zz z z z Z 2222222 2222222 2222 2222222 2222222 222 2 2 ge ge ge gt PE P gt gt gt gt P P gt gt gt gt P gt gt gt gt y P gt gt gt gt gt gt
59. GC F_DMAX F_F2I F_H_TREE F_CE_NITRO F_CF_NITRO F_CNA_NITRO F_RSMIN F_GAMMA F_WRMAX_CF F_RGL F_CV 20 0 20 F_ALBNIR_VEG F_ALBVIS_VEG F_ALBUV_VEG F_ALBNIR_SOIL F_ALBVIS_SOIL F_ALBUV_SOIL F_GMES F_RE25 F_BSLAI F_LAIMIN F_SEFOLD F_GC F_DMAX F_F2I F_H_TREE F_CE_NITRO F_CF_NITRO F_CNA_NITRO F_ALB_ROOF F_EMIS_ROOF F_HC_ROOF 1 F_HC_ROOF 2 0 3 TC 0 1 TC 0 2 0 3 F D 00 1 F_D_ROOF 2 ROOF 3 0 N N N N N N N N N N N 0 NIF_ALB_ROAD NIF_EMIS_ROAD NIF_HC_ROAD 1 NIF HC ROAD 2 NIF ROAD 3 NIF TC ROAD 1 NIF ROAD 2 NIF ROAD 3 NIF_D_ROAD 1 NIF_D_ROAD 2 NIF_D_ROAD 3 A N N N N N N N N F_ALB_WALL F_EMIS_WALL F HC WALL 1 F HC WALL 2 F HC WALL 3 F TC WALL 1 F TC WALL 2 F TC WALL 3 7 7 7 7 7 0 1 7 0 3 7 20 7 3 79 7 9 84 7 1 3 10 40 10 0 10 0 2 10 100 10 0 00002 10 10 10 0 3 10 0 1 10 0 0425 10 0 3 10 0 1 10 0 06 10 0 003 10 10 10 10 10 10 0 1 10 0 3 10 20 10 3 79 10 9 84 10 1 3 0 06 0 3 5184000 0 00025 06 0 00025 3 0 2 0 97 2110000 2800000 2900000 2110000 2800000 2900000 51 08 05 05 A 1
60. GD just before the call to the surface physiographic compu tation in PGD for which the namelists are described in the next chapter there is a namelist to define the output physiographic file Fortran CPGDFILE string of 28 characters MESONH run and diagnostics Then the MESONH run can be done During this one the diagnostics can be or not be computed In DIAG the surface diagnostics can also be recomputed 1 2 3 in AROME In this case MESONH FM files are also used for the surface only The parallelization of the surface fields is done during the reading or writing of the fields by parallelization routines of ALADIN atmospheric model Chapitre 2 The physiographic fields 2 1 Overview of physiographic fields computation PGD The physiographic fields are averaged or interpolated on the specified grid by the program PGD They are stored in a file called PGD file but only with the physiographic 2D fields the geographic and grid data written in it During the PGD facility 1 You choose the surface schemes you will use 2 You choose and define the grid for the surface 3 The physiographic fields are defined on this grid 2 1 1 Choice of the grid There are 3 possibilities 2 are always possible one is available only if the PGD routine is integrated into an atmospheric model initialization facility 1 The grid is chosen via namelists options see below 2 The grid is defined as a part of the gr
61. IS 8 6 0 98 XUNIF_EMIS 12 6 0 98 F_EMIS 4 7 0 98 XUNIF_EMIS 8 7 0 98 XUNIF_EMIS 12 7 0 98 F_EMIS 4 8 0 98 XUNIF_EMIS 8 8 0 98 XUNIF_EMIS 12 8 0 98 F_EMIS 4 9 0 98 XUNIF_EMIS 8 9 0 98 XUNIF_EMIS 12 9 0 98 F_EMIS 4 10 0 98 XUNIF_EMIS 8 10 0 98 XUNIF_EMIS 12 10 0 98 F_EMIS 4 11 0 98 XUNIF_EMIS 8 11 0 98 XUNIF_EMIS 12 11 0 98 F_EMIS 4 12 0 98 XUNIF_EMIS 8 12 0 98 XUNIF_EMIS 12 12 0 98 F_DG 1 1 0 01 XUNIF_DG 5 1 0 01 XUNIF_DG 9 1 0 01 F_DG 1 2 1 60 XUNIF_DG 5 2 1 60 XUNIF_DG 9 2 1 60 F_DG 1 3 1 60 XUNIF_DG 5 3 1 60 XUNIF_DG 9 3 1 60 F_DG 2 1 0 01 XUNIF_DG 6 1 0 01 XUNIF_DG 10 1 0 01 F_DG 2 2 1 60 XUNIF_DG 6 2 1 60 XUNIF_DG 10 2 1 60 F_DG 2 3 1 60 XUNIF_DG 6 3 1 60 XUNIF_DG 10 3 1 60 F_DG 3 1 0 01 XUNIF_DG 7 1 0 01 XUNIF_DG 11 1 0 01 F_DG 3 2 1 60 XUNIF_DG 7 2 1 60 XUNIF_DG 11 2 1 60 F_DG 3 3 1 60 XUNIF_DG 7 3 1 60 XUNIF_DG 11 3 1 60 F_DG 4 1 0 01 XUNIF_DG 8 1 0 01 XUNIF_DG 12 1 0 01 F_DG 4 2 1 60 XUNIF_DG 8 2 1 60 XUNIF_DG 12 2 1 60 F_DG 4 3 1 60 XUNIF_DG 8 3 1 60 XUNIF_DG 12 3 1 60 F_ROOTFRAC 1 1 999 XUNIF ROOTFRAC 5 1 999 XUNIF_ROOTFRAC 9 1 999 F_ROOTFRAC 1 2 999 XUNIF_ROOTFRAC 5 2 999 XUNIF ROOTFRAC 9 2 999 F_ROOTFRAC 1 3 999 XUNIF_ROOTFRAC 5 3 999 XUNIF_ROOTFRAC 9 3 999 F
62. LONLAT REG this grid is defined as a regular latitude longitude grid IGN this grid type contains all IGN French National Geographical Institute possible Lambert projections NONE this grid is not regular Only the number of points and the size of each grid mesh is prescribed There is no positioning of each point compared to any other YINIFILE name of the file used to define the grid It is possible to define the grid as a subgrid of a previously created file This is currently possible only for files that have a CONF PROJ or CARTESIAN grid type The exact definition of the subgrid grid chosen is prescribed in a namelist described below depending on the type of grid available in the file chosen The use of a file has priority on the CGRID type YFILETYPE type of the YINIFILE file if the latter is provided YFILETYPE must be given The following values are currently usable MESONH the file type is MESONH file 2 3 2 Conformal projection grids Mercator Lambert Polar stereogra phic Namelist NAM_CONF_PROJ This namelist defines the projection in case CGRID CONF PROJ Fortran type default value XLATO reference latitude for conformal projection real decimal degrees XLONO reference longitude for conformal projection real decimal degrees XRPK cone factor for the projection real XRPK 1 polar stereographic projection from south pole
63. NIF ALBUV VEG 3 0 0425 XUNIF ALBNIR SOIL 1 0 3 XUNIF ALBNIR SOIL 2 0 3 XUNIF ALBNIR SOIL 3 0 3 XUNIF ALBVIS SOIL 1 O 1 XUNIF ALBVIS SOIL 2 0 1 XUNIF ALBVIS SOIL 3 0 1 XUNIF ALBUV SOIL 1 0 06 XUNIF ALBUV SOIL 2 0 06 XUNIF ALBUV SOIL 3 0 06 XUNIF GMES 1 0 003 XUNIF_GMES 2 0 003 XUNIF_GMES 3 0 003 XUNIF_RE25 1 0 0000003 XUNIF_RE25 2 0 0000003 XUNIF_RE25 3 0 0000003 XUNIF_BSLA 1 0 06 XUNIF_BSLAI 2 0 06 XUNIF_BSLAI 3 0 06 XUNIF_LAIMIN 1 0 3 XUNIF_LAIMIN 2 0 3 XUNIF_LAIMIN 3 0 3 XUNIF_SEFOLD 1 5184000 XUNIF_SEFOLD 2 5184000 XUNIF_SEFOLD 3 5184000 XUNIF_GC 1 0 00025 XUNIF_GC 2 0 00025 XUNIF_GC 3 0 00025 XUNIF_DMAX 0 1 XUNIF _DMAX 2 0 1 XUNIF _DMAX 3 0 1 XUNIF_F2I 1 0 3 XUNIF_F2I 2 0 3 XUNIF_F2I 3 0 3 XUNIF_H_TREE 1 20 XUNIF_H_TREE 2 20 XUNIF_H_TREE 3 20 XUNIF_CE_NITRO 1 3 79 XUNIF_CE_NITRO 2 3 79 XUNIF_CE_NITRO 3 3 79 XUNIF_CF_NITRO 1 9 84 XUNIF_CF_NITRO 2 9 84 XUNIF_CF_NITRO 3 9 84 XUNIF_CNA_NITRO 1 1 3 XUNIF CNA NITRO 2 1 3 XUNIF CNA NITRO 3 1 3 XUNIF_RSMIN 4 40 XUNIF_RSMIN 5 40 XUNIF_RSMIN 6 40 XUNIF GAMMA 4 O GAMMA 5 O GAMMA 6 0 XUNIF _WRMAX_CF 4 0 2 XUNIF_WRMAX_CF 5 0 2 XUNIF_WRMAX_CF 6 0 2 XUNIF_RGL 4 100 XUNIF_RGL 5 100 XUNIF_RGL 6 100 XUNIF_CV 4 0 00002 XUNIF_CV 5 0 00002 XUNIF_CV
64. OW ROOF 3 TSNOW RooF 1 L L PWSNOW ROAD RSNOW ROAD __ TSNOW ROAD 1 e __ __ TOANVON 1 _Q CANYON L TEECANU 1 TEB CAN G TEB CANEE 7 1 4 WATFLUX WATERFLUX SEL TSWATER zowa WAT SBLEU __ CASE WAT SBLQ WAT SBLE CSP f 7 1 5 FLAKE SEE gt ru CN j 1 1 3 TOT e ee or Fi 3 am WAT SBLU WAT SBL T _ WAT SBL E WAT SBL P JT Annexe A Example of namelist features A 1 How to define a target grid amp NAM_PGDFILE CPGDFILE PGDFILE 2 5km_AROME_FRANCE amp NAM_PGD_GRID CGRID CONF PROJ amp NAM_CONF_PROJ XLATO 46 401460686331625 XLONO 2 2000000000000273 XRPK 0 7241894422 XBETA 0 00 amp NAM CONF PROJ GRID XLATCEN 46 401460686331625 XLONCEN 2 2000000000000273 NIMAX 588 NJMAX 500 XDX 2499 7648911167489 XDY 2499 7648911167489 A 2 How to use ECOCLIMAP I This is the classical way how t
65. OW VEG3 RSNOW VEG3 HSNOW VEGS SEA CAN ISBA CAN Ta ISBA CAN Qn ISBA_CAN_En HD ima D DOP DO DOP DP LEP DOP DEP DEP rol DOF DIT DEP DOF DOP DOP tol tol J irae temperate KL C dep soil temperature ya temperature surface Tiquid volumetric water content liquid volumetric water content dep liquid volumetric water content surface frozen volumetric water content frozen volumetric water content third layer frozen volumetric water content water retained by the foliage aerodynamical resistance tea area index m3 m3 kgCO2 m2 s latent heat flux respiration of above ground structural biomass wind in canopy at layer n n 1 to 6 temperature in canopy at layer n n 1 to 6 humidity in canopy at layer n n 1 to 6 TKE in canopy at layer n n 1 to 6 pressure in canopy at layer n n 1 to 6 7 1 2 SEAFLUX SEAFLUX SEL am SST ZOSEA x 4 SEASBLT SEASBLQ L SEASBLEE SEASBLP 6 7 1 3 TEB E gt J j Wo Wolf L TLROAD e f WsNOWwROOF 1 _ ESN
