Home

R&S FSW-K6 Pulse User Manual

image

Contents

1. 318 EAYOUUWINDOWSmI ADD EE 320 LAYOUT WINDOWSf gt IDENUPY tiicie cox samesvensconcnss 320 EAYout WINDowsn REMOYVe o noon e n enn rr etna etr eene ge Pee ute XX pe gu Wee engen LAYout WINDowsn REPLA GG irr t ter tn eren derer ak e sbicvecsvethesneparsenevecoveceatseiscivedeoes MMEMory STORe n IQ COMMent MMEMory S TORe lt n gt e Nee IW leie e NEE e NR E dene EE MMEMory STOResn TABLe LIMIit e Seed ntn tenth he tr ned e d d e e MEER MMEMory STOResn TRAGS irr terrier rr tree en coed Enea ke E EO Re FE ERE FR Ee EY x DCTS EYE FERREA OUT NG acs T OUTPut DIQ CDEVice OUT Put IRIGger port DIR amp CIOR rr cose Vea pri eie rent rra ei ent ere tr ie capa rr PER eager OUTPUEMRIGGErS PON WEY d OUTPUtETRIGgerspornt gt OTYP trarre rn ee tr eren n rne nen env t rrr Dx ease OUTPut TRIGger port PULSe IMMediate OUTPut TIGgersport PULSS EENGI EE RIQ Oe ui e DiesgdiegodecsiBpyom P E RIO le erii eu RIQ FIQ RANGE EE RIQ SELGCU TL X 191 SENSe TRACe MEASurement ALGorithm 239 SENZGeTRACeMEAGurement DE Eine AMbPL mgude UNITA 239 SENSe TRA
2. Js P naw sc i Normalization based on a reference pulse If you are not interested in the deviations of the pulse results within a single pulse but rather in the deviations to a reference pulse you can also base normalization on the measurement point of a specified reference pulse In this case the trace value for the measurement point in the reference pulse is deducted from all trace values in the mea sured pulse 1Pk Max 2Av Avg 3MI Min 100 0 ns Fig 4 13 Normalization based on a reference pulse Note that in this case the value at the measurement point used to determine pulse o parameter results is also normalized Thus normalization based on a reference pulse modifies the results in the Pulse Results and Pulse Statistics on page 37 tables The pulse parameter values in the pulse tables for the normalized reference pulse are always 0 However as opposed to normalization based on a measured pulse the pulse to pulse deviations are maintained when normalized to a reference pulse The reference pulse can be defined as one of the following e A fixed pulse number e The currently selected pulse e A previous n or subsequent n pulse relative to the currently evaluated pulse Normalization of pulse phase traces Phase traces for an individual pulse can be normalized just like magnitude and fre quency traces as described above However
3. 116 S Sample Tale 25 n dira odi a Bist eodeni eut Digital I Q ue Digital UO remote Saving FUNCHONS T uU 159 165 Scaling Amplitude range automatically 143 eu EE Y AXIS eege Y axis remote Select Marker nene reete Selected Pulse SOflKGy eere eme ree t Een e E Aborting remote EE Activating remote Mode remote eie ette REMOTE o ep E us dete oni dedans Settling tme eret Sidelobe range Alignmebt inrer mir nen ren 127 Configuration 126 Configuring and Keep out time eut n eere eer rebate nets 127 Lengt pe 127 Sidelobes EH 53 Compression Ratio sad Correlated Magnitude Capture 98 Correlated Pulse Magnitude 99 Correlator Tu TT 56 prr a 26 Keep out time 4 55 Mainlobe 3 dB Width 26 Mainlobe Frequency 2528 Mainlobe Phase 1 28 Mainlobe Power md Parameters rore reet nt Er ens 25 Peak GottrelatiOn 2 etr retener rns 28 Peak to Sidelobe Level 4 20 Pulse Frequency Error 40 Pulse Phase Error 40 Reference signal description sriid 72 Signal description COMMQUIATION EE 69 Configuration remote iirinn 186 Reference IQ um feci Signal ID External We Eugene pot 82 External Mixer Remote control
4. 108 EE 44 NI eier 108 L Repetition Intemest eseu 108 E Drop Out TIME ua odisti la di ton lbh di ad ou A 108 L Couplirig eiisecnitrrenm reti titt rte torii te erit eL teer exse ber eot 109 BEC RU EE 109 2 oco PT 109 GE 109 B Hioc ENT 110 Misc E 110 L Output TVDS uisu dalidetiie a dabit creed be dici qua edd lud 110 eres User Manual 1173 9392 02 17 105 Trigger Settings ac v H 111 GE TEE 111 BE Eoo NNNM E 111 Capture OMSET EE 111 Segmented Capture CEU 111 L Activating de activating segmented data Capiuring 112 Geet eee ee ee eee TAN 112 t EE 112 E EE 113 Trigger Settings The trigger settings define the beginning of a measurement Trigger Source Trigger Settings Defines the trigger source If a trigger source other than Free Run is set TRG is displayed in the channel bar and the trigger source is indicated Note When triggering is activated the squelch function is automatically disabled Remote command TRIGger SEQuence SOURce on page 230 Free Run Trigger Source Trigger Settings No trigger source is considered Data acquisition is started manually or automatically and continues until stopped explicitely Remote command TRIG SOUR IMM see TRIGger SEQuence SOURce on page 230 External Trigger 1 2 3 Trigger Source Trigger Settings Data acquisition starts when the TTL signal fed into the specified input connector meets or exceeds the s
5. 146 Trace Configuration irri enitn iniri riae tnra r Ea rer aan eE rra 153 Export FUNCOMS iiine a eerta t rane aen par narra nERiR EY IRR Run SaaS EERESSEEE 159 ruit cee A A 162 Analysis in MSRA MSRT Mod eene nennen enne nennen nna 163 Export Functions iiie iei ome Ere ree NET AR NE aai aiaa Sree eee 165 How to Perform Measurements in the Pulse Application 169 How to Perform a Standard Pulse Measurement esses 169 How to Configure a Limit Check for a Pulse Measurement 170 How to Perform Time Sidelobe Analysis eeeeeeeeenne 171 How to Export Table Data neueren ennt nr nene er Rene nuu u nas 175 Remote Commands for Pulse Measurements 177 Int MU o uie p e 178 Common Sutttves wasces ccc ccccccesscsscccececscteccccesscceeceecseteecessesceeccssessctecssosseteececssvteeccecesectess 182 Activating Pulse Measurements eese enne nennen nnn 183 Signal Description iere rentur trina nant i nna nt enun 186 Reference Signal Description esee nnns 190 Input Output Settings ninnaa inanan aniraa siansa sa PEPA atta Ri ein nas nn RE n taaa 191 Frontend Con
6. 196 Signal source Ee ces epe DU use tec UR ere a 194 Single sweep SOflKGy dtir ern re ent ees 116 DIGIS ZOOM EE 163 Slope dier E 109 229 Softkeys Amplitude Config eae 101 Capture Offset OE OE tege ei deeg Red Continue Single Sweep een 116 Continuous SWEEP Avani rd es 116 Data acquisitioh ier tentent rre 113 el Ae MET 145 Export config 162 167 External pe 106 Free RUN e M 106 Frequericy CONTIG cer eter rentes 100 UO Power s 107 IF Power eue 5 107 Inp t Source CONTIG TE 74 Input Erontend de r 74 eg ee E 162 167 Market E EE 147 Marker 1 Marker 2 16 147 Marker Config 146 Marker to Trace 149 Mii ciens ene Next MIT Sege cet pae eee Next Peak Norm Delta ica O tp ts Config EE 96 ATE EE E 152 Preamp ven 103 Ref Level 2 2102 Ref Level Offset 102 Refresh ve d Repetition interval 108 R sult Config ET 129 RE Alteri AUTO EE 102 RF Atten Manual 102 RE POWOl sista dee Yeh a ree ez iret ee dE 108 Select Marker D 152 Selected Pulse 5 err tenete 129 Signal Description 2 meme 69 Single SWEEP ener nennt tern deer tre eR 116 SWEEP COUNT ntti eere cde eset re Deseo 117 156 Trace 1 2 84 0 iet ee retained 157 Trace Config us 159 Trigger Offset e 109 Tirigge
7. sss 228 TRIGSer SEQuence E Ee EE 228 TRlGoert GtOuencell EVelJObower eene nennen nnne nnns 228 TRIGgSer SE Quence ER oL cer etra une reet tea eee tdeo etna 229 TRIGger SEQuence RFPowerHOLEDoff 1 2 1 eet eec retta ierant ausente tei eua 229 TRIGger SEQuence SUO EE 229 TRIGSer ee DEE 230 TRIGger SEQuence TIME RINTerval unctio ed ea te aa raa 230 TRIGger SEQuence DTIMe lt DropoutTime gt Defines the time the input signal must stay below the trigger level before a trigger is detected again Triggering Measurements Parameters lt DropoutTime gt Dropout time of the trigger Range O sto 10 0s RST 0s Manual operation See Drop Out Time on page 108 TRIGger SEQuence HOLDoff TIME Offset Defines the time offset between the trigger event and the start of the measurement A negative offset is possible for time domain measurements Parameters Offset For measurements in the frequency domain the range is 0 s to 30 s For measurements in the time domain the range is the negative measurement time to 30 s RST 0s Example TRIG HOLD 500us Manual operation See Trigger Offset on page 109 TRIGger SEQuence IFPower HOLDoff Period This command defines the holding time before the next trigger event Note that this command can be used for any trigger source not just IF Power despite the legacy keyword Parameters Period Range Os to 10s RST
8. eene 65 5 Configuratio os os OE 67 51 Configuration Overview nnne rete rere tren ern irure Dentro eren en nee 67 5 2 Signal Descriptio M oeae a eane eae e aaaea E nennen nnne nnn tenu n inan ESAE EEFE EARED 69 5 3 Reference Signal DeSCription cccccsssseeecesseeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeeseeseeneeensseeeneees 72 5 4 Input and Output SettingS eesccccessssceeeeeeeeeeeeeeseaeeeeeenaaeeeeeesaeseesnessaeeeeeneeaaes 74 5 5 Frontend Settlngs eet entree teeo ette eere imi Das dee Or ester reete ees 99 5 0 Lrigger Settings nderit stecacetes ARE ENERE 104 5 7 Data Acoutsitton REENEN EEN EEE EE nnn nn nnn tnnt ntn n nnn nn nn nen nnn 113 5 8 Sweep Settings onere reete ee Reife i EIER 115 5 9 Pulse Detectlori entrent pete eir eR 118 5 10 Pulse Measurement Settings eese nennen 119 R amp S FSW K6 6S Contents 5 11 6 1 6 2 6 3 6 4 6 5 6 6 6 7 8 1 8 2 8 3 8 4 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 13 9 14 9 15 9 16 Automatic Settinge wie icccccccescscsceccstcesccccessevesccessseeecevessaaecceeessenccenessasscevesseeecctestsensecs 127 ULL se 129 Result COMPIQUIATIONS 2cc26ccccsccccccecccsteecescecsstecnssaceteecesscuseecessanaeieeecsaucieesassszcessesesseceees 129 Display Configurations ciicicccccccsscticccdeccteccesscncesccesesecatencsecediecesecneeseesccsecttecsenseiteeeseees 145 Lace
9. csse nennen 373 ISGENGeIpDUL Ge bHAGe DE Viation MANlmum inenika daisi 373 SENSe PULSe PHASe DEViation MINimum eese 373 SENSe PULSe PHASe DEViation SDEViation 1 etie isani 373 SENSEI PULSE PHASE PERRO nindin a teer ER dE EE 373 ISGENZGeJpDUL Ge bHAGe PERbRor AVtChRage eae ee eee ee eee teceeeeeeeeeeeeeeeeeeeesaeaeed 373 SENSe PULSE PHASE PERRO MAXIMUM iiia AER 373 SENSe PULSe PHASe PERROEMINimmm 22 dore ecco uda nnsa cdita oes en 373 SENSe PULSe PHASe PERRor SDEViIation ee rsce err hne Ianue d te Roue nena 373 SENSe PUESe Ee rentrer badd ancaned pete nca e ate a Dee ton Te npe conr E 374 SENSe IPULSe PHASe POINEAVERagqeT EE 374 SENSe PULSe PHASe POINtMAXimu tmY nasaren nna 374 SENSe PULSe PHASe POINt MINimum 2nceeessesseesseeseien enne nn nnn nnn ii 374 SENSeTPUESe PHASe POINESDEVJaligl denen ote ud tenete aa 374 SENSe JPULS amp IPHASe PPPHase 1 1 2 ruit runi REENERT AEN 374 SENSe PULSe PHASe PPPHase AVERage isses ener rtr 375 SENSe PULSe PHASe PPPHase MAXimum cessisse esee nennen 375 SENSe PULSe PHASe PPPHase MINImUtm 9 221i careo Lacer eva 2d EEN ERKENNEN 375 SENSe PULSe PHASe PPPHase SDEViation sse enne 375 ISGENZGeJpDUL Ge bHAGeRERtor cece eee ee cee ae ae rerit ennt nn senes tenet ens s nsns ists srt ne rna e n 375 SENSe PULSEPHASERER
10. CALCulate n TRENd TSIDelobe Y lt YAxis gt Configures the y axis of the Parameter Trend result display The x axis is configured using the CALCulate lt n gt TRENd lt GroupName gt X com mands This command is only available if the additional option R amp S FSW K6S is installed 9 14 6 Configuring the Results Setting parameters Y Axis PSLevel ISLevel MWIDth SDELay CRATio IMPower AMPower PCORrelation MPHase MFRequency Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 5 Time Sidelobe Parameters on page 25 PSLevel peak to sidelobe level ISLevel integrated sidelobe level MWIDth mainlobe 3 dB width SDELay sidelobe delay CRATio compression ratio IMPower integrated mainlobe power AMPower average mainlobe power PCORrelation peak correlation MPHase mainlobe phase MFRequency mainlobe frequency Usage Setting only Configuring a Result Range Spectrum The following commands determine the FFT parameters for spectrum calculation CAL Culate nzRbRGbechumWlNDow ariana aa anra aiaa adadin 289 CAL QOulatesmeBRRSPecltumsAU e DE 290 CAL GultatesmTRSPect iml W dr exec eei bere been D aav ee ea dci x a a dad 290 CALCulate lt n gt RRSPectrum WINDow WindowType Defines the RBW for the Result Range Spectrum The same window types are available as for Parameter Spectrum displays see Win dow functions on page 48 Se
11. CALCulate lt n gt DISTribution TIMing XAxis lt YAxis gt Configures the Parameter Distribution result display Setting parameters lt XAxis gt TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCle PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST RISE Configuring the Results Y Axis COUNt OCCurrence Parameter to be displayed on the y axis COUNt Number of pulses in which the parameter value occurred OCCurance Percentage of all measured pulses in which the parameter value occurred RST COUNt Usage Setting only CALCulate lt n gt DISTribution TSIDelobe lt XAxis gt lt YAxis gt Configures the Time Sidelobe Parameter Distribution result display This command is only available if the additional option R amp S FSW K6S is installed Setting parameters lt XAxis gt PSLevel ISLevel MWIDth SDELay CRATio IMPower AMPower PCORrelation MPHase MFRequency Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 5 Time Sidelobe Parameters on page 25 PSLevel peak to sidelobe level IS
12. eiiis ctae tbe ebtn n necne ttn DeL db RR daa tb a 72 esi m 72 Pulse Period Defines how a pulse is detected High to Low The pulse period begins with the falling edge of the preceeding pulse and ends with the falling edge of the current pulse Low to High The pulse period begins with the rising edge of the current pulse and end with the rising edge of the succeeding pulse Remote command SENSe TRACe MEASurement DEFine PULSe PERiod on page 189 Pulse Has Droop If enabled a pulse can be modeled as having amplitude droop i e the pulse top may not be flat Remote command SENSe TRACe MEASurement DEFine PULSe ADRoop on page 189 Signal Description Pulse Modulation Defines the expected pulse modulation Arbitrary Modulation not considered no phase error frequency error results available CW Continuous wave modulation i e only the carrier power is modulated On Off For CW modulation additional parameters are available to define the frequency offset Linear FM Linear frequency modulation FM The frequency changes linearly over time within each pulse For linear pulse modulation additional parameters are available to define the chirp rate Reference IQ A reference pulse is configured see chapter 5 3 Reference Signal Description on page 72 Remote command SENSe TRACe MEASurement DEFine PULSe MODulation on page
13. Measurement Algorithm Defines the algorithm used to detect the pulse top level Pulse Measurement Settings Mean The arithmetic average of the measured values Median The level for which half the values lie above the other half below in the histogram Peak Power The peak power is used to detect the pulse top level Remote command SENSe TRACe MEASurement ALGorithm on page 239 Ripple Portion Defines the portion of the pulse top which is used to measure the ripple Remote command SENSe TRACe MEASurement DEFine RIPPle on page 240 Reference Level Unit Defines the unit of the pulse amplitude values i e whether magnitude V or power W dBm values are used to determine the threshold levels for fall and rise times Remote command SENSe TRACe MEASurement DEFine AMPLitude UNIT on page 239 High Distal Threshold The upper threshold in percent of the pulse amplitude used to signify the end of a ris ing or beginning of a falling signal level Remote command SENSe TRACe MEASurement DEFine TRANsition HREFerence on page 240 Mid Mesial Threshold The middle threshold in percent of the pulse amplitude used to signify the signify the mid transition level between pulse states Remote command SENSe TRACe MEASurement DEFine TRANsition REFerence on page 241 Low Proximal Threshold The lower threshold in percent of the pulse amplitude used to signify the end of a fall ing or begin
14. ccceceeseeeeeeeseeeeteteeeeeeeee 220 Configuration Softkey A 100 DEVIATION seier is e ier eere eerweat 23 292 Difference between pulses i iiiisiisisiisisirsesss 23 293 Error Peak eee 23 292 369 Error RMS 23 293 371 ET EUN 101 Frequency offset AUtO FEIEREN OE nsn 71 bU M 72 Frontend Configuration Configuration remote Full scale level Analog Baseband B71 remote control 208 209 Digital Me E 89 Digital UO remote Unit digital UO remote A 213 G Gauss filters Large lee el E 403 H Handover frequency External MIXED sisi tae tie erret e ee ters eem Dv es 79 External Mixer Remote control 197 Hardware settings BIET M M 13 Harmonics Conversion loss table sirinin aa 86 External Mixer Remote control 199 200 Order External Mixer AAA 80 Type External Mixer AAA 80 High ll ee RE 121 High pass filter nie ET RF input Histogram bins Parameter Distribution essssssssssseese 134 Hold Ere 155 Hysteresis Pulse det ctloti ree rrt rtg 119 Bae S 109 l UO data Export file binary data description 410 Export file parameter description 406 EXDpOFlfIg asunen c rrr toca 162 167 Pile Oral ee ist recente ene ttes 405 Input file
15. esseeeseesssessesssieseiesi eene s nnne nh nnne nennt 381 SENSe PULS amp TSIDelobe MWIDthzAVERatge arteria euentu nnn a EE 381 SENSe PULSe TS IDelobe MWIDth MAXIMUM ececeeeeeeeeeeeeeeeeeeeeeeecaeaeaaaeaeaeenenenenes 381 SENSe PULSe TSIDelobe MWIDth MiNmum AAA 381 SENSe PULSe TSIDelobe MWIDth SDEViation idinaan a iaaii 381 SENSe PULSe T SiDelobe PCORrelation arcieri nn i a 382 SENSe PULSe TSIDelobe PCORrelation AVERage sese 382 IGENGe IpDUL Ge TGlDelobe PCObRrelaton MANimum rennen 382 SENSe PULSe TSIDelobe PCORrelation MINimum sees 382 SENSe PULSe TSIDelobe PCORrelation SDEViation sss 382 IGENGe IpDUL Ge TGlDelobe PG eye 382 SENSe PULSE TGlDelobe bGlevelAVERage adia iirai id iaidd iaiia 383 Retrieving Results SENSe PULSe TSIDelobe PSLevel MAXimum eese nennen 383 IGENGelpDUL Ge TGlDelobe PDG evel MiNImum uk EEN 383 IGENGe DU Ge TGlDelobe PG evel SGDEViaton AANEREN ENNEN 383 BENSE PULSE TalDelobe SDE ege eegen dee deans 383 SENSe PULESe TSIBelobe SDELay AVERaQgB 2 1 ra rro ctae init e se eae nineties 383 SENSe PULSe TSIDelobe SDELay MAXimum cease nenne 383 SENSe PULSe TSIDelobe SDELay MINimum eeeeeeeeneenennem nennen 383 SENSe PULSe TSIDelobe SDELay SDEVialion 2 5 2 eret anaa 383 SENSe PULSe TSIDelobe AMPower lt QueryRange gt
16. tet ete 315 Closing remote aen ees 317 320 GONTIQUFING ze eb tbe pre tte 69 Layout remote 318 Maximizing remote 314 Querying remote 317 Replacing remote 318 Splitting remote 314 Types remote nue coe tet 315 X X axis Parameter Distribution A 134 Parameter Spectrum Ss Parameter trend iion eate us X value M rkt Me 148 Y Y axis Parameter Distribution essusessssssss 134 Parameter trend sas LOL Scaling we 143 Y Scaling 142 Remote control o suat eet bn nre Eu de 310 YIG preselector Activating Deactivating sse 76 Activating Deactivating remote 193 Z Zooming Activating remote siiin o rarai 322 Area Multiple mode remote Area remote 921 Deactivating 2 163 Multiple mode rrr nre 163 Multiple mode remote 322 323 ecd 321 Restoring original display 163 Single mode siirsi ss 163 Single mode remole tt 321
17. t a iterare ena reete 388 SENSe PULESe TSIDelobe SDELay LIMIE 2 2 2 derer naa aaa 388 SENSe PULSe lt Parametertype gt lt Parameter gt LIMit lt QueryRange gt SENSe PULSe FREQuency CRATe LIMit lt QueryRange gt SENSe PULSe FREQuency DEViation LIMit lt QueryRange gt SENSe PULSe FREQuency PERRor LIMit lt QueryRange gt SENSe PULSe FREQuency POINt LIMit lt QueryRange gt SENSe PULSe FREQuency PPFRequency LIMit lt QueryRange gt SENSe PULSe FREQuency RERRor LIMit lt QueryRange gt SENSe PULSe PHASe DEViation LIMit lt QueryRange gt SENSe PULSe PHASe PERRor LIMit lt QueryRange gt SENSe PULSe PHASe POINt LIMit lt QueryRange gt SENSe PULSe PHASe PPPHase LIMit lt QueryRange gt SENSe PULSe PHASe RERRor LIMit lt QueryRange gt SENSe PULSe POWer ADRoop DB LIMit lt QueryRange gt SENSe PULSe POWer ADRoop PERCent LIMit lt QueryRange gt SENSe PULSe POWer AMPLitude LIMit lt QueryRange gt SENSe PULSe POWer AVG LIMit lt QueryRange gt SENSe PULSe POWer BASE LIMit lt QueryRange gt SENSe PULSe POWer MAX LIMit lt QueryRange gt SENSe PULSe POWer MIN LIMit lt QueryRange gt SENSe PULSe POWer ON LIMit lt QueryRange gt SENSe PULSe POWer OVERshoot DB LIMit lt QueryRange gt SENSe PULSe POWer OVERshoot PERCent LIMit lt QueryRange gt SENSe PULSe POWer PAVG LIMit lt QueryRange gt SENSe PULSe POWer PMIN LIMit lt QueryRange gt SENSe PULSe POWer P
18. 1 nir erre rt erem t tha rrr rr Reno TRIGger SEQuerice IFPower FIYS Teresis oeren xong eeu ipe epi era uc eene Fk A NEEN GEES TRIGger SEQuernce LEVel IFPOWSLE terrre trot rn ett ren tren re rennen rts TRIGger SEQuence LL EVel IQPOWer irn ttr err rrr trt irr rer o Hh Ee ion TRIGger SEQuericeLHEVel REPOWSFE ectetur arg eee teret eene ek ako porta epe a rg exc o c o Peek rers ir cue dd TRIGger SEQuence LEVel EXTernalsport 5 anon trn nee TRIGger SEQuence OSCilloscope COUPling TRiGgerl SEQuence RE Power HOLD Offre succincte treten sara rA EEEE A NENET Re ee EE ene RE a TRIGge r SEQuence SOURCe irt her rore re E Rh ee ere oc ra e Ra ene cae De RE EE voe TRIGger SEQuerice TIME RINITGEVal conca oae geseet eer eS eee e e reve ted prn vivere eras Bing eB Index A Aborting il 116 AC DC coupling ro dust itin eer teen erede ess 75 Activating Pulse measurements remote s 183 Algorithm Base Top levellusizi ciat dese p toic 120 Alignment B2000 pe Result range eee Amplitude 5 o er tta Configuration remote Configuration Softkey iss e E Analog Baseband Inp tsettiligS ioo ror o t cie Rod 89 Analog Baseband B71 VQ MODS e 90 Input type remote control seee 209 Anal
19. CALCulate n TRENd POWer Y lt YAxis gt see CALCulate lt n gt TRENd POWer Y on page 280 Configuring the Results Setting parameters lt YAxis gt TOP BASE AMPLitude ON AVG MIN MAX PON PAVG PMIN ADPercent ADDB RPERcent RDB OPERcent ODB POINt PPRatio Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 2 Power Amplitude Parameters on page 19 TOP Top Power BASE Base Power AMPLitude Pulse Amplitude ON Average ON Power AVG Average Tx Power MIN Minimum Power MAX Peak Power PON Peak to Avg ON Power Ratio PAVG Peak to Average Tx Power Ratio PMIN Peak to Min Power Ratio ADPercent Droop in ADDB Droop in dB RPERcent Ripple in RDB Ripple in dB OPERcent Overshoot in ODB Overshoot in dB POINt Pulse power measured at measurement point PPRatio Pulse to Pulse Power Difference RST TOP Configuring the Results lt XAxis gt PNUMber TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp PNUMber The pulse numbers are represented on the x axis available numbers can be queried using SENSe PULSe NUMBer on page 344 Intervals without pulses are not displayed SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth P
20. cesser 348 SENSe PULSe POWer AMPLitude MINimum eese ee emn 349 IGENGe PU Ge POWer AMPL Wude GDEViaton ke 349 E EI E EE 349 SENSe PULSe POWerAVG AVERag reor meet REX ERE nx 349 IGENGe PU Ge POWer AVG MANimum ENNER ENEE 349 ISENS amp PULSe POWSrAVG MINIFIDII eic caa tta heic cnn tr 349 SENS amp PULSe POWerAVG SDEVIalion rect tior tree nne ce 349 SENS FULS e 349 El EE ee EE 350 SENSe PULSe POWE BASE MAXIMUM Eege Eoo serra pet EERSTEN 350 SENSe PULSe POWer BASE MINIMUM AANEREN enne enne nnne 350 IGENGe DU Ge POWer BAGE GDEViaton AANEREN nnns 350 SENSae PUESe POWbSEMAX9 arose cios rir Saee ruat eee rre a EE a EE YE QUEE EE VET dv 350 SENSe PU Ge POWer MAX AVERE ek aa inaa EEN 350 SENSe PULSe POWer MAX MAXimum eeseeeeeeeeeeee nennen nemen nennen nnns 350 SENSe PULSe POWeEMAX MINIILUTI ia caca tta repe i qn redii etia cran 351 SENS amp e PULSe POWsEMAX SBEVIStORT recor eri eio naidi a evo cec 351 E Ee e EE 351 SENSe PULSe POWSEMIN AVERBE iui ion dee orta nana rioja aai iiaia pa a 351 E EI POWetMIN MAXIMUM E 351 SENSe PULSe POWerMIN MINimUti 2 2 c00 cccececeeenatetececencnteceeeneabiauebanererstavenctteeeaedee 351 Retrieving Results SENSe PULSe POWSEMIN SDEVIBORN ciere droite ttn t e c ctr 351 SENSE PULSE e dee KE 352 ISENGe IpDUL Ge bOWer ON AVEHRage eren eh eh nh nennt retener nnns ens 352 EE e ee RE Tur It
21. 200 Harmonic order remote control 204 Importing External Mixer 84 Managing etc 83 Mixer type remote control sssssssss 205 Saving External Mixer sats Selecting remote Control 205 Shifting values External Mixer s 87 Values External Mixer 87 Copying Measurement channel remote 183 Correlated pulses Resultdisplays retener 38 39 Correlation Peak sidelobes eene e ete 28 Correlator output eg lee Coupling Input remote Er M D Data acquisition Een EE 114 gig c EE 114 Measurment time eessssesseeeee 115 117 MSRA MSRT IRemote conttol eei eet t ett ECG 235 Scu MT 113 Data format EI ue 389 390 Data management EE 177 DC offset Analog Baseband B71 remote control 210 Decimal separator Trace export octets 140 159 161 166 Deltas Manns iiie in icr rome teles Pies eters 149 Bt Un EE 148 Detectors REMOTE COMMON a seiner et d ett ine des 326 Hc E 155 Diagram footer information sseseeeee 14 Differential input Analog Baseband B71 remote control 208 Analog Baseband B71 E Digital Baseband Interface sss Connected instrument sriid Input settings T Input status remote oios 211 Output conn
22. eese eene nnns 322 DiSblavlfWiNDow nztZOOM ML Tiple z0oomzGTATe sensere ererersrsrsrnrnrre rrr nn ne 323 DISPlay WINDow lt n gt ZOOM MULTiple lt zoom gt AREA lt x1 gt lt y1 gt lt x2 gt lt y2 gt This command defines the zoom area for a multiple zoom To define a zoom area you first have to turn the zoom on 1 Frequency Sweep iRm ome 1 origin of coordinate system x1 0 y1 0 2 end point of system x2 100 y2 100 3 zoom area e g x1 60 y1 30 x2 80 y2 75 Suffix lt zoom gt 1 4 Selects the zoom window ES User Manual 1173 9392 02 17 322 9 16 Configuring Standard Traces Parameters lt x1 gt lt y1 gt Diagram coordinates in of the complete diagram that define lt x2 gt lt y2 gt the zoom area The lower left corner is the origin of coordinate system The upper right corner is the end point of the system Range 0 to 100 Default unit PCT Manual operation See Multiple Zoom on page 163 DISPlay WINDow lt n gt ZOOM MULTiple lt zoom gt STATe State D This command turns the mutliple zoom on and off Suffix zoom 1 4 Selects the zoom window If you turn off one of the zoom windows all subsequent zoom windows move up one position Parameters lt State gt ON OFF RST OFF Manual operation See Multiple Zoom on page 163 See Restore Original Display on page 163 See RK Deactivating Zoom Selection mode on pa
23. esses 142 Deactivating all limit checks for all parameter groupe 142 Parameter Group Defines the group of parameters from which one can be selected to define limits For a description of the parameters see chapter 3 1 Pulse Parameters on page 15 Parameter Defines the parameter for which the limits are to be defined The available parameters depend on the selected Parameter Group Activating a limit check for a parameter To activate a limit check for the selected parameter set Limit On Off to ON Result Configuration Note If a limit is defined for a parameter that is displayed in a Parameter Trend dia gram the Auto Scale Window function is not available for the axis this parameter is displayed on see also Automatic Grid Scaling on page 143 Remote command CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit STATe on page 306 Defining lower and upper limits for a parameter The Lower Limit and Upper Limit define the valid value range for the limit check for the selected parameter Remote command CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit on page 308 Deactivating a limit check for an entire parameter group To deactivate all limits for an entire parameter group at once select Turn off all limits in group This function is identical to setting Limit On Off to OFF for each parame ter in the group Remote command CALCulate lt n gt TABLe
24. 0cccccccceesseseeececeeeseseeeceauesesensasaneeeees 306 CAL Culate nz TABlebiAGe base LIMISTATe iriiri iniii 306 CAL Culate nz TABlebAGebRtRor UIMtSTATe ennert rr rnraorr rn reenre rr reeena 306 CAL Culate nz TABlebO WerADbRoop D BUMSTATe 307 CALOCulate n TABLe POWer ADRoop PERCent LIMit S TATe sse 307 CAL Culate nz TABlebOwWer AM Wide l IM STATe nennen 307 CALCulate n TABLe POWer AVG LIMit STATe nennen nnn nnns 307 CALCulate n TABLe POWer BASE LIMit STATe esee 307 CALCulate n TABLe POWer MAX LIMit STATe eseeeeeeeee eene enne 307 CAL Culate nz TABlebOwWer MIN LIMISTATe eene enne nnne nnne 307 CALOCulate n TABLe POWer ON LIMit STATe sees enne nnns 307 CALOCulate n TABLe POWer OVERshoot DB LIMIit S TATe seen 307 Configuring the Results CALOCulate n TABLe POWer OVERshoot PERCent LIMit STATe sees 307 CAL Culate nz TABleb WerPDAVG UM SGTATe reret er ertr trerererererersrsrnene 307 CAL Culate nz TABlebOwWer DMIN LIM STATe nne nennen nnns 307 CALCulate lt n gt TABLe POWer POINt LIMit STATe esses 307 CAL Culate nz TABlebOwWer DONT IMSTATe eene nennen nnns 307 CALOCulate n TABLe POWer PPRatio LIMit STATe sse 307 CAL Culate nz TABlebOwWerbRipbie DBIIMSTATe nnne 307 CAL Culate nz TABlebOWer Riet PER ent LIMutSTATe nenne 307 CAL Culate nz TABlebO Wer Ob UMIGSTATe nennen 307 C
25. Activate segmented capture SENS SWE SCAP ON Define a pretrigger offset of 5 us SENS SWE SCAP OFFS 5 us Capture data for 25us for 10 trigger events SENS SWE SCAP EVEN 10 SENS SWE SCAP LENG 25 us Query the sample rate SRATE Result 200 MHz Measurement time 10 Events Segment Len 25 us 250 us Record length Sample Rate 200 MHz Meas Time 250us 50000 Select single sweep mode NIT CONT OFF Initiate a new measurement and wait until the sweep has finished NIT WAI Query the sample indices at which segments start TRAC IQ SCAP BOUN Result 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 Query the timestamps at which segments were captured TRAC IQ SCAP TST SST Result 4 999999874E 006 7 450049743E 004 1 494999975E 003 2 245004987E 003 2 994999988E 003 3 745000111E 003 4 495000001E 003 5 245004781E 003 5 994999781E 003 6 745005026E 003 Query the timestamps at which trigger events occured TRAC IQ SCAP TST TRIG Result 0 000000000 7 500050124E 004 1 500000013E 003 2 250005025E 003 3 000000026E 003 3 749999916E 003 4 499999806E 003 5 250005051E 003 6 000000052E 003 6 750004832E 003 Query only See Magnitude Capture on page 29 See Trigger Offset on page 112 Retrieving Results TRACe n IQ SCAPture TSTamp TRIGger This remote control command returns an array of trigger event time stamps for the cap ture
26. Note however that the internal reference level used to adjust the hardware settings to the expected signal optimally ignores any Reference Level Offset Thus it is impor tant to keep in mind the actual power level the R amp S FSW must handle and not to rely on the displayed reference level internal reference level displayed reference level offset Remote command DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RLEVel OFFSet on page 223 RF Attenuation Defines the mechanical attenuation for RF input Attenuation Mode Value RF Attenuation The RF attenuation can be set automatically as a function of the selected reference level Auto mode This ensures that the optimum RF attenuation is always used It is the default setting By default and when electronic attenuation is not available mechanical attenuation is applied R amp S FSW K6 6S Configuration EH In Manual mode you can set the RF attenuation in 1 dB steps down to 0 dB Other entries are rounded to the next integer value The range is specified in the data sheet If the defined reference level cannot be set for the defined RF attenuation the refer ence level is adjusted accordingly and the warning Limit reached is displayed NOTICE Risk of hardware damage due to high power levels When decreasing the attenuation manually ensure that the power level does not exceed the maximum level allowed at the RF input as an overload may lead to hardw
27. TT Input file remote 44215 INPUE TOMA s e cen rei rene cim n caverns ts 405 lenalnqeem zeiedEe 58 76 UO Power MUG GEN 107 Trigger level remote sese 228 IF Power aler CG 107 Trigger level remote seeeessese 228 Impedance Iioc 193 SeN RE 75 Importing Functions and emi Impulse response see Sidelob88 uiri note o eei e Res 53 Input Analog Baseband Interface B71 settings 89 B2000 m 93 Bel le Le le TEE 74 Configuration remote 191 Belle E e Coupling remote Digital Baseband Interface settings 88 I Q data files reete well Overload Me 58 Overload remote AA 192 Settings 74 103 Signal parameters sis orci ober ee rentes i eiegt ege 58 Source Configuration softkey Source Configuration Softkey 74 Source Radio frequency RF eene 75 Input sample rate ISR Digital I O eer HH 88 Input sources Analog Basebarid gedu roter ettet etn 90 Digital 1 Q 88 UO data file had UO data file remote ssssssssssssss 215 VQ data files reiecit 58 76 Input Frontend epic EU IristallatioN si tetti iret ea Instrument configuration K Keep out time leet Te 127 SideloD6eS rerasan ete ce eee sto dida cene pa qu 55 Keys MKR stage iine eege deeg dE 152 Peak Search eres ee e
28. 401 Segmented Capture Last Segments truncated Please reduce segment length This message appears during segmented capture see Segmented Capture on page 111 if the end of a segment occurred very close to the successive trigger event e g within 2 us In this case a merge of segments will occur The timestamp information remains correct for this data However more data is stored from the time between the merged segments which is then truncated from the last segments in order not to exceed the allocated buffer size This may potentially result in fewer than the requested number of events being cap tured Reduce the segment length to avoid this behaviour Segmented Capture Timestamps inconsistent Please reduce pre trigger time This message appears during segmented capture see Segmented Capture on page 111 if a large pre trigger time is used negative trigger offset such that multi ple trigger events occur within the pre trigger interval In this case an exact allocation of timestamps to segments is not possible Reduce the pre trigger time to avoid this sit uation Reference ASCII File Export Format A Annex Reference e Reference ASCII File Export Format ee eerte nena t nt enean eiat 402 A 1 e Effects of Large Gauss Filters e Q Data File Format iq tar Reference ASCII File Export Format Trace data can be exported to a file in ASCII format for further evaluation in other applications The file co
29. Defines the length of the reference pulse in the data file in seconds Parameters Time Default unit S 9 6 Input Output Settings Example RIQ FIQ RANG AUTO OFF RIQ FIQ RANG OFFS 10 ms RIQ FIQ RANG LENG 1s Defines the use of a reference range that is 1 second long and starts after 10 ms Manual operation See Length on page 74 RIQ FIQ RANGe OFFSet Time Defines the starting time of the reference pulse as an offset from the beginning of the data file Parameters Time Default unit S Example RIQ FIQ RANG AUTO OFF RIQ FIQ RANG OFFS 10 ms RIQ FIQ RANG LENG 1s Defines the use of a reference range that is 1 second long and starts after 10 ms Manual operation See Offset on page 74 RIQ SELect lt ReflQSource gt This command selects the reference I Q source for time sidelobe measurements Parameters ReflQSource FIQ FIQ A custom waveform is loaded from an iq tar file The file to be imported is defined by RIQ FIO PATH on page 190 Manual operation See Selection Type on page 73 Input Output Settings The R amp S FSW can analyze signals from different input sources such as RF power sensors etc and provide various types of output such as noise or trigger signals The following commands are required to configure data input and output Ma e e EE 192 e Using External OT 194 e Configuring Input via the Optional Analog Baseband Interface 208 e
30. Note that averaging is not possible for parameter distribution traces Remote command LAY ADD WIND 2 RIGH PDIS see LAYout ADD WINDow on page 315 chapter 9 14 3 Configuring a Parameter Distribution on page 256 Results TRACe lt n gt DATA on page 340 Parameter Spectrum Calculates an FFT for a selected column of the Pulse Results table This spectrum allows you to easily determine the frequency of periodicities in the pulse parameters For example the Parameter Spectrum for Pulse Top Power might display a peak at a particular frequency indicating incidental amplitude modulation of the amplifier output due to the power supply The Parameter Spectrum is calculated by taking the magnitude of the FFT of the selected parameter and normalizing the result to the largest peak In order to calculate the frequency axis the average PRI pulse repetition interval is taken to be the sam ple rate for the FFT Note that in cases where the signal has a non uniform or stag gered PRI the frequency axis must therefore be interpreted with caution E SS S E UU User Manual 1173 9392 02 17 31 Evaluation Methods for Pulse Measurements 6 Off Time Spectrum 16 602 kHz Remote command LAY ADD WIND 2 RIGH PSP see LAYout ADD WINDow on page 315 chapter 9 14 4 Configuring a Parameter Spectrum on page 262 Results TRACe lt n gt DATA on page 340 Parameter Trend Plots all measured parameter values from the
31. Remote command SENSe PULSe POWer ON on page 352 CALCulate lt n gt TABLe POWer ON on page 296 SENSe PULSe POWer ON LIMit on page 387 Average Tx Power The average transmission power over the entire pulse ON OFF time Remote command SENSe PULSe POWer AVG on page 349 CALCulate lt n gt TABLe POWer AVG on page 295 SENSe PULSe POWer AVG LIMit on page 387 Minimum Power The minimum power over the entire pulse ON OFF time Remote command SENSe PULSe POWer MIN on page 351 CALCulate lt n gt TABLe POWer MIN on page 296 SENSe PULSe POWer MIN LIMit on page 387 Peak Power The maximum power over the entire pulse ON OFF time Remote command SENSe PULSe POWer MAX on page 350 CALCulate lt n gt TABLe POWer MAX on page 296 SENSe PULSe POWer MAX LIMit on page 387 Peak to Avg ON Power Ratio The ratio of maximum to average power over the pulse ON time also known as crest factor Remote command SENSe PULSe POWer PON on page 356 CALCulate lt n gt TABLe POWer PON on page 297 SENSe PULSe POWer PON LIMit on page 387 Pulse Parameters Peak to Average Tx Power Ratio The ratio of maximum to average power over the entire pulse ON OFF interval Remote command SENSe PULSe POWer PAVG on page 354 CALCulate lt n gt TABLe POWer PAVG on page 297 SENSe PULSe POWer PAVG LIMit on page 387 Peak to Min Power Ratio
32. This command defines the maximum value of the y axis for all traces in the selected result display The suffix t is irrelevant Parameters Value numeric value RST depends on the result display The unit and range depend on the result display Example DISP TRAC Y MIN 60 DISP TRAC Y MAX 0 Defines the y axis with a minimum value of 60 and maximum value of 0 Manual operation See Absolute Scaling Min Max Values on page 144 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe MINimum Value This command defines the minimum value of the y axis for all traces in the selected result display The suffix t is irrelevant Parameters Value numeric value RST depends on the result display The unit and range depend on the result display Example DISP TRAC Y MIN 60 DISP TRAC Y MAX 0 Defines the y axis with a minimum value of 60 and maximum value of 0 Manual operation See Absolute Scaling Min Max Values on page 144 Configuring the Results DISPlay WINDow lt n gt TRACe lt t gt Y SCALe PDIVision Value This remote command determines the grid spacing on the Y axis for all diagrams where possible The suffix t is irrelevant Parameters Value numeric value WITHOUT UNIT unit according to the result dis play Defines the range per division total range 10 lt Value gt RST depends on the result display Example DISP TRAC Y PDIV 10 Sets the grid spacing
33. e the measurement levels e the measurement point e the measurement range 9 Select the Display button and select the evaluation methods that are of interest to you How to Configure a Limit Check for a Pulse Measurement Arrange them on the display to suit your preferences 10 Exit the SmartGrid mode and select the Overview softkey to display the Over view again 11 Select the Result Config button in the Overview to configure which data is dis played in the individual result displays and other settings for specific evaluation methods These settings can be configured individually for each window so select the window first and then configure the settings e Define the Result Range which determines the extent of measured data dis played in pulse magnitude frequency and phase vs time traces e Configure specific settings for the selected evaluation method s e Configure a limit check see To configure a limit check for a pulse measure ment on page 170 e Configure markers and delta markers to determine deviations and offsets within the results e g when comparing errors or peaks e Adapt the diagram scaling to the displayed data e Optionally configure the trace to display the average over a series of sweeps If necessary increase the Sweep Average Count in the Sweep Config dia log box 12 Stop the continuous sweep and start a new sweep with the new configuration e g using the RUN SINGLE key
34. 2 iniri t rhe had he nu aant n an E Dania enhn 355 SENSe PULSe POWer PMIN MAXimum esses eene 355 SENSe PULSe POWerPMIN MIMiDU nca idu rna tti rtr hr e cen 355 ISENSe PULSe POWsSEPMIN SDEVIalIOI 2 2 t eren earen oe taco 355 ISENSe PULSeTOWoerPOINFE ua irat ruat nu eo tpe nante epa eph SNE EEN 355 SENSe PULSe POWerPOINEAVERage etica tet tcp irn tet ek er agni 355 SENSe PULSe POWeEPOINEMADXImURII cic edet ette eire EENEG 355 SENSe PULSe POWerPOINEM NIIBINI 5 5 2 ta Coo ttr eR nemi rn i nene 355 SENSe PULSe POWer POINt SDEViation eeeeeeeeseee eene 355 SENSE PULSE POWE PONT scite ntn coetu the n elt nee e aed ard 356 SENSe PULSe POWer PON AVERadge n ialeiceun tiere tl cese eese AH YR RT 356 E GE E Ge UE e El ET 356 SENSe PULSe POWerPON MINIMUM ie saa Dune atu tet tren er t ei mena 356 SENSe PULSe POWser PONISBEVIaAORN 5 2 2 1 ccce rear aaa cuan 356 E GE E Ge e e 356 ISGENGe IpDUL Ge bOWer PPRato AVEhRage eee eaeeececeeeeeeeetereeeeeeeeeeeees 357 SENSe PULSEePOWerPPRatio MAXIMUM es ccu actae etes tede en pntat natae aeaiia 357 SENSe PULSe POWer PPRatic MINimmIIm eoo ouod e uda e top etu n iaiaaeaia 357 SENSe PULSe POWer PPRatio SDEViation ecce une NEES 357 SENSeTPULSEPOWeBRIPPIeI DB3 2 citi ote tiat et retta ea ane tad pepe cette a 357 SENSe PULSe POWer RIPPle DB AVERa JEO nen
35. CAL Culate cnz TAPBletRtOuencv D Viattonl IM STATS ene 206 GALCulate n TABLe FREQuency PERROLF nne traherent trt c bh Ie nena lae tape does 292 GALCulate n TABLe FREQuency PERRor LIMIt erint cancenscnsarnenneenceanssesastengerensconteneans 308 CALOCulate n TABLe FREQuency PERRor LIMit STATe essen rennen enne 306 GALCulate n LABLe FREQuency POINLt 2 rte retira ther t ehe rri roit e Rr Earn GALCulatesps TABLEe FREQuercy POINELEIMILE uice cop ie epar rct eer OE oorr cred CALCulate lt n gt TABLe FREQuency POINt LIMit STATe GALCulate n TABLe FREQuency PPFReqUenCy rtr tenen tnr e ripe bes CALOCulate n TABLe FREQuency PPFRequency LIMit eese nne CALOCulate n TABLe FREQuency PPFRequency LIMit STATe sess 306 CAL Culate nz TABletRtOuencv RERRor CALCulate lt n gt TABLe FREQuency RERRor LIMit CALCulate n TABLe FREQuency RERRor LIMit STATe essent rennen 306 CALGulate ns TABEe PHASe ALL EIMit S TAT6 eiit met ai rite ER EO nian 308 CALCulate n TABLe PHASe ALL STATe sessi rennen nennen trennen 293 GALGulate n TABEe PHASe DEVialion ntn eret th t ter rrr ene Ee A 294 CALCulate n TABLe PHASe DEViation LIMit seeesessesesseessese essent nennen nenne nnn rrn snis CALCulate lt n gt TABLe PHASe DE Viation LIMit STATe ou ee TABLE S
36. IQ file tab of the Input Frontend dialog box which is available when you do of the following 5 4 1 3 Input and Output Settings Input Source Frequency Amplitude Power Sensor Output Radio GEE erg Off Frequency On Input File Digital IQ C R_S Instr user predefined Docsis_Waveform iq tar Select File Saved by FSW K192 Comment Date amp time 2015 02 18T11 16 53 Sample rate 204 8 MHz Number of samples 1228800 Duration of signal 6 ms Number of channels 1 1Q File Press the INPUT OUTPUT key then select the Input Source Config softkey Press the MEAS CONFIG key then select the Input Frontend softkey e From the Overview select Input Frontend For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 VO input File Sate C n a 77 Select VA Data Fil eerte T bere e den e a ee a TT I Q Input File State Activates input from the selected UO input file If enabled the application performs measurements on the data from this file Thus most measurement settings related to data acquisition attenuation center frequency measurement bandwidth sample rate cannot be changed The measurement time can only be decreased in order to perform measurements on an extract of the availa ble data only Note Even when the file input is deactivated the input file remains selected and can be activated again quickly by changing the state Remote command INPut SELect on pa
37. Manual operation See YIG Preselector on page 76 INPut IMPedance Impedance This command selects the nominal input impedance of the RF input In some applica tions only 50 O are supported Input Output Settings 75 Q should be selected if the 50 Q input impedance is transformed to a higher impe dance using a matching pad of the RAZ type 25 Q in series to the input impedance of the instrument The power loss correction value in this case is 1 76 dB 10 log 750 500 Parameters Impedance 50 75 RST 500 Example INP IMP 75 Usage SCPI confirmed Manual operation See Impedance on page 75 INPut SELect Source This command selects the signal source for measurements i e it defines which con nector is used to input data to the R amp S FSW If no additional input options are installed only RF input or file input is supported Parameters Source RF Radio Frequency RF INPUT connector FIQ UO data file selected by INPut FILE PATH on page 215 For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 RST RF Manual operation See 1 Q Input File State on page 77 See Digital UO Input State on page 88 See Analog Baseband Input State on page 90 9 6 2 Using External Mixers The commands required to work with external mixers in a remote environment are described here Note that these commands require the R amp S FSW B21 option to be installed and an external
38. PULSe TIMing FALL on page 361 CALCulate lt n gt TABLe TIMing FALL on page 299 SENSe PULSe TIMing FALL LIMit on page 387 Pulse Parameters Pulse Width ON Time The time that the pulse remains at the top level ON This is the time between the first positive edge and the subsequent negative edge of the pulse in seconds where the edges occur at crossings of the mid threshold See figure 3 1 Remote command SENSe PULSe TIMing PWIDth on page 364 CALCulate lt n gt TABLe TIMing PWIDth on page 300 SENSe PULSe TIMing PWIDth LIMit on page 387 Off Time The time that the pulse remains at the base level OFF This is the time between the first negative edge and the subsequent positive edge of the pulse in seconds where the edges occur at crossings of the mid threshold See figure 3 1 Remote command SENSe PULSe TIMing OFF on page 362 CALCulate lt n gt TABLe TIMing OFF on page 299 SENSe PULSe TIMing OFF LIMit on page 387 Duty Ratio The ratio of the Pulse Width to Pulse Repetition Interval expressed as a value between 0 and 1 requires at least two measured pulses Remote command SENSe PULSe TIMing DRATio on page 361 CALCulate lt n gt TABLe TIMing DRATio on page 299 SENSe PULSe TIMing DRATio LIMit on page 387 Duty Cycle 96 The ratio of the Pulse Width to Pulse Repetition Interval expressed as a percentage requires at least two measured pulse
39. Performs the alignment of the oscilloscope itself and the oscilloscope ADC for the optional 2 GHz bandwidth extension R amp S FSW B2000 The correction data for the oscilloscope including the connection cable between the R amp S FSW and the oscillo scope is recorded As a result the state of the alignment is returned Alignment is required only once after setup If alignment was performed successfully the alignment data is stored on the oscilloscope Thus alignment need only be repeated if one of the following applies e Anew oscilloscope is connected to the IF OUT 2 GHZ connector of the R amp S FSW e Anew cable is used between the IF OUT 2 GHZ connector of the R amp S FSW and the oscilloscope e Anew firmware is installed on the oscilloscope Return values lt State gt Returns the state of the second alignment step ON 1 Alignment was successful OFF 0 Alignment was not yet performed successfully Example SYST COMM RDEV 0SC ALIG STEP Result 1 Usage Query only SYSTem COMMunicate RDEVice OSCilloscope ALIGnment DATE Returns the date of alignment of the IF OUT 2 GHZ to the oscilloscope for the optional 2 GHz bandwidth extension R amp S FSW B2000 Return values lt Date gt Returns the date of alignment Example SYST COMM RDEV OSC DATE Result 2014 02 28 Usage Query only Input Output Settings SYSTem COMMunicate RDEVice OSCilloscope IDN Returns the identification string of the o
40. Returns the average mainlobe level for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Mainlobe Power Average on page 27 SENSe PULSe TSIDelobe AMPower AVERage lt QueryRange gt SENSe PULSe TSIDelobe AMPower MAXimum lt QueryRange gt SENSe PULSe TSIDelobe AMPower MINimum lt QueryRange gt SENSe PULSe TSIDelobe AMPower SDEViation lt QueryRange gt Returns the statistical value for the average mainlobe power within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe CRATio lt QueryRange gt Returns the compression ratio within the time sidelobe range for the specified pulse s Retrieving Results Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Compression Ratio on page 27 SENSe PULSe TSIDelobe CRATio AVERage lt QueryRange gt SENSe PULSe TSIDelobe CRATio MAXimum lt QueryRange gt SENSe PULSe TSID
41. SENSe TRACe MEASurement DEFine TSRange ALIGnment on page 245 Length Range Defines the length of the time span in which the sidelobes are analyzed within an indi vidual pulse Remote command SENSe TRACe MEASurement DEFine TSRange LENGth on page 246 Keep Out Time Defines an excluded area around the center of the time sidelobe range assuming this is the mainlobe in which no results are calculated By default Auto mode ON the determined mainlobe 3 dB width is used If Auto mode is OFF you can define the length of the keep out time manually Remote command SENSe TRACe MEASurement DEFine TSRange KOTime AUTO on page 245 Length Keep Out Time Defines the length of the keep out time Remote command SENSe TRACe MEASurement DEFine TSRange KOTime LENGth on page 246 Automatic Settings Some settings can be adjusted by the R amp S FSW automatically according to the current measurement settings To activate the automatic adjustment of a setting select the corresponding function in the AUTO SET menu or in the configuration dialog box for the setting where available Alito Scale Continuous CAD adir oett nr tete t etate e tcc end dne 128 Auto Stale Once AT eiii reir ter en o d reed 128 Automatic Settings Auto Scale Continuous All Automatically determines the optimal result range and reference level position for each new measurement in all displayed diagrams for graphical or pulse based res
42. The in phase component of the input signal is filtered and resampled to the sample rate of the application If the center fre quency is not 0 the in phase component of the input signal is down converted first Low IF I Q The quadrature component of the input signal is filtered and resampled to the sample rate of the application If the center fre quency is not 0 the quadrature component of the input signal is down converted first Low IF Q RST IQ INP IO TYPE O Input Output Settings Manual operation See I Q Mode on page 90 CALibration AIQ HATiming STATe State Activates a mode with enhanced timing accuracy between analog baseband RF and external trigger signals For more information see the R amp S FSW UO Analyzer and UO Input User Manual Parameters State ON OFF 1 0 ON 1 The high accuracy timing function is switched on The cable for high accuracy timing must be connected to trigger ports 1 and 2 OFF 0 The high accuracy timing function is switched off RST OFF Example CAL AIQ HAT STAT ON Manual operation See High Accuracy Timing Trigger Baseband RF on page 91 9 6 4 Configuring Digital UO Input and Output Remote commands for the R amp S DiglConf software Remote commands for the R amp S DiglConf software always begin with SOURce EBOX Such commands are passed on from the R amp S FSW to the R amp S DiglConf automatically which then configures the R amp S EX IQ BOX via the
43. This result display only shows results if the signal model has been defined as CW Lin ear FM or Reference UO see chapter 5 3 Reference Signal Description on page 72 Remote command LAY ADD 1 RIGH PFE see LAYout ADD WINDow on page 315 Results TRACe lt n gt DATA on page 340 Pulse Phase Error Requires option R amp S FSW K6S Displays the phase deviation between the reference pulse and the currently selected measured pulse within the result range User Manual 1173 9392 02 17 40 R amp S FSW K6 6S Measurements and Result Displays 6 Pulse 1 Phase Error AP Clrw 20 060000224 us 400 0 ns This result display only shows results if the signal model has been defined as CW Lin ear FM or Reference UO see chapter 5 3 Reference Signal Description on page 72 Remote command LAY ADD 1 RIGH PPER see LAYout ADD WINDow on page 315 Results TRACe lt n gt DATA on page 340 User Manual 1173 9392 02 17 41 Parameter Definitions 4 Measurement Basics Some background knowledge on basic terms and principles used in pulse measure ments is provided here for a better understanding of the required configuration set tings e Parameter Definitions rierren aaan gene REPE SEENEN 42 LE Ee de EE 46 e Parameter Spectrum GCaleulatton i ttt eee ENEE 47 e Segmented Data Capturing ccccccccececceeececneeceeeeeeeeeeeeeeeeeaneeceeeeeeeetseeeeeneeaees 50 e Tim
44. Y SCALe RVALue MAXimum esses 312 DISPlay WINDow n TRACe t Y SCALe RVALue MlINimum essent 313 DilSblavf WiN Dow nzTR ACect Tt SCALelUNIT ener 313 DISPlayEWINDow lt n gt TRACe lt P STAT Efirga aieeaa tnter a iiai eais 325 DISPlay WINDOwWsn ZOOMIAREA TE 321 DlSblavfWiNDow nzZOOMMUL Tiple zo0omz AREA nennen neret 322 DISPlay WINDow lt n gt ZOOM MUL Tiple zo0omz STATE nennen eren 323 DISPlay WINDow lt n gt ZOOM STATe EXPorGWAVelformiDISPlayOlf EE FORMatDEXPOt EE TE FORMatDEXPorn HEAD EE FORMat DEXPON TRACES ceo cess gl EUR E Jl NEI Eeer INITiate lt n gt CONTinuous INITiatesn gt REF ROS rrr rece a ea aed Auten eraser aa Unc edes INI NEI E ee EE INlTlate nz GEOuencer IMMedlate AAA INITiate ns SEQuencerMODE cerent Ae cete vide pce Hlc cx det uus INITiatesn SEQuencer REFResh ALL 2 true tt eene ri Ri eer her hh thier ses 250 ll MMediate E 249 INPut ATTenuation INPut REUTER Ke DEE 224 INPut AT Tenuation PROTection RESet eene neant nets eua nhan a Pa as Rus n na kae ETERA 192 INPULGOU zl aro E 192 Jl aigle Bec PH 211 ly Igneslledsidieruerouiii 212 INP t DIG RANGS UPBel E 213 INPut DIG RANGeEUPP r F AUTO herren er tote hte rta ere re eaae ree ERA KESA 212 INP
45. a constant high signal is output to the connector until the Send Trigger button is selected Then a low pulse is sent Which pulse level will be sent is indicated by a graphic on the button Remote command OUTPut TRIGger port PULSe IMMediate on page 232 Digital UO Output Settings The optional Digital Baseband Interface allows you to output UO data from any R amp S FSW application that processes UO data to an external device The configuration settings for digital UO output can be configured via the INPUT OUTPUT key or in the Outputs dialog box These settings are only available if the Digital Baseband Interface option is installed on the R amp S FSW As of firmware version 2 10 digital UO output is also available with bandwidth exten sion option R amp S FSW B500 Output Digital IQ Digital Baseband Output Off Output Settings Max Sample Rate 100 MHz Sample Rate 32 MHz Full Scale Level 0 dBm Device Name SMBV100A Serial Number 257374 Port Name Dig BB In For details on digital UO output see the R amp S FSW UO Analyzer User Manual S User Manual 1173 9392 02 17 98 Frontend Settings Digital Baseband Mp Wea eter ente rettet t exert ges ted tes 99 Output Settings InforfTatign aee rne Erie rtr RE ut o RE FR R ESATEA 99 Connected InstrllfiGhi eoe essed estet pacati nord tee EF nen kd dpa e ER EE 99 Digital Baseband Output Enables or disables a digital output stream to the opt
46. hu ER 148 Maximizing WiNdOwWS ue EE 314 Measurement bandwidth Data acquisition rere nete 114 Measurement channel Creating remote eiiiai Deleting remote Duplicating remote Querying remote Renaming remote Replacing remote esee Measurement levels Configuring eerie terti he ette ned 119 Configuring remote RE 239 Measurement point Config fing ict tei Rhe rer 122 Configuring remote tires isss 241 curae p M 122 Measurement range ssssssssssesseeeeneeneeetnns 15 Configuring 124 Configuring remote sese 244 Measurement time sssssssneeee 115 117 e t RIGEN 237 Mesial Balen BE 121 Mid Threshold oe eerie Ede Ne LES EEE E E E ce te eee MIMMU DEE Marker positioning N t ith fer ec Eier eie ee Mixer Type External Wer eege Seed 80 MKR gt M I 152 MSRA Analysis interval 2 aceite ees 113 235 Mem H R 105 MSRA applications Capture offset EE 111 Capture offset remote AA 337 MSRA MSRT Operating MODE iis oii e ptr etn rn 65 B nEn 226 MSRT Analysis interval 2 etie cerea 113 235 blot GE 105 MSRT applications Capture Oof SeE enit oret rete m eode Capture offset remote Multiple Measurement channels sisissicisisrissin iirde 12 Multi
47. nector on the oscilloscope Then the R amp S FSW triggers when the signal fed into the CH2 input connector on the oscilloscope meets or exceeds the specified trigger level EXT2 Trigger signal from the TRIGGER INPUT OUTPUT connector Note Connector must be configured for Input EXT3 Trigger signal from the TRIGGER 3 INPUT OUTPUT connector Note Connector must be configured for Input RFPower First intermediate frequency IFPower Second intermediate frequency IQPower Magnitude of sampled UO data For applications that process UO data such as the UO Analyzer or optional applications RST IMMediate TRIG SOUR EXT Selects the external trigger input as source of the trigger signal See Trigger Source on page 106 See Free Run on page 106 See External Trigger 1 2 3 on page 106 See External CH2 on page 107 See UO Power on page 107 See IF Power on page 107 See RF Power on page 108 TRIGger SEQuence TIME RINTerval Interval This command defines the repetition interval for the time trigger 9 8 2 Triggering Measurements Parameters Interval 2 0 ms to 5000 Range 2ms to 5000s RST 1 0s Example TRIG SOUR TIME Selects the time trigger input for triggering TRIG TIME RINT 50 The measurement starts every 50 s Manual operation See Repetition Interval on page 108 Configuring the Trigger Output The following commands are required to send the trigger signal to one o
48. Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Mainlobe 3 dB Width on page 26 SENSe PULSe TSIDelobe MWIDth AVERage lt QueryRange gt SENSe PULSe TSIDelobe MWIDth MAXimum lt QueryRange gt SENSe PULSe TSIDelobe MWIDth MINimum lt QueryRange gt SENSe PULSe TSIDelobe MWIDth SDEViation lt QueryRange gt Returns the statistical value for the mainlobe 3 dB width within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe TSIDelobe PCORrelation lt QueryRange gt Returns the peak correlation within the time sidelobe range for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Peak Correlation on page 28 SENSe PULSe TSIDelobe PCORrelation AVERage lt QueryRange gt SENSe PULSe TSIDelobe PCORrelation MAXimum lt QueryRange gt SENSe PULSe TSIDelobe PCORrelation MINimum lt QueryRange gt SENSe PULSe TSIDelobe PCORrelation SDEViation lt QueryRange gt Returns the statistical value for the peak correlation withi
49. FREQ PERR MIN ALL SENS PULS FREQ PERR MAX ALL SENS PULS PHAS DEV AVER ALL SENS PULS PHAS DEV MIN ALL SENS PULS PHAS DEV MAX ALL SENS PULS POW ON AVER ALL SENS PULS POW ON MIN ALL SENS PULS POW ON MAX ALL SENS PULS POW ADR AVER ALL SENS PULS POW ADR MIN ALL SENS PULS POW ADR MAX ALL SENS PULS POW PPR AVER ALL SENS PULS POW PPR MIN ALL SENS PULS POW PPR MAX ALL SENS PULS POW AMPL AVER ALL SENS PULS POW AMPL MIN ALL SENS PULS POW AMPL MAX ALL SENS PULS TIM SETT AVER ALL SENS PULS TIM SETT MIN ALL SENS PULS TIM SETT MAX ALL SENS PULS TIM PWID AVER ALL SENS PULS TIM PWID MIN ALL SENS PULS TIM PWID MAX ALL Retrieve trace data for pulse magnitude pulse 1 TRAC4 DATA TRACel TRAC4 DATA X TRACel Export entire result table all params to an ASCII file MMEM STOR2 TABL ALL C R_S Instr user AllResults dat Store I Q data for result range to an igq tar file MMEM STOR IQ COMM I Q data for result range Programming Example Pulse Measurement MMEM STOR IQ RANG RRAN MMEM STOR IQ STAT 1 C R_S Instr user RRTestdata iq tar 10 Troubleshooting Explanation of Error Mes Sages The following section describes error messages and possible causes Segmented Capture Last Segments truncated Please reduce segment length 401 Segmented Capture Timestamps inconsistent Please reduce pre trigger time
50. GENZeTRACeMEAGurement TRANempon NEGattve DUbRaton 385 SENSe TRACe MEASurement TRANsition POSitive DUbRaton 385 SENSe TRACe MEASurement TRANeiton POSitive OVEReboot 385 SENSe TRACe MEASurement TRANsition POSitive OVERshoot MAXimum 385 SENSe TRACe MEASurement POWer AVG Query the pulse average Tx power values from the current capture Usage Query only SENSe TRACe MEASurement POWer MAX Query the pulse peak power values from the current capture Usage Query only SENSe TRACe MEASurement POWer MIN Query the pulse minimum power values from the current capture Usage Query only SENSe TRACe MEASurement POWer PULSe BASE Query the pulse base power values from the current capture Usage Query only SENSe TRACe MEASurement POWer PULSe TOP Query the pulse top power values from the current capture Usage Query only Retrieving Results SENSe TRACe MEASurement PULSe DCYCle Query the duty cycle values in percent from the current capture Usage Query only SENSe TRACe MEASurement PULSe DURation Query the pulse width values in seconds from the current capture Usage Query only SENSe TRACe MEASurement PULSe PERiod Query the pulse repetition interval values in seconds from the current capture Usage Query only SENSe TRACe MEASurement PULSe SEParation Query the pulse separation off time values in se
51. Note To update all active applications at once use the Refresh all function in the Sequencer menu Remote command INITiate lt n gt REFResh on page 250 Measurement Time Defines how long data is captured for analysis Meas Time or how many samples are captured in each record Record Length Note If the input source is an I Q data file see chapter 5 4 1 2 Settings for Input from UO Data Files on page 76 the measurement time can only be decreased in order to perform measurements on an extract of the available data from the beginning of the file only For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 The maximum measurement time in the R amp S FSW Pulse application is limited only by the available memory memory limit reached message is shown in status bar Note however that increasing the measurement time and thus reducing the available mem ory space may restrict the number of measurement channels that can be activated simultaneously on the R amp S FSW Remote command SENSe SWEep TIME on page 237 Sweep Average Count Defines the number of measurements to be performed in the single sweep mode Val ues from 0 to 200000 are allowed If the values 0 or 1 are set one measurement is performed In continuous sweep mode if sweep count 0 default averaging is performed over 10 measurements For sweep count 1 no averaging maxhold or minhold operations are perf
52. POINt PPPHase RERRor PERRor DEViation Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 POINt Pulse phase at measurement point PPPHase Pulse Pulse Phase Difference RERRor Phase Error RMS PERRor Phase Error Peak DEViation Phase Deviation RST POINt CALC2 TREN PHAS X PERR Setting only CALCulate lt n gt TRENd PHASe Y lt YAxis gt Configures the y axis of the Parameter Trend result display The x axis is configured using the CALCulate lt n gt TRENd lt GroupName gt X com mands Setting parameters lt YAxis gt Usage POINt PPPHase RERRor PERRor DEViation Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 POINt Pulse phase at measurement point PPPHase Pulse Pulse Phase Difference RERRor Phase Error RMS PERRor Phase Error Peak DEViation Phase Deviation RST POINt Setting only Configuring the Results CALCulate lt n gt TRENd POWer lt YAxis gt XAxis Configures the Parameter Trend result display for time trends This command defines both x axis and y axis parameters in one step It is equivalent to the two subsequent commands CALCulate lt n gt TRENd TIMing X TSTamp PNUMber see CALCulate lt n gt TRENd TIMing X on page 283
53. POINt LIMit on page 387 Pulse to Pulse Power Ratio The ratio of the Power values from the first measured pulse to the current pulse Remote command SENSe PULSe POWer PPRatio on page 356 CALCulate lt n gt TABLe POWer PPRatio on page 298 SENSe PULSe POWer PPRatio LIMit on page 387 Frequency Parameters The following frequency parameters can be determined by the R amp S FSW Pulse appli cation aie 22 Pulse Pulse Frequency Difterence eintreten 23 Frequency Error MS neret aden orate eoe ie dpa peu ket dee 23 Frequency Eror Peak touc ted ertt eee eta ett te tat eb Ped d n Babe te t 23 Frequency Deviation oos cnc E eot o Eas 23 ell 23 Frequency Frequency of the pulse measured at the defined Measurement Point Remote command SENSe PULSe FREQuency POINt on page 370 CALCulate lt n gt TABLe FREQuency POINt on page 292 SENSe PULSe FREQuency POINt LIMit on page 387 Pulse Parameters Pulse Pulse Frequency Difference Difference in frequency between the first measured pulse and the currently measured pulse Remote command SENSe PULSe FREQuency PPFRequency on page 370 CALCulate lt n gt TABLe FREQuency PPFRequency on page 293 SENSe PULSe FREQuency PPFRequency LIMit on page 387 Frequency Error RMS The RMS frequency error of the currently measured pulse The error is calculated rela tive
54. Percentage of all measured pulses in which the parameter value occurred RST COUNt Usage Setting only Manual operation See X Axis on page 134 CALCulate lt n gt DISTribution LLINes STATe lt State gt Hides or shows the limit lines in the selected Parameter Trend or Parameter Distribu tion result display Note that this function only has an effect on the visibility of the lines in the graphical displays it does not affect the limit check in general or the display of the limit check results in the table displays Parameters lt State gt ON OFF RST ON Usage Setting only Configuring the Results Manual operation See Display Limit Lines on page 134 CALCulate lt n gt DISTribution NBINs bins This command sets the number of bins used to calculate the historgram Parameters it bins Range 1 to 1000 RST 100 Manual operation See Histogram Bins on page 134 CALCulate lt n gt DISTribution PHASe XAxis lt YAxis gt Configures the Parameter Distribution result display Setting parameters lt XAxis gt POINt PPPHase RERRor PERRor DEViation Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 POINt Pulse phase at measurement point PPPHase Pulse Pulse Phase Difference RERRor Phase Error RMS PERRor Phase Error Peak DEViation Phase Deviation RST POINt lt YAxis gt
55. PreviewData in XML lt PreviewData gt lt ArrayOfChannel length 1 gt lt Channel gt lt PowerVsTime gt lt Min gt lt ArrayOfFloat length 256 gt lt float gt 134 lt float gt lt float gt 142 lt float gt lt float gt 140 lt float gt lt ArrayOfFloat gt lt Min gt lt Max gt lt ArrayOfFloat length 256 gt lt float gt 70 lt float gt lt float gt 71 lt float gt lt float gt 69 lt float gt lt ArrayOfFloat gt lt Max gt lt PowerVsTime gt lt Spectrum gt lt Min gt lt ArrayOfFloat length 256 gt lt float gt 133 lt float gt lt float gt 111 lt float gt lt float gt 111 lt float gt lt ArrayOfFloat gt lt Min gt lt Max gt lt ArrayOfFloat length 256 gt lt float gt 67 lt float gt float 69 float float 70 float float 69 float ArrayOfFloat Scaling Factor Numerical value Numerical value x ScalingFac tor Minimum negative int16 value 215 32768 1V Maximum positive int16 value 215 1 32767 0 999969482421875 V A 3 2 UO Data File Format iq tar lt Max gt lt Spectrum gt IQ lt Histogram width 64 height 64 gt 0123456789 0 lt Histogram gt IQ lt Channel gt lt ArrayOfChannel gt lt PreviewData gt UO Data Binary File The I Q data is saved in binary format according to the format and data type specified in the XML file See Format element and DataType element To allow re
56. Query only SENSe PULSe TIMing PWIDth lt QueryRange gt Returns the pulse width for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Pulse Width ON Time on page 18 SENSe PULSe TIMing PWIDth AVERage lt QueryRange gt SENSe PULSe TIMing PWIDth MAXimum lt QueryRange gt Retrieving Results SENSe PULSe TIMing PWIDth MINimum lt QueryRange gt SENSe PULSe TIMing PWIDth SDEViation lt QueryRange gt Returns the pulse width for the phase deviation over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing RISE lt QueryRange gt Returns the rise time for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Rise Time on page 17 SENSe PULSe TIMing RISE AVERage lt QueryRange gt SENSe PULSe TIMing RISE MAXimum lt QueryRange gt SENSe PULSe TIMing RISE MINimum lt QueryRange gt SENSe PULSe T
57. SENSe PUESe FREQUency DEVialtion PIMIt aar cert em tentes rmn TETTE 387 SENSe PULSe FREQuency DEViation MAXimum eeseeeeseseee eese nennen eene 369 SENSE IpUL Ge FREOuencv DE Viaton MiNimum enn eene 369 SENSe PULSe FREQuency DEViation SDEViation sss SENSe PUESe FREQuency DEVIAtIOli 2 5 crecer ct nen eerte enn tenet ne nette 368 SENSe PUESe FREQuency PERROr AVERage itte reete c att decree ns 369 SENSe PUESe EREQuUu ricy PERROFLIMIE ct reete t rn eoe rtt EE EEEN 387 SENSe PULSe FREQuency PERRor MAXimum eene eene eterne rtt riidt 369 IEN Ge IpDUL Ge FREOuencv PERROT MINIMUM eene eene nnns 369 SENSe PUESe FREQuency PERROr SDEVIatlOn enituit erede rct t ttp eher tuens 369 SENSe PULSe FREQuUuencCcy PERROI on tnter rte epe be e re ec ner ete ed n net 369 SENSe PULSe FREQuency POINEAVER amp age irai oerte rn trot iib hts n n dE ER RP ER ER EE SEES 370 SENSe PUESe FREQUu ernCcy POINELIMIE s onore Eege 387 SENSe PUESe FREQuency POINEMAJXIIYUI su eerie tn rtp a t etit ete rra x noter ded una 370 SENSe PULSe FREQuency POINt SDEViation eeessessseseseseeeeee nenne nenne nennen nennen nennen 370 SENSe PULSe FREQUENCY POINt atr center rtp rete ort tete ETS 370 SENSe PULSe FREQuency PPFRequency AVERage sese retener neret enne 371 SENSe PU
58. SENSe PULSe PHASe RERRor MAXimum lt QueryRange gt SENSe PULSe PHASe RERRor MINimum lt QueryRange gt SENSe PULSe PHASe RERRor SDEViation lt QueryRange gt Returns the statistical value for the phase error RMS over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results 9 20 4 5 Retrieving Time Sidelobe Parameters The following commands return the calculated pulse parameters These commands are only available if the additional option R amp S FSW K6S is installed For details on the individual parameters see chapter 3 1 5 Time Sidelobe Parame ters on page 25chapter 3 1 4 Phase Parameters on page 24 SENSe PUES amp TSIDelobe AMPOWGI itai cu de sumi cca cuca a ees eo cere te tee eva see uda neca 377 IGENZGeIpDUL Ge TGlDelobe AMbower AVEHRage nnn 377 SENSe PULSe TS IDelobe AMPower MANimum 377 SENSe PULSe TSIDelobe AMPower MINimum sisse nnn 377 ISGENGeIpDUL Ge TGlDelobe AMbower GD Viaton 377 SENSe PULSe TSIDelobe CRATIO aiiis ieseiee e tante te tham to iaa En sk RA ease bh enar 377 SENSe PULSe TSIDelobe CRATio AVERage sss nnne 378 IGENGeJpDUL Ge TGlDelobe CRATlo MANimum neret nnns 378 SENSe PULSe TSIDelobe CRATio MINimum eese nennen 378 SENSe PULSe TS ID
59. STATe on page 195 Parameters Frequency numeric value Example MIX ON Activates the external mixer MIX FREQ HAND 78 0299GHz Sets the handover frequency to 78 0299 GHz Manual operation See Handover Freq on page 79 SENSe MIXer FREQuency STARt This command queries the frequency at which the external mixer band starts Example MIX FREQ STAR Queries the start frequency of the band Usage Query only Manual operation See RF Start RF Stop on page 79 Input Output Settings SENSe MIXer FREQuency STOP This command queries the frequency at which the external mixer band stops Example MIX FREQ STOP Queries the stop frequency of the band Usage Query only Manual operation See RF Start RF Stop on page 79 SENSe MIXer HARMonic BAND PRESet This command restores the preset frequency ranges for the selected standard wave guide band Note Changes to the band and mixer settings are maintained even after using the PRESET function Use this command to restore the predefined band ranges Example MIX HARM BAND PRES Presets the selected waveguide band Usage Event Manual operation See Preset Band on page 79 SENSe MIXer HARMonic BAND VALue Band This command selects the external mixer band The query returns the currently selected band This command is only available if the external mixer is active see SENSe MIXer STATe
60. STEP on page 221 Frequency Offset Shifts the displayed frequency range along the x axis by the defined offset This parameter has no effect on the instrument s hardware or on the captured data or on data processing It is simply a manipulation of the final results in which absolute fre quency values are displayed Thus the x axis of a spectrum display is shifted by a constant offset if it shows absolute frequencies but not if it shows frequencies relative to the signal s center frequency A frequency offset can be used to correct the display of a signal that is slightly distorted by the measurement setup for example The allowed values range from 100 GHz to 100 GHz The default setting is 0 Hz Note In MSRA MSRT mode this function is only available for the MSRA MSRT Mas ter Remote command SENSe FREQuency OFFSet on page 222 Amplitude Settings Amplitude settings affect the y axis values To configure the amplitude settings Amplitude settings can be configured via the AMPT key or in the Amplitude dialog box gt To display the Amplitude dialog box do one of the following e Select Amplitude from the Overview e Select the AMPT key and then the Amplitude Config softkey Signal InputSource Frequency Amplitude Output Reference Leve Input Settings ee Preamplifier _ Value 0 0 dBm p Input Coupling AC p M Offse
61. TABLe POWer OVERshoot PERCent essen 297 CALCulate lt n gt TABLe POWer PAVG cccccceecccecescecesesceceesececeeeesseseeceaceeseageeesseeeeeaneeees 297 CAL Culate nz TABlebOuWerDMIN 297 Ee DER TE POWer POIN EE 297 GALOulate sn TABLEe POWerPON 2 2 NEESS NEEN SEENEN ue 297 CAL Culate nz TABlebOuWer Dbtato 298 CAL Culatesn gt TABLE POW ErRIPPIC DB aire teo ett d bout eredi trea tete 298 CAL Culate nz TABlebO WerbRipbiel PtbRCGent cece caeeeee eee eene 298 GALGulat lt n TABLe POW en TOP E 298 CALOCulate n TABLe TIMing ALL STATe cessent nnn 298 CALGulate n TABEe TIMingiDGOYGle 2 icri ioter taro en ested ra aeter vete eas 299 GALCulatesn TABLe TIMinig DRATIO 1212 reiten ente e opa eu eun Re ce ahora ean E eaaa 299 CAL Culate nz TABleTlMimgEAll nennen nh nnne nennen ener nnn senes 299 cALCUulatesms Ree Ee 299 CAL Gulate n c TABL TIMIN RF 2 oa root k ac ccce ua aao eeu esee eee odas ev Y Y ELR OR 2 y i 300 CAL C latesn gt TABLE TIMING EE 300 CALCulate lt n gt TABLe TIMing PWIDIH eeee cece cee ee cee ee ee eene nennen nent nnn 300 CAL Culate n TABEe TIMing RISE 2 22 2222 22 1 2 a NE A EENE E iaaa 300 CAL Culate lt n TABLE TIMING SET Heer 2 30 a rete aaa EE 301 CAL Culate nz TABleTlMimgT tamp treten enne nennen nnns nnns tnn 301 CALCulate lt n gt TABLe TSIDelobe ALL STAT c ccececeeeeeeeeeeeeeeeeeeeeeeesaeaeaeaaae
62. The following commands have the exact same effect as any combination of windows above and below the splitter moves the splitter vertically AY SPL 3 2 70 AY SPL 4 1 70 AY SPL 2 1 70 User Manual 1173 9392 02 17 319 Configuring the Result Display LAYout WINDow lt n gt ADD lt Direction gt lt WindowType gt This command adds a measurement window to the display Note that with this com mand the suffix n determines the existing window next to which the new window is added as opposed to LAYout ADD WINDow for which the existing window is defined by a parameter To replace an existing window use the LAYout WINDow lt n gt REPLace command This command is always used as a query so that you immediately obtain the name of the new window as a result Parameters Direction LEFT RIGHt ABOVe BELow lt WindowType gt Type of measurement window you want to add See LAYout ADD WINDow on page 315 for a list of availa ble window types Return values lt NewWindowName gt When adding a new window the command returns its name by default the same as its number as a result Example LAY WIND1 ADD LEFT MTAB Result 2 Adds a new window named 2 with a marker table to the left of window 1 Usage Query only LAYout WINDow lt n gt IDENtify This command queries the name of a particular display window indicated by the lt n gt suffix in the active measurement channel
63. Usage SCPI confirmed Manual operation See Preamplifier on page 103 Configuring the Attenuation dl WR EE 224 Iv LT e BETREUER m 224 INPUCEAT P 225 dignazcugbc io 225 INPURBATT STAMG E 225 INPut ATTenuation lt Attenuation gt This command defines the total attenuation for RF input If an electronic attenuator is available and active the command defines a mechanical attenuation see 1NPut EATT STATe on page 225 If you set the attenuation manually it is no longer coupled to the reference level but the reference level is coupled to the attenuation Thus if the current reference level is not compatible with an attenuation that has been set manually the command also adjusts the reference level Parameters lt Attenuation gt Range see data sheet Increment 5 dB RST 10 dB AUTO is set to ON Example INP ATT 30dB Defines a 30 dB attenuation and decouples the attenuation from the reference level Usage SCPI confirmed Manual operation See Attenuation Mode Value on page 102 INPut ATTenuation AUTO lt State gt This command couples or decouples the attenuation to the reference level Thus when the reference level is changed the R amp S FSW determines the signal level for optimal internal data processing and sets the required attenuation accordingly Parameters lt State gt ON OFF 0 1 RST 1 Example INP ATT
64. X value Pressing the softkey again deactivates the selected marker Marker 1 is always the default reference marker for relative measurements If activa ted markers 2 to 16 are delta markers that refer to marker 1 These markers can be converted into markers with absolute value display using the Marker Type function e User Manual 1173 9392 02 147 Markers Note If normal marker 1 is the active marker pressing the Mkr Type softkey Switches on an additional delta marker 1 Remote command CALCulate lt n gt MARKer lt m gt STATe on page 328 CALCulate lt n gt MARKer lt m gt X on page 329 CALCulate lt n gt MARKer lt m gt Y on page 394 CALCulate lt n gt DELTamarker lt m gt STATe on page 330 CALCulate lt n gt DELTamarker lt m gt X on page 331 CALCulate lt n gt DELTamarker lt m gt X RELative on page 393 CALCulate lt n gt DELTamarker lt m gt Y on page 393 Selected Marker Marker name The marker which is currently selected for editing is highlighted orange Remote command Marker selected via suffix m in remote commands Marker State Activates or deactivates the marker in the diagram Remote command CALCulate lt n gt MARKer lt m gt STATe on page 328 CALCulate lt n gt DELTamarker lt m gt STATe on page 330 X value Defines the position of the marker on the x axis Note Setting markers in Parameter Trend Displays In Parameter Trend displays especially when the x axi
65. additionally you can define a phase off set In this case the pulses are not normalized to 0 but to the phase offset value The phase measured at a specified point in the reference or measured pulse plus the phase offset is subtracted from each trace point SSS gt e ES Mi UE esi User Manual 1173 9392 02 17 64 R amp S FSW K6 6S 4 8 Measurement Basics The phase offset for normalization is defined in the Units settings see Phase Nor malization on page 145 Pulse Measurements in MSRA MSRT Mode The R amp S FSW Pulse application can also be used to analyze data in MSRA or MSRT operating mode The main difference between the two modes is that in MSRA mode an UO analyzer performs data acquisition while in MSRT mode a real time measure ment is performed to capture data In MSRA MSRT operating mode only the MSRA MSRT Master actually captures data the MSRA MSRT applications receive an extract of the captured data for analysis referred to as the application data For the Pulse application in MSRA MSRT operat ing mode the application data range is defined by the same settings used to define the signal capture in Signal and Spectrum Analyzer mode In addition a capture offset can be defined i e an offset from the start of the captured data to the start of the applica tion data for pulse measurements The Capture Buffer displays show the application data of the Pulse application in MSRA MSRT mode Data cover
66. c ooiuccei iieri iens i innert intcr saine AARNES SANESE Pann nauis 7 1 2 Documentation Overview eeeeeeeeeeeeee nennen nennen ennt nenne nenne nnn nennen nnn nennen 7 1 3 Conventions Used in the Documentation eene 9 2 Welcome to the Pulse Measurements Application 11 2 4 Starting the Pulse Appltcatton ue 11 2 2 Understanding the Display Information eeeeeeeeenennneenenn 12 3 Measurements and Result Displays eese 15 3 1 Pulso Parameters ete eite etin tere sere 15 3 2 Evaluation Methods for Pulse Measurements eese 28 4 Measurement Basics ceeeeeeeeeeee eene naar nn 42 4 1 Parameter Definitions coieooccer nenne eene nennen accen steer nan nen a ESENE 42 4 2 Pulse Detection iccciesiiccccccec scceessessccesssted ceceesttee inan NAN iioc unns n ns iun uu aE RR PER RNRARRR PARAR AREETAN TANER 46 4 3 Parameter Spectrum Calculatton RRE EEEEE REENEN 47 4 4 Segmented Data Capturing eese nennen nenne nnn nnn nn nnn 50 4 5 Time Sidelobe Analysis 1 cccier rennen reni ANANE EENEN EENIAS SNENA 53 4 6 Receiving Data Input and Providing Data Output seeeueeesesse 58 AT Trocevaluatton 60 4 8 Pulse Measurements in MSRA MSRT Mode
67. defined in V see Reference Level Unit on page 121 otherwise in 96W Remote command SENSe PULSe POWer RIPPle DB on page 357 SENSe PULSe POWer RIPPle PERCent on page 358 CALCulate lt n gt TABLe POWer RIPPle DB on page 298 CALCulate lt n gt TABLe POWer RIPPle PERCent on page 298 SENSe PULSe POWer RIPPle DB LIMit on page 387 SENSe PULSe POWer RIPPle PERCent LIMit on page 387 Overshoot The height of the local maximum after a rising edge divided by the pulse amplitude Pulse Parameters For more information see chapter 4 1 3 Overshoot on page 45 Note The percentage ratio values are calculated in V if the Measurement Level is defined in V see Reference Level Unit on page 121 otherwise in W Remote command SENSe PULSe POWer OVERshoot DB on page 352 SENSe PULSe POWer OVERshoot PERCent on page 353 CALCulatecn TABLe POWer OVERshoot DB on page 296 CALCulate lt n gt TABLe POWer OVERshoot PERCent on page 297 SENSe PULSe POWer OVERshoot DB LIMit on page 387 SENSe PULSe POWer OVERshoot PERCent LIMit on page 387 Power at Point The power measured at the pulse measurement point specified by the Measurement Point Reference and the Offset on page 123 Remote command SENSe PULSe POWer POINt on page 355 CALCulate lt n gt TABLe POWer POINt on page 297 SENSe PULSe POWer
68. fel p 143 Range e E 20 295 348 349 Range sidelobe analysis soo Sidelobes ssnin nc o entem epe 53 Kiel ee He Lu EE 115 Reference Meas remint polhL oic toto retten Measurement range NormializatiOn ME Url E Pulse detection is PRESUME range EE Reference IQ see Reference pulse seite rt reti ne be ead 72 Reference level ni ecsacescic esci secuvua caca de c vaa ruo dE 102 Bep 102 121 bU RA 102 Feference mark6et i c ci rae edendo 149 Reference pulse Belt le Uu E 72 File input File Selector eaters tae en eet emeret tenets 73 SIdSloOD85 cci ts dt oe ene ie o See RR 53 Type User defined c1 ree E 72 Refreshing MSRA applications creto trennt tinc 117 MSRA applications remote sssssss 250 MSRP applications 4 5 oot irn rne m nens 117 MSRT applications remote get eid esttensdidanskcomaesaetaccsneactieimudiagadte creak AET 117 Remote commands BasicS OnrSyDlax vios he poet erteilt ses HE 178 Boolean ValuBS iioc e tire rna rain mentre ci SEDAN S 181 GapitaliZatiOI x i o eter t n a ri Do rep p e rx 179 Character data Data blocks Numeric values ae Optional keywords tette 179 Parameters eege 180 Strings 182 SUFIXES m 179 Repetition interval nen 18 108 36
69. lt UppLimit gt CALCulate lt n gt TABLe TIMing DRATio LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing FALL LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing OFF LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing PRF LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing PRI LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing PWIDth LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing RISE LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing SETTling LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing TSTamp LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe AMPower LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe CRATio LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe IMPower LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe ISLevel LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe MFRequency LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe MPHase LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe MWIDth LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe PCORrelation LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelobe PSLevel LIMit lt LowLimit gt lt UppLimit gt CALCulate n TABLe TSIDelob
70. n 1Q SCAPture TSTamp TRIGger on page 344 Results TRACe lt n gt DATA on page 340 Marker Table Displays a table with the current marker values for the active markers 4 Marker Table Wnd Type M X value 1 M1 13 25 GHz i 600 0 kHz f y 600 0 kHz I x gt 2 0 MHz Remote command LAY ADD 1 RIGH MTAB see LAYout ADD WINDow on page 315 Results CALCulate lt n gt MARKer lt m gt X on page 329 CALCulate lt n gt MARKer lt m gt Y on page 394 User Manual 1173 9392 02 17 30 R amp S FSW K6 6S Measurements and Result Displays page yc EEE SS Parameter Distribution Plots a histogram of a particular parameter i e all measured parameter values from the current capture vs pulse count or occurrence in 96 Thus you can determine how often a particular parameter value occurs For each parameter distribution window you can configure a different parameter to be displayed This evaluation method allows you to distinguish transient and stable effects in a spe cific parameter such as a spurious frequency deviation or a fluctuation in power over several pulses 4 Pulse Width Distribution 1AP Clrw 495 0 ns Note Limit lines Optionally limit lines can be displayed in the Parameter Distribution diagram You can drag these lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted
71. on page 387 Phase Error Peak The peak phase error of the currently measured pulse The error is calculated relative to the given pulse modulation It is not calculated at all for the Pulse Modulation type Arbitrary The error is calculated over the Measurement Range Remote command SENSe PULSe PHASe PERRor on page 373 CALCulate lt n gt TABLe PHASe PERRor on page 294 SENSe PULSe PHASe PERRor LIMit on page 387 R amp S FSW K6 6S Measurements and Result Displays Phase Deviation The phase deviation of the currently measured pulse The deviation is calculated as the absolute difference between the maximum and minimum phase values within the rement Remote command on page 372 on page 294 on page 387 3 1 5 Time Sidelobe Parameters The following graphics illustrate how some of the time sidelobe parameters are deter mined 1 Correlated 3 Magnitude LAP Clrw Mainlobe width s 1 Correlated 3 Magnitude LAP Clrw Peak Level dBm I Peak Sidelobe Level dB 995 Integrated Sidelobe Level dB Q Ee ad o o Pe E i Q A e e User Configurable Keep Out Range The following phase parameters can be determined by the R amp S FSW Pulse application if the additional R amp S FSW K6S option is installed User Manual 1173 9392 02 17 25 Pulse Parameters Peak to Sidelobe D 26 Integrated E lee E 26 Mamlobe 30B VWIGU EM 26 siecle UE 26 emie clsBpc oT 27 Mainlobe Power nte
72. stat doeet tane 133 e Parameter Spectrum Configuration a 134 e Parameter Trend Gonfigurallon caccia ti tnit eth dena RR DES IRRRRRD 136 Parameter Distribution Configuration The parameter distribution evaluations allow you to visualize the number of occurran ces for a specific parameter value within the current capture buffer For each parame ter distribution window you can configure which measured parameter is to be dis played ee m Result Range Markers Marker Settings Parameter Units Y Scaling Parameter Group Distribution Histogram Bins Display Limit Lines 6 1 4 2 Result Configuration circu MEI Tom 134 P E 134 fol c 134 Hislon B m E 134 Display LIMIt LINES E M 134 Parameter Group Defines the group of parameters from which one can be selected to display the distri bution of the measured values on the y axis For a description of the parameters see chapter 3 1 Pulse Parameters on page 15 X Axis Defines the parameter for which the values are displayed on the x axis The available parameters depend on the selected Parameter Group Remote command CALCulate lt n gt DISTribution lt GroupName gt lt X Axis gt lt Y Axis gt see e g CALCulate lt n gt DISTribution FREQuency on page 257 Y Axis Defines the scaling of the y axis Pulse count Number of pulses in w
73. the Continuous Sweep softkey only controls the sweep mode for the currently selected channel however the sweep mode only has an effect the next time the Sequencer activates that channel and only for a channel defined sequence In this case a channel in continuous sweep mode is swept repeatedly If the Sequencer is active in MSRT mode the Continuous Sweep function does not start data capturing it merely has an effect on trace averaging over multiple sequen ces In this case trace averaging is performed Furthermore the RUN CONT key controls the Sequencer not individual sweeps RUN CONT starts the Sequencer in continuous mode For details on the Sequencer see the R amp S FSW User Manual Remote command INITiate lt n gt CONTinuous on page 249 Single Sweep RUN SINGLE After triggering starts the number of sweeps set in Sweep Count The measurement stops after the defined number of sweeps has been performed While the measurement is running the Single Sweep softkey and the RUN SINGLE key are highlighted The running measurement can be aborted by selecting the high lighted softkey or key again Note Sequencer If the Sequencer is active the Single Sweep softkey only controls the sweep mode for the currently selected channel however the sweep mode only has an effect the next time the Sequencer activates that channel and only for a chan nel defined sequence In this case a channel in single sweep mode is swept only
74. the Overview provides quick access to the following configuration dialog boxes listed in the recommended order of processing 1 Signal Description See chapter 5 2 Signal Description on page 69 2 Input and Frontend Settings See chapter 5 4 Input and Output Settings on page 74 3 Optionally Trigger Gate See chapter 5 6 Trigger Settings on page 104 4 Data Acquisition See chapter 5 7 Data Acquisition on page 113 5 Pulse Detection See chapter 5 9 Pulse Detection on page 118 6 Pulse Measurement See chapter 5 10 Pulse Measurement Settings on page 119 7 Result Configuration See chapter 6 1 Result Configuration on page 129 8 Display Configuration See chapter 6 2 Display Configuration on page 145 5 2 Signal Description To configure settings P Select any button in the Overview to open the corresponding dialog box Select a setting in the channel bar at the top of the measurement channel tab to change a specific setting NEE EE 69 ROCIO sre NES 69 Preset Channel Select the Preset Channel button in the lower lefthand corner of the Overview to restore all measurement settings in the current channel to their default values Note that the PRESET key restores the entire instrument to its default values and thus closes all measurement channels on the R amp S FSW except for the default Spectrum application channel Remote command SYSTem PRESet CHANnel EXECute on
75. 0s Example TRIG SOUR EXT Sets an external trigger source TRIG IFP HOLD 200 ns Sets the holding time to 200 ns Manual operation See Trigger Holdoff on page 110 TRIGger SEQuence IFPower HYSTeresis lt Hysteresis gt This command defines the trigger hysteresis which is only available for IF Power trig ger sources Parameters lt Hysteresis gt Range 3 dB to 50 dB RST 3 dB Triggering Measurements Example TRIG SOUR IFP Sets the IF power trigger source TRIG IFP HYST 10DB Sets the hysteresis limit value Manual operation See Hysteresis on page 109 TRIGger SEQuence LEVel EXTernal lt port gt lt TriggerLevel gt This command defines the level the external signal must exceed to cause a trigger event Note that the variable INPUT OUTPUT connectors ports 2 3 must be set for use as input using the OUTPut TRIGger lt port gt DIRection command Suffix lt port gt Selects the trigger port 1 trigger port 1 TRIGGER INPUT connector on front panel 2 7 trigger port 2 TRIGGER INPUT OUTPUT connector on front panel 3 trigger port 3 TRIGGER3 INPUT OUTPUT connector on rear panel Parameters lt TriggerLevel gt Range 0 5V to 3 5V RST 1 4V Example TRIG LEV 2V Manual operation See Trigger Level on page 108 TRIGger SEQuence LEVel IF Power lt TriggerLevel gt This command defines the power level at the third intermediate frequency that must be exceeded to cause a trigger ev
76. 10 Select Save to close the dialog box and export the table data to the file 9 Remote Commands for Pulse Measure ments The following commands are required to perform measurements in the Pulse applica tion in a remote environment The R amp S FSW must already be set up for remote opera tion in a network as described in the base unit manual Note that basic tasks that are also performed in the base unit in the same way are not described here For a description of such tasks see the R amp S FSW User Manual In particular this includes e Managing Settings and Results i e storing and loading settings and result data e Basic instrument configuration e g checking the system configuration customizing the screen layout or configuring networks and remote operation Using the common status registers specific status registers for Pulse measure ments are not used After a short introduction the tasks specific to the Pulse application are described here JEE e O 178 e Common SUIflXG8 iae ENEE KEENT EE 182 e Activating Pulse Measurements neeeeeeeeeeenen nennen netten nhan tena hid n nnn 183 e Signal DESC EE 186 e Reference Signal Description oes se eei tna 190 e laput Outp t Settings scere tertie i ere ne i d su Rd 191 e Frontend Conflglatiol encontre nim ice rante th br etch ERk irse Fondo De e ERE er KEE 220 Friggetig Measbiletmbllls c oda cre eto ce dae ie adie 226 e Seg
77. 2 10 16 9 Na 1 3 9 9e 9 Effects of Large Gauss Filters As an alternative to the nearly rectangular flat measurement filters the R amp S FSW also provides Gaussian filters Gaussian filters have an optimized settling behavior which avoids overshoot distortions in time domain data However for Gaussian filters whose 3dB bandwidth is large compared to the maxi mum UO bandwidth the ideal Gaussian filter shape would exceed the maximum UO bandwidth at its outer edges Thus the actual filter only follows the ideal Gaussian filter Effects of Large Gauss Filters shape in the inner range of the set UO bandwidth At a certain frequency offset it must deviate from the ideal Gauss filter and drop off faster Gaussian filters with large 3dB bandwidths 10 MHz For filter bandwidths of up to 10 MHz a sufficiently high attenuation occurs before the edge of the I Q bandwidth range is reached max 80 MHz without the active band width extension options R amp S FSW B160 B320 B500 These filters are truly Gaussian shaped Without the bandwidth extension options R amp S FSW B160 B320 B500 being active filters with 3dB bandwidths larger than 10 MHz can follow the ideal filter shape only in the range from approximately 25 MHz to 25 MHz The equalized IF filter amplitude response Limits the available maximum bandwidth Hut mm mm 3 dB Ideal Gaussian filter shape for a Jarger 3 dB BW
78. 219 TRIGger SEQuence OSCilloscope COUPling esee 219 EXPort WAVeform DISPlayoff lt FastExport gt Enables or disables the display update on the oscilloscope during data acquisition with the optional 2 GHz bandwidth extension R amp S FSW B2000 As soon as the R amp S FSW B2000 is activated see B2000 State on page 93 the dis play on the oscilloscope is turned off to improve performance during data export As soon as the R amp S FSW closes the connection to the oscilloscope the display is reacti vated and the oscilloscope can be operated as usual However if the LAN connection is lost for any reason the display of the oscilloscope remains deactivated Use this command to re activate it Parameters lt FastExport gt ON OFF ON Disables the display update for maximum export speed OFF Enables the display update The export is slower RST ON SYSTem COMMunicate RDEVice OSCilloscope STATe lt State gt Activates the optional 2 GHz bandwidth extension R amp S FSW B2000 Note Manual operation on the connected oscilloscope or remote operation other than by the R amp S FSW is not possible while the B2000 option is active Input Output Settings Parameters State ON OFF 1 0 ON 1 Option is active OFF 0 Option is disabled RST 0 Example SYST COMM RDEV OSC ON Manual operation See B2000 State on page 93 SYSTem COMMunicate RDEVice OSCilloscope ALIGnment STEP STATe
79. 6S Measurement Basics The figure 4 7 shows the phase waveform of a BPSK pulse in red and the correspond ing correlator output power of the compressed pulse in yellow Note that the high amplitude portion of the compressed pulse is significantly narrower than the duration of the BPSK waveform Fig 4 7 BPSK pulse red vs compressed pulse yellow In theory you must correlate the sent and the received pulses for this analysis Where both pulses are identical strong power levels are measured where they differ smaller levels are measured By analyzing the correlator output you can determine and quan tify the gains and artifacts introduced by a device under test Since the R amp S FSW itself can measure only the received pulse the sent pulse must be configured as a reference pulse before the measurement The reference pulse can be imported to the R amp S FSW Pulse application from an UO waveform file see chap ter 5 3 Reference Signal Description on page 72 The measured data is then cor related or filtered with the reference UO data Further details about the calculation of the correlator output are given in the following section As a result of time sidelobe measurements additional result displays are available showing the correlated pulse magnitude for an individual pulse or the entire capture buffer as well as frequency and phase errors for individual pulses Furthermore char acteristic sidelobe parameters are added to
80. AUTO ON Couples the attenuation to the reference level Usage SCPI confirmed Frontend Configuration Manual operation See Attenuation Mode Value on page 102 INPut EATT lt Attenuation gt This command defines an electronic attenuation manually Automatic mode must be switched off INP EATT AUTO OFF see INPut EATT AUTO on page 225 If the current reference level is not compatible with an attenuation that has been set manually the command also adjusts the reference level Parameters lt Attenuation gt attenuation in dB Range see data sheet Increment 1 dB RST 0 dB OFF Example INP EATT AUTO OFF INP EATT 10 dB Manual operation See Using Electronic Attenuation on page 103 INPut EATT AUTO State This command turns automatic selection of the electronic attenuation on and off If on electronic attenuation reduces the mechanical attenuation whenever possible Parameters State ON OFF 0 1 RST 1 Example INP EATT AUTO OFF Manual operation See Using Electronic Attenuation on page 103 INPut EATT STATe lt State gt This command turns the electronic attenuator on and off Parameters lt State gt ON OFF RST OFF Example INP EATT STAT ON Switches the electronic attenuator into the signal path Manual operation See Using Electronic Attenuation on page 103 Triggering Measurements 9 8 Triggering Measurements MSRA MSRT operating mode e In MSRA MSRT operatin
81. Analysis Interval and Line MSRT mode only In MSRT operating mode only the MSRT Master actually captures data the MSRT applications define an extract of the captured data for analysis referred to as the analysis interval The analysis line is a common time marker for all MSRT applica tions For the Pulse application the commands to define the analysis interval are the same as those used to define the actual data acquisition see chapter 9 10 Data Acquisi tion on page 235 Be sure to select the correct measurement channel before execut ing these commands Configuring an Analysis Interval and Line MSRT mode only In addition a capture offset can be defined i e an offset from the start of the captured data to the start of the analysis interval for the Pulse measurement Useful commands related to MSRT mode described elsewhere INITiate lt n gt REFResh on page 250 INITiate lt n gt SEQuencer REFResh ALL on page 250 Remote commands exclusive to MSRT applications The following commands are only available for MSRT application channels ee DEE Ne TE 338 cCALCulatesms RTMS ALINe VAL 2a ett eerte utet tte ttd een tot toit 338 CAL Culate nzRTMSWINDowcn NA 338 ISENSeTRSTMS OCAP Tre OPESSL uc crar rere ra etre berti Ere tide eb C ke ERE REB Uer dai 339 CALCulate lt n gt RTMS ALINe SHOW This command defines whether or not the analysis line is displayed in all time based windows in all MSRT applications a
82. Configuration Marker Settings Parameter Units Y Scaling Parameter Group Y Parameter Group X Display Lim Parameter Group Y Defines the group of parameters from which one can be selected to display the trend on the y axis For a description of the parameters see chapter 3 1 Pulse Parameters on page 15 Y Axis Defines the parameter for which the trend is displayed on the y axis The available parameters depend on the selected Parameter Group Y on page 137 Remote command CA LCulate lt n gt TRI nit Lines ENd GroupName Y see e g CALCulate lt n gt TRENd FREQuency Y on page 271 CA LCulate lt n gt TRI ENd lt GroupName gt Y X see e g CALCulate lt n gt TRENd FREQuency on page 269 Parameter Group X Defines the group of parameters from which one can be selected to display the trend on the x axis For a description of the parameters see chapter 3 1 Pulse Parameters on page 15 Result Configuration X Axis Defines the parameter for which the trend is displayed on the y axis The available parameters depend on the selected Parameter Group X Remote command CALCulatecn TRENd GroupName X see e g CALCulate lt n gt TRENd FREQuency X on page 270 CALCulate lt n gt TRENd lt GroupName gt Y X see e g CALCulate lt n gt TRENd FREQuency on page 269 Display Limit Lines Hides or shows the limit lines in the selected Parameter Trend or Parameter
83. Configure pulse magnitude scaling is 25 dBm above and below pulse mid level DISP WIND4 TRAC Y SCAL AUTO OFF DISP WIND4 TRAC Y SCAL RPOS 50 DISP WIND4 TRAC Y SCAL RVAL 0 DISP WIND4 TRAC Y SCAL PDIV 2 INIT CONT OFF Selects single sweep mode INIT WAI Initiates a new measurement and waits until the sweep has finished Select pulse for individual pulse results pulse 1 SENS TRAC MEAS DEF PULS SEL 1 Determine pulse numbers in entire meas SENS PULS NUMB ALL Determine pulse numbers in current capture buffer SENS PULS NUMB CURR Retrieve parameter results from results table pulse 1 SENS PULS FREQ POIN SEL SENS PULS FREQ PPFR SEL SENS PULS FREQ DEV SEL SENS PULS FREQ PERR SEL SENS PULS PHAS DEV SEL SENS PULS POW ON SEL SENS PULS POW ADR SEL SENS PULS POW PPR SEL SENS PULS POW AMPL SEL SENS PULS TIM SETT SEL SENS PULS TIM PWID SEL Retrieve limit check result for average ON power in pulses in current meas SENS PULS POW ON LIM CURR Retrieve pulse statistics aver min max for all pulses in entire meas SENS PULS FREQ POIN AVER ALL SENS PULS FREQ POIN MIN ALL SENS PULS FREQ POIN MAX ALL Programming Example Pulse Measurement SENS PULS FREQ PPFR AVER ALL SENS PULS FREQ PPFR MIN ALL SENS PULS FREQ PPFR MAX ALL SENS PULS FREQ DEV AVER ALL SENS PULS FREQ DEV MIN ALL SENS PULS FREQ DEV MAX ALL SENS PULS FREQ PERR AVER ALL SENS PULS
84. Configuring Digital I Q Input and Oulput te rrt te tte ted 210 e putrom VO Data FilGS sess ees as iiri rg s rend ete 215 e Configuring the 2 GHz Bandwidth Extension R amp S FSW B2000 216 e IConfiguiig tele EE 220 9 6 1 Input Output Settings RF Input INbPut ATTenuation PbOTechonRE Get 192 dez ses e EE 192 pU HB gp e M MH 192 INP ut FIETerHEASS STATe cccasestceneecsacteeee lt dgpeteccntnseaatacausabesate dgyevevatsnsaaccnetpngeecadesten 193 INPaEFIETern VIG S TA ioci aed eoo etre tet a o eme reae er de batte een 193 dszishulz e mL EENS 193 INPUBS EWS EE 194 INPut ATTenuation PROTection RESet This command resets the attenuator and reconnects the RF input with the input mixer after an overload condition occured and the protection mechanism intervened The error status bit bit 3 in the STAT QUES POW status register and the INPUT OVLD message in the status bar are cleared For details on the status register see the R amp S FSW User Manual The command works only if the overload condition has been eliminated first Usage Event INPut COUPling lt CouplingType gt This command selects the coupling type of the RF input Parameters lt CouplingType gt AC AC coupling DC DC coupling RST AC Example INP COUP DC Usage SCPI confirmed Manual operation See Input Coupling on page 75 INPut DPATh lt State gt En
85. Culate nz TABletRtOuencv PbtReouency 293 CAL Culate nz TABletRtOuencv RERbor eene eene nennen tnt rt rnnt 293 CALOCulate n TABLe PHASe ALL STATe essere nennen nene 293 CAL Culate n TABEe PHASe DEViallon 2 2 ae creta acuit Erato eoa eee Rae ERR Aaa pon 294 CALCulate lt n gt TABLe PHASe PERROIM ceseseseseteeeeeeeteeeeceeeeeeeeesecessaaeeneaenaneaeaeaeees 294 CALCulatesm T ABEePHASe POLHNLU aaa euentu eee tenet prn eR abet cama edt aves 294 CAL Culate n TABEe PHASe PPPHase inae Ine ap accen aca co ce eva ora cde VA ae EN VR i 294 CALCulate lt n gt TABLe PHASe RERROM c c ceccccceteccececetecenesnsnnsecneneeetseeaeeeatedeeceacenenanene 294 CALCulate lt n gt TABLe POWer ADROOp DB ceccceeeeeeeeeeee cece neret eh eh eh nennen eterna 295 CALCulate n TABLe POWer ADRoop PERCent cessent 295 CALOCulate n TABLe POWer ALL STATe sse nennen nhe 295 CALOCulate n TABLe POWer AMPLitude eese nenne nennen 295 CALC latesn gt TABLE POWE AV Gerici nan anaa aa aaia 295 CALCu latesn gt TABLe POWer BASE osica naraenia aundi i a Ed 296 Configuring the Results CAL Culatesn gt TABEE POMWPEMAX EE 296 GALGulate n TABLe POWerMI N rette re rr o NEESS SOEN RR OR RR RR REI NR 296 CAL Culate nz TABlebOuWerOh rors isrnnneia narenn anian raai a aaaea A EAE Ena haraa r aiaa 296 CALCulatesn gt KE ET ele ee RE 296 CALOCulate n
86. Deviation CRATe Chirp Rate RST POINt Manual operation See Parameter on page 135 CALCulate lt n gt PSPectrum GTHReshold lt Time gt Defines the minimum time that must pass before a gap is detected as such Parameters lt Time gt Range minimum spacing between pulses to meas time Default unit S Manual operation See Gap Threshold on page 136 CALCulate lt n gt PSPectrum MAXFrequency lt Span gt Defines the maximum frequency span for which the Spectrum is calculated Internally the span is limited by the number of possible interpolation samples 100 000 Configuring the Results Parameters Span Range gt 0 to 1 10 of sample rate Default unit HZ Manual operation See Maximum Frequency on page 136 CALCulate lt n gt PSPectrum PHASe lt Param gt Configures the Parameter Spectrum result display Setting parameters lt Param gt POINt PPPHase RERRor PERRor DEViation Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 POINt Pulse phase at measurement point PPPHase Pulse Pulse Phase Difference RERRor Phase Error RMS PERRor Phase Error Peak DEViation Phase Deviation RST POINt CALCulate lt n gt PSPectrum POWer lt Param gt Configures the Parameter Spectrum result display Configuring the Results Setting parameters lt Param gt TOP BASE AMPLitude ON AVG M
87. ERG 285 CALC late snz TRENA Ee 287 CAL Culate lt n gt TRENG TSIDGIOD GRY GE 288 CAL Culatesn aU NIT FREQUENCY E CALibration AlQ HATiming STATe DIAGnostic SERVICE NSQUFGB ies cessescescesssnezrtvcccnevbevosuansiciecsevesscse sasebensteasernessecustbucazeastsnerbesdethauatereinaceaes DENSE ay FORMA seats eens PITE RUNE II DISPlay WIND wsn gt SIZE E TRUE EVER E BE A Ee RAR 310 DISPlay WINDowsn7 TRACe Y SGALe RVALuUue erret tent enne ene 312 DISPlay WINDow lt n gt TRACe lt t gt MODE E DISPlay WINDow n TRACe t MODE HCONtinuous essent ennemi 324 DISPlay WINDow n TRACe t NORMalize MODE sess nnnnenne 324 DISPlay WINDow n TRACe t NORMalize PHASe sess eren nnnnene 325 DISPlay WINDow n TRACe st X SCALe UNIT sess nre n rennen 310 DISPlay WINDow n TRACe t Y SCALe MAXimum eese nennen 311 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe MINimum DISPlay WINDow lt n gt TRACe lt t gt Y SCALe PDIVision DISPlayEWINDow lt n gt TRACe lt t gt Y SCALe RLEV l enne nnne DISPlay WINDow n TRACe t Y SCALe RLEVel OFFSet sse 223 DISPlay WINDow n TRACe t Y SCALe RPOSition essent 312 DISPlay WINDow n TRACe t
88. Each block with its measured and interpolated values is multiplied with a specific win dow function Windowing helps minimize the discontinuities at the end of the measured signal interval and thus reduces the effect of spectral leakage increasing the fre quency resolution User Manual 1173 9392 02 17 48 Parameter Spectrum Calculation Various different window functions are provided in the R amp S FSW Pulse application Each of the window functions has specific characteristics including some advantages and some trade offs These characteristics need to be considered carefully to find the optimum solution for the measurement task Table 4 1 FFT window functions Window type Function Rectangular The regtangular window function is in effect not a function at all it maintains the original sampled data This may be useful to minimize the required bandwidth however heavy sidelobes may occur which do not exist in the original signal Hamming n 0 54 046 e w ing n 0 54 0 46 hamming length We Hann n 05 05 w n 0 5 0 5 ng length 1 Blackman alpha 1 Zen alpha Aen default Ween 6 EE 0500s Sona GREEN B L 0 5 with alpha i ces Bartlett Zen Whartiett n 0 54 uini omn Averaging and final spectrum After windowing an FFT is performed on each block and the individual spectrum results are th
89. Example See chapter 9 22 Programming Example Pulse Measure ment on page 395 Usage SCPI confirmed Manual operation See Export Trace to ASCII File on page 159 Retrieving Information on Data Segments The following commands return information on data segments for segmented data cap ture see chapter 9 9 Segmented Data Capturing on page 233 TRACe lt n gt 1Q SCAPture BOUNdary sessssssssssssssssssesen eene nennen eren rnnt tenens 341 TRACe ns Q SGCAPt re RE E EE 342 TRACE IQ SCAPE TSTamp Nee EN 344 TRACe n IQ SCAPture BOUNdary This remote control command returns an array of sample indices for the start of each captured data segment The length of the array depends on the number of trigger events specified by SENSe SWEep SCAPture EVENts on page 233 Retrieving Results Example See TRACe n IQ SCAPture TSTamp SSTart on page 342 Usage Query only Manual operation See Magnitude Capture on page 29 TRACe lt n gt IQ SCAPture TSTamp SS Tart This remote control command returns an array of timestamps for each segment start in the captured data The length of the array depends on the number of trigger events specified by SENSe SWEep SCAPture EVENts on page 233 For details see Timestamps vs sample number on page 53 Example Usage Manual operation Retrieving Results Configure a power trigger at 20dBm TRIG SOUR RFP TRIG LEV RFP 20dBm
90. ID threshold of 8 dB SENS MIX THR 8dB Select single sweep mode INIT CONT OFF Initiate a basic frequency sweep and wait until the sweep has finished INIT WAI Input Output Settings Return the trace data for the input signal without distortions default screen configuration TRAC DATA TRACE3 Configuring a conversion loss table for a user defined band 95e5eBeBeezseRee Preparing the instrument Reset the instrument RST Activate the use of the connected external mixer SENS MIX ON dees Configuring a new conversion loss table Define cvl table for range 1 of band as described in previous example extended V band SENS CORR CVL SEL UserTable SENS CO SENS CO SENS CO RR CVL COMM User defined conversion loss table for USER band R R SENS COR R R R CVL BAND USER CVL HARM 6 CVL BIAS 1mA CVL MIX FS Z260 CVL SNUM 123 4567 R CVL PORT 3 SENS CO SENS CO SENS CO A A A A A A Conversion loss is linear from 55 GHz to 75 GHz SENS CORR CVL DATA 55GHZ 20DB 75GHZ 30DB al Configuring the mixer and band settings Use user defined band and assign new cvl table SENS MIX HARM BAND USER Define band by two ranges range 1 covers 47 48 GHz to 80 GHz harmonic 6 cvl table UserTable range 2 covers 80 GHz to 138 02 GHz harmonic 8 average conv loss of 30 dB SENS MIX HARM TYPE EVEN SENS MIX HARM H
91. IF Power or RF Power trigger is used see Trigger Source on page 106 SENSe SWEep SCAPt re EVENlts 2 rr ioo o aeo ea tad epe d e e eR Ru ET 233 SENSe SWEep SCAPture LENGth TIME eeeeeeeee eee eene enne nnne nnn nnt 233 SENSe SWEep SCAPture OFFSet TIME 234 SENSe SWEep SCAPltu re S TATe 22 2 22 23 1 rone euet Ee anda D eda e pax EEN 234 SENSe SWEep SCAPture EVENts lt NoEvents gt Specifies the number of trigger events for which data segments are to be captured Parameters lt NoEvents gt numeric value RST 2 Manual operation See Events on page 112 SENSe SWEep SCAPture LENGth TIME lt SegmentLen gt Defines a time period starting from the trigger offset in which data is captured If mul tiple events occur within one segment length the segment is extended see Number of events vs number of segments on page 52 Parameters lt SegmentLen gt RST 0 Default unit s Manual operation See Segment Length on page 113 Segmented Data Capturing SENSe SWEep SCAPture OFFSet TIME Offset Defines an offset to the trigger event at which data capturing starts For a negative off set data capturing starts before the actual trigger event Parameters lt Offset gt RST 0 Default unit s Manual operation See Trigger Offset on page 112 SENSe SWEep SCAPture STATe lt State gt If activated data is c
92. MEASurement DEFine FREQuency RATE AUTO essen 188 SENSe TRACe MEASurement DEFine PULSe ADROOp sees 189 SGENGeTRACeMtAGurement DE Fine PU SGe MOtDulatton rnnr nrn nrnnnne 189 SENSe TRACe MEASurement DEFine PULSe PERIoOd sse 189 SENSe TRACe MEASurement DEFine DURation AUTO State If this flag is set to ON the pulse timing parameters min max width min off time are determined automatically from the current capture settings Parameters State ON OFF 0 1 RST ON Manual operation See Timing Auto Mode on page 71 SENSe TRACe MEASurement DEFine DURation MAX lt PulseMaxWidth gt Defines a maximum pulse width pulses outside this range are not detected The avail able value range is 50ns to 100s but may be restricted further by the sample rate Parameters lt PulseMaxWidth gt RST 5 ms Default unit S Manual operation See Minimum Pulse Width Maximum Pulse Width on page 71 SENSe TRACe MEASurement DEFine DURation MIN lt PulseMinWidth gt Defines a minimum pulse width pulses outside this range are not detected The availa ble value range is 50ns to 100s but may be restricted further by the sample rate Parameters lt PulseMinWidth gt RST 50 ns Default unit S Manual operation See Minimum Pulse Width Maximum Pulse Width on page 71 SENSe TRACe MEASurement DEFine DURation OFF lt PulseMinOff gt The minimum time the pulse is off i e the time b
93. MIXet aene eee 206 Protection RF input RF input remote Proximal Oe e WEE 121 Pulse Compression see Sidelobes sssssse 53 Droop neret Frequency evaluation 94 Frequency error evaluation 40 Magnitude evaluation sse 34 Magnitude correlated evaluation 38 39 Mega feed S Tn ite ected 71 Negative 46 9i 71 Petiod e 70 Phase evaluation 35 Phase error evaluation 40 Phase wrapped evaluation ssssss 36 ueri 46 R petitionint rval ctetuer tre bn 47 Selecting ertet ette 129 Selecting remote i needed 254 Statistics evaluation sess 37 KT hot etre 18 47 71 300 364 365 Pulse compression Calculation dt cerea red boi eia ae 55 Pulse detection BASICS D Aas 46 Configuring 118 imitacia 119 Maximum count 119 Remote control nic ett Seen 237 Pulse measurements BASICS EE 42 Pulse repetition frequency 19 300 363 Pulse repetition interval 2 0 ente 300 Pulse Results Evaluation Pulse Pulse Frequency Difference Pulse Pulse Phase Difference Pulse to Pulse Power Difference i Pulse to Pulse Power Ratio ccceeeeeeeeeeeeeeeeeeeeeeees Q Quick Config WAGES 6 157 R Range
94. Mainlobe 3 dB Width to width of uncorrelated non filtered pulse Remote command CALCulate n TABLe TSIDelobe CRATio on page 302 SENSe PULSe TSIDelobe CRATio on page 377 SENSe PULSe TSIDelobe CRATio LIMit on page 387 Mainlobe Power Integrated Peak power of the correlator output normalized to the reference waveform power For perfectly correlated measured and reference waveforms this value corresponds to the integrated power of the measured waveform over the correlation interval For details see Mainlobe power integrated on page 57 Remote command CALCulate lt n gt TABLe TSIDelobe IMPower on page 302 SENSe PULSe TSIDelobe IMPower on page 378 SENSe PULSe TSIDelobe IMPower LIMit on page 387 Mainlobe Power Average Peak power of the correlator output normalized to the reference waveform power and to the correlation interval For perfectly correlated measured and reference waveforms this value corresponds to the average power of the measured waveform over the cor relation interval For details see Mainlobe power integrated on page 57 Remote command CALCulate n TABLe TSIDelobe AMPower on page 302 SENSe PULSe TSIDelobe AMPower on page 377 SENSe PULSe TSIDelobe AMPower LIMit on page 387 User Manual 1173 9392 02 17 27 3 2 Evaluation Methods for Pulse Measurements Peak Correlation Peak power of the correlator output normalized to both the
95. Min Power Hanoi 21 DOO 21 rg 21 COVERS NOG m 21 Power at PON esee orit ierat Glen Ee aot ERE Seed cas EYE Ere Ee 22 Pulse to Pulse Power Ratio orici rece oer eis 22 Top Power The median pulse ON power The value of this parameter is used as a reference 100 to determine other parameter values such as the rising falling thresholds Var ious algorithms are provided to determine the top power see Measurement Algo rithm on page 120 Remote command SENSe PULSe POWer TOP on page 358 CALCulate lt n gt TABLe POWer TOP on page 298 SENSe PULSe POWer TOP LIMit on page 387 Base Power The median pulse OFF power The value of this parameter is used as a reference 096 to determine other parameter values such as the rising falling thresholds Remote command SENSe PULSe POWer BASE on page 349 CALCulatecn TABLe POWer BASE on page 296 SENSe PULSe POWer BASE LIMit on page 387 Pulse Parameters Pulse Amplitude The difference between the Top Power and the Base Power This value determines the 10096 power range amplitude Remote command SENSe PULSe POWer AMPLitude on page 348 CALCulate lt n gt TABLe POWer AMPLitude on page 295 SENSe PULSe POWer AMPLitude LIMit on page 387 Average ON Power The average power during the pulse ON time
96. Remote command MMEMory STORe lt n gt TABLe on page 390 Export Limits Table Export Configuration If activated any limits defined for the table will be included in the export file Remote command MMEMory STORe lt n gt TABLe LIMit on page 391 Decimal Separator Table Export Configuration Defines the decimal separator for floating point numerals for the data export files Eval uation programs require different separators in different languages Remote command FORMat DEXPort DSEParator on page 389 Export Table to ASCII File Table Export Configuration Opens a file selection dialog box and saves the selected result table in ASCII format DAT to the specified file and directory For details on the file format see chapter A 1 Reference ASCII File Export Format on page 402 G P esH User Manual 1173 9392 02 17 166 Note To store the measurement results for all traces and tables in all windows use the Export Trace to ASCII File command in the Save Recall Export menu See also chapter 6 4 2 Trace Data Export Configuration on page 157 Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the
97. S FSW VSA application R amp S FSW K70 some sample iq tar files are provided in the C R S Instr user vsa DemoSignals directory on the R amp S FSW Input from Noise Sources The R amp S FSW provides a connector NOISE SOURCE CONTROL with a voltage sup ply for an external noise source By switching the supply voltage for an external noise source on or off in the firmware you can activate or deactive the device as required External noise sources are useful when you are measuring power levels that fall below the noise floor of the R amp S FSW itself for example when measuring the noise level of an amplifier In this case you can first connect an external noise source whose noise power level is known in advance to the R amp S FSW and measure the total noise power From this value you can determine the noise power of the R amp S FSW Then when you measure the power level of the actual DUT you can deduct the known noise level from the total power to obtain the power level of the DUT The noise source is controlled in the Output settings see Noise Source on page 96 Receiving and Providing Trigger Signals Using one of the TRIGGER INPUT OUTPUT connectors of the R amp S FSW the R amp S FSW can use a signal from an external reference as a trigger to capture data Alternatively the internal trigger signal used by the R amp S FSW can be output for use by other connected devices Using the same trigger on several devices is useful t
98. SENSe TRACe MEASurement DEFine PULSe INSTant lt Pulselnstant gt The time instant used for in pulse measurements e g power phase or frequency Parameters lt Pulselnstant gt RST 0 Default unit S Manual operation See Offset on page 123 Configuring the Pulse Measurement SENSe TRACe MEASurement DEFine PULSe INSTant AWINdow Pulselnstant The length of an averaging window centered on the Measurement Point Parameters lt Pulselnstant gt Size of the window around the measurement point used for averaging Range 0 to 10000 RST 0 0 Default unit s Manual operation See Averaging Window on page 123 SENSe TRACe MEASurement DEFine PULSe INSTant REFerence lt Reference gt The reference point used for specifying the pulse time instant Parameters lt Reference gt RISE CENTer FALL RISE The measurement point is defined in reference to the rising edge mid level crossing CENTer The measurement point is defined in reference to the center of the pulse equal distance from the rising and falling mid level crossings FALL The measurement point is defined in reference to the falling edge mid level crossing TRIG The measurement point is defined in reference to the trigger event This setting is only available for segmented capture Configure a trigger and activate segmented capture mode see SENSe SWEep SCAPture STATe on page 234 RST CENTer Manual operation See Measurement Point Reference on
99. SWEep TIME 0 cccssssecsssssessssssesssssssessssssessssevesssssessssssuvssssssvessssivessssisssssstisessstiesssssiessssesssssieesseee CALCulate lt n gt DELTamarker lt m gt LINK TO MARKer lt m gt CALCulate lt n gt DELTamarker lt m gt MAXimum LEFT S CAL Culate nz D I Tamarker cmz MAimum NENT CAL Culate nz D I Tamarker mz MA NimumRIGHt A CALOCulate n DELTamarker m MAXimumf PEAK essent CALCulate lt n gt DEL Tamarker mo MlNimutmt LEEF T ooo cree tip ec ENEE EERSTEN CAL Culate nz DEI Tamarker cmz MiNimumNENT A CALCulate lt n gt DELTamarker lt m gt MINiIMUM RIGHT ener nnne CALCulate n DELTamarker m MlNimum PEAK cessent CAL Culatesn gt DEL Tamarkersim gt MR EF i rere coi Er co Eee Ert E Re dee GALGulate n DELTamarker m STATe oto rennen rtr rer rr rr tenent emnes 330 GALCGulate n DISTribution F REQ U6RCY rtt rre rr rentre hi rere x oae EY iaaa 257 GAL Culate n DIS Tribution EINes S BAT secun entree nera ene ae erret na er regen 257 CALCu latesn gt DIS Tibution NBIN oret cem tette eter estere ree tp Rec de eats 258 IER e RI ele e EE 258 ee RE Neel ren 258 GALGulate n DIS Trib tion TIMilg uu three rt ttr ne e rrt tn th nter eer teen 260 GAL Culatesn gt DISTribution ET e 261 e evisos ER E 328 Lei ee El 331 CAL Culate nz MAbkercmz LINK TOMAbkercmz eene eene nennt nnn tnts etn rnt rnnt
100. Sample dle epe ete rent Dr ge qi eR EE CEPI dagattapeias ven RAN BAUR TR BREATH REA LEUR EUM EA ge NN 114 Measurement MME EE 115 nere oM Eo oeie 115 FM Video Band ds TRETEN 115 Filter type Defines the filter to be used for demodulation Flat Standard flat demodulation filter Gauss Filter with optimized settling behaviour default Note For Gaussian filters whose 3dB bandwidth is large compared to the maximum UO bandwidth the ideal Gaussian filter shape would exceed the maximum UO bandwidth at its outer edges Thus the actual filter only follows the ideal Gaussian filter shape in the inner range of the set UO bandwidth At a certain frequency offset it must deviate from the ideal Gauss filter and drop off faster For details see chapter A 2 Effects of Large Gauss Filters on page 403 Remote command SENSe BANDwidth BWIDth DEMod TYPE on page 235 Measurement Bandwidth The measurement bandwidth is defined by the used filter and the sample rate Either a flat or a Gauss filter are available For information on supported sample rates and filter bandwidths see the data sheet Note If the input source is an I Q data file see chapter 5 4 1 2 Settings for Input from UO Data Files on page 76 the measurement bandwidth cannot be changed For details see chapter 4 6 2 Basics on Input from I Q Data Files on page 58 Remote command SENSe BANDwidth DEMod on page 235 Sample rate The sample rate
101. Sets the number of measurements to 64 INIT CONT OFF Switches to single measurement mode INIT WAI Starts a measurement and waits for its end Usage SCPI confirmed Manual operation See Sweep Average Count on page 117 SENSe SWEep COUNt CURRent This query returns the current number of started sweeps or measurements This com mand is only available if a sweep count value is defined and the instrument is in single sweep mode Usage Query only SYSTem SEQuencer State This command turns the Sequencer on and off The Sequencer must be active before any other Sequencer commands INIT SEQ are executed otherwise an error will occur A detailed programming example is provided in the Operating Modes chapter in the R amp S FSW User Manual Parameters lt State gt ON OFF 0 1 ON 1 The Sequencer is activated and a sequential measurement is started immediately OFF 0 The Sequencer is deactivated Any running sequential measure ments are stopped Further Sequencer commands INIT SEQ are not available RST 0 Example SYST SEQ ON Activates the Sequencer INIT SEQ MODE SING Sets single Sequencer mode so each active measurement will be performed once INIT SEQ IMM Starts the sequential measurements SYST SEQ OFF 9 14 9 14 1 9 14 2 Configuring the Results Configuring the Results Some evaluation methods require or allow for additional settings to configure the res
102. TABLe FREQuency CRATe LIMit STATe State CALCulate lt n gt TABLe FREQuency DEViation LIMit STATe State CALCulate lt n gt TABLe FREQuency PERRor LIMit STATe State CALCulate lt n gt TABLe FREQuency POINt LIMit STATe State CALCulate lt n gt TABLe FREQuency PPFRequency LIMit STATe State CALCulate lt n gt TABLe FREQuency RERRor LIMit STATe State CALCulate lt n gt TABLe PHASe DEViation LIMit STATe State CALCulate lt n gt TABLe PHASe PERRor LIMit STATe State CALCulate lt n gt TABLe PHASe POINt LIMit STATe State CALCulate lt n gt TABLe PHASe PPPHase LIMit STATe State CALCulate lt n gt TABLe PHASe RERRor LIMit STATe State R amp SSFSW K6 6S Remote Commands for Pulse Measurements pam M M Mo X M JD w CALCulate lt n gt TABLe POWer ADRoop DB LIMit STATe State CALCulate n TABLe POWer ADRoop PERCent LIMit STATe State CALCulate lt n gt TABLe POWer AMPLitude LIMit STATe State CALCulate lt n gt TABLe POWer AVG LIMit STATe State CALCulate lt n gt TABLe POWer BASE LIMit STATe State CALCulate lt n gt TABLe POWer MAX LIMit STATe State CALCulate lt n gt TABLe POWer MIN LIMit STATe State CALCulate lt n gt TABLe POWer ON LIMit STATe State CALCulate lt n gt TABLe POWer OVERshoot DB LIMit STATe State CALCulate lt n gt TABLe POWer OVERshoot PERCen
103. USB connection All remote commands available for configuration via the R amp S DiglConf software are described in the R amp SGEX IQ BOX Digital Interface Module R amp SGDiglConf Software Operating Manual Example 1 SOURce EBOX RST SOURce EBOX IDN Result Rohde amp Schwarz DiglConf 02 05 436 Build 47 Example 2 SOURCe EBOX USER CLOCk REFerence FREQuency 5MHZ Defines the frequency value of the reference clock Input Output Settings Remote commands exclusive to digital UO data input and output NPU DIOC DEVC E 211 INPut DIQ RANGe UPPer AUTO titor octo ariana renes fenus 212 I PubtbIO Geer Be EE 212 INPut DIQ RANGe UPPbel i reerece open pact Rr t pen nd Rene abb xn eu De hber 213 E ET ele DEET LEE 213 PUD SRAM osc rre reine eco teen eee seco erae reote E th Ese see muen e uat 213 TP DOO SRATSAUTO m 213 OUTP O MM 214 OUTPUE DIQ CDEV ie C M 214 INPut DIQ CDEVice This command queries the current configuration and the status of the digital UO input from the optional Digital Baseband Interface For details see the section Interface Status Information for the optional Digital Base band Interface in the R amp S FSW UO Analyzer User Manual Return values lt ConnState gt Defines whether a device is connected or not 0 No device is connected 1 A device is connected lt DeviceName gt Device ID of the
104. VE 352 SENSe PULSe POWer ON MINIRIYUH e 22 2 2 eerie eer E Eegen 352 SENSe PULSE POWerON SDEVIallon eterne etx aras anc a eR loda n Re hex 352 SENSe PULSe POWer OVERshoot DB sessi nenne rere nn nnne 352 SENSe PULSe POWer OVERshootDB AVERBB iier etuer oii Eie ara La eio 353 SENSe PULSe POWer OVERshoot DB MAXimum essen 353 SENSe PULSe POWer OVERshoot DB MINimum eeeeeeeeene en 353 SENSe PULSe POWer OVERshoot DB SDEViation eese 353 SENSe PULSe POWer OVERshoot PERCant 1 2 sri terrere ri eoe 353 ISGENGeIpDUL Ge bOWerOVERabool PDERGenttAVEHage nern rererrrerene 353 IGENSGe JpDUL Ge POWer OVERabootl PERGent MAXimum 353 SENSe PULSe POWer OVERshoot PERCent MINimum eeeeeeeeeeeennenn 353 SENSe PULSe POWer OVERshoot PERCent SDEViation eeeeeeeeeeeeee 353 SENSeJPUESa T OWSr PAVO sci unu une asinina ntt RR kunt ra E Re Rua dua MEE ud FIERE MIU A RM E 354 SENS amp e PULSe POWerPAVG AVERBUG iita rena e ar etai emerald 354 SENSe PULSe POW er PAVGIMAXIIUE 2 22 22 sets e Sea tre RE Pha tete v atr seda EE 354 SENSe PULSe POWerPAVG MINITUITIO ccena eurer ok etn tu Xs nnt eren ta i 354 IGENGe DU Ge POWer PDAVG SGDEViaton kA 354 SENSe IPULESSTPOWet PMN eegenen ra E qp hao ore a EE aane Eva EE EHE RE Rhe PERPE YE Po REP TREES 354 SENSe PULSe POWerPMIN AVERage
105. a Standard Pulse Measurement nnen 169 e How to Configure a Limit Check for a Pulse Measurement 170 e How to Perform Time Sidelobe Anahysis AAA 171 e Howto Export Table IData ec ete ee EENS 175 8 1 How to Perform a Standard Pulse Measurement To perform a standard pulse measurement 1 Press the MODE key on the front panel and select the Pulse application 2 Select the Overview softkey to display the Overview for a Pulse measurement 3 Select the Signal Description button and configure the expected pulse character istics 4 Select the Input Frontend button to define the input signal s center frequency amplitude and other basic settings 5 Optionally select the Trigger button and define a trigger for data acquisition for example an external trigger to start capturing data only when a useful signal is transmitted 6 Select the Data Acquisition button and define the bandwidth parameters for the input signal In MSRA MSRT mode define the application data instead see chapter 4 8 Pulse Measurements in MSRA MSRT Mode on page 65 e Measurement Bandwidth the amount of signal bandwidth to be captured e Measurement Time how long the input signal is to be captured 7 Select the Pulse Detection button and define the criteria to detect the individual pulses within the input signal 8 Select the Measurement button and define the general measurement settings concerning
106. and do not provide pre trigger data Trigger and trigger offset A precondition for segmented data capturing is a trigger as the segment definition is based on the trigger event A specified trigger offset is applied to each segment thus allowing for pretrigger data to be included in the segment Furthermore the length of each segment that is the measurement time for an individual segment must be defined such that the longest expected pulse can be captured in one segment Finally the number of trigger events for which data is to be captured can be defined Measurement time If segmented capturing is active the total measurement time is defined by the number of trigger events and the segment length Thus the Measurement Time setting in the Data Acquisition dialog box is not available D Segmented Capture and Time Sidelobe Analysis When using the new Time Sidelobe Analysis functions set up the capture such that there are enough pre post samples to account for the entire reference UO waveform length Recommended settings for a rising edge trigger on the pulse are e Trigger Offset 1 5 Reference UO Length Segment Length 4 0 Reference UO Length Alignment based on trigger event Since segment definition is based on the trigger event this event can also be used as a reference point for the measurement point and result range definition see chap ter 5 10 2 Measurement Point on page 122 and Alignment on page 13
107. application See also Frequency Offset on page 101 Note In MSRA MSRT mode the setting command is only available for the MSRA MSRT Master For MSRA MSRT applications only the query command is available Parameters Offset Range 100 GHz to 100 GHz RST 0 Hz Example FREQ OFFS 1GHZ Usage SCPI confirmed Manual operation See Frequency Offset on page 101 Amplitude Settings The following commands are required to configure the amplitude settings in a remote environment Useful commands for amplitude settings described elsewhere INPut COUPling on page 192 INPut IMPedance on page 193 DISPlay WINDow lt n gt TRACe Y SCALe AUTO on page 310 Remote commands exclusive to amplitude settings DiSblavlfWiNDow nzTR ACectlSCALelRLEVel eene 222 DISPlay WINDow n TRACe t Y SCALe RLEVel OFFSet seeeesessesee 223 INP UR GAINES TA Mics T 223 INPUEGAIN VALG D 223 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RLEVel lt ReferenceLevel gt This command defines the reference level for all traces lt t gt is irrelevant With a reference level offset 0 the value range of the reference level is modified by the offset Parameters lt ReferenceLevel gt The unit is variable Range see datasheet RST 0 dBm Example DISP TRAC Y RLEV 60dBm Frontend Configuration Usage SCPI confirmed Manual operation S
108. be stored This function is only available in single sweep mode and only in applications that process UO data such as the UO Analyzer or optional applications For details see the description in the R amp S FSW UO Analyzer User Manual Importing and Exporting UO Data Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt 10 STATe on page 392 MMEMory STORe lt n gt 1IQ COMMent on page 391 Export Range UO Export Defines the range of the UO data to store Entire Cap The entire capture buffer is exported ture Result Range The result range only that is the currently selected pulse see chap ter 6 1 1 Pulse Selection on page 129 is exported Remote command MMEMory STORe cn IQ RANGe on page 392 How to Perform a Standard Pulse Measurement 8 How to Perform Measurements in the Pulse Application The following step by step instructions demonstrate how to perform a Pulse measure ment with the R amp S FSW K6 option e Howto Perform
109. box to select an export file to which the IQ data will be stored This function is only available in single sweep mode and only in applications that process UO data such as the UO Analyzer or optional applications For details see the description in the R amp S FSW UO Analyzer User Manual Importing and Exporting UO Data Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt 10 STATe on page 392 MMEMory STORe lt n gt 1IQ COMMent on page 391 Export Range UO Export Defines the range of the UO data to store Entire Cap The entire capture buffer is exported ture Result Range The result range only that is the currently selected pulse see chap ter 6 1 1 Pulse Selection on page 129 is exported Remote command MMEMory STORe lt n gt 1IQ RANGe on page 392 Zoom Functions The zoom functions are only available from the toolbar Single ZOOM D aE 163 le E 163 Restore Oriditial Display uiid rire te
110. close to zero Off The analog mixer path is always used Remote command INPut DPATh on page 192 High Pass Filter 1 3 GHz Activates an additional internal high pass filter for RF input signals from 1 GHz to 3 GHz This filter is used to remove the harmonics of the analyzer in order to measure the harmonics for a DUT for example This function requires an additional hardware option Note for RF input signals outside the specified range the high pass filter has no effect For signals with a frequency of approximately 4 GHz upwards the harmonics are suppressed sufficiently by the YIG filter Remote command INPut FILTer HPASs STATe on page 193 YIG Preselector Activates or deactivates the YIG preselector if available on the R amp S FSW An internal YIG preselector at the input of the R amp S FSW ensures that image frequen cies are rejected However this is only possible for a restricted bandwidth In order to use the maximum bandwidth for signal analysis you can deactivate the YIG preselector at the input of the R amp S FSW which may lead to image frequency display Note that the YIG preselector is active only on frequencies greater than 8 GHz There fore switching the YIG preselector on or off has no effect if the frequency is below that value Remote command INPut FILTer YIG STATe on page 193 Settings for Input from UO Data Files Settings for input from UO data files is configured in the Input Source gt
111. connected device lt SerialNumber gt Serial number of the connected device lt PortName gt Port name used by the connected device lt SampleRate gt Maximum or currently used sample rate of the connected device in Hz depends on the used connection protocol version indica ted by lt SampleRateType gt parameter lt MaxTransferRate gt Maximum data transfer rate of the connected device in Hz lt ConnProtState gt State of the connection protocol which is used to identify the connected device Not Started Has to be Started Started Passed Failed Done Input Output Settings lt PRBSTestState gt State of the PRBS test Not Started Has to be Started Started Passed Failed Done lt SampleRateType gt 0 Maximum sample rate is displayed 1 Current sample rate is displayed lt FullScaleLevel gt The level in dBm that should correspond to an I Q sample with the magnitude 1 if transferred from connected device If not available 1 4 QNAN not a number is returned Example INP DIQ CDEV Result 1 SMW200A 101190 BBMM 1 OUT 100000000 200000000 Passed Passed 1 1 4QNAN Manual operation See Connected Instrument on page 89 INPut DIQ RANGe UPPer AUTO State If enabled the digital input full scale level is automatically set to the value provided by the connected device if available This command is only available if the optional Digital Baseband interface is installed Parameters State ON
112. conversion loss via the table selected from the list Pre defined conversion loss tables are often provided with the external mixer and can be imported to the R amp S FSW Alternatively you can define your own conversion loss tables Imported tables are checked for compatibility with the current settings before being assigned Conversion loss tables are configured and managed in the Conver sion Loss Table tab For details on importing tables see Import Table on page 84 Remote command Average for range 1 SENSe MIXer LOSS LOW on page 201 Table for range 1 SENSe MIXer LOSS TABLe LOW on page 200 Average for range 2 SENSe MIXer LOSS HIGH on page 200 Table for range 2 SENSe MIXer LOSS TABLe HIGH on page 200 Basic Settings The basic settings concern general use of an external mixer They are only available if the External Mixer State is On Frequency Basic Settings Mixer Settings Conversion Loss Table Bias Settings Range 1 External Mixer Signal ID Auto ID Bias Value SOR 7 10 0 aB Bed 81 Signal pm 82 rud 82 Auto JD EI Kiel 82 Blas SOUS cm 82 L write to lt CVL table name 83 LO Level Defines the LO level of the external mixer s LO port Possible values are from 13 0 dBm to 17 0 dBm in 0 1 dB steps Default value is 15 5 dB Remote command SENSe MIXer L
113. current capture vs pulse number or pulse timestamp This is equivalent to plotting a column of the Pulse Results table for the rows highlighted green This evaluation allows you to determine trends in a specific parameter such as a frequency deviation or a fluctuation in power over several pulses The parameter trend evaluation can also be used for a more general scatter plot the parameters from the current capture can not only be displayed over time but also ver sus any other pulse parameter For example you can evaluate the rise time vs fall time For each parameter trend window you can configure a different parameter to be dis played for both the x axis and the y axis making this a very powerful and flexible analysis tool R amp S FSW K6 6S Measurements and Result Displays 3 Pulse Width Trend e1AP Clrw Upper 520 0 ns Lower 500 0 ns 470 0 ns 10 0 ns Fig 3 3 Peak power vs pulse width scatter plot Note Limit lines Optionally limit lines can be displayed in the Parameter Trend dia gram You can drag these lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted If a limit is defined for a parameter that is displayed in a Parameter Trend diagram the Aut lindo function is not available for the axis this parameter is displayed on n also Activating a limit check for rameter on page 141 Thi
114. differential probes are supported as input however since only one connector is occupied by a probe the Single ended setting must be used for all probes Single Ended l Q data only Differential l Q and inverse 1 Q data Not available for R amp S FSW85 Remote command INPut IQ BALanced STATe on page 208 High Accuracy Timing Trigger Baseband RF Activates a mode with enhanced timing accuracy between analog baseband RF and external trigger signals Note Prerequisites for previous models of R amp S FSW For R amp S FSW models with a serial number lower than 103000 special prerequisites and restrictions apply for high accuracy timing To obtain this high timing precision trigger port 1 and port 2 must be connected via the Cable for High Accuracy Timing order number 1325 3777 00 e As trigger port 1 and port 2 are connected via the cable only trigger port 3 can be used to trigger a measurement e Trigger port 2 is configured as output if the high accuracy timing option is active Make sure not to activate this option if you use trigger port 2 in your measurement setup e When you first enable this setting you are prompted to connect the cable for high accuracy timing to trigger ports 1 and 2 If you cancel this prompt the setting remains disabled As soon as you confirm this prompt the cable must be in place the firmware does not check the connection In remote operation the setting is activated without a p
115. during analyzer operation All dif ferent information areas are labeled They are explained in more detail in the following sections R amp S FSW K6 6S Welcome to the Pulse Measurements Application MultiView Spectrum Pulse Ref Level 10 00 r Meas Time im SGL Att dB Freq 2 GHz MeasBW 90 Mrz 1 Count 5 5 IG Bype 1 Magnitude Capture 2 3 i v 2 Pulse Results Pulse ID Puise Width 4 des NO us us Start 0 0 s 5 Stop 1 0 mst 3 Pulse 1 Frequency I Cir 4 Pulse 1 Magnit de i v 5S Pulse 1 Phase Start 6 44 ps lt Stop 36 43 ps Start 6 44 ps O Stop 36 43 us Start 6 44 ps 1 Channel bar for firmware and measurement settings 2 3 Window title bar with diagram specific trace information 4 Diagram area 5 Diagram footer with diagram specific information depending on measurement 6 Instrument status bar with error messages progress bar and date time display MSRA MSRT operating mode In MSRA and MSRT operating mode additional tabs and elements are available A colored background of the screen behind the measurement channel tabs indicates that you are in MSRA MSRT operating mode For details on the MSRA operating mode see the R amp S FSW MSRA User Manual For details on the MSRT operating mode see the R amp S FSW Realtime Spectrum Applica tion and MSRT Operating Mode User Manual Channel bar information In the R amp S FSW Pulse application the R amp S FSW shows the following settings Tabl
116. each range you can define which harmonic to use and how the Conversion loss is handled Remote command SENSe MIXer HARMonic HIGH STATe on page 199 Harmonic Type Mixer Settings Harmonics Configuration Defines if only even only odd or even and odd harmonics can be used for conversion Depending on this selection the order of harmonic to be used for conversion changes see Harmonic Order on page 80 Which harmonics are supported depends on the mixer type Remote command SENSe MIXer HARMonic TYPE on page 199 Harmonic Order Mixer Settings Harmonics Configuration Defines which order of the harmonic of the LO frequencies is used to cover the fre quency range By default the lowest order of the specified harmonic type is selected that allows con version of input signals in the whole band If due to the LO frequency the conversion is not possible using one harmonic the band is split For the band USER the order of harmonic is defined by the user The order of har monic can be between 2 and 61 the lowest usable frequency being 26 5 GHz Remote command SENSe MIXer HARMonic LOW on page 200 SENSe MIXer HARMonic HIGH VALue on page 199 Conversion loss Mixer Settings Harmonics Configuration Defines how the conversion loss is handled The following methods are available Average Defines the average conversion loss for the entire range in dB Input and Output Settings Table Defines the
117. filename of the UO data binary file that is part of the iq tar file It is recommended that the filename uses the following convention lt xyz gt lt Format gt lt Channels gt ch lt Type gt e xyz a valid Windows file name e Format complex polar or real see Format element e Channels Number of channels see NumberOfChannels element e Type float32 float64 int8 int16 int32 or int64 see DataType element Examples xyz complex 1ch float32 e xyz polar 1ch float64 e xyzreal 1ch int16 xyz complex 16ch int8 UserData Optional contains user application or device specific XML data which is not part of the iq tar specification This element can be used to store additional information e g the hardware configuration User data must be valid XML content PreviewData Optional contains further XML elements that provide a preview of the UO data The preview data is determined by the routine that saves an iq tar file e g R amp S FSW For the definition of this element refer to the RsIqTar xsd schema Note that the preview can be only displayed by current web browsers that have JavaScript enabled and if the XSLT stylesheet open IgTar xml file in web browser xslt is available Example ScalingFactor UO Data File Format iq tar Data stored as int16 and a desired full scale voltage of 1 V ScalingFactor 1 V maximum int16 value 1 V 215 3 0517578125e 5 V Example
118. for IF Power trigger sources The range of the value is between 3 dB and 50 dB with a step width of 1 dB Trigger Settings When using the optional 2 GHz bandwidth extension R amp S FSW B2000 with an IF power trigger the hysteresis refers to the robust width trigger For details see the R amp S FSW UO Analyzer and UO Input User Manual Remote command TRIGger SEQuence IFPower HYSTeresis on page 227 Trigger Holdoff Trigger Settings Defines the minimum time in seconds that must pass between two trigger events Trigger events that occur during the holdoff time are ignored Remote command TRIGger SEQuence IFPower HOLDoff on page 227 Trigger 2 3 Defines the usage of the variable TRIGGER INPUT OUTPUT connectors where Trigger 2 TRIGGER INPUT OUTPUT connector on the front panel Trigger 3 TRIGGER 3 INPUT OUTPUT connector on the rear panel Trigger 1 is INPUT only Note Providing trigger signals as output is described in detail in the R amp S FSW User Manual Input The signal at the connector is used as an external trigger source by the R amp S FSW No further trigger parameters are available for the connector Output The R amp S FSW sends a trigger signal to the output connector to be used by connected devices Further trigger parameters are available for the connector Remote command OUTPut TRIGger lt port gt LEVel on page 231 OUTPut TRIGger lt port gt DIRection on page 231 Output T
119. for UO data acquisition is indicated for reference only It is calculated from the defined measurement bandwidth and measurement time or taken from the UO data input file 5 8 Sweep Settings Measurement Time Defines how long data is captured for analysis Meas Time or how many samples are captured in each record Record Length Note If the input source is an I Q data file see chapter 5 4 1 2 Settings for Input from UO Data Files on page 76 the measurement time can only be decreased in order to perform measurements on an extract of the available data from the beginning of the file only For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 The maximum measurement time in the R amp S FSW Pulse application is limited only by the available memory memory limit reached message is shown in status bar Note however that increasing the measurement time and thus reducing the available mem ory space may restrict the number of measurement channels that can be activated simultaneously on the R amp S FSW Remote command SENSe SWEep TIME on page 237 Record length The record length for UO data acquisition is indicated for reference only It is calculated from the defined measurement bandwidth and measurement time or taken from the UO data input file FM Video Bandwidth Additional filters applied after demodulation help filter out unwanted signals or correct pre emphasized input
120. for common pulse results A keep out time defines an excluded area around the center assuming this is the mainlobe in which no sidelobes are included The Time Sidelobe Range settings are available in the Measurement Settings dia log box but only if the additional option R amp S FSW K6S is installed R amp S9FSW K6 6S Configuration Meas Point Meas Range Time Sidelobe Range Range Scaling Selection Right Keep Out Time Auto GE AEE EE EEE EEE MM ME MER ee 127 Keep Out Die ue rtr edet tte beer er aed puce epe pee aE a ete eee oa OR odes 127 E aTe a A 127 Range Which part of the detected pulse is evaluated for sidelobe results is configurable simi larly to the result range for common pulse results By default Result Range mode the configured Result Range is also used to evalu ate sidelobes In Manual mode you can define the length and alignment of the sidelobe range differ ently to the result range Remote command SENSe TRACe MEASurement DEFine TSRange RANGe on page 246 User Manual 1173 9392 02 17 5 11 Automatic Settings Alignment Range Defines the alignment of the sidelobe range in relation to the Peak Correlation on page 28 point Left The sidelobe range stops to the left of the peak correlation point Center The sidelobe range is centered around the peak correlation point Right The sidelobe range startss to the right of the peak correlation point Remote command
121. frequency span for which the Spectrum is calculated Internally the span is limited by the number of possible interpolation samples 100 000 Limiting the span to the actually required frequencies decreases the calculation time and can improve the obtained RBW Remote command CALCulate lt n gt PSPectrum MAXFrequency on page 263 Window Type Used FFT window type Remote command CALCulate lt n gt PSPectrum WINDow on page 268 Block Size Size of block used in spectrum calculation Windowing and averaging are used to com bine blocks The block size also determines the resulting RBW of the spectrum Remote command CALCulate lt n gt PSPectrum BLOCksize on page 262 Gap Threshold Minimum time that must pass before a gap is detected as such Remote command CALCulate lt n gt PSPectrum GTHReshold on page 263 Section Threshold Minimum section size as a percentage of the block size Sections that are smaller than the threshold are ignored and considered to be in the detected gap Remote command CALCulate lt n gt PSPectrum STHReshold on page 266 6 1 4 3 Parameter Trend Configuration The parameter trend result displays allow you to visualize changes in a specific param eter for all measured pulses within the current capture buffer For each parameter trend window you can configure which measured parameter is to be displayed on the x axis and which on the y axis lesult Configuration Result Range Markers Result
122. full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TABLe on page 390 Export Trace to ASCII File Opens a file selection dialog box and saves the selected trace in ASCII format dat to the specified file and directory The results are output in the same order as they are displayed on the screen window by window trace by trace and table row by table row Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device 6 6 Zoom Functions For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TRACe on page 341 Trace Export Configuration Opens the Traces dialog box to configure the trace and data export settings See chapter 6 4 2 Trace Data Export Configuration on page 157 UO Export Opens a file selection dialog
123. gt Returns a comma separated list of results for the limit check for the specified parame ter and number of pulses For details on available parameters see chapter 3 1 Pulse Parameters on page 15 The limit check for an individual parameter is defined using the CALCulate lt n gt TABLe ParameterGroup Parameter LIMit STATe commands Commands for the parameter group TSIDelobe are only available if the additional option R amp S FSW K6S is installed Query parameters lt QueryRange gt SELected CURRent ALL Determines which pulses are checked against the limits SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Return values lt CheckResult gt FAILED LOW Limit check failed limit exceeds lower limit FAILED HIGH Limit check failed limit exceeds upper limit PASSED Limit check passed Example SENS PULS POW ON LIM CURR Usage Query only Manual operation See Sidelobe Delay on page 26 9 20 6 Exporting Trace Results to an ASCII File Trace results can be exported to an ASCII file for further evaluation in other external applications FORMAL E 389 FORMat DEXPorn DSEParalO ainena ae E EAE A 389 FORMSUDEXBGOIDHEBD E 1 1 taii ik prertrt arb kd dara a kd ao Ia a EFE yg n i Ee EEN ENER 389 FORMatDEXPOP TRACES iris ia aod eat recae eee c b x die a d d c e e ia da a d 390 Retrieving Results FORMat DAT
124. gt Returns the duty ratio for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Duty Ratio on page 18 SENSe PULSe TIMing DRATio AVERage lt QueryRange gt SENSe PULSe TIMing DRATio MAXimum lt QueryRange gt SENSe PULSe TIMing DRATio MINimum lt QueryRange gt SENSe PULSe TIMing DRATio SDEViation lt QueryRange gt Returns the statistical value for the duty ratio over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing FALL lt QueryRange gt Returns the fall time for the specified pulse s Retrieving Results Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Fall Time on page 17 SENSe PULSe TIMing FALL AVERage lt QueryRange gt SENSe PULSe TIMing FALL MAXimum lt QueryRange gt SENSe PULSe TIMing FALL MINimum lt QueryRange gt SENSe PULSe TIMing FALL SDEViation lt QueryRange gt Returns the statistica