66. PE 14 XUNIF WALL O HOR NAM DATA TEB 18 XUNIF_WATER 12 XUNIF WATER DEPTH DATA 37 XUNIF WATER FETCH DATA FLAKE 37 XUNIF_WDRAIN NA MIS BA veces acts te ee atid sua 36 XUNIF_WRMAX_CF NAM_DATALISBA remer cece eee eee eee 16 XUNIF Z0 15 XUNIF Z0 0 Z0H NAM DATA ISBA cnin rev lee 16 XUNIF Z0 TOWN NAM DATA TEB 18 XUNIF_ZS NAM ZS ue we px eas rev Yves Ya 33 XUSURIC NAM SURF ATM 56 XUSURICL NAM SURF ATM 56 XUSURID NAM SURF ATM 56 XVCHRNK NAM SUREZATM 2 tte eene EA us 56 XVMODMIN NAM SURB ATM e NEA ere tus 56 XVZ0CM NAMSURF_ATM 56 XWS_ROAD 52 XWS_ROOF 52 XX NAM TGN IR E e Ed 29 XZWAT PROFILE NAMDIAG FLAKEn 71 Y YCLAY NAM ISBA 53 5 tn AN tn ot 36 YCLAYFILETYPE NAM ISBA haydee st 36 YCOVER NAM COVER 31 YDEPTH BS 37 YDEPTH BSFILET
67. P_TC_ROOF 1 CFTYP_TC_ROOF 2 CFTYP_TC_ROOF 3 CFTYP_D_ROOF 1 CFTYP_D_ROOF 2 CFTYP_D_ROOF 3 CFTYP_ALB_ROAD CFTYP_EMIS_ROAD CFTYP_HC_ROAD 1 CFTYP_HC_ROAD 2 CFTYP_HC_ROAD 3 CFTYP_TC_ROAD 1 CFTYP_TC_ROAD 2 CFTYP_TC_ROAD 3 CFTYP_D_ROAD 1 CFTYP_D_ROAD 2 CFTYP_D_ROAD 3 CFTYP_ALB_WALL CFTYP_EMIS_WALL CFTYP_HC_WALL 1 CFTYP_HC_WALL 2 CFTYP_HC_WALL 3 CFTYP_TC_WALL 1 CFTYP_TC_WALL 2 CFTYP_TC_WALL 3 CFTYP_D_WALL 1 CFTYP_D_WALL 2 CFTYP_D_WALL 3 CFTYP_ZO_TOWN CFTYP_BLD CFTYP_BLD_HEIGHT CFTYP WALL 0 gt ASC gt ASC gt ASC LLV LLV LLV gt gt gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASC ASC ASC ASC gt ASC gt ASC LLV LLV LLV LLV LLV LLV gt gt gt gt gt ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV
68. RIP river routing model RRM scheme LFLOOD Activates the flooding scheme Namelist NAM_ISBAn CCIDRY string of 4 characters DEF GB93 CSCOND string of 4 characters NP89 PL98 CSOILFRZ string of characters CDIFSFCOND string of 4 characters MLCH CSNOWRES string of characters DEF RIL CALBEDO string of 4 characters MEAN DRY WET EVOL CROUGH string of 4 characters Z01D Z04D CCPSURF string of characters DRY XTSTEP real XCGMAX real CCIDRY type of C1 formulation for dry soils The following options are currently avai lable DEF Giard Bazile formulation GB93 Giordani 1993 Braud 1993 CSCOND type of thermal conductivity The following options are currently available NP89 Noilhan and Planton 1989 formula PL98 Peters Lidard et al 1998 formula CSOILFRZ type of soil freezing physics option The following options are currently avai lable DEP Boone et al 2000 Giard and Bazile 2000 LWT Phase changes as above but relation between unfrozen water and temperature considered CDIFSFCOND type of Mulch effects The following options are currently available DEF no mulch effect MLCH include the insulating effect of leaf litter mulch on the surf thermal cond CSNOWRES type of turbulent exchanges over snow The following options are currentl
69. SBA 16 XUNIF_ALBUV_VEG XUNIF HC ROOF NAM DATAISBA 16 NAM DATA TEB XUNIF_ALBVIS_SOIL XUNIF HC WALL 8 16 NAM DATA TEB XUNIF_ALBVIS_VEG XUNIF_LAI 8 16 _ 9 XUNIF_BLD XUNIF LAIMIN NAM DATA TEB 18 _ 9 XUNIF_BLD_HEIGHT XUNIF_LE_INDUSTRIES NAM DATA TEB 18 NAM DATA TEB XUNIF_BSLAI XUNIF LE TRAFFIC NAMDATAISBA 17 NAM DATA TEB XUNIF_CE NITRO XUNIF_NATURE NAMDATAISBA 17 acensar UA XUNIF_CF_NITRO XUNIF RE25 NAM DATAISBA 17 _ XUNIF_CLAY XUNIF RGL NAMISBA 36 _ 15 XUNIF_CNA_NITRO XUNIF_ROOTFRAC NAM DATAISBA 17 _ 1 5 XUNIF_COVER XUNIF RSMIN 31 NAM_DATAISBA
70. SO Wesley 1989 deposition scheme 5 6 Chemical deposition and biogenic emissions over vege tation Namelist NAM CH ISBAn Fortran name Fortran name Fortran type Fortran type values default value value CCH DRY DEP string of 6 characters WESS9 LCH_BIO_FLUX logical FALSE CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme LCH BIO FLUX flag to activate the biogenic emissions yz 5 7 Chemical aerosol scheme ORILAM Namelist NAM_CHS_ORILAM 5 8 default value LCH AERO FLUX logical FALSE LCO2PM logical FALSE XEMISRADIUSI real 0 05 XEMISRADIUSJ real 0 2 XEMISSIGI real 1 80 XEMISSIGJ real 2 00 CRGUNIT character MASS NUMP NUMB LCH AERO FLUX switch to active aerosol surface flux for ORILAM LCO2PM switch to activate emission of primary aerosol Black and Organic carbon compute from CO emssion Uses only if CO emission is defined in the surface field see PREP PGD and if there is no data for primary aerosol emissison XEMISRADIUST Aerosol flux mean radius of aitken mode in um only if LCH_AERO_FLUX TRUE XEMISRADIUSJ Aerosol flux mean radius of accumulation mode in only if LCH AERO FLUX TRUE XEMISSIGT Aerosol flux standard deviation of aitken mode in only if LCH AERO FLUX TRUE XEMISSIGJ Aerosol f
71. T 3 1 NDAY_SST 3 2 XTIME_SST 3 0 XUNIF_xxx uniform prescribed value of parameter xxx If XUNIF_xxx is set file CF is not used CFNAM xxx data file name associated to parameter xxx If XUNIF xxx is set file CF is not used type of sea data file IDIRECT BINLLF BINLLV ASCLLV 2 2 Choice of the surface schemes You must first choose the surface schemes you will use It is not possible once chosen to modify the surface schemes in the later steps PREP running of the schemes DIAG Depending on the schemes you use some additional physiographic fields will be computed if they are needed for the surface scheme chosen For example the ISBA scheme used for vegetation and soil needs the fractions of clay and sand Namelist NAM_PGD_SCHEMES This namelist defines the four schemes that will be used one for each type of surface sea inland water town vegetation default value string of 6 characters FLUX TSZ0 ISBA ISBA string of 6 characters NONE FLUX SEAFLX SEAFLX string of 6 characters NONE FLUX WATFLX FLAKE WATFLX string of 6 characters FLUX TEB DEB CNATURE scheme used for vegegation and natural soil covers The different possibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 2 FLUX ideal f
72. THE EXTERNALIZED SURFACE USER S GUIDE v4 P Le Moigne 19 d cembre 2008 Table des mati res 1 Overview of the externalized surface sequence 11 Th sequence LA ei M oboe Oe S S a k imet 1 2 The atmospheric models using the externalized surface 1 21 offline mode ce dh Sete Pe RE RUE e 12 2 ein MES ONE i5 m ms eet duo a Sat imt adt em s h ee 1 258 SES Sa ko deett orbes The physiographic fields 2 1 Overview of physiographic fields computation PGD 2 14 Choice ofthe grid we ai ATI 2 1 2 Choice of the physiographic fields 2 2 Choice of the surface schemes 2 3 Definition of the grid 2 3 1 Choice of the grid type 2 3 2 Conformal projection grids Mercator Lambert Polar stereographic 2 3 3 Cartesian Grids ge de OR 2e AU ee 2 3 4 Regular longitude latitude grids 2 3 5 Regular Lambert grids 2 36 Gaussian grids was pee d dob re Lu E RAO 2 4 Land coverfractions wort 3 a S s eee xa vu ea 2 5 Specifities of ecoclimap classification 2 6 Orography subgrid orography and bathymetry 2 7 Namelist for ISBA scheme
73. T_UNIF 285 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_WATFLUX XTS_WATER_UNIF 285 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_TEB XTI_ROAD 285 XTI_BLD 285 XTS_ROAD 285 XTS_ROOF 285 XTS_WALL 285 XWS ROAD O XWS_ROOF 0 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_ISBA XHUG_SURF 1 XHUG_ROOT 1 XHUG_DEEP 1 XTG_SURF 276 16 XTG_ROOT 276 16 XTG_DEEP 276 16 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_ISBA_SNOW CSNOW 3 L amp NAM_IO_OFFLINE LPRINT T CFORCING_FILETYPE PNETCDE CSURF_FILETYPE CTIMESERIES FILETYPE NETCDF LWRITE_COORD T LSET_FORC_ZS T amp NAM_DIAG_SURFn LSURF_BUDGET F N2M 0 LCOEF F LSURF VARS F amp NAM_DIAG_SURF_ATMn LFRAC F amp NAM_DIAG_ISBAn LPGD F LSURF_EVAP_BUDGET F LSURF MISC BUDGET F LSURF_BUDGETC F amp NAM_DIAG_TEBn LSURF_MISC_BUDGET F amp NAM_SGH_ISBAn CRUNOFF amp NAM_ISBAn CROUGH ZO4D 7 CSCOND NP89 CALBEDO DRY CC1DRY DEF CSOILFRZ DEF CDIFSFCOND DEF CSNOWRES DEF CCPSURF DRY amp NAM_CH_ISBAn CCH_DRY_DEP WES89 amp NAM_SEAFLUXn CSEA_ALB TA96 amp NAM_CH_SEAFLUXn CCH_DRY_DEP WES89 amp NAM_CH_WATFLUXn CCH_DRY_DEP WES89 amp NAM_CH_TEBn CCH_DRY_DEP WES89 A 7 3 Surface par
74. YPE NAM DATA FLAKE YEXTCOEF WATER NAM DATA FLAKE YEXTCOEF WATERFILETYPE NAM DATA FLAKE YFILETYPE YINIFILE NAM PGD GRID YIRRIG NAM COVER NAM PGD GRID NAM ECOCLIMAP2 YNCVARNAME NAM SEABATHY YRUNOFFB NAM ISBA YRUNOFFBFILETYPE YSAND YSEABATHY NAM SEABATHY YT_BS NAM DATA FLAKE SFILETYPE NAM DATA FLAKE YT_B NAM ISBA YWATER_DEPTH NAM DATA FLAKE YWATER_DEPTHFILETYPE NAM DATA FLAKE YWATER FETCH NAM DATA FLAKE YWATER_FETCHFILETYPE YWD YWD YY RA NAM DATA FLAKE RAIN NAM ISBA INFILETYPE NAM ISBA
75. ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO 9 11 XUNIF_ZO 9 12 XUNIF_EMIS 9 1 XUNIF_EMIS 9 2 XUNIF_EMIS 9 3 XUNIF_EMIS 9 4 XUNIF_EMIS 9 5 XUNIF_EMIS 9 6 XUNIF_EMIS 9 7 XUNIF_EMIS 9 8 XUNIF_EMIS 9 9 XUNIF_EMIS 9 10 XUNIF_EMIS 9 11 XUNIF_EMIS 9 12 XUNIF_VEG 10 1 XUNIF_VEG 10 2 XUNIF_VEG 10 3 XUNIF_VEG 10 4 XUNIF_VEG 10 5 XUNIF_VEG 10 6 XUNIF_VEG 10 7 XUNIF_VEG 10 8 XUNIF_VEG 10 9 XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_ZO XUNIF_ZO 9 7 9 8 9 9 9 10 9 11 9 12 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 1 10 2 10 10 10 11 10 12 10 10 10 11 10 12 O O O O O O O O O O O O O O O O O O O O O O O O O O O O QO QO QO F O O O O O O O O O O XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNIF XUNIF XUNIF
76. _ROOTFRAC 2 1 999 XUNIF ROOTFRAC 6 1 999 XUNIF_ROOTFRAC 10 1 999 F_ROOTFRAC 2 2 999 XUNIF ROOTFRAC 6 2 999 XUNIF_ROOTFRAC 10 2 999 F_ROOTFRAC 2 3 999 XUNIF ROOTFRAC 6 3 999 XUNIF_ROOTFRAC 10 3 999 XUNIF_ROOTFRAC 3 1 999 XUNIF ROOTFRAC 7 1 999 XUNIF ROOTFRAC 11 1 999 XUNIF ROOTFRAC 3 2 999 XUNIF ROOTFRAC 7 2 999 XUNIF ROOTFRAC 11 2 999 XUNIF ROOTFRAC 3 3 999 XUNIF ROOTFRAC 7 3 999 XUNIF ROOTFRAC 11 3 999 XUNIF ROOTFRAC 4 1 999 XUNIF ROOTFRAC 8 1 999 XUNIF ROOTFRAC 12 1 999 XUNIF ROOTFRAC 4 2 999 XUNIF ROOTFRAC 8 2 999 XUNIF ROOTFRAC 12 2 999 XUNIF ROOTFRAC 4 3 999 XUNIF ROOTFRAC 8 3 999 XUNIF ROOTFRAC 12 3 999 XUNIF RSMIN 1 40 XUNIF_RSMIN 2 40 XUNIF_RSMIN 3 40 XUNIF GAMMA 1 O GAMMA 2 2 0 GAMMA 3 0 XUNIF _WRMAX_CF 1 0 2 XUNIF_WRMAX_CF 2 0 2 XUNIF_WRMAX_CF 3 0 2 XUNIF_RGL 1 100 XUNIF_RGL 2 100 XUNIF_RGL 3 100 XUNIF 1 0 00002 XUNIF_CV 2 0 00002 XUNIF_CV 3 0 00002 XUNIF 20 0 ZOH 1 10 XUNIF ZO 0 ZOH 2 10 XUNIF ZO 0 ZOH 3 10 XUNIF ALBNIR VEG 1 0 3 XUNIF ALBNIR VEG 2 0 3 XUNIF ALBNIR VEG 3 0 3 XUNIF ALBVIS VEG 1 0 1 XUNIF ALBVIS VEG 2 0 1 XUNIF ALBVIS VEG 3 0 1 XUNIF ALBUV VEG 1 0 0425 ALBUV VEG 2 0 0425 XU
77. _RSMIN 7 40 XUNIF_RSMIN 8 40 XUNIF_RSMIN 9 40 XUNIF GAMMA 7 0 XUNIF_GAMMA 8 O XUNIF_GAMMA 9 0 XUNIF _WRMAX_CF 7 0 2 XUNIF_WRMAX_CF 8 0 2 XUNIF_WRMAX_CF 9 0 2 XUNIF_RGL 7 100 XUNIF_RGL 8 100 XUNIF_RGL 9 100 XUNIF_CV 7 0 00002 XUNIF_CV 8 0 00002 XUNIF_CV 9 0 00002 XUNIF 70 0 ZOH 7 10 XUNIF ZO 0 ZOH 8 10 XUNIF ZO 0 ZOH 9 10 XUNIF ALBNIR VEG 7 0 3 XUNIF ALBNIR VEG 8 0 3 XUNIF ALBNIR VEG 9 0 3 XUNIF ALBVIS VEG 7 0 1 XUNIF ALBVIS VEG 8 0 1 XUNIF ALBVIS VEG 9 0 1 XUNIF ALBUV VEG 7 0 0425 ALBUV VEG 8 0 0425 XUNIF ALBUV VEG 9 0 0425 XUNIF ALBNIR SOIL 7 O 3 XUNIF ALBNIR SOIL 8 0 3 ALBNIR SOIL 9 0 3 XUNIF ALBVIS SOIL 7 O 1 XUNIF ALBVIS SOIL 8 0 1 XUNIF ALBVIS SOIL 9 0 1 XUNIF ALBUV SOIL 7 0 06 XUNIF ALBUV SOIL 8 0 06 XUNIF ALBUV SOIL 9 0 06 XUNIF GMES 7 0 003 XUNIF_GMES 8 0 003 XUNIF_GMES 9 0 003 XUNIF_RE25 7 0 0000003 XUNIF_RE25 8 0 0000003 XUNIF_RE25 9 0 0000003 amp NAM_DATA_TEB lt lt Ps Pj P Pj Pj Pj Pj bd Pj Pj Pj be Pd P4 Pj Pj Pj Pj P Pj ecc eee e em c P4 P4 Z 4 gt lt F_BSLAI F_LAIMIN F_SEFOLD F_
78. ameters read from external files The following namelist is valid only for simulation without patches In case of use of patches like for A gs options it should be updated amp NAM_DATA_ISBA NTIME 12 CFNAM_VEGTYPE 1 CFNAM_VEGTYPE 2 CFNAM_VEGTYPE 3 CFNAM_VEGTYPE 4 CFNAM VEGTYPE 5 CFNAM VEGTYPE 6 VEGTYPE 7 CFNAM VEGTYPE 8 CFNAM VEGTYPE 9 VEGTYPE 10 CFNAM VEGTYPE 11 CFNAM VEGTYPE 12 VEG 1 1 VEG 1 2 CFNAM_VEG 1 3 CFNAM_VEG 1 4 CFNAM_VEG 1 5 CFNAM_VEG 1 6 CFNAM_VEG 1 7 CFNAM_VEG 1 8 CFNAM_VEG 1 9 CFNAM_VEG 1 10 CFNAM_VEG 1 11 CFNAM_VEG 1 12 CFNAM LAI 1 1 CFNAM LAI 1 2 CFNAM LAI 1 3 CFNAM LAI 1 4 CFNAM LAI 1 5 CFNAM LAI 1 6 CFNAM LAI 1 7 CFNAM LAI 1 8 CFNAM LAI 1 9 CFNAM LAI 1 10 LAI 1 11 LAI 1 12 ZO 1 1 Z0 1 2 Z0 1 3 Z0 1 4 Z0 1 5 Z0 1 6 ZO 1 7 Z0 1 8 Z0 1 9 ZO 1 10 CFNAM Z0 1 11 CFNAM Z0 1 12 CFNAM EMIS 1 1 CFNAM EMIS 1 2 CFNAM EMIS 1 3 CFNAM EMIS 1 4 EMIS 1 5 CFNAM EMIS 1 6 CFNAM EMIS 1 7 CFNAM EMIS 1 8 CFNAM EMIS 1 9 CFNAM EMIS 1 10 CFNAM EMIS 1 11 CFNAM EMIS 1 12 CFNAM_DG 1 1 CFNAM_DG 1 2 CFNAM_DG 1 3 VEGTYPE 01 VEGTYPE 02 gt VEGTYPE_03 gt
79. an type default NIF_ALB_WALL NAM ALB WALL TYP ALB WALL NIF EMIS WALL NAM EMIS WALL TYP EMIS WALL NIF HC WALL CFNAM HC WALL CFTYP HC WALL XUNIF TC WALL CFNAM TC WALL CFTYP TC WALL XUNIF D WALL CFNAM D WALL CFTYP D WALL XUNIF H TRAFFIC CFNAM H TRAFFIC CFTYP H TRAFFIC XUNIF LE TRAFFIC CFTYP_LE_TRAFFIC XUNIF_H_INDUSTRIES CFNAM H INDUSTRIES CFTYP H INDUSTRIES XUNIF_LE_INDUSTRIES CFNAM LE INDUSTRIES CFTYP LE INDUSTRIES real character character real character character real character character real character character real character character real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV albedo esc wa emissivity layers heat capacity wall layers thermal conductivity wall layers depth anthropogenic sensible heat fluxes due to t
80. ar of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LWAT SBL activates surface boundary multi layer scheme over inland water 3 6 Vegetation scheme ISBA Namelist NAM_PREP_ISBA This namelist information is used to initialize the ISBA vegetation scheme variables soil temperature profile soil water and ice profiles water intercepted by leaves snow Fortran default value XHUG_SURF XHUG_ROOT XHUG_DEEP CFILE WG CTYPE WG XTG_SURF XTG_ROOT XTG_DEEP CFILE_ISBA real real real string of 28 characters string of 6 characters MESONH GRIB real real real string of 28 characters string of 6 characters MESONH GRIB string of 28 characters none none none CFILE_ISBA in this namelist CTYPE in this namelist none none none CFILE_ISBA in this namelist CTYPE in this namelist CFILE NAM PREP SURF ATM CTYPE CFILETYPE in NAM PREP SURF ATM
81. ative method proposed by Fairall et al 1996 from TOGA COARE ex periment amended by cnrm memo to take into account effect of atmospheric convection precipitation and gustiness on fluxes ECUME iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by cnrm memo to take into account effect of atmospheric convec tion precipitation and gustiness on fluxes improvement of surface exchange coefficients representation LPWG correction of fluxes due to gustiness LPRECIP correction of fluxes due to precipitation LPWEBB correction of fluxes due to convection Webb effect CSEA_ALB type of albedo formula The following options are currently available UNIF a uniform value of 0 135 is used for water albedo TA96 Taylor et al 1996 formula for water direct albedo depending on solar zenith angle 0 0 037 1 1cos 0 1 4 0 15 LPROGSST set it to TRUE to make SST evolve with tendency when using the 14 oceanic model NTIME COUPLING coupling time frequency between surface and the 14 oceanic model Namelist NAM_SURF_SLT default value CEMISPARAM string of 5 characters Vig01 Sch04 Sch04 CEMISPARAML_SLT One line sea salt emission parameterization type This namelist gives the distribution of emitted sea salt of SURFEX For Each paramterization type a geometric standard deviation and a median radius is given See the code
82. e FM files CEMIS_PGD_FILE list of the names of the files containing the data for the fields you have specified in CEMIS_ PGD_NAME CEMIS PGD COMMENTNY list of the comments associated to each emission field NEMIS_PGD_TIME list of the time of the files containing the data for the fields you have specified in CEMIS_ PGD_NAME CEMIS_PGD_FILETYPE list of the types of the files containing the data for the fields you have specified in CEMIS PGD NAME DIRECT BINLLV ASCLLV CEMIS_PGD_AREA area of meaningfullness of the fields you have specified in CE MIS_PGD_NAME CALL NAT SEA respectively for eve rywhere natural areas town areas sea inland waters land natural cover 4 town For example oceanic emission of DNS is relevant on SEA CEMIS_PGD_ATYPE type of averaging during PGD for the fields you have specified in CEMIS_PGD_NAME INV respectively for arithmetic inverse and logarithmic averaging Example amp NAM_CH_EMIS_PGD NEMIS_PGD_NBR 2 CEMIS_PGD_NAME 1 COE NEMIS_PGD_TIME 1 0 CEMIS_PGD_COMMENT 1 CO_OOh00 CEMIS_PGD_AREA 1 LAN CEMIS_PGD_ATYPE 1 ARI CEMIS_PGD_FILE 1 co_00 asc CEMIS_PGD_FILETYPE 1 ASCLLV CEMIS_PGD_NAME 2 COE NEMIS_PGD_TIME 2 43200 CEMIS PGD COMMENT 2 CO_12h00 AREA 2 LAN