125. in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer BASE lt QueryRange gt Returns the base power for the specified pulse s Retrieving Results Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Base Power on page 19 SENSe PULSe POWer BASE AVERage lt QueryRange gt SENSe PULSe POWer BASE MAXimum lt QueryRange gt SENSe PULSe POWer BASE MINimum lt QueryRange gt SENSe PULSe POWer BASE SDEViation lt QueryRange gt Returns the statistical value for the base power over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer MAX lt QueryRange gt Returns the maximum transmission power for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Peak Power on page 20 SENSe PULSe POWer MAX AVERage lt QueryRange gt SENSe PULSe POWer MAX MAXimum lt Qu
126. is possibly several result ranges can be included in the statistical evaluation Thus the overall number of averaging steps depends on the Sweep Average Count and the statistical evaluation mode No averages for Result trace statistics range 1 RR 2 RR 3 over all pulses Capture Sweep count 1 2 3 No averages for trace statistics over selected pulse 3 Fig 4 9 Trace statistics number of averaging steps Normalizing Traces For pulse results based on an individual pulse in some cases the absolute value is not of interest but rather the relative offset of each point in the trace from a specific measurement point within the pulse or from a reference pulse R amp SS9FSW K6 6S Measurement Basics Traces in the following result displays can not be normalized o e Correlated Magnitude Capture on page 38 e Correlated Pulse Magnitude on page 39 e Pulse Frequency Error on page 40 e Pulse Phase Error on page 40 Normalization based on a measurement point In a standard trace for a pulse result display the measured frequency magnitude or phase value for each measurement point in the result range is displayed If only the rel ative deviations within that pulse are of interest you can subtract a fixed value namely the value measured at a specified point in the pulse from each trace point Thus the trace value at the specified measurement point is always 0 This is what h
127. is defined in reference to the center of the pulse top Fall The result range is defined in reference to the falling edge Trigger The result range is defined in reference to the trigger event This setting is only available for segmented capture Configure a trig ger and activate segmented capture mode see Segmented Capture on page 111 Remote command SENSe TRACe MEASurement DEFine RRANge REFerence on page 256 Offset The offset in seconds from the pulse edge or center at which the result range reference point occurs Remote command SENSe TRACe MEASurement DEFine RRANge OFFSet on page 256 Alignment Defines the alignment of the result range in relation to the selected Result Range Ref erence Point Left The result range starts at the pulse center or selected edge Center The result range is centered around the pulse center or selected edge Right The result range ends at the pulse center or selected edge Remote command SENSe TRACe MEASurement DEFine RRANge ALIGnment on page 255 Result Configuration Length Defines the length or duration of the result range Remote command SENSe TRACe MEASurement DEFine RRANge LENGth on page 255 Result Range Spectrum Configuration For the Result Range Spectrum display additional settings are available for the FFT Gu Result Range Markers Marker Settings Units Y Scaling Result Window Type Bartlett Range RBW Auto n Resul
128. last n pulses SENS TRAC MEAS DEF PULS REF POS FIX SENS TRAC MEAS DEF PULS REF 1 All relative pulse results are based on pulse number 1 Example Example SENS TRAC MEAS DEF PULS SEL 2 SENS TRAC MEAS DEF PULS REF POS SEL All relative pulse results are based on the currently selected pulse number 2 Example SENS TRAC MEAS DEF PULS REF POS BPUL SENS TRAC MEAS DEF PULS REF 1 For each pulse evaluation the previous pulse is used as a refer ence The first pulse has no results Example SENS TRAC MEAS DEF PULS REF POS APUL SENS TRAC MEAS DEF PULS REF 2 For each pulse evaluation the second next pulse is used as a reference The last 2 pulses have no results Manual operation See Reference for Pulse Pulse Measurements on page 123 Configuring the Pulse Measurement 9 12 3 Measurement Range SENSe TRACe MEASurement DEFine PULSe ESTimation LENGth 244 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet LEFT 244 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet RIGHt 244 SENSe TRACe MEASurement DEFine PULSe ESTimation REFerence 244 SENSe TRACe MEASurement DEFine PULSe ESTimation LENGth Length The estimation range length as a percentage of the pulse top length Parameters Length pe
129. lt ParameterGroup gt ALL LIMit STATe on page 308 Deactivating all limit checks for all parameter groups To deactivate all limits for all parameter groups at once select Turn off limits This function is identical to setting Limit On Off to OFF for each parameter in each group Remote command CALCulate lt n gt TABLe ALL LIMit STATe on page 308 6 1 6 Y Scaling The scaling for the vertical axis is highly configurable using either absolute or relative values These settings are described here Result Configuration t Result Configuration 2 Pulse Results Result Range Markers D Units Y Scaling Automatic grid scaling Auto Scaling according to min and max values Max 360 0 Min 360 0 Scaling according to reference and per div Per Division 72 0 DII IDEE 100 0 9o Ref Value 0 0 To display this dialog box do one of the following e Press the AMPT key then select the Y Scaling Config softkey e From the Overview select Result Configuration then switch to the Y Scaling tab Automate Gd SCAN e BEER 143 Auto S6ale e 143 Absolute Scaling Min Max Values sse eene 144 Relative Scaling Reference per Division 144 LPer c M 144 M ia s UU T 144 2 1 v rr PR 144 Automatic Grid Scaling The y axis is scaled automatically according to the current measurement settings and results continuously Note If a limit is defin
130. measured value exceeds either limit value it it displayed in red in the Result Table Changing the limit values graphically Limit lines can also be displayed in Parameter Trend or Parameter Distribution result displays Result Config gt Parameter tab gt Display Limit Lines You can drag these limit lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted To deactivate a limit check 1 Select the Result Config button in the Overview 2 f necessary select the Result Table from the Specifics for list of windows 3 Switch to the Table Config tab then select the Limits tab 4 e To deactivate the limit check for a single parameter select the parameter and toggle the the Limit On Off setting to Off e To deactivate the limit check for an entire parameter group select Turn off all limits in group e To deactivate the limit check for all parameters in all parameter groups select Turn off limits How to Perform Time Sidelobe Analysis The following step by step instructions demonstrate how to perform a time sidelobe analysis with the R amp S FSW K6 and R amp S FSW K6S options e Creating a Reference Pulse Waveform essen 171 e Performing Time Sidelobe Analysis eee nnne tnnt 174 Creating a Reference Pulse Waveform In order to perform time sid
131. mixer to be connected to the front panel of the R amp S FSW In MSRA MSRT mode external mixers are not supported e BASIC Seld EE 194 e JEE SOPHIE o oce EE EE 197 e Conversion Loss Table Settings contr tidie eiit eiie 201 e Programming Example Working with an External Mixer 206 9 6 2 1 Basic Settings The basic settings concern general usage of an external mixer Input Output Settings BENSE MIX SWANS S 195 SENSEM Ner BIAS BIG ore cuero ers Cu ERE AEN 195 SENSe MIXer BIAS LLOW eec te tette tette tet tnte te ttnt te tttetett ttt tnnis 195 BENSe MIXT LOPOWET EMT EE 195 Iis EI MIMPAe eur 196 SENSe MIXer wl E EE 196 SENSe MIXer STATe State Activates or deactivates the use of a connected external mixer as input for the mea surement This command is only available if the optional External Mixer is installed and an external mixer is connected Parameters State ON OFF RST OFF Example MIX ON Manual operation See External Mixer State on page 79 SENSe MIXer BIAS HIGH lt BiasSetting gt This command defines the bias current for the high second range This command is only available if the external mixer is active see SENSe MIXer STATe on page 195 Parameters lt BiasSetting gt RST 0 0A Default unit A Manual operation See Bias Settings on page 82 SENSe MIXer BIAS LOW lt BiasSetting gt This command defines the bi
132. once by the Sequencer If the Sequencer is active in MSRT mode the Single Sweep function does not start data capturing it merely has an effect on trace averaging over multiple sequences In this case no trace averaging is performed Furthermore the RUN SINGLE key controls the Sequencer not individual sweeps RUN SINGLE starts the Sequencer in single mode If the Sequencer is off only the evaluation for the currently displayed measurement channel is updated Remote command INITiate lt n gt IMMediate on page 249 Continue Single Sweep After triggering repeats the number of sweeps set in Sweep Count without deleting the trace of the last measurement User Manual 1173 9392 02 17 116 Sweep Settings While the measurement is running the Continue Single Sweep softkey and the RUN SINGLE key are highlighted The running measurement can be aborted by selecting the highlighted softkey or key again Remote command INITiate lt n gt CONMeas on page 248 Refresh This function is only available if the Sequencer is deactivated and only for MSRA or MSRT applications The data in the capture buffer is re evaluated by the currently active application only The results for any other applications remain unchanged This is useful for example after evaluation changes have been made or if a new sweep was performed from another application in this case only that application is updated automatically after data acquisition
133. operation See Pulse Repetition Frequency Hz on page 19 SENSe PULSe TIMing PRF AVERage lt QueryRange gt SENSe PULSe TIMing PRF MAXimum lt QueryRange gt SENSe PULSe TIMing PRF MINimum lt QueryRange gt SENSe PULSe TIMing PRF SDEViation lt QueryRange gt Returns the statistical value for the Pulse Repetition Frequency Hz over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing PRI lt QueryRange gt Returns the Pulse Repetition Interval for the specified pulse s Retrieving Results Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Pulse Repetition Interval on page 18 SENSe PULSe TIMing PRI AVERage lt QueryRange gt SENSe PULSe TIMing PRI MAXimum lt QueryRange gt SENSe PULSe TIMing PRI MINimum lt QueryRange gt SENSe PULSe TIMing PRI SDEViation lt QueryRange gt Returns the statistical value for the Pulse Repetition Interval over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage
134. page 122 SENSe TRACe MEASurement DEFine PULSe REFerence Selects a particular pulse to be used as a reference for relative pulse parameters see SENSe TRACe MEASurement DEFine PULSe REFerence POSition on page 243 The number of the current or all detected pulses can be queried using SENSe PULSe NUMBer on page 344 or SENSe PULSe ID on page 344 Configuring the Pulse Measurement Parameters lt PulseNumber gt Range 0 to number of detected pulses RST 0 Manual operation See Reference for Pulse Pulse Measurements on page 123 SENSe TRACe MEASurement DEFine PULSe REFerence POSition lt Mode gt Defines the eference pulse on which relative pulse results are based e g for traces normalized to reference pulse see chapter 4 7 2 Normalizing Traces on page 61 Parameters lt Mode gt FiXed A fixed pulse number the pulse number is specified by SENSe TRACe MEASurement DEFine PULSe REFerence on page 242 SELected The currently selected pulse see SENSe TRACe MEASurement DEFine PULSe SELected on page 254 BPULse The nth pulse before the currently evaluated pulse where n is the number specified by SENSe TRACe MEASurement DEFine PULSe REFerence on page 242 No values are available for the first n pulses APULse The nth pulse after the currently evaluated pulse where n is the number specified by SENSe TRACe MEASurement DEFine PULSe REFerence on page 242 No values are available for the
135. page 186 Specifics for The measurement channel may contain several windows for different results Thus the settings indicated in the Overview and configured in the dialog boxes vary depending on the selected window Select an active window from the Specifics for selection list that is displayed in the Overview and in all window specific configuration dialog boxes The Overview and dialog boxes are updated to indicate the settings for the selected window Signal Description The signal description provides information on the expected input signal which optimi zes pulse detection and measurement Signal Description Signal InputSource Frequency Amplitude Output Timing Auto Mode M Puise Width pid Geng Min Pulse Width Droop On Max Pulse Width Mid Ref Level Min Pulse OFF Time Frequency Offset Auto Mode Value Model Chirp Rate Pulse Period High to Low Auto Mode Pulse Has Droop n Chirp Rate us Pulse Modulation Linear FM PUlS PROG REL E 70 Pulse Has Di OOP EE 70 feld Ee BEE 71 Timing Auto oror e 71 Minimum Pulse Width Maximum Pulse Wd 71 Min Pulse OM TIMO os eua spacer rore pide abun dude FER ue ore pete Fo na uc Pene hd 71 Frequency Offset Auto MOGG rect ett tn ett dn cet d edid 71 Frequency Offset Valle iei eere edi eai vei Er ee cei HH anao 72 Chirp Rate Auto Mode
136. pulse is detected or not The top of a pulse must exceed the threshold in order to be detected The threshold is defined in dB in relation to the defined reference or as an absolute threshold in dBm Remote command SENSe DETect THReshold on page 238 Hysteresis Defines a hysteresis for pulse detection in dB in relation to the defined threshold As long as the signal does not exceed the hysteresis the next threshold crossing is ignored Remote command SENSe DETect HYSTeresis on page 238 Detection Limit Restricts the number of pulses to be detected When the maximum number is excee ded measurement is stopped for the current capture buffer This limitation can be used to speed up the measurement if only a small number of pulses is of interest Remote command SENSe DETect LIMit on page 237 Maximum Pulse Count Defines the maximum number of pulses to be detected This limit is ignored if Detection Limit is disabled Remote command SENSe DETect LIMit COUNt on page 237 Pulse Measurement Settings The pulse measurement settings determine how much data is measured for each pulse in relation to defined levels points or ranges Which definition is actually used during measurement depends on the selected evaluation method e Measurement Level 119 e iMeasuremoentPolil ce cam eet niei e necs etas oed at de e n oer ea ba Pedir bate 122 e Measurement Range ciet ioc p ise eA CELL TERRAE RARE ERR
137. sidelobe analysis Correlated Magnitude Capture for a general overview of the pulse compres sion effects Correlated Pulse Magnitude for a detailed view of an individual pulse corre lated with the reference pulse Pulse Frequency Error to determine the frequency deviation of the mea sured pulse in relation to the reference pulse Pulse Phase Error to determine the phase deviation of the measured pulse in relation to the reference pulse Pulse Results to determine the characteristics for the correlated pulses Arrange them on the display to suit your preferences 6 Exit the SmartGrid mode and select the Overview softkey to display the Over view again How to Export Table Data 7 Select the Result Config button in the Overview to configure which parameters are displayed in the Pulse Results table a From the Specifics for list select the Pulse Results window b Select the Table Config tab C Select the vertical Time Sidelobe tab d Activate the parameters you are interested in and if necessary select their unit e Close the Result Config dialog box 8 Stop the continuous sweep and start a new sweep with the new configuration e g using the RUN SINGLE key 9 Press the Selected Pulse softkey and select a specific pulse to be evaluated The result displays are updated to show the results for the selected pulse 8 4 How to Export Table Data The measured result table data ca
138. sidelobe vs time measurements additional result displays are available Furthermore characteristic sidelobe parameters are added to the pulse result tables Result displays that require the additional option R amp S FSW K6S are indicated by an asterisk in the following descriptions Exporting Table Results to an ASCII File Measurement result tables can be exported to an ASCII file for further evaluation in other external applications For step by step instructions on how to export a table see chapter 8 4 How to Export Table Data on page 175 MEE IU id PAPA EE 15 e Evaluation Methods for Pulse Measurement 0 cccccccceeccssseeessesceeseeacessaeeesenauuas 28 Pulse Parameters The pulse parameters to be measured are based primarily on the IEEE 181 Standard 181 2003 For detailed descriptions refer to the standard documentation IEEE Stand ard on Transitions Pulses and Related Waveforms from the IEEE Instrumentation and Measurement I amp M Society 7 July 2003 The following graphic illustrates the main pulse parameters and characteristic values For a definition of the values used to determine the measured pulse parameters see chapter 4 1 Parameter Definitions on page 42 Pulse Parameters que qu E Pulse Top 100 Amplitude 96 of Pulse Top Base H lt Pulse width Pulse Period Pulse Repetition Interval Fig 3 1 Definition of the main pulse parameters and characte
139. started immediately with the default settings It can be configured in the Pulse Overview dialog box which is displayed when you select the Overview softkey from any menu see chapter 5 1 Configuration Overview on page 67 Multiple Measurement Channels and Sequencer Function When you activate an application a new measurement channel is created which deter mines the measurement settings for that application The same application can be acti vated with different measurement settings by creating several channels for the same application The number of channels that can be configured at the same time depends on the avail able memory on the instrument Only one measurement can be performed at any time namely the one in the currently active channel However in order to perform the configured measurements consecu tively a Sequencer function is provided If activated the measurements configured in the currently active channels are per formed one after the other in the order of the tabs The currently active measurement is indicated by a 8 symbol in the tab label The result displays of the individual channels are updated in the tabs including the MultiView as the measurements are per formed Sequential operation itself is independent of the currently displayed tab For details on the Sequencer function see the R amp S FSW User Manual Understanding the Display Information The following figure shows a measurement diagram
140. statistical value for the Pulse Pulse Frequency Difference over the speci fied pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe FREQuency RERRor lt QueryRange gt Returns the Frequency Error RMS for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Frequency Error RMS on page 23 SENSe PULSe FREQuency RERRor AVERage lt QueryRange gt SENSe PULSe FREQuency RERRor MAXimum lt QueryRange gt SENSe PULSe FREQuency RERRor MINimum lt QueryRange gt SENSe PULSe FREQuency RERRor SDEViation lt QueryRange gt Returns the statistical value for the Frequency Error RMS over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results 9 20 4 4 Retrieving Phase Parameters The following commands return the calculated pulse parameters For details on the individual parameters see chapter 3 1 4 Phase Parameters on page 24 EE Le e EL KEE 372 SENSe PULSe PHASe DEViation AVERage
141. that contain pulses are also identified referred to as sections Interpolation is then performed only on the sections whereas the gaps are ignored for the spectrum calculation A gap threshold ensures that pulses with large intervals are not split into multiple sec tions while a section threshold ensures that singular pulses within a long gap are not included in calculation Example Non contiguous pulse measurement A typical measurement setup that results in non contiguous pulses is a rotating radar antenna scanning the air For most of the time required for a single rotation no pulses will be received However when an object comes within the scan area several pulses will be detected within a short duration in time this will be identified as a section When the object leaves the scan area again the pulses will stop defining a gap until the next object is detected Blocks Spectrum calculation is then performed for the individual sections only However the Fourier transformation is not performed on the entire section in one step Each section is split into blocks which may overlap An FFT is performed on each block to calculate an individual result The smaller the block size the more individual results are calcula ted and the more precise the final result Thus the block size determines the resolu tion bandwidth in the final spectrum Note that while the block size may be defined manually the RBW cannot Window functions
142. the Selected Pulse are also shown highlighted blue The displayed parameters are the same as in the Pulse Results and can be configured in the Result Configuration see chapter 6 1 Result Configuration on page 129 5 Pulse Statistics Avg ON Avg Tx Power Power Pulse Statistic Width Phase Cus deg dBm dBm f 1 99 62 5 z 1 16 17 182 7 141 f E User Manual 1173 9392 02 17 37 R amp S FSW K6 6S Measurements and Result Displays Ell Note Limit checks are also available for Pulse Statistics see Pulse Results on page 36 Remote command LAY ADD WIND 2 RIGH PST see LAYout ADD WINDow on page 315 chapter 9 14 7 Configuring the Statistics and Parameter Tables on page 290 Results chapter 9 20 4 Retrieving Parameter Results on page 344 chapter 9 20 5 Retrieving Limit Results on page 386 Result Range Spectrum Calculates a power spectrum from the captured UO data within the time interval defined by the result range see chapter 6 1 2 Result Range on page 130 The Result Range Spectrum is calculated using a Welch periodogram which involves averaging the spectrum calculated by overlapping windows The shape of the window used for the calculation can be specified The length of the window is calculated such that a specific resolution bandwidth is obtained 3 Result Range Spectrum 1Pk Clrw 25 0 MHz Span 250 MHz Remote command LAY ADD WIND 2 RIGH RRSP see LAYout ADD WIND
143. to 10 units e g dB per division Manual operation See Per Division on page 144 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RPOSition Position This command defines the vertical position of the reference level on the display grid for all traces t is irrelevant The R amp S FSW adjusts the scaling of the y axis accordingly Parameters Position 0 PCT corresponds to the lower display border 100 corre sponds to the upper display border RST 100 PCT frequency display 50 PCT time dis play Example DISP TRAC Y RPOS 50PCT Usage SCPI confirmed Manual operation See Ref Position on page 144 DISPlay WINDow lt n gt TRACe Y SCALe RVALue Value This command defines the reference value assigned to the reference position in the specified window Separate reference values are maintained for the various displays Parameters Value numeric value WITHOUT UNIT Default unit dBm Manual operation See Ref Value on page 144 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RVALue MAXimum Value This command defines the maximum value on the y axis for all traces in the specified window Configuring the Result Display The suffix t is irrelevant Parameters Value numeric value Default unit dBm DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RVALue MINimum Value This command defines the minimum value on the y axis for all traces in the specified window The s
144. to the given pulse modulation It is not calculated at all for modulation type Arbi trary The error is calculated over the Measurement Range Remote command SENSe PULSe FREQuency RERRor on page 371 CALCulate lt n gt TABLe FREQuency RERRor on page 293 SENSe PULSe FREQuency RERRor LIMit on page 387 Frequency Error Peak The peak frequency error of the currently measured pulse The error is calculated rela tive to the given pulse modulation It is not calculated at all for modulation type Arbi trary The error is calculated over the Measurement Range Remote command SENSe PULSe FREQuency PERRor on page 369 CALCulate lt n gt TABLe FREQuency PERRor on page 292 SENSe PULSe FREQuency PERRor LIMit on page 387 Frequency Deviation The frequency deviation of the currently measured pulse The deviation is calculated as the absolute difference between the maximum and minimum frequency values within the Measurement Range Remote command SENSe PULSe FREQuency DEViation on page 368 CALCulate lt n gt TABLe FREQuency DEViation on page 292 SENSe PULSe FREQuency DEViation LIMit on page 387 Chirp Rate A known frequency chirp rate per us to be used for generating an ideal pulse wave form Note a chirp rate is only available for the Pulse Modulation type Linear FM Remote command SENSe PULSe FREQuency CRATe on page 368 CALCulate lt n gt TABLe
145. user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TABLe on page 390 Table Export Configuration Table results can be exported to an ASCII file for further evaluation in other external applications Table export settings can be configured in the Result Configuration dia log box in the Table configuration tab in the vertical Table Export tab The settings are window specific and only available for result tables R amp S FSW K6 6S Export Functions CE Suae Timing Columns to Export Visible Parameters Export Limits off Amplitude Parameters E DY ereliits Meio tte ld ls g t omma Freq Parameters Export Table to ASCII File Phase Parameters Table Export Limits Columns to Export Table Export Configuration Defines which of the result table columns are to be included in the export file Visible Only the currently visible columns in the result display are exported All All columns including currently hidden ones for the result display are exported
146. 0 MHz Sample Rate Measurement Time Meas Time 1 0 ms Record Length MSRA MSRT operating mode In MSRA MSRT operating mode only the MSRA MSRT Master channel actually cap tures data from the input signal The data acquisition settings for the Pulse application in MSRA MSRT mode define the application data extract and analysis interval For details on the MSRA operating mode see the R amp S FSW MSRA User Manual For details on the MSRT operating mode see the R amp S FSW Real Time Spectrum Applica tion and MSRT Operating Mode User Manual The settings in this dialog box are available when you do one of the following e Select the Data Acquisition button from the Overview Press the BW or SPAN key then the Bandwidth Config softkey Press the MEAS key then the Data Acquisition softkey Data Acquisition Input from UO data files o If the input source is an I Q data file see chapter 5 4 1 2 Settings for Input from UO Data Files on page 76 most measurement settings related to data acquisition attenuation center frequency measurement bandwidth sample rate cannot be changed The measurement time can only be decreased in order to perform measure ments on an extract of the available data from the beginning of the file only For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 alic 114 Measurement Bandwidth 114
147. 1 In order to align the measurement point to a trigger event on a per pulse basis the R amp S FSW Pulse application needs to associate one trigger event with each measured pulse The following rule applies to both power and external trigger sources Trigger source rising slope The pulse whose rising edge is closest to the trigger event is associated e Trigger source falling slope The pulse whose falling edge is closest to the trigger event is associated Segmented Data Capturing Meas Levels Meas Point Meas Range Time Sidelobe Range Reference Offset Spina finm io 0s Reference for Pulse Pulse Measurements Fig 4 5 Measurement point aligned to trigger on falling edge Number of events vs number of segments Generally the number of trigger events corresponds to the number of captured seg ments However in some cases multiple trigger events may occur within a time inter val shorter than the specified segment length Thus the segments for the individual trigger events overlap In this case the overlapping segments are merged together and the number of segments is lower than the number of trigger events J bd E t4 trigger events Ca VAT E E e measurement time e Fig 4 6 Number of segments vs number of trigger events Result displays for segmented data In the Magnitude Capture display an overview of the entire measurement is provided However for segmented data the tim
148. 13 Press the Selected Pulse softkey and select a specific pulse to be evaluated The result displays are updated to show the results for the selected pulse 8 2 How to Configure a Limit Check for a Pulse Measure ment To configure a limit check for a pulse measurement Measurement results can be checked against defined limits and the results of the limit check can then be indicated in the Result Table This procedure assumes a standard pulse measurement has been defined as described in To perform a standard pulse measurement on page 169 and a Result Table display is active 1 Select the Result Config button in the Overview 2 If necessary select the Result Table from the Specifics for list of windows 3 Switch to the Table Config tab then select the Limits tab 4 Select the parameter for which you want to perform a limit check For details on available parameters and parameter groups see chapter 3 1 Pulse Parameters on page 15 5 Toggle the Limit On Off setting to On 8 3 8 3 1 How to Perform Time Sidelobe Analysis 6 Define the lower or upper limit value or both 7 Repeat step 4 to step 6 for each parameter you want to perform a limit check on The measured values and all newly measured values for the specified parameter are compared to the defined limit values If the measured value remains above the lower limit and below the upper limit it is displayed in green in the Result Table If the
149. 189 Timing Auto Mode If enabled the timing parameters minimum pulse width maximum pulse width mini mum pulse off time are determined automatically from the current capture settings Remote command SENSe TRACe MEASurement DEFine DURation AUTO on page 187 Minimum Pulse Width Maximum Pulse Width Defines a minimum and maximum pulse width pulses outside this range are not detec ted The available value range is restricted by the sample rate Remote command SENSe TRACe MEASurement SENSe TRACe MEASurement o EFine DURation MAX on page 187 EFine DURation MIN on page 187 m Min Pulse Off Time The minimum time the pulse is off i e the time between successive pulses This value is used to determine noise statistics and to reject short drops in amplitude during pulse on time The available value range is 50ns to 100s but may be restricted fur ther by the sample rate Remote command SENSe TRACe MEASurement DEFine DURation OFF on page 187 Frequency Offset Auto Mode If enabled the frequency offset is estimated automatically for each individual pulse Remote command SENSe TRACe MEASurement DEFine FREQuency OFFSet AUTO on page 188 5 3 5 3 1 Reference Signal Description Frequency Offset Value Defines a known frequency offset to be corrected in the pulse acquisition data Remote command SENSe TRACe MEASurement DEFine FREQuency OFFSet on page 188 Chirp Rate
150. 2 17 94 R amp S FSW K6 6S Configuration Oscilloscope CH1 to FSW REF OUT 640 MHz Please connect RTO CH1 to FSW B2000 Alignment Signal Source Oscilloscope FSW Rear Panel g a a a a ES TRIG IN optional sd Eus Continue Alignment For the second alignment step the connector must be disconnected from the REF OUTPUT 640 MHZ connector and instead connected to the FSW B2000 ALIGNMENT SIGNAL SOURCE connector on the R amp S FSW To continue the alignment select the Continue Alignment button After the second alignment step has been completed successfully a new dialog box is displayed Baugnnpgg REF OUT 10 MHz TRIG IN optional In order to switch from alignment mode to measurement mode move the cable from the FSW B2000 ALIGNMENT SIGNAL SOURCE back to the IF OUT 2 GHZ connec tor so that it is then connected to the CH1 input on the oscilloscope If UNCAL is displayed alignment was not yet performed successfully User Manual 1173 9392 02 17 95 5 4 2 Input and Output Settings If both alignment steps were performed successfully the date of alignment is indicated Remote commands SYSTem COMMunicate RDEVice OSCilloscope ALIGnment STEP STATe on page 217 SYSTem COMMunicate RDEVice OSCilloscope ALIGnment DATE on page 217 Output Settings The R amp S FSW can provide output to special connectors for other devices For details on connectors refer to the R
151. 2 Q 1 2 Channel 1 Complex sample 2 I 2 2 Q12 2 Channel 2 Complex sample 2 Example Element order for complex cartesian data 1 channel This example demonstrates how to store complex cartesian data in float32 format using MATLAB Save vector of complex cartesian I Q data i e iqiqiq N 100 iq randn 1 N 1j randn 1 N fid fopen xyz complex float32 w for k 1 length iq fwrite fid single real iq k float32 fwrite fid single imag iq k float32 end fclose fid List of Remote Commands Pulse SENSe DEMed EMVE UE etre ter t rh rhet erar nen tro ete e hr ri eroe vetant kn Fa 236 SENSe J STATIStic sme EY PE E 327 SENSe MNDo w lt n gt DE Techor GlEUNGC onl eene nnne nennen nennen 326 IGENSGe D iNDow nz DE Techor GlEUNGC ontAUTO nennen 326 ISEN SE AVERa ge n gt COUN E SENSe AVERage lt n gt STATe lt t gt ns SENSe BANDwidth DEMOGd 1 o terret tre rrr ntn ren ertet rrr rte vouch dE ENEE SENSe BANDwidtli BWIDth DEMod T Y PE tre tr ie cat rk ee be REED nere ER eee obe EE F UD Eres 235 SENSe BWIDth DDEMOG inerenti reo Mee Pant rea kh re ERE REEF CR EXER EY ASEA TSI FELTER 235 EI E eeler dene Da TR EE 202 SENS GORRsSction GVE B AS 2i ir cud eed er adeste e cata A cue sat ri cde P cest cc e dici 202 EI E eelere dene De MRT KE 203 EI E eeler dene e etit tne tr tr eet tee rh Eee ete rec he d Ee E re a RR d Eta 203 SENSe CORREctio
152. 28 Export format Nc mE 402 Exporting Dru FUNCIONS aem WO Gata E Measurement settings Table results cotes Trace data t cit rts ceste Traces External Mixer etate n eniti tenera tds Activating remote control ssssesss 195 Band ag SEL Ne EE el le Lu E Conversion loss Conversion loss tables sssesssssss 83 84 Frequency range siksede ema kde ANENE Handover frequency Harmonic Order eere puse onte SES lacuna epic mm Name Programming example eene 206 e Restoring bands RF overrange s cessere ana ortho e DOE eda RF Start RF Stop Serial number MY DO teet tenete ott Fa toes eeu External IQ GOR susto pente htt eren deco Level remite cient F Falltime traten 17 47 299 361 362 POSION e dek dE 120 Whresholds 2 ient ote beet conva 119 File format Trace el sui rette Dice MERE 402 Files Format l GQdata 2 reti eren 405 UO data binary XML VQ data Input 2c treten teet 58 76 lQ parameter XML rrr een rnnt 406 Filter type Data acquisition Gauss effecisse eU tois dE Filters High pass remote iater 193 leie E ee EE 76 YIG remole cote deel ere acy crees a FM video bandwidth ie Pulse E UE Pulse results inaia Eon pee RR oed d Format Data remote cbe edt 389 390 Free Run Er E 106 Frequency Configuration remote
153. 299 2 2 Preparing the measurement Reset the instrument RST Activate the pulse measurement application INST SEL PULSE 95929 Configuring the measurement Set the center frequency FREQ CENT 1GHz Set the filter bandwidth SENS BWID DEM TYPE GAUSS SENS BWID DEM 80MHZ and implicitly the sample rate SENS SRAT Configure the expected pulse width between 1ms and 1 5ms off time at least 0 5ms SENS TRAC MEAS DEF DUR AUTO OFF SENS TRAC MEAS DEF DUR MIN 1ms SENS TRAC MEAS DEF DUR MAX 1 5ms SENS TRAC MEAS DEF DUR OFF 0 5ms Assume amplitude droop SENS TRAC MEAS DEF PULS ADR ON Assume Linear FM modulation SENS TRAC MEAS DEF PULS MOD LFM Pulse starts with rising edge SENS TRAC MEAS DEF PULS PER LH Determine freq offset and chirp rate for each pulse automatically SENS TRAC MEAS DEF FREQ OFFS AUTO ON SENS TRAC MEAS DEF FREQ RATE AUTO ON Input from RF input connector INP SEL RF Alternatively Input from I Q data file INP SEL FIQ INP FILE PATH C R_S Instr user data iq tar Programming Example Pulse Measurement Configure a power trigger at 20dBm pulse level 10dB default attenuation TRIG SOUR RFP TRIG LEV RFP 20dBm Avoid triggering on overshoot level must remain below trigger level at least 0 5ms TRIG DTIM 0 5ms Configure the conditions for pulse detection max 10 pulses min 30dB power level 2dB hystere
154. 3 364 cim 108 Resetting RF input protection siisii 58 192 Restoring Channel settings ertet 69 Result configuration REMOS control 1 2 2 eerta 254 rc m P 129 Result display Configuration remote sees 313 Fes lt displays arreter teta ei 28 Correlated Magnitude Capture ssssossseeseeeeeneesnene 38 Correlated Pulse Magnitude suiii 39 Marker table 2 re tr tette rios 30 Pulse Frequency Error 40 Pulse Phase Error 40 Result range vo ID Alignment wa 191 Configuring s 130 Configuring remote eese 254 Rue EE Reference m Spectrum Result Range Spectrum UE le 38 Results Data format remote A 389 390 EXPOMIAG E Updating the display yon Updating the display remote ssssse 250 RF attenuation PLO toes unte ten et erts Dre eer orent 102 Manual 2 sisi lit Overload protection rrr rete Overload protection remote REMOTE EU RF overrange External M t iei e recien t 79 201 RF Power RIT M Q Trigger level remote Ripple certet tette Ge Calculatiori rrr rrt eerte Rate e tc ee ne 21 357 358 Rise time 17 47 300 365 Meri e 120 Thresholds s 119 RMS frequency STOF cess coche herr trn ric 293 RUN CONT Wl E E 116 RUN SINGLE Ee
155. 6 EXpOTrting oet 157 158 159 161 167 175 el 155 jj rr 154 Mode remote eate 324 Selecting ien rt n terr egere rere 154 Settings oerte 261 Settings remote control A 323 Settings predefined 5 nee 157 Transmission power ET Le EE 20 295 349 MINUN EE 20 296 351 Peak 1 eie 20 296 350 351 Peak to average ratio sssssss 21 297 354 Peak to min ratio sssuuss 21 297 354 355 Trigger Conditions remote AAA 226 Drop lu 108 External remote eene center Holdoff Hysteresis OSOL EEN W ll Remote control DI M RR Trigger leVel inerenti tre rn i ene External trigger remote A 228 UO Power remote osiensa sin a 228 IF Power remote ere eet 228 RF Power remote erii EEN 229 Trigger SOUFCB erret mem pen 106 External pe 106 External CH2 ii erected 107 didum 106 e NEE 107 IF POW E E 107 RE e 108 Trigger Gate Configuration Softkey AA 104 Triggers MSRA MSRT eebe Ee 105 226 Troubleshooting Inip toverload teer etes 192 TX power see Transmission Dower sesssssessesseeessene 20 295 349 U Units Reference level sssssssssssseee Updating Isesult display esu ror retener Result display remote ius User rappe IESSEN W Window title bar information ssessseeees 14 Windows Adding remote
156. 66 SENSe PULSe TIMing SETTling SDEViation eee nnn 366 SENSE PULSETIMING TS Tap sace eet rd re a rel e et exor ea 366 SENSe PUESe TIMing TS Tamp AVERage 2 2 atv t2 os ez EE IcsE Pide 366 SENSe PULSe TIMing TSTamp MAXimum esee nennen 366 SENSe PULSe TIMing TSTamp MlINimum eese nennen nnne 367 SENSe PUESe TIMing TS Tamp SDEVliation 2 aree dice treiber na REENEN 367 SENSe PULSe TIMing DCYCle lt QueryRange gt Returns the duty cycle in 96 for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Duty Cycle on page 18 SENSe PULSe TIMing DCYCle AVERage lt QueryRange gt SENSe PULSe TIMing DCYCle MAXimum lt QueryRange gt SENSe PULSe TIMing DCYCle MINimum lt QueryRange gt SENSe PULSe TIMing DCYCle SDEViation lt QueryRange gt Returns the statistical value for the duty cycle in over the specified pulses Retrieving Results Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing DRATio lt QueryRange
157. 7 LAYoutREP Lace WINDOW riciigan a nain aa a aaa iaaa EERE 318 LAY OUTS E 318 LAYO WINDOW SPS ADD uc iirinn naiai aaa tape e naai aiai aariaa 320 LAYO WINDOW SAS IDENIE ninrin nannaa Ea dvi aa EA aE EEE n EN 320 LAY Out WINDOW SAA ET 320 LAYoutWINDowemn iREPLEaGe iaai aaa cene aa GENEE 321 LAYout ADD WINDow lt WindowName gt lt Direction gt lt WindowT ype gt This command adds a window to the display in the active measurement channel This command is always used as a query so that you immediately obtain the name of the new window as a result To replace an existing window use the LAYout REPLace WINDow command Parameters lt WindowName gt String containing the name of the existing window the new win dow is inserted next to By default the name of a window is the same as its index To determine the name and index of all active windows use the LAYout CATalog WINDow query lt Direction gt LEFT RIGHt ABOVe BELow Direction the new window is added relative to the existing win dow lt WindowType gt text value Type of result display evaluation method you want to add See the table below for available parameter values Return values lt NewWindowName gt When adding a new window the command returns its name by default the same as its number as a result Example LAY ADD 1 LEFT MTAB Result 2 Adds a new window named 2 with a marker table to the left of window 1 Usag
158. 8 Parameters lt FileName gt String containing the path and name of the source file The file extension is iq tar Example INP FILE PATH C R_S Instr user data iq tar Uses UO data from the specified file as input Usage Setting only Manual operation See Select HO Data File on page 77 Input Output Settings 9 6 6 Configuring the 2 GHz Bandwidth Extension R amp S FSW B2000 The following commands are required to use the optional 2 GHz bandwidth extension R amp S FSW B2000 See also the command for configuring triggers while using the optional 2 GHz band width extension R amp S FSW B2000 TRIGger SEQuence OSCilloscope COUPling on page 219 Remote commands exclusive to configuring the 2 GHz bandwidth extension EXPort WAVeform DISPlayolt eas ENEE asco vade oae Yu 216 Sy GTem CGOMMunicateRDEVice OSCHloscopel SGSTATel eneee nenen ee neern eee srersrsree 216 SYSTem COMMunicate RDEVice OSCilloscope ALIGnment STEP STATe 217 SYSTem COMMunicate RDEVice OSCilloscope ALIGnment DATE sess 217 SYSTem COMMunicate RDEVice OSCilloscope IDN eeeseseeeeeeeee eene 218 Gv Tem CGOMMunicateRDEVice OGCHoscope LEDGtate seneese eeeeerers esr rrrenr errre 218 Gv Tem CGOMMunicateRDEVice OGCHloscope TChim 218 SYSTem COMMunicate RDEVice OSCilloscope VDEVice esee 219 SYSTem COMMunicate RDEVice OSCilloscope VFIRmware seen
159. A Format This command selects the data format that is used for transmission of trace data from the R amp S FSW to the controlling computer Note that the command has no effect for data that you send to the R amp S FSW The R amp S FSW automatically recognizes the data it receives regardless of the format Parameters Format ASCii ASCii format separated by commas This format is almost always suitable regardless of the actual data format However the data is not as compact as other for mats may be REAL 32 32 bit IEEE 754 floating point numbers in the definite length block format In the Spectrum application the format setting REAL is used for the binary transmission of trace data For UO data 8 bytes per sample are returned for this format set ting RST ASCII Example FORM REAL 32 Usage SCPI confirmed FORMat DEXPort DSEParator lt Separator gt This command selects the decimal separator for data exported in ASCII format Parameters lt Separator gt COMMa Uses a comma as decimal separator e g 4 05 POINt Uses a point as decimal separator e g 4 05 RST RST has no effect on the decimal separator Default is POINt Example FORM DEXP DSEP POIN Sets the decimal point as separator Manual operation See Decimal Separator on page 140 FORMat DEXPort HEADer lt State gt If enabled additional instrument and measurement settings are included in the header of the export file f
160. ALCulate lt n gt TABLe TIMing DCYCle LIMit STAT cececeeeeeeeeeeeeeeeeeeeeeeesaeaeaeaaaeaeaenees 307 CAL Culate nz TABleTlMimg DRAToUMIGSGTATe 307 CAL Culate nz TABleTlMimgEALLUMGSTATe enisinia 307 CALCulate lt n gt TABLe TIMing OFF LIMit STAT cccccecececcececaeeeeeeeaeeeeeeeeeeseteeeeeeeeeeeeeees 307 CALCulate lt n gt TABLe TIMing PRF LIMit STAT cccecececeeeeeecaeaeae eee eeeeeeeeeeeeteeeeeeereeeeeees 307 CALCulate lt n gt TABLe TIMing PRI LIMit STAT ccecceceeeeeeeeeeeeeeeeeeeesaeaeaeaaaaaeaeeeeteneneees 307 CALOCulate n TABLe TIMing PWIDth LIMit STATe eese 307 CALCulate lt n gt TABLe TIMing RISE LIMit STATe eese nena 307 CAL Culate nz TABleTlMimgSETTlmngUMirSTATe 307 CAL Culate nz TABleflMimgT tampUMitSTATe eene 307 CAL Culate nz TABletGlDelobe AMbower L IM STATe eene 307 CAL Culate nz TABlet ilDelobe CRATolIMISTATe eene nnne 307 CAL Culate nz TABleT ilDelobe MowerL IM STATe nnne 307 CALOCulate n TABLe TSIDelobe ISLevel LIMit S TATe sse 307 CAL Culate nz TABletGlDelobe MrReouency LIMISTATe nener erererererereree 307 CALOCulate n TABLe TSIDelobe MPHase LIMit STATe seen 307 CALCulate n TABLe TSIDelobe MWIDth LIMit STATe esee 307 CAL Culate nz TABletGlDelobe PCGObRrelation L IM STATe nenen en er eeereeeeerene 307 CALOCulate n TABLe TSIDelobe PSLevel LIMit STATe ees eee 307 CALOCul
161. ARE E REEL nan 124 e Tune sSidslobe e I anode SR ett tus 125 Measurement Levels Some measurements are performed depending on defined levels Pulse Measurement Settings Meas Levels Meas Point Meas Range Pulse Waveform prop Bice 100709 MINIS Top Fall 100 High Rise Mid Rise Low Rise Base 0 Top 100 Level Reference Levels Position Edge Unit Meas Alooritbum Median High Distal Threshold 90 0 9 o Ripple Portion 50 Mid Mesial Threshold 50 0 9 o emm Bet Siet dite PM eeh 10 0 Yo Boundary Top 3 0 9 o PSU ON D ERN m 120 Measurement AJOT E 120 Ripple PORUOI ep 121 Reference Level Unit entente nnns innen 121 Figli Dista A VT BE 121 Mid Mesial Threshold mrt oed rr i eiecit 121 Low Proximal Threshold aise nter ertet pen aai 121 sro FII Ip serge EE Eed 121 Position Determines where the 100 value from base to top for the rise and fall time mea surements is calculated This allows you to consider a droop in the pulse top during the pulse measurements If a droop is to be considered the 100 value must be calculated separately for the rising and falling edges Edge The 100 value is measured separately for the rising and falling edges Center The 100 value is measured at the pulse center and used for all measurements Remote command SENSe TRACe MEASurement DEFine COMPensate ADRoop on page 240
162. ASe PPPHase LIMit eese eeeee eene 308 CALOCulate n TABLe PHASe RERROor LIMit eseeeseseeseeessssse nennen nennen nnns 308 CAL Culate nz TABlebO WerADbRoop DR UIM nennen 308 CALOCulate n TABLe POWer ADRoop PERCent LIMit ccce 308 Configuring the Results CAL Culate nz TABlebOMWer AMPL tude LU lMm 308 CAL Culate nz TABlebOMWer AVGLIMIn 308 CAL Culate nz TABlebOuWer BAGELIMn 308 CAL Culatesn gt TABEEe POWerMJAOCLEIMIE tie roten ee ta oer ree denne dnm eins 308 CAL Culate nz TABlebOwWer MIN LIMIN essent n E 308 CAL Culate nz TABlebOwWer ONLIMn 308 CALCulate n TABLe POWer OVERshoot DB LIMit e leeeeeeeessseeee seen 308 CAL Culate nz TABlebOWerOVEReboot PDERC ent IM 309 CALCulate lt n gt TABLe POWer PAVG LIMit aann0aannoaan1nannnannooannonnrrnnnnrnrnronnnrrnnrnnnnnnnna 309 CAL Culate nz TABlebOwWer DMIN UIMI eene nn nnne 200 CALCu latesn TABLE POW er ie Oe BEE 200 CALGulate n TABEe POWerPON LIMIL 2 rnit one taa pa ado Paanca i ina a india 309 CALCulate lt n gt TABLe POWer PPRatio LIMit c cccccccesceceseseeceseceesesceesseseeceneceseseeeaes 309 CALCulate n TABLe POWer RIPPlIe DB LIMit cesses eene 309 CALOCulate n TABLe POWer RIPPle PERCent LIMit eeeeeseeeeeeeeeeeen nennen 309 GALOCulate n TABLe POWer TOP LIMIL nca nna ccabaisadeascdtceuesdeaais 309 CALOCu
163. ATT STATe on page 225 INPut EATT AUTO on page 225 INPut EATT on page 225 Input Settings Some input settings affect the measured amplitude of the signal as well For details see chapter 5 4 1 Input Source Settings on page 74 Preamplifier Input Settings If the optional Preamplifier hardware is installed a preamplifier can be activated for the RF input signal You can use a preamplifier to analyze signals from DUTs with low input power For R amp S FSW 26 or higher models the input signal is amplified by 30 dB if the pream plifier is activated User Manual 1173 9392 02 17 103 5 6 Trigger Settings For R amp S FSW 8 or 13 models the following settings are available Off Deactivates the preamplifier 15 dB The RF input signal is amplified by about 15 dB 30 dB The RF input signal is amplified by about 30 dB Remote command INPut GAIN STATe on page 223 INPut GAIN VALue on page 223 Auto Scale Window Automatically determines the optimal range and reference level position to be dis played for the current measurement settings in the currently selected window No new measurement is performed Trigger Settings Trigger settings determine when the input signal is measured Trigger settings can be configured in the Trigger and Gate dialog box which is dis played when you do one of the following e Select the TRIG key then select Trigger Config e Select the Trigger button in t
164. Auto Mode If enabled the chirp rate is estimated automatically for each individual pulse Remote command SENSe TRACe MEASurement DEFine FREQuency RATE AUTO on page 188 Chirp Rate Defines a known frequency chirp rate in Hz us to be used to generate an ideal pulse waveform for computing frequency and phase error parameters This value is assumed constant for all measured pulses Remote command SENSe TRACe MEASurement DEFine FREQuency RATE on page 188 Reference Signal Description The additional option R amp S FSW K6S allows for time sidelobe analysis in which the sent and the received pulses are correlated with one other see also chapter 4 5 Time Sidelobe Analysis on page 53 Since the R amp S FSW itself can measure only the received pulse the sent pulse must be configured as a reference pulse before the measurement The reference pulse can be imported to the R amp S FSW Pulse application from an UO waveform file containing simulated or measured data The reference signal settings are available from the Reference IQ tab in the Input Frontend dialog box which is displayed when you do one of the following e Inthe Overview select Signal Description then select the Reference IQ tab From the main Pulse menu select Signal Description then select the Refer ence IQ tab The Reference IQ tab is only active if you select the Pulse Modulation Reference IQ in the Signal Description settings e User
165. BASE naisiin rai i 384 SENSe TRACe MEASurement POWer PULSe TOP SENZGeTbRACeMEAGurement PU Ge DCvcClei A 385 SENSe TRACe MEASurement PU Ge DUbRaton ue 385 SENSe TRAGCe MEASU rement PULSe PERIOd 2 eiit eee eric agr te Edict eins 385 SENZGeTbRACeMEAGurement PU Ge GEbaratton 385 SGENZGe TbRACeMEAGurement TRANSigon NEGattve DUaton 385 SENSe TRACe MEASurement TRANsition POSitive DURation essen 385 SENSe TRACe MEASurement TRANsition POSitive OVERshoot MAXimum SENSe TRACe MEASurement TRANSsition POSitive OVERshoot essen 385 SYSTem COMMunicate RDEVice OSCilloscope ALIGnment DATE essen 217 GvGfemCOMMunicateRDEVice OGCloscope Al Gnment GTEPIZSTATelg 217 SYSTem COMMunicate RDEVice OSGilloscope IDN 218 SYSTem COMM ni ate RDEVice OSCilloscope LEDState Z s rssseonssrsncniarsavisnsnensnid snerru niert 218 SE SYST m PRESSECEIANnel EXEG Ute nocicnt ee eoe erre tp EEATT ENA 186 SN OMEM SE QUEM CC p H 253 RE e e TN e E ln E 341 TRAGesn IQ SCAPture TS Tamp SS Tart tret rrr er ere Pr FE EH RF Ferre 342 TRACe n IQ SCAPture TSTamp TRIGger TRAGesnspDATA EX citt teet egeret dpt ec te veo gate e eive reda e eee ve tra ni tcd 340 TRAGe lt nSE DATA RE 340 TRIGGER SEQUENCE ED TIME ire cesses TRIGger SEQuence HOLDOoff TIME tnter a ne rec TRIGger SEQuence IFPower HOLDoff
166. BL mix 1 4 Specifies the conversion loss table mix_1_4 Manual operation See Conversion loss on page 80 9 6 2 3 Input Output Settings SENSe MIXer LOSS LOW Average This command defines the average conversion loss to be used for the entire low first range Parameters Average numeric value Range 0 to 100 RST 24 0 dB Default unit dB Example MIX LOSS 20dB Manual operation See Conversion loss on page 80 SENSe MIXer PORTSs lt PortType gt This command specifies whether the mixer is a 2 port or 3 port type Parameters lt PortType gt 2 3 RST 2 Example MIX PORT 3 Manual operation See Mixer Type on page 80 SENSe MIXer RFOVerrange STATe State If enabled the band limits are extended beyond RF Start and RF Stop due to the capabilities of the used harmonics Parameters State ON OFF RST OFF Manual operation See RF Overrange on page 79 Conversion Loss Table Settings The following settings are required to configure and manage conversion loss tables SENSe GORBectionC VEIBAND peiiini ananasni aeda plea Re pope e pause dade 202 SENSe ICORR amp clion CVL BIAS iaces sues sde ev vA EH ARN LR E A E ER 202 SENSe ele EN gl KE 203 SENSe CORRection CV CLEAr scene eren nnt nt nen en nen en nnns nnne es 203 Ei Eed Ee el En 203 SENSe CORHRBection CVE DATA ic aeree ua eser na a sese a
167. COUNt OCCurrence Parameter to be displayed on the y axis COUNt Number of pulses in which the parameter value occurred OCCurance Percentage of all measured pulses in which the parameter value occurred RST COUNt Usage Setting only CALCulate lt n gt DISTribution POWer XAxis lt YAxis gt Configures the Parameter Distribution result display Configuring the Results Setting parameters lt XAxis gt TOP BASE AMPLitude ON AVG MIN MAX PON PAVG PMIN ADPercent ADDB RPERcent RDB OPERcent ODB POINt PPRatio Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 TOP Top Power BASE Base Power AMPLitude Pulse Amplitude ON Average ON Power AVG Average Tx Power MIN Minimum Power MAX Peak Power PON Peak to Avg ON Power Ratio PAVG Peak to Average Tx Power Ratio PMIN Peak to Min Power Ratio ADPercent Droop in ADDB Droop in dB RPERcent Ripple in RDB Ripple in dB OPERcent Overshoot in ODB Overshoot in dB POINt Pulse power measured at measurement point PPRatio Pulse to Pulse Power Difference RST TOP Configuring the Results Y Axis COUNt OCCurrence Parameter to be displayed on the y axis COUNt Number of pulses in which the parameter value occurred OCCurance Percentage of all measured pulses in which the parameter value occurred RST COUNt Usage Setting only
168. Capt 2 Pulse results 3 Pulse statistics bottom row 4 Pulse magnitude 5 Pulse power dist vs occurance 6 Pulse power spectrum LAY REPL 1 MCAP LAY REPL 2 PRES LAY ADD WIND 2 RIGH PST LAY REPL 4 PMAG LAY REPL 5 PDIS CALC5 DIST POW POIN OCC LAY REPL 6 PSP CALC6 PSP POW POIN Configure magnitude capture automatic scaling DISP WIND1 TRAC Y SCAL AUTO ON Configure parameters in pulse results table Freq freq at meas point pulse pulse difference freq dev freq err peak CALC2 TABL FREQ POIN ON CALC2 TABL FREQ PPFR ON CALC2 TABL FREQ DEV ON CALC2 TABL FREQ PERR ON Phase phase deviation CALC2 TABL PHAS DEV ON Power average ON droop pulse pulse difference amplitude CALC2 TABL POW ON ON CALC2 TABL POW ADR ON CALC2 TABL POW PPR ON CALC2 TABL POW AMPL ON Limit check for average ON power lower limit 10 dBm upper 1 dBm CALC2 TABL POW ON LIM STAT ON CALC2 TABL POW ON LIM 10DBM 1DBM Timing settling time pulse width CALC2 TABL TIM SETT ON CALC2 TABL TIM PWID ON Configure pulse statistics table same par as results table CALC3 TABL FREQ POIN ON CALC3 TABL FREQ PPFR ON CALC3 TABL FREQ DEV ON CALC3 TABL FREQ PERR ON CALC3 TABL PHAS DEV ON CALC3 TABL POW ON ON Programming Example Pulse Measurement CALC3 TABL POW ADR ON CALC3 TABL POW PPR ON CALC3 TABL POW AMPL ON CALC3 TABL TIM SETT ON CALC3 TABL TIM PWID ON
169. Ce MEASurement DEFine BOUNdary TOP essere nennen nnne 240 SENSe TRACe MEASurement DEFine COMPensate ADROOp essent 240 SENZGeTbRACeMEAGurement DE Eine DUbRatnon AUTO 187 SENSe TRACe MEASurement DEFine DURation MAX essent rennen 187 SENSe TRACe MEASurement DEFine DURation MIN sesseesseseeesseee enne entente nennen nnns nnn SENSe TRACe MEASurement DEFine DURation OFF X SENSe TRACe MEASurement DEFine FREQuency OFFSet sese 188 SENSe TRACe MEASurement DEFine FREQuency OFFSet AUTO esee 188 SENSe TRACe MEASurement DEFine FREQuency RATE essent 188 SGENZGe TbRACeMEAGurement DE Fine ER OuencvRATEAUTO enne 188 SENSe TRACe MEASurement DEFine PULSe ADROOp essen enne 189 SGENZGe TbRACeMEAGurement DE Fine PU Ge EzGfmatnon L ENG 244 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSetLEFT esses 244 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet RIGHt sss 244 SENSe TRACe MEASurement DEFine PULSe ESTimation REFerence sse 244 SENZGeTbRACeMEAGurement DE Fine PU GelNGtant esses eene ennt 241 SENSe TRACe MEASurement DEFine PULSe INSTant AWINGdoOwW eese 242 SENSe TRACe MEASurement DEFine PULSe INSTant REFerence essere 242 SGENZGe TbRACeMEAGurement DE Fine PU Ge MOtDulaton ene 189 SENZGeTRACeMEAGurement DE Fin
170. Delobe MFRequency SDEViation lt QueryRange gt Returns the statistical value for the mainlobe frequency within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe MPHase lt QueryRange gt Returns the mainlobe phase for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Mainlobe Phase on page 28 Retrieving Results SENSe PULSe TSIDelobe MPHase AVERage lt QueryRange gt SENSe PULSe TSIDelobe MPHase MAXimum lt QueryRange gt SENSe PULSe TSIDelobe MPHase MINimum lt QueryRange gt SENSe PULSe TSIDelobe MPHase SDEViation lt QueryRange gt Returns the statistical value for the mainlobe phase within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe MWIDth lt QueryRange gt Returns the mainlobe 3 dB width for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent
171. Distribu tion result display You can drag these lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted Note that this function only has an effect on the visibility of the lines in the graphical displays it does not affect the limit check in general or the display of the limit check results in the table displays Remote command CALCulate n DISTribution LLINes STATe on page 257 CALCulate lt n gt TRENd LLINes STATe on page 272 Table Configuration During each measurement a large number of statistical and characteristic values are determined The Pulse Statistics and Pulse Results result displays provide an over view of the parameters selected here Note that the Result Configuration dialog box is window specific table configuration settings are only available if a table display is selected However the table configura tion applies to a tables regardless of which table is selected Result Range Marker Settings Table Config Units Amplitude setting Time TE Duty Ratio 1 Fre g a Rise Time Ins On off Duty Cyde on Off Phase e Fall Time Ins e on Off Pulse Rep Interval ls d Time Sidelobe Pulse Width we d os Pulse Rep Frequency iz s on eli Table Export Limits Select the parameters to be included in the tables and the required unit scaling if availabl
172. ELTamarker lt m gt MINimum LEFT This command moves a delta marker to the next higher minimum value Working with Markers The search includes only measurement values to the right of the current marker posi tion Usage Event CALCulate lt n gt DELTamarker lt m gt MINimum NEXT This command moves a marker to the next higher minimum value Usage Event Manual operation See Search Next Minimum on page 153 CALCulate lt n gt DELTamarker lt m gt MINimum RIGHt This command moves a delta marker to the next higher minimum value The search includes only measurement values to the right of the current marker posi tion Usage Event CALCulate lt n gt DELTamarker lt m gt MINimum PEAK This command moves a delta marker to the minimum level If the marker is not yet active the command first activates the marker Usage Event Manual operation See Search Minimum on page 153 CALCulate lt n gt MARKer lt m gt MAXimum LEFT This command moves a marker to the next lower peak The search includes only measurement values to the left of the current marker posi tion Usage Event CALCulate lt n gt MARKer lt m gt MAXimum NEXT This command moves a marker to the next lower peak Usage Event Manual operation See Search Next Peak on page 153 CALCulate lt n gt MARKer lt m gt MAXimum RIGHt This command moves a marker to the next lower peak Working with Markers The search includes only measurement values to the
173. ENSe PULESe TIMing TS Tamp EIMIT serrer etre rere EEN aro eara ey EX SHE CH oer teen 387 SENSe PULSe TIMing TSTa mp MAXIImUm onte ttn n pret ne de Cr na 366 SENSe PULSe TIMing TS Tamp MINirmum oen nn eri tnn nta ertt hehehe nnus 367 SENSe PUESe TIMing LS Tamp SDEVIAtOT secre een o or te Srt a cO moque 367 EI EBI anne BECHET KE 366 SENSe PULSe TSIDelobe AMPower AVERage ttai intrent tne nnt t nni 377 SENSE PULSE TSIBelobe AMPoOWSr LIMIES nce ottenuti aar EENET SANATINA 387 SENSe PULSe TSIDelobe AMPower MAXIImUt eerte tnit ene 377 SENSe PULSe TSIDelobe AMPower MINimum rel SENSe PULSe TSIDelobe AMPower SDEViation sess 377 SENSe PULSe TSIDelobe AMPBOWSIT rote tnnt net renta rer ne ren e nena 377 SENSe PULSe FSIDelobe CRATio AVERAa9g67 ttt titer ennt tne tren riti 378 SENSe PUESe TSIBelobe CRATIO LIMIU s ccn intento ote nut eed tb iTe E rere epa ep ae ITE nemi en eh eege 387 SENSe PULSe TSIDelobe CRATIO MAXIMUM Parasitosen tnn rtr rn een ene 378 SENSe PUESe TSIBelobe CRATIG MINIIUFTU siot tone nte e t E pner erret nen EES 378 SENSe PULSe TSIDelobe CRATio SDEViation 378 SENSe PULSe TSIDelobe GRATIOT iino terr rtr reno hr th Pr cccseabeniadeveerbede 377 SENSe PUESe TSIBelobe IMPower AVELRGAge n ertet rne EEEE ne nerunt oreet 378 SENSe PULSe TSIDelobe IMPowef LIMIt e
174. EPHASe DEVialti on MIU rade tert ttt rette ober etes 387 SENS amp IPUL Se PHASE PERROIELIMIU eege 387 SENSe PULSe PRASe POINGE IMIG oae RR t E oae ER neu cce ne tuto RR toe EN 387 SENSeTPULSE PHASE PPPHoase LIMIE sus iuo rotta Re ore erbe tenet 387 SENS amp IPULSe PHAS amp RERBorLIMI oiii uri orto tei eee tiec ies 387 SENSe PUESe POWerADROOpDEB LIMIEU 2 rio tirer rita ERR d crga cerei 387 SENSe PULSe POWer ADRoop PERCent LIMit eee 387 SENSeTPUESe POWepAMPLElt de LIMIE aao ano etr tert yes 387 SENSE PULS POWeCAVG LIMI 1 23 iia ee EE Doct Eine coc s eese eo steve se esc eod o a 387 ISENSe PULSSe IPOWGSECBASE LIMIE 2 0ceda d pen xh La po tr a RRRER ERA NAERATAS 387 SENSE PUL SE POWErMAX UMW aa cria too o Cer ane ceteram etra ee Lena E eco durer rn 387 SENSe IPULESe POWhGIEMINSLIMETUS 5 2i iere Epi eoa En hd 387 SENSe PULSE POWeETON BI e 387 SENSe PULSe POWer OVERshoot DB LIMit eese 387 SENSe PULSe POWer OVERshoot PERCent LIMit ecceeeecececeeeeeeeaeaeaeaeaeeeenenenenenes 387 E EI TA BO 387 SENSe PULSe POWer PMIN LIMit eeeeeeseeseeesiesen eene nennen nnn snnt sn nns 387 ISENSe PULSe POWerPOINELIMI 2 rtt ertt uere p taa aani a ia aa aida 387 E E EI e GC RE 387 SENSeJPULSe POWerPPRauoLIMI uaa cto rr eth ee ete RR DU eria 387 SENSe PULSe POWer RIPPle BB IMIE niinc rera inai
175. ESe FREQuency PPFPRedquericy lIMIE iss oan cos cierra tnrra trot con n n entere geed 387 SENSe PULSe FREQuency PPFRequency MAXimum sess a 371 SENSe PULSe FREQuency PPFRequency MlNimum essent nennen nennen 371 SENSe PULSe FREQuency PPFRequency SDEViation SENSe PULSe FREQuency PPFRequericy np tnr tnnt re ti tere env n epe Pe red n res 370 SENSe PULSe FREQuency RERRor AVERage 2 otto eterne itr tenent ER dial 371 SENSe PULSe FREQuency RERRor LIMIit eeesessesesseeeeeeeeee tenentem nenne nennen nennen 387 SENSe PULSe FREQuency RERRor MAXimum sss eene eene enne 371 SENSe PULSe FREQuency RERRor MINimum essent nnne nennen rennen nere nneene 371 SENSe PULSe FREQuerncy RERROr SDEVIaBlIOn rsei uro tr reor rrr pe rrrirg SATRON 371 SENSe PULSe FREQuency RERRor 2971 SENSE I PULSE D ERR 344 SENSE I PULSE NUMB Eeer 344 SENSe PUESe PHASe DEViation AVERAge6 2 ctr ni ree cre e d E RE e De gp 373 SENSe PULSe PHASe DEViation LIMit SENSe PULSe PHASe DEViation MAXimum eese trennen nennen nnne 373 SENSe PULSe PHASe DEVi ation MINimUur ance cc trice treten eet aa 373 SENSe PUESe PEHASe DEViation SDEViatiori 2 irre ti ie itt n re ees rete 373 SENSE I PULSE PHASE DEVIAN escroa arn rer teer emi AATAS EEE omnc e rude ERRAT eL ESTESE 372 SENSE PULS PHAS
176. Ee TSIDelobe ALLES TATE sex concsscsaieaeccancuans ptor nra eno p EE aenean t erar etes CAL Culate cnz TAPBLe GlDelobe AMbower Ae CAL Culate nz TADBLe GlDelobe AMbower IM CAL CGulate nz AB e GlDelobeAMbower IM GrAte enne 307 CALCulatesn TABLe TSIBelobe CRATiO 21er guise enc eit tee tp gia ce ars CALOCulate n TABLe TSIDelobe CRATio LIMit i CAL CGulate nz TAPBle GlDelobeChHRATollMrGTATe eene CALCulate n TABLe TSIDelobe IMBOWAE irre repr eo net auper eu a e ER Ed CALCulate n TABLe TSIDelobe IMPower LIMit 1eeeeeesesesesese esee eene nennt nnne rnnt CAL CGulate nz AB e GlDelobelMower UM GrAte nennen CALCulate n LABLe TSIDelobe ISLevel 2 1 nitore hinged Aenean CALCulatesn TABEe TSIDelobe ISEevekblMIl coorta tiet iNET CALCulate n TABLe TSIDelobe ISLevel LIMit STATe Se GALCGulate sn TABLe TSIDelobe MFRequency crn rtr n tetro nen nns CALCulate n TABLe TSIDelobe MFRequency LIMit eeeseeeseeeseeeeeneee eene CALCulate n TABLe TSIDelobe MFRequency LIMit STATe essen 307 CALCulatesn TABLe TSIBDelobe MPE ase pierre ttt a tig eet pdt ges Ed 303 CALCulate n TABLe TSIDelobe MPHase LIMit eseessseseseseeesseeeennee ai nnne nennen 309 CALCulate lt n gt TABLe TSIDelobe MPHase LIMit STAT cccceceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeaeeess 307 CALCulate sns LABLe TS
177. FREQuency CRATe on page 292 SENSe PULSe FREQuency CRATe LIMit on page 387 Pulse Parameters 3 1 4 Phase Parameters The following phase parameters can be determined by the R amp S FSW Pulse applica tion DISSE ot ecd eter ebd eve ce v oper N Duas epe ea Deseo stu vase enlace dedu Druide ee ERROR 24 Pulse Pulse Phase Ditterence ennt nnne net ess ne tns ens 24 Phase Emor RMS eet tenerte Dorn ERR AERE ER ARRRRER EENS 24 Phase Emon Pado cet dr ere tdt d err eia On oed tue a 24 Phase Be DEE 25 Phase Phase of the pulse measured at the defined Measurement Point Remote command SENSe PULSe PHASe POINt on page 374 CALCulate lt n gt TABLe PHASe POINt on page 294 SENSe PULSe PHASe POINt LIMit on page 387 Pulse Pulse Phase Difference Difference in phase between the first measured pulse and the currently measured pulse Remote command SENSe PULSe PHASe PPPHase on page 374 CALCulate lt n gt TABLe PHASe PPPHase on page 294 SENSe PULSe PHASe PPPHase LIMit on page 387 Phase Error RMS The RMS phase error of the currently measured pulse The error is calculated relative to the given pulse modulation It is not calculated at all for the Pulse Modulation type Arbitrary The error is calculated over the Measurement Range Remote command SENSe PULSe PHASe RERRor on page 375 CALCulate lt n gt TABLe PHASe RERRor on page 294 SENSe PULSe PHASe RERRor LIMit
178. First a single sequence is performed Then only those channels in continuous sweep mode INIT CONT ON are repeated RST CONTinuous SYST SEQ ON Activates the Sequencer INIT SEQ MODE SING Sets single sequence mode so each active measurement will be performed once INIT SEQ IMM Starts the sequential measurements SENSe JAVERage lt n gt COUNt lt AverageCount gt SENSe SWEep COUNt lt SweepCount gt This command defines the number of measurements that the application uses to aver age traces See also chapter 4 7 1 Trace Statistics on page 61 In case of continuous measurement mode the application calculates the moving aver age over the average count In case of single measurement mode the application stops the measurement and cal culates the average after the average count has been reached Parameters lt SweepCount gt lt SweepCount gt When you set a sweep count of 0 or 1 the R amp S FSW performs one single measurement in single measurement mode In continuous measurement mode if the sweep count is set to 0 a moving average over 10 measurements is performed Range 0 to 200000 RST 0 If you set a sweep count of 0 or 1 the application performs one single sweep in single sweep mode In continuous sweep mode if the average count is set to 0 a moving average over 10 sweeps is performed Range 0 to 100000 RST 0 Configuring and Performing Sweeps Example SWE COUN 64
179. From the main Pulse menu select Result Config c Deactivate automatic range scaling Auto OFF d Define the Length of the result range manually as required 8 Export the result range data for the reference pulse to an iq tar file a Select the EJ Save icon in the toolbar b From the menu select Export gt UO Export c In the file selection dialog box select a storage location and enter a file name d Select the Export Range Result Range Export Range e Select Save The captured data is stored to a file with the extension iq tar To create a reference UO file using MATLAB 1 Download and unzip the iq tar tools archive provided on the Rohde amp Schwarz website http www rohde schwarz comf file iq tar tools zip 2 Copy the save iq tar file mfileto your MATLAB working directory or add the location of this file to your MATLABO path 3 Store your reference UO data in a file gt gt save iq tar file iq my ref pulse fs where e iqis the vector of complex valued I Q reference pulse samples e my ref pulse is the user defined filename the resulting file will be called my ref pulse iq tar e fsisthe sample rate in Hertz of the reference pulse data How to Perform Time Sidelobe Analysis 8 3 2 Performing Time Sidelobe Analysis Once a reference waveform is available you can perform time sidelobe analysis on the measured UO data To perform analysis using a stored
180. I P Table RF OVT ue E 79 Preset Dand eccna ka ronn n E E EEE E 79 MIMO WEE 80 Mixer Settings Harmonics Confouratton essen 80 L2 EE 80 EPPS ND MM 80 L Harmonie WN ccce ot o ma ont IR ada idol CER a cM a I dati 80 Ge ET eee ttn tatnen tn ta eats esae traen sata ga 80 Input and Output Settings External Mixer State Activates or deactivates the external mixer for input If activated ExtMix is indicated in the channel bar of the application together with the used band see Band on page 79 Remote command SENSe MIXer STATe on page 195 RF Start RF Stop Displays the start and stop frequency of the selected band read only The frequency range for the user defined band is defined via the harmonics configura tion see Range 1 2 on page 80 For details on available frequency ranges see table 9 2 Remote command SENSe MIXer FREQuency STARt on page 197 SENSe MIXer FREQuency STOP on page 198 Handover Freq Defines the frequency at which the mixer switches from one range to the next if two different ranges are selected The handover frequency can be selected freely within the overlapping frequency range Remote command SENSe MIXer FREQuency HANDover on page 197 Band Defines the waveguide band or user defined band to be used by the mixer The start and stop frequencies of the selected band are displayed in the RF Start and RF Stop fie
181. IDSIOBBIX EE 287 CAL Gulate spe TRENG TSIDelobet 2 2 2 2 iride eee dad eno d Pics rant dues need odds 288 CALCulate lt n gt TRENd FREQuency lt YAxis gt lt XAxis gt Configures the Parameter Trend result display for time trends This command defines both x axis and y axis parameters in one step It is equivalent to the two subsequent commands CALCulate lt n gt TRENd TIMing X TSTamp PNUMber see CALCulate lt n gt TRENd TIMing X on page 283 CALCulate n TRENd FREQuency Y lt YAxis gt see CALCulate lt n gt TRENd FREQuency Y on page 271 Setting parameters Y Axis POINt PPFRequency RERRor PERRor DEViation CRATe Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 3 Frequency Parameters on page 22 POINt Frequency at measurement point PPFRequency Pulse Pulse Frequency Difference RERRor Frequency Error RMS PERRor Frequency Error Peak DEViation Frequency Deviation CRATe Chirp Rate RST POINt Configuring the Results lt XAxis gt PNUMber TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp PNUMber The pulse numbers are represented on the x axis available numbers can be queried using SENSe PULSe N
182. IDelobe MWIDth cito epee tana eter artc ecc ete ttp exta P 303 CAL Culate cnz TADBLe GlDelobe MIDD IM AAA 309 CAL CGulate nz TABLe GlDelobe Mul UM GTATe nennen nnne 307 CAL Culate cnz TADLe GlDelobe PCObrelaton AA 303 CALCulate n TABLe TSIDelobe PCORTrelation LIMit eeeseesessssesesseeesee eene nennen nnne 309 CAL CGulate nz AP e GlDelobebCObrelaton UM GTATe enne 307 CALCulate n RER E E GALCulate sn TABEe TSIDelobe PSLbevelLIMIil 1 titre tret ee cami rei iru CAL CGulate nz AB e GlDelobebGlevel Mut GSTATe nnne nnne GALGulate n TABLe TSIDelobe SDELay tret terree ener irn GALCulate n TABLe TSIDelobe SDELay LIMit 1n CALCulate lt n gt TABLe TS IDelobe SDELay LIMit STATe GALGulate sn TRENd FREQUSnRO nnn ttt rrt e rrt rere A erp Enn nnns CALCulate lt n gt TRENd FREQUEnCy X anctore eerte Rae e Fere oer n ea ene exeo be En ira voee 270 GAL Culatespn TRENd IEREQUSRCVY E 271 CALGCulatesns TRENG EINesE STATS rrr tette te rtp re tette tp oce tees 272 CAL Culatesn gt TRENG PHAS Gerris nior coe ENEE 272 GALCulatesns TE EE 274 CALCulate n TRENd PHASe Y D CAL Culatesn gt TRENG deis degen i areca vena eege ee snz TRENG e EE 278 CAL Gulatesns TRENG PONWOEY EE 280 CALCulate lt n gt TRENd TIMing GAL Culatesnz TRENd PIMIIIGUX EG 283 CALGC latesn gt TRENG TIMING GE 284 CALGu latesn gt REN elle aT cree EE er Eco ideal aii EE a ue
183. IGH STAT ON SENS MIX FREQ HAND 80GHz SENS MIX HARM LOW 6 SENS MIX LOSS TABL LOW UserTable SENS MIX HARM HIGH 8 SENS MIX LOSS HIGH 30dB Query the possible range SENS MIX FREQ STAR Result 47480000000 47 48 GHz SENS MIX FREQ STOP Result 138020000000 138 02 GHz Select single sweep mode INIT CONT OFF Initiate a basic frequency sweep and wait until the sweep has finished INIT WAI 9 6 3 Input Output Settings Return the trace data default screen configuration TRAC DATA TRACe1 Configuring Input via the Optional Analog Baseband Interface The following commands are required to control the optional Analog Baseband Inter face in a remote environment They are only available if this option is installed Useful commands for Analog Baseband data described elsewhere INP SEL AIQ see INPut SELect on page 194 SENSe FREQuency CENTer on page 220 Commands for the Analog Baseband calibration signal are described in the R amp S FSW User Manual Remote commands exclusive to Analog Baseband data input and output leie Te ET Kn RE 208 INPURIG PULL Seale Ip 208 INPULIO FULL scale EVel 22 101 1r Lance eere teo re to RAIER Neen 209 INS TYPE ee EE EE UE 209 CALibration AIQ HATiming S TATe sessi rerit in nnne 210 INPut IQ BALanced STATe State This command defines whether the input is provided as a differential signal via all 4 Analog Baseban
184. IM 387 IGENGe IpUL Ge POWerRipbielPERGenttMANimum eene nnne 358 IGENGe IpUL Ge POWerRipblel PERCGenttMihNimum ener nnne 358 IGENGe IpUL Ge POWerRipbielptERGentlGDEViaton eene 358 IGENGe IpUL Ge POWer RipbielPERGentl tenerent neret enne nennen nene 358 SENS amp PUl Se POWer TOP AVERAQ6 7 tette Eder 359 SENSe PULSe POWer TOP LIMit 387 IGENGe IPUL Ge POWer TOP MANImum enne tenete nennt etre nnne ennt eren nn nn nnnn in 359 SENSE PULSE POWE TOP MINIMUM apers a e deeg 359 SENS amp PUESe POWeETOP SDEVIAtiOIT 55 terrere eer the rrr ener re Pe eee eae cria 359 SENSe PULSEIPOWerT OP EE 358 SENS amp PUlLSe TIMing DGYGCle AVERGaQe eere onere tta to et ener n rper eie n hee a 360 SENS amp PUESe TIMirig DOYGIe LIMIE ssec i coe o eror cir ate ee e e n erred 387 SENSe PULSe TIMing DCYCle MAXimum SENS amp PUlLSe TIMirig DGYCle MINIIRGUI eer ot eorr eee repas i ve A nte tan ee 360 SENSe PULSE TIMing DCY Cle SDEVIatiOn coco it ra e ovt t rer ror HERR HERE 360 SENSe PUESe TIMing DO de 360 SENSe PULSe2TIMIng DRATIO AVERAGE ee rcr e EY Cg E EFE PRO CORPO EI eeu 361 SENS amp PUESe TIMirig DRA TIO LIMIT eenen Etre e rv tet rer REC EE Hee 387 IGENGe IpUL Ge TlMimg DRATio MAximum eerte ener enne nn nnns entren nnne 361 SENSe PULSe TIMing DRATio MINimum 361 SENSe IpUL Ge TIMing DRA Tio SDEV A ON eene 361 SENSe PUESe
185. IMing RISE SDEViation lt QueryRange gt Returns the statistical value for the rise time over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing SETTling lt QueryRange gt Returns the settling time for the specified pulse s Retrieving Results Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Settling Time on page 17 SENSe PULSe TIMing SETTling AVERage lt QueryRange gt SENSe PULSe TIMing SETTling MAXimum lt QueryRange gt SENSe PULSe TIMing SETTling MINimum lt QueryRange gt SENSe PULSe TIMing SETTling SDEViation lt QueryRange gt Returns the statistical value for the settling time over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing TSTamp lt QueryRange gt Returns the timestamp for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buff
186. IN MAX PON PAVG PMIN ADPercent ADDB RPERcent RDB OPERcent ODB POINt PPRatio Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 TOP Top Power BASE Base Power AMPLitude Pulse Amplitude ON Average ON Power AVG Average Tx Power MIN Minimum Power MAX Peak Power PON Peak to Avg ON Power Ratio PAVG Peak to Average Tx Power Ratio PMIN Peak to Min Power Ratio ADPercent Droop in ADDB Droop in dB RPERcent Ripple in RDB Ripple in dB OPERcent Overshoot in ODB Overshoot in dB POINt Pulse power measured at measurement point PPRatio Pulse to Pulse Power Difference RST TOP Configuring the Results CALCulate lt n gt PSPectrum RBW Queries the resulting resolution bandwidth for the spectrum Depends on the block size see CALCulate lt n gt PSPectrum BLOCksize on page 262 Return values lt Resolution Default unit Hz Bandwidth gt Usage Query only CALCulate lt n gt PSPectrum STHReshold lt SectThreshold gt Defines the minimum section size Sections that are smaller than the threshold are ignored and considered to be part of the detected gap Parameters lt SectThreshold gt Minimum section size as a percentage of the block size see CALCulate n PSPectrum BLOCksize on page 262 Range 0 to 100 RST 50 Manual operation See Section Threshold on page 136 CALCulate lt n gt
187. It can then be retrieved when the UO data is used as an input source see chapter 4 6 2 Basics on Input from UO Data Files on page 58 in order to repro duce results that are consistent with the original measurement Gauss filters with a 3 dB bandwidth of 50 MHz and above use more than 160 MHz of UO bandwidth if a R amp S FSW B320 option is installed During segmented capture oper ation these filters are limited to 160 MHz of UO bandwidth which results in increased system rise time up to an additional 3 ns compared to the non segmented measure ment with R amp S FSW B320 o Segmented capture Gauss filters and R amp S FSW B320 4 5 Time Sidelobe Analysis The additional option R amp S FSW K6S allows for time sidelobe also known as range sidelobe or pulse compression analysis The purpose of pulse compression in a radar system is to reduce the effective width of a pulse at the receiver end This allows the transmitted energy to be distributed over a longer time interval and thus reduces the peak transmitter power requirements while still maintaining good resolution in the radar receiver Pulse compression can be achieved through correlation of a measured pulse with a stored reference pulse waveform The reference pulse is often an exact replica of the transmitted pulse but sometimes it is modified e g via a windowing function to reduce sidelobes at the correlator output User Manual 1173 9392 02 17 53 R amp SS9FSW K6
188. LL All detected pulses in the entire measurement Usage Query only SENSe PULSe PHASe PPPHase lt QueryRange gt Returns the Pulse Pulse Phase Difference for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Pulse Pulse Phase Difference on page 24 Retrieving Results SENSe PULSe PHASe PPPHase AVERage lt QueryRange gt SENSe PULSe PHASe PPPHase MAXimum lt QueryRange gt SENSe PULSe PHASe PPPHase MINimum lt QueryRange gt SENSe PULSe PHASe PPPHase SDEViation lt QueryRange gt Returns the statistical value for the Pulse Pulse Phase Difference over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe PHASe RERRor lt QueryRange gt Returns the phase error RMS for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Phase Error RMS on page 24 SENSe PULSe PHASe RERRor AVERage lt QueryRange gt
189. Level integrated sidelobe level MWIDth mainlobe 3 dB width SDELay sidelobe delay CRATio compression ratio IMPower integrated mainlobe power AMPower average mainlobe power PCORrelation peak correlation MPHase mainlobe phase MFRequency mainlobe frequency 9 14 4 Configuring the Results Y Axis COUNt OCCurrence Parameter to be displayed on the y axis COUNt Number of pulses in which the parameter value occurred OCCurance Percentage of all measured pulses in which the parameter value occurred RST COUNt Usage Setting only Configuring a Parameter Spectrum The parameter spectrum evaluations allow you to visualize the spectrum of results for a specific parameter for all measured pulses within the current capture buffer For each parameter spectrum window you can configure which measured parameter is to be dis played CAL Gulate mxPSPeetrmALTO 5 adici seme esca gut e tm EENS eve A RAT ue 262 CAL Culatesms PSPecttumBLOGKSIZG 1 rne Ere acte abt cerner ced bru Res 262 CAL GCulate n PSPectrum FREQUenGy 2 ritenere ree aa ERRARE ADR Ta Rl P S ETE Ei 263 CAL Culate nz PDG bechum G Hbesbold rninn i aaka naaa iaa an 263 CALCulatecn PSPectrum MAXFrequency conati cepe aaa aaa aliaa aiaa adaa 263 CAL Culate lt n PSPectrumiPHAS e noi a 22 0 a E A YR ORI a T ONES EENEG 264 CAL Cu latesn PSPectum POWER aracnean venere x iaa aaa naa AAA eaaa 264 CAL Culate nz DGbechum Ru 266 CAL CGulatesmsPSPect m
190. Limit gt CALCulate lt n gt TABLe POWer AVG LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer BASE LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer MAX LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer MIN LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer ON LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer OVERshoot DB LIMit lt LowLimit gt lt UppLimit gt User Manual 1173 9392 02 17 308 R amp SSFSW K6 6S Remote Commands for Pulse Measurements pam M M JwJ X Mre ee Y ee w CALCulate lt n gt TABLe POWer OVERshoot PERCent LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer PAVG LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer PMIN LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer POINt LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer PON LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer PPRatio LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer RIPPle DB LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer RIPPle PERCent LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer TOP LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe TIMing DCYCle LIMit lt LowLimit gt
191. MEMory STORe lt n gt TABLe lt Columns gt Filename This command stores the Table columns all or selected in a file with ASCII format The decimal separator decimal point or comma for floating point numerals contained in the file is defined with the FORMat DEXPort DSEParator command Parameters lt FileName gt String containing the path and name of the file Retrieving Results Setting parameters Columns SELected ALL SELected Only the currently visible columns in the result display are expor ted ALL All columns including currently hidden ones for the result dis play are exported Usage Setting only Manual operation See Columns to Export on page 139 See Export Table to ASCII File on page 140 See Columns to Export on page 160 MMEMory STORe lt n gt TABLe LIMit Columns Filename This command stores the table columns all or selected along with limit check results in a file with ASCII format The decimal separator decimal point or comma for float ing point numerals contained in the file is defined with the FORMat DEXPort DSEParator command Parameters lt FileName gt String containing the path and name of the file Setting parameters lt Columns gt SELected ALL SELected Only the currently visible columns in the result display are expor ted ALL All columns including currently hidden ones for the result dis play are exported Usage Setting only Manual operati
192. MHZ would have the same effect as BWID 1MHZ SCPI Parameters Many commands feature one or more parameters If a command supports more than one parameter these are separated by a comma Example LAYout ADD WINDow Spectrum LEFT MTABle Parameters may have different forms of values Numere Values EE 180 le EE 181 e bharacter Da vhimrerte et trie enu Pete e Fee Y rr v band a a aa d der ER 182 Character SNIS eena er enit tee o ede ro di et ee eee eed 182 S BOE Wp EE 182 Numeric Values Numeric values can be entered in any form i e with sign decimal point or exponent In case of physical quantities you can also add the unit If the unit is missing the com mand uses the basic unit Example with unit SENSe FREQuency CENTer 1GHZ without unit SENSe FREQuency CENTer 1E9 would also set a frequency of 1 GHz 9 1 6 2 Introduction Values exceeding the resolution of the instrument are rounded up or down If the number you have entered is not supported e g in case of discrete steps the command returns an error Instead of a number you can also set numeric values with a text parameter in special cases e MIN MAX Defines the minimum or maximum numeric value that is supported e DEF Defines the default value e UP DOWN Increases or decreases the numeric value by one step The step size depends on the setting In some cases you can customize the step size with a correspo
193. MHz For this range the flat filter is more accurate For details see chapter A 2 Effects of Large Gauss Filters on page 403 RST GAUS Manual operation See Filter type on page 114 SENSe DEMod FMVF TYPE Filter Activates or deactivates additional filters applied after demodulation to filter out unwan ted signals or correct pre emphasized input signals Parameters Filter NONE LP01 LP1 LP5 LP10 LP25 NONE No video filter applied LP01 Low pass filter 0 1 96 bandwidth LP1 Low pass filter1 bandwidth LP5 Low pass filter 5 96 bandwidth LP10 Low pass filter 10 bandwidth LP25 Low pass filter 25 96 bandwidth Example FMVF TYPE LPOL Manual operation See FM Video Bandwidth on page 115 SENSe SRATe This command returns the sample rate set up for current measurement settings Return values lt SampleRate gt Current sample rate used by the application Usage Query only 9 11 Pulse Detection SENSe SWEep TIME Time This command defines the measurement time The maximum measurement time in the R amp S FSW Pulse application is limited only by the available memory memory limit reached message is shown in status bar Note however that increasing the measurement time and thus reducing the available mem ory space may restrict the number of measurement channels that can be activated simultaneously on the R amp S FSW Parameters Time refer to data sheet
194. NSe PULSe TIMing PRIEMINIMUNM sis iicet ico ip tcn tri deett idera PEDE ERERE 364 SENSe PULSe TIMing PRI SDEViation SENSE I PULSS TIMING P RE 363 EIST TUE age RIES e EE 364 SENSE I PULSE mI Ming PIDIN EIMIE ascen roo e rene regente geseet deeg o evene gata d 387 SENSe PULSe TIMing PWIDth MAXIMUM ssc cavern ctetuer diesen t occae tape eue 364 SENSe PULSe TIMing PWIDth dd Wa NEE 365 SENSe PULSe TIMing PWIDth SDEViation essent nenne nennen nennen nnne 365 SENSe PUESe TIMing PWIDItES ttr eret ctt tci rec D cte ere 364 SENSe PULSe TIMing RISE AVERAQ6 EE 365 SENSE I PULSE Ee RE EE 387 SENSe PUESe TIMinig RISE MAXIMUM 1 caret trt e terre net ete e e e pes 365 SENSE PULSE MIMIN RISE SDEVIAUOF cai ccena correo ore nme ener erbe conet EE EET nET 365 SENSe PULSe TIMing RISE rentrer teen trt net en e no Fo ee er A ne e Rye ee 365 SENSe PULSe TIMing SET Ting AVERA JE nisaire eris vaesa N A TENENT ENNET 366 SENSe PUESe TIMing SET TINO LIMITA vearsa coy e aee exi EEN EEE EEE oer aS 387 SENSe PULSe TIMing SET Ting MAXiImu t xri n trn rrt e n tr cere 366 SENSe PULSe TIMing SET Tling MINimmiU tm iot roin neri ntn nne nn ert three 366 SENSe PULSe TIMing SETTling SDEViation SENSe PULSe TIMing SE T Tlirigi uoo tnr trn rnnt a a as 365 SENSe PULSe TIMing TS Tamp AVERGage a ioter enn three rh prre eres 366 S
195. Nimum RICH 334 CALOCulate n DELTamarker m MlNimum PEAK esee 334 CAL Culatesmn MARKersm aMAXImum LEEF T canario ENNER 334 CAL Culate nz M AbkermzMAximumNENT 334 CAL Culate nz M Abker mzMANimumbRlGHt essen nsns n nsns nsn nn nian 334 CALCulate n MARKer m MAXimum PEAK esses 335 CAL Culate nz M Abkermmz MiNimum LEET 335 CAL Culate nz M Abkermz MiNimumNENT 335 CAL Culate nz M bker mmz MiNimum RI 335 CALCulate n MARKer m MlINimum PEAK e eeeiiceeeeesieeee eene danadana 335 CALCulate lt n gt DELTamarker lt m gt MAXimum LEFT This command moves a delta marker to the next higher value The search includes only measurement values to the left of the current marker posi tion Usage Event CALCulate lt n gt DELTamarker lt m gt MAXimum NEXT This command moves a marker to the next higher value Usage Event Manual operation See Search Next Peak on page 153 CALCulate lt n gt DELTamarker lt m gt MAXimum RIGHt i This command moves a delta marker to the next higher value The search includes only measurement values to the right of the current marker posi tion Usage Event CALCulate lt n gt DELTamarker lt m gt MAXimum PEAK This command moves a delta marker to the highest level If the marker is not yet active the command first activates the marker Usage Event Manual operation See Peak Search on page 152 CALCulate lt n gt D
196. Note to query the index of a particular window use the LAYout IDENtifyl WINDow command Return values lt WindowName gt String containing the name of a window In the default state the name of the window is its index Example LAY WIND2 IDEN Queries the name of the result display in window 2 Response 2 Usage Query only LAYout WINDow n REMove This command removes the window specified by the suffix n from the display in the active measurement channel R amp S FSW K6 6S Remote Commands for Pulse Measurements 9 15 3 9 15 3 1 The result of this command is identical to the LAYout REMove WINDow command Example LAY WIND2 REM Removes the result display in window 2 Usage Event LAY out WINDow lt n gt REPLace lt WindowType gt This command changes the window type of an existing window specified by the suffix lt n gt in the active measurement channel The result of this command is identical to the LAYout REPLace WINDow com mand To add a new window use the LAYout WINDow lt n gt ADD command Parameters lt WindowType gt Type of measurement window you want to replace another one with See LAYout ADD WINDow on page 315 for a list of availa ble window types Example LAY WIND2 REPL MTAB Replaces the result display in window 2 with a marker table Zooming into the Display Using the Single Zoom DISPlay WINDowsnsEZOOMARERA tieu ento t
197. O data Fig 4 8 Pulse compression calculation in the R amp S FSW Pulse application Correlator output At the mainlobe peak the measured data is assumed to be a scaled version of the ref erence UO data with a certain frequency and phase offset lQmeas tkan Ae e 77 IQ t noise Measured UO waveform at the time offset corresponding to the peak correlator out put power 4 2 where Npeak is the sample offset within the measured data at which the peak correlator output occurs Time Sidelobe Analysis Mainlobe power integrated Normalizing the peak correlator output power to the reference UO waveform power gives the integrated mainlobe power 2 D IQuus tus UQer th k 1 P Yi t k 1 Mainlobe power integrated 4 3 For perfectly correlated measured and reference waveforms this value corresponds to the integrated power of the measured waveform over the correlation interval Mainlobe power average Normalizing the peak correlator output power to the reference waveform power and to the correlation interval gives the average mainlobe power 2 Dl neas tus Hee P k 1 vg N E IQ t y k 1 Mainlobe power average 4 4 For perfectly correlated measured and reference waveforms this value corresponds to the average power of the measured waveform over the correlation interval Note that the normalization used for Payg is also applied to the correlat
198. OFF RST OFF Manual operation See Full Scale Level on page 89 INPut DIQ RANGe COUPling State If enabled the reference level for digital input is adjusted to the full scale level automat ically if the full scale level changes This command is only available if the optional Digital Baseband Interface is installed Parameters State ON OFF RST OFF Manual operation See Adjust Reference Level to Full Scale Level on page 89 Input Output Settings INPut DIQ RANGe UPPer Level Defines or queries the Full Scale Level i e the level that corresponds to an I Q sam ple with the magnitude 1 This command is only available if the optional Digital Baseband Interface is installed Parameters Level numeric value Range 1 UV to 7 071 V RST 1V Manual operation See Full Scale Level on page 89 INPut DIQ RANGe UPPer UNIT Unit Defines the unit of the full scale level see Full Scale Level on page 89 The availa bility of units depends on the measurement application you are using This command is only available if the optional Digital Baseband Interface is installed Parameters Level VOLT DBM DBPW WATT DBMV DBUV DBUA AMPere RST Volt Manual operation See Full Scale Level on page 89 INPut DIQ SRATe lt SampleRate gt This command specifies or queries the sample rate of the input signal from the optional Digital Baseband Interface see Input Sample
199. OINt LIMit lt QueryRange gt SENSe PULSe POWer PON LIMit lt QueryRange gt SENSe PULSe POWer PPRatio LIMit lt QueryRange gt SENSe PULSe POWer RIPPle DB LIMit lt QueryRange gt SENSe PULSe POWer RIPPle PERCent LIMit lt QueryRange gt SENSe PULSe POWer TOP LIMit lt QueryRange gt SENSe PULSe TIMing DCYCle LIMit lt QueryRange gt SENSe PULSe TIMing DRATio LIMit lt QueryRange gt SENSe PULSe TIMing FALL LIMit lt QueryRange gt SENSe PULSe TIMing OFF LIMit lt QueryRange gt SENSe PULSe TIMing PRF LIMit lt QueryRange gt SENSe PULSe TIMing PRI LIMit lt QueryRange gt SENSe PULSe TIMing PWIDth LIMit lt QueryRange gt SENSe PULSe TIMing RISE LIMit lt QueryRange gt SENSe PULSe TIMing SETTling LIMit lt QueryRange gt SENSe PULSe TIMing TSTamp LIMit lt QueryRange gt SENSe PULSe TSIDelobe AMPower LIMit lt QueryRange gt SENSe PULSe TSIDelobe CRATio LIMit lt QueryRange gt SENSe PULSe TSIDelobe IMPower LIMit lt QueryRange gt User Manual 1173 9392 02 17 387 Retrieving Results SENSe PULSe TSIDelobe ISLevel LIMit lt QueryRange gt SENSe PULSe TSIDelobe MFRequency LIMit lt QueryRange gt SENSe PULSe TSIDelobe MPHase LIMit lt QueryRange gt SENSe PULSe TSIDelobe MWIDth LIMit lt QueryRange gt SENSe PULSe TSIDelobe PCORrelation LIMit lt QueryRange gt SENSe PULSe TSIDelobe PSLevel LIMit lt QueryRange gt SENSe PULSe TSIDelobe SDELay LIMit lt QueryRange
200. ON Manual operation See Auto Scale Continuous All on page 128 See Auto Scale Once All on page 128 See Automatic Range Scaling on page 131 SENSe TRACe MEASurement DEFine RRANge LENGth Length The length of the pulse result range in seconds Parameters Length RST 30 us Default unit S Manual operation See Length on page 132 Configuring the Results SENSe TRACe MEASurement DEFine RRANge OFFSet Offset The offset in seconds from the reference point at which the pulse result range is aligned Parameters lt Offset gt RST 0 Default unit S Manual operation See Offset on page 131 SENSe TRACe MEASurement DEFine RRANge REFerence lt Reference gt Specifies the reference point used to define the result range Parameters lt Reference gt RISE CENTer FALL RISE The result range is defined in reference to the rising edge CENTer The result range is defined in reference to the center of the pulse top FALL The result range is defined in reference to the falling edge TRIG The result range is defined in reference to the trigger event This setting is only available for segmented capture Configure a trigger and activate segmented capture mode see SENSe SWEep SCAPture STATe on page 234 RST CENTer Manual operation See Result Range Reference Point on page 131 9 14 3 Configuring a Parameter Distribution The parameter distribution evaluations allow you to visualize th
201. OPower on page 195 Input and Output Settings Signal ID Activates or deactivates visual signal identification Two sweeps are performed alter nately Trace 1 shows the trace measured on the upper side band USB of the LO the test sweep trace 2 shows the trace measured on the lower side band LSB i e the reference sweep Note that automatic signal identification is only available for measurements that per form frequency sweeps not in the VSA the I Q Analyzer or the Real Time application for instance Mathematical functions with traces and trace copy cannot be used with the Signal ID function Remote command SENSe MIXer SIGNal on page 196 Auto ID Activates or deactivates automatic signal identification Auto ID basically functions like Signal ID However the test and reference sweeps are converted into a single trace by a comparison of maximum peak values of each sweep point The result of this comparison is displayed in trace 3 if Signal ID is active at the same time If Signal ID is not active the result can be displayed in any of the traces 1 to 3 Unwanted mixer products are suppressed in this calculated trace Note that automatic signal identification is only available for measurements that per form frequency sweeps not in vector signal analysis or the UO Analyzer for instance Remote command SENSe MIXer SIGNal on page 196 Auto ID Threshold Defines the maximum permissible level differen
202. OWE PON MIMI cosci rr ci eec rere eine rrt rea erre reset a rere ERR HER 387 IGENGe IpUL Ge POWer DON MANimum terrre nn ne nnr nnns nnn r senten senes 356 SENS amp PUl Se POWeEPON MINIFYUE secca a a tpe ee env eet dee 356 SENS amp PUESe POWeEPON SDEVIaliOTn irt irte tnr tee rer ri rece rre rere pH RS 356 SENSE PULSE POWER POLNNA cix trou toe riae er e anainn eand N Eye PE TE E EIAEEE RUNE EVE E RSA PERETE EEEREN 356 SENSe PULSe POWer PPRatioi AVERAGE 5 eere onere ties cet teer Ea DER pe Ye e Pes even 357 SENSe PULSe POWer PPRatio LIMit IGENGe IPUL Ge POWer PDRatoMAvimum tn tnn enn nnn nennt 357 SENS amp PUl Se POWer PPRAatio MINII TITI erp or eo rrr eee rpg ive Nee ntes eee gu 357 SENSe amp PUESe POWer PPRatio SDEVIatiOn iicet tere orti er tener in rene eT erre Er ree EE CR HERE 357 SENSe PUESe POWer PPRALtIO ecreo ere itn tonat Feu EYE rne FERE CH EXE MISERE LE ERR TEENS LER Lee E RENE E NARESE 356 SENS PULS POWerRipble D BAVERage nnne trennen nnne enne nnne 357 SENS amp PUESe POWSGERIPPI amp DB EIMIE iioii eire eer er i erben ea nerit tia 387 SENSe PULSe POWer RIPPIe DB MAXimum SENS amp PUl Se POWerRIPPIe DB MINIIRUETT2 cista ever inated 357 IGENGe IpUL Ge POWerRilpble D GDEViatton eene tenete 357 IGENGe IpUL Ge POWerHilpble DR 357 IGENGe PULL Ge POWerRipbiel PtERGentlAVthHage enne ener enne 358 IGENGe IPUL Ge POWer Ripbiel PERGentt LU
203. PERRO AVERA QE ionini tee ete aga ted cd p ge ea e bv d 373 SENSe PU ES amp PHASe PERROLLIMIt cr roro etii ee seventies eget tregua s Nee 387 SENSe PULSe PHASe PERRor MAXimum EIST TUN Ee Olli 373 IENGeIpUL GebHAGe PERRor GDEVlaton AAA 373 SENSe PUESe PHASG PERRO erre reete tnt eet ect a p eve de ded eve ntu p aus 373 SENSe PUESe PHASe POINUAVERAg6 ice rec Rie nta iir e de i cer eite 374 SENSE I PULSE PHASS POINELIMILE EE 387 SENSe PUESe PHASe POINEMAXITIUI cooper rtt riceve eter tto e anne 374 SENSe PULSe PHASe POINt MINimum 974 SENSe PULSE PHASE POIN GDEVlation AAA 374 SENSE PULSE PHASE el TE 374 EI E TIET e ele EA e 375 SENSe PUESe amp PHASe PPPhHase LIMIt oar rorum itane tni eren totae usto N nn kp reae ac 387 SENSe PULSe PHASe PPPHase MAXimUultm eu iion t en tnnt orn re rre en 375 SENSe PULSe PHASe PPPHase MINimumi ooa ite ttti rn tnn re three tarn 375 SENSe PUESe PHAS6G PBPEIaSO taie ette EE tpa aen e Oe a tg te EE ce et ep 374 SENSe PUESS PHASe RERROF AVERAQgO rae tr re a redeo EENEG 375 SENSe PUES amp PHASe RERROELIMIt necnon ener epe Ee EENEN OE EAIA ACE STE EE ANEETA 387 SENSe PUESe PHASe RERROFEMAXitrtri 2 5 2c itecto tet naei NAE 375 SENSe PULSe PHASe RERROn ll ant le KEE 375 SENSe PUESe PHASe RERRoOr SDEVIAlOn incertae att cep etae eret erra erbe ANEETA E
204. PSPectrum TIMing lt Param gt Configures the Parameter Spectrum result display Configuring the Results Setting parameters lt Param gt TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCle Duty Cycle PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST RISE CALCulate lt n gt PSPectrum TSIDelobe lt Param gt Configures the Time Sidelobe Parameter Spectrum result display This command is only available if the additional option R amp S FSW K6S is installed Configuring the Results Setting parameters lt Param gt PSLevel ISLevel MWIDth SDELay CRATio IMPower AMPower PCORrelation MPHase MFRequency Time sidelobe parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 5 Time Sidelobe Parameters on page 25 PSLevel peak to sidelobe level ISLevel integrated sidelobe level MWIDth mainlobe 3 dB width SDELay sidelobe delay CRATio compression ratio IMPower integrated mainlobe power AMPower average mainlobe power PCORrelation peak correlation MPHase mainlobe phase MFRequency main
205. PUESe FREQuency PERRO s iiiter tri ce e eene rete een 369 SENSe PULSe FREQuency PERRoOF AVERage eem ia iecit es anne ha ee ead aai 369 SENSe PULSe FREQuency PERROr MANimum nennen nnne 369 ISGENZGe IpDUL GetREOuencv PERbRor MiNimum enema 369 SENSe PULSe FREQuency PERRor SDEViation sn nininini 369 SENSe PULSe FREQuency POINt eere i itr ent sne Rada cu tesi ne cea Rana dec A e rrai 370 IGENGe IDUL SetREOuencv DOIN AVERage nnne nennen nnns 370 SENSe PULSe FREQuency POINEMADXIIUI 23i ciet nro pte eerte ett 370 SENSe PULSe FREQuency POINEMINIMUM Z esent 370 SENSe PULSe FREQuency POINCSDEViation cere ccena cei t inneren 370 SENSe PULSe FREQuency PPFRequency isses nnne nennen hne nennen 370 SENSe PULSe FREQuency PPFRequency AVERage cessisse eene nnne 371 SENSe PULSe FREQuency PPFRequency MAXimum esses 371 SENSe PULSe FREQuency PPFRequency MlNimum esee 371 SENSe PULSe FREQuency PPFRequency SDEViation essen 371 SENSe PUES amp FREQuency REBRIOE tete rici ice see an SES 371 SENSe PULSe FREQuency RERRor AVEHRage ecc iaaa a aaas 371 IGENGelpUL ZetREOuencv RERRor M ANimum eene nnne nennen 371 IGENGelpUL ZetREOuencv RERRor MiNImum nennen nnn nnn nnne nnn 371 IGENZGeIpDUL SGetRtOuencv RERRor GDtEViaton aiaia idari 371 Retrieving Results SENSe PULSe FRE
206. Quency CRATe lt QueryRange gt Returns the chirp rate per us for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Chirp Rate on page 23 SENSe PULSe FREQuency CRATe AVERage lt QueryRange gt SENSe PULSe FREQuency CRATe MAXimum lt QueryRange gt SENSe PULSe FREQuency CRATe MINimum lt QueryRange gt SENSe PULSe FREQuency CRATe SDEViation lt QueryRange gt Returns the statistical value for the chirp rate per us over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe FREQuency DEViation lt QueryRange gt Returns the frequency at the measurement point for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Frequency Deviation on page 23 Retrieving Results SENSe PULSe FREQuency DEViation AVERage lt QueryRange gt SENSe PULSe FREQuency DEViation MAXimum lt QueryRange gt SENSe PULSe FREQuency DE
207. R amp S FSW The measure ment is started immediately with the default settings INS Trament oREate DUPLDIGBle cient ner dates dx Read eqs enu ddcenn 183 INSTr ment GREate NEW rire oru ptos oin ta ended eroe dae ree adr aac iaia 183 INSTIumentGREate REPLaoe eni ee oir RSA SOERENSEN Ee 184 lS SRI indici ERE TTL TERTIO 184 LIS Wisin UST Em 184 INSTr ment SENSING iir eet NASA EE Osea Re E Sot NA RR REN See 186 INS Trument S E Bc TEE 186 SYSTemiPRESebpOHANnSIEEXE Cute oc dae rn purement tere eee es 186 INSTrument CREate DUPLicate This command duplicates the currently selected measurement channel i e creates a new measurement channel of the same type and with the identical measurement set tings The name of the new channel is the same as the copied channel extended by a consecutive number e g IQAnalyzer gt IQAnalyzer2 The channel to be duplicated must be selected first using the INST SEL command This command is not available if the MSRA MSRT Master channel is selected Example INST SEL IQAnalyzer INST CRE DUPL Duplicates the channel named IQAnalyzer and creates a new measurement channel named IQAnalyzer2 Usage Event INSTrument CREate NEW lt ChannelType gt lt ChannelName gt This command adds an additional measurement channel The number of measurement channels you can configure at the same time depends on available memory Parameters lt ChannelType gt Channel
208. R amp S9FSW K6 6S Pulse Measurement Option User Manual Test amp Measurement User Manual This manual applies to the following R amp S FSW models with firmware version 2 22 and higher R amp S9 FSWS 1312 8000K08 R amp S FSW13 1312 8000K13 R amp S FSW26 1312 8000K26 R amp S FSW43 1312 8000K43 R amp S FSW50 1312 8000K50 R amp S FSW67 1312 8000K67 R amp S FSW85 1312 8000K85 The following firmware options are described e R amp S FSW K6 1313 1322K02 e R amp S FSW K6S 1325 3783K02 The firmware of the instrument makes use of several valuable open source software packages For information see the Open Source Acknowledgement on the user documentation CD ROM included in delivery Rohde amp Schwarz would like to thank the open source community for their valuable contribution to embedded computing 2015 Rohde amp Schwarz GmbH amp Co KG Muhldorfstr 15 81671 Munchen Germany Phone 49 89 41 29 0 Fax 49 89 41 29 12 164 E mail info rohde schwarz com Internet www rohde schwarz com Subject to change Data without tolerance limits is not binding R amp S is a registered trademark of Rohde A Schwarz GmbH amp Co KG Trade names are trademarks of the owners The following abbreviations are used throughout this manual R amp S9FSW is abbreviated as R amp S FSW Contents NR Co ec 7 Li About this Manual
209. RANge Manual operation See Range on page 126 Configuring and Performing Sweeps When the Pulse application is activated a continuous sweep is performed automati cally However you can stop and start a new measurement any time Furthermore you can perform a sequence of measurements using the Sequencer see Multiple Measurement Channels and Sequencer Function on page 12 Useful commands for configuring sweeps described elsewhere SENSe SWEep TIME on page 237 SENSe SWEep POINts on page 327 Remote commands exclusive to configuring sweeps PBORR T 247 INI Tiatesns CONMeaS EN 248 NUT iat CONTINUOUS 21 22 denetusin apnea rea nera so caet ra aa a pepe erano adiar aiaei petia 249 INITiate sn TE E 249 INITiate sp REFROSL iir aat eed ta eda ene E p nea ne dnx EEE a Ri RR dE ROHdRs 250 INlTlate nz SEOuencerRttbResbt ALL 250 INiTiatesn gt SEQUENCE ABORT eei eene aenea tate tnt nb one adi ant cm tane e cud dex rna idis 251 INITlate nz GEOuencerJMMedate senna anana a a aE EE EE 251 INITiate m SEQuencer MODE 2 2 rn enaa aara Dna cca eA E an EEA RR a E RR dis 251 SENSE AV BRAGS lt i CO DIE uet cto te nda erae execute en nece edt 252 SENSe SWEep COUNL ecce tete te enttentneteetetttt tet ttes t test r nans 252 SENSe SWEep GH NEE Sen cct oerte re thea nannte tere ENa aa 253 SY EE EE 253 ABORt This co
210. RE 375 SENSe PUESe PHASG RERROE iii rrt rte ned tte ctia eve ctp e cea 375 SENSe PULSe POWer ADRoop DB AVERABJQS erento trot thi ib tei itn e Eee RR YE ERR SERRE 347 SENSe PULSe POWer ADbRoop DR LIMI AAA 387 SENSe PUESe POWer ADRoop DB MAXImUtm 3 cinese t rint err th tt eer nter eere 347 SENSe PUESe POWer ADROop DB SDEVIatlor soon coorta rex pen EE tenu 347 SENSe PULSe POWerADROOp DBY error ttr t ret re e en eben 347 IGENZGe PU Ge POWer ADboopl PERCG ent AVERage nennen eren rennen 348 SENSE PULSE POWer ADboopl PERGC ent IM 387 IGENZGe IPUL Ge POWer ADboopl PERC ent MAXIMUM enne 348 SENSe PULSe POWer ADRoop PERCent MINimum esses ennemi 348 SENSe PULSe POWer ADRoop PERCent SDEViation SENSe PULSe POWer ADRoop PER QGent tutt ttr teen aber ne toner ten 347 SENSe PULSe POWer AMPLitude AVERage iari tenet rnb tae EESC AEEA Kee 348 SENSe PUESe POWer AMPLitude LMMIE cese eae errore erro naine EEES ND mE Yer kae 387 SENSe PULSe POWer AMPLitu de MAXIIUm s eapite repe natn aa 348 SENSe PULSe POWer AMPLitude MINimum enini tit rrr tnter tid 349 SENSe PUESe POWer AMPEitude SDEVIiatlofi cocer nero eren rennen ten urbt GTE expe xu hee nere aas 349 SENSe PUESe POWer AVG AVERGagBT iiic eren nr rh rt ioc tk E FR EPEa DCEO EEI 349 ISENSe PUESS POWerAVG LEIMIE occorre eire eter eet ox
211. RESolution TYPE NORMal Query SENSe BANDwidth RESolution TYPE would return NORM 9 1 6 4 Character Strings Strings are alphanumeric characters They have to be in straight quotation marks You can use a single quotation mark or a double quotation mark Example INSTRument DELete Spectrum 9 1 6 5 Block Data Block data is a format which is suitable for the transmission of large amounts of data The ASCII character introduces the data block The next number indicates how many of the following digits describe the length of the data block In the example the 4 follow ing digits indicate the length to be 5168 bytes The data bytes follow During the trans mission of these data bytes all end or other control signs are ignored until all bytes are transmitted 0 specifies a data block of indefinite length The use of the indefinite for mat requires a NL END message to terminate the data block This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length 9 2 Common Suffixes In the Pulse application the following common suffixes are used in remote commands Suffix Value range Description m 1 4 Marker n 1 6 Window lt t gt 1 Trace Activating Pulse Measurements 9 3 Activating Pulse Measurements Pulse measurements require a special application on the
212. RGOFAVEROAUG titre ttti tee e tea reete 375 SENSe PULSe PHASe RERRorMAXImum 7 cocotte aeo dead a KAREN 375 SENSe PULSe PHASe RERRorMl Nimum 2 i rcr ohne n n nah rna im e inae 375 SENS amp eTPULSePHASeE RERROFSDEVIAUORn 2 2 rto tr erecta caeco bene 375 SENSe PULSe PHASe DEViation lt QueryRange gt Returns the phase deviation for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Phase Deviation on page 25 Retrieving Results SENSe PULSe PHASe DEViation AVERage lt QueryRange gt SENSe PULSe PHASe DEViation MAXimum lt QueryRange gt SENSe PULSe PHASe DEViation MINimum lt QueryRange gt SENSe PULSe PHASe DEViation SDEViation lt QueryRange gt Returns the statistical value for the phase deviation over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe PHASe PERRor lt QueryRange gt Returns the peak phase error for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffe
213. RIPPle PERCent Visibility If enabled the ripple in percent is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Ripple on page 21 CALCulate lt n gt TABLe POWer TOP lt Visibility gt If enabled the Top power is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Top Power on page 19 CALCulate lt n gt TABLe TIMing ALL STATe lt Visibility gt lt Scaling gt If enabled all timing parameters are included in the result tables Setting parameters lt Visibility gt ON OFF RST OFF lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed Configuring the Results Usage Setting only CALCulate lt n gt TABLe TIMing DCYCle Visibility If enabled the duty cycle in 96 is included in the result tables Parameters Visibility ON OFF RST ON Manual operation See Duty Cycle on page 18 CALCulate lt n gt TABLe TIMing DRATio lt Visibility gt If enabled the duty ratio in dB is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Duty Ratio on page 18 CALCulate lt n gt TABLe TIMing FALL lt Visibility gt lt Scaling gt If enabled the fall time is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt S MS US NS Opti
214. RST depends on current settings determined automati cally Example SWE TIME 10s Usage SCPI confirmed Manual operation See Measurement Time on page 115 Pulse Detection The pulse detection settings define the conditions under which a pulse is detected within the input signal ISENSe DETECRUIMM C RES 237 SENSeJgDETSCUEIMIUOQODEDU aeter Da aaa aeree Sassari a puc nei eges dunes aihe AA a Erak ie 237 ISENSe TDETecbHY S DBIeSie cce etre ieu ades etc a eet eee 238 SENSe DETecEREF rence 2 n nicer et eroe aid eo p a dh ANERE AER 238 SENSeJDETecETHR eshold iieri eth ote reete ene ERR RARE ES 238 SENSe DETect LIMit lt MaxCountLimit gt If enabled the number of pulses to be detected is restricted When the maximum num ber is exceeded measurement is stopped for the current capture buffer This limitation can be used to speed up the measurement if only a small number of pulses is of inter est The maximum number of pulses to be detected is defined using the SENSe DETect LIMit COUNt command Parameters lt MaxCountLimit gt ON OFF RST OFF Manual operation See Detection Limit on page 119 SENSe DETect LIMit COUNt lt MaxPulseCount gt Defines the maximum number of pulses to be detected Pulse Detection This limit is only considered if SENSe DETect LIMit is enabled Parameters lt MaxPulseCount gt integer RST 1000 Manual operation See Maximum Pulse Count o
215. Rate on page 88 Parameters lt SampleRate gt Range 1 Hz to 10 GHz RST 32 MHz Example INP DIQ SRAT 200 MHz Manual operation See Input Sample Rate on page 88 INPut DIQ SRATe AUTO lt State gt If enabled the sample rate of the digital UO input signal is set automatically by the con nected device This command is only available if the optional Digital Baseband Interface is installed Parameters State ON OFF RST OFF Manual operation See Input Sample Rate on page 88 Input Output Settings OUTPut DIQ State This command turns continuous output of UO data to the optional Digital Baseband Interface on and off Using the digital input and digital output simultaneously is not possible If digital baseband output is active the sample rate is restricted to 100 MHz 200 MHz if enhanced mode is possible max 160 MHz bandwidth Parameters lt State gt ON OFF RST OFF Example OUTP DIQ ON Manual operation See Digital Baseband Output on page 99 OUTPut DIQ CDEVice This command queries the current configuration and the status of the digital UO data output to the optional Digital Baseband Interface Return values lt ConnState gt Defines whether a device is connected or not 0 No device is connected 1 A device is connected lt DeviceName gt Device ID of the connected device lt SerialNumber gt Serial number of the connected device lt PortName gt Port name used by the co
216. Rshoot PERCent LIMit STATe seen 307 CALCulatesn EE Oe e E i rtp oorr td py ctae nde parce t dtp oe et Vea dein 297 CAL Culatesn tABEe POWerPAVWVG EIMIL tci aoc corteo ea cepere ces Eee eerte se ee Eee Pu 309 CAL Culate nz AB ebOMWer PAG UM GTATe 307 eier EEN Dee ll ME 297 GAL Culatesmz TABL POWer PMIN L IMIE is uere enhance ra te GEET EE CALCulate lt n gt TABLe POWer PMIN LIMit STATe s GALGulate n TABLe POWh erPOIlNt rtr tiro tre rere tr rere ha ates e EY o ERR Rea GAL Culatespns TABEe POWer iPOILHNEEIMIT ug ort conne ror tope tutto Er rae ray UE HER tek never tope xh Ei rhe kno GALCulate n TABLe POWer POINELIMIESTA Te rent tnt rene rne anda 307 CALCulate lt n gt TABLe POWerPQON 2 rrr et trier tr reet ntt hr E rere b a Eu e EE EY iaaa 297 CALC latesn TABLE e e e K 309 GALGulate n TABEe POWer PON LIMICS TAT niesienia rr ter e err ntn 307 CALCulate lt n gt TABLe POWer PPRatio ee E Ee e Ee D 309 GALGCulate n TABEe POWer PPRatio LIMIESTATe eenit rrr trente tern rete 307 GALGulate n LABLe POWer RIPPle DB roter e reete tn rrr enr tine 298 GALCulatesn TABELe POWer RIPPlIe DB lIMIL conor rt ere the pee spines exer pex eerte reae 309 GALCulate n TABELe POWer RIPPle DB LIMit S TATe onn ntn nnn nnn 307 GALCulate n TABLe POWer RIPPle PERGent orit ertet tror einn CALCulate lt n gt TABLe POWer RIPPle PERCen
217. SS TAB 4 Selects the conversion loss table CORR CVL PORT 3 Manual operation See Mixer Type on page 87 SENSe CORRection CVL SELect lt FileName gt This command selects the conversion loss table with the specified file name If file name is not available a new conversion loss table is created This command is only available with option B21 External Mixer installed Parameters lt FileName gt String containing the path and name of the file Example CORR CVL SEL LOSS TAB 4 Manual operation See New Table on page 83 See Edit Table on page 84 See File Name on page 85 SENSe CORRection CVL SNUMber lt SerialNo gt This command defines the serial number of the mixer for which the conversion loss table is to be used This setting is checked against the current mixer setting before the table can be assigned to the range Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Parameters lt SerialNo gt Serial number with a maximum of 16 characters Example CORR CVL SEL LOSS TAB 4 Selects the conversion loss table CORR CVL MIX 123 4567 Manual operation See Mixer S N on page 86 9 6 2 4 Input Output Settings Programming Example Working with an External Mixer This example demonstrates how to work with an external mixe
218. STORe lt n gt TABLe on page 390 6 1 5 2 Limit Settings for Table Displays Measurement results can be checked against defined limits and the results of the limit check can then be indicated in the Result Table Table limit settings can be configured in the Result Configuration dialog box in the Table configuration tab in the vertical Limits tab For details on limits see Pulse Results on page 36 Result Configuration e Ser Result Range Marker Settings Table Config Timing Selected Parameter Parameters Parameter Group Timing Amplitude Parameter Timestamp Parameters Limit Settings per parameter Freq Parameters Limit On Off Phase Lower Limit Parameters Upper Limit BF gt Export Turn off all limits in group Turn off limits in all parameter groups Limits Kee CAL Pulse Statistics The settings are window specific and only available for result tables Optionally limit lines can be displayed in the Parameter Distribution and Parameter Trend diagrams You can drag these lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted Parameter Kate EE 141 acus mU 141 Activating a limit check for a paramet r serus arainn aniani 141 Defining lower and upper limits for a parameter 142 Deactivating a limit check for an entire parameter group
219. SW K6S is installed SENSe TRACe MEASurement DEFine TSRange ALIGnment sess 245 SENSe TRACe MEASurement DEFine TSRange KOTime AUTO esse 245 SENSe TRACe MEASurement DEFine TSRange KOTime LENGIR eeeeeeeeeeeeeess 246 SENSe TRACe MEASurement DEFine TSRange LENGIh essen 246 GENGeTRACeMtAGurement DE Fine TGbange RANGe 246 SENSe TRACe MEASurement DEFine TSRange ALIGnment Alignment Specifies the alignment with respect to the Peak Correlation on page 28 point used to define the time sidelobe range This command is only available if the additional option R amp S FSW K6S is installed Parameters Alignment LEFT CENTer RIGHt Left The sidelobe range stops to the left of the peak correlation point Center The sidelobe range is centered around the peak correlation point Right The sidelobe range startss to the right of the peak correlation point Manual operation See Alignment on page 127 SENSe TRACe MEASurement DEFine TSRange KOTime AUTO State Defines an excluded area around the center of the time sidelobe range assuming this is the mainlobe in which no results are calculated This command is only available if the additional option R amp S FSW K6S is installed Configuring the Pulse Measurement Parameters State ON OFF ON 1 The determined mainlobe 3 dB width is used see SENSe PULSe TSIDelobe MWIDth on page 381 OFF 0 Y
220. Se TSIDelobe PSLevel LIMit 388 SENSe PULSe TSIDelobe PSLevel MAXimutm neon tet riter tnter rehenes 383 SENSe PUESe TSIBelobe PSL evel MINIMUM se secun coc iore earn ett eene rire a cenae Re ren 383 SENSe PULSe TSIDelobe PSLevel SDEViatlon rre nore tenen reete tires 383 SENSe PULSe TSIDelobe PSLevel SENSe PUESe TSIBelobe SDELay AMERAag6e cusa otn rtr tenth itr eret rd rper ene conceneans 383 SENSe PULSe TSIDelobe SDELay LIMIit erret n nr tente tn erre rete 388 SENSe PULSe TSIDelobe SDELay MAXimu m 2 aactor nter hn rh ttbi tide i 383 SENSe PUESe TSIBelobe SBELay MINIImUETIE u crit tomen re rrr no rte Ex etg rp ctore hne nons 383 SENSe PULSe TSIDelobe SBDELay SDEViation rte tnt nee rentre pen 383 ISENSe UL Se T lDelobe SD au 383 SENSe RTMS CAPTure OFFSet BS ENS ISAT eerste unin Roe cae a ceat EE 236 ISENSe TaWEer COUN tha bht t aake nae akni Ae AnaL A ALALA AAE AS AAE ASAA EAA a en aaae ra naarn an 252 SENSe SWEep COUNt CURRent ttt ttt Aa na ttt ttt ttt aaen na tt 253 SENSe SWEep POINIs ett ttt ttt ttt ttt ttt ttt ttt an SENSe SWEep SCAPture EVENIs ttt ttt ttt ttt tto od SENSe SWEep SCAPture LENGth TIME ettet SENSe SWEep SCAPture OFFSet TIME ISEN e TauWEer SCAPuret STtATel ttt ttt ttt ttt ttt ttt obit SENSe
221. Sition esee 312 DISPlay WINDow n TRACe Y SCALe RVALue esses nnne 312 DISPlay WINDow n TRACe t Y SCALe RVALue MAXimum sees 312 DISPlay WINDow n TRACe t Y SCALe RVALue MlNimum eeeeeeeeen n 313 DiSblavlfWiNDow nzTR ACects lt SCALelUNIT eene nnns 313 UNIT ANGLG isn Em 313 CALCulate lt n gt UNIT FREQuency lt Unit gt Switches between relative default and absolute frequency values This setting applies to Pulse Frequency Result Range Spectrum Parameter Distribution and Parameter Trend result displays Parameters lt Unit gt REL ABS Manual operation See Frequency Scaling on page 145 DISPlay WINDow lt n gt TRACe lt t gt X SCALe UNIT This command reads the unit type currently configured for the X axis Usage Query only DISPlay WINDow lt n gt TRACe Y SCALe AUTO State If enabled the Y axis is scaled automatically according to the current measurement Configuring the Results Parameters for setting and query State OFF Switch the function off ON Switch the function on ONCE Execute the function once RST ON Manual operation See Auto Scale Continuous All on page 128 See Auto Scale Once All on page 128 See Automatic Grid Scaling on page 143 See Auto Scale Once on page 143 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe MAXimum Value
222. T CONT OFF Switches to single sweep mode INIT WAI Starts a new data measurement and waits for the end of the Sweep INST SEL IQ ANALYZER Selects the IQ Analyzer channel INIT REFR Refreshes the display for the I Q Analyzer channel Usage Event Manual operation See Refresh on page 117 INITiate lt n gt SEQuencer REFResh ALL This function is only available if the Sequencer is deactivated SySTem SEQuencer SYST SEQ OFF and only in MSRA or MSRT mode The data in the capture buffer is re evaluated by all active MSRA MSRT applications The suffix lt n gt is irrelevant Example SYST SEQ OFF Deactivates the scheduler INIT CONT OFF Switches to single sweep mode INIT WAI Starts a new data measurement and waits for the end of the sweep INIT SEQ REFR Refreshes the display for all channels Usage Event Configuring and Performing Sweeps INITiate lt n gt SEQuencer ABORt This command stops the currently active sequence of measurements The Sequencer itself is not deactivated so you can start a new sequence immediately using INITiate lt n gt SEQuencer IMMediate on page 251 To deactivate the Sequencer use SYSTem SEQuencer on page 253 Suffix lt n gt irrelevant Usage Event INITiate lt n gt SEQuencer IMMediate This command starts a new sequence of measurements by the Sequencer Its effect is similar to the INITiate lt n gt IMMediate command used for a single m
223. TE CAL Culate nz AB ebe PERRorl IM CAL CGulate cnz TAPBlebtiAGebERorlIMr GTATe nein a CALG latesn gt TABLE PHASE POIN E CALC lat sn gt TABL PHASE POINCLIMn AA CAL Culate nz TABL ebe POINCLIMGSTATe essen nennen nnne nnn tnnn nnn rrr nnne CALCulate lt n gt TABLe PHASe PPPHase CAL CGulate cnz TADBlebtAGe PbbtHasel Min CALCulate lt n gt TABLe PHASe PPPHase LIMit STATe CAL GCulatesn ERR PHASE E TEEN CALCulate lt sn gt AB ebtAGehRtERbRor LU IM CALCulate n TABLe PHASe RERRor LIMit GTATe enne tnn nene nre snnt nennen CALCulate lt n gt TABLe POWer ADROoOp DB 2 triti rentrer ha th oer ta ehe ka En perna pe PER Eae ea CALCulate n TABLe POWer ADRoop DB LIMit CALCulate lt n gt TABLe POWer ADRoop DB LIMit STATe CALCulate n TABLe POWer ADRoop PER Gent eerte rnnt th niat CALCulate lt n gt TABLe POWer ADRoop PERCent LIMit CALCulate n TABLe POWer ADRoop PERCent LIMit STATe eese 307 CALCulate sn TABLEe POWer ALL EIMICS TA T6 oceano breton eher ra ce eoru cui 308 CAL Culate cnz AB ebOwWerALLTSTATel Eana aa R T NECAD 295 CALCulatesn gt ER Ge E ie creep teer e ette ct set dp Ree de ras 295 GALCulate sn TABEe POWer AMPLit de l IMIt 2 cue eir ieri er terae ira eene era eate dE AEN 308 CAL Culate cnz TABLebOMer AM mude UM GTATe enne rennen 307 CALCulate n ER Ge EE 295 GALGCulate n TABLe POWer AVG LIMIt oni cr
224. TIMImng DRATIO EE 361 SENS amp PUl Se TIMirig FALI AVERAGE icipin ard ree pe x eMe PEPPER NE 362 SENSe PULSe TIMing FALL LIMit SENSe PULSe TIMing FALL MAXimum SENS amp PUl Se TIMirig FALLEMINIMUM ergeet eee terea ete t bn ete ene erro tee enr manera 362 SENS amp PUESe TIMirig EAELSDEVIaltiOn irent co rer rie hr rrr erre HER eu 362 SENSe a B TTE Lao Hio EE 361 SENSe PULSe TIMIng OFFIAVERAGE irte rte ete ern e E vecti teh Rer EE EN ERR 362 SENSEI PULSE TI Ming OFF LIMIT eieiei enan ntt gegen treu e eege e uerus eee 387 SENSe PULSe TIMing OFF MAXimum 962 SENSE TER le Hei Gre nl TI NEE 363 SENSEI PULSE TI Ming OFF SDEVIAION serso rns ee TE esee eene enne nnne nnne nennen trennen 363 SENSe PUESe TIMinig OFF 2 ee SEELEN rette tet iier Ea 362 SENSE I PULSE TIMING PRF AVERAGE fics n eere gea e retener rn orte oes EDI ue ERR ROS 363 SENSE I PULSE TIMING PRE adl res 387 SENSe PUESe TIMing PRF MAXIm ti 2 caeco t trt tte entera p get teet det n dae eR RR 363 SENSe PULSe TIMing PRF MINimum SENSe PUES6 TIMing PRE SDEVIAtIOR imitar ee egeret EAEE Eee 363 SENSe PUESe TIMinDQ P RFE2 coti ctrca eet ne tette ctr ge ce ev tpe eed theres 363 SENSe PULSe TIMing PREAVERAQG EE 364 EIS CET TRUE age RTE ccr trate teure ennt roseus D ESEE 387 SENSe PUESe TIMing PREMAXIIUmm un cce ee ctr vic P tip op cre c cte pta Pene dd gue 364 SE
225. The ratio of maximum to minimum power over the entire pulse ON OFF time Remote command SENSe PULSe POWer PMIN on page 354 CALCulate lt n gt TABLe POWer PMIN on page 297 SENSe PULSe POWer PMIN LIMit on page 387 Droop The rate at which the pulse top level decays calculated as the difference between the power at the beginning of the pulse ON time and the power at the end of the pulse ON time divided by the pulse amplitude Droop values are only calculated if Pulse Has Droop is set to On default behaviour For more information see chapter 4 1 1 Amplitude Droop on page 43 Note The percentage ratio values are calculated in V if the Measurement Level is defined in V see Reference Level Unit on page 121 otherwise in W Remote command SENSe PULSe POWer ADRoop DB on page 347 SENSe PULSe POWer ADRoop PERCent on page 347 CALCulate lt n gt TABLe POWer ADRoop DB on page 295 CALCulate lt n gt TABLe POWer ADRoop PERCent on page 295 SENSe PULSe POWer ADRoop DB LIMit on page 387 SENSe PULSe POWer ADRoop PERCent LIMit on page 387 Ripple The ripple is calculated as the difference between the maximum and minimum devia tion from the pulse top reference within a user specified interval For more information see chapter 4 1 2 Ripple on page 43 Note The percentage ratio values are calculated in V if the Measurement Level is
226. UMBer on page 344 Intervals without pulses are not displayed SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST PNUMber Usage Setting only Manual operation See Y Axis on page 137 See X Axis on page 138 CALCulate lt n gt TRENd FREQuency X lt XAxis gt Configures the x axis of the Parameter Trend result display The y axis is configured using the CALCulate lt n gt TRENd lt GroupName gt Y com mands Configuring the Results Setting parameters lt XAxis gt POINt PPFRequency RERRor PERRor DEViation CRATe Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 3 Frequency Parameters on page 22 POINt Frequency at measurement point PPFRequency Pulse Pulse Frequency Difference RERRor Frequency Error RMS PERRor Frequency Error Peak DEViation Frequency Deviation CRATe Chirp Rate RST POINt Example CALC2 TREN FREQ X PERR Usage Setting only Manual operation See X Axis on page 138 CALCulate n TRENd FREQuency Y lt YAxis gt Configures the y axis of the Parameter Trend result display The x axis is configured using the CALCulate lt n gt TRENd lt GroupName gt X com mands Configuring the Results Setting paramete
227. Viation MINimum lt QueryRange gt SENSe PULSe FREQuency DEViation SDEViation lt QueryRange gt Returns the statistical value for the chirp rate per us over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe FREQuency PERRor lt QueryRange gt Returns the peak frequency error for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Frequency Error Peak on page 23 SENSe PULSe FREQuency PERRor AVERage lt QueryRange gt SENSe PULSe FREQuency PERRor MAXimum lt QueryRange gt SENSe PULSe FREQuency PERRor MINimum lt QueryRange gt SENSe PULSe FREQuency PERRor SDEViation lt QueryRange gt Returns the statistical value for the peak frequency error over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe FREQuency POINt lt QueryRange gt Returns the frequency at the measurement point for the specified pulse s Query parameters lt QueryRange g
228. a a SERV ERE Ipaa d EV RARE 199 SENSe IMIXer HARMonIG TYPE endet deen teens eet paca e Ee 199 SENSe MIXer HARMonic E OW iati iie doti rre P ti E en n a t e edd 200 SENS6e MIXSE Ee iiti cio con ha el pes opea uotis ed adt secado Facite EPA Deu T PLN CR XR A ADOPT D eres 195 SENSE MIX LOSS HIG Hirisa Geese aee terere ease rr er ia bre ru eve ek YE LEAD R XE EVERY CHE IREEN 200 SENSe IMIXer EOSS TABLe HIGEL 2i t geb rece i Sea kit cete tig de ce Dr de e Duca 200 SENS MIXer LOSS TABLE Reuse 200 EE Bee Re EE 201 SENSE MIXE PORTS ie t tre tpi E C eut He de dea gato Lr eens rae cde 201 SENSe MIXer RFOV errangeE STAT 6 diii eed atte Ire cet suerte teed ceste ra aa REX PEE UR ER EIE ERE NES 201 SENSE MIXEr SIGNA m SENSe MIXer THReshold SENSE KEN KK EE SENSe IMSRACCAP TUG OF ESL EE 337 SENSe PULSe Parametertype Parameter IM 387 SENSe PUESe FREQuency CRATe AVERGaQg6 1 itenim reete nicht nac dera aca hc 368 SENSe PUESe EREQUency CRATE LIMI s ecc etta rem etta sr tme rbi Sr recederet enis rra 387 SENSe PUESe FREQuency CRATe MAXIImUtm cct tt tette tene tret tei etate nuces 368 ISENSe PUESe FREQuency CRATe SDEVIatlon cette rtm ete rente ee trennen nd 368 SENSe PULESe FREQUency CRAT83 ttt rti rec wet eran tec te D dei icd eed de 368 SENSe PULSe FREQuency DEViation AVERage esee eene tnter TEN EAEE tate dna 369
229. ab with an overview of all active chan nels SINGIe Displays the measurement channel that was previously focused RST SING Example DISP FORM SPL DISPlay WINDow lt n gt SIZE Size This command maximizes the size of the selected result display window temporarily To change the size of several windows on the screen permanently use the LAY SPL command see LAYout SPLitter on page 318 Parameters Size LARGe Maximizes the selected window to full screen Other windows are still active in the background SMALI Reduces the size of the selected window to its original size If more than one measurement window was displayed originally these are visible again RST SMALI Example DISP WIND2 LARG Working with Windows in the Display The following commands are required to change the evaluation type and rearrange the screen layout for a measurement channel as you do using the SmartGrid in manual operation Since the available evaluation types depend on the selected application some parameters for the following commands also depend on the selected measure ment channel Configuring the Result Display Note that the suffix n always refers to the window in the currently selected measure ment channel see INSTrument SELect on page 186 LAYoutADDEWINDOW 11 2 oro torpet tiunt etti oci in vane ene need e eee avete taut disiau 315 LAY out CA TaI WINDOW srania E a A 317 Be Deler Ce DT 317 LAYOURREMOVE WINDOW EE 31
230. ables or disables the use of the direct path for frequencies close to 0 Hz Parameters lt State gt AUTO 1 Default the direct path is used automatically for frequencies close to 0 Hz OFF 0 The analog mixer path is always used RST 1 Input Output Settings Example INP DPAT OFF Usage SCPI confirmed Manual operation See Direct Path on page 76 INPut FILTer HPASs STATe State Activates an additional internal high pass filter for RF input signals from 1 GHz to 3 GHz This filter is used to remove the harmonics of the R amp S FSW in order to mea sure the harmonics for a DUT for example This function requires an additional high pass filter hardware option Note for RF input signals outside the specified range the high pass filter has no effect For signals with a frequency of approximately 4 GHz upwards the harmonics are suppressed sufficiently by the YIG filter Parameters State ON OFF RST OFF Example INP FILT HPAS ON Turns on the filter Usage SCPI confirmed Manual operation See High Pass Filter 1 3 GHz on page 76 INPut FILTer YIG STATe State This command turns the YIG preselector on and off Note the special conditions and restrictions for the YIG filter described in YIG Prese lector on page 76 Parameters State ON OFF 0 1 RST 1 0 for UO Analyzer GSM VSA and MC Group Delay measurements Example INP FILT YIG OFF Deactivates the YIG preselector
231. ading and writing of streamed UO data all data is interleaved i e complex values are interleaved pairs of and Q values and multi channel signals contain interleaved complex sam ples for channel 0 channel 1 channel 2 etc If the NumberOfChannels element is not defined one channel is presumed Example Element order for real data 1 channel I 0 Real sample 0 I 1 Real sample 1 I 2 Real sample 2 Example Element order for complex cartesian data 1 channel I 0 Q 0 Real and imaginary part of complex sample 0 I 1 OI Real and imaginary part of complex sample 1 I 2 Q 2 Real and imaginary part of complex sample 2 Example Element order for complex polar data 1 channel Mag 0 Phi 0 Magnitude and phase part of complex sample 0 Mag 1 Phi l Magnitude and phase part of complex sample 1 Mag 2 Phi 2 Magnitude and phase part of complex sample 2 Example Element order for complex cartesian data 3 channels Complex data I channel no time index Q channel no time index 0110 GIO 0 Channel 0 Complex sample 0 1 0 Q 1 0 Channel 1 Complex sample 0 2 0 Q 2 0 Channel 2 Complex sample 0 0 1 O 0 1 Channel 0 Complex sample 1 1 I 1 O 11I1 Channel 1 Complex sample 1 2 11 1 QI2 1 Channel 2 Complex sample 1 Q Data File Format iq tar I 0 1 2 Q 0 2 Channel 0 Complex sample 2 I 1
232. aeaaeeenenes 301 CAL Culate nz TABlefGlDelobe AMbower 302 CALCulate lt n gt TABLe TSIDelobe ChRAaTio 302 CAL Culatesn gt TABLE TS Delobe MPOWGE 2 1r aa taz conti retta des o pne temen 302 CALCulate nz TABlefGlDelobelGlevel esent nnns 302 CAL Culate nz TABletGlDelobe MrReouency enne 302 CALCulate nzTABlefGlDelobeMtase 303 CAL Culatesn gt TABLE TS Delobe MW DIU ater taire oda unen ner ec euren nin 303 CAL Culate nz TADlefGlDelobe PCObrelatton 303 CAL Culate nz TABlefGlDelobebGlevel 303 CALCulatespns TABEe TSIDelobe SDELay 2 2 ertet ter ER eed oce edant ia aa 304 CALCulate lt n gt TABLe FREQuency ALL STATe lt Visibility gt lt Scaling gt If enabled all frequency parameters are included in the result tables Setting parameters lt Visibility gt ON OFF RST OFF lt Scaling gt GHZ MHZ KHZ HZ Optional Defines the unit in which the results are displayed Usage Setting only Configuring the Results CALCulate lt n gt TABLe FREQuency CRATe lt Visibility gt lt Scaling gt If enabled the chirp rate per us is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt GHZ MHZ KHZ HZ Defines the unit in which the results are displayed RST MHZ Manual operation See Chirp Rate on page 23 CALCulate lt n gt TABLe FREQuency DEViation lt Visibility gt lt Scaling gt If enabled the frequency deviation is includ
233. age 228 TRIGger SEQuence LEVel IQPower on page 228 TRIGger SEQuence LEVel EXTernal port on page 228 TRIGger SEQuence LEVel RFPower on page 229 Repetition Interval Trigger Settings Defines the repetition interval for a time trigger The shortest interval is 2 ms The repetition interval should be set to the exact pulse period burst length frame length or other repetitive signal characteristic Remote command TRIGger SEQuence TIME RINTerval on page 230 Drop Out Time Trigger Settings Defines the time the input signal must stay below the trigger level before triggering again When using the optional 2 GHz bandwidth extension R amp S FSW B2000 with an IF power trigger the drop out time defines the width of the robust width trigger By default itis set to 1 us For external triggers no drop out time is available when using the B2000 option Trigger Settings For details see the R amp S FSW UO Analyzer and UO Input User Manual Remote command TRIGger SEQuence DTIMe on page 226 Coupling Trigger Settings If the selected trigger source is IF Power or External CH2 you can configure the cou pling of the external trigger to the oscilloscope This setting is only available if the optional 2 GHz bandwidth extension is active see B2000 State on page 93 DC 50 Q Direct connection with 50 Q termination passes both DC and AC components of the trigger signal DC 1 MO Direct con
234. age for each active application Generally if a signal contains multiple data channels for multiple standards separate applications are used to analyze each data channel Thus it is of interest to know which application is analyzing which data channel The MSRA MSRT Master display indicates the data covered by each application restricted to the channel bandwidth used by the corresponding standard by vertical blue lines labeled with the application name Analysis interval However the individual result displays of the application need not analyze the com plete data range The data range that is actually analyzed by the individual result dis play is referred to as the analysis interval In the R amp S FSW Pulse application the analysis interval is automatically determined according to the result range settings as in Signal and Spectrum Analyzer mode for result displays based on an individual pulse For result displays based on the entire capture buffer the MSRA MSRT analysis interval corresponds to the measurement time The currently used analysis interval in seconds related to measurement start is indicated in the window header for each result display Analysis line A frequent question when analyzing multi standard signals is how each data channel is correlated in time to others Thus an analysis line has been introduced The analysis line is a common time marker for all MSRA applications It can be positioned in any MSRA applica
235. aint trn ttt tno entr irn tih Pe ong 308 CALCulate lt n gt TABLe POWer AVG LIMit STAT cccceccceeceeseeeeeeeeeeeeeeeeeeaaeeeseaaeeeseaneeeseaeeeseeaeeeeseeeeesaeees 307 CALCulateen TLABLEe POWet BASE rettet rece Ba edge tet ee pd ates 296 CAL Culatesn gt TABLe POWerBASE IM ised iac iiiter ccr Eee i e ema ete eere t E eeu 308 CAL Culate cnz AB ebOuWerBAGELUIMGTATe eene nnne nennen tnnt nennt 307 CALCulatesn EE Dee dE 296 CAL Culatesn TABEe POWerMAX LIMI cai ceu o etna eei e hai eee are rove aee eva 308 CALCulate lt n gt TABLe POWer MAX LIMit STATe 307 CALCulate n ER Ge Ee MIN rebote trece cette tp rece eee edge tete Per tap n deuda 296 CAL Culatesn TABEe POWerMIN IIMIC 2 2 rcu eric erri E Etre trea e tee Nera Eva Erde cua 308 CAL Culate nz TABl ebOMWer MIN UM GSTATe 307 CAL Culate lt n gt TABLe POWer ON cct peg ete vette t pure de ved de edu n p n deed 296 GAL GCulatesn TABLE Ae Ee al KR dE 308 CAL Culate cnz AB ebOwWer ONTLIMGSTATe nenne nnne nnne sene the senten einn 307 CALCulate lt n gt TABLe POWer OVERshoot DB ts CAL Culate cnz TADBL ebOMWer OVERsboot DRBLIMN ariran aiana anA 308 CALCulate lt n gt TABLe POWer OVERshoot DB LIMit STAT cccceeceeeeeeeeeeeeeeeeeeeeeeeeeeneeesseaeeeseeaeeeeeneeeess 307 GALCulate n TABLe POWer OVERshoot PERCent 2 1 rrr etn eren 297 CALCulate lt n gt TABLe POWer OVERshoot PERCent LIMit 309 CALOCulate n TABLe POWer OVE
236. ames the channel with the name IQAnalyzer2 to IQAna lyzer3 Usage Setting only INSTrument SELect lt ChannelType gt This command activates a new measurement channel with the defined channel type or selects an existing measurement channel with the specified name See also INSTrument CREate NEW on page 183 For a list of available channel types see table 9 1 Parameters lt ChannelType gt PULSe Pulse option R amp S FSW K6 SYSTem PRESet CHANnel EXECute This command restores the default instrument settings in the current channel Use INST SEL to select the channel Example INST Spectrum2 Selects the channel for Spectrum2 SYST PRES CHAN EXEC Restores the factory default settings to the Spectrum2 channel Usage Event Manual operation See Preset Channel on page 69 Signal Description The signal description provides information on the expected input signal which optimi zes pulse detection GENGeTRACeMEAGurement DE Fime DUbRaton AUTO 187 SENSe TRACe MEASurement DEFine DURation MAX eere 187 SENSe TRACe MEASurement DEFine DURation MIN eee 187 Signal Description SGENGeTRACeMtEAGurement DE Fine DUbRaton OFF 187 SENSe TRACe MEASurement DEFine FREQuency OFFSet sse 188 SENSe TRACe MEASurement DEFine FREQuency OFFSet AUTO sse 188 SENSe TRACe MEASurement DEFine FREQuency RATE sse 188 SENSe TRACe
237. amp S FSW Getting Started manual Front Rear Panel View chapters 0 How to provide trigger signals as output is described in detail in the R amp S FSW User Manual Output settings can be configured via the INPUT OUTPUT key or in the Outputs dia log box IF Video Output IF Wide Out Frequency Noise Source Trigger 2 Trigger 3 INGIS eE E 96 yir gc E E 97 L Output Wg ts sas icc A daran Reit elu cm MU UE 97 e ET 97 Ree 97 L Send NE AED UU T 98 Noise Source Switches the supply voltage for an external noise source on or off Input and Output Settings External noise sources are useful when you are measuring power levels that fall below the noise floor of the R amp S FSW itself for example when measuring the noise level of a DUT Remote command DIAGnostic SERVice NSOurce on page 220 Trigger 2 3 Defines the usage of the variable TRIGGER INPUT OUTPUT connectors where Trigger 2 TRIGGER INPUT OUTPUT connector on the front panel Trigger 3 TRIGGER 3 INPUT OUTPUT connector on the rear panel Trigger 1 is INPUT only Note Providing trigger signals as output is described in detail in the R amp S FSW User Manual Input The signal at the connector is used as an external trigger source by the R amp S FSW No further trigger parameters are available for the connector Output The R amp S FSW sends a trigger signal to the output connector to be used by connected device
238. and OUTPut TRIGger lt port gt PULSe IMMediate on page 232 Capture Offset This setting is only available for applications in MSRA or MSRT operating mode It has a similar effect as the trigger offset in other measurements it defines the time off set between the capture buffer start and the start of the extracted application data In MSRA mode the offset must be a positive value as the capture buffer starts at the trigger time 0 In MSRT mode the offset may be negative if a pretrigger time is defined Remote command SENSe MSRA CAPTure OFFSet on page 337 MSRT mode SENSe RTMS CAPTure OFFSet on page 339 Segmented Capture Configures data capturing with a gating function that is non continuous data acquisi tion Trigger Settings Trigger Source Trigger In Out Segmented Capture Activate Events 10 Trigger Offset 5 0 us Ere resa eeu 25 0 us Segmented capture is only possible if an external IF Power or RF Power trigger is used see Trigger Source on page 106 When using the new Time Sidelobe Analysis functions set up the capture such that there are enough pre post samples to account for the entire reference UO waveform length For details on segmented data capture and recommended settings see chapter 4 4 Segmented Data Capturing on page 50 Activating de activating segmented data capturing Segmented Capture If activated data is captured for the specified dura
239. and Interface connection If an instrument is connected the following information is displayed Name and serial number of the instrument connected to the Digital Baseband Inter face Used port e Sample rate of the data currently being transferred via the Digital Baseband Inter face e Level and unit that corresponds to an UO sample with the magnitude 1 Full Scale Level if provided by connected instrument Remote command INPut DIQ CDEVice on page 211 5 4 1 5 Analog Baseband Input Settings The following settings and functions are available to provide input via the optional Ana log Baseband Interface in the applications that support it They can be configured via the INPUT OUTPUT key in the Input dialog box Input and Output Settings Frequency 0 Input Settings Digital IQ I Q Mode Input Config Analog Baseband High Accuracy Timing Trigger Baseband RF IQ File Signal Path Analog I jQ NCO Se E x H E For more information on the optional Analog Baseband Interface see the R amp S FSW UO Analyzer and UO Input User Manual Analog Baseband Input Staley ocaecat cendi aer rx a da ndi ence dn 90 VQ ols EUER 90 input On UE Tc 91 High Accuracy Timing Trigger Baseband RF 0 6c cccseessseccceeessseceeetesseceteressneaees 91 Centor FREQUBRGY A 91 Analog Baseband Input State Enables or disable the use of the Analog Baseband input source
240. and selects the type of signal generated at the trigger output Suffix lt port gt Parameters lt OutputType gt Manual operation Selects the trigger port to which the output is sent 2 trigger port 2 front 3 trigger port 3 rear DEVice Sends a trigger signal when the R amp S FSW has triggered inter nally TARMed Sends a trigger signal when the trigger is armed and ready for an external trigger event UDEFined Sends a user defined trigger signal For more information see OUTPut TRIGger lt port gt LEVel RST DEVice See Output Type on page 97 OUTPut TRIGger lt port gt PULSe IMMediate This command generates a pulse at the trigger output Suffix lt port gt Usage Manual operation Selects the trigger port to which the output is sent 2 trigger port 2 front 3 trigger port 3 rear Event See Send Trigger on page 98 Segmented Data Capturing OUTPut TRIGger lt port gt PULSe LENGth Length This command defines the length of the pulse generated at the trigger output Suffix port Selects the trigger port to which the output is sent 2 trigger port 2 front 3 trigger port 3 rear Parameters Length Pulse length in seconds Manual operation See Pulse Length on page 97 9 9 Segmented Data Capturing Configures data capturing with a gating function that is non continuous data acquisi tion Segmented capture is only possible if an external
241. ange Settings Defines the starting time of the reference pulse as an offset from the beginning of the data file Remote command RIQ FIQ RANGe OFFSet on page 191 Length Range Settings Defines the length of the reference pulse in the data file in seconds Remote command RIQ FIQ RANGe LENGth on page 190 5 4 Input and Output Settings The R amp S FSW can analyze signals from different input sources and provide various types of output such as noise or trigger signals The settings for data input and output are described here ee 74 Output Seins eM 96 Digital iO Output Settiligs 2 misina naaa oi eaa E 98 5 4 1 Input Source Settings The input source determines which data the R amp S FSW will analyze Input settings can be configured in the Input dialog box Some settings are also available in the Amplitude tab of the Amplitude dialog box tions that support UO data processing and are described in detail in the R amp S FSW UO CH The Digital UO and the Analog Baseband input sources are only available in applica Analyzer User Manual Since the Digital UO input and the Analog Baseband input use the same digital signal path both cannot be used simultaneously When one is activated established connec tions for the other are disconnected When the second input is deactivated connec tions to the first are re established This may cause a short delay in data transfer after Switching the input sourc
242. appens when a trace is normalized based on the measured pulse The measurement point used for normalization is the same point used to determine the pulse parameter results see chapter 5 10 2 Measurement Point on page 122 6 Pulse 1 Phase 1Pk Max e2A v Avg s 3Mi Min 4 12 us 100 0 ns Fig 4 10 Normalization of the Pulse Phase trace based on the measured pulse By default the measurement point is the center of the pulse However this position may be moved arbitrarily within the pulse by defining an offset If the measurement point is defined with an offset in time the trace value does not pass 0 at the measurement point but at the time of the measurement point the offset value mum PE INN ES UU SS User Manual 1173 9392 02 17 62 R amp SS9FSW K6 6S Measurement Basics Fig 4 11 Normalization of the Pulse Phase trace based on the measured pulse 100 ns offset Normalization averaging window Together with an for the measurement point normalization based on the measured pulse can provide for a very stable pulse trace However in this case the maxhold minhold or average traces may not necessarily pass 0 at the measure ment point as the calculated average value may not coincide with the measured trace point value 100 0 ns Fig 4 12 Normalization based on the measured pulse with an average window User Manual 1173 9392 02 17 63 R amp SS9FSW K6 6S Measurement Basics p
243. aptured for the specified duration before and after each trigger event for the specified number of trigger events The signal data between these cap ture times is not stored in the capture buffer Parameters lt State gt ON OFF 0 1 OFF 0 Switches the function off ON 1 Switches the function on RST 0 Example Configure a power trigger at 20dBm TRIG SOUR RFP TRIG LEV RFP 20dBm Activate segmented capture SENS SWE SCAP ON Define a pretrigger offset of 5 us SENS SWE SCAP OFFS 5 us Capture data for 20us for 20 trigger events SENS SWE SCAP EVEN 20 SENS SWE SCAP LENG 20 us Select single sweep mode NIT CONT OFF Initiate a new measurement and wait until the sweep has finished NIT WAI Query the timestamps at which segments were captured TRAC IIQ SCAP ITST 8585T Query the timestamps at which trigger events occured TRAC IQ SCAP TST TRIG Manual operation See Activating de activating segmented data capturing on page 112 Data Acquisition 9 10 Data Acquisition The following commands are required to configure how much and how data is captured from the input signal MSRA MSRT operating mode In MSRA MSRT operating mode only the MSRA MSRT Master channel actually cap tures data from the input signal The data acquisition settings for pulse measurements in MSRA MSRT mode define the application data extract and analysis interval For details on the MSRA operating mode see the R a
244. are damage Remote command INPut ATTenuation on page 224 INPut ATTenuation AUTO on page 224 Using Electronic Attenuation If the optional Electronic Attenuation hardware is installed on the R amp S FSW you can also activate an electronic attenuator In Auto mode the settings are defined automatically in Manual mode you can define the mechanical and electronic attenuation separately Note Electronic attenuation is not available for stop frequencies or center frequencies in zero span gt 13 6 GHz In Auto mode RF attenuation is provided by the electronic attenuator as much as possible to reduce the amount of mechanical switching required Mechanical attenua tion may provide a better signal to noise ratio however When you switch off electronic attenuation the RF attenuation is automatically set to the same mode auto manual as the electronic attenuation was set to Thus the RF attenuation may be set to automatic mode and the full attenuation is provided by the mechanical attenuator if possible Both the electronic and the mechanical attenuation can be varied in 1 dB steps Other entries are rounded to the next lower integer value For the R amp S FSW85 the mechanical attenuation can be varied only in 10 dB steps If the defined reference level cannot be set for the given attenuation the reference level is adjusted accordingly and the warning Limit reached is displayed in the status bar Remote command INPut E
245. are indicated as Return values e Conformity Commands that are taken from the SCPI standard are indicated as SCPI con firmed All commands used by the R amp S FSW follow the SCPI syntax rules e Asynchronous commands A command which does not automatically finish executing before the next com mand starts executing overlapping command is indicated as an Asynchronous command e Reset values RST User Manual 1173 9392 02 17 178 9 1 2 9 1 4 Introduction Default parameter values that are used directly after resetting the instrument RST command are indicated as RST values if available Default unit This is the unit used for numeric values if no other unit is provided with the parame ter e Manual operation If the result of a remote command can also be achieved in manual operation a link to the description is inserted Long and Short Form The keywords have a long and a short form You can use either the long or the short form but no other abbreviations of the keywords The short form is emphasized in upper case letters Note however that this emphasis only serves the purpose to distinguish the short from the long form in the manual For the instrument the case does not matter Example SENSe FREQuency CENTer is the same as SENS FREQ CENT Numeric Suffixes Some keywords have a numeric suffix if the command can be applied to multiple instances of an object In that case t
246. articular the order of the XML elements must be respected i e iq tar uses an ordered XML schema For your own implementation of the iq tar file format make sure to validate your XML file against the given schema The following example shows an UO parameter XML file The XML elements and attrib utes are explained in the following sections Sample UO parameter XML file xyz xml lt xml version 1 0 encoding UTF 8 xml stylesheet type text xsl href open IqTar xml file in web browser xslt RS IQ TAR FileFormat fileFormatVersion 1 Q Data File Format iq tar xsi noNamespaceSchemaLocation RsIqTar xsd xmlns xsi http www w3 0rg 2001 XMLSchema instance lt Name gt FSV K10 lt Name gt lt Comment gt Here is a comment lt Comment gt DateTime 2011 01 24T14 02 49 DateTime lt Samples gt 68751 lt Samples gt lt Clock unit Hz gt 6 5e 006 lt Clock gt lt Format gt complex lt Format gt lt DataType gt float32 lt DataType gt lt ScalingFactor unit V gt 1 lt ScalingFactor gt lt NumberOfChannels gt 1 lt NumberOfChannels gt lt DataFilename gt xyz complex float32 lt DataFilename gt lt UserData gt lt UserDefinedElement gt Example lt UserDefinedElement gt lt UserData gt lt PreviewData gt lt PreviewData gt lt RS_IQ TAR FileFormat Element Description RS IQ TAR File The root element of the XML file It must contain the attribute ileFormatVersion Format t
247. as current for the low first range This command is only available if the external mixer is active see SENSe MIXer STATe on page 195 Parameters BiasSetting RST 0 0A Default unit A Manual operation See Bias Settings on page 82 SENSe MIXer LOPower Level This command specifies the LO level of the external mixer s LO port Input Output Settings Parameters Level numeric value Range 13 0 dBm to 17 0 dBm Increment 0 1 dB RST 15 5 dBm Example MIX LOP 16 0dBm Manual operation See LO Level on page 81 SENSe MIXer SIGNal State This command specifies whether automatic signal detection is active or not Note that automatic signal identification is only available for measurements that per form frequency sweeps not in vector signal analysis or the UO Analyzer for instance Parameters State OFF ON AUTO ALL OFF No automatic signal detection is active ON Automatic signal detection Signal ID is active AUTO Automatic signal detection Auto ID is active ALL Both automatic signal detection functions Signal ID Auto ID are active RST OFF Manual operation See Signal ID on page 82 See Auto ID on page 82 SENSe MIXer THReshold Value This command defines the maximum permissible level difference between test sweep and reference sweep to be corrected during automatic comparison see SENSe MIXer SIGNal on page 196 Parameters Value numeric
248. at defines the marker position on the x axis The unit is either Hz frequency domain or s time domain or dB statistics Range The range depends on the current x axis range Example CALC MARK2 X 1 7MHz Positions marker 2 to frequency 1 7 MHz Manual operation See Marker Table on page 30 See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 See X value on page 148 CALCulate lt n gt DELTamarker lt m gt AOFF This command turns all delta markers off lt m gt is irrelevant Example CALC DELT AOFF Turns all delta markers off Usage Event CALCulate lt n gt DELTamarker lt m gt LINK State This command links delta marker m to marker 1 If you change the horizontal position x value of marker 1 delta marker m changes its horizontal position to the same value Parameters State ON OFF RST OFF Example CALC DELT2 LINK ON Manual operation See Linking to Another Marker on page 149 Working with Markers CALCulate lt n gt DELTamarker lt m gt LINK TO MARKer lt m gt State This command links delta marker m1 to any active normal marker m2 If you change the horizontal position of marker m2 delta marker m1 changes its horizontal position to the same value Parameters State ON OFF RST OFF Example CALC DELT4 LINK TO MARK2 ON Links the delta marker 4 to the marker 2 Manual operation See Linking to Another Marker o