83. e name If XUNIF_SEA is set CFNAM SEA is not l used CFTYP SEA type of sea data file DIRECT BINLLF BINLLV ASCLLV XUNIF_WATER uniform prescribed value of water fraction If XUNIF_WATER is set file WATER is not used CFNAM_WATER water fraction data file name If XUNIF_WATER is set file CF NAM WATER is not used CFTYP_WATER type of water data file DIRECT BINLLF BINLLV ASCLLV XUNIF_NATURE uniform prescribed value of nature fraction If XUNIF NATURE is set file CFNAM NATURE is not used CFNAM NATURE nature fraction data file name If XUNIF NATURE is set file CF NAM NATURE is not used CFTYP_NATURE type of nature data file DIRECT BINLLF BINLLV ASCLLV XUNIF_TOWN uniform prescribed value of town fraction If XUNIF_TOWN is set file CFNAM TOWN is not used CFNAM TOWN town fraction data file name If XUNIF_TOWN is set file CFNAM_TOWN is not used CFTYP TOWN type of town data file DIRECT BINLLF BINLLV ASCLLV If lag LECOCLIMAP is set to TRUE there are 2 possibilities ideal physiographic fields These fields are either uniform fraction of each 215 ecoclimap ecosystem orography or any field needed by the surface schemes As mentionned above orography can be in the case of the coupling with an atmospheric model imposed as the atmospheric model non uniform field realistic physiographic fields
84. e output file miscelleaneous fields The diag nosed fields are ZO_TOWN roughness length for town QF BLD domestic heating QF BLDWFR domestic heating FLX BLD heat flux from bld TLBLD EQ internal temperature without heating TLBLDWER internal temperature without heating QF_TOWN total anthropogenic heat DQS TOWN storage inside building H_WALL wall sensible heat flux H_ROOF roof sensible heat flux ROAD road sensible heat flux RN WALL net radiation at wall RN ROOF net radiation at roof RN ROAD net radiation at road GFLUX WALL net wall conduction flux GFLUX ROOF net roof conduction flux GFLUX ROAD net road conduction flux LE_ROOF roof latent heat flux LE ROAD road latent heat flux Diagnostics relative to the FLAKE scheme Namelist NAM DIAG FLAKEn 6 6 Fortran type default value LWATER PROFILE logical FALSE XZWAT_PROFILE real LWATER PROFILE flag to save in the output file miscelleaneous fields The diagnosed fields are XZWAT_PROFILE depth of output levels m in namelist Diagnostics relative to the 1D oceanic scheme Namelist DIAG OCEANn default value LDIAG OCEAN FALSE LDIAG_OCEAN flag for ocean variables Chapitre 7 Externalized surface model output fields Model output fields depend on the tile and on the configuration of run 7 1 Prognostic model output fields 7 1 1 ISBA The d
85. e temperature supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_FLAKE data T SNOW surface temperature of snow K XUNIF T ICE surface temperature at the ice atmosphere or at the ice snow interface K XUNIF_T_MNW mean water column temperature K XUNIF T BOT water temperature at the bottom of the lake K XUNIF_T_B1 temperature at the bottom of the upper layer of sediments K XUNIF H SNOW snow layer thickness m XUNIF H ICE ice layer thickness m XUNIF H Bl thickness of the upper level of the active sediments m CFILE FLAKE name of the file used to define the surface temperature The use of a file or prescribed value XTS_WATER_UNIF has priority on the data in CFILE_FLAKE file CTYPE type of the CFILE_FLAKE file if the latter is provided CTYPE must then be given The following values are currently usable MESONP the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model NYEAR ye
86. e type is MESONH file GRIP the file type is GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds 3 3 Sea scheme SEAFLX Namelist NAM_PREP_SEAFLUX This namelist information is used to initialize the SEAFLX sea scheme temperature XSST UNIF real none CFILE SEAFLX string of 28 characters CFILE in NAM PREP SURF ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB NYEAR integer NMONTH integer NDAY integer XTIME real LSEA SBL logical LOCEAN MERCATOR logical LOCEAN CURRENT logical XSST_UNIF uniform prescribed value of Sea Surface Temperature This prescribed value if defined has priority on the use
87. ecast model 2 Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model CFILE ISBA name of the file used to define any ISBA variable The use of a file or prescribed value XHUG SURF XHUG_ROOT XHUG DEEP XTG SURF XTG_ROOT XTG_DEEP CFILE WG and CFILE_TG has priority on the data in CFILE ISBA file CTYPE type of the CFILE ISBA file if the latter is provided CTYPE must then be given The following values are currently usable the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read
88. ed para meters 12 patches correspond to separate energy budgets for all vegetation types present in ISBA 3 patches correspond to bare soil types low vegetation trees If CPHOTO equals NON any number of patches between 1 and 12 is possible for the other values of CPHOTO 12 patches are required The order and the signification of each patch is the following 1 bare ground rocks permanent snow deciduous forest conifer forest evergreen broadleaf trees C3 crops C4 crops an Oo CG Ww Ww irrigated crops 10 grassland 11 tropical grassland C4 12 garden and parks CISBA type of soil discretization and physics in ISBA 2 L force restore method with 2 layers for hydrology 3 L force restore method with layers for hydrology DIF diffusion layer with any number of layers CPHOTO type of photosynthesis physics The following options are currently available NON none is used Jarvis formula is used for plant transpiration AGS ISBA AGS without evolving Leaf Area Index LAT ISBA AGS with evolving Leaf Area Index AST ISBA AGS with offensive defensive stress without evolving Leaf Area Index LST ISBA AGS with offensive defensive stress with evolving Leaf Area Index ISBA AGS with nitrogen with evolving Leaf Area Index NGROUND LAYER number of soil layer used in case of diffusion physics in the so
89. efinition of the representation of soil vegetation snow and surface boundary layer com ponents is done during PGD and PREP The description of soil is done with parameter CISBA 2 layers 3 layers or more if diffusion treatment selected from NAM ISBA The representa tion of vegetation is done with parameters NPATCH number of patches over vegetation and CPHOTO type of photosynthesis During PREP the snow scheme is chosen by parameter CS NOW in NAM PREP ISBA and if the surface boundary layer SBL scheme is activated then LISBA CANOPY key has to be set to T 73 soil CISBA vegetation CPHOTO snow CSNOW SBL LE et pore AST AGS LAST Saver yer 1 8_ RESPESTR O RESPBSTRE TSNOWVEG EE er a EBACAMU 2 lt ISBACANQ 1 j ISBACANE jJ ISBAGCANP _ variable dimension unit description mer P x T war WG x we we CO w amp ANDAY RESPBSTR RESPBSTR2 BIOMASSTR2 BIOMASSTRZ LAST BIOMASSTR LAST TSNOW VEGI WSNOW VEGI RSNOW VEGI HSNOW VEGI ASNOW VEG WSNOW VEGZ RSNOW VEG2 HSNOW VEG2 WSN
90. eractive surface schemes for vegetation and town 2 PREP routine prep surf atm n f90 this program performs the initialization of the surface scheme prognostic variables as temperatures profiles water and ice soil contents interception reservoirs snow reservoirs 3 run of the schemes routine coupling _surf_atm_n f90 this performs the physical evolution of the surface schemes It is necessary that this part contrary to the 2 previous ones is to be coupled within an atmospheric forcing provided either in off line mode or via a coupling with an atmospheric model 4 DIAG routine diag surf_atm_n f90 this computes diagnostics linked to the surface e g surface energy balance terms variables at 2m of height etc It can be used either during the run adding these diagnostics in the output file s of the run or independantly from the run for a given surface state still an instantaneous atmospheric forcing is necessary for this evaluation In addition in order to read or write the prognostic variables or the diagnostics variables res pectively in the surface files the following subroutines are used init_surf_atm_n f90 write_surf_atm_n f90 and write_diag_surf_atm_n f90 1 2 The atmospheric models using the externalized surface The externalized surface can presently be used in 1 in offline mode 2 MESONH 3 AROME For each model additionnal possibilities of the surface especially the ability to read and