249. at storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TRACe on page 341 Export Functions The following export functions are available via softkeys in the Export menu which is displayed when you select the Save icon in the toolbar and then Export The standard data management functions e g saving or loading instrument settings that are available for all R amp S FSW applications are not described here See the R amp S FSW User Manual for a description of the standard functions Export Table TREI 159 Table Export Configuration rte e PL reperit EE Ea EL FEE ad Pe 160 Lumina Et t ttbi ab SiS 160 c odo MM 161 DES CE EE 161 L Export Table to ASCII File rtt rct acids rhet hn tup anica 161 Export Trace to ASCII E 161 Trace EXPO nelle EE 162 VO EXPONE FM O ry feet 162 L Eypon Rang PONERET 162 Export Table to ASCII File Opens a file selection dialog box and saves the selected result table in ASCII format DAT to the specified file and directory R amp S FSW K6 6S Analysis For details on the file format see chapter A 1 Reference ASCII File Export Format on page 402 Note To store the measurement results for all traces and tables in al
250. ate n TABLe TSIDelobe SDELay LIMit STATe sse 307 CALOCulate n TABLe ParameterGroup ALL LIMit STATe rnn nn nn 308 CALOCulate n TABLe FREQuency ALL LIMit STATe essen 308 CALCulate lt n gt TABLe PHASe ALL LIMit STAT ccccccececce cece caeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 308 CAL Culate nz TABlebOWer ALL UM STATe neeo e rt reteo reren eene rsn rnrn renn re eae 308 CAL Culate nz TABleTlMimg AL UMSTATe 308 CALOCulate n TABLe TSIDelobe ALL LIMit STATe essent 308 CALCulate n TABLe ALL LIMiES TATe ooi near naa nan s ava rac aea d eia 308 CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit ccccceeeeeeeeeeeeeeeeeeeaeaneeees 308 CAL Culate nz TABletRtOuencv CRATe UM 308 CALOCulate n TABLe FREQuency DEViation LIMit eee eene 308 CALOCulate n TABLe FREQuency PERRor LIMit seeesessseseseseneneee nennen 308 CALOCulate n TABLe FREQuency POINt LIMit eeeeeesseseseeeeeene nnne 308 CALCulate lt n gt TABLe FREQuency PPFRequency LIMit cccceceeeeeeeeeeeeeeeeeeeeeeeenenetenenes 308 CAL Culate nz TABletRtOuencv RERbRor LIMn eene 308 CAL Culate nz TABlebiAGe DEViaton LIMn eene 308 CALCulate n TABLe PHASe PERRor LIMit eeeeeeee eee eee 308 CALCulate n TABLe PHASe POINtLIMit Leeeeee eclesie eese nnne nnns nn nhan 308 CALCulate n TABLe PH
251. ate eee avere veau e e EELER S INDE 203 SENSe ee Be Be 204 SENSe CORRection CVL MIXer eeeeeceeneee secant t tatnen nh ah nans nnb nane n ss hh randia EEN 204 Input Output Settings ISBNSeTGORRScGUOD CYL PORTS certae ur auras ack cr ceat erae be e ote denned 205 E Ee E Be 205 SENSe CORRection CVL SNUMBer ieeeieseeisi seen nenne kenne nnn tesa sn sensisse NEEN 205 SENSe CORRection CVL BAND Type This command defines the waveguide band for which the conversion loss table is to be used This setting is checked against the current mixer setting before the table can be assigned to the range Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Parameters Band K A KA Q U VJE W F D G Y J USER Standard waveguide band or user defined band Note The band formerly referred to as A is now named KA the input parameter A is still available and refers to the same band as KA For a definition of the frequency range for the pre defined bands see table 9 2 RST F 90 GHz 140 GHz Example CORR CVL SEL LOSS TAB 4 Selects the conversion loss table CORR CVL BAND KA Sets the band to KA 26 5 GHz 40 GHz Manual operation See Band on page 86 SENSe CORRection CVL BIAS lt BiasSetting gt This command defines the bias setting to b
252. base level is called the fall time The duration the signal power remains at the base level is called the OFF time The pulse repetition interval also known as pulse period is defined as the duration of one complete cycle consisting of the rise time e the ON time the fall time e the OFF time To avoid taking noise ripples or other signal instabilites into consideration threshold values are defined for calculation of these characteristic values rather than using the absolute peak or minimum power values More precise definitions and an illustration of how these values are calculated are pro vided in chapter 3 1 Pulse Parameters on page 15 4 3 Parameter Spectrum Calculation When a signal is measured over time it is possible to calculate the frequency spectrum for the measured signal by performing an FFT on the measured data Silmilarly it is possible to calculate a spectrum for a particular pulse parameter by performing an FFT This spectrum allows you to easily determine the frequency of periodicities in the pulse parameters For example the Parameter Spectrum for Pulse Top Power might display a peak at a particular frequency indicating incidental amplitude modula tion of the amplifier output due to the power supply Basically the parameter spectrum is calculated by taking the magnitude of the FFT of the selected parameter and normalizing the result to the largest peak Frequency axis When calculating a spec
253. ce between test sweep and reference Sweep to be corrected during automatic comparison Auto ID on page 82 function The input range is between 0 1 dB and 100 dB Values of about 10 dB i e default set ting generally yield satisfactory results Remote command SENSe MIXer THReshold on page 196 Bias Settings Define the bias current for each range which is required to set the mixer to its optimum operating point It corresponds to the short circuit current The bias current can range from 10 mA to 10 mA The actual bias current is lower because of the forward voltage of the mixer diode s The trace is adapted to the settings immediately so you can check the results To store the bias setting in the currently selected conversion loss table select the Write to lt CVL table name gt button Remote command SENSe MIXer BIAS LOW on page 195 SENSe MIXer BIAS HIGH on page 195 Input and Output Settings Write to CVL table name Bias Settings Stores the bias setting in the currently selected Conversion loss table for the range see Managing Conversion Loss Tables on page 83 If no conversion loss table is selected yet this function is not available CVL Table not selected Remote command SENSe CORRection CVL BIAS on page 202 Managing Conversion Loss Tables In this tab you configure and manage conversion loss tables Conversion loss tables consist of value pairs that describe the correc
254. ce teet reiten EDEN 353 SENSe PULSe POWer PAVG AVERage SENSe PUESe POWSrPAWVG LUIMIE ecio tet three rent nee tnr ee e t n ne te e c ri 387 Ee TE e ER KEE 354 SENSe PUESe POWer PAVG MINIETLETI acere remate ordena eva npe excess ttc Ce 354 SENSe PUESe POWSEPAVG SDEVIatOn ncc retrace ette t en dde e dens 354 SENSE PULSE POWE PAWQG 2 iicet ince nr ncn a t eee i une ae ce Fe eruta ied 354 SENSe PUESe POWer PMIN AVERGagS67 2 nente ctt to tte teet tenerte SEENEN ESAEREN ENESE 355 SENSe PULSe POWer PMIN LIMit SENSe PULSe POWSeEPMIN MAXImUtm ai ciao rra te encontre pear tre trabe cere cach deu E 355 SENSe PUESe POWer PMIN MINIEDUE aententia etna gt ek ei cete Rte bep rie bri 355 SENSe PUESe POWSr PMIN SDEViatlori tecti endet nete ee ettet 355 SENSe PULSe POWer PMIN SENSe PUESe POWerPOINEAVERGdIgei tut ne treten oe tiere SEENEN EES 355 SENSe PUESe POWh er POINELIMIE it rrt tent ende 387 SENSe PUESe POWSEPOINE MAXIIUI iz cere eeepc niet tbc eerte rie trice ce tact o Pec 355 ISENSe PUESe POWer POINtMINIRBUFTI cou oot tue en petet tunt muti eie tetu teeth cens 355 SENSe PUESe POWerPOINESDEWVIAtOLrTS cnet ctt trece nete tct 355 SENS amp e PUESe POWer POINE neon tenore ror eerie bere Henson eorr E pre FR TEL pee PEE Spe dedi d 355 SENSe PULSe POWer PON AVERage SENSE PULSE P
255. ciuedeccceese eco cep einen eth ak us ECKE tre hka 72 e d putand Output dee 74 e Frontend SOWING EE 99 e Tudger SettbiBs urere recen deer ERR LER CUR ER ea drug ee ERR A paw ia NR qiu Un RR REN ERRER AN 104 e BalasicauisittOly scene teens terr e audien remet eerta ure tet 113 LEE opc uno 115 e Pulse Deleclioh oar ea pa N 118 e Pulse Measurement Geitngs A 119 LEE Automatic pe EET 127 Configuration Overview Throughout the measurement configuration an overview of the most important cur rently defined settings is provided in the Overview The Overview is displayed when you select the Overview icon which is available at the bottom of all softkey menus Configuration Overview _Overvie Pulse Meas Pulse Period Modulation Input BW Droop Ref Level Source Filter Pulse width Att Level AQT Min off Time Preamp offset Samples i KE cH Signal Description Input Frontend Trigger Data Acquisition D E3 Detection Measurement Result Config Reference Top Level Position Threshold Meas Levels Alignment Hysteresis Meas Point Length Limit Meas Range 2 Parameter Trend In addition to the main measurement settings the Overview provides quick access to the main settings dialog boxes Thus you can easily configure an entire measurement channel from input over processing to output and evaluation by stepping through the dialog boxes as indicated in the Overview In particular
256. conds from the current capture Usage Query only SENSe TRACe MEASurement TRANsition NEGative DURation Query the fall time values in seconds from the current capture Usage Query only SENSe TRACe MEASurement TRANsition POSitive DURation Query the rise time values in seconds from the current capture Usage Query only SENSe TRACe MEASurement TRANsition POSitive OVERshoot Query the pulse rising overshoot power ratio values from the current capture Usage Query only SENSe TRACe MEASurement TRANsition POSitive OVERshoot MAXimum lt QueryRange gt Query the pulse rising overshoot power ratio values from the current capture Parameters lt QueryRange gt SELected CURRent ALL Usage Query only Retrieving Results 9 20 5 Retrieving Limit Results The following commands retrieve the results of the limit check for individual parame ters IGENGeIDUL Ge Darametertvpne Parameter LIMI reren ennrerererresrerene 387 SENSe PULSe FREQuency CRATe LIMIit iiic carrier ainan 387 SENSe PULSe FREQuency DEViation LIMIt eee eeeeeeeeeeseeeeeeeeeeeeeeeeeees 387 ISEBNSeTPUESEFREGQuency PERRON LIMI cea onusta rer s ilt etre cree uua 387 SENSe PUESe FREQuency POINELIMIE aacuoia 1c unite ra iere tnter aai 387 SENSe PULSe FREQuency PPFRequency LIMit ccececeeeeeeeeeeeeeeeeeaeaeaeeaeaaeenenenenenes 387 ISGENZGeIpDUL SGetREOuencv RERRor UIMI ees eaeeeeeeeeeeeeeeeeseeeeeeeeeeees 387 SENSe PULS
257. corresponding trace for configuration The currently selected trace is high lighted orange For the Magnitude Capture result display only one trace is available which cannot be configured Remote command DISPlay WINDow lt n gt TRACe lt t gt STATe on page 325 Selected via numeric suffix of TRACe t commands Trace Mode Defines the update mode for subsequent traces Trace Configuration Clear Write Overwrite mode the trace is overwritten by each measurement This is the default setting Max Hold The maximum value is determined over several measurements and displayed The R amp S FSW saves each trace point in the trace memory only if the new value is greater than the previous one Min Hold The minimum value is determined from several measurements and displayed The R amp S FSW saves each trace point in the trace memory only if the new value is lower than the previous one Average The average is formed over several measurements The Sweep Average Count determines the number of averaging procedures View The current contents of the trace memory are frozen and displayed Blank Removes the selected trace from the display Remote command DISPlay WINDow lt n gt TRACe lt t gt MODE on page 324 Detector Defines the trace detector to be used for trace analysis Auto Selects the optimum detector for the selected trace and filter mode This is the default setting Type Defines the selected detec
258. current pulse Depending on the user specified definition of the pulse period the period begins with the mid level crossing of the current pulse s rising edge period high to low or the mid level crossing of the previous pulse s falling edge period low to high See also Pulse Period on page 70 Remote command SENSe PULSe TIMing TSTamp on page 366 CALCulate lt n gt TABLe TIMing TSTamp on page 301 SENSe PULSe TIMing TSTamp LIMit on page 387 Settling Time The difference between the time at which the pulse exceeds the mid threshold on the rising edge to the point where the pulse waveform remains within the pulse boundary ON Inner ON Outer See figure 3 1 Remote command SENSe PULSe TIMing SETTling on page 365 CALCulate lt n gt TABLe TIMing SETTling on page 301 SENSe PULSe TIMing SETTling LIMit on page 387 Rise Time The time required for the pulse to transition from the base to the top level This is the difference between the time at which the pulse exceeds the lower and upper thresh olds See figure 3 1 Remote command SENSe PULSe TIMing RISE on page 365 CALCulate lt n gt TABLe TIMing RISE on page 300 SENSe PULSe TIMing RISE LIMit on page 387 Fall Time The time required for the pulse to transition from the top to the base level This is the difference between the time at which the pulse drops below the upper and lower thresholds See figure 3 1 Remote command SENSe
259. d CALCulate lt n gt MSRA ALINe SHOW on page 336 CALCulate lt n gt RTMS ALINe SHOW on page 338 7 Export Functions CT The following export functions are available via softkeys in the Export menu which is S displayed when you select the Save icon in the toolbar and then Export The standard data management functions e g saving or loading instrument settings that are available for all R amp S FSW applications are not described here See the R amp S FSW User Manual for a description of the standard functions Export Table to ASGIIT WB ceat eene delectet keen ro eae Rea 165 Table enee ue Te LTE 165 L Columns to Eat tege 166 E 45 METRE 166 L Decimal Separator etna 166 L Export Table to ASCII File 166 Export Trace to ASCII FEie enne nennen nene 167 Trace e de tee DEET 167 ferc 167 5 Bana Pablo cioe coats edge pt an ad cendi en Gonna 168 Export Table to ASCII File Opens a file selection dialog box and saves the selected result table in ASCII format DAT to the specified file and directory For details on the file format see chapter A 1 Reference ASCII File Export Format on page 402 Note To store the measurement results for all traces and tables in all windows use the Export Trace to ASCII File command in the Save Recall Export menu See also chapter 6 4 2 Trace Data Export Configuration on page 157 Note Secure user mode In secure
260. d SENSe STATistic n TYPE on page 327 Sweep Average Count Statistical Evaluation Defines the number of measurements to be performed in the single sweep mode Val ues from 0 to 200000 are allowed If the values 0 or 1 are set one measurement is performed In continuous sweep mode if sweep count 0 default averaging is performed over 10 measurements For sweep count 1 no averaging maxhold or minhold operations are performed The Average Count also determines the number of measurements used to calculate the pulse trace statistics for the result range displays see chapter 4 7 1 Trace Statis tics on page 61 Remote command SENSe SWEep COUNt on page 252 SENSe AVERage lt n gt COUNt on page 252 Maximum number of trace points Statistical Evaluation If the number of samples within the result range see chapter 6 1 2 Result Range on page 130 is larger than this value the trace data is reduced to the defined maxi mum number of trace points using the selected detector Restricting this value can improve performance during statistical evaluation of large result range lengths Remote command SENSe SWEep POINts on page 327 Normalization Enables or disables normalization of the trace in reference to the measured pulse or a reference pulse For details see chapter 4 7 2 Normalizing Traces on page 61 Off Traces are not normalized Measured The value in the measurement point that
261. d connectors or as a plain UO signal via 2 single ended lines Parameters State ON Differential OFF Single ended RST ON Example INP IQ BAL OFF Manual operation See Input Configuration on page 91 INPut IQ FULLscale AUTO State This command defines whether the full scale level i e the maximum input power on the Baseband Input connector is defined automatically according to the reference level or manually Parameters State Example Input Output Settings ON Automatic definition OFF Manual definition according to 1NPut 10 FULLscale LEVel on page 209 RST ON INP IO FULL AUTO OFF INPut IQ FULLscale LEVel lt PeakVoltage gt This command defines the peak voltage at the Baseband Input connector if the full scale level is set to manual mode see 1NPut 10 FULLscale AUTO on page 208 Parameters lt PeakVoltage gt Example 0 25 V 0 5 V 1V 2V Peak voltage level at the connector For probes the possible full scale values are adapted according to the probe s attenuation and maximum allowed power RST 1V INP IQ FULL 0 5V INPut IQ TYPE lt DataType gt This command defines the format of the input signal Parameters lt DataType gt Example IQIIIQ IQ The input signal is filtered and resampled to the sample rate of the application Two input channels are required for each input signal one for the in phase component and one for the quadrature compo nent
262. d data segments The length of the array depends on the number of trigger events specified by SENSe SWEep SCAPture EVENts on page 233 Usage Query only Manual operation See Magnitude Capture on page 29 See Trigger Offset on page 112 9 20 3 Retrieving Information on Detected Pulses The following commands return general information on the currently selected or all detected pulses Es EI dz EB EE 344 ISENSe PULSeNUNMIBGI d eater te ehe etre rex aa ren re ee aides 344 SENSe PULSe ID lt QueryRange gt Queries the ids of the detected pulses i e the unique index within the entire measure ment as opposed to SENSe PULSe NUMBer Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe NUMBer lt QueryRange gt Queries the detected pulse numbers i e the index within the capture buffer as opposed to SENSe PULSe ID Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only 9 20 4 Retrieving Parameter Results The following commands return the calculated pulse parameters 9 20 4 1 Retrieving Results For details on the individual parameters see chapter 3 1 2 Power Amplitude Parame ters on page 19 e Retrieving Power Ampli
263. defined Reference tie 72 User defined Reference File The reference pulse is imported to the R amp S FSW Pulse application from an UO wave form file with measured data Reference Signal Description Signal Reference IQ Input Source Frequency Amplitude Output Digi Reference Type Input File no file selected Range Settings Offset Length wp lm 73 Ju ett pM 73 ee roo varies rae i m ex err denis eer ER Red AE 73 ai EE 74 EE EEN 74 Selection Type Defines how the reference waveform is defined Custom IQ A custom waveform is loaded from an iq tar file Remote command RIQ SELect on page 191 Input File Selection Opens a file selection dialog box to select the UO data file which contains the reference waveform The file must be in iq tar format as specified in chapter A 3 I Q Data File Format iq tar on page 405 The selected file is loaded and some basic information from the file is displayed in the dialog box Remote command RIQ FIQ PATH on page 190 Range Settings If the waveform file contains more than one pulse you can specify which range of the data in the file is to be used as a reference pulse By default Auto mode the data from the entire file is used as the time sidelobe range In Manual mode you can define the length and offset of the range Remote command RIQ FIQ RANGe AUTO on page 190 Input and Output Settings Offset R
264. deg dBm dBm 0 604 5 000 27 261 0 604 5 000 27 258 0 604 5 000 27 261 0 604 5 000 27 258 0 604 5 000 SERIES 0 604 7 001 27 254 0 604 5 000 27 256 0 604 5 000 27 258 0 604 5 000 27 261 0 604 5 000 ETE 237 0 604 5 000 27 257 0 604 7 001 27 254 1 2 2 3 3 4 E 5 5 6 6 i 7 8 Imm Ne Oo Note The results of the limit check are for informational purposes only special events such as stopping the measurement are not available Note Optionally limit lines can be displayed in the Parameter Distribution and Param eter Trend diagrams You can drag these lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted Remote command LAY ADD WIND 2 RIGH PRES see LAYout ADD WINDow on page 315 chapter 9 14 7 Configuring the Statistics and Parameter Tables on page 290 Results chapter 9 20 4 Retrieving Parameter Results on page 344 chapter 9 20 5 Retrieving Limit Results on page 386 Pulse Statistics Displays statistical values minimum maximum average standard deviation for the measured pulse parameters in a table of results Both the current capture buffer data and the cummulated captured data from a series of measurements are evaluated The statistics computed only from pulses within the current capture buffer are highlighted green For reference the measured parameters from
265. ding time before the next trigger event Note that this command is available for any trigger source not just RF Power Note that this command is maintained for compatibility reasons only Use the TRIGger SEQuence IFPower HOLDoff on page 227 command for new remote control programs Parameters Time Default unit S TRIGger SEQuence SLOPe Type For external and time domain trigger sources you can define whether triggering occurs when the signal rises to the trigger level or falls down to it Parameters Type POSitive NEGative POSitive Triggers when the signal rises to the trigger level rising edge NEGative Triggers when the signal drops to the trigger level falling edge RST POSitive Example TRIG SLOP NEG Manual operation See Slope on page 109 Triggering Measurements TRIGger SEQuence SOURce Source This command selects the trigger source Note on external triggers If a measurement is configured to wait for an external trigger signal in a remote control program remote control is blocked until the trigger is received and the program can continue Make sure this situation is avoided in your remote control programs Parameters Source Example Manual operation IMMediate Free Run EXTernal Trigger signal from the TRIGGER INPUT connector If the optional 2 GHz bandwidth extension R amp S FSW B2000 is installed and active this parameter activates the CH2 input con
266. ds a thresh old then subsequently falls below that threshold or vice versa Pulses that rise to and then remain at a peak positive power level for a certain duration and then fall again are referred to as positive pulses whereas the opposite falling to and remaining at a minimum negative power level then rising is referred to as a negative pulse The ON power level is referred to as the top or 100 level whereas the OFF level is referred to as the base or 0 level Top Base Base Top Positive Negative pulse pulse A hysteresis can refine the detection process and avoid falsely interpreting unstable signals as additional pulses Optionally detection can be restricted to a maximum number of pulses per capture process R amp S FSW K6 6S Measurement Basics El If the top power level is not constant this is called an amplitude droop Since the top level is an important reference for several pulse parameters a droop should be taken into consideration where possible If a signal is known to have a droop the reference level is calculated separately for the rising and falling edges rather than as an average or median value over the ON time The time it takes the signal power to rise from the base level to the top is called the rise time The duration the signal power remains at the top level is considered the ON time which also defines the pulse width The time it takes the signal power to fall from the top to the
267. e A 2 Effects of Large Gauss Filters File contents Sweep Count 20 Description Number of sweeps set Preamplifier OFF Preamplifier status Top Pos CENT Top 100 level position can be Edge EDGE or Center CENT Top Alg MEDI Top level measurement algorithm can be Median MEDI or Mean MEAN Ripple Portion 50 Portion of pulse top where ripple is measured High Level 90 V High distal threshold level Mid Level 50 V Mid mesial threshold level Low Level 10 V Boundary 3 V Low proximal threshold level The top boundary level Point Ref CENT Measurement point reference can be Rise RISE Center CENT or Fall FALL Point Offset 0 s Measurement point offset Range Ref CENT Measurement range reference can be Center CENT or Edge EDGE Range Length 75 Measurement range length only valid for Range Ref CENT Range Offset Rise 0 s Measurement range offset from rising edge only valid for Range Ref EDGE Range Offset Fall 0 s Measurement range offset from falling edge only valid for Range Ref EDGE Data section Values 1001 Number of rows of measured values in the table Pulse parameter names iik dn ERAN Unit s Unit of pulse parameters 1 1 10 0e 9 Measured values lt ID gt Pulse No gt lt Param 1 lt Param 2
268. e e Radio Frequency Inpll iiien etae ere nE EENS 75 e Settings for Input from UO Data Files seen 76 eerste ele dees cede ee d ot ade ek 77 e Digital l Q Input Settings inrer teris ep ra t zac eau mean tu gea ye teres 88 e Analog Baseband Input Settings eene nemen tnnt bns 89 e Settings for 2 GHz Bandwidth Extension R amp S FSW B2000 92 5 4 1 1 Input and Output Settings Radio Frequency Input The default input source for the R amp S FSW is Radio Frequency i e the signal at the RF INPUT connector of the R amp S FSW If no additional options are installed this is the only available input source oe E Input Source Power Sensor External Generator Probes Radio Frequency External Input Coupling Mixer Impedance Digital I 9 Q Direct Path Analog High Pass Filter 1 to 3 GHz Baseband YIG Preselector Input Connector INP UC COUN NG LE 75 Tuer m R 75 arid m 76 Ftigli Pass e WE E 76 NIG HPROS CISION ME 76 Input Coupling The RF input of the R amp S FSW can be coupled by alternating current AC or direct cur rent DC AC coupling blocks any DC voltage from the input signal This is the default setting to prevent damage to the instrument Very low frequencies in the input signal may be dis torted However some specifications require DC cou
269. e Activates or deactivates a limit check for all parameters in all parameter groups Parameters State ON OFF RST OFF Manual operation See Deactivating all limit checks for all parameter groups on page 142 CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe FREQuency CRATe LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe FREQuency DEViation LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe FREQuency PERRor LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe FREQuency POINt LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe FREQuency PPFRequency LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe FREQuency RERRor LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe PHASe DEViation LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe PHASe PERRor LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe PHASe POINt LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe PHASe PPPHase LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe PHASe RERRor LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer ADRoop DB LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer ADRoop PERCent LIMit lt LowLimit gt lt UppLimit gt CALCulate lt n gt TABLe POWer AMPLitude LIMit lt LowLimit gt lt Upp
270. e Average Tx Power on page 20 Configuring the Results CALCulate lt n gt TABLe POWer BASE Visibility If enabled the base power is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Base Power on page 19 CALCulate lt n gt TABLe POWer MAX lt Visibility gt If enabled the maximum Tx power is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Peak Power on page 20 CALCulate lt n gt TABLe POWer MIN Visibility If enabled the minimum Tx power is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Minimum Power on page 20 CALCulate lt n gt TABLe POWer ON lt Visibility gt If enabled the average ON power is included in the result tables Parameters Visibility ON OFF RST ON Manual operation See Average ON Power on page 20 CALCulate lt n gt TABLe POWer OVERshoot DB Visibility If enabled the overshoot in dB is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Overshoot on page 21 Configuring the Results CALCulate lt n gt TABLe POWer OVERshoot PERCent Visibility If enabled the overshoot in percent is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Overshoot on page 21 CALCulate lt n gt TABLe POWer PAVG Visibil
271. e For a description of the individual parameters see chapter 3 1 Pulse Parameters on page 15 R amp S FSW K6 6S Analysis Remote command CALCulate n TABLe GroupName ParamName see chapter 9 14 7 Config uring the Statistics and Parameter Tables on page 290 6 1 5 1 Table Export Configuration Table results can be exported to an ASCII file for further evaluation in other external applications Table export settings can be configured in the Result Configuration dia log box in the Table configuration tab in the vertical Table Export tab The settings are window specific and only available for result tables Timing Columns to Export Visible Parameters Export Limits dr Amplitude Parameters Tre sisi PE Igi ai E ert al Comma Freq parameters Export Table to ASCII File Phase Parameters Table Export Limits The result tables can be exported either directly in the settings dialog box or via the Export function in the Save Recall menu via the toolbar Columns 10 EX OOM ERES 139 RE E e re EE 140 Export Table to ASC File uenit rrr eed ea et ree d e ete ex PODER RR RES 140 Columns to Export Defines which of the result table columns are to be included in the export file Visible Only the currently visible columns in the result display are exported All All columns including currently hidden ones for the result display are exported Remote command MMEMory STORe
272. e Query only Manual operation Configuring the Result Display See Magnitude Capture on page 29 See Marker Table on page 30 See Parameter Distribution on page 31 See Parameter Spectrum on page 31 See Parameter Trend on page 32 See Pulse Frequency on page 34 See Pulse Magnitude on page 34 See Pulse Phase on page 35 See Pulse Phase Wrapped on page 36 See Pulse Results on page 36 See Pulse Statistics on page 37 See Result Range Spectrum on page 38 See Correlated Magnitude Capture on page 38 See Correlated Pulse Magnitude on page 39 See Pulse Frequency Error on page 40 See Pulse Phase Error on page 40 For a detailed example see chapter 9 22 Programming Example Pulse Measure ment on page 395 Table 9 3 lt WindowType gt parameter values for Pulse application Parameter value Window type CPMagnitude Correlated Pulse Magnitude CMCapture Correlated Magnitude Capture MCAPture Magnitude Capture Buffer MTABle Marker Table PDIStribution Parameter Distribution PFERror Pulse Frequency Error PFRequency Pulse Frequency PMAGnitude Pulse Magnitude PPERor Pulse Phase Error PPHase Pulse Phase PPWrapped Pulse phase wrapped PRESults Pulse Results PSPectrum Parameter Spectrum PSTatistics Pulse Statistics PTRend Parameter Trend RRSPectrum Result Range Spectrum Result displays marked with an asterisk
273. e range For a definition of the frequency range for the pre defined bands see table 9 2 Remote command SENSe CORRection CVL BAND on page 202 Harmonic Order The harmonic order of the range for which the table is to be applied This setting is checked against the current mixer setting before the table can be assigned to the range Remote command SENSe CORRection CVL HARMonic on page 204 Bias The bias current which is required to set the mixer to its optimum operating point It corresponds to the short circuit current The bias current can range from 10 mA to 10 mA The actual bias current is lower because of the forward voltage of the mixer diode s Tip You can also define the bias interactively while a preview of the trace with the changed setting is displayed see Bias Settings on page 82 Remote command SENSe CORRection CVL BIAS on page 202 Mixer Name Specifies the name of the external mixer for which the table is to be applied This set ting is checked against the current mixer setting before the table can be assigned to the range Remote command SENSe CORRection CVL MIXer on page 204 Mixer S N Specifies the serial number of the external mixer for which the table is to be applied Input and Output Settings The specified number is checked against the currently connected mixer number before the table can be assigned to the range Remote command SENSe CORRection CVL SNUMber on pag
274. e 2 1 Information displayed in the channel bar in the R amp S FSW Pulse application Ref Level Reference level Att RF attenuation Freq Center frequency for the RF signal Meas Time Measurement time data acquisition time Meas BW Measurement bandwidth SRate Sample rate SGL The sweep is set to single sweep mode If the input source is an I Q data file see chapter 5 4 1 2 Settings for Input from UO Data Files on page 76 most measurement settings related to data acquisition are not known and thus not dis played For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 EECH User Manual 1173 9392 02 17 13 Understanding the Display Information In addition the channel bar also displays information on instrument settings that affect the measurement results even though this is not immediately apparent from the display of the measured values e g transducer or trigger settings This information is dis played only when applicable for the current measurement For details see the R amp S FSW Getting Started manual Window title bar information For each diagram the header provides the following information z Magnitude Capture SC Fig 2 1 Window title bar information in the R amp S FSW Pulse application 1 Window number 2 Window type 3 Trace color 4 Trace number 6 Trace mode Diagram footer information The diagram footer beneath t
275. e 205 Mixer Type Specifies whether the external mixer for which the table is to be applied is a two port or three port type This setting is checked against the current mixer setting before the table can be assigned to the range Remote command SENSe CORRection CVL PORTs on page 205 Position Value Each position value pair defines the correction value for conversion loss for a specific frequency The reference values must be entered in order of increasing frequencies A maximum of 50 reference values can be entered To enter a new value pair select an empty space in the Position Value table or select the Insert Value button Correction values for frequencies between the reference values are obtained by inter polation Linear interpolation is performed if the table contains only two values If it con tains more than two reference values spline interpolation is carried out Outside the frequency range covered by the table the conversion loss is assumed to be the same as that for the first and last reference value The current configuration of the conversion loss function as described by the position value entries is displayed in the preview pane to the right of the table Remote command SENSe CORRection CVL DATA on page 203 Insert Value Inserts a new position value entry in the table If the table is empty a new entry at 0 Hz is inserted If entries already exist a new entry is inserted above the selected entry Th
276. e 242 RST OFF DISP WIND2 TRAC NORM MODE MEAS See Normalization on page 156 DISPlay WINDow lt n gt TRACe lt t gt NORMalize PHASe Offset Normalizes pulse phase traces to a spcific phase value For details see Normalization of pulse phase traces on page 64 This command is valid only for Phase Time and Phase Time Wrapped result displays The suffix t is irrelevant Parameters lt Offset gt Example Manual operation floating point value Phase offset in degrees or radians RST 0 DISP WIND2 TRAC NORM PHAS 45 See Phase Normalization on page 145 DISPlay WINDow lt n gt TRACe lt t gt STATe State This command turns a trace on and off The measurement continues in the background Parameters lt State gt Example Usage ON OFF 0 1 RST 1 for TRACe1 0 for TRACe 2 to 6 DISP TRAC3 ON SCPI confirmed Configuring Standard Traces Manual operation See Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6 on page 154 See Trace 1 Trace 2 Trace 3 Trace 4 Softkeys on page 157 SENSe JAVERage lt n gt STATe lt t gt State This command turns averaging for a particular trace in a particular window on and off Parameters lt State gt ON OFF Usage SCPI confirmed SENSe WINDow lt n gt DETector lt t gt FUNCtion lt Detector gt Defines the trace detector to be used for trace analysis Parameters lt Detector gt APEak Autopea
277. e LlMIt 2 etr iaaii 388 IGENZGe DU Ge TGlDelobe Mtase MA Ximum rennen neret rennen e nne TTEN 381 SENSe PUESe TSIBelobe MPhase MINIRUm uec aeneo ono rrt nate et niei mer ru 381 SENSe PULSe TSIDelobe MPHase SDEViatiori noter e tnr een rrt 381 SENSe PULSe TSIDelobe MPHase 380 SENSe PUESe TSIBelobe MWIDIh AVERGSQB crar cocer tree ra deni ben Feb a e e nere ku ep cinere aeuo 381 SENSe PULSe TSIDelobe MWIDth LIMIt 1 cotone n rh cene trn teh 388 SENSe PULSe TSIDelobe MWIDth MAXimuUtm onere en tht nnus 381 SENSe PULSe TSIBelobe MWIDIPEMINITTUITI uua cnn nt tone toi rera n repetir cete rer e ren 381 SENSe PULSe TSIDelobe MWIDth S DEViatiOn 11 nennt nr rtr net netten 381 SENSe PULESe TSIDelobe MWIDtG ic rot err rn rn tereti eere rtr rer eren rn n 381 SENSe PULSe TSIDelobe PCORrelation AVERage 382 SENSe PULSe TSIDelobe PCOhRrelation LIMIE 2 nent tnr nto t rre een 388 SENSe PULSe TSIDelobe PCORrelation MAXimum essent rennen 382 SENSe PULSe TSIBelobe PCORrelation M INIIUITI uen ocn nne pum trtum t tnr teen ore ne nane 382 SENSe PULSe TSIDelobe PCORrelation SDEViation tre rp rrt ern 382 SENSe PULSe TSIDelobe PGCOhRrelation eot eterni ttt there eon 382 SENSe PUESe TSIBelobe PSLevel AVERAQGe ccrent trea one paene Ix e ten erf ex gees 383 SENSe PUL
278. e PU Ge PEROJ A 189 SENZGeTbRACeMEAGurement DE Fine PU GebRtterence A 242 SENSe TRACe MEASurement DEFine PULSe REFerence POSition sss 243 SENSe TRACe MEASurement DEFine PULSe SELected essere entrent 254 SENSe TRACe MEASurement DEFine RIPPle 240 SENSe TRACe MEASurement DEFine RRANge ALIGnment essent 255 SENSe TRACe MEASurement DEFine RRANge AUTO esses eterne 255 GENZGe TRACeMEAGurement Dt Fine bRRAhoe ENG 255 SENSe TRACe MEASurement DEFine RRANge OFFSet sess 256 SENSe TRACe MEASurement DEFine RRANge REFerence essere 256 SGENZGe TbRACeMEAGurement DE Fine TRANeigon Hit Ference 240 SENSe TRACe MEASurement DEFine TRANsition LREFerence SENSe TRACe MEASurement DEFine TRANSsition REFerence sessi SENSe TRACe MEASurement DEFine TSRange ALIGnment essere SGENZGe TRACeMEAGurement Dt Fine TGbangekOTime AUTO 245 SENSe TRACe MEASurement DEFine TSRange KOTime LENGIR esee 246 SENSe TRACe MEASurement DEFine TSRange LENGth essen 246 SENSe TRACe MEASurement DEFine TSRange RANGe essere nennen 246 SENSe TRACe MEASurement POWer AVG SENSe TRAGCe MEASUrement POWoerNMJAX 1 cecinere nea ces cute e sv ecu ROSEO RESET 384 SENZGeTbRACeMEAGurement PCOWWer MIN 384 SENSe TRACe MEASurement POWer PULSe
279. e SDELay LIMit lt LowLimit gt lt UppLimit gt Defines the valid value range for the limit check for the selected parameter if limit check is active CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit STATe ON Commands for the parameter group TSIDelobe are only available if the additional option R amp S FSW K6S is installed For details on the individual parameters see chapter 3 1 Pulse Parameters on page 15 Parameters lt LowLimit gt Lower limit of the valid value range Default unit S lt UppLimit gt Upper limit of the valid value range Default unit S User Manual 1173 9392 02 17 309 Configuring the Results 9 14 9 Configuring the Y Axis Scaling and Units The scaling for the vertical axis is highly configurable using either absolute or relative values These commands are described here Useful commands for configuring scaling described elsewhere DISPlay WINDowc n TRACe t Y SCALe RLEVel on page 222 Remote commands exclusive to scaling the y axis GALCGulatesm BNITEREGUGRG o ceca i t rt e te e c eh c eA e da 310 DiSblavlfWiNDow nzTR ACects NI SCALelUNIT eene nnns 310 DiSblavlfWiNDow nzTRACevtSCALelAUTO tenementa 310 DISPlay WINDow n TRACe t Y SCALe MAXimum eese 311 DiSblavlfWiNDow nzTR ACectlSCALelMlNimum enne 311 DiSblavlfWiNDow nzTR ACectz lt SCALelb Dhvislon eene 312 DISPlay WINDow n TRACe t Y SCALe RPO
280. e Sidelobe ANALYSIS c 00ccceeecccecctevetseceseeeacecdenssaeececeneeeeencetnreiedecetpeesecterteeeeees 53 e Receiving Data Input and Providing Data Output 58 GN Evaluati EE 60 e Pulse Measurements in MSRA MSRT Mode 65 4 1 Parameter Definitions The pulse parameters to be measured are based primarily on the IEEE 181 Standard 181 2003 For detailed descriptions refer to the standard documentation IEEE Stand ard on Transitions Pulses and Related Waveforms from the IEEE Instrumentation and Measurement I amp M Society 7 July 2003 The following definitions are used to determine the measured pulse power parameters Value Description Low The magnitude in V corresponding to the pulse OFF level base level Lio The magnitude in V corresponding to the pulse ON level top level Lo The magnitude in V at the peak level occurring directly after the pulse rising edge mid level crossing Lrise The magnitude in V of the reference model at the top of the rising edge beginning of the pulse top Lian The magnitude in V of the reference model at the top of the falling edge end of the pulse top Lana The magnitude in V corresponding to the largest level above the reference model which occurs within the ripple portion of the pulse top Ltop The magnitude in V of the reference model at the point in time where L ip is measured li The magnitude in V corresponding to the lowest measured level belo
281. e gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Average ON Power on page 20 SENSe PULSe POWer ON AVERage lt QueryRange gt SENSe PULSe POWer ON MAXimum lt QueryRange gt SENSe PULSe POWer ON MINimum lt QueryRange gt SENSe PULSe POWer ON SDEViation lt QueryRange gt Returns the statistical value for the average ON power over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer OVERshoot DB lt QueryRange gt Returns the overshoot in dB for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Overshoot on page 21 Retrieving Results SENSe PULSe POWer OVERshoot DB AVERage lt QueryRange gt SENSe PULSe POWer OVERshoot DB MAXimum lt QueryRange gt SENSe PULSe POWer OVERshoot DB MINimum lt QueryRange gt SENSe PULSe POWer OVERshoot DB SDEViation lt QueryRange gt Returns the statistical value for the overshoot in dB over the specified pulses Q
282. e name of the window In the default state the name of the window is its index Example LAY REM 2 Removes the result display in the window named 2 Configuring the Result Display Usage Event LAYout REPLace WINDow lt WindowName gt lt WindowType gt This command replaces the window type for example from Diagram to Result Sum mary of an already existing window in the active measurement channel while keeping its position index and window name To add a new window use the LAYout ADD WINDow command Parameters lt WindowName gt String containing the name of the existing window By default the name of a window is the same as its index To determine the name and index of all active windows in the active measurement channel use the LAYout CATalog WINDow query lt WindowType gt Type of result display you want to use in the existing window See LAYout ADD WINDow on page 315 for a list of availa ble window types Example LAY REPL WIND 1 MTAB Replaces the result display in window 1 with a marker table LAYout SPLitter lt Index1 gt lt Index2 gt lt Position gt This command changes the position of a splitter and thus controls the size of the win dows on each side of the splitter Compared to the DISPlay WINDow lt n gt SIZE on page 314 command the LAYout SPLitter changes the size of all windows to either side of the splitter per manently it does not just maximize a single wind
283. e number of occurran ces for a specific parameter value within the current capture buffer For each parame ter distribution window you can configure which measured parameter is to be dis played CAL Culate n DISTtribution FREGQUBROy 22 iic neret dedero praes esos NEEN 257 CALCulatesn gt DIS Tribution LLINes STATE nrccicineniirni ra na EEEE i 257 CAL Culate nz DlSTgbutonNDIN nnns nnns nnns nn nsns nn naar rsen 258 CAL CulatesmeDISTmnbutlondP FAS c tn err deor ai Pemex ce en aee ca nde en iaaa EEEE 258 GAL Gulatesm DISTfbu tlori TEE 258 CAL Culatesn DIS Pribution TIMImWg E 260 CAL CulatesmnsDISTnmnbutlon TSIDelob6 c m reet es trn dt ne re t ERA OLARE EG 261 Configuring the Results CALCulate lt n gt DISTribution FREQuency lt XAxis gt lt YAxis gt Configures the Parameter Distribution result display Setting parameters lt XAxis gt POINt PPFRequency RERRor PERRor DEViation CRATe Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 3 Frequency Parameters on page 22 POINt Frequency at measurement point PPFRequency Pulse Pulse Frequency Difference RERRor Frequency Error RMS PERRor Frequency Error Peak DEViation Frequency Deviation CRATe Chirp Rate RST POINt lt YAxis gt COUNt OCCurrence Parameter to be displayed on the y axis COUNt Number of pulses in which the parameter value occurred OCCurence
284. e position of the new entry is selected such that it divides the span to the previous entry in half Delete Value Deletes the currently selected position value entry Shift x Shifts all positions in the table by a specific value The value can be entered in the edit dialog box The conversion loss function in the preview pane is shifted along the x axis Shift y Shifts all conversion loss values by a specific value The value can be entered in the edit dialog box The conversion loss function in the preview pane is shifted along the y axis 5 4 1 4 Input and Output Settings Save The conversion loss table is stored under the specified name in the C r_s instr user cv1 directory of the instrument Digital UO Input Settings The following settings and functions are available to provide input via the optional Digi tal Baseband Interface in the applications that support it These settings are only available if the Digital Baseband Interface option is installed on the R amp S FSW They can be configured via the INPUT OUTPUT key in the Input dialog box es Input Source Power Sensor Frequency Full Scale Level 10 0 dBm dBm ence Level evel Yes IQR100 101165 V Digital IQ OUT Sample Rate 10 MHz Full Scale Level 10 dBm For more information see the R amp S FSW UO Analyzer and UO Input User Manual Digital VQ Input State o 88 DFU WEE Samoe RID Cr 88 Pul
285. e span may be very long whereas the relevant signal segments may be relatively short Thus to improve clarity the display is com pressed to eliminate the gaps between the captured segments The segment ranges R amp SSFSW K6 6S Measurement Basics are indicated by vertical lines Between two segments the gap may be compressed in the display The time span indicated for the x axis in the diagram footer is only up to date when the measurement is completed See also Magnitude Capture on page 29 Markers jump over the gaps but indicate the correct absolute time within the seg ments This compressed time axis display is also used for the pulse based results The result tables are identical for segmented or full data capture Timestamps vs sample number As mentioned above timing information is available for the entire measurement span not only for the captured data segments Thus the absolute time that each segment starts at is available as a timestamp On the other hand only the data samples within the specified segments are actually stored The samples are indexed Thus in addition to the timestamps the start of a segment can also be referenced by the index number of the first sample in the segment for example when retrieving the captured segment data in remote operation See also TRACe n IQ SCAPture BOUNdary on page 341 The timing information for the captured segments is also stored when the UO data is exported
286. e specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Integrated Sidelobe Level on page 26 SENSe PULSe TSIDelobe ISLevel AVERage lt QueryRange gt SENSe PULSe TSIDelobe ISLevel MAXimum lt QueryRange gt SENSe PULSe TSIDelobe ISLevel MINimum lt QueryRange gt SENSe PULSe TSIDelobe ISLevel SDEViation lt QueryRange gt Returns the statistical value for the integrated sidelobe level within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe TSIDelobe MFRequency lt QueryRange gt Returns the mainlobe frequency for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Mainlobe Frequency on page 28 SENSe PULSe TSIDelobe MFRequency AVERage lt QueryRange gt SENSe PULSe TSIDelobe MFRequency MAXimum lt QueryRange gt SENSe PULSe TSIDelobe MFRequency MINimum lt QueryRange gt SENSe PULSe TSI
287. e stored UO data remains available as input for any number of subsequent measurements Furthermore the temporary data import requires the current mea surement settings in the current application to match the settings that were applied when the measurement results were stored possibly in a different application When the data is used as an input source however the data acquisition settings in the cur rent application attenuation center frequency measurement bandwidth sample rate can be ignored As a result these settings cannot be changed in the current applica User Manual 1173 9392 02 17 58 4 6 3 4 6 4 Receiving Data Input and Providing Data Output tion Only the measurement time can be decreased in order to perform measurements on an extract of the available data from the beginning of the file only For UO data which was captured as segmented data see chapter 4 4 Segmented Data Capturing on page 50 the timing information for the captured segments is also stored during export It can then be retrieved when the UO data file is used as an input source in order to reproduce results that are consistent with the original measurement When using input from an UO data file the RUN SINGLE function starts a single mea surement i e analysis of the stored UO data while the RUN CONT function repeat edly analyzes the same data from the file Sample iq tar files If you have the optional R amp
288. e sweep mode INIT WAI Starts a sweep and waits for its end CALC DELT2 ON Switches on delta marker 2 CALC DELT2 Y Outputs measurement value of delta marker 2 Usage Query only Manual operation See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 CALCulate lt n gt MARKer lt m gt Y This command queries the position of a marker on the y axis If necessary the command activates the marker first To get a valid result you have to perform a complete measurement with synchroniza tion to the end of the measurement before reading out the result This is only possible for single measurement mode See also INITiate lt n gt CONTinuous on page 249 Return values lt Result gt Result at the marker position Example INIT CONT OFF Switches to single measurement mode CALC MARK2 ON Switches marker 2 INIT WAI Starts a measurement and waits for the end CALC MARK2 Y Outputs the measured value of marker 2 Usage Query only 9 22 Programming Example Pulse Measurement Manual operation See Marker Table on page 30 See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 Programming Example Pulse Measurement This example demonstrates how to perform a pulse measurement in a remote environ ment Note that some of the used commands may not be necessary as they define default values but are included to demonstrate their use 9292
289. e used with the conversion loss table Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Parameters lt BiasSetting gt numeric value RST 0 0A Default unit A Example CORR CVL SEL LOSS TAB Ai Selects the conversion loss table CORR CVL BIAS 3A Manual operation See Write to lt CVL table name gt on page 83 See Bias on page 86 Input Output Settings SENSe CORRection CVL CATAlog This command queries all available conversion loss tables saved in the C r_s instr user cv1 directory on the instrument This command is only available with option B21 External Mixer installed Usage Query only SENSe CORRection CVL CLEAr This command deletes the selected conversion loss table Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Example CORR CVL SEL LOSS TAB 4 Selects the conversion loss table CORR CVL CLE Usage Event Manual operation See Delete Table on page 84 SENSe CORRection CVL COMMent Text This command defines a comment for the conversion loss table Before this command can be performed the conversion loss table must be selected see SENSe CORRecti
290. easurement Before this command can be executed the Sequencer must be activated see SYSTem SEQuencer on page 253 Suffix lt n gt irrelevant Example SYST SEQ ON Activates the Sequencer INIT SEQ MODE SING Sets single sequence mode so each active measurement will be performed once INIT SEQ IMM Starts the sequential measurements Usage Event INITiate lt n gt SEQuencer MODE lt Mode gt This command selects the way the R amp S FSW application performs measurements sequentially Before this command can be executed the Sequencer must be activated see SYSTem SEQuencer on page 253 A detailed programming example is provided in the Operating Modes chapter in the R amp S FSW User Manual Note In order to synchronize to the end of a sequential measurement using OPC OPC or WAI you must use SING1e Sequence mode For details on synchronization see the Remote Basics chapter in the R amp S FSW User Manual Suffix n irrelevant Parameters Mode Example Configuring and Performing Sweeps SINGIe Each measurement is performed once regardless of the chan nel s sweep mode considering each channels sweep count until all measurements in all active channels have been per formed CONTinuous The measurements in each active channel are performed one after the other repeatedly regardless of the channel s sweep mode in the same order until the Sequencer is stopped CDEFined
291. easurement Usage Query only Manual operation See Peak to Average Tx Power Ratio on page 21 SENSe PULSe POWer PAVG AVERage lt QueryRange gt SENSe PULSe POWer PAVG MAXimum lt QueryRange gt SENSe PULSe POWer PAVG MINimum lt QueryRange gt SENSe PULSe POWer PAVG SDEViation lt QueryRange gt Returns the statistical value for the Peak to Average Tx Power Ratio over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer PMIN lt QueryRange gt Returns the Peak to Min Power Ratio for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Peak to Min Power Ratio on page 21 Retrieving Results SENSe PULSe POWer PMIN AVERage lt QueryRange gt SENSe PULSe POWer PMIN MAXimum lt QueryRange gt SENSe PULSe POWer PMIN MINimum lt QueryRange gt SENSe PULSe POWer PMIN SDEViation lt QueryRange gt Returns the statistical value for the Peak to Min Power Ratio over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses i
292. ection CVL CLEAr on page 203 Import Table Imports a stored conversion loss table from any directory and copies it to the instru ments C r_s instr user cv1 directory It can then be assigned for use for a specific frequency range see Conversion loss on page 80 Note When using the optional 2 GHz bandwidth extension R amp S FSW B2000 special conversion loss tables are required Supported tables have the file extension b2g as opposed to ac1 for common tables While ac1 files can be used data acquisition with the B2000 option using such con version loss tables will lead to substantial inaccuracy Using no conversion loss tables at all during data acquisition with the B2000 option will cause even more inaccuracy Note that only common conversion loss tables in ac1 files can be edited Special B2000 tables in b2g files can only be imported and deleted For more details see the R amp S FSW UO Analyzer and UO Input User Manual Creating and Editing Conversion Loss Tables Conversion loss tables can be defined and edited in the Edit conversion loss table dialog box which is displayed when you select the New Table button in the External Mixer Conversion loss table settings A preview pane displays the current configuration of the conversion loss function as described by the position value entries Input and Output Settings Table File Name USERTABLE Comment User defined conversion loss table fo
293. ection status remote 214 OUIPULSERINGS i i rere tite tb de e cies 98 99 Digital UO Connection information sees Input connection information T le ne EE ele Eu CET Output settings information essessss Digital input Connection information see 89 Digital output Enabling WE 99 Direct path lut ICT EE 76 Re T 192 Display Configuration Softkey AA 145 Distal Thresholdi EE 121 Droop Calculation eunti t ett reta ee dee idee deus 43 ipfo e Tro Em 120 uj m 21 347 348 Drop out time TWIG em 108 Duplicating Measurement channel remote 183 DULY Cycle crines 18 299 360 D ty PANO ee ot aee ee trei 18 299 361 E Electronic input attenuation sesssssss 102 103 Errors o jBr 102 Evaluation Magnitude Capture tint n een Parameter Distribution Parameter SPSCUUIN aso caer i m rb nei toti n ex Parameter Trend cree reta er irme Re ELS Pulse Frequency Pulse Magnitude nisnin Pulse Phase nfeta saaan derer i ee Pulse phase wrapped Pulse Results iridis o ette Reo cx Pulse Statistics ng deii etica niata Result Ranga Spectrum uniones Evaluation methods Ee EE 315 Evaluation range see Measurement range rennen tnn 124 Evaluations cni hene e re ree SR ERE bote tatus
294. ed data Detected pulses are indicated by green bars along the x axis The currently selected pulse is highlighted in blue Additionally the pulse detec tion reference level is indicated Ref as well as the specified pulse detection thresh old Det 1 Magnitude Capture Start 0 0 s Stop 1 0 ms Segmented data capturing E User Manual 1173 9392 02 17 29 R amp S9FSW K6 6S Measurements and Result Displays Data can be captured non contiguously that is in segments see chapter 4 4 Seg mented Data Capturing on page 50 For segmented data the measured time span may be very long whereas the relevant signal segments may be relatively short Thus to improve clarity the Magnitude Capture display is compressed to eliminate the gaps between the captured segments The segment ranges are indicated by vertical blue lines Between two segments the gap may be compressed in the display The time span indicated for the x axis in the diagram footer is only up to date when the mea surement is completed Ref Level 0 00 Em Meas Time 250 us Att 1 Freq 2 0 GHz MeasBW 160MHz SRate 200 MHz TRG EXTI YIG Bypass T Magnitude Capture Remote command LAY ADD WIND 2 RIGH MCAP see LAYout ADD WINDow on page 315 Segmented data TRACe n IQ SCAPture BOUNdary on page 341 TRACe n 1Q SCAPture TSTamp SSTart on page 342 TRACe
295. ed for a parameter that is displayed in a Parameter Trend dia gram see Activating a limit check for a parameter on page 141 autoscaling is not available for the axis this parameter is displayed on Note Tip To update the scaling automatically once when this setting for continuous scaling is off use the Auto Scale Once on page 143 button or the softkey in the AUTO SET menu Remote command DISPlay WINDow lt n gt TRACe Y SCALe AUTO on page 310 Auto Scale Once Automatically determines the optimal range and reference level position to be dis played for the current measurement settings Result Configuration The display is only set once it is not adapted further if the measurement settings are changed again Remote command DISPlay WINDowcn TRACe Y SCALe AUTO on page 310 Absolute Scaling Min Max Values Define the scaling using absolute minimum and maximum values Remote command DISPlay WINDowcn TRACe t Y SCALe MAXimum on page 311 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe MINimum on page 311 Relative Scaling Reference per Division Define the scaling relative to a reference value with a specified value range per divi sion Per Division Relative Scaling Reference per Division Defines the value range to be displayed per division of the diagram 1 10 of total range Note The value defined per division refers to the default display of 10 divisions on the y axis I
296. ed in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters Scaling GHZ MHZ KHZ HZ Defines the unit in which the results are displayed RST KHZ Manual operation See Frequency Deviation on page 23 CALCulate lt n gt TABLe FREQuency PERRor lt Visibility gt lt Scaling gt If enabled the peak frequency error is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt GHZ MHZ KHZ HZ Defines the unit in which the results are displayed RST KHZ Manual operation See Frequency Error Peak on page 23 CALCulate lt n gt TABLe FREQuency POINt lt Visibility gt lt Scaling gt If enabled the frequency at the measurement point is included in the result tables Configuring the Results Parameters Visibility ON OFF RST ON Setting parameters lt Scaling gt GHZ MHZ KHZ HZ Defines the unit in which the results are displayed RST KHZ Manual operation See Frequency on page 22 CALCulate lt n gt TABLe FREQuency PPFRequency lt Visibility gt lt Scaling gt If enabled the Pulse Pulse Frequency Difference is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt GHZ MHZ KHZ HZ Defines the unit in which the results are displayed RST KHZ Manual operation See Pulse Pulse Frequency Difference on
297. ee Reference Level on page 102 DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RLEVel OFFSet Offset This command defines a reference level offset for all traces t is irrelevant Parameters Offset Range 200 dB to 200 dB RST OdB Example DISP TRAC Y RLEV OFFS 10dB Manual operation See Shifting the Display Offset on page 102 INPut GAIN STATe State This command turns the preamplifier on and off It requires the optional preamplifiier hardware For R amp S FSW 26 or higher models the input signal is amplified by 30 dB if the pream plifier is activated For R amp S FSW 8 or 13 models the preamplification is defined by INPut GAIN VALue Parameters State ON OFF RST OFF Example INP GAIN STAT ON Switches on 30 dB preamplification Usage SCPI confirmed Manual operation See Preamplifier on page 103 INPut GAIN VALue lt Gain gt This command selects the gain level if the preamplifier is activated INP GAIN STAT ON see INPut GAIN STATe on page 223 The command requires the additional preamplifier hardware option Parameters lt Gain gt 15 dB 30 dB The availability of gain levels depends on the model of the R amp S FSW R amp S FSW8 13 15dB and 30 dB R amp S FSW26 or higher 30 dB All other values are rounded to the nearest of these two RST OFF 9 7 3 Frontend Configuration Example INP GAIN VAL 30 Switches on 30 dB preamplification
298. ee the R amp S FSW MSRA User Manual For details on the MSRT operating mode see the R amp S FSW Real Time Spectrum Applica tion and MSRT Operating Mode User Manual 5 1 H N EI Ee Overview Configuration Overview Configuration Pulse measurements require a special application on the R amp S FSW which you acti vate using the MODE key on the front panel When you activate the Pulse application the first time a set of parameters is passed on from the currently active application After initial setup the parameters for the mea surement channel are stored upon exiting and restored upon re entering the channel Thus you can switch between applications quickly and easily When you activate the Pulse application a pulse measurement for the input signal is started automatically with the default configuration The Pulse menu is displayed and provides access to the most important configuration functions Automatic refresh of results after configuration changes The R amp S FSW supports you in finding the correct measurement settings quickly and easily after each change in settings the measurements are repeated and the result displays are updated immediately and automatically to reflect the changes You do not need to refresh the display manually Thus you can see if the setting is appropriate or not directly through the transparent dialog boxes e Gonfiguratiorr EE 67 Signal DESPO DEE 69 e Reference Signal Description
299. eeu PSone PEE NEATE DERT SS ERES 387 SENSe PUESe POWer AVG MAXImUE inci cuneta trea t then tpe ano eei throne rk nein abr eed una 349 949 SENSe PUESe POWer AVG ISDEVIAlOFiTs ucc cra torn aeo ore nemen pee bt EE Rena ER Cope be SE PER OENE EREET 349 SENSe PULSe POWer AV citer eee enger tren tert dr ee Ek e e een UE ve E ra REX DEN 349 SENSe PULSe POWer BASE AVERGBge6 E 350 SENSe PUESS POWerBASE bIMIE ocn prre tpe ne rt erar conse T EEn aa DnE ex eder FOSSE eK PHOT EE Red 387 SENSe PULSe POWer BASE MAXIIUIT erret rh rnnt rea een rr tp tionc na orb eer eed ue 350 SENSe PULSe POWer BASE MINIUEI ricette tte reote t Eh bird etd eter eene dh 350 SENSe PULSe POWer BASE SDEViation SENSE E ee 349 SENSE PULSE POWE MAOCAVERGQGB terr ter tirer teeth te tesin pi se d tree REENEN 350 SENSe PUESe POWer MAOCLIMILE 2 eti t rtt tenete tente teen 387 SENSe PULSe POWer MAXCMAXIImutm a ca cus caca tes cie rrr ettari uter ecu re cha tet Eti e ERE RR ER Re EA 350 ET elle unt DEE 351 SENSe PUESe POWer MAX SDEVYI atiOn creciente ten det etr ederet ne eee c trice 351 SENSe PULSe POWer MAX SENSe PUESe POWer MIN AVERAQ E 351 SENSe PUESe POWh r MIN LEIMIt zr trece trn nn eerte n nete P cre ne tecti 387 SENSe PULSe POWSEMIN MAYXirmUtri attt crt teeth rm cae ted ed inse 351 SENSe PUESe POWer MIN MINIIOITO sica
300. eference Signal Description 9 5 Reference Signal Description The following commands are required to configure the reference pulse for sidelobe vs time analysis These commands are only available if the additional option R amp S FSW K6S is installed PUD aile wp M 190 RIG FIO RANGEAU TO ooo EE RAA E a Ea E ERE 190 RIQ FIQ RANGS BE DE 190 siege c PE em 191 RIQ SELEC c 191 RIQ FIQ PATH lt Filename gt Selects the UO data file which contains the reference waveform The file must be in iq tar format as specified in chapter A 3 I Q Data File Format iq tar on page 405 Parameters lt FileName gt String containing the path and name of the file Example RIQ FIQ PATH C FSW predefined ReferencePulsesPredefined RefIQl iq tar Manual operation See Input File Selection on page 73 RIQ FIQ RANGe AUTO lt State gt If enabled the data from the entire file is used as the time sidelobe range If disabled you can define the length and offset of the range manually see RIQ FIO RANGe LENGth on page 190 and RIQ FIQ RANGe OFFSet on page 191 Parameters State ON OFF 1 0 RST 1 Example RIQ FIQ RANG AUTO OFF RIQ FIQ RANG OFFS 10 ms RIQ FIQ RANG LENG 1s Defines the use of a reference range that is 1 second long and starts after 10 ms Manual operation See Range Settings on page 73 RIQ FIQ RANGe LENGth Time
301. eform will be automatically re sampled to match the current measurement sample rate You should however consider that providing a reference waveform with a sam ple rate higher than the measurement sample rate will cause the reference waveform to be downsampled which may result in a loss of information through low pass filter ing o You may provide the reference waveform samples at a different sample rate to the one It can be shown that the correlator equation above is equivalent to a linear time invari ant filter operation where the filter impulse response is given by a time reversed and complex conjugated version of the reference waveform The implementation of the cor relator can therefore be efficiently calculated using fast Fourier transform FFT opera tions according to the diagram in Pulse compression calculation in the R amp S FSW Pulse application The procedure is as follows 1 An FFT is calculated from both the measured UO data and the reference UO data 2 One ofthe FFT results is converted to the complex conjugate 3 The FFT results are then multiplied together and the inverse FFT IFFT is calcula ted This produces a correlated UO signal 4 The magnitude squared value of the correlated UO signal is used for the Correlated Pulse Magnitude and Correlated Magnitude Capture displays Measured UO TA FFT ata Ly el Time Sidelobe 2 x ES LT Measurement Reference U
302. elobe CRATlo GDEViaton rn rnrentrnrerererererene 378 SENSeTPULESe TSIDelobe MPOWGF 2 tad rnnt tet eo tete read etate Lotta 378 IGENGeIpDUL Ge TGlDelobe Mower AVEHRage enhn 378 ISGENGe IpDUL Ge TGlDelobe WMower MAXimum seen nennen 378 ISGENGe IpDUL Ge TGlDelobe WMower MiNimum nennen nen 379 SENSe PULSe TSiDelobe MPower SDEVIAtON Z siisiiiissiissiiisiinsisiisiiiiniiiinii diinsiin 379 SENSe PULESe TSIDelobe ISLevelD nrnna a nnne neun ris 379 IGENZGeIpDUL GeTGilDelobeGlevelAVEage nnne nens 379 SENSe PULSE TSIDelobe ISLeve MAXIMUM eee ce cae ae eee ea eee eeeeeeeeeeeeeeeeeeeeeeeees 379 ISGENGeIpDUL Ge TGlDelobe Il evel MiNimum 379 ISGENGe IpDUL GeTGlDelobe Il evel GDtEViaton rnrn nenene 379 SENSeTPUESeETSIDelabs MPIReQUESRG ira eode are eme reete Puerto e roe zd 380 SENSe PULSe TSIDelobe MFRequency AVERage sessi 380 SENSe PULSe TSIDelobe MFRequency MAXimum sess nennen 380 SENSe PULSe TSIDelobe MFRequency MlNimum esses 380 SENSe PULSe TSIDelobe MFRequency SDEViation cessere 380 SENSe PULSe TSIDelobe MPHase ciere cendi inniti menta nd annu exu Rene ke hA ENEE 380 ISGENZGeIpDUL Ge TGlDelobe Mtase AVEHRage 381 IGENGe IpDUL Ge TGlDelobe Mtase MANimum nnne 381 SENSe PULSe TSIDelobe MPHase MlINimum esee 381 IGENGeIpDUL Ge TGlDelobe Mtase GDtEViaton niiina 381 SENSe PULSe TSIDelobe MWIDth
303. elobe CRATio MINimum lt QueryRange gt SENSe PULSe TSIDelobe CRATio SDEViation lt QueryRange gt Returns the statistical value for the compression ratio within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe IMPower lt QueryRange gt Returns the integrated mainlobe level for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Mainlobe Power Integrated on page 27 SENSe PULSe TSIDelobe IMPower AVERage lt QueryRange gt SENSe PULSe TSIDelobe IMPower MAXimum lt QueryRange gt Retrieving Results SENSe PULSe TSIDelobe IMPower MINimum lt QueryRange gt SENSe PULSe TSIDelobe IMPower SDEViation lt QueryRange gt Returns the statistical value for the integrated mainlobe power within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe ISLevel lt QueryRange gt Returns the integrated sidelobe level within the time sidelobe range for th
304. elobe measurements you must first provide a reference waveform in the iq tar file format supported by the R amp S FSW There are two general approaches for creating a reference waveform with the iq tar format How to Perform Time Sidelobe Analysis 1 Capturing a reference pulse in the R amp S FSW Pulse application then exporting the captured data to file using the standard R amp S FSWI Q Export functionality Tips e Configure the result range to contain only the samples to be used for a refer ence waveform see chapter 6 1 2 Result Range on page 130 and then export the selected result range only see Export Range on page 162 e Use the optional Digital Baseband Interface if available to capture an ideal digital waveform see chapter 5 4 1 4 Digital Q Input Settings on page 88 2 Creating an iq tar file externally using a PC Tips e The ig tar file format is described in chapter A 3 I Q Data File Format iq tar on page 405 e Helper scripts for creating an iq tar file e g using the MATLAB computing environment can be obtained here http www rohde schwarz com file ig tar tools zip e A conversion tool for creating iq tar file from a different file format can be obtained here http www rohde schwarz com en applications converting r s i q data files application note 56280 35531 html The following sections provide step by step guides to using both of the approaches lis ted above Capturing and expo
305. en combined to a total result by averaging the traces The complete proc ess to calculate a parameter spectrum is shown in figure 4 4 Segmented Data Capturing 4 4 Fig 4 4 Calculating a parameter spectrum for non contiguous pulses Segmented Data Capturing As described above measuring pulses with a varying repetition interval is a common task in the R amp S FSW Pulse application Pulses to be measured may have a relatvely short duration compared to the repetition interval low duty cycle Performing a mea surement over a long time period can lead to large volumes of data with only minor parts of it being relevant Thus a new segmented data capturing function has been introduced Using this function the input signal is measured for the entire time span which may be very long however only user defined segments of the data are actually stored on the R amp S FSW This leads to much less data and only relevant data which needs to be analyzed Analyzing pulses becomes much quicker and more efficient Although segmented data capturing is similar to the common gated trigger method for data acquisition there is a significant difference absolute timing information is provi ded for the entire acquisition in addition to the samples within the gating intervals Fur Segmented Data Capturing thermore pretrigger information for the pulses within a segment is available as opposed to gates that are triggered by a rising or falling edge
306. ens 152 RUN CONT RUN SINGLE L Length IResultramnge isse ie pir a ento n ti Os 132 Sidelobe e cid e iet i n Eee c s 74 Levels 100 Base Median OFF ON Top Limit checks Pulse fesults ihrer e o m eee 36 Limits Detection Parameters Linking Mar KGIS eit eio bo o p ERR C P e om en as 149 LO Level External Mixer remote control 195 Level External Mixer E OTeedthrough 35i cnet ete e e RERO Loading FUNCUONS cit e ur c TEE Low al 121 M Magnitude Capture Evaluation iecore nri ds 29 Mainlobe FIeqUellCy esce aede nod as de SIRE deca P edd 57 Phage cete 9f Power average creta aene rere rers 57 Power integrated retire tote 57 im 26 Marker table COMMQUIING E Evaluation method Market to Trage oir onte sm a e ia oa rere tered Markers Assigned ACC E 149 Configuration softkey AAA 146 Configuring es 146 DeactlValilig couche e tnn eret rien 150 Delta MAK OMS a eee een ere eee ate poen 148 General settings remote 331 Linking 25cm tete 149 Linking across windows esee 151 Linking to pulse cec een eoe rite eere ith e ON ege 151 Minimum dor Kl dutt EE 153 INGXE peak eite eos intei eegend 153 Peak 24192 Positioning usen vn 192 Querying position remote we 994 Settings remote uda lassgeet 148 Table Me M 151 Table evaluation method inisesin 30
307. ent Note that any RF attenuation or preamplification is considered when the trigger level is analyzed If defined a reference level offset is also considered Parameters lt TriggerLevel gt For details on available trigger levels and trigger bandwidths see the data sheet RST 10 dBm Example TRIG LEV IFP 30DBM Manual operation See Trigger Level on page 108 TRIGger SEQuence LEVel IQPower lt TriggerLevel gt This command defines the magnitude the I Q data must exceed to cause a trigger event Note that any RF attenuation or preamplification is considered when the trigger level is analyzed Triggering Measurements Parameters lt TriggerLevel gt Range 130 dBm to 30 dBm RST 20 dBm Example TRIG LEV IQP 30DBM Manual operation See Trigger Level on page 108 TRIGger SEQuence LEVel RFPower lt TriggerLevel gt This command defines the power level the RF input must exceed to cause a trigger event Note that any RF attenuation or preamplification is considered when the trigger level is analyzed If defined a reference level offset is also considered The input signal must be between 500 MHz and 8 GHz Parameters lt TriggerLevel gt For details on available trigger levels and trigger bandwidths see the data sheet RST 20 dBm Example TRIG LEV RFP 30dBm Manual operation See Trigger Level on page 108 TRIGger SEQuence RFPower HOLDoff Time This command defines the hol
308. er ALL All detected pulses in the entire measurement Usage Query only Manual operation See Timestamp on page 17 SENSe PULSe TIMing TSTamp AVERage lt QueryRange gt SENSe PULSe TIMing TSTamp MAXimum lt QueryRange gt 9 20 4 3 Retrieving Results SENSe PULSe TIMing TSTamp MINimum lt QueryRange gt SENSe PULSe TIMing TSTamp SDEViation lt QueryRange gt Returns the timestamp for the phase deviation over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Frequency Parameters The following commands return the calculated pulse parameters For details on the individual parameters see chapter 3 1 3 Frequency Parameters on page 22 SE EE epes geegent gege ete eite roten 368 IGENZGeIpDUL SGetREOuencv ChRATeAVtEhRage nennen nnne 368 SENSe PULSe FREQuency CRATe MAXimum eise eren nnn 368 SENSe PULSe FREQuency CRA Te MINIMUM iiri ertet phe eausa 368 SENSe PULSe FREQuency CRATe SDEViation eese 368 SENSE PULSe Tee E e KE 368 IGENGelpUL ZetREOuencv D Viapon AVERage 369 SENSE PULSE FREQ uency D Viatton MANimum eene 369 SENSe PULSe FREQuency DEViation MI Nimum esses 369 ISGENGe IPDUL Gett Ouencv D Viatton GDEViaton seer seeeetetrererersrornrnrnrnrnrn nnne 369 SENS amp JT
309. eration See Maximum number of trace points on page 156 9 17 Working with Markers 9 17 1 Individual Marker Settings cre wate diode water denied 327 e General Marker Settings ecce nre pra EERSTEN EE CERA EE PER ARE RE E ERR 331 Festtanng Markere m 332 Individual Marker Settings CAL Culate nz M AbkercmzAOEtE a E ra aa EEA E aada E REN 328 CAL Culate nz M bker mmz LUNKTOMAbkercmz 328 CALCulate n MARKer m STATe essere nenernn rrr hti nennen nnns 328 CAL CulatesmsMARKersm FRAG EE 328 ee DEL E 329 CAL Culate nz DEL TamarkercmzAOEE nicnn cennicona e nnana i naaa aaa iea 329 CALC latesn gt DEL Tamatkers MA all NG EEN 329 CALCulate lt n gt DELTamarker lt m gt LINK TOMAhkercmz 330 CALCulate lt n gt DELTamarker lt m gt MREFP cccccescccesescecscccecesceessesceseaeceseageeesseseceaeeees 330 CAL Culate nz DEL TamarkercmztSTATel enne nennen tnter nnne 330 CAL Culatesms DELTamarkersmo TRACE raa oe e rco a onde tea eta ato ne erba 331 CAL Gulate ms DEETaiviarkeremo2X EEN 331 Working with Markers CALCulate lt n gt MARKer lt m gt AOFF This command turns all markers off Example CALC MARK AOFF Switches off all markers Usage Event Manual operation See All Markers Off on page 150 CALCulate lt n gt MARKer lt m gt LINK TO MARKer lt m gt lt State gt This command links normal marker lt m1 gt to any active normal marker lt m2 gt If you change the horizontal positio