91. haracters DEF SGH CHORT string of 4 characters DEF SGH LTRIP logical LFLOOD logical CRUNOFF type of subgrid runoff The following options are currently available WSAT runoff occurs only when saturation is reached DT92 Dumenill and Todini 1992 subgrid runoff formula SGH Decharme et al 2006 Topmodel like subgrid runoff CTOPREG kind of regression Option activated only if CRUNOFF 5 The follo wing options are currently available DEF Wolock and MacCabe regression between topographic indices computed at 1km and 100m resolution recommended NON no regression CKSAT Activates the exponential profile for Ksat The following options are currently available DEF homogeneous profile SGH exponential decreasing profile with depth due to compaction of soil CRAIN Activates the spatial distribution of rainfall intensity The following options are currently available DEF homogeneous distribution SGH exponential distribution which depends on the fraction of the mesh where it rains This fraction depends on the mesh resolution and the intensity of hourly precipi tation If the horizontal mesh is lower than 10km then the fraction equals 1 CHORT Activates the Horton runoff due to water infiltration excess The following options are currently available DEF no Horton runoff SGH Horton runoff computed LTRIP Activates T
92. heric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LTEB CANOPY activates surface boundary multi layer scheme over town Chapitre 4 How to run the externalized surface physical schemes Here are described the options available during the run of the several surface schemes 4 1 general options available over all tiles Namelist NAM_SURF_ATM XCISMIN real XVMODMIN real LALDTHRES logical FLALDZOH le LDRAG COEF ARP logical LNOSOF logical XEDB real XEDC real XEDD real XEDK real XUSURIC real XUSURID real XUSURICL real XVCHRNK XVZ0CM XRIMAX XDELTA MAX c ub po ri LALDTHRES flag to set a minimum wind and shear like done in Aladin model XCISMIN minimum wind shear to compute turbulent exchange coefficient used only if LALDTHRES XVMODMIN minimum wind speed to compute turbulent exchange coefficient used only if LALDTHRES LALDZOH to take into account orography in heat roughness length LDRAG COEF ARP to use drag coefficient computed like in Arpege Aladin models 55 LNOSOF no parameterization of subgrid orography effects on atmospheric forcing XEDB XEDC XEDD XEDK coefficients used in Richardson critical numbers compu tation XUSURIC XUSURID XUSURICL Richa
93. hic fields of ISBA scheme that are computed from ecoclimap data from the ecosystem fractions LPGD FIX flag to save in the output file the physiographic fields of ISBA scheme that are computed from ecoclimap data from the ecosystem fractions and that does not vary in time LSURF_EVAP_BUDGET flag to save in the output file the detailed terms of the water vapor fluxes on each patch of the vegetation scheme if existing and aggregated for the natural surface The diagnosed fields are LSURF MISC BUDGET flag to save in the output file miscelleaneous fields The diag nosed fields are HV Halstead coefficient SNG snow fraction over bare ground SNV snow fraction over vegetation SN total snow fraction SWI soil wetness index for each ground layer wg Wwitt Wfe Wwitt Where wg is the volumic water content wy is the porosity and wii corresponds to the plant wilting point GPP Gross primary production RDK Dark respiration LSURF_BUDGETC flag to save in the output the time integrated values of all budget terms that have been activated either with LSURF_BUDGET flag in NAM_DIAG_SURFn or LSURF EVAP BUDGET in the present namelist LRESET_BUDGETC flag to reset cumulatives variables at the beginning of a run 6 4 Diagnostics relative to the TEB town scheme Namelist NAM DIAG TEBn default value LSURF MISC BUDGET FALSE 6 5 LSURF_MISC_BUDGET flag to save in th
94. id of an already existing surface file indicated via namelists see below 3 The grid is defined as being identical to the one of an atmospheric model which is given as fortran argument in the coupling of the PGD surface facilities routine PGD_SURF_ATM into an atmospheric model initialization procedures In this case all namelists that are usually used to define the surface grid are ignored Note that in addition to the grid the orography can also be given from the atmospheric file 2 1 2 Choice of the physiographic fields There are 3 main possibilities depending on LECOCLIMAP flag 11 Namelist NAM FRAC This namelist defines if ECOCLIMAP mechanism based on fractions of covers will be used or not LECOCLIMAP Logical XUNIF_SEA real between 0 and 1 CFNAM SEA character LEN 28 CFTYP_SEA character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_WATER real between 0 and 1 CFNAM_WATER character LEN 28 CFTYP_WATER character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_NATURE real between 0 and 1 CFNAM NATURE character LEN 28 CFTYP_NATURE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_TOWN real between 0 and 1 CFNAM_TOWN character LEN 28 CFTYP_TOWN character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_SEA uniform prescribed value of sea fraction If XUNIF_SEA is set file CF NAM SEA is not used CFNAM SEA sea fraction data fil
95. il CISBA DIF XUNIF_CLAY uniform prescribed value of clay fraction YCLAY clay fraction data file name YCLAYFILETYPE type of clay data file DIRECT BINLLF BINLLV ASCLLV XUNIF_SAND uniform prescribed value of sand fraction YSAND sand fraction data file name YSANDFILETYPE type of sand data file DIRECT BINLLF BINLLV ASCLLV XUNIF_RUNOFFB uniform prescribed value of subgrid runoff coefficient YRUNOFFEB subgrid runoff coefficient data file name YRUNOFFBFILETYPE type of subgrid runoff data file DIRECT BINLLF BINLLV ASCLLV XUNIF_WDRAIN uniform prescribed value of subgrid drainage YWDRAIN subgrid drainage data file name YWDRAINFILETYPE type of subgrid drainage data file DIRECT BINLLF BINLLV ASCLLV 2 8 Namelist for FLake scheme Namelist NAM_DATA_FLAKE Over lakes if one wants to use Flake scheme some parameters have to be specified by the user in the namelist NAM_DATA_FLAKE iiia i value XUNIF WATER DEPTH YWATER DEPTH YWATER_DEPTHFILETYPE XUNIF_WATER_FETCH YWATER FETCH YWATER FETCHFILETYPE XUNIF_T_BS YT_BS YT_BSFILETYPE XUNIF_DEPTH_BS YDEPTH BS YDEPTH BSFILETYPE XUNIF_EXTCOEF_WATER YEXTCOEF_WATER YEXTCOEF_WATERFILETYPE real Lake depth character LEN 28 filename character LEN 6 DIRECT BINLLF ASCLLV real wind fetch character LEN 28
96. init_sltn f90 MesoNH or init sltn mnh AROME ALADIN for values associated to these paramete rizations Note that if the defaut value is change it is necessary to uses the same modes in the sea initialisation in the atmospheric model It concerns the value of XINIRADIUS SLT initial radius XINISIG SLT standard deviation and CRGUNITS mean radius defi nition to have the same aerosol size distribution emitted and in the atmosphere It is possible to do it directly in the fortran code modd salt mnh in case of aladin arome modd salt f90 for MesoNH or for MesoNH only change the values of these variables in NAM AERO CONF prep real case or prep ideal case 4 3 FLAKE lake scheme options Namelist NAM_FLAKEn default value LSEDIMENTS logical CFLAKE_SNOW string of 6 characters NON FLAKE ISBAES CFLAKE_FLUX string of 6 characters FLAKE CFLAKE_SNOW snow scheme to be used For the time being only option FLAKE is active CFLAKE FLUX scheme to be used to compute surface fluxes of moment energy and water vapor For the time being only option FLAKE is active LSEDIMENTS to use the bottom sediments scheme of Flake default 4 4 ISBA vegetation scheme options Namelist NAM_SGH_ISBAn default value CRUNOFF string of 4 characters DT92 SGH CTOPREG string of 4 characters CKSAT string of 4 characters DEF SGH CRAIN string of c
97. lux standard deviation of accumulation mode in only if LCH AERO FLUX TRUE CRGUNIT Aerosol flux Definition of XEMISRADIUSI or XEMISRADIUSJ mean radius can be define in mass MASS or in number NUMB Chemical deposition and biogenic emissions over vege tation Chapitre 6 Externalized surface diagnostics The diagnostics for the surface require the call to the complete physics of the surface The refore they can be computed either during the run of the schemes in order to have for example continuous time series of these diagnostics or can be computed at a given instant only if atmos pheric forcing is given at this instant for the surface scheme to do one time step The cumulated diagnostics are of course significant only when computed during a run 6 1 Diagnostics relative to the general surface monitor Namelist NAM_DIAG_SURF_ATMn default value LFRAC logical FALSE LDIAG GRID logical FALSE LFRAC flag to save in the output file the sea inland water natural covers and town fractions LDIAG GRID flag for mean grid diagnostics 6 2 Diagnostics relative to the general surface monitor and to each surface scheme Namelist NAM_DIAG_SURFn default vale N2M integer LSURF_BUDGET logical LRAD BUDGET logical LCOEF logical LSURF_VARS logical N2M flag to compute surface boundary layer characteristics N2M 1 computes temperature at 2 m specific humidity at 2