310. erio e eee esis nere ate Ru ex ene t eed meet 321 DISPlayEWINDoewsne ZOOM S KEE 322 DISPlay WINDow lt n gt ZOOM AREA lt x1 gt lt y1 gt lt x2 gt lt y2 gt This command defines the zoom area To define a zoom area you first have to turn the zoom on 1 Frequency Sweep 1 origin of coordinate system x1 0 y1 0 2 end point of system x2 100 y2 100 3 zoom area e g x1 60 y1 30 x2 80 y2 75 User Manual 1173 9392 02 17 321 R amp SS9FSW K6 6S Remote Commands for Pulse Measurements p Q J i e el Parameters lt x1 gt lt y1 gt Diagram coordinates in of the complete diagram that define lt x2 gt lt y2 gt the zoom area The lower left corner is the origin of coordinate system The upper right corner is the end point of the system Range 0 to 100 Default unit PCT Manual operation See Single Zoom on page 163 DISPlay WINDow lt n gt ZOOM STATe State This command turns the zoom on and off Parameters lt State gt ON OFF RST OFF Example DISP ZOOM ON Activates the zoom mode Manual operation See Single Zoom on page 163 See Restore Original Display on page 163 See Deactivating Zoom Selection mode on page 163 9 15 3 2 Using the Multiple Zoom DISPlay WINDow n ZOOM MULTiple zoom AREA
311. ers see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp PNUMber The pulse numbers are represented on the x axis available numbers can be queried using SENSe PULSe NUMBer on page 344 Intervals without pulses are not displayed SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST PNUMber Usage Setting only CALCulate lt n gt TRENd TSIDelobe X lt XAxis gt Configures the x axis of the Parameter Trend result display This command is only available if the additional option R amp S FSW K6S is installed The y axis is configured using the CALCulate lt n gt TRENd GroupName Y com mands Configuring the Results Setting parameters lt XAxis gt PSLevel ISLevel MWIDth SDELay CRATio IMPower AMPower PCORrelation MPHase MFRequency Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 5 Time Sidelobe Parameters on page 25 PSLevel peak to sidelobe level ISLevel integrated sidelobe level MWIDth mainlobe 3 dB width SDELay sidelobe delay CRATio compression ratio IMPower integrated mainlobe power AMPower average mainlobe power PCORrelation peak correlation MPHase mainlobe phase MFRequency mainlobe frequency Usage Setting only
312. eryRange gt Retrieving Results SENSe PULSe POWer MAX MINimum lt QueryRange gt SENSe PULSe POWer MAX SDEViation lt QueryRange gt Returns the statistical value for the maximum transmission power over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer MIN lt QueryRange gt Returns the minimum transmission power for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Minimum Power on page 20 SENSe PULSe POWer MIN AVERage lt QueryRange gt SENSe PULSe POWer MIN MAXimum lt QueryRange gt SENSe PULSe POWer MIN MINimum lt QueryRange gt SENSe PULSe POWer MIN SDEViation lt QueryRange gt Returns the statistical value for the minimum transmission power over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe POWer ON lt QueryRange gt Returns the average ON power for the specified pulse s Query parameters lt QueryRang
313. es Parameters lt Visibility gt ON OFF RST OFF Manual operation See Pulse Pulse Phase Difference on page 24 CALCulate lt n gt TABLe PHASe RERRor lt Visibility gt If enabled the Phase Error RMS is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Phase Error RMS on page 24 Configuring the Results CALCulate lt n gt TABLe POWer ADRoop DB Visibility If enabled the Droop in dB is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Droop on page 21 CALCulate lt n gt TABLe POWer ADRoop PERCent lt Visibility gt If enabled the droop in percent is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Droop on page 21 CALCulate lt n gt TABLe POWer ALL STATe lt Visibility gt If enabled all power parameters are included in the result tables Setting parameters lt Visibility gt ON OFF RST OFF Usage Setting only CALCulate lt n gt TABLe POWer AMPLitude lt Visibility gt If enabled the pulse amplitude is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Pulse Amplitude on page 20 CALCulate lt n gt TABLe POWer AVG Visibility If enabled the average Tx power is included in the result tables Parameters lt Visibility gt ON OFF RST ON Manual operation Se
314. escription Graphical user interface ele All names of graphical user interface elements on the screen such as ments dialog boxes menus options buttons and softkeys are enclosed by quotation marks KEYS Key names are written in capital letters File names commands File names commands coding samples and screen output are distin program code guished by their font Input Input to be entered by the user is displayed in italics Links Links that you can click are displayed in blue font References References to other parts of the documentation are enclosed by quota tion marks 1 3 2 Conventions for Procedure Descriptions When describing how to operate the instrument several alternative methods may be available to perform the same task In this case the procedure using the touchscreen is described Any elements that can be activated by touching can also be clicked using an additionally connected mouse The alternative procedure using the keys on the instrument or the on screen keyboard is only described if it deviates from the standard operating procedures Conventions Used in the Documentation The term select may refer to any of the described methods i e using a finger on the touchscreen a mouse pointer in the display or a key on the instrument or on a key board 1 3 3 Notes on Screenshots When describing the functions of the product we use sample screenshots These screenshots are meant t
315. esults are displayed RST KHZ Manual operation See Mainlobe Frequency on page 28 CALCulate lt n gt TABLe TSIDelobe MPHase Visibility If enabled the mainlobe phase in degrees is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Mainlobe Phase on page 28 CALCulate n TABLe TSIDelobe MWIDth lt Visibility gt lt Scaling gt If enabled the mainlobe 3 dB width is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST MS Manual operation See Mainlobe 3 dB Width on page 26 CALCulate lt n gt TABLe TSIDelobe PCORrelation lt Visibility gt If enabled the peak correlation is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Peak Correlation on page 28 CALCulate lt n gt TABLe TSIDelobe PSLevel lt Visibility gt If enabled the peak to sidelobe level in dB is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Peak to Sidelobe Level on page 26 9 14 8 Configuring the Results CALCulate lt n gt TABLe TSIDelobe SDELay lt Visibility gt lt Scaling gt If enabled the sidelobe delay is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Se
316. etween successive pulses This value is used to determine noise statistics and to reject short drops in amplitude during pulse ON time The available value range is 50ns to 100s but may be restricted fur ther by the sample rate Parameters lt PulseMinOff gt RST 1 us Default unit S Signal Description Manual operation See Min Pulse Off Time on page 71 SENSe TRACe MEASurement DEFine FREQuency OFFSet Offset Defines a known frequency offset to be corrected in the pulse acquisition data Use the SENSe TRACe MEASurement DEFine FREQuency OFFSet AUTO to define the frequency offset automatically Parameters lt Offset gt RST 0 Default unit HZ Manual operation See Frequency Offset Value on page 72 SENSe TRACe MEASurement DEFine FREQuency OFFSet AUTO lt State gt If enabled the frequency offset is estimated automatically for each individual pulse Parameters lt State gt ON OFF 0 1 RST ON Manual operation See Frequency Offset Auto Mode on page 71 SENSe TRACe MEASurement DEFine FREQuency RATE lt PulseChirpRate gt Defines a known frequency chirp rate in Hz us to be used to generate an ideal pulse waveform for computing frequency and phase error parameters This value is assumed constant for all measured pulses Use the SENSe TRACe MEASurement DEFine FREQuency RATE AUTO to define the chirp rate automatically Parameters lt PulseChirpRate gt RST 0 Default unit Hz us Manua
317. f fewer divisions are displayed e g because the window is reduced in height the range per division is increased in order to display the same result range in the smaller window In this case the per division value does not correspond to the actual display Remote command DISPlay WINDow lt n gt TRACe lt t gt Y SCALe PDIVision on page 312 Ref Position Relative Scaling Reference per Division Defines the position of the reference value in percent of the total y axis range Remote command DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RPOSition on page 312 Ref Value Relative Scaling Reference per Division Defines the reference value to be displayed at the specified reference position Remote command DISPlay WINDowcn TRACe Y SCALe RVALue on page 312 6 1 7 Units The unit for phase display is configurable This setting is described here Result Range Table Config Units Phase unit deg frad ia ei 6 2 Display Configuration Result Configuration Tote 777 Result Range Markers Marker Settings Phase Units ade c O Normalization Frequency Scaling FPhase UMN NETT salncads auntaedddesdauaience wee alactdemenauecedye tesa 145 PSS INGA Te WEE 145 Ereg encby SC oo eedem oc ed tpe da cendi ellc inte E videre rae teats 145 Phase Unit Defines the unit in which phases are displayed degree or rad Remote command UNIT ANGLe on page 313 Phase Normalization N
318. f the variable TRIGGER INPUT OUTPUT connectors on the R amp S FSW OUTPUETRIGger lt por gt DI Rection 2 riae teppu bd EEN err eise cep EYE Y XR YR ERR D aug 231 RE TN ee E pore D E 231 OUTPut TRIGgereport OTYBe ueni ree rude erar toe tantu nn nondnm aaa ana ENEE 232 OUTPutzIRIGSgersport PULSe IMMedialta 22er ate netta ptt enne tae 232 OUTPut TRIGger port PUL Sed ENGL uiui coi irrito neuter 233 OUTPut TRIGger lt port gt DIRection Direction This command selects the trigger direction for trigger ports that serve as an input as well as an output Suffix port Selects the used trigger port 2 trigger port 2 front panel 3 trigger port 3 rear panel Parameters Direction INPut Port works as an input OUTPut Port works as an output RST INPut Manual operation See Trigger 2 3 on page 97 OUTPut TRIGger lt port gt LEVel Level This command defines the level of the signal generated at the trigger output This command works only if you have selected a user defined output with oUT Put TRIGgereport OTYPe Suffix port Parameters Level Manual operation Triggering Measurements Selects the trigger port to which the output is sent 2 trigger port 2 front 3 trigger port 3 rear HIGH TTL signal LOW OV RST LOW See Trigger 2 3 on page 97 See Level on page 97 OUTPut TRIGger lt port gt OTYPe lt OutputT ype gt This comm
319. figuration nece eiecit teri sont ui ananasas aanas 220 Triggering Measurements eese nennen nennen nennen nnn 226 Segmented Data Capturing eese enne nnne nnn nnns 233 R IERT EU E 235 Pulse Detection inier ideni neni an sueta ipa nei cii sinn neru da 237 Configuring the Pulse Measurement eee nnnm 239 Configuring and Performing Sweeps eeeeeeeeeneeeeenenennnennnn nnne 247 Configuring the Results iiie ecei innen e ssnin reanna naransan 254 Configuring the Result Display eene nennen nnn nnn 313 Configuring Standard Traces eese nennen nnne nennen 323 User Manual 1173 9392 02 17 4 9 17 Working with Markars cniin tennis tenetur kann bane nenas isi NARREN Annaa 327 9 18 Configuring an Analysis Interval and Line MSRA mode only 336 9 19 Configuring an Analysis Interval and Line MSRT mode only 337 9 20 Retrieving Results ciii uestem muti nena na ANENE ANANA KanN Onana nkara 339 9 21 Retrieving Marker Results eeseseeeeeeeeeeeenenene nnne nnne nnne nnne nennen nnn nennen 393 9 22 Programming Example Pulse Measurement eene 395 10 Troubleshooting Explanation of Error Messages 401 A Anne
320. figured using the CALCulate lt n gt TRENd lt GroupName gt X com mands Configuring the Results Setting parameters lt YAxis gt TOP BASE AMPLitude ON AVG MIN MAX PON PAVG PMIN ADPercent ADDB RPERcent RDB OPERcent ODB POINt PPRatio Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 2 Power Amplitude Parameters on page 19 TOP Top Power BASE Base Power AMPLitude Pulse Amplitude ON Average ON Power AVG Average Tx Power MIN Minimum Power MAX Peak Power PON Peak to Avg ON Power Ratio PAVG Peak to Average Tx Power Ratio PMIN Peak to Min Power Ratio ADPercent Droop in ADDB Droop in dB RPERcent Ripple in RDB Ripple in dB OPERcent Overshoot in ODB Overshoot in dB POINt Pulse power measured at measurement point PPRatio Pulse to Pulse Power Difference RST TOP Configuring the Results Usage Setting only CALCulate lt n gt TRENd TIMing lt YAxis gt lt XAxis gt Configures the Parameter Trend result display for time trends This command defines both x axis and y axis parameters in one step It is equivalent to the two subsequent commands CALCulate n TRENd TIMing X TSTamp PNUMber see CALCulate lt n gt TRENd TIMing X on page 283 CALCulate n TRENd TIMing Y lt YAxis gt see CALCulate lt n gt TRENd TIMing Y on page 284 Setting parameters Y Axis TSTamp SETTlin
321. for measurements Analog Baseband is only available if the optional Analog Baseband Interface is instal led Remote command INPut SELect on page 194 UO Mode Defines the format of the input signal jQ The input signal is filtered and resampled to the sample rate of the application Two inputs are required for a complex signal one for the in phase component and one for the quadrature component Only Low IF I The input signal at the BASEBAND INPUT connector is filtered and resampled to the sample rate of the application If the center frequency is set to 0 Hz the real baseband signal is dis played without down conversion Real Baseband l If a center frequency greater than O Hz is set the input signal is down converted with the center frequency Low IF 1 Input and Output Settings Q Only Low IF Q The input signal at the BASEBAND INPUT Q connector is filtered and resampled to the sample rate of the application If the center frequency is set to 0 Hz the real baseband signal is dis played without down conversion Real Baseband Q If a center frequency greater than 0 Hz is set the input signal is down converted with the center frequency Low IF Q Remote command INPut IQ TYPE on page 209 Input Configuration Defines whether the input is provided as a differential signal via all four Analog Base band connectors or as a plain UO signal via two simple ended lines Note Both single ended and
322. g RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST RISE Configuring the Results lt XAxis gt PNUMber TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp PNUMber The pulse numbers are represented on the x axis available numbers can be queried using SENSe PULSe NUMBer on page 344 Intervals without pulses are not displayed SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST PNUMber Usage Setting only CALCulate lt n gt TRENd TIMing X lt XAxis gt Configures the x axis of the Parameter Trend result display The y axis is configured using the CALCulate lt n gt TRENd lt GroupName gt Y com mands Configuring the Results Setting paramete
323. g mode only the MSRA MSRT Master channel actually cap tures data from the input signal Thus no trigger settings are available in the Pulse application in MSRA MSRT operating mode However a capture offset can be defined with a similar effect as a trigger offset It defines an offset from the start of the captured data from the MSRA MSRT Master to the start of the application data for pulse measurements See chapter 9 18 Configuring an Analysis Interval and Line MSRA mode only on page 336 chapter 9 19 Configuring an Analysis Interval and Line MSRT mode only on page 337 For details on the MSRA operating mode see the R amp S FSW MSRA User Manual For details on the MSRT operating mode see the R amp S FSW Realtime Spectrum Applica tion and MSRT Operating Mode User Manual Useful commands for triggering described elsewhere SENSe FREQuency CENTer on page 220 Remote commands exclusive to triggering e Configuring the Triggering Conditoris ccce iere nere kde dva 226 Configuring the Trigger OUIDUl etre ex inten Ro aaa ER RAS 231 9 8 1 Configuring the Triggering Conditions KREE ee AN reir tt na b roa redeant Pepe tentus 226 TRIGger SEQuence HOLBoff TIME 2 1 32 2 neiseis surian terere 227 TRIGSger SEQuence EPowerhOBDolf 5 2 iui redo nee ret Ehre ESTE 227 TRIGger SEQuence IFPower HYSTeresis eese nennen 227 TRIGger SEQuence LEVel EXTernal port
324. ge The result range determines which data is displayed on the screen see also Mea surement range vs result range on page 15 This range applies to the pulse magni tude frequency and phase vs time displays SENSe TRACe MEASurement DEFine RRANge ALIGnment essen 255 SGENGeTRACeMtEAGurement DE FinebRbRANgoe AUTO 255 SENSe TRACe MEASurement DEFine RRANge LENGth esee 255 GENGeTRACeMtEAGurement DE FinebRbRAhNoe OFF Get 256 SENSe TRACe MEASurement DEFine RRANge REFerence essen 256 Configuring the Results SENSe TRACe MEASurement DEFine RRANge ALIGnment Alignment Specifies the alignment with respect to the reference point used to define the result range Parameters Alignment LEFT CENTer RIGHt LEFT The result range starts at the pulse center or selected edge CENTer The result range is centered around the pulse center or selected edge RIGHt The result range ends at the pulse center or selected edge RST CENTer Manual operation See Alignment on page 131 SENSe TRACe MEASurement DEFine RRANge AUTO State If enabled the result range length is determined automatically according to the width of the selected pulse see SENSe TRACe MEASurement DEFine PULSe SELected on page 254 Parameters for setting and query State OFF Switch the function off ON Switch the function on ONCE Execute the function once and then switch it off RST
325. ge 163 Configuring Standard Traces Useful commands for configuring traces described elsewhere SENSe AVERage lt n gt COUNt on page 252 SENSe SWEep COUNt on page 252 Remote commands exclusive to configuring traces DISPlay WINDowens TRAGest MODE atro cta z at eue cox caa pn en ao ens y Ya ed eue ELA da 324 DiSblavlfWiNDow nztTR ACectsMODE HCOhNtnuous nne 324 DISPlay WINDow n TRACe t NORMalize MODE essen 324 DISPlay WINDow n TRACe t NORMalize PHASe cesses 325 DISPlay WINDow n TRACE STA O irissen isinai neret nnne 325 SENSe JAVERage nP STATE a aia ente nena n aeu Rx EE E EE 326 Ed RE KT Ee ER e TE 326 SENSe WINDow lt n gt DETector lt t gt FUNCtion AUTO isse 326 ISENSeIST ATlstieenscTTebE tette nett tet teet teens 327 SENSE SWEep e M 327 Configuring Standard Traces DISPlay WINDow lt n gt TRACe lt t gt MODE Mode This command selects the trace mode Example INIT CONT OFF Switching to single sweep mode SWE COUN 16 Sets the number of measurements to 16 DISP TRAC3 MODE WRIT Selects clear write mode for trace 3 INIT WAI Starts the measurement and waits for the end of the measure ment Manual operation See Trace Mode on page 154 DISPlay WINDow lt n gt TRACe lt t gt MODE HCONtinuous State This command turns an automatic reset of a trace on and off after a parameter has changed The reset works f
326. ge 194 Select I Q Data File Opens a file selection dialog box to select an input file that contains UO data Note that the I Q data must have a specific format iq tar as described in chap ter A 3 UO Data File Format ig tar on page 405 The default storage location for UO data files is C R_S Instr user Remote command INPut FILE PATH on page 215 External Mixer Settings The external mixer is configured in the External Mixer tab of the Input dialog box which is available when you do one of the following if the optional External Mixer is installed Input and Output Settings Press the INPUT OUTPUT key then select the External Mixer Config softkey From the Overview select Input then switch to the External Mixer tab under Input Source Note that external mixers are not supported in MSRA MSRT mode For details on using external mixers see the R amp S FSW User Manual UE CUI UI c 78 e EE ee EN e Managing Conversion Loss Tables A 83 e Creating and Editing Conversion Loss Table 84 Mixer Settings In this tab you configure the band and specific mixer settings Frequency Mixer Settings Basic Settings Conversion Loss Table External Mixer Band Settings Mixer Type RF Start RF Stop Handover Freq RF Overrange Preset Band Mixer Settings Range Harmonic Type Harmonic Order Conversion Loss CENNEDINEE EE Cor
327. gnitude over the entire acquisition interval Display of correlated magnitude frequency error and phase error measurement traces for individual pulses This user manual contains a description of the functionality that the application pro vides including remote control operation Functions that are not discussed in this manual are the same as in the Spectrum appli cation and are described in the R amp S FSW User Manual The latest version is available for download at the product homepage hitp www2 rohde schwarz com product FSW html Installation You can find detailed installation instructions in the R amp S FSW Getting Started manual or in the Release Notes 2 1 Starting the Pulse Application Pulse measurements require a separate application on the R amp S FSW Both the basic R amp S FSW K6 option and the additional R amp S FSW K6S option are integrated in the same Pulse application However some functions and result displays are only availa ble if both options are installed This is indicated in the documentation 2 2 Understanding the Display Information To activate the R amp S FSW Pulse application 1 Press the MODE key on the front panel of the R amp S FSW A dialog box opens that contains all operating modes and applications currently available on your R amp S FSW 2 Select the Pulse item Pulse The R amp S FSW opens a new measurement channel for the R amp S FSW Pulse appli cation The measurement is
328. hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TABLe on page 390 Export Trace to ASCII File Opens a file selection dialog box and saves the selected trace in ASCII format dat to the specified file and directory The results are output in the same order as they are displayed on the screen window by window trace by trace and table row by table row Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TRACe on page 341 Trace Export Configuration Opens the Traces dialog box to configure the trace and data export settings See chapter 6 4 2 Trace Data Export Configuration on page 157 UO Export Opens a file selection dialog box to select an export file to which the IQ data will
329. hat contains the number of the file format definition Currently fileFormatVersion 2 is used Name Optional describes the device or application that created the file Comment Optional contains text that further describes the contents of the file DateTime Contains the date and time of the creation of the file Its type is xs dateTime see RsIqTar xsd Samples Contains the number of samples of the UO data For multi channel signals all chan nels have the same number of samples One sample can be e A complex number represented as a pair of and Q values e A complex number represented as a pair of magnitude and phase values e Areal number represented as a single real value See also Format element Clock Contains the clock frequency in Hz i e the sample rate of the I Q data A signal gen erator typically outputs the UO data at a rate that equals the clock frequency If the UO data was captured with a signal analyzer the signal analyzer used the clock fre quency as the sample rate The attribute unit must be set to Hz Format Specifies how the binary data is saved in the UO data binary file see DataFilename element Every sample must be in the same format The format can be one of the following e complex Complex number in cartesian format i e and Q values interleaved and Q are unitless real Real number unitless polar Complex number in polar format i e magnitude unitless and phase rad val
330. he Overview Trigger Source Trigger In Out Source Free Run Drop Out Time Offset Slope Rising Falling Hysteresis Holdoff External triggers from one of the TRIGGER INPUT OUTPUT connectors on the R amp S FSW are configured in a separate tab of the dialog box R amp S FSW K6 6S Configuration Trigger Source Trigger In Out Trigger 2 Output Type E Level Low Pulse Length Send Trigger JL Trigger 3 Input Output For step by step instructions on configuring triggered measurements see the R amp S FSW User Manual MSRA MSRT operating mode In MSRA MSRT operating mode only the MSRA MSRT Master channel actually cap tures data from the input signal Thus no trigger settings are available in the Pulse application in MSRA MSRT operating mode However a capture offset can be defined with a similar effect as a trigger offset It defines an offset from the start of the captured data from the MSRA MSRT Master to the start of the application data for pulse measurements See Capture Offset For details on the MSRA operating mode see the R amp S FSW MSRA User Manual For details on the MSRT operating mode see the R amp S FSW Real Time Spectrum Applica tion and MSRT Operating Mode User Manual Tiger SOIll gu EE 106 L Trigger i NEED NT 106 EE 1110 ERR 106 L External Trigger T 2 0 usesuecasdeat ripa aaa uices scat as 106 2 oo l0 m 107 L YO PONET ar e T M 107 2 41 0 MCN 107 CRE o
331. he diagram contains the start and stop values for the displayed time range Status bar information Global instrument settings the instrument status and any irregularities are indicated in the status bar beneath the diagram Furthermore the progress of the current operation is displayed in the status bar Pulse Parameters 3 Measurements and Result Displays 3 1 During a pulse measurement UO data from the input signal is captured for a specified time or for a specified record length Pulses are detected from the signal according to specified thresholds and user defined criteria The measured signal is then compared with the ideal signal described by the user and any deviations are recorded The defined range of measured data is then evaluated to determine characteristic pulse parameters These parameters can either be displayed as traces in a table or be eval uated statistically over a series of measurements Measurement range vs result range The measurement range defines which part of a pulse is measured for example for frequency deviation whereas the result range determines which data is displayed on the screen in the form of amplitude frequency or phase vs time traces Time sidelobe range If the additional option R amp S FSW K6S is installed the sidelobes are analyzed in addi tion to the pulses themselves The time sidelobe range defines which part of the sig nal in relation to the pulse is analyzed As a result of
332. he suffix selects a particular instance e g a mea surement window Numeric suffixes are indicated by angular brackets n next to the keyword If you don t quote a suffix for keywords that support one a 1 is assumed Example DISPlay WINDow lt 1 4 gt ZOOM STATe enables the zoom in a particular mea surement window selected by the suffix at WINDow DISPlay WINDow4 ZOOM STATe ON refers to window 4 Optional Keywords Some keywords are optional and are only part of the syntax because of SCPI compli ance You can include them in the header or not Note that if an optional keyword has a numeric suffix and you need to use the suffix you have to include the optional keyword Otherwise the suffix of the missing keyword is assumed to be the value 1 Optional keywords are emphasized with square brackets 9 1 6 1 Introduction Example Without a numeric suffix in the optional keyword SENSe FREQuency CENTer is the same as FREQuency CENTer With a numeric suffix in the optional keyword DISPlay WINDow lt 1 4 gt ZOOM STATe DISPlay ZOOM STATe ON enables the zoom in window 1 no suffix DISPlay WINDow4 ZOOM STATe ON enables the zoom in window 4 Alternative Keywords A vertical stroke indicates alternatives for a specific keyword You can use both key words to the same effect Example SENSe BANDwidth BWIDth RESolution In the short form without optional keywords BAND 1
333. hich the value occurred Occurrence Number of occurrences in percent of all measured values Histogram Bins Number of columns on the x axis i e the number of measurement value ranges for which the occurrences are determined Remote command CALCulate lt n gt DISTribution NBINs on page 258 Display Limit Lines Hides or shows the limit lines in the selected Parameter Trend or Parameter Distribu tion result display You can drag these lines to a new position in the window The new position is maintained the limit check is repeated and the results of the limit check in any active table displays are adapted Note that this function only has an effect on the visibility of the lines in the graphical displays it does not affect the limit check in general or the display of the limit check results in the table displays Remote command CALCulate lt n gt DISTribution LLINes STATe on page 257 CALCulate lt n gt TRENd LLINes STATe on page 272 Parameter Spectrum Configuration Calculates an FFT for a selected column of the Pulse Results table This spectrum allows you to easily determine the frequency of periodicities in the pulse parameters For each Parameter Spectrum window you can configure which measured parameter is to be displayed and how the spectrum is determined Result Range Markers Markers Settings Marker Search Parameter Units Y Scaling Parameter Group Timing Parameter Rise Time Spectrum Full Auto Max
334. i eniro dete cc arbre nen tenete orn 163 R Deactivating Zoom EE 163 Analysis in MSRA MSRT Mode Single Zoom ER A single zoom replaces the current diagram by a new diagram which displays an enlarged extract of the trace This function can be used repetitively until the required details are visible Remote command DISPlay WINDow lt n gt ZOOM STATe on page 322 DISPlay WINDow lt n gt ZOOM AREA on page 321 Multiple Zoom Ba In multiple zoom mode you can enlarge several different areas of the trace simultane ously An overview window indicates the zoom areas in the original trace while the zoomed trace areas are displayed in individual windows The zoom area that corre sponds to the individual zoom display is indicated in the lower right corner between the scrollbars Remote command DISPlay WINDow lt n gt Z00M MULTiple lt zoom gt STATe on page 323 DISPlay WINDow lt n gt Z00OM MULTiple lt zoom gt AREA on page 322 Restore Original Display Restores the original display and closes all zoom windows Remote command DISPlay WINDow lt n gt ZOOM STATe on page 322 single zoom DISPlay WINDow lt n gt Z00OM MULTiple lt zoom gt STATe on page 323 for each multiple zoom window X Deactivating Zoom Selection mode Deactivates any zoom mode Tapping the screen no longer invokes a zoom but selects an object Remote command DISPlay WINDow lt n gt ZOOM STATe on page 322 single zoom DISPla
335. ibed in chapter 9 8 2 Configuring the Trigger Output on page 231 DIAGnostic SERVICe NSO DFGB 1 0 t arr rre A pene Ra ova S RR apv psa RR inia 220 DIAGnostic SERVice NSOurce State This command turns the 28 V supply of the BNC connector labeled NOISE SOURCE CONTROL on the R amp S FSW on and off Parameters State ON OFF RST OFF Example DIAG SERV NSO ON Manual operation See Noise Source on page 96 9 7 Frontend Configuration The following commands are required to configure frequency and amplitude settings which represent the frontend of the measurement setup WRONG EE 220 e Amplitude SCWINGS ee cues eager ctetu ud Te ERRARE BELA Rn Fev MER idee 222 Configuring this ME EE 224 9 7 1 Frequency SENSeJFREQUEnCy CENT E 220 SENSe FREQuency CENTer STEP ccccccccececeecececaeaeae eee ee enint enne eren nnne nnne sns nr nnn re re 221 Eil ee ER AUTO EE 221 SENSe IFREQuency OFFSet aec cte ecx a c canc a red eode a ct dpa ua dec vn add et 222 SENSe FREQuency CENTer Frequency This command defines the center frequency Frontend Configuration Parameters Frequency The allowed range and fmax is specified in the data sheet UP Increases the center frequency by the step defined using the SENSe FREQuency CENTer STEP command DOWN Decreases the center frequency by the step defined using the SENSe FREQuency CENTer STEP command RST fmax 2 Default u
336. ical value for the ripple in percent over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer TOP lt QueryRange gt Returns the Top power for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Top Power on page 19 9 20 4 2 Retrieving Results SENSe PULSe POWer TOP AVERage lt QueryRange gt SENSe PULSe POWer TOP MAXimum lt QueryRange gt SENSe PULSe POWer TOP MINimum lt QueryRange gt SENSe PULSe POWer TOP SDEViation lt QueryRange gt Returns the statistical value for the Top power over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Timing Parameters The following commands return the calculated pulse parameters For details on the individual parameters see chapter 3 1 1 Timing Parameters on page 16 SENSeTPUESeTIMInS BOWOIGa cea ere een ee ette coerente ees 360 SENSe PULSe TIMing DCYCle AVERage eeesssssis
337. iguration The R amp S FSW provides various evaluation methods for the results of the performed measurements However you may want to evaluate the data with other external appli cations In this case you can export the measurement data to an ASCII file The standard data management functions e g saving or loading instrument settings that are available for all R amp S FSW applications are not described here See the R amp S FSW User Manual for a description of the standard functions Trace and data export settings can be configured in the Traces dialog box Trace Data Export tab Trace Configuration CT Alternatively they are available in the Save Recall menu Export softkey which is displayed when you select the Save or Open icon in the toolbar Traces i u Transient Analysis Traces Trace Data Export Export all Traces and Marker Table Results Indude Instrument Measurement Settings Decimal Separator Point Export to ASCII File Export all Traces and all Table Results rete naanin eaa 158 Include Instrument Measurement Settings eeeeeeeeeeeeeen nennen 158 Tao b EO T stats 158 Decimal Sepa e ET 159 Export Trace to ASCH Pile nis rider erii nva eei tree aei ip eet E rer edere nv ia 159 Export all Traces and all Table Results Selects all displayed traces and result tables e g Result Summary marker table etc in the current application for export t
338. imum lt QueryRange gt SENSe PULSe POWer PON MINimum lt QueryRange gt SENSe PULSe POWer PON SDEViation lt QueryRange gt Returns the statistical value for the Peak to Avg ON Power Ratio over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer PPRatio lt QueryRange gt Returns the Pulse to Pulse Power Difference for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Pulse to Pulse Power Ratio on page 22 Retrieving Results SENSe PULSe POWer PPRatio AVERage lt QueryRange gt SENSe PULSe POWer PPRatio MAXimum lt QueryRange gt SENSe PULSe POWer PPRatio MINimum lt QueryRange gt SENSe PULSe POWer PPRatio SDEViation lt QueryRange gt Returns the statistical value for the Pulse to Pulse Power Difference over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer RIPPle DB lt QueryRange gt Returns the ripple in dB for the specified pulse s Q
339. imum Frequency Window Type Block Size Gap Threshold Section Threshold KUER dp Parameter Spectrum E CD This tab is only available for windows with a Parameter Spectrum evaluation For more information on how the parameter spectrum is calculated see chapter 4 3 Parameter Spectrum Calculation on page 47 Parameter ae EE EE 135 x Ii MUT 135 a IP P U HH 136 Maximam FRE QW BHC E 136 WVIMGOW E Dor 136 sue qc e 136 Gap e M 136 Section Thireskiolt oret aa a ERAS NR ER ERR ERE MER TERRA A EN ERERR 136 Parameter Group Defines the group of parameters from which one can be selected to display the FFT of the measured values For a description of the parameters see chapter 3 1 Pulse Parameters on page 15 Parameter Defines the parameter for which the FFT is calculated and displayed The available parameters depend on the selected Parameter Group Remote command CALCulate lt n gt PSPectrum lt GroupName gt lt X Axis gt see e g CALCulate lt n gt PSPectrum FREQuency on page 263 Result Configuration Full Auto Determines the Parameter Spectrum settings automatically For most measurement cases automatic configuration should be suitable If enabled the individual settings are not available Remote command CALCulate cn PSPectrum AUTO on page 262 Maximum Frequency Defines the maximum
340. ines the position of the analysis line for all time based windows in all MSRA applications and the MSRA Master lt n gt is irrelevant 9 19 Configuring an Analysis Interval and Line MSRT mode only Parameters Position Position of the analysis line in seconds The position must lie within the measurement time of the MSRA measurement Default unit s Manual operation See Position on page 164 CALCulate lt n gt MSRA WINDows lt n gt IVAL This command queries the analysis interval for the window specified by the WINDow suffix lt n gt the CALC suffix is irrelevant This command is only available in application measurement channels not the MSRA View or MSRA Master Return values lt IntStart gt Start value of the analysis interval in seconds Default unit s lt IntStop gt Stop value of the analysis interval in seconds Usage Query only SENSe MSRA CAPTure OFFSet Offset This setting is only available for applications in MSRA mode not for the MSRA Master It has a similar effect as the trigger offset in other measurements Parameters lt Offset gt This parameter defines the time offset between the capture buf fer start and the start of the extracted application data The off set must be a positive value as the application can only analyze data that is contained in the capture buffer Range 0 to lt Record length gt RST 0 Manual operation See Capture Offset on page 111 Configuring an
341. ing marker results GAL Culatesn DELTamarkersm gt 2G RELATIVE ociciccssscaaaceassaeeaccuuasavardnvssecdsauusdeecdssuendnadeaie 393 CAL Culate nz DEL TamarkercmscNd iniata npani a E Enae EEEa piad anarie 393 CAL Culate E MARKE MA EE 394 CALCulate lt n gt DELTamarker lt m gt X RELative This command queries the relative position of a delta marker on the x axis If necessary the command activates the delta marker first Return values Position Position of the delta marker in relation to the reference marker Example CALC DELT3 X REL Outputs the frequency of delta marker 3 relative to marker 1 or relative to the reference position Usage Query only Manual operation See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 CALCulate lt n gt DELTamarker lt m gt Y This command queries the relative position of a delta marker on the y axis Retrieving Marker Results If necessary the command activates the delta marker first To get a valid result you have to perform a complete measurement with synchroniza tion to the end of the measurement before reading out the result This is only possible for single measurement mode See also INITiate lt n gt CONTinuous on page 249 The unit depends on the application of the command Return values Position Position of the delta marker in relation to the reference marker or the fixed reference Example INIT CONT OFF Switches to singl
342. ioThHReshoeld iit tt petto nett xit t zex vu enne 266 CAL Culate n PSPectrum TMihg cui ioca cia codeine eee aiii unrin 266 GALGulate n PSPectrumcTSIDel be a ric parer ane stu eaaet n NEESS eaa Te EG 267 CAL CulatesmsPSPecttam WINDOW EE 268 CALCulate n PSPectrum AUTO State Enables or disables automatic configuration for Parameter Spectrum displays If enabled the commands for individual settings are not available Parameters State ON OFF RST ON Manual operation See Full Auto on page 136 CALCulate lt n gt PSPectrum BLOCksize lt BlockSize gt Defines the size of blocks used in spectrum calculation The block size also determines the resulting RBW of the spectrum see CALCulate lt n gt PSPectrum RBW on page 266 Configuring the Results Parameters lt BlockSize gt powers of 2 Range 8 to 100k RST 1024 Manual operation See Block Size on page 136 CALCulate lt n gt PSPectrum FREQuency lt Param gt Configures the Parameter Spectrum result display Setting parameters lt Param gt POINt PPFRequency RERRor PERRor DEViation CRATe Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 3 Frequency Parameters on page 22 POINt Frequency at measurement point PPFRequency Pulse Pulse Frequency Difference RERRor Frequency Error RMS PERRor Frequency Error Peak DEViation Frequency
343. ional Digital Baseband Interface if available Note If digital baseband output is active the sample rate is restricted to 200 MHz max 160 MHz bandwidth The only data source that can be used for digital baseband output is RF input Remote command OUTPut DIO on page 214 Output Settings Information Displays information on the settings for output via the optional Digital Baseband Inter face The following information is displayed e Maximum sample rate that can be used to transfer data via the Digital Baseband Interface i e the maximum input sample rate that can be processed by the con nected instrument e Sample rate currently used to transfer data via the Digital Baseband Interface e Level and unit that corresponds to an UO sample with the magnitude 1 Remote command OUTPut DIQ CDEVice on page 214 Connected Instrument Displays information on the instrument connected to the optional Digital Baseband Interface if available If an instrument is connected the following information is displayed e Name and serial number of the instrument connected to the Digital Baseband Inter face Used port Remote command OUTPut DIQ CDEVice on page 214 5 5 Frontend Settings The frequency and amplitude settings represent the frontend of the measurement setup e Frequency Settings eccentric prd sented E HER aiaia 100 e Amplitude Senis i d hihi E Lade pr uoa Hos daba heed 101 Frontend Settings 5 5 1 Freque
344. is the value in the Pulse Pulse Results table for each pulse in phase amplitude or frequency is sub tracted from the respective trace to normalize each trace to 0 An additional phase offset may be defined see Phase Normaliza tion on page 145 6 4 2 Trace Configuration The value in the measurement point that is the value in the Pulse Results table for the Reference Pulse is subtracted from the respec tive trace to normalize the traces The reference pulse is defined in the Measurement Point settings see Reference for Pulse Pulse Measurements on page 123 An additional phase offset may be defined see Phase Normaliza tion on page 145 Reference Pulse Remote command DISPlay WINDow lt n gt TRACe lt t gt NORMalize MODE on page 324 Predefined Trace Settings Quick Config Commonly required trace settings have been predefined and can be applied very quickly by selecting the appropriate button Function Trace Settings Preset All Traces Trace 1 Clear Write Blank Set Trace Mode Trace 1 Max Hold Max Avg Min Trace 2 Average Trace 3 Min Hold Blank Set Trace Mode Trace 1 Max Hold Max Ire Min Trace 2 Clear Write Trace 3 Min Hold Blank Trace 1 Trace 2 Trace 3 Trace 4 Softkeys Displays the Traces settings and focuses the Mode list for the selected trace Remote command DISPlay WINDowcn TRACe t STATe on page 325 Trace Data Export Conf
345. isis esee etienne nnns nante sanas 360 SENSe PULSe TIMing DOY Cle MUAXIFOUR s rmn i tre epe eter rua x meten ide 360 SENSE PULSETIMing DCY Cle MINIMUM sca aac tte et xe reete 360 SENSe PULSe TIMing DCY Cle SDEVialion ooo i eter ertet idee raa see Et 360 SENSe PULSE TIMING NEE 361 ISENGe IpDUL Ge Mino DRATloAVtChRage eene ener entren 361 SENSeJPULES amp TIMIN Der Cen TERRASSEN 361 SENSe PULSe TIMing DRATIO MINIMUM 22 22 22i cobi inier eroe ter ore secede 361 SENSeJ PULSe TIMing DRATIOG SDEViation nce eet reete innen hnnc a 361 I SENSeJPULSe TIMING E rotor tt ree ctt eas rnt ao creta th y eta AAAA 361 SENSe PULSe TIMing FALE AVERadge 2 2 oio cotic toco eterne reae uaa eceteataaes 362 SENSE PULSe TIMing FALL MAXIMUM EE 362 ISGENGe IpDUL Ge Mino FALL MiNimum eene enne nnne nn tren nni 362 ISENSeTPUESeTIMIns FALE SDEVIGSUGOI ce ott tre exe nennen toten tae tenete 362 IGENSeIPULSe TlMingOkk ettet tnter tert tette ttt t tti 362 SENSe PULSe TIMing OFF AVERage sss ener nnne nn nnns 362 ISENSeTPUESe TIMIng OF E MAXIFRURIVD i cca eto ca cua rete cene anat egerat ne a eo Earned 362 SENSe PUESe TIMingrOFF MINIImURIP acia idet dota ev e ve teas 363 E GE Ree RE 363 SENSe PULSe TIMING PRF E 363 SENSe PULSe TIMIng e et le EE 363 SENSe PULSe TIMing e ln KE 363 SENSe PULSe TIMing PRF MINimum eeeeeeeeeee eene nnnm nnn
346. ity If enabled the Peak to Average Tx Power Ratio is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Peak to Average Tx Power Ratio on page 21 CALCulate lt n gt TABLe POWer PMIN lt Visibility gt If enabled the Peak to Min Power Ratio is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Peak to Min Power Ratio on page 21 CALCulate lt n gt TABLe POWer POINt Visibility If enabled the power at the measurement point is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Power at Point on page 22 CALCulate lt n gt TABLe POWer PON lt Visibility gt If enabled the Peak to Avg ON Power Ratio is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Peak to Avg ON Power Ratio on page 20 Configuring the Results CALCulate lt n gt TABLe POWer PPRatio Visibility If enabled the Pulse to Pulse Power Difference is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Pulse to Pulse Power Ratio on page 22 CALCulate lt n gt TABLe POWer RIPPle DB lt Visibility gt If enabled the ripple in dB is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Ripple on page 21 CALCulate lt n gt TABLe POWer
347. jid sc M Performing Pulse meas retfent euer rene 169 PRASE aere cord cata ient aa tai oh Natl 24 Deviation sssss 25 372 373 Difference between pulses iisisiisiisiinnniises 24 375 Error Peak 24 373 Error RMS we 24 375 Unwrapped evaluation ssssiiiisisrireiriiiriisisisenis 35 Wrapped evaluation 296 PliasedeviatlOH irent en rennen ins 294 Phase Error Peak 294 Phase Error RMS nih rat cote hes 294 Phases Normalization eea 145 Ports External Mixer Remote control 201 Position 10096 ET E 120 Power GE POINT M 22 Average ON 20 296 352 Average transmission eeseeseses 20 349 E 19 296 349 350 Miminum transmission ssss 20 296 351 Peak to average ratio transmission 21 297 354 Peak to min ratio transmission 21 297 354 355 Peak transmission 20 296 350 351 Peak to Avg ratio ON eeen 20 297 356 RANJE EE 20 295 348 349 TOP EE 19 298 358 359 Preamplifier ipe 103 TUE 103 Preset Bands External Mixer remote control 198 Exterrial MIXer eene hne teta 79 Presetting happert cte donee OL ctio eee AUR 69 xij iis o e aD 109 Programming examples External
348. k NEGative Negative peak POSitive Positive peak SAMPle First value detected per trace point RMS RMS value AVERage Average RST APEak UO Analyzer RMS Example DET POS Sets the detector to positive peak Manual operation See Detector on page 155 SENSe WINDow lt n gt DETector lt t gt FUNCtion AUTO State This command couples and decouples the detector to the trace mode Parameters lt State gt ON OFF 0 1 RST 1 Example DET AUTO OFF The selection of the detector is not coupled to the trace mode Manual operation See Detector on page 155 Working with Markers SENSe STATistic lt n gt TYPE lt TraceStatistic gt Defines which pulses are included in the statistical evaluation of traces in result dis plays based on the result range Parameters lt TraceStatistic gt SEL ALL SEL Only the selected pulse from each capture is included in the statistical evaluation of trace results The pulse is selected using SENSe TRACe MEASurement DEFine PULSe SELected on page 254 ALL All measured pulses from each capture are included in the stat istical evaluation of trace results Manual operation See Selected Pulse vs All Pulses on page 155 SENSe SWEep POINts lt Points gt Sets queries the number of trace points to be displayed and used for statistical evalua tion Parameters lt Points gt Manual op
349. l 4 7 Trace Evaluation Traces in graphical result displays based on the defined result range see chap ter 6 1 2 Result Range on page 130 can be configured for example to perform statistical evaluations over a defined number of measurements pulses or samples You can configure up to 6 individual traces for the following result displays see chap ter 6 1 2 Result Range on page 130 e Pulse Frequency on page 34 e Pulse Magnitude on page 34 e Pulse Phase on page 35 e Pulse Phase Wrapped on page 36 e Correlated Magnitude Capture on page 38 e Correlated Pulse Magnitude on page 39 e Pulse Frequency Error on page 40 e Pulse Phase Error on page 40 4 7 1 4 7 2 Trace Evaluation Result displays marked with an asterisk require both the R amp S FSW K6 and the additional R amp S FSW K6S option Wer SSCS hice ete eo etd ine b oleae ances dace alates 61 Normalizing Ero E M 61 Trace Statistics Each trace represents an analysis of the data measured in one result range Statistical evaluations can be performed over several traces that is result ranges Which ranges and how many are evaluated depends on the configuration settings Selected pulse vs all pulses The Sweep Average Count determines how many measurements are evaluated For each measurement in turn either the selected pulse only that is one result range or all detected pulses that
350. l Sale Level e 89 Adjust Reference Level to Full Scale Level eene enne 89 Connected sU M 89 Digital UO Input State Enables or disable the use of the Digital IQ input source for measurements Digital IQ is only available if the optional Digital Baseband Interface is installed Remote command INPut SELect on page 194 Input Sample Rate Defines the sample rate of the digital UO signal source This sample rate must corre spond with the sample rate provided by the connected device e g a generator Input and Output Settings If Auto is selected the sample rate is adjusted automatically by the connected device The allowed range is from 100 Hz to 10 GHz Remote command INPut DIQ SRATe on page 213 INPut DIQ SRATe AUTO on page 213 Full Scale Level The Full Scale Level defines the level and unit that should correspond to an UO sam ple with the magnitude 1 If Auto is selected the level is automatically set to the value provided by the connec ted device Remote command INPut DIQ RANGe UPPer on page 213 INPut DIQ RANGe UPPer UNIT on page 213 INPut DIQ RANGe UPPer AUTO on page 212 Adjust Reference Level to Full Scale Level If enabled the reference level is adjusted to the full scale level automatically if any change occurs Remote command INPut DIQ RANGe COUPling on page 212 Connected Instrument Displays the status of the Digital Baseb
351. l operation See Chirp Rate on page 72 SENSe TRACe MEASurement DEFine FREQuency RATE AUTO lt State gt If enabled the chirp rate is estimated automatically for each individual pulse Parameters lt State gt ON OFF 0 1 RST ON Manual operation See Chirp Rate Auto Mode on page 72 Signal Description SENSe TRACe MEASurement DEFine PULSe ADRoop State If ON a pulse can be modeled as having amplitude droop otherwise the pulse top is assumed to be flat Parameters State ON OFF 0 1 RST ON Manual operation See Pulse Has Droop on page 70 SENSe TRACe MEASurement DEFine PULSe MODulation lt Modulation gt The type of pulse modulation which is expected Parameters lt Modulation gt ARB CW LFM RIQ ARB Arbitrary CW Continuous wave LFM Linear FM fixed value RIQ A reference pulse is configured see chapter 9 5 Reference Signal Description on page 190 RST CW Manual operation See Pulse Modulation on page 71 SENSe TRACe MEASurement DEFine PULSe PERiod lt PulsePeriod gt This command defines how a pulse is detected Parameters lt PulsePeriod gt HL LH HL The pulse period begins with the falling edge of the preceeding pulse and ends with the falling edge of the current pulse LH The pulse period begins with the rising edge of the current pulse and end with the rising edge of the succeeding pulse RST HL Manual operation See Pulse Period on page 70 R
352. l value for the fall time over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing OFF lt QueryRange gt Returns the Off time for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Off Time on page 18 SENSe PULSe TIMing OFF AVERage lt QueryRange gt SENSe PULSe TIMing OFF MAXimum lt QueryRange gt Retrieving Results SENSe PULSe TIMing OFF MINimum lt QueryRange gt SENSe PULSe TIMing OFF SDEViation lt QueryRange gt Returns the statistical value for the Off time over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TIMing PRF lt QueryRange gt Returns the Pulse Repetition Frequency Hz for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual
353. l windows use the Export Trace to ASCII File command in the Save Recall Export menu See also chapter 6 4 2 Trace Data Export Configuration on page 157 Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory STORe lt n gt TABLe on page 390 Table Export Configuration Table results can be exported to an ASCII file for further evaluation in other external applications Table export settings can be configured in the Result Configuration dia log box in the Table configuration tab in the vertical Table Export tab The settings are window specific and only available for result tables Meas BW 320 MHz Timing Columns to Export VU Visible Parameters Export Limits Off Amplitude Parameters d Tere lH Meio y 1 e100 ai E ert all Comma Freq EUR Export Table to ASCII File Phase Parameters Table Export Limits Columns to Export Table Export Configuration Defines which of the result table columns are to be included in the export file Visib
354. late n TABLe TIMing DCYCle LIMit eese nen 309 CALCulate n TABLe TIMing DRATio LIMIit eeeeeeeeee esee eee aaa 309 CALOCulate n TABLe TIMing FALL LIMit leise nennen nennen 309 CALCulate lt n gt TABLe TIMing OFF LIMit ceesceceeececececceeeeeeaeeeaeaeneeeeceeececeeeeeeeneneas 309 CAL Culate nz TABleTlMimg RE UM 309 CALOCulate n TABLe TIMing PRI LIMit eiiis nennen nnne enne 309 CALCulate lt n gt TABLe TIMing PWIDth LIMit nnns 309 CALOCulate n TABLe TIMing RISE LIMit secessit 309 CAL Culatesn T ABLE TIMING SET TING MIL uaa oorr fee ett ttt cetus 309 CAL Culate nz TABleTlMimgT Tamp UM 309 CALCulate n TABLe TSIDelobe AMPower LIMit eseeeeseeeeee eene 309 CAL CGulatesm TABE amp TSIDelobe E Te EE 200 CAL Culate nz TABlefGlDelobeIMower L IM 200 CAL Culate nz TABlefGlDelobelGlevel LU lMm eene 200 CAL Culate nz TABletGlDelobe MrReouencv LUIMN en 309 CALCulate lt n gt TABLe TSIDelobe MPHase LIMit ccccccccccesccecseseceesseeeeesecesseeeseaneeees 309 CALCulate n TABLe TSIDelobe MWIDth LIMit esses 309 CALCulate nz TABlefGlDelobePCObrelatonLIMm sees 200 CAL Culate nz TABlefGlDelobe PDG evel Mit 200 CALOCulate n TABLe TSIDelobe SDELay LIMit eese 309 CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit STATe State CALCulate lt n gt
355. late lt n gt PS Pecttum MAX Fe WEN 263 CALCu latesn gt PSPectum le TE 264 CAL GCulatesn PSPectr miPOWALF ciere Pha rE ana ku eru va cene A ees b E Dre uet ege 264 Lee eler E E 266 CALCulate lt n gt PSPectrum STHReshold GALGulate n PSPectrum HMD euer cua cer ttr tonne rr reb re eaa etie ha reo eno rer eR er ONENE CALCulate n PSPectrum TSIDelobe ge Ss ei e eut CR UE Lee E Ee d Din EE EE ee Ee El E CALCulateen RRSPectr m WINDOW itat ERR Ba eru eeepc eU euer aa puc Fev se de Capp ud 289 GALGulatesn RTMS ALING SFIOW EE 338 ee EE NEE ERT 338 GALGulatesn ANER OK T TE 338 CALCulate n TABLe ParameterGroup Parameter LIMit sess 308 CAL Culate cnz TAPBle PDarameier rounpz Parameter UM ZSTATe 206 CAL Culate cnz TAPBle Parameter roupz ALLUIMSTATe cece cececee cece sees eeeeseeeeeseeseaeeeeeeesaeesseeenaees 308 CALCulate lt n gt TABLe ALL LIMit STATe CALCulate lt n gt TABLe FREQuency ALL LIMit STATe GALGCulate n TABLe FREQuency ALL STATe 5 rrr ntn nnne 291 GALCulate n TABLe FREQuency GCRA T6 22i ren rentrer ha ch n te Heg Er ee ono PERPE aora a 292 CAL Culat e lt n gt TABLEe FREQuency GRATe EIMIL inno a cep teo ear r ra E ENTE ETENEE 308 CALCulate n TABLe FREQuency CRATe LIMit GTATe esses ener nnne 306 GALCulate n TABLe FREQuency DEViation 2 oreet trt ener rr reden in CALCulate lt n gt TABLe FREQuency DEViation LIMit
356. lay Markers are configured in the Marker dialog box which is displayed when you do one of the following e Inthe Overview select Result Config and switch to the Marker tab e Press the MKR key then select the Marker Config softkey e e HERE E ET 146 e General Marker Gettings eene nnne nnne nene 150 e Marker Positioning FUctlofis oi soe ere d Eod needed rea 152 6 3 1 Individual Marker Settings Up to 17 markers or delta markers can be activated for each window simultaneously Initial marker setup is performed using the Marker dialog box R amp S FSW K6 6S Analysis Markers fC Link to Marker Trace Marker 1 Lc oeta Aoo oos efor d 12 16 Norm Selected State X value Type Norm ee l Magnitude Capture E Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta 147 Selected MOTO oce Dernier er eet E Ee Pa e p v PEE eS Er et 148 ET Te EE 148 Plc H 148 d Ei cio rere 148 Reference Marke 149 Linking to Another Marker aces ceeitco actenus euenit ze enn tec Rp tene 2 ERR nnnc ENEE ee 149 Assigning the Marker to e Trate uuu adde daa ens dead etd Rl RR 149 ele e EE 149 Al Markers e GE 150 Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta The Marker X softkey activates the corresponding marker and opens an edit dialog box to enter the marker position
357. lds For a definition of the frequency range for the pre defined bands see table 9 2 The mixer settings for the user defined band can be selected freely The frequency range for the user defined band is defined via the harmonics configuration see Range 1 2 on page 80 Remote command SENSe MIXer HARMonic BAND VALue on page 198 RF Overrange If enabled the frequency range is not restricted by the band limits RF Start and RF Stop In this case the full LO range of the selected harmonics is used Remote command SENSe MIXer RFOVerrange STATe on page 201 Preset Band Restores the presettings for the selected band Note changes to the band and mixer settings are maintained even after using the PRESET function This function allows you to restore the original band settings Remote command SENSe MIXer HARMonic BAND PRESet on page 198 Input and Output Settings Mixer Type The External Mixer option supports the following external mixer types 2 Port LO and IF data use the same port 8 Port LO and IF data use separate ports Remote command SENSe MIXer PORTs on page 201 Mixer Settings Harmonics Configuration The harmonics configuration determines the frequency range for user defined bands see Band on page 79 Range 1 2 Mixer Settings Harmonics Configuration Enables the use of a second range based on another harmonic frequency of the mixer to cover the band s frequency range For
358. le Only the currently visible columns in the result display are exported User Manual 1173 9392 02 17 160 Export Functions All All columns including currently hidden ones for the result display are exported Remote command MMEMory STORe lt n gt TABLe on page 390 Export Limits Table Export Configuration If activated any limits defined for the table will be included in the export file Remote command MMEMory STORe lt n gt TABLe LIMit on page 391 Decimal Separator Table Export Configuration Defines the decimal separator for floating point numerals for the data export files Eval uation programs require different separators in different languages Remote command FORMat DEXPort DSEParator on page 389 Export Table to ASCII File Table Export Configuration Opens a file selection dialog box and saves the selected result table in ASCII format DAT to the specified file and directory For details on the file format see chapter A 1 Reference ASCII File Export Format on page 402 Note To store the measurement results for all traces and tables in all windows use the Export Trace to ASCII File command in the Save Recall Export menu See also chapter 6 4 2 Trace Data Export Configuration on page 157 Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory
359. linked to the pulse selection Thus if you move the marker M1 to a different pulse the Pulse Selection is set to the same pulse and vice versa The suffixes n lt m gt are irrelevant This command requires the markers to be linked across all windows CALCulate lt n gt MARKer lt m gt LINK ON If the CALCulate lt n gt MARKer lt m gt LINK TRENd command is enabled the CALCulate lt n gt MARKer lt m gt LINK command is automatically also enabled if necessary Parameters State ON OFF RST OFF Example CALC MARK LINK ON CALC MARK LINK TREN ON Manual operation See Link Trend M1 to Selected Pulse on page 151 DISPlay MTABle lt DisplayMode gt This command turns the marker table on and off Parameters lt DisplayMode gt ON Turns the marker table on OFF Turns the marker table off AUTO Turns the marker table on if 3 or more markers are active RST AUTO Example DISP MTAB ON Activates the marker table Manual operation See Marker Table Display on page 151 Positioning Markers CAL Culate nz DEL Tamarkercmz M AimumlEEFT 333 CAL Culate nz DEL TamarkercmzMAximumNENT 333 CAL Culate nz DEL Tamarker mzM Aimum RICH 333 CALOCulate n DELTamarker m MAXimum PEAK eese 333 CAL Culate nz DEL Tamarkermz MiNimum LEET 333 Working with Markers CAL Culate nz DEL TamarkercmzMiNimumNENT 334 CAL Culate nz DEL Tamarker mz Mi
360. lobe frequency CALCulate lt n gt PSPectrum WINDow lt WindowType gt Defines the used FFT window type Setting parameters lt WindowType gt RECTangle BARTIett HAMMming HANNing BLACkman RST BLACkman Manual operation See Window Type on page 136 9 14 5 Configuring a Parameter Trend The parameter trend evaluations allow you to visualize changes in a specific parameter for all measured pulses within the current capture buffer For each parameter trend window you can configure which measured parameter is to be displayed CAL Culate n TRENG FREGQUGHCy 222 1 1 2i 122ocp ee ut eoe rita o es pav Na ZE P ET EEN 269 CALOCulate n TRENd FREQuency X esses ener trt rh rrr rrr nnne nnns 270 E e E EE e EE 271 CAL Culate lt n gt TRENG LLINeS STAT 2ccc2 crcceesesconevesiscesevevererecivesiseecmennnieccrevescicnevss 272 Configuring the Results SA e EI GR E TEE 272 GALOulate n TRENGIPHASGX ariete oreet epe ep NR yv On PA GEAR XENNAR RS TRE Ra ENEE 274 GAL e HE TRENG PHASE E 275 CAL Culatesms TRENGIPOWWN6E iacebant xe been nue tenax breue Deo deret 276 GAEGulatesmnsTRENdPOMVeEX EE 278 GALOulate n TRENG POWer Y riter eoo eaaa e AcR cry a FM d Ade gRR ARR DR IR RR lids 280 CAL Culate n TRENd Hl ln DEE 282 CAL Gulate n TRENG TIMIDgX 5 1 ioa ENNER ea vines eere etre eaae ex 2a EES 283 GALGulatespns TRENgSSTIMIFIGEY EE 284 CALE late en gt TRENG TSI Dl EE 285 CALCulatesmpsTRENGTS
361. lobe parameters are included in the result tables Parameters lt Visibility gt ON OFF RST OFF Usage Setting only Configuring the Results CALCulate n TABLe TSIDelobe AMPower Visibility If enabled the average mainlobe power in dBm is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Mainlobe Power Average on page 27 CALCulate n TABLe TSIDelobe CRATio lt Visibility gt If enabled the compression ratio is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Compression Ratio on page 27 CALCulate lt n gt TABLe TSIDelobe IMPower Visibility If enabled the integrated mainlobe power in dBm is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Mainlobe Power Integrated on page 27 CALCulate lt n gt TABLe TSIDelobe ISLevel Visibility If enabled the integrated sidelobe level in dB is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Integrated Sidelobe Level on page 26 CALCulate lt n gt TABLe TSIDelobe MFRequency lt Visibility gt lt Scaling gt If enabled the mainlobe frequency is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Configuring the Results Setting parameters Scaling GHZ MHZ KHZ HZ Defines the unit in which the r
362. lt n gt TABLe on page 390 Dm R au n User Manual 1173 9392 02 17 139 Result Configuration Decimal Separator Defines the decimal separator for floating point numerals for the data export files Eval uation programs require different separators in different languages Remote command FORMat DEXPort DSEParator on page 389 Export Table to ASCII File Opens a file selection dialog box and saves the selected result table in ASCII format DAT to the specified file and directory For details on the file format see chapter A 1 Reference ASCII File Export Format on page 402 Note To store the measurement results for all traces and tables in all windows use the Export Trace to ASCII File command in the Save Recall Export menu See also chapter 6 4 2 Trace Data Export Configuration on page 157 Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Remote command MMEMory
363. measured and reference waveform powers This yields a value between 0 completely uncorrelated and 1 per fectly correlated For details see Peak correlation on page 57 Remote command CALCulate lt n gt TABLe TSIDelobe PCORrelation on page 303 SENSe PULSe TSIDelobe PCORrelation on page 382 SENSe PULSe TSIDelobe PCORrelation LIMit on page 388 Mainlobe Phase The phase difference between the measured and reference waveforms at the time off Set corresponding to the mainlobe peak Note The phase is only meaningful relative to other pulses within the capture not as an absolute value For details see Mainlobe frequency and phase on page 57 Remote command CALCulate lt n gt TABLe TSIDelobe MPHase on page 303 SENSe PULSe TSIDelobe MPHase on page 380 SENSe PULSe TSIDelobe MPHase LIMit on page 388 Mainlobe Frequency The frequency difference between the measured and reference waveforms at the time offset corresponding to the mainlobe peak For details see Mainlobe frequency and phase on page 57 Remote command CALCulate lt n gt TABLe TSIDelobe MFRequency on page 302 SENSe PULSe TSIDelobe MFRequency on page 380 SENSe PULSe TSIDelobe MFRequency LIMit on page 388 Evaluation Methods for Pulse Measurements The data that was measured by the R amp S FSW Pulse application can be evaluated using various different methods All evaluation modes available for the Pulse mea
364. mented Data Captutring iudice eerte t IENNE EG Ee Pe a A eva 233 e E EU e DE 235 weer Biertreng 237 e Configuring the Pulse Measurement iiic eee ide Ee eco E cd 239 e Configuring and Performing Sweeps essent ttr nnn tnnt 247 e Configuring the Results eceseieceeeeiceee teneret trn nn tene b pan tnn nn Ense EENEG 254 e Configuring the Result Display uic tete rtt ttt tt crece 313 e Configuring Standard Trape ue reitera pref xe e Seces 323 e Wyorking ENEE 327 e Configuring an Analysis Interval and Line MSRA mode only 336 e Configuring an Analysis Interval and Line MSRT mode only 337 e Retrieving Res lls tme mere Ded b neo D Ne eo x rsen eod ees 339 e Retrieving Marker Results iieeeccieeeeesee scene tete Ferne nth ek nenne scu E n naar a RE Rca 393 e Programming Example Pulse Measurement cose enne 395 R amp SSFSW K6 6S Remote Commands for Pulse Measurements 9 1 Introduction Commands are program messages that a controller e g a PC sends to the instru ment or software They operate its functions setting commands or events and request information query commands Some commands can only be used in one way others work in two ways setting and query If not indicated otherwise the com mands can be used for settings and queries The syntax of a SCPI command consists of a header and in
365. mmand aborts the measurement in the current measurement channel and resets the trigger system Configuring and Performing Sweeps To prevent overlapping execution of the subsequent command before the measure ment has been aborted successfully use the OPC or WAT command after ABOR and before the next command For details see the Remote Basics chapter in the R amp S FSW User Manual To abort a sequence of measurements by the Sequencer use the INITiate lt n gt SEQuencer ABORt command Note on blocked remote control programs If a sequential command cannot be completed for example because a triggered sweep never receives a trigger the remote control program will never finish and the remote channel to the R amp S FSW is blocked for further commands In this case you must inter rupt processing on the remote channel first in order to abort the measurement To do so send a Device Clear command from the control instrument to the R amp S FSW on a parallel channel to clear all currently active remote channels Depend ing on the used interface and protocol send the following commands Visa viClear e GPIB ibcir e RSIB RSDLLibclr Now you can send the ABORt command on the remote channel performing the mea surement Example ABOR INIT IMM Aborts the current measurement and immediately starts a new one Example ABOR WAI INIT IMM Aborts the current measurement and starts a new one once abortion has bee
366. most cases one or more parameters To use a command as a query you have to append a question mark after the last header element even if the command contains a parameter A header contains one or more keywords separated by a colon Header and parame ters are separated by a white space ASCII code 0 to 9 11 to 32 decimal e g blank If there is more than one parameter for a command these are separated by a comma from one another Only the most important characteristics that you need to know when working with SCPI commands are described here For a more complete description refer to the User Manual of the R amp S FSW Remote command examples Note that some remote command examples mentioned in this general introduction may not be supported by this particular application 9 1 1 Conventions used in Descriptions Note the following conventions used in the remote command descriptions e Command usage If not specified otherwise commands can be used both for setting and for querying parameters If a command can be used for setting or querying only or if it initiates an event the usage is stated explicitely Parameter usage If not specified otherwise a parameter can be used to set a value and it is the result of a query Parameters required only for setting are indicated as Setting parameters Parameters required only to refine a query are indicated as Query parameters Parameters that are only returned as the result of a query
367. mp S FSW MSRA User Manual For details on the MSRT operating mode see the R amp S FSW Realtime Spectrum Applica tion and MSRT Operating Mode User Manual SENSE TBANDNWIdI RI lee D 235 SENSe IBWIBIhBEMOd 2 32 32 2 ce a espe tee aS A A noie aiani 235 SENSe BANDwidth BWIDth DEMOG TYPE 2 o eene ee e een a ATEENAAN 235 SENSe DEMod FMVF TYPE eee tette te tette tna 236 SENSe SRATe etit ttt tette tette te tet stia ata daa da do d da ta t daa 236 SENSE ISWES TIM Be ceciessics Em 237 SENSe BANDwidth DEMod lt Bandwidth gt SENSe BWIDth DEMod Bandwidth Sets queries the measurement bandwidth in Hz The measurement bandwidth is defined by the used filter and the sample rate For information on supported sample rates and filter bandwidths see the data sheet Parameters Bandwidth RST 80 0 MHz Default unit HZ SENSe BANDwidth BWIDth DEMod TYPE FilterType This command defines the type of demodulation filter to be used For information on supported filter bandwidths see the data sheet Data Acquisition Parameters lt FilterType gt FLAT Standard flat demodulation filter GAUSs Gaussian filter for optimized settling behaviour For Gaussian filters with a large 3dB bandwidth gt 40 MHz only available with the bandwidth extension option R amp S FSW B160 B320 B500 the actual filter shape deviates strongly from the ideal Gauss filter outside a range of approximately 80
368. n Parameters Visibility ON OFF RST ON Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST US Manual operation See Pulse Width ON Time on page 18 CALCulate lt n gt TABLe TIMing RISE lt Visibility gt lt Scaling gt If enabled the rise time is included in the result tables Configuring the Results Parameters Visibility ON OFF RST ON Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST NS Manual operation See Rise Time on page 17 CALCulate lt n gt TABLe TIMing SETTling lt Visibility gt lt Scaling gt If enabled the settling time is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST MS Manual operation See Settling Time on page 17 CALCulate lt n gt TABLe TIMing TSTamp lt Visibility gt lt Scaling gt If enabled the timestamp is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST MS Manual operation See Timestamp on page 17 CALCulate lt n gt TABLe TSIDelobe ALL STATe lt Visibility gt If enabled the all side
369. n TABLe TSIDelobe MWIDth LIMit STATe State CALCulate n TABLe TSIDelobe PCORrelation LIMit STATe State CALCulate n TABLe TSIDelobe PSLevel LIMit STATe State CALCulate lt n gt TABLe TSIDelobe SDELay LIMit STATe State Activates or deactivates a limit check for the selected parameter The limits are defined using CALCulate lt n gt TABLe lt ParameterGroup gt lt Parameter gt LIMit on page 308 Commands for the parameter group TSIDelobe are only available if the additional option R amp S FSW K6S is installed Parameters State ON OFF RST OFF User Manual 1173 9392 02 17 307 R amp SSFSW K6 6S Remote Commands for Pulse Measurements pam P at CALCulate lt n gt TABLe lt ParameterGroup gt ALL LIMit STATe State CALCulate lt n gt TABLe FREQuency ALL LIMit STATe State CALCulate lt n gt TABLe PHASe ALL LIMit STATe State CALCulate lt n gt TABLe POWer ALL LIMit STATe State CALCulate lt n gt TABLe TIMing ALL LIMit STATe State CALCulate n TABLe TSIDelobe ALL LIMit STATe State Activates or deactivates a limit check for all parameters in the selected parameter group Commands for the parameter group TSIDelobe are only available if the additional option R amp S FSW K6S is installed Parameters State ON OFF RST OFF CALCulate lt n gt TABLe ALL LIMit STATe Stat
370. n GVE GOMMBnI teo occ ep xe twain bcd en eer Ups eA Per Pert rcd daa ded RUM d 203 SENSe CORR6Gction CVE AA EE 203 SENSe CORRection CVE HARMORIIC iuit tu o a poete tento Eyre e eh ba e epe pae gore taa eee nere ieu 204 SENSe CORRection CVL MIXer SENSe CORRection CVL PORTs SENSe CORRection CVL SELect SENSe GORRection CVE SNUMDAE sio trn reb ven sic i trt hse c Qd vec be C e N 205 SENSe DETect HYS T6resis cn rir rre rer tre e ene oer Et ee Fe ER XE E DEAS EYE NASVA PER IS ERES 238 SENSE DE Tee NEE rnt eet rh te titre PR nri Er ve 237 SENSE IDETECGCEIMICCOUN EE 237 SENSe DETect REFerence SENSe DETect THReshold ISENS eelere DE E 220 SENSe FREQ encY CENTOt STEB ize om bene eerte p axe Errare RR EP EGO eter 221 SENSe FREQuency CENTer STEP AUTO iie eterne Dt be E EE e p 221 SENSE FREQUENCY EE 222 SENSe MIXer BIAS EE SENSe MIXer BIAS LOW 5 SENSe MIXer FISEQUeSnCcy HAN DOVOES ic pent Si i Peres a OR e ERE UI SE ue 197 SENSe MIXer FREQUe6nhGy S EE 197 SENSe MIXer FREQUency S TOP aac tire p CO ic Lu dE aia ares 198 SENSe MIXer HARMonic BAND PRES Lt 2 citate aisi EES sen ves Rn dE ede AVR ERRARE 198 SENSe MIXer HARMonic BAND VALue eeeeeeesseeee eee etenim nn enne nnns entente inns 198 SENSe MIXer HARMoriic HIGEE STATO cette tei eet t Ree etes 199 SENSe MIXer HARMonic HIGE NVALEUe ca ce caeci oc
371. n be exported to an ASCII file For each parameter the measured values are output For details on the storage format see chapter A 1 Reference ASCII File Export For mat on page 402 Table data can be exported either from the Result Configuration dialog box or from the Save Recall menu To export from the Save Recall menu 1 Select an active result table whose data you want to export Select the E Save icon in the toolbar Select the Export softkey 2 3 4 f necessary change the decimal separator to be used for the ASCII export file 5 Select the ASCII Table Export softkey 6 In the file selection dialog box select the storage location and file name for the export file N Select Save to close the dialog box and export the table data to the file To export from the Result configuration dialog box 1 Press the Overview softkey 2 Select the Result Config button 3 Select the window that contains the result table in the Specifics for selection box 4 Select the Table Config tab How to Export Table Data 5 Select the vertical Table Export tab 6 Select whether you want to export all columns or only the currently visible columns of the table 7 If necessary change the decimal separator to be used for the ASCII export file 8 Select the Export Table to ASCII File button 9 In the file selection dialog box select the storage location and file name for the export file
372. n completed Usage Event SCPI confirmed INITiate lt n gt CONMeas This command restarts a single measurement that has been stopped using ABORt or finished in single measurement mode The measurement is restarted at the beginning not where the previous measurement was stopped As opposed to INITiate lt n gt IMMediate this command does not reset traces in maxhold minhold or average mode Therefore it can be used to continue measure ments using maxhold or averaging functions Suffix n irrelevant Usage Event Configuring and Performing Sweeps Manual operation See Continue Single Sweep on page 116 INITiate lt n gt CONTinuous State This command controls the measurement mode for an individual measurement chan nel Note that in single measurement mode you can synchronize to the end of the mea surement with OPC OPC or WAI In continuous measurement mode synchroniza tion to the end of the measurement is not possible Thus it is not recommended that you use continuous measurement mode in remote control as results like trace data or markers are only valid after a single measurement end synchronization For details on synchronization see the Remote Basics chapter in the R amp S FSW User Manual If the measurement mode is changed for a measurement channel while the Sequencer is active see INITiate lt n gt SEQuencer IMMediate on page 251 the mode is only considered the next time the measurement i
373. n of marker lt m2 gt marker lt m1 gt changes its hori zontal position to the same value Parameters lt State gt ON OFF RST OFF Example CALC MARK4 LINK TO MARK2 ON Links marker 4 to marker 2 Manual operation See Linking to Another Marker on page 149 CALCulate lt n gt MARKer lt m gt STATe State This command turns markers on and off If the corresponding marker number is cur rently active as a deltamarker it is turned into a normal marker Parameters lt State gt ON OFF RST OFF Example CALC MARK3 ON Switches on marker 3 Manual operation See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 See Marker State on page 148 See Marker Type on page 148 CALCulate lt n gt MARKer lt m gt TRACe Trace This command selects the trace the marker is positioned on Note that the corresponding trace must have a trace mode other than Blank If necessary the command activates the marker first Parameters Trace Working with Markers Example CALC MARK3 TRAC 2 Assigns marker 3 to trace 2 Manual operation See Assigning the Marker to a Trace on page 149 CALCulate lt n gt MARKer lt m gt X Position This command moves a marker to a particular coordinate on the x axis If necessary the command activates the marker If the marker has been used as a delta marker the command turns it into a normal marker Parameters Position Numeric value th
374. n other measurements Parameters Offset This parameter defines the time offset between the capture buf fer start and the start of the extracted application data The off set must be a positive value as the application can only analyze data that is contained in the capture buffer Range pretrigger time to min posttrigger time sweep time RST 0 Manual operation See Capture Offset on page 111 9 20 Retrieving Results The following commands are required to retrieve the calculated pulse parameters Note that for each pulse result query you can specify for which pulse s you require results e ALL for all pulses detected in the entire measurement e CURRent for all pulses in the current capture buffer e SELected only for the currently selected pulse For each pulse result you can query either the current value default or the following statistical values for the pulses detected in the capture buffer or the entire measure ment e AVER average of the results e MIN minimum of the results MAX maximum of the results SDEV standard deviation of the results e Retrieving and Storing Trace Data teamed be tmu UNENEE 340 e Retrieving Information on Data Segments sse 341 e Retrieving Information on Detected Pulses 344 e Retrieving Parameter Results rti tee terti e tirer 344 e Retrieving Limit Results ccc cita cet eie dee 386 9 20 1 Retrieving Results e Exporting Trace Re
375. n page 119 SENSe DETect HYSTeresis lt Hysteresis gt Defines a hysteresis for pulse detection in dB in relation to the defined threshold see SENSe DETect THReshold on page 238 As long as the signal does not exceed the hysteresis the next threshold crossing is ignored Parameters lt Hysteresis gt RST 0 Default unit DB Manual operation See Hysteresis on page 119 SENSe DETect REFerence lt Reference gt The reference level to be used for setting the pulse detection threshold Parameters lt Reference gt REFLevel PEAK NOISe ABSolute REFLevel Current reference level PEAK Peak level as measured over the entire capture data interval NOISe Noise level determined from the current capture data according to SENSe TRACe MEASurement DEFine DURation MIN on page 187 ABSolute Absolute level defined by SENSe DETect THReshold on page 238 RST PEAK Manual operation See Reference Source on page 118 SENSe DETect THReshold Level The threshold determines whether a pulse is detected or not The top of a pulse must exceed the threshold in order to be detected The threshold is defined in relation to the reference defined by 8ENSe DETect REFerence Parameters Level numeric value in dB or dBm depending on reference type RST 10 0 9 12 9 12 1 Configuring the Pulse Measurement Manual operation See Threshold on page 119 Configuring the Pulse Measurement The follo
376. n page 149 CALCulate lt n gt DELTamarker lt m gt MREF lt Reference gt This command selects a reference marker for a delta marker other than marker 1 The reference may be another marker or the fixed reference Parameters lt Reference gt 1 to 16 Selects markers 1 to 16 as the reference FIXed Selects the fixed reference as the reference Example CALC DELT3 MREF 2 Specifies that the values of delta marker 3 are relative to marker 2 Manual operation See Reference Marker on page 149 CALCulate lt n gt DELTamarker lt m gt STATe State This command turns delta markers on and off If necessary the command activates the delta marker first No suffix at DELTamarker turns on delta marker 1 Parameters State ON OFF RST OFF Example CALC DELT2 ON Turns on delta marker 2 Manual operation See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 See Marker State on page 148 See Marker Type on page 148 Working with Markers CALCulate lt n gt DELTamarker lt m gt TRACe Trace This command selects the trace a delta marker is positioned on Note that the corresponding trace must have a trace mode other than Blank If necessary the command activates the marker first Parameters Trace Trace number the marker is assigned to Example CALC DELT2 TRAC 2 Positions delta marker 2 on trace 2 CALCulate lt n gt DELTamarker lt m gt X Position This c
377. n that channel is activated by the Sequencer Suffix n irrelevant Parameters State ON OFF 0 1 ON 1 Continuous measurement OFF 0 Single measurement RST 1 Example INIT CONT OFF Switches the measurement mode to single measurement INIT CONT ON Switches the measurement mode to continuous measurement Manual operation See Continuous Sweep RUN CONT on page 116 INITiate lt n gt IMMediate This command starts a single new measurement With measurement count or average count gt 0 this means a restart of the correspond ing number of measurements With trace mode MAXHold MINHold and AVERage the previous results are reset on restarting the measurement You can synchronize to the end of the measurement with OPC OPC or WAI For details on synchronization see the Remote Basics chapter in the R amp S FSW User Manual Suffix lt n gt irrelevant Configuring and Performing Sweeps Usage Event Manual operation See Single Sweep RUN SINGLE on page 116 INITiate lt n gt REFResh This function is only available if the Sequencer is deactivated SySTem SEQuencer SYST SEQ OFF and only for applications in MSRA MSRT mode not the MSRA MSRT Master The data in the capture buffer is re evaluated by the currently active application only The results for any other applications remain unchanged The suffix lt n gt is irrelevant Example SYST SEQ OFF Deactivates the scheduler INI
378. n the entire measurement Usage Query only SENSe PULSe POWer POINt lt QueryRange gt Returns the power in the measurement point for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Power at Point on page 22 SENSe PULSe POWer POINt AVERage lt QueryRange gt SENSe PULSe POWer POINt MAXimum lt QueryRange gt SENSe PULSe POWer POINt MINimum lt QueryRange gt SENSe PULSe POWer POINt SDEViation lt QueryRange gt Returns the statistical value for the power in the measurement point over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe POWer PON lt QueryRange gt Returns the Peak to Avg ON Power Ratio for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Peak to Avg ON Power Ratio on page 20 SENSe PULSe POWer PON AVERage lt QueryRange gt SENSe PULSe POWer PON MAX
379. n the oscilloscope the maxi mum memory size and thus record length available for the input channel 1 is reduced by half For details see the oscilloscope s data sheet and documentation Remote command TRIG SOUR EXT see TRIGger SEQuence SOURce on page 230 UO Power Trigger Source Trigger Settings This trigger source is not available if the optional Digital Baseband Interface or optional Analog Baseband Interface is used for input It is also not available for analysis band widths 2 160 MHz Triggers the measurement when the magnitude of the sampled UO data exceeds the trigger threshold Remote command TRIG SOUR IQP see TRIGger SEQuence SOURce on page 230 IF Power Trigger Source Trigger Settings The R amp S FSW starts capturing data as soon as the trigger level is exceeded around the third intermediate frequency For frequency sweeps the third IF represents the start frequency The trigger band width at the third IF depends on the RBW and sweep type For measurements on a fixed frequency e g zero span or UO measurements the third IF represents the center frequency This trigger source is only available for RF input The available trigger levels depend on the RF attenuation and preamplification A refer ence level offset if defined is also considered When using the optional 2 GHz bandwidth extension R amp S FSW B2000 with an IF power trigger For details on available trigger le
380. n the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe PSLevel lt QueryRange gt Returns the peak to sidelobe level within the time sidelobe range for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Peak to Sidelobe Level on page 26 Retrieving Results SENSe PULSe TSIDelobe PSLevel AVERage lt QueryRange gt SENSe PULSe TSIDelobe PSLevel MAXimum lt QueryRange gt SENSe PULSe TSIDelobe PSLevel MINimum lt QueryRange gt SENSe PULSe TSIDelobe PSLevel SDEViation lt QueryRange gt Returns the statistical value for the peak to sidelobe level within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe TSIDelobe SDELay lt QueryRange gt Returns the sidelobe delay for the time sidelobe range for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the curre
381. nce pulse here the chap ter 6 1 1 Pulse Selection on page 129 value is adapted accord ingly and vice versa Before Pulse The nth pulse before the currently evaluated pulse where n is the specified number No values are available for the first n pulses as no valid reference pulse is available These results are indicated as For example a value of 2 will use row 1 as the reference row for Pulse Pulse results for pulse number 3 In this case pulse numbers 1 and 2 will not have a valid reference row and the Pulse Pulse results will be invalid for these rows 5 10 3 Pulse Measurement Settings After Pulse The nth pulse after the currently evaluated pulse where n is the specified number No values are available for the last n pulses as no valid reference pulse is available These results are indicated as For example a value of 2 will use row 5 as the reference row for Pulse Pulse results for pulse number 3 In this case the last two pulse rows will not have a valid reference row and the Pulse Pulse results will be invalid for these rows Remote command SENSe TRACe MEASurement DEFine PULSe REFerence POSition on page 243 ZEN Ge TRACe MEASurement DEFine PULSe REFerence on page 242 Measurement Range Some measurements are performed over a range within the pulse for example the phase or frequency deviation The measurement range is specified either by start and end points relative
382. ncy Hz RST RISE Example CALC2 TREN TIM Y DCYCle Usage Setting only CALCulate lt n gt TRENd TSID lt YAxis gt lt XAxis gt Configures the Parameter Trend result display for time trends This command is only available if the additional option R amp S FSW K6S is installed This command defines both x axis and y axis parameters in one step It is equivalent to the two subsequent commands CALCulate lt n gt TRENd TIMing X TSTamp PNUMber see CALCulate lt n gt TRENd TIMing X on page 283 CALCulate n TRENd TSIDelobe Y lt YAxis gt see CALCulate lt n gt TRENd TSIDelobe Y on page 288 Configuring the Results Setting parameters Y Axis PSLevel ISLevel MWIDth SDELay CRATio IMPower AMPower PCORrelation MPHase MFRequency Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 5 Time Sidelobe Parameters on page 25 PSLevel peak to sidelobe level ISLevel integrated sidelobe level MWIDth mainlobe 3 dB width SDELay sidelobe delay CRATio compression ratio IMPower integrated mainlobe power AMPower average mainlobe power PCORrelation peak correlation MPHase mainlobe phase MFRequency mainlobe frequency Configuring the Results lt XAxis gt PNUMber TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available paramet
383. ncy Settings Frequency settings can be configured via the Frequency dialog box which is dis played when you do one of the following e Select the FREQ key and then the Frequency Config softkey e Select the Frequency tab in the Input Frontend Settings dialog box Center Frequenc Frequency Offset Center MEQUON CY m 100 Center Frequency EE 100 Frequency ONSGt idm ten d editi E o i ne V ities esate 101 Center frequency Defines the normal center frequency of the signal The allowed range of values for the center frequency depends on the frequency span span gt 0 spanmin 2 lt foenter fmax SPANmin 2Z zero span 0 Hz lt foenter S fmax fmax and span i depend on the instrument and are specified in the data sheet Remote command SENSe FREQuency CENTer on page 220 Center Frequency Stepsize Defines the step size by which the center frequency is increased or decreased using the arrow keys When you use the rotary knob the center frequency changes in steps of only 1 10 of the Center Frequency Stepsize The step size can be coupled to another value or it can be manually set to a fixed value Center Sets the step size to the value of the center frequency The used value is indicated in the Value field 5 5 2 Frontend Settings Manual Defines a fixed step size for the center frequency Enter the step size in the Value field Remote command SENSe FREQuency CENTer
384. nd the MSRT Master lt n gt is irrelevant Note even if the analysis line display is off the indication whether or not the currently defined line position lies within the analysis interval of the active application remains in the window title bars Parameters lt State gt ON OFF RST ON Manual operation See Show Line on page 164 CALCulate lt n gt RTMS ALINe VALue lt Position gt This command defines the position of the analysis line for all time based windows in all MSRT applications and the MSRT Master lt n gt is irrelevant Parameters lt Position gt Position of the analysis line in seconds The position must lie within the measurement time pretrigger posttrigger of the MSRT measurement Default unit s Manual operation See Position on page 164 CALCulate lt n gt RTMS WINDow lt n gt IVAL This command queries the analysis interval for the window specified by the WINDow suffix lt n gt the CALC suffix is irrelevant This command is only available in application measurement channels not the MSRT View or MSRT Master Retrieving Results Return values lt IntStart gt Start value of the analysis interval in seconds Default unit s lt IntStop gt Stop value of the analysis interval in seconds Usage Query only SENSe RTMS CAPTure OFFSet Offset This setting is only available for applications in MSRT mode not for the MSRT Master It has a similar effect as the trigger offset i
385. nding command Querying numeric values When you query numeric values the system returns a number In case of physical quantities it applies the basic unit e g Hz in case of frequencies The number of dig its after the decimal point depends on the type of numeric value Example Setting SENSe FREQuency CENTer 1GHZ Query SENSe FREQuency CENTer would return 1E9 In some cases numeric values may be returned as text e INF NINF Infinity or negative infinity Represents the numeric values 9 9E37 or 9 9E37 e NAN Not a number Represents the numeric value 9 91E37 NAN is returned in case of errors Boolean Boolean parameters represent two states The ON state logically true is represen ted by ON or a numeric value 1 The OFF state logically untrue is represented by OFF or the numeric value 0 Querying boolean parameters When you query boolean parameters the system returns either the value 1 ON or the value 0 OFF Example Setting DISPlay WINDow ZOOM STATe ON Query DISPlay WINDow ZOOM STATe would return 1 Common Suffixes 9 1 6 3 Character Data Character data follows the syntactic rules of keywords You can enter text using a short or a long form For more information see chapter 9 1 2 Long and Short Form on page 179 Querying text parameters When you query text parameters the system returns its short form Example Setting SENSe BANDwidth
386. nection with 1 MO termination passes both DC and AC components of the trigger signal AC Connection through capacitor removes unwanted DC and very low frequency components Remote command TRIGger SEQuence OSCilloscope COUPling on page 219 Trigger Offset Trigger Settings Defines the time offset between the trigger event and the start of the measurement offset 0 Start of the measurement is delayed offset 0 Measurement starts earlier pre trigger Only possible for zero span e g UO Analyzer application and gated trigger switched off Maximum allowed range limited by the measurement time pretriggermax measurement timemax Remote command TRIGger SEQuence HOLDoff TIME on page 227 Slope Trigger Settings For all trigger sources except time you can define whether triggering occurs when the signal rises to the trigger level or falls down to it When using the optional 2 GHz bandwidth extension R amp S FSW B2000 with an IF power trigger only rising slopes can be detected For details see the R amp S FSW UO Analyzer and UO Input User Manual Remote command TRIGger SEQuence SLOPe on page 229 Hysteresis Trigger Settings Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs Settting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level This setting is only available
387. nen enne 357 ISENGeIPUL Ge bOWerRlDGble D MANimum neret 357 ISENGe IDUL Ge bOuWerhRlpble D MiNimum 357 SENSeTPUESe POWerERIPPIe DB SDEVIatIOn i cede torrent tede eterne ns 357 SENSe PUESe POWSERIPPIaSpPERCent 2 c 10 ota erri io inpar ee ropa rerit SEAN 358 SENSe PULSe POWer RIPPle PERCent AVERage sisse 358 SENSe PULSe POWer RIPPle PERCent MAXimum eeeeeeeennen nnne 358 SENSE PULSe POWer RIPPle PERCent MINIMUM asics 358 Retrieving Results SENSe PULSe POWer RIPPle PERCent SDEViation eeeseeeeeeeeeeeeeee 358 SENSE PULSE POW eg OP EE 358 SENSe PULSe POWer TOP AVERage eese m enne nennen enis 359 E Oe e eg TOP El ET 359 SENSe PUESe POWhstr el Dr un KEE 359 SENSe PULSe POWesrTOP SDEVialiIgh EE 359 SENSe PULSe POWer ADRoop DB lt QueryRange gt Returns the amplitude droop in dB for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Droop on page 21 SENSe PULSe POWer ADRoop DB AVERage lt QueryRange gt SENSe PULSe POWer ADRoop DB MAXimum lt QueryRange gt SENSe PULSe POWer ADRoop DB MINimum lt QueryRange gt SENSe PULSe POWer ADRoop DB SDEViation lt QueryRange gt Ret
388. ning of a rising signal level Remote command SENSe TRACe MEASurement DEFine TRANsition LREFerence on page 241 Boundary The boundary in percent of the pulse amplitude to either side of the pulse top ON state Used to determine the settling time for example Once the signal remains within the boundary it is assumed to have settled Remote command SENSe TRACe MEASurement DEFine BOUNdary TOP on page 240 Pulse Measurement Settings 5 10 2 Measurement Point Some specific pulse parameters e g the phase or the frequency are determined at a specific time instant measurement point within the pulse You can configure this point based on a reference and offset value Meas Levels Meas Point Meas Range Time Sidelobe Range Offset 5 0 us Reference for Pulse Pulse Measurements Averaging WINKOW Drm 123 Reference for Pulse Pulse Measurements 123 Measurement Point Reference Defines the reference which the Offset refers to Rise The measurement point is defined in reference to the rising edge mid level crossing Center The measurement point is defined in reference to the center of the pulse equal distance from the rising and falling mid level crossings Fall The measurement point is defined in reference to the falling edge mid level crossing Pulse Measurement Settings Trigger The measurement point is defined in reference to the trigger event This setting is only available for segmented captu
389. nit Hz Example FREQ CENT 100 MHz FREQ CENT STEP 10 MHz FREQ CENT UP Sets the center frequency to 110 MHz Usage SCPI confirmed Manual operation See Center Frequency on page 91 See Center frequency on page 100 SENSe FREQuency CENTer STEP lt StepSize gt This command defines the center frequency step size You can increase or decrease the center frequency quickly in fixed steps using the SENS FREQ UP AND SENS FREQ DOWN commands see SENSe FREQuency CENTer on page 220 Parameters lt StepSize gt fmax iS specified in the data sheet Range 1 to fMAX RST 0 1 x span Default unit Hz Example FREQ CENT 100 MHz FREQ CENT STEP 10 MHz FREQ CENT UP Sets the center frequency to 110 MHz Manual operation See Center Frequency Stepsize on page 100 SENSe FREQuency CENTer STEP AUTO lt State gt This command couples or decouples the center frequency step size to the span Parameters lt State gt ON OFF 0 1 RST 1 Example FREQ CENT STEP AUTO ON Activates the coupling of the step size to the span 9 7 2 Frontend Configuration SENSe FREQuency OFFSet Offset This command defines a frequency offset If this value is not 0 Hz the application assumes that the input signal was frequency shifted outside the application All results of type frequency will be corrected for this shift numerically by the
390. nn rns 28 M irilob Phase roter rennen 28 Mainlobe POWER 2 re erret npn 27 Min POWER rco vedere ta edere te eoa uud rey eh 20 Off EE 18 ON Ule 18 OUTPUT e M 58 ele e 21 Peak Correlation scriitorii de 28 Peak POWOE 5 0 tp een rr meet e ee d 20 Peak to Sidelobe Level sessssssss 26 Peak to Average Tx Power Ratio 21 Peak to Avg ON Power Ratio a a 20 Peak to Min Power Ratio sssssssssss 21 Phase ace ens 24 Phase Deviation siii srasni arae aiius N 25 Phase Ertor Peak eai ees 24 Phase Error RMS rre titanerne 24 POWerF dese 19 22 Pulse Amplitude einer 20 Pulse Period x2 5 ace en Ee oboe 18 Pulse Repetition Frequency Hz sssse 19 Pulse Repetition Interval 2 mm 18 Pulse MG e ele ree Verre 18 Pulse Pulse Frequency Difference 23 Pulse Pulse Phase Difference ssssss 24 Pulse to Pulse Power Ratio ssesssssss 22 Ripple i21 Rise Time 2 Settling Time nd sidelobe Delay sissi i tiae ette 26 Timestamp s rrr rr mer tene rrt 17 TOP POWO 25 23 dimito eM Eel re 19 Peak correlalioty 2 crop cde ees een rel 57 Peak frequency G F cerei treten tranne 292 Peak search Key coti te e ey erp Ee eg 152 Peaks Marker positioning Next
391. nnected device lt NotUsed gt to be ignored lt MaxTransferRate gt Maximum data transfer rate of the connected device in Hz lt ConnProtState gt State of the connection protocol which is used to identify the connected device Not Started Has to be Started Started Passed Failed Done 9 6 5 Input Output Settings lt PRBSTestState gt State of the PRBS test Not Started Has to be Started Started Passed Failed Done lt NotUsed gt to be ignored lt Placeholder gt for future use currently 0 Example OUTP DIQ CDEV Result 1 SMW200A 101190 CODER 1 IN 0 200000000 Passed Done 0 0 Manual operation See Output Settings Information on page 99 See Connected Instrument on page 99 Input from UO Data Files The input for measurements can be provided from UO data files The commands required to configure the use of such files are described here For details see chapter 4 6 2 Basics on Input from UO Data Files on page 58 Useful commands for retrieving results described elsewhere INPut SELect on page 194 Remote commands exclusive to input from UO data files INPUEFIEE TATE DE 215 INPut FILE PATH lt FileName gt This command selects the I Q data file to be used as input for further measurements The I Q data must have a specific format as described in chapter A 3 I Q Data File Format ig tar on page 405 For details see chapter 4 6 2 Basics on Input from UO Data Files on page 5
392. nnne enne nnns 363 SENSe PULSe TIMIng PRE SDEVIalipnmg s s act tu cortar no t erigere rc 363 SENS amp IPUL Se TIMIDOGEPIRIR sioe ouod ort tenses tee toii eu cete edere eei arn oec araar aa tese 363 SENSe PULSe TIMirig e AN e 364 SENSe PUESe TIMing PREM AXIIIBIEITIP ici aie trant kk E pte hrec taaan aa 364 Retrieving Results SENSE PULSE TIMME PREMINIRYUITS 1st on et ena uc e e cre t nit re ente 364 ISENS amp PULSe TIMing e ERT EE 364 5SENSe PUESe TIMmg PWD INE 2 eara trea optet hanno aerea nh ehe Io Ee EE 364 SENSe PULSe TIMing PWIDth AVER amp ge ccena rennen ci rna e ch enn n tae 364 SENSe PULSe TIMing PWIDtBh MAXIUtTI ooa etna cease anui sooo ruban canes anat 364 SENS amp PULSe TIMing PWIDITEMINIIRUET ttr ee eene en nni ni tne 365 SENSe PULSe TIMing PWIDth SDEViation eeeeeeeeeeeneneenemnnen nennen 365 SENS PULSE TIMING WEE 365 SENSe PULSe TIMing RISE AVERagg rei o mete natn aite 365 SENSe PULSe TIMing RISE MAXimum esses eene 365 SENS amp EA Reg E MINIMUM KE 365 SENSa PULSe TIMirigiRISE SDEVIaliOR EN 365 SENSE PUL Se TIMING SET TIGE eco e ei sepe rn RE Feu ha e epe ap Det erben 365 ISGENGe IpDUL Ge TlMing GE TTingAyVthRage eene nnne 366 SENSa PULSe TIMing SET Ting MAXImUIm39 caue ceo arto b rrt rte uated dances 366 SENSe PULSe TIMing SETTling MINimum eese nennen ener 3
393. nsists of the header containing important scaling parameters and a data sec tion containing the trace data Generally the format of this ASCII file can be processed by spreadsheet calculation programs e g MS Excel Different language versions of evaluation programs may require a different handling of the decimal point Thus you can define the decimal sep arator to be used decimal point or comma see Decimal Separator on page 140 The data of the file header consist of three columns each separated by a semicolon parameter name numeric value basic unit The data section starts with the two lines containing the measured parameter names and units followed by the measured data in multiple columns depending on measurement which are also separated by a semi colon Table 1 1 ASCII file format for table export File contents Description Header data Type R amp S FSW Instrument model Version 5 00 Firmware version Date 01 Oct 2006 Date of data set storage Mode PULSE Application Center Freq 55000 Hz Freq Offset 0 Hz Center frequency Frequency offset Meas BW 10000000 Hz Measurement Bandwidth Filter Type GAUS Measurement filter type can be Gaussian GAUS or flat FLAT Ref Level 30 dBm Reference level Level Offset 0 dB Level offset Rf Att 20 dB Input attenuation El Att 2 0 dB Electrical attenuation SWT 0 005 s Sweep time measurement tim
394. nt capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Sidelobe Delay on page 26 SENSe PULSe TSIDelobe SDELay AVERage lt QueryRange gt SENSe PULSe TSIDelobe SDELay MAXimum lt QueryRange gt SENSe PULSe TSIDelobe SDELay MlNimum lt QueryRange gt SENSe PULSe TSIDelobe SDELay SDEViation lt QueryRange gt Returns the statistical value for the sidelobe delay within the time sidelobe range Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results 9 20 4 6 Commands for Compatibility The SENS TRAC MEAS commands are maintained for compatibility reasons only For new remote control programs use the corresponding SENS PULS com mands instead SENSe TRACe MEASurement POWerAWVQ iiiiceesicic eiat i anna dca anda RV napi Rd NNN 384 SGENZeTRACeMEAGurementPDOWer MAN 384 SENSe TRACe MEASurement POWer MIN 0ccccceccceceececesesceceeeceecsceceseseeceeeeecneeeaes 384 SENSe TRACe MEASurement POWer PULS BASE ccc0ccccceescccaseseceeneeeceneceseeseseanees 384 GENZeTRACeMEAGurementPDOWer DU GeTOb 384 GENZeTRACeMEAGurement DU Ge DCvcle 385 SGENZeTRACeMEAGurement DU Ge DUbaton 385 SGENZeTRACeMEAGurement DU Ge PEbRiod iik ioai didda adiaka 385 GENZeTRACeMEAGurement DU Ge GEbaraton 385
395. nt nnn 328 CALCulate lt n gt MARKer lt m gt LINK TRENA sessu sisrrnsnsngnsnnusnan adaon na ea Sina E nTn CALCulate lt n gt MARKer lt m gt MAXimum LEFT CALCulatesn gt MARKer lt m gt MAXimum NEXT 12 iret beu urere erae ea c na acne dani eoe Yea e eee 334 CAL Culate nz MAbkerczmz MA NimumbRIlCGHt 334 CALCulate n MARKer m MAXimumy PEAK 2 nao ana nna xn inn 335 CALCulate lt n gt MARKer lt m gt MINimum LEFT CALCulate lt n gt MARKer lt m gt MINimum NEXT CALCulate n MARKer m MINimumt RIGE iecit pa tuerentur c nna ae e Ep Ru 335 CAL Culate nzMAhRkercmMiNimumf PEART A 335 ee E El TRAC nro erae to petu aE an se ka degna iae EEEN Ea SEA DEKEN a 328 CAL Gulatesn MARKOr ImIS X ccce reea tia reser paper eret A ieee tute ved d udo e o E dd 329 CALC ulate lt m gt MARWGrSIM iN EE 394 CALCulate lt n gt MARKer lt m gt STATe GALGulatesn MSRA ALING SFIOW 2 ct iret rre tree rta eh EE Pere EHE X EE RE PE EE RE ER Rh GAL Culatesp MSRACALINBEVALUe cerneret repre paye ena Ee EAEE xh P e RE en uE Ee 336 GALGulate n MSRA WINDowsn AN ue etre tnn tnt rh rh tren rr hn rne ERE xa deeg 337 CAL Culatesn s PSPectrumAU EO eiui coco ttt oc ree iwi n ec ee caa Rena leases CALCulate n PSPectr um BEOGCKsizo ceret nanii Ee a ket EE nM nannte RR DRE aL GALGulate n PSPectrum F REQUenCOy rr erp reri rgo e P xn ea Pn ER gn CALCulate lt n gt PSPectrum GTHReshold CAL Cu
396. o an ASCII file Alternatively you can select one specific trace only for export see Trace to Export The results are output in the same order as they are displayed on the screen window by window trace by trace and table row by table row Remote command FORMat DEXPort TRACes on page 390 Include Instrument Measurement Settings Includes additional instrument and measurement settings in the header of the export file for result data Remote command FORMat DEXPort HEADer on page 389 Trace to Export Defines an individual trace that will be exported to a file This setting is not available if Export all Traces and all Table Results is selected 6 5 Export Functions Decimal Separator Defines the decimal separator for floating point numerals for the data export files Eval uation programs require different separators in different languages Remote command FORMat DEXPort DSEParator on page 389 Export Trace to ASCII File Opens a file selection dialog box and saves the selected trace in ASCII format dat to the specified file and directory The results are output in the same order as they are displayed on the screen window by window trace by trace and table row by table row Note Secure user mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates th
397. o illustrate as much as possible of the provided functions and possible interdependencies between parameters The screenshots usually show a fully equipped product that is with all options instal led Thus some functions shown in the screenshots may not be available in your par ticular product configuration Starting the Pulse Application 2 Welcome to the Pulse Measurements Appli cation The R amp S FSW Pulse application is a firmware application that adds functionality to per form measurements on pulsed signals to the R amp S FSW The R amp S FSW Pulse application provides measurement and analysis functions for pulse signals frequently used in radar applications for example The R amp S FSW Pulse application R amp S FSW K6 features e Automated measurement of many pulse parameters including timing amplitude frequency and phase parameters e Statistical analysis of pulse parameters Analysis of parameter trends over time and frequency e Visualization of the dependency between parameters e Display of amplitude frequency phase and power spectrum measurement traces for individual pulses The additional option R amp S FSW K6S which requires the R amp S FSW K6 option includes Time Sidelobe measurements with the following features Automated measurement of time sidelobe parameters Measurement of correlation and frequency phase error values with respect to an arbitrary reference UO waveform Display of correlated ma
398. o syn chronize the transmitted and received signals within a measurement For details on the connectors see the R amp S FSW Getting Started manual Trace Evaluation External trigger as input If the trigger signal for the R amp S FSW is provided by an external reference the refer ence signal source must be connected to the R amp S FSW and the trigger source must be defined as External for the R amp S FSW Trigger output The R amp S FSW can provide output to another device either to pass on the internal trig ger signal or to indicate that the R amp S FSW itself is ready to trigger The trigger signal can be output by the R amp S FSW automatically or manually by the user If it is provided automatically a high signal is output when the R amp S FSW has trig gered due to a measurement start Device Triggered or when the R amp S FSW is ready to receive a trigger signal after a measurement start Trigger Armed Manual triggering If the trigger output signal is initiated manually the length and level high low of the trigger pulse is also user definable Note however that the trigger pulse level is always opposite to the constant signal level defined by the output Level setting e g for Level High a constant high signal is output to the connector until the Send Trigger button is selected Then a low pulse is provided O Providing trigger signals as output is described in detail in the R amp S FSW User Manua
399. og Baseband Interface B71 le ne EE 89 Analysis interval Configuration MSRA remote sssss 337 Configuration MSRA MSRT remote 336 MSRA MSRT Eessen EES 113 235 PIPELINE 65 Configuration ences 164 Configuration MSRA remote 337 Configuration MSRA MSRT remote 336 ASCGI trace export uoces 402 AttenuallOll iso ieri nera rec eK nd eek AERE NER EE 102 free E aE 102 Configuration remote 224 ElectrOniG uoo tenes 103 Manual au 102 Option 103 tee 58 Protective remote 5 nere 192 Auto ID External MIXE Tsss nnes 82 External Mixer Remote control se 196 Threshold External Mixer remote control 196 Threshold External Mixer AAA 82 Auto scaling trt 1 143 AUtO Seltiligs ocior ct oti trn UD Ch dU ERR EE 127 Average COUNT irsini knea eer SIR kn RED 117 156 Averaging window Measurement POINT asumas oons neS 123 B B2000 Activating Deactivating 92 Alignment 499 lie TE ER Remote commands re etre errem deer 216 i e M 92 State Q 93 Band Conversior loss table ree renes 86 External MIX r erre mee nre 79 External Mixer Remote control 198 Bandwidth Coverage MSRA MSRT mode 2 65 Base level ciem me
400. ommand is only available with option B21 External Mixer installed Parameters lt HarmOrder gt numeric value Range 2 to 65 Example CORR CVL SEL LOSS TAB 4 Selects the conversion loss table CORR CVL HARM 3 Manual operation See Harmonic Order on page 86 SENSe CORRection CVL MlXer lt Type gt This command defines the mixer name in the conversion loss table This setting is checked against the current mixer setting before the table can be assigned to the range Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Parameters lt Type gt string Name of mixer with a maximum of 16 characters Example CORR CVL SEL LOSS TAB Ai Selects the conversion loss table CORR CVL MIX FS Z60 Manual operation See Mixer Name on page 86 Input Output Settings SENSe CORRection CVL PORTs lt PortNo gt This command defines the mixer type in the conversion loss table This setting is checked against the current mixer setting before the table can be assigned to the range Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Parameters lt PortType gt 2 3 RST 2 Example CORR CVL SEL LO
401. ommand moves a delta marker to a particular coordinate on the x axis If necessary the command activates the delta marker and positions a reference marker to the peak power Parameters Position Numeric value that defines the marker position on the x axis Range The value range and unit depend on the measure ment and scale of the x axis Example CALC DELT X Outputs the absolute x value of delta marker 1 Manual operation See Marker 1 Marker 2 Marker 3 Marker 16 Marker Norm Delta on page 147 See X value on page 148 9 17 2 General Marker Settings CAL Culatesm MARKersSm LINK itte satio aaa a ia nn d eec a v b pee i eoa ea dis sane 331 CAL GulatespnMARKeremsc ll ene EE 332 PESE gg zi c ERE 332 CALCulate lt n gt MARKer lt m gt LINK State This command defines whether all markers within the selected result display are linked If enabled and you move one marker along the x axis all other markers in the display are moved to the same x axis position The suffix lt m gt is irrelevant Note that if the CALCulate lt n gt MARKer lt m gt LINK TRENd is enabled this command is automatically also enabled if necessary Parameters State ON OFF RST OFF 9 17 3 Working with Markers Example CALC2 MARK LINK ON Manual operation See Linked Markers Across Windows on page 151 CALCulate n MARKer m LINK TRENd State If enabled marker M1 in Parameter Trend displays is
402. ommon time marker for all MSRA applica tions For the Pulse application the commands to define the analysis interval are the same as those used to define the actual data acquisition see chapter 9 10 Data Acquisi tion on page 235 Be sure to select the correct measurement channel before execut ing these commands Useful commands related to MSRA mode described elsewhere INITiate lt n gt REFResh on page 250 INITiate lt n gt SEQuencer REFResh ALL on page 250 Remote commands exclusive to MSRA applications The following commands are only available for MSRA application channels CALCulate lt n gt MSRA ALINe SHOW ene nennen sse ii asser sss aa senes iiis 336 CALCulate lt n gt MSRA ALINEe VALUE ccccecececee cece eee ee eee serene nennen nennen nennen nnns 336 CAL Culate lt n gt MSRA WINDOWSA gt tIVAL FF EEN 337 SENSE MSRA CAP e 337 CALCulate lt n gt MSRA ALINe SHOW This command defines whether or not the analysis line is displayed in all time based windows in all MSRA applications and the MSRA Master lt n gt is irrelevant Note even if the analysis line display is off the indication whether or not the currently defined line position lies within the analysis interval of the active application remains in the window title bars Parameters lt State gt ON OFF RST ON Manual operation See Show Line on page 164 CALCulate lt n gt MSRA ALINe VALue Position This command def
403. on See Export Limits on page 161 9 20 8 Exporting UO Results to an iq tar File The I Q data results can be exported to an ig tar file For details see chapter 6 5 Export Functions on page 159 MMEMon STObRe cnz JO COMMent cee ee cee ae eee ee ea eeeceeeeeeceseeeseeeeeeeeeeeeeeeaeeeeesaaaea 391 MMEMOTy STORE SAS TO RAN rtr de ne rtr Eta de Wea egerat 392 MMEMory STORe n Q STATe nct aec beit ERKANNT EEN 392 MMEMory STORe n IQ COMMent Comment This command adds a comment to a file that contains IO data Retrieving Results The suffix n is irrelevant Parameters Comment String containing the comment Example MMEM STOR IQ COMM Device test 1b Creates a description for the export file MMEM STOR IQ STAT 1 C R_S Instr user data ig tar Stores UO data and the comment to the specified file Example See chapter 9 22 Programming Example Pulse Measure ment on page 395 Manual operation See Q Export on page 162 MMEMory STORe lt n gt IQ RANGe lt RangeType gt This command sets the range of the I Q data to store The suffix lt n gt is irrelevant Setting parameters lt RangeType gt CAPTure RRANge CAPTure The entire capture buffer is exported RRANge The result range only that is the currently selected pulse see SENSe TRACe MEASurement DEFine PULSe SELected on page 254 is exported RST CAPTure Example MMEM STOR 1Q RANG RRAN Manual opera
404. on CVL SELect on page 205 This command is only available with option B21 External Mixer installed Parameters Text Example CORR CVL SEL LOSS TAB 4 Selects the conversion loss table CORR CVL COMM Conversion loss table for FS Zen Manual operation See Comment on page 86 SENSe CORRection CVL DATA lt Freq gt lt Level gt This command defines the reference values of the selected conversion loss tables The values are entered as a set of frequency level pairs A maximum of 50 frequency level pairs may be entered Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This command is only available with option B21 External Mixer installed Input Output Settings Parameters lt Freq gt numeric value The frequencies have to be sent in ascending order lt Level gt Example CORR CVL SEL LOSS TAB 4 Selects the conversion loss table CORR CVL DATA 1MHZ 30DB 2MHZ 40DB Manual operation See Position Value on page 87 SENSe CORRection CVL HARMonic lt HarmOrder gt This command defines the harmonic order for which the conversion loss table is to be used This setting is checked against the current mixer setting before the table can be assigned to the range Before this command can be performed the conversion loss table must be selected see SENSe CORRection CVL SELect on page 205 This c
405. on page 195 Parameters Band KA JQJUJVIEJWI F D GJ JY J USER Standard waveguide band or user defined band Manual operation See Band on page 79 Table 9 2 Frequency ranges for pre defined bands Band Frequency start GHz Frequency stop GHz KA A 26 5 40 0 Q 33 0 50 0 U 40 0 60 0 V 50 0 75 0 E 60 0 90 0 Ww 75 0 110 0 F 90 0 140 0 The band formerly referred to as A is now named KA Input Output Settings Band Frequency start GHz Frequency stop GHz D 110 0 170 0 G 140 0 220 0 J 220 0 325 0 Y 325 0 500 0 USER 32 18 68 22 default default The band formerly referred to as A is now named KA SENSe MIXer HARMonic HIGH STATe State This command specifies whether a second high harmonic is to be used to cover the band s frequency range Parameters State ON OFF RST OFF Example MIX HARM HIGH STAT ON Manual operation See Range 1 2 on page 80 SENSe MIXer HARMonic HIGH VALue lt HarmOrder gt This command specifies the harmonic order to be used for the high second range Parameters HarmOrder numeric value Range 2 to 61 USER band for other bands see band definition Example MIX HARM HIGH 2 Manual operation See Harmonic Order on page 80 SENSe MIXer HARMonic TYPE lt OddEven gt This command specifies whether the harmonic order to be used should be odd even or b
406. onal Defines the unit in which the results are displayed RST MS Manual operation See Fall Time on page 17 CALCulate lt n gt TABLe TIMing OFF lt Visibility gt lt Scaling gt If enabled the OFF time is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST MS Manual operation See Off Time on page 18 Configuring the Results CALCulate lt n gt TABLe TIMing PRF lt Visibility gt lt Scaling gt If enabled the pulse repetition frequency is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters Scaling GHZ MHZ KHZ HZ Optional Defines the unit in which the results are displayed RST KHZ Manual operation See Pulse Repetition Frequency Hz on page 19 CALCulate lt n gt TABLe TIMing PRI lt Visibility gt lt Scaling gt If enabled the pulse repetition interval is included in the result tables Parameters lt Visibility gt ON OFF RST ON Setting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST US Manual operation See Pulse Repetition Interval on page 18 CALCulate lt n gt TABLe TIMing PWIDth lt Visibility gt Scaling If enabled the pulse width is included in the result tables Suffix lt n gt 1
407. onfiguring the Results Setting parameters Y Axis POINt PPPHase RERRor PERRor DEViation Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 4 Phase Parame ters on page 24 POINt Pulse phase at measurement point PPPHase Pulse Pulse Phase Difference RERRor Phase Error RMS PERRor Phase Error Peak DEViation Phase Deviation RST POINt Configuring the Results lt XAxis gt PNUMber TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp PNUMber The pulse numbers are represented on the x axis available numbers can be queried using SENSe PULSe NUMBer on page 344 Intervals without pulses are not displayed SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST PNUMber Usage Setting only CALCulate lt n gt TRENd PHASe X XAxis Configures the x axis of the Parameter Trend result display The y axis is configured using the CALCulate lt n gt TRENd lt GroupName gt Y com mands Setting parameters lt XAxis gt Example Usage Configuring the Results
408. or External Generator Probes B2000 Settings B2000 State TCPIP Address or Computer name Oscilloscope FSW Rear Panel Se NH HEEL The required connections between the R amp S FSW and the oscilloscope are illustrated in the dialog box User Manual 1173 9392 02 17 92 Input and Output Settings B2000 State Activates the optional 2 GHz bandwidth extension R amp S FSW B2000 Note Manual operation on the connected oscilloscope or remote operation other than by the R amp S FSW is not possible while the B2000 option is active Remote command SYSTem COMMunicate RDEVice OSCilloscope STATe on page 216 TCPIP Address or Computer name When using the optional 2 GHz bandwidth extension R amp S FSW B2000 the entire measurement via the IF OUT 2 GHZ connector and an oscilloscope as well as both instruments are controlled by the R amp S FSW Thus the instruments must be connected via LAN and the TCPIP address or computer name of the oscilloscope must be defined on the R amp S FSW By default the TCPIP address is expected To enter the computer name toggle the 423 ABC button to ABC As soon as a name or address is entered the R amp S FSW attempts to establish a con nection to the oscilloscope If it is detected the oscilloscope s identity string is queried and displayed in the dialog box The alignment status is also displayed see Align ment on page 93 Note The IP address computer name i
409. or output traces shown in the Pulse Magnitude and Correlated Magnitude Capture displays Peak correlation Normalizing the peak correlator output power to both the measured and reference waveform powers gives the peak correlation N 2 30 inest bkan uas IQ t k 1 Preak 2 N N K IQ neas t KD oak gt IQ t k 1 k 1 Peak correlation 4 5 This yields a value between 0 completely uncorrelated and 1 perfectly correlated Mainlobe frequency and phase The frequency and phase offset at the location of the mainlobe peak are estimated using equation 4 2 where 0 is the mainlobe phase and fis the mainlobe frequency R amp SSFSW K6 6S Measurement Basics The phase is only meaningful relative to other pulses within the capture not as an absolute value 4 6 Receiving Data Input and Providing Data Output The R amp S FSW can analyze signals from different input sources and provide various types of output such as noise or trigger signals 4 6 1 RF Input Protection The RF input connector of the R amp S FSW must be protected against signal levels that exceed the ranges specified in the data sheet Therefore the R amp S FSW is equipped with an overload protection mechanism This mechanism becomes active as soon as the power at the input mixer exceeds the specified limit It ensures that the connection between RF input and input mixer is cut off When the overload protection is acti
410. or result data If disabled only the pure result data from the selected traces and tables is exported 9 20 7 Retrieving Results Parameters State ON OFF 0 1 RST 1 Usage SCPI confirmed Manual operation See Include Instrument Measurement Settings on page 158 FORMat DEXPort TRACes lt Selection gt This command selects the data to be included in a data export file see MMEMory STORe lt n gt TRACe on page 341 Parameters Selection SINGIe Only a single trace is selected for export namely the one speci fied by the MMEMory STORe lt n gt TRACe command ALL Selects all active traces and result tables e g Result Summary marker peak list etc in the current application for export to an ASCII file The trace parameter for the MMEMory STORe lt n gt TRACe command is ignored RST SINGIe Usage SCPI confirmed Manual operation See Export all Traces and all Table Results on page 158 Exporting Table Results to an ASCII File Table results can be exported to an ASCII file for further evaluation in other external applications Useful commands for exporting table results described elsewhere FORMat DEXPort DSEParator on page 389 chapter 9 14 7 Configuring the Statistics and Parameter Tables on page 290 Remote commands exclusive to exporting table results MMEMary STOResn TABLA tetti penne de Ee o E EXER PARAR Loo dpi tm de Ran e e Fa ERE R ne 390 MEM DE Eeer ees 391 M
411. or trace modes min hold max hold and average Note that the command has no effect if critical parameters like the span have been changed to avoid invalid measurement results Parameters State ON The automatic reset is off OFF The automatic reset is on RST OFF Example DISP WIND TRAC3 MODE HCON ON Switches off the reset function Manual operation See Hold on page 155 DISPlay WINDow lt n gt TRACe lt t gt NORMalize MODE Mode Enables or disables normalization of the traces in reference to the measured pulse or a reference pulse For details see chapter 4 7 2 Normalizing Traces on page 61 This command is valid only for Magnitude Time Frequency Time Phase Time and Phase Time Wrapped result displays The suffix t is irrelevant Parameters Mode Example Manual operation Configuring Standard Traces OFF Traces are not normalized MEASured The value in the measurement point that is the value in the Pulse Results table for each pulse in phase amplitude or fre quency is subtracted from the respective trace to normalize each trace to 0 REFerence The value in the measurement point that is the value in the Pulse Results table for the Reference Pulse is subtracted from the respective trace to normalize the traces The reference pulse is defined using SENSe TRACe MEASurement DEFine PULSe REFerence POSition on page 243 and SENSe TRACe MEASurement DEFine PULSe REFerence on pag
412. orated A 27 Mainlobe Power Average enne enne 27 z qn DUET 28 MainlObe EE 28 Mainlobe d al z10 0 zo os C 28 Peak to Sidelobe Level The level of the largest sidelobe measured within the Time Sidelobe Range relative to the peak of the mainlobe Remote command CALCulate lt n gt TABLe TSIDelobe PSLevel on page 303 SENSe PULSe TSIDelobe PSLevel on page 382 SENSe PULSe TSIDelobe PSLevel LIMit on page 388 Integrated Sidelobe Level The sum of all the levels of all the sidelobes measured within the Time Sidelobe Range relative to the peak of the correlated pulse Remote command CALCulate lt n gt TABLe TSIDelobe ISLevel on page 302 SENSe PULSe TSIDelobe ISLevel on page 379 SENSe PULSe TSIDelobe ISLevel LIMit on page 388 Mainlobe 3 dB Width Width of the mainlobe at 3 dB below its peak level Remote command CALCulate lt n gt TABLe TSIDelobe MWIDth on page 303 SENSe PULSe TSIDelobe MWIDth on page 381 SENSe PULSe TSIDelobe MWIDth LIMit on page 388 Sidelobe Delay Time difference between the sidelobe peak and the mainlobe peak level R amp S FSW K6 6S Measurements and Result Displays 1 Correlated 3 Magnitude LAP Clrw Peak Sidelobe Delay s Remote command CALCulate lt n gt TABLe TSIDelobe SDELay on page 304 SENSe PULSe TSIDelobe SDELay on page 383 SENSe PULSe TSIDelobe SDELay LIMit on page 388 Compression Ratio Ratio of
413. ormalizes pulse phase traces to a specific phase value For details see Normaliza tion of pulse phase traces on page 64 This function is only available for Pulse Phase and Pulse Phase Wrapped result dis plays Remote command DISPlay WINDow lt n gt TRACe lt t gt NORMalize PHASe on page 325 Frequency Scaling Switches between relative default and absolute frequency values This setting applies to Pulse Frequency Result Range Spectrum Parameter Distribution and Parameter Trend result displays Remote command CALCulate lt n gt UNIT FREQuency on page 310 Display Configuration The captured signal can be displayed using various evaluations All evaluation availa ble for the Pulse application are displayed in the evaluation bar in SmartGrid mode when you do one of the following Select the EJ SmartGrid icon from the toolbar e Select the Display Config button in the Overview Press the MEAS key Markers Select the Display Config softkey in any Pulse menu Up to six evaluation methods can be displayed simultaneously in separate windows The Pulse evaluation methods are described in chapter 3 Measurements and Result Displays on page 15 o For details on working with the SmartGrid see the R amp S FSW Getting Started manual 6 3 Markers Markers help you analyze your measurement results by determining particular values in the diagram Thus you can extract numeric values from a graphical disp
414. ormed Pulse Detection The Average Count also determines the number of measurements used to calculate the pulse trace statistics for the result range displays see chapter 4 7 1 Trace Statis tics on page 61 Remote command SENSe SWEep COUNt on page 252 SENSe AVERage lt n gt COUNt on page 252 5 9 Pulse Detection The pulse detection settings define the conditions under which a pulse is detected within the input signal Acquisition Detection Pulse Waveform Power A Reference Peak Reference Detection Limit Threshold 10 0 dB Max Pulse Count IRCH 0 0 dB Reference OE e E E aet ae n e ai Foe aba cran n o ri re Rabe c b YR 118 NR EE 119 a 119 Detection Ub ricus cocer trt eorr eR ra a re Seer verse PAY Ent eed NOR CU aes acu SEE 119 Maximum Pulse OU zat praetore bor d Trao e re rt Free de retten ee eet P es 119 Reference Source Defines the level to be used as a reference for the pulse detection threshold Reference Current reference level Peak Peak level as measured over the entire capture data interval Noise Noise level determined from the current capture data according to the Min Pulse Off Time parameter set in Signal Description 5 10 5 10 1 Pulse Measurement Settings Absolute Absolute level defined by the Threshold Remote command SENSe DETect REFerence on page 238 Threshold The threshold determines whether a
415. oth Which harmonics are supported depends on the mixer type Parameters lt OddEven gt ODD EVEN EODD RST EVEN Example MIX HARM TYPE ODD Manual operation See Harmonic Type on page 80 Input Output Settings SENSe MIXer HARMonic LOW lt HarmOrder gt This command specifies the harmonic order to be used for the low first range Parameters lt HarmOrder gt numeric value Range 2 to 61 USER band for other bands see band definition RST 2 for band F Example MIX HARM 3 Manual operation See Harmonic Order on page 80 SENSe MIXer LOSS HIGH Average This command defines the average conversion loss to be used for the entire high sec ond range Parameters Average numeric value Range 0 to 100 RST 24 0 dB Default unit dB Example MIX LOSS HIGH 20dB Manual operation See Conversion loss on page 80 SENSe MIXer LOSS TABLe HIGH lt FileName gt This command defines the file name of the conversion loss table to be used for the high second range Parameters lt FileName gt String containing the path and name of the file Example MIX LOSS TABL HIGH MyCVLTable Manual operation See Conversion loss on page 80 SENSe MIXer LOSS TABLe LOW lt FileName gt This command defines the file name of the conversion loss table to be used for the low first range Parameters lt FileName gt String containing the path and name of the file Example MIX LOSS TA
416. ou can define the length of the keep out time using SENSe TRACe MEASurement DEFine TSRange KOTime LENGth on page 246 RST 1 Manual operation See Keep Out Time on page 127 SENSe TRACe MEASurement DEFine TSRange KOTime LENGth Length The length of the time sidelobe range keep out time in seconds This command is only available if the additional option R amp S FSW K6S is installed Parameters Length Default unit S Manual operation See Length on page 127 SENSe TRACe MEASurement DEFine TSRange LENGth Length The length of the pulse time sidelobe range in seconds This command is only available if the additional option R amp S FSW K6S is installed Parameters Length Default unit S Manual operation See Length on page 127 SENSe TRACe MEASurement DEFine TSRange RANGe Reference Defines which part of the detected pulse is evaluated for sidelobe results This command is only available if the additional option R amp S FSW K6S is installed 9 13 Configuring and Performing Sweeps Parameters Reference RRANge MANual RRANge The configured result range see chapter 9 14 2 Defining the Result Range on page 254 is also used to evaluate side lobes MANual You can define the length and alignment of the sidelobe range differently to the result range using the SENSe TRACe MEASurement DEFine TSRange ALIGnment and SENSe TRACe MEASurement DEFine TSRange LENGth com mands RST R
417. ow on page 315 Results TRACe lt n gt DATA on page 340 Correlated Magnitude Capture Requires option R amp S FSW K6S Displays the magnitude of the correlator output over the entire capture buffer The time intervals corresponding to detected pulses are indicated with green bars along the lower edge of the display The time interval of the current Selected Pulse is indicated with a blue bar analogous to the Magnitude Capture display mum EP SS SS UU User Manual 1173 9392 02 17 38 R amp S FSW K6 6S Measurements and Result Displays This result display is only available for measurements on a reference pulse Reference IQ Remote command LAY ADD 1 RIGH CMC see on page 315 Results on page 340 Correlated Pulse Magnitude Requires option R amp S FSW K6S Displays the magnitude of the correlator output for the currently selected pulse within the result range This result display is only available for measurements on a reference pulse Reference IQ Remote command LAY ADD 1 RIGH CPM see on page 315 Results on page 340 User Manual 1173 9392 02 17 39 R amp S FSW K6 6S Measurements and Result Displays Pulse Frequency Error Requires option R amp S FSW K6S Displays the frequency deviation between the reference pulse and the currently selected measured pulse within the result range 5 Pulse 1 Frequency Error 1 AP Clrw 6 310000117 us 400 0 ns
418. ow temporarily Note that windows must have a certain minimum size If the position you define con flicts with the minimum size of any of the affected windows the command will not work but does not return an error R amp SS9FSW K6 6S Remote Commands for Pulse Measurements y 100 x 100 y 100 1 01 GHz 102 12 dim x 0 y 0 x 100 Fig 9 1 SmartGrid coordinates for remote control of the splitters Parameters lt Index1 gt The index of one window the splitter controls Index2 The index of a window on the other side of the splitter Position New vertical or horizontal position of the splitter as a fraction of the screen area without channel and status bar and softkey menu The point of origin x 0 y 0 is in the lower left corner of the screen The end point x 100 y 100 is in the upper right cor ner of the screen See figure 9 1 The direction in which the splitter is moved depends on the screen layout If the windows are positioned horizontally the splitter also moves horizontally If the windows are positioned vertically the splitter also moves vertically Range 0 to 100 Example LAY SPL 1 3 50 Moves the splitter between window 1 Frequency Sweep and 3 Marker Table to the center 50 of the screen i e in the fig ure above to the left Example LAY SPL 1 4 70 Moves the splitter between window 1 Frequency Sweep and 3 Marker Peak List towards the top 70 of the screen
419. ower W dBm values are used to determine the threshold levels for fall and rise times Parameters Unit V W DBM RST V Configuring the Pulse Measurement Manual operation See Reference Level Unit on page 121 SENSe TRACe MEASurement DEFine BOUNdary TOP lt Pulselnstant gt The boundary in percent of the pulse amplitude to either side of the pulse top ON state Used to determine the settling time for example Once the signal remains within the boundary it is assumed to have settled Parameters lt Pulselnstant gt percentage Range 0 to 100 RST 3 Manual operation See Boundary on page 121 SENSe TRACe MEASurement DEFine COMPensate ADRoop lt State gt Determines whether the 100 value from base to top for the rise and fall time mea surements is calculated from the Edges This allows you to consider a droop in the pulse top during the pulse measurements If a droop is to be considered the 100 value must be calculated separately for the rising and falling edges Parameters State ON The 100 value is measured separately for the rising and falling edges OFF The 100 value is measured at the pulse center and used for all measurements RST ON Manual operation See Position on page 120 SENSe TRACe MEASurement DEFine RIPPle Portion Determines portion of the pulse top which is used to measure the ripple Parameters Portion percentage Range 0 to 100 RST 50 Manual opera
420. page 23 CALCulate lt n gt TABLe FREQuency RERRor lt Visibility gt lt Scaling gt If enabled the RMS frequency error is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Setting parameters lt Scaling gt GHZ MHZ KHZ HZ Optional Defines the unit in which the results are displayed RST KHZ Manual operation See Frequency Error RMS on page 23 CALCulate lt n gt TABLe PHASe ALL STATe lt Visibility gt If enabled all phase parameters are included in the result tables Setting parameters lt Visibility gt ON OFF RST OFF Usage Setting only Configuring the Results CALCulate lt n gt TABLe PHASe DEViation Visibility If enabled the Phase Deviation is included in the result tables Parameters Visibility ON OFF RST OFF Manual operation See Phase Deviation on page 25 CALCulate lt n gt TABLe PHASe PERRor Visibility If enabled the Phase Error Peak is included in the result tables Parameters lt Visibility gt ON OFF RST OFF Manual operation See Phase Error Peak on page 24 CALCulate lt n gt TABLe PHASe POINt lt Visibility gt If enabled the phase at the measurement point is included in the result tables Parameters lt Visibility gt ON OFF RST ON Manual operation See Phase on page 24 CALCulate lt n gt TABLe PHASe PPPHase Visibility If enabled the Pulse Pulse Phase Difference is included in the result tabl
421. page 335 CALCulate lt n gt DELTamarker lt m gt MAXimum PEAK on page 333 Trace Configuration Search Next Peak Sets the selected marker delta marker to the next lower maximum of the assigned trace If no marker is active marker 1 is activated Remote command CALCulate n MARKer m MAXimum NEXT on page 334 CALCulate n DELTamarker m MAXimum NEXT on page 333 Search Minimum Sets the selected marker delta marker to the minimum of the trace If no marker is active marker 1 is activated Remote command CALCulate lt n gt MARKer lt m gt MINimum PEAK on page 335 CALCulate n DELTamarker m MINimum PEAK on page 334 Search Next Minimum Sets the selected marker delta marker to the next higher minimum of the selected trace If no marker is active marker 1 is activated Remote command CALCulate n MARKer m MINimum NEXT on page 335 CALCulate lt n gt DELTamarker lt m gt MINimum NEXT on page 334 6 4 Trace Configuration Traces in graphical result displays based on the defined result range see chap ter 6 1 2 Result Range on page 130 can be configured for example to perform stat istical evaluations over a defined number of measurements pulses or samples The trace settings are configured in the Traces dialog box which is displayed when you do the following Press the TRACE key then select Trace Config For details on trace evaluation see chapter 4 7 Trace Eval
422. pecified trigger level See Trigger Level on page 108 Note The External Trigger 1 softkey automatically selects the trigger signal from the TRIGGER INPUT connector on the front panel If the optional 2 GHz bandwidth extension R amp S FSW B2000 is active only External CH2 is supported For details see the Instrument Tour chapter in the R amp S FSW Getting Started manual External Trigger 1 Trigger signal from the TRIGGER 1 INPUT connector External Trigger 2 Trigger signal from the TRIGGER 2 INPUT OUTPUT connector Note Connector must be configured for Input in the Outputs con figuration see Trigger 2 3 on page 97 Trigger Settings External Trigger 3 Trigger signal from the TRIGGER 3 INPUT OUTPUT connector on the rear panel Note Connector must be configured for Input in the Outputs con figuration see Trigger 2 3 on page 97 Remote command TRIG SOUR EXT TRIG SOUR EXT2 TRIG SOUR EXT3 See TRIGger SEQuence SOURce on page 230 External CH2 Trigger Source Trigger Settings Data acquisition starts when the signal fed into the CH2 input connector on the oscillo Scope meets or exceeds the specified trigger level This signal source is only available if the optional 2 GHz bandwidth extension R amp S FSW B2000 is active see chapter 5 4 1 6 Settings for 2 GHz Bandwidth Extension R amp S FSW B2000 on page 92 Note Since the external trigger uses a second channel o
423. ple ZOOM n ENEE 163 N Next Minimum Marker positioning Next Peak Marker positioning Noise ife Normalization ld I Referenced pulse Mc c O OFF Level 46 Off time 18 362 363 OFF time ect trn emt res 47 299 Offset Analysis interval zu 111 Frequency 2 101 123 Measurement point ve 102 Reference level Result range 131 Sidelobe CL ET 74 ON Ele 46 ON power Average 20 296 352 Peak to Avg ratio ssssssssssssss 20 297 356 ONIME esiti tibet es 18 47 364 365 Options Electronic attenuation nnne ten 103 High pass filter 76 193 Preamplifigt 5 treten rrr etae 103 Oscilloscope EES tbe ed ee tap ca Ets 93 Oscilloscopes AligRmelt E Connections B2000 Remote commands B2000 Output elle UCL EE Configuration remote Digital Baseband Interface settings 98 99 Digital Baseband Interface status 214 Digital UO remote 214 Noise source 59 96 Paratmeters seed STEE eer rr de E rre rre 58 Eu e 96 Ec M 97 110 Overload air e 58 RE inpu
424. pling In this case you must protect the instrument from damaging DC input voltages manually For details refer to the data sheet Remote command INPut COUPling on page 192 Impedance For some measurements the reference impedance for the measured levels of the R amp S FSW can be set to 50 Q or 75 Q 75 Q should be selected if the 50 Q input impedance is transformed to a higher impe dance using a 75 Q adapter of the RAZ type 25 Q in series to the input impedance of the instrument The correction value in this case is 1 76 dB 10 log 750 500 Remote command INPut IMPedance on page 193 5 4 1 2 Input and Output Settings Direct Path Enables or disables the use of the direct path for small frequencies In spectrum analyzers passive analog mixers are used for the first conversion of the input signal In such mixers the LO signal is coupled into the IF path due to its limited isolation The coupled LO signal becomes visible at the RF frequency 0 Hz This effect is referred to as LO feedthrough To avoid the LO feedthrough the spectrum analyzer provides an alternative signal path to the A D converter referred to as the direct path By default the direct path is selected automatically for RF frequencies close to zero However this behavior can be deactivated If Direct Path is set to Off the spectrum analyzer always uses the ana log mixer path Auto Default The direct path is used automatically for frequencies
425. r ALL All detected pulses in the entire measurement Usage Query only Manual operation See Phase Error Peak on page 24 SENSe PULSe PHASe PERRor AVERage lt QueryRange gt SENSe PULSe PHASe PERRor MAXimum lt QueryRange gt SENSe PULSe PHASe PERRor MINimum lt QueryRange gt SENSe PULSe PHASe PERRor SDEViation lt QueryRange gt Returns the statistical value for the peak phase error over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe PHASe POINt lt QueryRange gt Returns the phase at the measurement point for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Phase on page 24 SENSe PULSe PHASe POINt AVERage lt QueryRange gt SENSe PULSe PHASe POINt MAXimum lt QueryRange gt SENSe PULSe PHASe POINt MINimum lt QueryRange gt SENSe PULSe PHASe POINt SDEViation lt QueryRange gt Returns the statistical value for the phase at the measurement point over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer A
426. r Gate Config WT 104 Specifics for V elle ULT ET 69 Spectrum RESUIE range rere rtp 132 Statistics Configuration 138 Configuration remote 290 Status registers ae TLL STAT QUES POW EE 192 Suffixes COMMON PEOR 182 Remote commands otio meer rein ntn 179 Sweep Tue siio tercer meet s 116 COUDL caet 156 Performing remote edet 247 Settings es aa 115 Settings remote wae 247 TIME t mote eerte ite tetra 237 Symbol rate MSRA MSRT mode itte Petre 65 T Tables EXxportinig iuc 139 140 159 160 161 165 166 Thresholds Configuring remote sese 239 Fall time go HIGH Distal ess erann sorai territa te Low Proximal Mid Mesial Pulse detection Reference RISO ING ceci d Dep re dico etait Time sidelobe analysis see Sidelob8S eiie ee erben 53 Time sidelobe range 5 tn mn rd 15 Configuring remote 7 ete 245 Time trigger Repetition interval ssi 5 2 tnnt 108 Timestamp 17 366 367 Timestamips rrr oet reti maerore e Fe s 301 Timing AMOMO NIRE 71 Top level A AQ ONIN iier nre tette tette eerie 120 TOP le EE 19 298 358 359 Uc qe tel aac 157 Configuration softkey AA 153 Configuring remote control ssssusssss 323 Detector uie ce ete 155 Detector remote control AA 326 Export format cebat 140 159 161 16
427. r USER band Band Settings Band ome FS_Z60 Harmonic Order J mixer S N 123 4567 Position 55 00000000000 GHz 75 00000000000 GHz DIME IN ETHER 86 le E 86 MIXOr Typ rere 87 CSIRO WU EE EE Ehe 87 Insert Value eet eot e oO dete en aedi la dd ab rU e bx a c ea ee Or Va uda 87 Delete Value xtti MON NN NINE HIRED 87 ic ME TETTE UE ITUR 87 SS TUS ENT ERECTUS EA A E E A BILD LTEM 87 cp P O 88 File Name Defines the name under which the table is stored in the C r_s instr user cvl directory on the instrument The name of the table is identical with the name of the file without extension in which the table is stored This setting is mandatory The ACL extension is automatically appended during storage Input and Output Settings Note When using the optional 2 GHz bandwidth extension R amp S FSW B2000 special conversion loss tables are required These tables are stored with the file exten sion b2g Remote command SENSe CORRection CVL SELect on page 205 Comment An optional comment that describes the conversion loss table The comment can be freely defined by the user Remote command SENSe CORRection CVL COMMent on page 203 Band The waveguide or user defined band for which the table is to be applied This setting is checked against the current mixer setting before the table can be assigned to th
428. r in a remote environ ment It is performed in the Spectrum application in the default layout configuration Note that without a real input signal and connected mixer this measurement will not return useful results ee Ee Preparing the instrument Reset the instrument RST Activate the use of the connected external mixer SENS MIX ON 92 2 29 Configuring basic mixer behavior Set the LO level of the mixer s LO port to 15 dBm SENS MIX LOP 15dBm Set the bias current to 1 mA SENS MIX BIAS LOW 1mA Lee Configuring the mixer and band settings Use band V to full possible range extent for assigned harmonic 6 SENS MIX HARM BAND V SENS MIX RFOV ON Query the possible range SENS MIX FREQ STAR Result 47480000000 47 48 GHz SENS MIX FREQ STOP Result 138020000000 138 02 GHz Use a 3 port mixer type SENS MIX PORT 3 Split the frequency range into two ranges range 1 covers 47 48 GHz GHz to 80 GHz harmonic 6 average conv loss of 20 dB range 2 covers 80 GHz to 138 02 GHz harmonic 8 average conv loss of 30 dB SENS MIX HARM TYPE EVEN SENS MIX HARM HIGH STAT ON SENS MIX FREQ HAND 80GHz SENS MIX HARM LOW 6 SENS MIX LOSS LOW 20dB SENS MIX HARM HIGH 8 SENS MIX LOSS HIGH 30dB 5 52 Activating automatic signal identification functions Activate both automatic signal identification functions SENS MIX SIGN ALL Use auto
429. rcentage Range 0 to 100 RST 75 Manual operation See Reference on page 124 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet LEFT OffsetL eft The offset in seconds from the pulse rising edge at which the estimation range begins Parameters lt OffsetLeft gt RST 0 Default unit S Manual operation See Reference on page 124 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet RIGHt lt OffsetRight gt The offset in seconds from the pulse falling edge at which the estimation range ends Parameters lt OffsetRight gt RST 0 Default unit S Manual operation See Reference on page 124 SENSe TRACe MEASurement DEFine PULSe ESTimation REFerence lt Reference gt Defines the reference for the measurement range definition Depending on the selected reference type an additional setting is available to define the range 9 12 4 Configuring the Pulse Measurement Parameters Reference CENTer EDGE CENTer Defines a relative range around the center of the pulse The range is defined by its length in percent of the pulse top EDGE Defines the start and stop of the measurement range with respect to the pulse edges The range is defined by a time off set from the middle of the rising edge and a time offset from the middle of the falling edge RST CENTer Manual operation See Reference on page 124 Time Sidelobe Range These commands are only available if the additional option R amp S F
430. re Configure a trig ger and activate segmented capture mode see Trigger Source on page 106 and Activating de activating segmented data capturing on page 112 For details see Alignment based on trigger event on page 51 Remote command SENSe TRACe MEASurement DEFine PULSe INSTant REFerence on page 242 Offset The time offset of the measurement point in reference to the pulse center or an edge depending on the Measurement Point Reference setting The Offset is indicated in the dialog box Remote command SENSe TRACe MEASurement DEFine PULSe INSTant on page 241 Averaging Window Measurement point results are averaged over a window centered at the measurement point The length of the averaging window in seconds can be defined A minimum length of 1 sample is enforced internally Remote command SENSe TRACe MEASurement DEFine PULSe INSTant AWINdow on page 242 Reference for Pulse Pulse Measurements Reference pulse on which relative pulse results are based e g for traces normalized to reference pulse see chapter 4 7 2 Normalizing Traces on page 61 Fixed A fixed pulse number Relative results for the specified pulse number itself are not valid and are indicated as Selected The currently selected pulse see chapter 6 1 1 Pulse Selection on page 129 Relative results for the selected pulse itself are not valid and are indi cated as If you change the value for the refere
431. reference pulse This description assumes you have stored a reference pulse to a file in iq tar for mat for example after measuring and exporting a signal in the R amp S FSW Pulse appli cation or the R amp S FSW VSA application 1 Configure a standard pulse measurement as described in To perform a standard pulse measurement on page 169 2 Inthe Overview select the Signal Description button and set the pulse modula tion to Reference IQ 3 Switch to the Reference IQ tab and configure the reference pulse a b c Select Select file and then enter the path and filename of the file that contains the stored reference pulse If the file contains more data than required for the reference pulse select Range Settings Manual and define at which point in time from the beginning of the file the useful data starts Offset and which time span of data to use for the reference pulse Length Close the Signal Description dialog box 4 Define the range in which the time sidelobe results will be evaluated a b c d e f In the Overview select Measurement Switch to the Time Sidelobe Range tab Set the Range mode to Manual Select the Alignment and Length of the time sidelobe range Define the Keep Out Time around the mainlobe which will not be evaulated for sidelobe analysis Close the Measurement dialog box 5 Select the Display button and select the evaluation methods for
432. require both the R amp S FSW K6 and the additional R amp S FSW K6S option Configuring the Result Display LAYout CATalog WINDow This command queries the name and index of all active windows in the active mea surement channel from top left to bottom right The result is a comma separated list of values for each window with the syntax lt WindowName_1 gt lt Windowlndex_1 gt lt WindowName_n gt lt Windowlndex_n gt Return values lt WindowName gt string Name of the window In the default state the name of the window is its index Windowlndex numeric value Index of the window Example LAY CAT Result At 2 1 1 Two windows are displayed named 2 at the top or left and 1 at the bottom or right Usage Query only LAYout IDENtify WINDow lt WindowName gt This command queries the index of a particular display window in the active measure ment channel Note to query the name of a particular window use the LAYout WINDow lt n gt IDENtify query Query parameters lt WindowName gt String containing the name of a window Return values lt WindowIndex gt Index number of the window Example LAY WIND IDEN 2 Queries the index of the result display named 2 Response 2 Usage Query only LAYout REMove WINDow lt WindowName gt This command removes a window from the display in the active measurement channel Parameters lt WindowName gt String containing th
433. reri 46 leet EE 120 B sse DOWOR 5 oerte eege 19 296 349 350 Bias Conversion loss table sesessssssssssss 83 86 External MIKEN tnter e e 82 External Mixer Remote control 195 BOUNGAY T 121 C Capture offset MSRAVap plications aec core tenere eerte ette 111 MSRIapplicatiOns erect rrt eren Seegen 111 FRE ue 337 339 ie E a 111 Capture time see also Measurement time eee 237 Center frequency 100 Analog Baseband B71 per SO tKBY erer EE 100 E 100 Channel bandwidth MSRA MSRT mode 65 CMA occ erret orae ensem dones Auto mode Configuring Closing Channels remote cceceeseeeeeteeereereeneeeeeneeereeaes 184 Windows remote 317 320 Compression Ratio sidelobes AAA 27 Continue single sweep Ric P 116 Continuous sweep cj 116 Conventions e eene EE 178 Conversion loss External Mixer Remote control 200 201 Conversion loss tables enn 83 84 Available remote control sess 203 Band remote control A 202 Bias remote control 202 COMMON e 83 El 84 Deleting remote control 203 External Mikem sonene n KEENE 80 External Mixer Remote control
434. rianne 387 SENSe PULSe POWer RIPPle PERCent LIMit ccccceeeeeeeeeeeceeeeeeeeeaeaeaeeeaeeeenenenes 387 SENSe PULSe POW er K EN 387 SENSe PULSe TIMing DOY Cle UM serge ee decre eine tappa neto EE theta EEN LE 387 I SENSe PULSe TIMIng erh IMMO dae ie da tna eie nua reed NEEN tonne xen readied nnn 387 SENSe IPULESe TIMina TEE EE 387 ISENSe J PULSe TIMIng OFFLIN E 387 SENSe IPULSe TIMING PRF E iiia ite ee e ropa ipie e ppt Rer PRESE Dre Ere Dcus 387 SENSe PULSe Blue KG CAR DOE 387 SENSe IPULSe TIMIna PWIDIhIEIMIE i ioo oro inert aere ii ecd 387 SENSe IPULSe TIMing RISE LIM ie 22 erp iuc ctp rene optet oret nae tetas e ERI e Pure 387 SENSeJTPUESe TIMing SETTING LIMI vie ua tertii ente ero t bentes 387 SENSe PUESs TIMing TS Tamp L IMIE 5 2 2 rre uec cou cio eee 387 SENSe PULSe TS IDelobe AMPower L IM 387 ISGENGe IDUL Ge TGlDelobe CHRATIol IM 387 SENSe J1PUESe TSIDelabe TIMPowerEIMIE 2 tette ertet ares aan 387 SENSe PULSe TSIDelobe ISLevel LIMit eec ence nennnenenetnnunnnnnhnnnna 388 SENSe PULSe TSIDelobe MFRequency LIMit Lessius nnnm 388 R amp SSFSW K6 6S Remote Commands for Pulse Measurements SENSe PULSe TSIDelobe MPHase LIMit sees nnn 388 ISENSe PULSe TSIDelobe MWIDth LIMIE a ciun uin trn neu eatur ke nhe rns 388 IGENGe DU Ge TGlDelobe PCObRrelationl IM nk 388 ISENSe PULSe TSIDelabe PSLevebLMIE