98. luxes are prescribed The have to be set in the fortran routine init ideal flux f90 3 TSZ0 In this cheme the fluxes are computed according to the ISBA physics but the surface characteristics temperature humidity etc remain constant with time 4 ISBA this is the full ISBA scheme Noilhan and Planton 1989 with all options developped since this initial paper CSEA scheme used for sea and ocean The different possibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 2 FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 3 SEAFLX this is a relatively simple scheme using the Charnock formula CWATER scheme used for inland water The different possibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 3 4 FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 WATFLX this is a relatively simple scheme using the Charnock formula FLAKE this is lake scheme from Mironov 2005 CTOWN scheme used for towns The different possibilities are 1 2 NONE no scheme used No fluxes will be cmputed at the surface FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 TEB this is the Town Energy Balance scheme Masson 2000 with all the su
99. m relative humidity zonal and meridian wind at 10 m and Richardson number 2m and 10m quantities are calculated extrapolating atmospheric forcing variables with Paulson laws using surface heat water and momentum fluxes N2M 2 computes temperature at 2 m specific humidity at 2 m relative humidity zonal and meridian wind at 10 m and Richardson number 2m and 10m quantities are calculated interpolating between atmospheric forcing variables and surface temperature and humidity LSURF BUDGET flag to save in the output file the terms of the surface energy balance net radiation sensible heat flux latent heat flux ground flux for each scheme on the four separate tiles on each patch of the vegetation scheme if existing and aggregated for the whole surface The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface x name of a scheme field for this scheme net radiation H turbulent sensible heat flux turbulent latent heat flux GFLUX ground or storage heat flux FMU zonal wind stress FMV x meridian wind stress If both LSURF BUDGET and LRAD BUDGET are T then downward and upward short wave radiation per spectral band will be written into output file they re computed even if LRAD BUDGET is false The following output fields are then available SWD _ downward short wave radiation SWU upward short wave radia
100. n altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TG and CFILE ISBA data XTG ROOT uniform prescribed value of temperature for the root zone soil layer s supposed at an altitude of 0m mean sea level altitude The temperature is then mo dified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm This prescribed value if defined has priority on the use of TG and CFILE ISBA data XTG DEEP uniform prescribed value of temperature for the deep soil layer s supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TG and CFILE ISBA data CFILE TG name of the file used to define the soil temperature profile The use of a file or prescribed value of XTG_SURF XTG_ROOT and XTG DEEP has priority on the data in CFILE TG file CTYPE TG type of the CFILE_TG file if the latter is provided CTYPE_TG must then be given The following values are currently usable MESONP the file type is MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center for
101. ng is set in the namelist a grid identical as the one in the file is chosen default value IXOR integer 1 IYOR integer 1 IXSIZE integer YINIFILE size IYSIZE integer YINIFILE size IDXRATIO integer 1 IDYRATIO integer 1 IXOR first point I index according to the YINIFILE grid left to and out of the new physical domain IYOR first point J index according to the YINIFILE grid under and out of the new physical domain IXSIZE number of grid points in I direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IYSIZE number of grid points in J direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IDXRATIO resolution factor in I direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 IDYRATIO resolution factor in J direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 2 3 4 Regular longitude latitude grids Namelist NAM LONLAT REG This namelist defines the projection in case CGRID LONLAT REG default value XLONMIN real XLONMAX real XLATMIN real XLATMAX real NLON integer NLAT integer XLONMIN minimum longitude covered by the grid i e corresponding to the west border of the domain real decimal degrees XLONMIN mus
102. nt J index according to the YINIFILE grid under and out of the new physical domain IXSIZE number of grid points in I direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IYSIZE number of grid points in J direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IDXRATIO resolution factor in I direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 IDYRATIO resolution factor in J direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 2 3 3 Cartesian grids Namelist NAM_CARTESIAN This namelist defines the projection in case CGRID CARTESIAN Fortran type default value real real integer integer real real XLATO reference latitude real decimal degrees XLONO reference longitude real decimal degrees NIMAX number of surface points of the grid in direction z NJMAX number of surface points of the grid in direction y XDX grid mesh size on the conformal plane in x direction real meters XDY grid mesh size on the conformal plane in y direction real meters Namelist INIFILE CARTESIAN This namelists defines the horizontal domain from an existing surface file in which grid type is CARTESIAN If nothi
103. o use ecoclimap and other databases orography sand and clay In previous version the name of ecoclimap database was ecoclimats_v2 it has been replaced ECOCLIMAP I GLOBAL amp NAM_FRAC LECOCLIMAP T amp NAM_COVER YCOVER ECOCLIMAP I GLOBAL YFILETYPE DIRECT amp NAM_ZS YZS gtopo30 7 YFILETYPE DIRECT amp NAM_ISBA YCLAY clay_fao YCLAYFILETYPE DIRECT YSAND gand fao YSANDFILETYPE DIRECT CISBA 23 1 NON NPATCH 1 I NGROUND_LAYER 3 A 3 How to use ECOCLIMAP II amp NAM_FRAC LECOCLIMAP T amp NAM_COVER YCOVER ECOCLIMAP_II_EUROP A YFILETYPE DIRECT 77 A 4 How to use 1D Oceanic Model amp NAM_SEABATHY amp NAM_PREP_SEAFLUX amp NAM_SEAFLUXn A 5 How to amp NAM_PREP_SURF_ATM amp NAM_PREP_TEB amp NAM_PREP_SEAFLUX amp NAM_PREP_WATFLUX amp NAM_PREP_ISBA amp NAM_PREP_ISBA_SNOW A 6 How to amp NAM_SGH_ISBAn amp NAM_ISBAn amp NAM_CH_ISBAn YSEABATHY YSEABATHYFILETYPE YNCVARNAME CFILE SEAFLX CTYPE LOCEAN_MERCATOR LOCEAN_CURRENT TA96 T CSEA_ALB LPROGSST etopo2 nc NETCDF mercator 20031203 nc NETCDF T F initialize variables from grib file CFILE arpifs AN 20030101 00 CFILETYPE CGRIB CFILE TEB arpifs AN 20030101 00 CTYPE CGRIB CFILE SEAFLX
104. of patches only Fortran name NIF_BSLAI NAM BSLAI TYP BSLAI NIF LAIMIN NAM LAIMIN TYP LAIMIN NIF_SEFOLD CFNAM SEFOLD CFTYP_SEFOLD XUNIF_GC CFNAM GC CFTYP_GC XUNIF_DMAX CFNAM DMAX CFTYP DMAX NIF F2I NIF F2I NAM F2I TYP F2I NIF H TREE NAM H TREE TYP H TREE NIF_RE25 CFNAM RE25 CFTYP_RE25 XUNIF_CE_NITRO CFNAM CE NITRO CFTYP CE NITRO XUNIF_CF_NITRO CFNAM CF NITRO CFTYP CF NITRO XUNIF_CNA_NITRO CFNAM_CNA_NITRO CFTYP_CNA_NITRO Fortran type defaut cha cha rea cha cha rea cha cha rea character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 rea rea character LEN 28 character LEN 6 rea character LEN 28 character LEN 6 rea character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF
105. orm fields 41 3 2 Date initialization and default input data file for all schemes Namelist NAM_PREP_SURF_ATM This namelist information is used to possibly initialize the date of all surface schemes The namelist information is used only if no input data file is used either from namelist or by fortran code as in MESONH programs If a file is used the date is read in it define the default file in which each scheme can read the needed data e g temperature Note that all the information given in this namelist can be erased for each scheme by the namelist corresponding to this scheme as the information in the shceme namelists have priority on namelist NAM PREP SURF Fortran Lype default value CFILE string of 28 characters atmospheric file used in the program calling the surface facilities if any none otherwise CFILETYPE string of 6 characters MESONH type of the atmospheric file if any none otherwise NYEAR integer none NMONTH integer none NDAY integer none XTIME real none CFILE name of the file used to define 1 the date 2 the file in which to read the needed data e g temperature The use of a file or prescribed value in each scheme namelist has priority on the data CFILE file of namelist NAM_PREP_SURF_ATM CFILETYPE type of the CFILE file if the latter is provided CTYPE must then be given The following values are currently usable MESONP the fil
106. r real character character real haracter haracter real character haracter real character character real haracter haracter eal haracter haracter eal haracter character real character haracter real character haracter real haracter haracter real haracter haracter real character haracter DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV fraction of buildings buildings height wall surf hor surf roughness length for momentum f albedo f emissivity roof layers heat capacity roof layers thermal conductivity roof layers depth road albedo road emissivity road layers heat capacity road layers thermal conductivity road layers depth Fortr
107. r LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real real character LEN character LEN 6 real character LEN character LEN 6 real character LEN character LEN rea character LEN 28 character LEN 6 rea cha cha rea cha cha rea cha cha rea charac character LEN DIRECT BINLLF BINLLV ASCLLV BINLLF BINLLV ASCLLV BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV minimal stomatal resistance coefficient used in the computation of RSMIN coefficient for maximum interception water storage capacity maximum solar radiation available for photosynthesis vegetation thermal inertia coefficient ratio of surface roughness lengths vegetation near infra red albedo vegetation visible albedo vegetation UV albedo il near infra red albedo il visible albedo il UV albedo Isba A gs parameters depending on number
108. raffic anthropogenic latent heat fluxes due to traffic anthropogenic sensible heat fluxes due to factories anthropogenic latent heat fluxes due to factories SEAFLUX scheme Treat SST as a forcing variable For that purpose several SST files at a given time are required and namelist DATA SEAFLUX should be filled logical flag to activate this option integer 12 number of SST data character LEN 28 CFTYP SST character LEN 6 DIRECT BINLLF BINLLV ASCLLV NYEAR SST integer NMONTH SST integer NDAY SST integer XTIME SST real LSST DATA flag to initialize SST from a climatology NTIME number of SST input files CFNAM SST SST data file name CFTYP SST type of SST data file DIRECT BINLLF BINLLV ASCLLV NYEAR SST year of SST data file NMONTH SST month of SST data file NDAY SST day of SST data file XTIME SST time in seconds of SST data file How to initialise SST from external files an example with 3 SST input files lat lon value type amp NAM DATA SEAFLUX NTIME 3 LSST DATA T CFNAM SST 1 sst_1 dat CFTYP_SST 1 ASCLLV CFNAM_SST 2 sst_2 dat CFTYP_SST 2 ASCLLV CFNAM_SST 3 sst_3 dat CFTYP_SST 3 ASCLLV NYEAR_SST 1 1985 NMONTH_SST 1 12 NDAY_SST 1 31 XTIME_SST 1 64800 NYEAR_SST 2 1986 NMONTH_SST 2 1 NDAY_SST 2 1 XTIME_SST 2 43200 NYEAR_SST 3 1986 NMONTH_SS
109. rdson critical numbers XVCHRNK XVZOCM Charnock s constant and minimal neutral roughness length over sea formulation of roughness length over sea XRIMAX limitation of Richardson number in drag computation XDELTA_MAX maximum fraction of the foliage covered by intercepted water for high vegetation Namelist NAM_WRITE_SURF_ATM default_value LNOWRITE COVERS logical LNOWRITE CANOPY logical LNOWRITE TEXFILE logical LNOWRITE COVERS if T do not write covers in initial restart or LBC files LNOWRITE CANOPY if T do not write canopy prognostic variables in initial restart or LBC files LNOWRITE TEXFILE if T do not fill class cover data tex file during the model setup 4 2 SEAFLX sea scheme options Namelist NAM_SEAFLUXn default value CSEA FLUX string of 6 characters DIRECT COARE3 CSEA ALB string of 4 characters TA96 LPWG logical LPRECIP logical LPWEBB logical LPROGSST logical NTIME COUPLING integer CSEA FLUX type of flux computation physics The following option is currently avai lable DIRECT direct Charnock computation No effect of convection in the the boundary layer on the fluxes formulae ITERAT iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by Mondon and Redelsperger 1998 to take into account effect of atmospheric convection on fluxes COARE iter
110. s 5 5 Chemical deposition over towns 5 6 Chemical deposition and biogenic emissions over vegetation 5 7 Chemical aerosol scheme ORILAM 5 8 Chemical deposition and biogenic emissions over vegetation Externalized surface diagnostics 6 1 Diagnostics relative to the general surface monitor 6 2 Diagnostics relative to the general surface monitor and to each surface scheme 6 3 Diagnostics relative to the ISBA vegetation scheme 6 4 Diagnostics relative to the TEB town scheme 6 5 Diagnostics relative to the FLAKE scheme 6 6 Diagnostics relative to the ID oceanic scheme Externalized surface model output fields 7 1 Prognostic model output fields LA BBA BE EER AER e S den 2 112 SEABRDUX a thane 8 n a we Es Te WEBS Be RR wami au Me abe Makin te M ke a eet 2 4 WATELUX oeeo eak a ee ewe ae ee ui tete UR A 715 FLAKE Cas gu Roe LA PRR U r A 55 55 57 59 60 63 63 63 63 64 64 64 65 65 67 67 68 70 70 71 71 A Example of namelist features 77 A 1 A 2 AA 5 A 6 How to define target grid
111. s for deposition and emission of chemi cal species do activate only if chemical species are present i e if the coupling between atmosphere and surface include the chemical species concentrations and fluxes 5 1 Chemical settings control Namelist NAM_CH_CONTROLn vale CCHEM SURF FILE string of 28 characters CCHEM SURF FILE name of general chemical purpose ASCII input file 5 2 Chemical anthropogenic emissions Namelist NAM_CH_SURFn default value LCH SURF_EMIS logical FALSE LCH_SURF_EMIS flag to use anthropogenic emissions or not 5 3 Chemical deposition over ocean Namelist NAM CH SEAFLUXn Fortran We default value CCH_DRY_DEP string of 6 characters NONE WESS9 WES89 63 CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WESSO Wesley 1989 deposition scheme 5 4 Chemical deposition over lakes Namelist NAM WATFLUXn default value CCH DRY DEP string of 6 characters NONE WESS9 WES89 CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WESSO Wesley 1989 deposition scheme 5 5 Chemical deposition over towns Namelist NAM CH TEBn Fortran Lype default value CCH DRY DEP string of 6 characters NONE WESS9 WES89 CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WES
112. t be smaller than XLONMAX but no more than 360 smaller XLONMAX maximum longitude covered by the grid i e corresponding to the east border of the domain real decimal degrees XLONMAX must be larger than XLONMIN but no more than 360 larger XLATMIN minimum latitude covered by the grid i e corresponding to the south border of the domain real decimal degrees XLATMIN must be between 90 and 4 90 and smaller than XLATMAX XLATMAX maximum longitude covered by the grid i e corresponding to the right border of the domain real decimal degrees XLATMAX must be between 90 and 90 and larger than XLATMIN NLON number of surface points in the longitude direction NLAT number of surface points in the latitude direction 2 3 5 Regular Lambert grids Namelist NAM_IGN This namelist defines the projection in case CGRID IGN default value CLAMBERT character len 3 11 12 18 14 12 7 193 NPOINTS integer XX real XY real real real CLAMBERT type of Lambert prjection L1 Lambert I L2 Lambert II L3 Lambert III Lambert IV L2E Extended Lambert L93 Lambert 93 NPOINTS number of grid points defining the grid XX X coordinate of grid mesh center YY Y coordinate of grid mesh center XDX grid mesh size on the conformal plane in x direction real meters XDY grid mesh size on the conformal plane in y direction
113. tion SWBD x downward short wave radiation for each spectral band SWBU upward short wave radiation for each spectral band LWD downward long wave radiation LWU_ upward long wave radiation LCOEF flag to save in the output file the transfer coefficients used in the computation of the surface energy fluxes for each scheme on the four separate tiles and aggregated for the whole surface The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface x name of a scheme field for this scheme CD_x drag coefficient for momentum drag coefficient for heat CE drag coefficient for evaporation differs from CH only over sea Z0 roughness length ZOH_ thermal roughness length LSURF_VARS flag to save in the output file the surface specific humidity for each scheme on the four separate tiles on each patch of the vegetation scheme if existing The diag nosed fields are stands for the scheme considered nothing field aggregated on the whole surface of a scheme field for this scheme QS specific huidity 6 3 Diagnostics relative to the ISBA vegetation scheme Namelist NAM_DIAG_ISBAn defit value LPGD logical LPGD FIX logical LSURF EVAP BUDGET logical LSURF_MISC_BUDGET logical LSURF_BUDGETC logical LRESET_BUDGETC logical LPGD flag to save in the output file the physiograp
114. to geographical coordinates CAR TESIAN or NONE XUNIF COVER must be set YCOVER ecoclimap data file name It is used only if XUNIF COVER is not set YFILETYPE type of YCOVER file DIRECT BINLLV BINLLF ASCLLV XRM COVER for each point all fractions of ecosystems that are below XRM COVER are removed i e set to zero and the corresponding area fractions are distributed among the remaining ecosystem fractions Whatever the value of XRM COVER at least one ecosystem remains for each grid point XRM COAST limit of coast coverage under which the coast is replaced by sea or inland water LRM TOWN if TRUE all ecosystems containing town fractions are removed and re placed by the ecosystem corresponding to rocks 2 5 Specifities of ecoclimap IT classification Namelist NAM_ECOCLIMAP2 This namelist allows to choose which LAI is used a climatological one average over years 2002 2006 or a specific year between 2002 and 2006 This is the place to define irrigation file default value LCLIM LAI logical YIRRIG character LEN 28 i LCLIMLLAI if TRUE climatological LAI is computed otherwise the LAI corresponding to current year if between 2002 and 2006 is used YIRRIG irrigation file name 2 6 Orography subgrid orography and bathymetry Namelist NAM_ZS This namelist defines the orography file and orographic treatment to be done det valve
115. ts emissions You can treat up to 999 such fields These fields will be written on all the files you will use later after prognostic fields initialization or during and after run etc Their name in the files are EMIS_GRnnn where nnn goes from 001 to 999 During the execution of the programs these fields are stored in the XEMIS_GR_FIELDS first dimension spatial dimension second dimension total number of fields in the module MODD EMIS GR FIELD n The temporal evolution the aggregation of prescribed emissions and the link with the corresponding chemical prognostic variables are handled by the subroutine CH EMISSION FLUXn f90 default value NEMIS_PGD_NBR integer 0 CEMIS_PGD_NAME 1000 character LEN 20 1000527 CEMIS_PGD FILE 1000 character LEN 28 1000 CEMIS_PGD_COMMENT 1000 character LEN 40 1000 NEMIS_PGD_TIME integer 0 CEMIS PGD FILETYPE 1000 character LEN 6 1000 DIRECT CEMIS_PGD_AREA 1000 character LEN 3 1000 CEMIS_PGD_ATYPE 1000 character LEN 3 1000 Only the first NEMIS PGD NBR values in these arrays are meaningfull NEMIS_PGD_NBR number of dummy fields CEMIS_PGD_NAME list of the dummy fields you want to initialize with your own data You can give any name you want This is a way to describe what is the field This information is not used by the program It is just written in th
116. ughness length in the four directions given by the model axis zoef f Zoeff gt Zoef fj Oef fj the Subgrid Scale Orography SSO parameters standard deviation uz anisotropy Yz direction of the small main axis 0 and slope For ISBA scheme a file with the clay fraction of the near surface soil The resolution of the file provided is 5 on the world For ISBA scheme a file with the sand fraction of the near surface soil The resolution of the file provided is 5 on the world If LECOCLIMAP flag is set to FALSE user defined physiographic fields ISBA scheme Over natural areas all surface parameters for each patch at a given frequency have to be specified by the user in namelist NAM_DATA_ISBA parameters depending on the number of vegetation types default value XUNIF_VEGTYPE real between 0 and 1 vegetation type CFNAM VEGTYPE character LEN 28 file name CFTYP_VEGTYPE character LEN 6 DIRECT BINLLF file type BINLLV ASCLLV parameters depending on the number of patches and time Fortran name Fortran default value NTIME integer NIF_VEG real NIF_LAI real NIF_ZO real NIF_EMIS real CFNAM EMIS character CFTYP_EMIS character parameters depending on the number of patches and soil levels NAM VEG character TYP VEG character NAM LAI character TYP LAI character 20 character 70 character
117. ure for roof supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data XTS_WALL uniform prescribed value of surface temperature for wall supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data XTI_BLD uniform prescribed value of internal building temperature This temperature is not dependent on altitude This prescribed value if defined has priority on the use of CFILE TS and CFILE_TEB data XTLROAD uniform prescribed value of deep road temperature supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data CFILE TS name of the file used to define the soil temperature profile The use of a file or prescribed value of XTS ROAD 5 ROOF 5 WALL XTI_BLD or XTI ROAD has priority on the data in CFILE TS file CTYPE TS type of the CFILE TS file if the latter is provided CTYPE_TS must then be
118. y available DEF Louis RIL Maximum Richardson number limit for stable conditions ISBA SNOW3L tur bulent exchange option CALBEDO type of bare soil albedo The following options are currently available DRY dry bare soil albedo WET wet bare soil albedo MEAN albedo for bare soil half wet half dry EVOL albedo of bare soil evolving with soil humidity CROUGH type of orographic roughness length The following options are currently avai lable Z01D orographic roughness length does not depend on wind direction Z04D orographic roughness length depends on wind direction CCPSURF type of specific heat at surface The following options are currently available DRY specific heat does not depend on humidity at surface HUM specific heat depends on humidity at surface XTSTEP time step for ISBA Default is to use the time step given by the atmospheric coupling seconds XCGMAX maximum value for soil heat capacity Namelist NAM SURF DST default value CEMISPARAM string of 5 characters AMMA Dal87 EXPLP alf98 EXPLT CVERMOD string of 6 characters CMDVER NONE XFLX MSS FDG FCT real Be CEMISPARAM One line dust emission parameterization type This namelist gives the distribution of emitted dust of SURFEX For Each paramterization type a geometric standard deviation and a median radius is given Moreover
Download Pdf Manuals
Related Search
Related Contents
Télécharger le pdf Manuale d`uso per l`utente GHLCD3224C User`s manual Bosch Power Tools 1806E Grinder User Manual LABCAR-AUTOMATION 4.1 Release Notes Belkin AV62300-08 EASY222-DN DeviceNet Slave Interface Haier ESA412K User's Manual Copyright © All rights reserved.
Failed to retrieve file