435. right of the current marker posi tion Usage Event CALCulate n MARKer m MAXimum PEAK This command moves a marker to the highest level If the marker is not yet active the command first activates the marker Usage Event Manual operation See Peak Search on page 152 CALCulate lt n gt MARKer lt m gt MINimum LEFT This command moves a marker to the next minimum value The search includes only measurement values to the right of the current marker posi tion Usage Event CALCulate lt n gt MARKer lt m gt MINimum NEXT This command moves a marker to the next minimum value Usage Event Manual operation See Search Next Minimum on page 153 CALCulate lt n gt MARKer lt m gt MINimum RIGHt This command moves a marker to the next minimum value The search includes only measurement values to the right of the current marker posi tion Usage Event CALCulate lt n gt MARKer lt m gt MINimum PEAK This command moves a marker to the minimum level If the marker is not yet active the command first activates the marker Usage Event Manual operation See Search Minimum on page 153 Configuring an Analysis Interval and Line MSRA mode only 9 18 Configuring an Analysis Interval and Line MSRA mode only In MSRA operating mode only the MSRA Master actually captures data the MSRA applications define an extract of the captured data for analysis referred to as the analysis interval The analysis line is a c
436. ristic values In order to obtain these results select the corresponding parameter in the result config uration see chapter 6 1 Result Configuration on page 129 or apply the required SCPI parameter to the remote command see chapter 9 14 Configuring the Results on page 254 and chapter 9 20 Retrieving Results on page 339 e Timna Tu 16 e Power Amplitude Parameters ceder eiae cd cete deuda 19 Freguency Faamalo tpe tea t RR E ERR Sox Pu A REA ce ERN ERE RS 22 Phase Parameters eee ERKENNEN a E RE natu a PRRNa ca ER onu e CEPR Ee gna dn 24 e Time Sidelobo ParaifielerS iiis imde a e c eec cdita s 25 3 1 4 Timing Parameters The following timing parameters can be determined by the R amp S FSW Pulse applica tion MAMTA CARI ce ces ae ices ea we a eb t n catt Pret eta ot ee ean cerae oto d aea 17 Suh T 17 Di I LEE 17 Le TIE ug PLE 17 Pulse Vidt ON TIT coi iudici bet er tr reti bert bed Ep Fed iei baci idera bed 18 Pulse Parameters SEL MM T 18 CUN RAIO 18 DUY Cl Ty D 18 Pulse Repetition Interea temet nete eerte ein al ea nce ee aer ax 18 Pulse Repetition Frequency Ha uidere er ee tae epo tee ta rica Ea 19 Timestamp The time stamp uniquely identifies each pulse in the capture buffer It is defined as the time from the capture start point to the beginning of the pulse period of the
437. rkers Selected State Selected State Selected State Em E Em E oe Remote command Marker selected via suffix m in remote commands All Markers Off Deactivates all markers in one step Remote command CALCulate lt n gt MARKer lt m gt AOFF on page 328 General Marker Settings General marker settings are defined in the Marker Settings tab of the Result Config uration dialog box Markers SRate 32 MHz Se Result Range Markers Marker Settings Marker Search Marker Table Linked Markers Link Across Windows on Off Link Trend M1 to Selected Pulse Uer Parameter Trend t Marker Table Display Defines how the marker information is displayed On Displays the marker information in a table in a separate area beneath the diagram Off Displays the marker information within the diagram area Auto Default Up to two markers are displayed in the diagram area If more markers are active the marker table is displayed automatically Remote command DISPlay MTABle on page 332 Linked Markers Across Windows If enabled the markers in all diagrams with the same x axis are linked i e when you move a marker in one window the markers in all other windows are moved to the same x value In particular markers in all pulse measurement displays such as Pulse Magnitude Pulse Phse etc are linked if enabled Similarly markers in all Parameter Trend dis plays can be linked Remote command CALCula
438. rn eot rnit nr rere eee 387 IGENZGe DU Ge TGlDelobe Mower MA Ximum enne eren nennen neret rennen 378 SENSE PULSE TSIBelobe IMPower MINirUtm uei nun conor e putent er tex en inen orco 379 SENSe PULSe TSIDelobe IMPowet SDEViation rrt nre retentis 379 SENSe PULSe TSIDelobe IMPower 378 SENSe PUESe TSIBelobe ISEevel AVELIAgeT cn orto rp ner epe epe nexu pee erae 379 SENSe PULSe TSIDelobe ISEevelLIMIE er ttn rte tenete rte tires 388 SENSe PULSe TSIDelobe ISLevel MAXimum eterne nth teen hta tienen 379 SENSE PULSE TSIBelobe ISEevel MINI scs conici otn et eer co eere mer exter i e esae 379 SENSe PULSe TSIDelobe ISEevel SDEVi tion 1 rtt ttr rr the ntn ente 379 SENSe PUESe TSIDelobe ISLevel rn rrr t terere a e err Y RE rar eR EY d eee 379 SENSe PULSe TSIDelobe MFRequency AVERage sees 380 SENSe PULSe TSIDelobe MFRequehcy LIMIt neo ret t ner reete 388 SENSe PULSe TSIDelobe MFRequency MAXimum esee eene nrennren nennen 380 SENSe PULSe TSIDelobe MFRequency MINimutm e enean eerta rnnt nennt EREA 380 SENSe PULSe TSIDelobe MFRequency SDEViation 5 ent tnn nere teretes 380 SENSe PULSe TSIDelobe MFReqUehGy ie retra einn ert eren tn rne n err HERE 380 SENSE PULSE TSIDelobe MPHaSeiAV ERAGE sienen nnar anene aai ERNES tepore de ie 381 SENSe PULSe TSIDelobe MPHAas
439. rng GALGulate n TABLe TIMinig PRF LIMIit us iii inr orte t erue trt teta c tha treni err o einn CAL Culate n gt TABLE l IMing PRE EIMIES TATE arenosus TETE ANE VETPET EENE GALGulate n TABLE TIMING PRI irsinin N a a ania ie tenere npn enn tune CALCulate lt n gt TABLe TIMing PREUIMI c iiir tn reperta tener tt creen S CAL Culate n gt TABLe l IMing P RELEIMIES TATO ecs coeno t bnt eerie tegat pe rp eee eh pne ci nna CALCulate lt n gt TABLe TIMing PWIDth GALCulate n TABLe TIMirig PWIDth L IMit 2 cote rotten NaS CAL Culate nz TABL e Mino PWiID l IM GSTATe nnne enne nnns 307 GALGulate n TABLE TIMing RISE tuerentur et ir eren en ctn 300 GALGulate n TABLEe TIMitig RISE LIMIL ini conor rer ttt nr ener rene rere 309 GALCulate n TABLe TIMING RISE LIMIES TA iunc trt t nen tenerent en manera rano 307 GALGulate n TABLe TIMING SE T Tlifag noo rer rnnt te terere 301 GALCulate n TABLe TIMirnig SET Fling LIMit s eiuisc ione trt tr eren tren 309 CALCulate n TABLe TIMing SETTling LIMit S TATe essere nennen 307 GALGulate lt n gt TABLe TIMing TS Tambp ecen rto t rhet nnne nh aaia eren 301 GAL Culatesmn TABLe TIMING TS Tamp LIMIt ions eor rr te tenera errante rer exer CALCulate lt n gt TABLe TIMing TSTamp LIMit STATe sa CAL Culate cnz TADBLetGlDelobe Al UM STATe enne eene nnne nennt nennen GALCulatesmns TAB
440. roduct version The web help is availa ble from the R amp S FSW product page at http www rohde schwarz com product FSW html Downloads Web Help Getting Started This manual is delivered with the instrument in printed form and in PDF format on the CD ROM It provides the information needed to set up and start working with the instrument Basic operations and handling are described Safety information is also included The Getting Started manual in various languages is also available for download from the Rohde amp Schwarz website on the R amp S FSW product page at http www rohde schwarz com product FSW html User Manuals User manuals are provided for the base unit and each additional firmware application The user manuals are available in PDF format in printable form on the Documenta tion CD ROM delivered with the instrument In the user manuals all instrument func tions are described in detail Furthermore they provide a complete description of the remote control commands with programming examples The user manual for the base unit provides basic information on operating the R amp S FSW in general and the Spectrum application in particular Furthermore the soft ware functions that enhance the basic functionality for various applications are descri bed here An introduction to remote control is provided as well as information on main tenance instrument interfaces and troubleshooting In the individual applica
441. rompt For more information see the R amp S FSW UO Analyzer and UO Input User Manual Remote command CALibration AIQ HATiming STATe on page 210 Center Frequency Defines the center frequency for analog baseband input For real type baseband input or Q only the center frequency is always 0 Hz R amp S FSW K6 6S Configuration Note If the analysis bandwidth to either side of the defined center frequency exceeds the minimum frequency 0 Hz or the maximum frequency 40 MHz 80 MHz an error is displayed In this case adjust the center frequency or the analysis bandwidth Remote command SENSe FREQuency CENTer on page 220 5 4 1 6 Settings for 2 GHz Bandwidth Extension R amp S FSW B2000 The R amp S FSW Pulse application supports the optional 2 GHz bandwidth extension R amp S FSW B2000 The optional 2 GHz bandwidth extension is configured in the B2000 tab of the Input dialog box which is available when you do one of the following if the R amp S FSW B2000 option is installed Press the INPUT OUTPUT key then select the B2000 Config softkey From the Overview select Input then switch to the B2000 tab The following settings are available for the optional 2 GHz bandwidth extension R amp S FSW B2000 e General Settings ceret ect eee race Ferre ee cec ebd 92 AGNO EE 93 General Settings General settings are configured in the Settings subtab of the B2000 tab Input Source Power Sens
442. roup Delay Amplifier Measurements R amp S FSW K18 AMPLifier Amplifier Noise R amp S FSW K30 NOISE Noise Phase Noise R amp S FSW K40 PNOISE Phase Noise Transient Analysis R amp S FSW K60 TA Transient Analysis VSA R amp S FSW K70 DDEM VSA 3GPP FDD BTS R amp S FSW K72 BWCD 3G FDD BTS 3GPP FDD UE R amp S FSW K73 MWCD 3G FDD UE TD SCDMA BTS R amp S FSW K76 BTDS TD SCDMA BTS TD SCDMA UE R amp S FSW K77 MTDS TD SCDMA UE cdma2000 BTS R amp S FSW K82 BC2K CDMA2000 BTS cdma2000 MS R amp S FSW K83 MC2K CDMA2000 MS 1xEV DO BTS R amp S FSW K84 BDO 1xEV DO BTS 1xEV DO MS R amp S FSW K85 MDO 1xEV DO MS WLAN R amp S FSW K91 WLAN WLAN LTE R amp S FSW K10x LTE LTE Real Time Spectrum R amp S FSW B160R RTIM Real Time Spectrum K160RE DOCSIS 3 1 R amp S FSW K192 DOCSis DOCSIS 3 1 Note the default channel name is also listed in the table If the specified name for a new channel already exists the default name extended by a sequential number is used for the new channel 9 4 Signal Description INSTrument REName ChannelName1 lt ChannelName2 gt This command renames a measurement channel Parameters lt ChannelName1 gt String containing the name of the channel you want to rename lt ChannelName2 gt String containing the new channel name Note that you can not assign an existing channel name to a new channel this will cause an error Example INST REN IQAnalyzer2 IQAnalyzer3 Ren
443. rs Y Axis POINt PPFRequency RERRor PERRor DEViation CRATe Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 3 Frequency Parameters on page 22 POINt Frequency at measurement point PPFRequency Pulse Pulse Frequency Difference RERRor Frequency Error RMS PERRor Frequency Error Peak DEViation Frequency Deviation CRATe Chirp Rate RST POINt Usage Setting only Manual operation See Y Axis on page 137 CALCulate lt n gt TRENd LLINes STATe lt State gt Hides or shows the limit lines in the selected Parameter Trend or Parameter Distribu tion result display Note that this function only has an effect on the visibility of the lines in the graphical displays it does not affect the limit check in general or the display of the limit check results in the table displays Parameters lt State gt ON OFF RST ON Usage Setting only Manual operation See Display Limit Lines on page 134 CALCulate lt n gt TRENd PHASe lt YAxis gt XAxis Configures the Parameter Trend result display for time trends This command defines both x axis and y axis parameters in one step It is equivalent to the two subsequent commands CALCulate lt n gt TRENd TIMing X TSTamp PNUMber see CALCulate lt n gt TRENd TIMing X on page 283 CALCulate n TRENd PHASe Y lt YAxis gt see CALCulate lt n gt TRENd PHASe Y on page 275 C
444. rs lt XAxis gt PNUMber TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp PNUMber The pulse numbers are represented on the x axis available numbers can be queried using SENSe PULSe NUMBer on page 344 Intervals without pulses are not displayed SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST PNUMber Example CALC2 TREN TIM X DCYCle Usage Setting only CALCulate lt n gt TRENd TIMing Y lt YAxis gt Configures the y axis of the Parameter Trend result display The x axis is configured using the CALCulate lt n gt TRENd lt GroupName gt X com mands Configuring the Results Setting parameters Y Axis TSTamp SETTling RISE FALL PWIDth OFF DRATio DCYCIe PRI PRF Pulse parameter to be displayed on the y axis For a description of the available parameters see chapter 3 1 1 Timing Parame ters on page 16 TSTamp Timestamp SETTling Settling Time RISE Rise Time FALL Fall Time PWIDth Pulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCle Duty Cycle PRI Pulse Repetition Interval PRF Pulse Repetition Freque
445. rting reference UO data The following procedure captures the I Q data to be used as a reference waveform from the RF input connector of the R amp S FSW 1 Press the PRESET key 2 Press the MODE key on the front panel and select the Pulse application 3 Configure the correct center frequency and enter the center a Press the FREQ key b Define the center frequency of the reference pulse signal and select ENTER 4 Configure the data acquisition to capture your reference pulse a Press the BW key b Select Bandwidth Config C Select the Filter Type Flat The Flat filter is recommended for modulated pulses since the Gauss filter would change the spectrum envelope of your signal d Define the bandwidth required to measure the modulation of your reference waveform e Define the measurement time required to measure the reference waveform Set the measurement time large enough to ensure one complete pulse is within the acquisition buffer How to Perform Time Sidelobe Analysis 5 Press the RUN SINGLE key to perform a single sweep measurement 6 Select the reference pulse for the result range in the Pulse Results table Alternatively a Press MEAS CONFIG b Select the Selected Pulse softkey c Select a pulse number d Press ENTER 7 Configure the data range to be exported by configuring the result range a Select one of the pulse based result displays for example the Pulse Fre quency b
446. s Remote command SENSe PULSe TIMing DCYCle on page 360 CALCulate lt n gt TABLe TIMing DCYCle on page 299 SENSe PULSe TIMing DCYCle LIMit on page 387 Pulse Repetition Interval The time between two consecutive edges of the same polarity in seconds requires at least two measured pulses The user specified definition of the pulse period see Pulse Period on page 70 determines whether this value is calculated from consecutive rising or falling edges Remote command SENSe PULSe TIMing PRI on page 363 CALCulate lt n gt TABLe TIMing PRI on page 300 SENSe PULSe TIMing PRI LIMit on page 387 Pulse Parameters Pulse Repetition Frequency Hz The frequency of occurrence of pulses i e inverse of the Pulse Repetition Interval requires at least two measured pulses Remote command SENSe PULSe TIMing PRF on page 363 CALCulate lt n gt TABLe TIMing PRF on page 300 SENSe PULSe TIMing PRF LIMit on page 387 Power Amplitude Parameters The following power amplitude parameters can be determined by the R amp S FSW Pulse application TOP POW 6 e M 19 Base E 19 TITTEN 20 Bverdge ON eet e eebe ud 20 Average TX POWGF m 20 Minimum POWT EE 20 Peak PONOR TM i 20 Pealketo Avg ON Power Ratios 1 2 2 enin Let E a RES 20 Peak to Average Tx Power Isallo itt tee trek tne RR Re nae nda deeg 21 Peak to
447. s Further trigger parameters are available for the connector Remote command OUTPut TRIGger port LEVel on page 231 OUTPut TRIGger lt port gt DIRection on page 231 Output Type Trigger 2 3 Type of signal to be sent to the output Device Trig Default Sends a trigger when the R amp S FSW triggers gered Trigger Sends a high level trigger when the R amp S FSW is in Ready for trig Armed ger state This state is indicated by a status bit in the STATus OPERation reg ister bit 5 as well as by a low level signal at the AUX port pin 9 User Defined Sends a trigger when user selects Send Trigger button In this case further parameters are available for the output signal Remote command OUTPut TRIGger lt port gt OTYPe on page 232 Level Output Type Trigger 2 3 Defines whether a constant high 1 or low 0 signal is sent to the output connector Remote command OUTPut TRIGger lt port gt LEVel on page 231 Pulse Length Output Type Trigger 2 3 Defines the length of the pulse sent as a trigger to the output connector Remote command OUTPut TRIGger lt port gt PULSe LENGth on page 233 R amp S9 FSW K6 6S Configuration 5 4 3 Send Trigger Output Type Trigger 2 3 Sends a user defined trigger to the output connector immediately Note that the trigger pulse level is always opposite to the constant signal level defined by the output Level setting e g for Level High
448. s avoids the rapid movement of the limit lines which would occur if the axis scale changed Note that averaging is not possible for parameter trend traces Note Setting markers in Parameter Trend Displays In Parameter Trend displays especially when the x axis unit is not pulse number positioning a marker by defining its x axis value can be very difficult or ambiguous Thus markers can be positioned by defining the corresponding pulse number in the Marker edit field for all parameter User Manual 1173 9392 02 17 33 R amp S FSW K6 6S Measurements and Result Displays e c H PrR n e ee trend displays regardless of the displayed x axis parameter The Marker edit field is displayed when you select one of the Marker softkeys However the position displayed in the marker information area or the marker table is shown in the defined x axis unit Remote command LAY ADD WIND 2 RIGH PTR See LAYout ADD WINDow on page 315 chapter 9 14 5 Configuring a Parameter Trend on page 268 Pulse Frequency Displays the frequency trace of the selected pulse The length and alignment of the trace can be configured in the Measurement Range dialog box see chapter 5 10 3 Measurement Range on page 124 3 Pulse 1 Frequency Start 6 44 us Stop 36 43 us Note You can apply an additional filter after demodulation to help filter out unwan
449. s in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Pulse Amplitude on page 20 SENSe PULSe POWer AMPLitude AVERage lt QueryRange gt SENSe PULSe POWer AMPLitude MAXimum lt QueryRange gt Retrieving Results SENSe PULSe POWer AMPLitude MINimum lt QueryRange gt SENSe PULSe POWer AMPLitude SDEViation lt QueryRange gt Returns the statistical value for the pule amplitude over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer AVG lt QueryRange gt Returns the average transmission power for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Average Tx Power on page 20 SENSe PULSe POWer AVG AVERage lt QueryRange gt SENSe PULSe POWer AVG MAXimum lt QueryRange gt SENSe PULSe POWer AVG MINimum lt QueryRange gt SENSe PULSe POWer AVG SDEViation lt QueryRange gt Returns the statistical value for the average transmission power over the specified pul ses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses
450. s maintained after a PRESET and is transfer red between applications Remote command SYSTem COMMunicate RDEVice OSCilloscope TCPip on page 218 SYSTem COMMunicate RDEVice OSCilloscope IDN on page 218 Alignment An initial alignment of the output to the oscilloscope is required once after setup It need only be repeated if a new oscilloscope is connected to the IF OUT 2 GHZ con nector of the R amp S FSW or if a new firmware is installed on the oscilloscope Alignment is performed in the Alignment subtab of the B2000 tab R amp S FSW K6 6S Configuration Muay ew Spectrum 3 Input Source Power Sensor External Generator Probes B2000 Settings Please connect Oscilloscope CH1 to FSW REF OUT 640 MHz I Oscilloscope CILIIILI The required connections between the R amp S FSW and the oscilloscope are illustrated in the dialog box Alignment consists of two steps The first step requires a temporary connection from the REF OUTPUT 640 MHZ connector on the R amp S FSW to the CH1 input on the oscil loscope To perform the alignment select the Alignment button If necessary in particular after the firmware on the oscilloscope has been updated a self alignment is performed on the oscilloscope before the actual B2000 alignment starts This may take a few minutes If the oscilloscope and the oscilloscope ADC are aligned successfully a new dialog box is displayed User Manual 1173 9392 0
451. s the measured pulse parameters in a table of results Which parameters are displayed can be configured in the Result Configuration see chapter 6 1 Result Configuration on page 129 The currently selected pulse is highlighted blue The pulses contained in the current capture buffer are highlighted green 5 Pulse Results Rise Avg ON Avg Tx Time o Power Power ns G 9 dBm Pulse D No Note You can apply an additional filter after demodulation to help filter out unwanted signals see FM Video Bandwidth on page 115 Limit check Optionally the measured results can be checked against defined limits see chap ter 6 1 5 2 Limit Settings for Table Displays on page 140 The results of the limit check are indicated in the Pulse Results table as follows Table 3 1 Limit check results in the result tables Display color Limit check result white No limit check active for this parameter green Limit check passed User Manual 1173 9392 02 17 36 R amp S FSW K6 6S Measurements and Result Displays WEE Display color Limit check result red asterisk before Limit check failed limit exceeds lower limit red asterisk behind Limit check failed limit exceeds upper limit MultiView Spectrum Pulse Ref Level 0 00 dBm Meas Time 350 us Att 10dB Freq 13 25 GHz Meas BW 250MHz SRate 1 GHz YIG Bypass 2 Pulse Results Time width PRI Freq t ns us us kHz
452. s unit is not pulse number positioning a marker by defining its x axis value can be very difficult or unambiguous Thus markers can be positioned by defining the corresponding pulse number in the Marker edit field for all parameter trend displays regardless of the displayed x axis parameter The Marker edit field is displayed when you select one of the Marker softkeys Remote command CALCulate lt n gt DELTamarker lt m gt X on page 331 CALCulate lt n gt MARKer lt m gt X on page 329 Marker Type Toggles the marker type The type for marker 1 is always Normal the type for delta marker 1 is always Delta These types cannot be changed Note If normal marker 1 is the active marker switching the Mkr Type activates an additional delta marker 1 For any other marker switching the marker type does not activate an additional marker it only switches the type of the selected marker Normal A normal marker indicates the absolute value at the defined position in the diagram Markers Delta A delta marker defines the value of the marker relative to the speci fied reference marker marker 1 by default Remote command CALCulate lt n gt MARKer lt m gt STATe on page 328 CALCulate lt n gt DELTamarker lt m gt STATe on page 330 Reference Marker Defines a marker as the reference marker which is used to determine relative analysis results delta marker values If the reference marker is deactivated a differen
453. scilloscope connected to the R amp S FSW Return values lt IDString gt Example SYST COMM RDEV OSC IDN Result Rohde amp Schwarz RTO 1316 1000k14 200153 2 45 1 1 Usage Query only Manual operation See TCPIP Address or Computer name on page 93 SYSTem COMMunicate RDEVice OSCilloscope LEDState Returns the state of the LAN connection to the oscilloscope for the optional 2 GHz bandwidth extension R amp S FSW B2000 Return values lt Color gt GREEN Connection to the instrument has been established successfully GREY Configuration state unknown for example if you have not yet started transmission RED Connection to the instrument could not be established Check the connection between the R amp S FSW and the oscillo scope and make sure the IP address of the oscilloscope has been defined see SYSTem COMMunicate RDEVice OSCilloscope TCPip on page 218 Example SYST COMM RDEV OSC LEDS Result GREEN Usage Query only SYSTem COMMunicate RDEVice OSCilloscope TCPip Address Defines the TCPIP address or computer name of the oscilloscope connected to the R amp S FSW via LAN Note The IP address is maintained after a PRESET and is transferred between appli cations Parameters Address computer name or IP address Example SYST COMM RDEV OSC TCP 192 0 2 0 Example SYST COMM RDEV OSC TCP FSW43 12345 Manual operation See TCPIP Address or Compu
454. signals The FM Video Bandwidth is available from the Bandwidth menu Relative low pass filters Relative filters 3 dB can be selected in 96 of the analysis demodulation band width The filters are designed as 5th order Butterworth filters 30 dB octave and active for all demodulation bandwidths e None deactivates the FM video bandwidth default Remote command SENSe DEMod FMVF TYPE on page 236 Sweep Settings The sweep settings define how often data from the input signal is acquired and then evaluated They are configured via the SWEEP key Continuous Swesp RUN CONT cte aro ttt ete o ten ea e rr trt nee ttes 116 Single Sweep RUN SINGLE 5 reacted re ever rsen 116 Continue Single SWOGD 2 iine tbrt etre taie Ro ob Ra aa Dea ERR La e pa Ra adea oa E an 116 acil me M ETOT 117 uet nece m 117 Sweep Average CoUlM ri t ta ettet dex ap eec er dees 117 R amp S FSW K6 6S Configuration EH Continuous Sweep RUN CONT After triggering starts the sweep and repeats it continuously until stopped This is the default setting While the measurement is running the Continuous Sweep softkey and the RUN CONT key are highlighted The running measurement can be aborted by selecting the highlighted softkey or key again The results are not deleted until a new measurement is started Note Sequencer If the Sequencer is active
455. sis DET LIM ON DET LIM COUN 10 DET REF ABS DET THR 30dB DET HYST 2dB Configure how and which levels are used for pulse detection mean level for top power values in dBm consider droop ripple calculated in first 5 of pulse top SENS TRAC MEAS ALG MEAN SENS TRAC MEAS DEF AMPL UNIT DBM SENS TRAC MEAS DEF COMP ADR ON SENS TRAC MEAS DEF RIPP 5 meas levels at 15 50 85 power in dB 1 41 6 02 26 02 SENS TRAC MEAS DEF TRAN HREF 1 41 SENS TRAC MEAS DEF TRAN REF 6 02 SENS TRAC MEAS DEF TRAN LREF 26 02 boundary calculated in top 5 0 26dB SENS TRAC MEAS DEF BOUN TOP 0 26 Configure which point is used to determine pulse characteristics 0 1ms from top center window 1ms SENS TRAC MEAS DEF PULS INST REF CENT SENS TRAC MEAS DEF PULS INST 0 1ms SENS TRAC MEAS DEF PULS INST AWIN 1ms Configure the range used for estimation 0 1ms from either edge SENS TRAC MEAS DEF PULS EST REF EDGE SENS TRAC MEAS DEF PULS EST OFFS LEFT 0 1ms SENS TRAC MEAS DEF PULS EST OFFS RIGH 0 1ms Configure the range for which individual pulse results are displayed 300us starting from left edge of pulse top SENS TRAC MEAS DEF RRAN REF RISE SENS TRAC MEAS DEF RRAN ALIG LEFT SENS TRAC MEAS DEF RRAN LENG 300us Programming Example Pulse Measurement Configure data acquisition for 10ms SWE TIME 10ms A Configuring the results Result displays upper row 1 Mag
456. sult range can be displayed see Result Range Spectrum on page 38 AD Clou 2D Diilee Resul Result Range Markers Marker Settings Units Y Scaling Result Range Result Range Spectrum Automatic Range Scaling Auto off Auto Scale Once Reference Point Result Range Reference cS Trigge Alignment Offset 0 0s STi l Magnitude Capture The range is defined by a reference point alignment and the range length Result Configuration Automauc Ranga e DEE 131 Result Range Reference Point 131 5r C aes 131 Free M 131 H B M 132 Automatic Range Scaling Defines whether the result range length is determined automatically according to the width of the selected pulse see chapter 6 1 1 Pulse Selection on page 129 Note The result range is applied to all pulse based result displays OFF Switches automatic range scaling off ON Switches automatic range scaling on ONCE Executes automatic range scaling once and then switches it off Remote command SENSe TRACe MEASurement DEFine RRANge AUTO on page 255 Result Range Reference Point Defines the reference point for positioning the result range The Offset is given with respect to this value Rise The result range is defined in reference to the rising edge Center The result range
457. sults to an ASUGII File e ett deed 388 e Exporting Table Results to an ASCH Irilg teet 390 e Exporting UO Results to an iq tar File 391 Retrieving and Storing Trace Data In order to retrieve the trace results in a remote environment use the following com mand TRACe lt n gt DATA Trace This command queries the y values in the selected result display It is only available for graphical displays For each trace point the measured or calculated value is returned For the Magnitude Capture display the maximum y value for each trace point is returned The unit depends on the display and on the unit you have currently set Query parameters Trace TRACE1 TRACE2 TRACE3 TRACE4 TRACE5 TRACE6 The trace number whose values are to be returned Usage Query only Manual operation See Magnitude Capture on page 29 See Parameter Distribution on page 31 See Parameter Spectrum on page 31 See Pulse Frequency on page 34 See Pulse Magnitude on page 34 See Pulse Phase on page 35 See Pulse Phase Wrapped on page 36 See Result Range Spectrum on page 38 See Correlated Magnitude Capture on page 38 See Correlated Pulse Magnitude on page 39 See Pulse Frequency Error on page 40 See Pulse Phase Error on page 40 TRACe lt n gt DATA X Trace This remote control command returns the X values only for the trace in the selected result display Depending on the type of resul
458. surement are displayed in the selec tion bar in SmartGrid mode For details on working with the SmartGrid see the R amp S FSW Getting Started manual By default the Pulse measurement results are displayed in the following windows e Magnitude Capture Pulse Results Pulse Frequency R amp S FSW K6 6S Measurements and Result Displays Rc EEL EEE Ser Se ae e Pulse Magnitude e Pulse Phase The following evaluation methods are available for Pulse measurements Result displays marked with an asterisk require both the R amp S FSW K6 and the additional R amp S FSW K6S option Miami ee ED 29 Maor EE 30 Parameter EE e uccide ertet nce ti tte e ee e t siecetoierebedeess 31 m ucnsgle em Em 31 Parameter Le cm 32 Pulss Frogu M T 34 See TEE 34 xri EM 35 Pulse Phase ee ppc rue tero een ine Seer FROR n Ra ERU Peek e EE Rina Deo ERR Rua 36 Pulse Eeler eege e dern cc ete d clt da net t de Oe 36 Pulse StatiSt s I H 37 Result Range SpOCUlfi eiiis eei itpeteecek ente oe rae E Fete rogatur caret ENEE PY ER Rueda 38 Correlated Magnitude Capture C ceo t i eee nete cer b a ied e n e cane 38 Correlated Pulse Magnitude reed dio pee eter cet eren La eeu RAE NIRE Ra 39 Pulse Frequency EITOF ione LER Fonte htt Re Hic EE EENS EE 40 Pulse Phase Emor iine eren erroe Vitae REP qoe ere tend e Reda et EDU Tt ERE pede dS 40 Magnitude Capture Displays the captur
459. t LIMit CALCulate n TABLe POWer RIPPle PERCent LIMit STATe essen 307 CALCulatexn gt TABLE POWER TOP i arreter rr etr ict a a E rc er ER RR EX PEN Ee 298 GAL Culatesps TABLEe POWerzTOP LIMIL ceno iter rg reme er o OTE seen Pe Ey RR Pee eae ee teen cu oa 309 CALCulate lt n gt TABLe POWer TOP LIMIES TAT6 uenirn erret rre eeu 307 GALCulate n TABLe TIMirnig ALL EIMIES TATe iiiter tn enn tetto thin ncn 308 GALCulatesn TABLE l IMing AEE STATS topo rater urbt n ether sien tai tech 298 GALGulate n TABLe TIMing DOYGle 1t rrt rtr rrr te i rne pr En 299 CALCulate lt n gt TABLe TIMIng DEY Cle LIMIit anion tern ttn rhet etie nnns 309 CAL Culate cnz TABLe TIMing DCYCIEHIMIESTA TE nnnm nere 307 GALGulate n TABLe TIMing DESATIO on ttn rn rti e n 299 CALCulate n TABLe TIMing DRATio LIMit 909 CAL Culate nz TABL e TlMimgoDRAToMrGTATe nnne 307 GALGulate n TABLe TIMing F ALL trn rn ret rr emen CALCulate lt n gt TABLe TIMitrig FALL LIMiL iuc inrer eene tette ener erac CALC latesn gt TABLe TIMing FALL LIMIS TATE enne sao anai maT GALGulate n TABLE TIMing OFF coo trt ttt e tern eren ener A eene a npe GALGulate n TABLe TIMitnig OFF LIMit i2 inu iret rnt rr erat rece t traten orent CALCulate lt n gt TABLe TIMing OFF LIMit STATe GAL GCulate lt n gt TABLE TIMINGI PR F vite citro rrr er sever n cnr FE eee ene
460. t LIMit STATe State CALCulate lt n gt TABLe POWer PAVG LIMit STATe State CALCulate lt n gt TABLe POWer PMIN LIMit STATe State CALCulate lt n gt TABLe POWer POINt LIMit STATe State CALCulate lt n gt TABLe POWer PON LIMit STATe State CALCulate lt n gt TABLe POWer PPRatio LIMit STATe State CALCulate lt n gt TABLe POWer RIPPle DB LIMit STATe State CALCulate lt n gt TABLe POWer RIPPle PERCent LIMit STATe State CALCulate lt n gt TABLe POWer TOP LIMit STATe State CALCulate lt n gt TABLe TIMing DCYCle LIMit STATe State CALCulate lt n gt TABLe TIMing DRATio LIMit STATe State CALCulate lt n gt TABLe TIMing FALL LIMit STATe State CALCulate lt n gt TABLe TIMing OFF LIMit STATe State CALCulate lt n gt TABLe TIMing PRF LIMit STATe State CALCulate lt n gt TABLe TIMing PRI LIMit STATe State CALCulate lt n gt TABLe TIMing PWIDth LIMit STATe State CALCulate lt n gt TABLe TIMing RISE LIMit STATe State CALCulate lt n gt TABLe TIMing SETTling LIMit STATe State CALCulate lt n gt TABLe TIMing TSTamp LIMit STATe State CALCulate n TABLe TSIDelobe AMPower LIMit STATe State CALCulate n TABLe TSIDelobe CRATio LIMit STATe State CALCulate n TABLe TSIDelobe IMPower LIMit STATe State CALCulate n TABLe TSIDelobe ISLevel LIMit STATe State CALCulate n TABLe TSIDelobe MFRequency LIMit STATe State CALCulate n TABLe TSIDelobe MPHase LIMit STATe State CALCulate
461. t Result Pulse Selecton PME 129 e Result Rang scc dte co Fe La ence nte O aed Da d c d dae 130 e Result Range Spectrum Configuration esses 132 e Parameter Configuration for Result Displavs A 133 e Table GCobffgulalion cc ciet eoe oct rede erect ed daa o ae tinea 138 LEE oc EEUU 142 E unit etii t de M ete D nd EMINENS 144 6 1 1 Pulse Selection The pulse traces frequency magnitude and pulse vs time always display the trace for one specific pulse namely the currently selected pulse P To select a pulse in the Pulse Meas menu select the Selected Pulse softkey The currently selected pulse is highlighted blue in the Pulse Results and Pulse Statis tics displays As soon as a new pulse is selected all pulse specific displays are automatically upda ted Result Configuration Linked markers in Parameter Trend displays the marker M1 can be linked to the selected pulse see Link Trend M1 to Selected Pulse on page 151 Thus if you select a different pulse the marker M1 is also set to the same pulse and vice versa Remote command SENSe TRACe MEASurement DEFine PULSe SELected on page 254 6 1 2 Result Range The result range determines which data is displayed on the screen see also Mea surement range vs result range on page 15 This range applies to the pulse magni tude frequency and phase vs time displays Furthermore the spectrum for the re
462. t SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Frequency on page 22 SENSe PULSe FREQuency POINt AVERage lt QueryRange gt SENSe PULSe FREQuency POINt MAXimum lt QueryRange gt SENSe PULSe FREQuency POINt MINimum lt QueryRange gt SENSe PULSe FREQuency POINt SDEViation lt QueryRange gt Returns the statistical value for the phase deviation over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe FREQuency PPFRequency lt QueryRange gt Returns the Pulse Pulse Frequency Difference for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Pulse Pulse Frequency Difference on page 23 Retrieving Results SENSe PULSe FREQuency PPFRequency AVERage lt QueryRange gt SENSe PULSe FREQuency PPFRequency MAXimum lt QueryRange gt SENSe PULSe FREQuency PPFRequency MINimum lt QueryRange gt SENSe PULSe FREQuency PPFRequency SDEViation lt QueryRange gt Returns the
463. t remote reete mette tees 192 Overshoot 296 297 Calculatiori ti cic uere rre eren 45 Ratio 21 352 353 OVGIVIOW CC M EE ee 67 P Parameter Configuration result displays ssse 133 Parameter distribution Configuration remote esses 256 Parameter Distribution EE 134 V elle UCL ET 133 EIE e eT Saas ad mea cee ete Parameters te PO EE KEE 134 Parameter spectrum Configuration remote scrierii iak 262 Parameter Spectrum V elle UCL 134 BUT e EE EN Parameters sect ree eed Ee 135 OO ME 135 Parameter tables Configuration Configuration remote Parameter trend Configuration 136 Configuration remote 268 Evaltilatioli 2 2 recien esee eec a 32 Parameters aa 137 X axis 138 Y axis 24437 Parameters 18 Amplitude E 19 AVO OIN Re EE 20 Avg Tx Power Base Power 19 Chirp Rate ege 23 Compression Ratio scence tee serenus 27 DOSCHIPTON eish isseire vitsien sindets 15 POOP SEET 21 IIIe EE 18 Iu M 17 FrequetiCy EE 22 Frequency Deviation 2 sacs lees 23 Frequency Error Peak sisirin 23 Frequency Error HMG 23 IEEE 181 Standard isc cii 15 Inp tsigtial 4 ttr matter neret tice 58 Mainlobe 3 dB Width 26 Mairnlobe Freq ency esche ertt t
464. t 0 0 dB m Impedance 500 752 ctror State Mode Auto mus food Value Mode Frontend Settings aereis eet E 102 L Shifting the Display Offset 102 PRP E M i 102 L Attenuation Mode Valuta tci tcc ci ka c 102 Using Electronic Attenuation 2 cir trecenti Da ri ie rez d ee DEL Ru Id 103 net esl up E 103 EE 103 Auto Seale WiINdGOW EE 104 Reference Level Defines the expected maximum reference level Signal levels above this value may not be measured correctly which is indicated by the IF OVLD status display The reference level is also used to scale power diagrams the reference level is then used as the maximum on the y axis Since the hardware of the R amp S FSW is adapted according to this value it is recom mended that you set the reference level close above the expected maximum signal level to ensure an optimum measurement no compression good signal to noise ratio Remote command DISPlay WINDow lt n gt TRACe lt t gt Y SCALe RLEVel on page 222 Shifting the Display Offset Reference Level Defines an arithmetic level offset This offset is added to the measured level The scal ing of the y axis is changed accordingly Define an offset if the signal is attenuated or amplified before it is fed into the R amp S FSW so the application shows correct power results All displayed power level results will be shifted by this value The setting range is 200 dB in 0 01 dB steps
465. t Peete 16 22178218 MHz Range Spectrum ose sig 1 Result Range Spectrum Klee puo EET 132 ResBW Mandal E 132 BBW Uo 133 Window Type Used FFT window type for Result Range Spectrum The same window types are avail able as for Parameter Spectrum displays see Window functions on page 48 Remote command CALCulate lt n gt RRSPectrum WINDow on page 289 ResBW Manual Defines the resolution bandwidth for the Result Range Spectrum The resolution bandwidth defines the minimum frequency separation at which the indi vidual components of a spectrum can be distinguished Small values result in a high precision as the distance between two distinguishable frequencies is small but require a larger measurement interval that is longer Result Range length for the calculation Higher values decrease the precision but can increase measurement speed Remote command CALCulate lt n gt RRSPectrum RBW on page 290 6 1 4 1 Result Configuration RBW Auto If activated a resolution bandwidth is selected automatically which provides a good balance between fast measurement speed and high spectral resolution Remote command CALCulate n RRSPectrum AUTO on page 290 Parameter Configuration for Result Displays For parameter trend or distribution displays you can define which parameters are to be evaluated in each window e Parameter Distribution Configuration
466. t and step by step instructions for more complex tasks or alternative methods e Remote Commands for Pulse Measurements Remote commands required to configure and perform Pulse measurements in a remote environment sorted by tasks Commands required to set up the environment or to perform common tasks on the instrument are provided in the main R amp S FSW User Manual Programming examples demonstrate the use of many commands and can usually be executed directly for test purposes List of remote commands Alphahabetical list of all remote commands described in the manual Index 1 2 Documentation Overview The user documentation for the R amp S FSW consists of the following parts e Printed Getting Started manual Online Help system on the instrument e Documentation CD ROM with Getting Started User Manuals for base unit and firmware applications Documentation Overview Service Manual Release Notes Data sheet and product brochures Online Help The Online Help is embedded in the instrument s firmware It offers quick context sen sitive access to the complete information needed for operation and programming Online help is available using the icon on the toolbar of the R amp S FSW Web Help The web help provides online access to the complete information on operating the R amp S FSW and all available options without downloading The content of the web help corresponds to the user manuals for the latest p
467. t channel If you delete the last measurement channel the default Spectrum channel is activa ted Parameters lt ChannelName gt String containing the name of the channel you want to delete A measurement channel must exist in order to be able delete it Example INST DEL IQAnalyzer4 Deletes the channel with the name IQAnalyzer4 Usage Event INSTrument LIST This command queries all active measurement channels This is useful in order to obtain the names of the existing measurement channels which are required in order to replace or delete the channels Return values lt ChannelType gt For each channel the command returns the channel type and lt ChannelName gt channel name see tables below Tip to change the channel name use the INSTrument REName command Activating Pulse Measurements Example INST LIST Result for 3 measurement channels ADEM Analog Demod IQ IOQ Analyzer IQ IQ Analyzer2 Usage Query only Table 9 1 Available measurement channel types and default channel names in Signal and Spectrum Analyzer mode Application lt ChannelType gt Default Channel Name Parameter Spectrum SANALYZER Spectrum UO Analyzer IQ IQ Analyzer Pulse R amp S FSW K6 PULSE Pulse Analog Demodulation R amp S FSW K7 ADEM Analog Demod GSM R amp S FSW K10 GSM GSM Multi Carrier Group Delay R amp S FSW K17 MCGD MC G
468. t display and the scaling of the x axis this can be either the pulse number or a timestamp for each detected pulse in the capture buffer This command is only available for graphical displays except for the Magnitude Cap ture display Query parameters Trace TRACe1 TRACe2 TRACe3 TRACe4 TRACe5 TRACe6 The trace number whose values are to be returned 9 20 2 Retrieving Results Example See chapter 9 22 Programming Example Pulse Measure ment on page 395 Usage Query only MMEMory STORe lt n gt TRACe lt Trace gt lt FileName gt This command exports trace data from the specified window to an ASCII file For details on the file format see chapter A 1 Reference ASCII File Export Format on page 402 Secure User Mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Parameters Trace Number of the trace to be stored lt FileName gt String containing the path and name of the target file Example MMEM STOR1 TRAC 3 C TEST ASC Stores trace 3 from window 1 in the file TEST ASC
469. t reference marker is automatically selected the delta marker remains active Remote command CALCulate lt n gt DELTamarker lt m gt MREF on page 330 Linking to Another Marker Links the current marker to the marker selected from the list of active markers If the x axis value of the inital marker is changed the linked marker follows on the same x position Linking is off by default Using this function you can set two markers on different traces to measure the differ ence e g between a max hold trace and a min hold trace or between a measurement and a reference trace Remote command CALCulate lt n gt MARKer lt m gt LINK TO MARKer lt m gt on page 328 CALCulate lt n gt DELTamarker lt m gt LINK TO MARKer lt m gt on page 330 CALCulate lt n gt DELTamarker lt m gt LINK on page 329 Assigning the Marker to a Trace The Trace setting assigns the selected marker to an active trace The trace deter mines which value the marker shows at the marker position If the marker was previ ously assigned to a different trace the marker remains on the previous frequency or time but indicates the value of the new trace If a trace is turned off the assigned markers and marker functions are also deactiva ted Remote command CALCulate lt n gt MARKer lt m gt TRACe on page 328 Select Marker The Select Marker function opens a dialog box to select and activate or deactivate one or more markers quickly 6 3 2 Ma
470. t rens ertt E nice STE eve 351 SENSe PUESe POWSEMIN SDEVIatlOm 2 ctt tetto ane cete n etit eta ve deeg 351 SENSE E e ell KEE 351 SENSe PULSe POWer ON AVERage SENSe PUESe POWN er ON LIMI ttr terree i nette trente te EES 387 SENSe PULSe POWSer ON MAXImUr cct c neta t pe ri a e icc read tend 352 SENS6 TER POWEr ON MINIMUM RE 352 SENSe PUESe POWSF ON SDEVIalIOL 2 occ reto rt crier er E e tne e nene tenet 352 SENSE PULSE POWE ON isisisi tnr en cete tmc percent a d p Re ere Fe LR E EE ECT ERR ERE ne ER 352 SENSe PUESe POWer OVERshootDB AVERAge6 ntt rt ettet mter 353 SENSe PUESe POWer OVERSshoOtBDB LIMIt 2 tenter feet ente eter ete nr nat ene eee 387 SENSE PULSe POWSr OVERShoot DB MAXIMUM P isipin eatea a SANEA REES 353 SENSe PUESe POWer OVERshootDB M INimU liTI uana ie nnn toti o itn tte ENEE 353 SENSe PULSe POWer OVERshootDB SBEViatlOn eterne tnter nd re lees 353 SENSe PULSe POWer OVERshoot DB uss SENSe PULSe POWer OVERshoot PERCent AVERage sss enne 353 SENSe PUESe POWer OVERshootEPERCenit LIMIE 2 1t arte rtt riter 387 SENSE PULSe POW6r OVERabool PDERGC ent MA Nimum enne s 353 IEN Ge IpUL Ge POWer OVERabool PERCent MINIMUNI ens 353 SENSe PULSe POWer OVERshoot PERCent SDEViation essen 353 SENSe PUESe POWer OVERshootEPERGent 1 1 rrt ttt re penche
471. te lt n gt MARKer lt m gt LINK on page 331 Link Trend M1 to Selected Pulse If enabled marker M1 in Parameter Trend displays is linked to the pulse selection Thus if you move the marker M1 to a different pulse the Pulse Selection is set to the same pulse and vice versa 6 3 3 Markers Note that this function is only available if Linked Markers Across Windows is also enabled Remote command CALCulate lt n gt MARKer lt m gt LINK TRENd on page 332 Marker Positioning Functions The following functions set the currently selected marker to the result of a peak search or set other characteristic values to the current marker value These functions are available as softkeys in the Marker To menu which is displayed when you press the MKR gt key Solec WANK OR ucc ie rere ao a de d ee re cac e E e RR Re RR 152 POS SOM aa EIER HIEMIS INIHI NE 152 Search Next Peak tet ert rr orani exta SES EES EEN Re 153 ele RN d lu ME 153 Search Next MINIMUM senenn ne a aa A a a A 153 Select Marker The Select Marker function opens a dialog box to select and activate or deactivate one or more markers quickly Selected State Selected State Selected State Remote command Marker selected via suffix lt m gt in remote commands Peak Search Sets the selected marker delta marker to the maximum of the trace If no marker is active marker 1 is activated Remote command CALCulate lt n gt MARKer lt m gt MAXimum PEAK on
472. ted signals see FM Video Bandwidth on page 115 Remote command LAY ADD WIND 2 RIGH PFR see LAYout ADD WINDow on page 315 Results TRACe lt n gt DATA on page 340 Pulse Magnitude Displays the magnitude vs time trace of the selected pulse The length and alignment of the trace can be configured in the Measurement Range dialog box see chap ter 5 10 3 Measurement Range on page 124 um PED S UU SS User Manual 1173 9392 02 17 34 R amp S FSW K6 6S Measurements and Result Displays Remote command LAY ADD WIND 2 RIGH PMAG see on page 315 Results on page 340 Pulse Phase Displays the phase vs time trace of the selected pulse The length and alignment of the trace can be configured in the Measurement Range dialog box see on page 124 Stop 36 43 ps Remote command LAY ADD WIND 2 RIGH PPH see on page 315 Results on page 340 User Manual 1173 9392 02 17 35 R amp S FSW K6 6S Measurements and Result Displays Pulse Phase Wrapped Displays the wrapped phase vs time trace of the selected pulse The length and align ment of the trace can be configured in the Measurement Range dialog box see chapter 5 10 3 Measurement Range on page 124 3 Pulse 1 Phase Wrapped 13 44500015 ps 24 839999242 us Remote command LAY ADD WIND 2 RIGH PPW see LAYout ADD WINDow on page 315 Results TRACe lt n gt DATA on page 340 Pulse Results Display
473. ter name on page 93 Input Output Settings SYSTem COMMunicate RDEVice OSCilloscope VDEVice Queries whether the connected instrument is supported by the 2 GHz bandwidth extension option R amp S FSW B2000 For details see the 2 GHz bandwidth extension basics chapter in the R amp S FSW UO Analyzer and UO Input User Manual Return values State ON 1 Instrument is supported OFF 0 Instrument is not supported Example SYST COMM RDEV OSC VDEV Usage Query only SYSTem COMMunicate RDEVice OSCilloscope VFIRmware Queries whether the firmware on the connected oscilloscope is supported by the 2 GHz bandwidth extension R amp S FSW B2000 option Return values lt State gt ON 1 Firmware is supported OFF 0 Firmware is not supported Example SYST COMM RDEV OSC VFIR Usage Query only TRIGger SEQuence OSCilloscope COUPling lt CoupType gt Configures the coupling of the external trigger to the oscilloscope Parameters lt CoupType gt Coupling type DC Direct connection with 50 Q termination passes both DC and AC components of the trigger signal CDLimit Direct connection with 1 MO termination passes both DC and AC components of the trigger signal AC Connection through capacitor removes unwanted DC and very low frequency components RST DC Manual operation See Coupling on page 109 Frontend Configuration 9 6 7 Configuring the Outputs Configuring trigger input output is descr
474. the pulse result tables see chapter 3 1 5 Time Sidelobe Parameters on page 25 e E Ep lu 55 e Pulse Compression Calculatton es 55 User Manual 1173 9392 02 17 54 Time Sidelobe Analysis 4 5 1 Keep out Time Which part of the detected pulse is evaluated for time sidelobe results is also configu rable similarly to the result range for common pulse results A keep out time defines an excluded area around the center assuming this is the mainlobe in which sidelobe peaks are not included in the measured values Time Sidelobe Range Keep Out Time Center 4 5 2 Pulse Compression Calculation Pulse compression is performed by correlating the measured data with a reference waveform Mathematically this can be described as follows 2 Pur n 2 Qnoas thin UO t H Power correlation 4 1 where n is a sample offset within the measured data at which the correlator output is calculated Since the data is processed digitally in the R amp S FSW Pulse application the measured and reference waveform I Q samples are denoted as IQmeast n for nz1 M and IQ et k for k 1 N where there are assumed to be M samples in the measurement acquisition and N sam ples of the reference waveform and both measured and reference waveforms are sampled at the same sampling rate Time Sidelobe Analysis used for data acquisition in the R amp S FSW Pulse application In this case the reference wav
475. tion See Export Range on page 162 MMEMory STORe lt n gt lQ STATe 1 lt FileName gt This command writes the captured UO data to a file The suffix lt n gt is irrelevant The file extension is iq tar By default the contents of the file are in 32 bit floating point format Secure User Mode In secure user mode settings that are to be stored on the instrument are stored to vol atile memory which is restricted to 256 MB Thus a Memory full error may occur although the hard disk indicates that storage space is still available To store data permanently select an external storage location such as a USB memory device 9 21 Retrieving Marker Results For details see Protecting Data Using the Secure User Mode in the Data Manage ment section of the R amp S FSW User Manual Parameters 1 lt FileName gt String containing the path and name of the target file Example MMEM STOR IQ STAT 1 C R_S Instr user data ig tar Stores the captured UO data to the specified file Example See chapter 9 22 Programming Example Pulse Measure ment on page 395 Manual operation See Q Export on page 162 Retrieving Marker Results The following commands are required to retrieve marker results Useful commands for retrieving marker results described elsewhere CALCulate lt n gt DELTamarker lt m gt X on page 331 CALCulate lt n gt MARKer lt m gt X on page 329 Remote commands exclusive to retriev
476. tion See Ripple Portion on page 121 SENSe TRACe MEASurement DEFine TRANsition HREFerence lt QueryRange gt The upper threshold in percent of the pulse amplitude used to signify the end of a ris ing or beginning of a falling signal level Configuring the Pulse Measurement Parameters lt QueryRange gt percentage Range 0 to 100 RST 90 Manual operation See High Distal Threshold on page 121 SENSe TRACe MEASurement DEFine TRANsition LREFerence lt QueryRange gt The lower threshold in percent of the pulse amplitude used to signify the end of a fall ing or beginning of a rising signal level Parameters lt QueryRange gt percentage Range 0 to 100 RST 10 Manual operation See Low Proximal Threshold on page 121 SENSe TRACe MEASurement DEFine TRANsition REFerence lt QueryRange gt The threshold in percent of the pulse amplitude used to signify the mid transition level between pulse states Parameters lt QueryRange gt percentage Range 0 to 100 RST 50 Manual operation See Mid Mesial Threshold on page 121 9 12 2 Measurement Point SENSe TRACe MEASurement DEFine PULSe INSTant esses eee 241 SENSe TRACe MEASurement DEFine PULSe INSTant AWINdoOw eese 242 GENZeTRACeMEAGurement Dt Fine PU GelNGtantRtterence 242 SGENZeTRACeMEAGurement DE Fine bi Zebtterence 242 SENSe TRACe MEASurement DEFine PULSe REFerence POSition 243
477. tion before and after each trigger event for the specified number of trigger events The signal data between these cap ture times is not stored in the capture buffer Remote command SENSe SWEep SCAPture STATe on page 234 Events Segmented Capture Specifies the number of trigger events for which data segments are to be captured If multiple events occur within one segment length the segment is extended see Num ber of events vs number of segments on page 52 Remote command SENSe SWEep SCAPture EVENts on page 233 Trigger Offset Segmented Capture Defines an offset to the trigger event at which data capturing starts For a negative off set data capturing starts before the actual trigger event Remote command SENSe SWEep SCAPture OFFSet TIME on page 234 TRACe n 1Q SCAPture TSTamp SSTart on page 342 TRACe lt n gt 1Q SCAPture TSTamp TRIGger on page 344 Data Acquisition Segment Length Segmented Capture Defines a time period starting from the Trigger Offset in which data is captured If multi ple events occur within one segment length the segment is extended see Number of events vs number of segments on page 52 Remote command SENSe SWEep SCAPture LENGth TIME on page 233 5 7 Data Acquisition You must define how much and how data is captured from the input signal Acquisition Detection Measurement Bandwidth Filter Type Flat ECH Elte Kielen 80
478. tion manuals the specific instrument functions of the applica tion are described in detail For additional information on default settings and parame ters refer to the data sheets Basic information on operating the R amp S FSW is not inclu ded in the application manuals All user manuals are also available for download from the Rohde amp Schwarz website on the R amp S FSW product page at http www2 rohde schwarz com product FSW html Conventions Used in the Documentation Service Manual This manual is available in PDF format on the Documentation CD ROM delivered with the instrument It describes how to check compliance with rated specifications instru ment function repair troubleshooting and fault elimination It contains all information required for repairing the R amp S FSW by replacing modules Release Notes The release notes describe the installation of the firmware new and modified func tions eliminated problems and last minute changes to the documentation The corre sponding firmware version is indicated on the title page of the release notes The most recent release notes are also available for download from the Rohde amp Schwarz website on the R amp S FSW product page at http www2 rohde schwarz com product FSW html gt Downloads gt Firmware 1 3 Conventions Used in the Documentation 1 3 1 Typographical Conventions The following text markers are used throughout this documentation Convention D
479. tion or the MSRA Master and is then adjusted in all other applications Thus you can easily analyze the results at a specific time in the measurement in all applications and determine correlations User Manual 1173 9392 02 17 65 Pulse Measurements in MSRA MSRT Mode If the marked point in time is contained in the analysis interval of the application the line is indicated in all time based result displays such as time symbol slot or bit dia grams By default the analysis line is displayed however it can be hidden from view manually In all result displays the AL label in the window title bar indicates whether or not the analysis line lies within the analysis interval or not orange AL the line lies within the interval white AL the line lies within the interval but is not displayed hidden e no AL the line lies outside the interval ened Ref Level 0 00 dim Std Att 1048 Freq 13 25 GHz Cap Len YIG Bypass BURST PATTERN 1 Freq Error Rel 1 Clrw Analysis Interval 230 902778 us 616 319444 us Al Analysis Interval sai 0 0 1 O0 Ol 1 O 1 Q 1 O DECT_P32_FmedPart SR 1 152 MHz 1500 d EL t oooo cBuffer Analysis Interval 230 902778 us 616 319444 us AL L e 4 L f Date 15 0C1 2012 16 40 29 For details on the MSRA operating mode s
480. tion values for conversion loss at certain frequencies The correction values for frequencies between the reference points are obtained via interpolation The currently selected table for each range is displayed at the top of the dialog box All conversion loss tables found in the instrument s C r_s instr user cv1l direc tory are listed in the Modify Tables list eN Sual AN AB Radio Frequency Basic Settings Mixer Settings Conversion Loss Table External Mixer AKT EE 83 Edit Table ter te a i os Eo ee eere epo EE edd 84 ieleles Jl RTT 84 PORE zo T 84 New Table Opens the Edit Conversion loss table dialog box to configure a new conversion loss table For details on table configuration see Creating and Editing Conversion Loss Tables on page 84 Remote command SENSe CORRection CVL SELect on page 205 Input and Output Settings Edit Table Opens the Edit Conversion loss table dialog box to edit the selected conversion loss table For details on table configuration see Creating and Editing Conversion Loss Tables on page 84 Note that only common conversion loss tables in ac1 files can be edited Special B2000 tables in b2g files can only be imported and deleted Remote command SENSe CORRection CVL SELect on page 205 Delete Table Deletes the currently selected conversion loss table after you confirm the action Remote command SENSe CORR
481. to Cen ter then the reference model has a flat pulse top and Liop Ltop Lioo Thus the formulae are reduced to L Ly Ripple 96V x100 100 Lo Jg be 0 _ ript rip Ripple 7 6W _ x 100 Loo Lon L Ripple dB 20x log Ka rip The following illustration indicates the levels used for calculation Parameter Definitions V Measured Magnitude V Reference Magnitude V NM NEZ Errseeereer keen M t Lal d me ee i 0 D I a l d i HE Ripple Portion l E defined by user as of i H pulse top i D l y el 0096 of pulse t0p 3 i l I t s Fig 4 2 Illustration of levels used to define the ripple measurement 4 1 3 Overshoot The overshoot is defined as the height of the local maximum after a rising edge divi ded by the pulse amplitude Lo Lio Overshoot V 9 99 x100 100 0 Lo LG Overshoot W x 100 100 Tome 100 L Overshoot dB 20x e or Pulse Detection L V a Measured Magnitude V Reference Magnitude V L100 ML H H H D D D D D D L Lov t s Fig 4 3 Illustration of levels used to define the overshoot measurement 4 2 Pulse Detection A pulsed input signal is a signal whose carrier power is modulated by two states ON and OFF Basically a pulse is detected when the input signal power excee
482. to the rising and falling edges or as a proportion of the pulse top E sss d Meas Levels Meas Point Meas Range M 100 of Pulse Top em A i Center 4 Estimation gt Length of Top 75 0 Offset Rise Fall Referee occorre rere eene estet e Verdes detente Ed vete EE Fun ved een ta eet eda a pue eese vae 124 Reference Defines the reference for the measurement range definition Depending on the selected reference type an additional setting is available to define the range Center Defines a relative range around the center of the pulse The range is defined by its length in percent of the pulse top Pulse Measurement Settings Edge Defines the start and stop of the measurement range with respect to the pulse edges The range is defined by a time offset from the mid dle of the rising edge and a time offset from the middle of the falling edge Remote command ENSe TRACe MEASurement DEFine PULSe ESTimation REFerence n page 244 elative range Center ENSe TRACe MEASurement DEFine PULSe ESTimation bsolute range Edge ENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet LEFT on page 244 SENSe TRACe MEASurement DEFine PULSe ESTimation OFFSet RIGHt on page 244 Dow EZ ENGth on page 244 n gt un 5 10 4 Time Sidelobe Range The time sidelobe range defines which part of the detected pulse is evaluated for side lobe results similarly to the result range
483. tor type Remote command SENSe WINDow lt n gt DETector lt t gt FUNCtion on page 326 SENSe WINDow lt n gt DETector lt t gt FUNCtion AUTO on page 326 Hold If activated traces in Min Hold Max Hold and Average mode are not reset after specific parameter changes have been made Normally the measurement is started again after parameter changes before the mea surement results are analyzed e g using a marker In all cases that require a new measurement after parameter changes the trace is reset automatically to avoid false results e g with span changes For applications that require no reset after parameter changes the automatic reset can be switched off The default setting is off Remote command DISPlay WINDow lt n gt TRACe lt t gt MODE HCONtinuous on page 324 Statistical Evaluation If the trace modes Average Max Hold or Min Hold are set you can define how many pulses measurements and measurement samples are included in the statistical evaluation For details see chapter 4 7 1 Trace Statistics on page 61 Selected Pulse vs All Pulses Statistical Evaluation Defines which pulses are included in the statistical evaluation Trace Configuration Selected Only the selected pulse from each measurement is included in the pulse statistical evaluation All Pulses All measured pulses from each measurement are included in the stat istical evaluation Remote comman
484. trum from a measured signal the sample rate ensures a regu lar distance between two frequencies In order to calculate the frequency axis for a parameter spectrum the average PRI pulse repetition interval is taken to be the sample rate for the FFT User Manual 1173 9392 02 17 47 R amp S FSW K6 6S Measurement Basics Interpolation However in cases where the signal has a non uniform or staggered PRI the frequency axis must be interpreted with caution In cases where the pulses only occur in non con tiguous intervals using the PRI no longer provides useful results A good solution to create equi distant samples for calculation is to fill up the intervals between pulses with interpolated values Based on the measured and interpolated values the fre quency axis can then be created The number of possible interpolation values is restricted to 100 000 by the R amp S FSW Pulse application Thus the resulting spectrum is limited By default the frequency span for the resulting spectrum is determined automatically However to improve the accuracy and performance of the interpolation the maximum required frequency span can be restricted further manually Non contiguous pulses sections vs gaps For the non contiguous pulse measurements described above interpolation in the long intervals where no pulses occur will distort the result Therefore time intervals without pulses are identified referred to as gaps The time intervals
485. ttenuation at UO range edge Gaussian shape 100 MHz 160 MHz 80 MHz 3 dB gt 83 dB 100 MHz 80 MHz 8 dB gt 88 dB 80 MHz 80 MHz 12 dB gt 92 dB 50 MHz 80 MHz 31 dB gt 100 dB 40 MHz 80 MHz 48 dB gt 100 dB 28 MHz 80 MHz 98 dB gt 100 dB Gauss filters with a 3 dB bandwidth of 50 MHz and above use more than 160 MHz of UO bandwidth if a R amp S FSW B320 option is installed During segmented capture oper ation these filters are limited to 160 MHz of UO bandwidth which results in increased system rise time up to an additional 3 ns compared to the non segmented measure ment with R amp S FSW B320 o Segmented capture Gauss filters and R amp S FSW B320 A 3 I Q Data File Format iq tar UO data is packed in a file with the extension iq tar An ig tar file contains UO data in binary format together with meta information that describes the nature and the source of data e g the sample rate The objective of the iq tar file format is to separate UO data from the meta information while still having both inside one file In addition the file format allows you to preview the UO data in a web browser and allows you to include user specific data Q Data File Format iq tar The iq tar container packs several files into a single tar archive file Files in car format can be unpacked using standard archive tools see http en wikipedia org wiki Comparison of file archivers available for most operating s
486. tting parameters lt Scaling gt S MS US NS Optional Defines the unit in which the results are displayed RST MS Manual operation See Sidelobe Delay on page 26 Configuring Limit Checks For each parameter in the result tables you can activate a limit check and define the valid value ranges For details see Pulse Results on page 36 Useful commands for configuring limit checks described elsewhere CALCulate lt n gt DISTribution LLINes STATe on page 257 CALCulate lt n gt TRENd LLINes STATe on page 272 For commands required to retrieve the results of the limit check for individual parame ters see chapter 9 20 5 Retrieving Limit Results on page 386 Remote commands exclusive to configuring limit checks CAL Culate nz TABle PBarametert roupz PBarameterz LIMItSTATe 306 CAL Culate nz TABletRtOuencv ChRATe Mit STATe reren errrrrreererene 306 CALOCulate n TABLe FREQuency DEViation LIMit S TATe cene 306 CAL Culate nzTABletRtOuencv PERRor UIMtSTATe rener ererrrerrrerene 306 CALOCulate n TABLe FREQuency POINtLIMit S TATe essere 306 CAL Culate nzTABletRtOuencv PbtReouency LIMISTATe nenen er erer ereeeeene 306 CALOCulate n TABLe FREQuency RERRor LIMit GTATe eese 306 CALCulate n TABLe PHASe DEViation LIMit S TATe eese nenne 306 CALCulate n TABLe PHASe PERRor LIMit STATe eese 306 CALCulate lt n gt TABLe PHASe POINt LIMit STATE
487. tting parameters lt WindowType gt RECTangle BARTIett HAMMming HANNing BLACkman Manual operation See Window Type on page 132 9 14 7 Configuring the Results CALCulate lt n gt RRSPectrum AUTO State If activated the optimal RBW for the Result Range Spectrum is selected automatically Parameters State ON OFF 0 1 OFF 0 Switches the function off ON 1 Switches the function on RST 0 Manual operation See RBW Auto on page 133 CALCulate lt n gt RRSPectrum RBW lt Resolution Bandwidth gt This command sets the resolution bandwidth for Result Range Spectrum Settings Parameters lt Resolution RST 1000 Bandwidth gt Default unit Hz Manual operation See ResBW Manual on page 132 Configuring the Statistics and Parameter Tables The following commands select which parameters are displayed in the Pulse Statistics and Pulse Results evaluation For details on the individual parameters see chapter 3 1 Pulse Parameters on page 15 CALCulate lt n gt TABLe FREQuency ALL STAT cccececeeeeeeeeeeeeeeeeeeeaeaeaeaeaaaeenenenenenes 291 CAL Culate nz TABLE FREQ ency ChRATe cece eeeaeae sea eaeaedeeeeseseeeeeseeeeeeeees 292 CAL Culate nz TABletRtOuencv DEViaton 292 CALCulatesp TABLe FREQUency PERROLE 2 21 crine tto ttt etd auo aA aa eiai 292 CALCulate n TABEe FREQuency POINIL 2 2 ricordare reed aiii 292 CAL
488. tude Parameters eerie 345 e Retrieving Timing Parameiers AAA 359 e Retrieving Frequency Parameters eeeeescesseeiieetseeen eet nhat ahud 367 e Retrieving Phase Parameters unii nec nane EE ELEC RAE DER RD ER 372 e Retrieving Time Sidelobe Parameters cicer 376 e Commands for Compatibility esee 384 Retrieving Power Amplitude Parameters The following commands return the calculated pulse parameters For details on the individual parameters see chapter 3 1 2 Power Amplitude Parame ters on page 19 I SENSe PULSEPOWepADROODIDB 2 rci etit oet Lx retta vp dat ett tpe vette 347 SENSe PULSe POWer ADRoop DB AVERage essentia 347 SENSe PULSe POWer ADRoop DB MAXimum sess 347 ISENGeIpDUL Ge bOWer ADoop D D MiNimum nennen 347 SENSe PULSe POWerADRoop DB SDEViatlon acetate rt eene eene nonae nud 347 SENSe PULSe POWer ADRoop PERCent essent 347 ISGENGeIpDUL Ge bOWerADoopt PER ent AVEHage reren trerererorererersrsrnnnnn 348 SENSe PULSe POWer ADRoop PERCent MAXimum esses 348 ISENGeIpDUL Ge bOWer ADoopt PER ent MiNimum ene 348 ISGENGe IPDUL Ge bOWerADoopt PER ent GD Viaton rreren renne 348 SENSe PULSe POWer AMPLitude eese e enne 348 SENSe PULSe POWer AMPLitude AVERage eene e enne 348 SENSe PULSe POWer AMPLitude MAXimum
489. type of the new channel For a list of available channel types see INSTrument LIST on page 184 lt ChannelName gt String containing the name of the channel The channel name is displayed as the tab label for the measurement channel Note If the specified name for a new channel already exists the default name extended by a sequential number is used for the new channel see INSTrument LIST on page 184 Example INST CRE IQ IQAnalyzer2 Adds an additional UO Analyzer channel named IQAnalyzer2 Activating Pulse Measurements INSTrument CREate REPLace lt ChannelName1 gt lt ChannelType gt lt ChannelName2 gt This command replaces a measurement channel with another one Setting parameters ChannelName1 String containing the name of the measurement channel you want to replace lt ChannelType gt Channel type of the new channel For a list of available channel types see INSTrument LIST on page 184 lt ChannelName2 gt String containing the name of the new channel Note If the specified name for a new channel already exists the default name extended by a sequential number is used for the new channel see INSTrument LIST on page 184 Example INST CRE REPL IQAnalyzer2 IQ IQAnalyzer Replaces the channel named IQAnalyzer2 by a new measure ment channel of type IQ Analyzer named IQAnalyzer Usage Setting only INSTrument DELete lt ChannelName gt This command deletes a measuremen
490. uation on page 60 Trace data can also be exported to an ASCII file for further analysis For details see chapter 6 4 2 Trace Data Export Configuration on page 157 6 4 1 Trace Settings You can configure the settings for up to 6 individual traces for the following result dis plays which are based on the defined result range see chapter 6 1 2 Result Range on page 130 e Pulse Frequency on page 34 Pulse Magnitude on page 34 Pulse Phase on page 35 Trace Configuration Pulse Phase Wrapped on page 36 Pulse m Traces Trace Data Export Detector Statistics Mode cuCTTHNE a EE Lok Lok Normalization Trace 5 Free f ooe Quick Config Set Trace Mode i Max l came l Min I Ee Ce T l 6 Pulse Phase E Selected Pulse E lt Kl i d Auto Peak 4 ap a FI D All Pulses ee Sweep Count HL Auto Peak Max Trace Points 100000 o i Auto Peak at Auto Peak a gt Auto Peak LLL ET zi HE Er SS ee eer 155 L Selected Pulse vs All Pulses 155 L Sweep Average COunt sccrssscecsessseececsesssscenescnssscesesessccenensianenenenenences 156 L Maximum number of trace points 156 Eege UE Le t 156 Predefined Trace Settings Quick GConflg rentrer etes 157 Trace 1 Trace 2 Trace 3 Trace 4 Gohtkeys 157 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6 Selects the
491. uery parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Ripple on page 21 SENSe PULSe POWer RIPPle DB AVERage lt QueryRange gt SENSe PULSe POWer RIPPle DB MAXimum lt QueryRange gt SENSe PULSe POWer RIPPle DB MINimum lt QueryRange gt SENSe PULSe POWer RIPPle DB SDEViation lt QueryRange gt Returns the statistical value for the ripple in dB over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe POWer RIPPle PERCent lt QueryRange gt Returns the ripple in percent for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Ripple on page 21 SENSe PULSe POWer RIPPle PERCent AVERage lt QueryRange gt SENSe PULSe POWer RIPPle PERCent MAXimum lt QueryRange gt SENSe PULSe POWer RIPPle PERCent MINimum lt QueryRange gt SENSe PULSe POWer RIPPle PERCent SDEViation lt QueryRange gt Returns the statist
492. uery parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer OVERshoot PERCent lt QueryRange gt Returns the overshoot in percent for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Overshoot on page 21 SENSe PULSe POWer OVERshoot PERCent AVERage lt QueryRange gt SENSe PULSe POWer OVERshoot PERCent MAXimum lt QueryRange gt SENSe PULSe POWer OVERshoot PERCent MINimum lt QueryRange gt SENSe PULSe POWer OVERshoot PERCent SDEViation lt QueryRange gt Returns the statistical value for the overshoot in percent over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Retrieving Results SENSe PULSe POWer PAVG lt QueryRange gt Returns the Peak to Average Tx Power Ratio for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire m
493. ues interleaved Requires DataType float32 or f1oat64 Q Data File Format iq tar Element Description DataType Specifies the binary format used for samples in the UO data binary file see DataFilename element and chapter A 3 2 I Q Data Binary File on page 410 The following data types are allowed int8 8 bit signed integer data int16 16 bit signed integer data int32 32 bit signed integer data e f10at32 32 bit floating point data IEEE 754 e float64 64 bit floating point data IEEE 754 ScalingFactor Optional describes how the binary data can be transformed into values in the unit Volt The binary UO data itself has no unit To get an UO sample in the unit Volt the saved samples have to be multiplied by the value of the ScalingFactor For polar data only the magnitude value has to be multiplied For multi channel signals the ScalingFactor must be applied to all channels The attribute unit must be set to v The ScalingFactor must be gt 0 If the ScalingFactor element is not defined a value of 1 V is assumed NumberOfChan Optional specifies the number of channels e g of a MIMO signal contained in the nels UO data binary file For multi channels the UO samples of the channels are expected to be interleaved within the UO data file see chapter A 3 2 I Q Data Binary File on page 410 If the NumberOfChannels element is not defined one channel is assumed DataFilename Contains the
494. uffix t is irrelevant Parameters Value numeric value Default unit dBm DISPlay WINDow lt n gt TRACe lt t gt Y SCALe UNIT This command reads the unit type currently configured for the Y axis Usage Query only UNIT ANGLe lt Unit gt This command selects the unit for angles for PM display This command is identical to CALC UNIT ANGL Parameters lt Unit gt DEG RAD RST RAD Example UNIT ANGL DEG Manual operation See Phase Unit on page 145 9 15 Configuring the Result Display The following commands are required to configure the screen display in a remote envi ronment The tasks for manual operation are described in chapter 3 Measurements and Result Displays on page 15 General Window COMMANA Sescas dnd ui e tede ea ier i ec 314 e Working with Windows in the Display 314 e Zooming Into the Display acea pentru scream na sc ePi oL Ege annt ERE De eva 321 9 15 1 9 15 2 Configuring the Result Display General Window Commands The following commands are required to configure general window layout independent of the application Note that the suffix n always refers to the window in the currently selected measure ment channel see INSTrument SELect on page 186 DISP FORMAR ee ciclo ee de ee elas eee 314 REI GERT ER E EE 314 DISPlay FORMat Format This command determines which tab is displayed Parameters Format SPLit Displays the MultiView t
495. ulse Width ON Time OFF Off Time DRATio Duty Ratio DCYCIe Duty Cycle 96 PRI Pulse Repetition Interval PRF Pulse Repetition Frequency Hz RST PNUMber Usage Setting only CALCulate lt n gt TRENd POWer X XAxis Configures the x axis of the Parameter Trend result display The y axis is configured using the CALCulate lt n gt TRENd lt GroupName gt Y com mands Configuring the Results Setting parameters lt XAxis gt TOP BASE AMPLitude ON AVG MIN MAX PON PAVG PMIN ADPercent ADDB RPERcent RDB OPERcent ODB POINt PPRatio Pulse parameter to be displayed on the x axis For a description of the available parameters see chapter 3 1 2 Power Amplitude Parameters on page 19 TOP Top Power BASE Base Power AMPLitude Pulse Amplitude ON Average ON Power AVG Average Tx Power MIN Minimum Power MAX Peak Power PON Peak to Avg ON Power Ratio PAVG Peak to Average Tx Power Ratio PMIN Peak to Min Power Ratio ADPercent Droop in ADDB Droop in dB RPERcent Ripple in RDB Ripple in dB OPERcent Overshoot in ODB Overshoot in dB POINt Pulse power measured at measurement point PPRatio Pulse to Pulse Power Difference RST TOP Configuring the Results Example CALC2 TREN POW X ODB Usage Setting only CALCulate lt n gt TRENd POWer Y lt YAxis gt Configures the y axis of the Parameter Trend result display The x axis is con
496. ult display e Selecting the Pulse 1er ciet rn Ene ENNEN n RAE ninnaa aa kaaa aaia 254 Defining tie Ressut Ranga ceder nieder te ee xd tle one niece iet 254 Configuring a Parameter DISIEIDUEIOFI iieri rio neo erede SEENEN ORE e Ex Aaa 256 e Configuring a Parameter Gpechum tennene 262 e Configuring a Parameter Trend 268 e Configuring a Result Range Spectrum ecrire ctetu Ra aia net Saa to naa kse 289 e Configuring the Statistics and Parameter Tables rena 290 e Configuring Limit CROOKS croce sarees eerta iter tune HER EX HET eae 304 e Configuring the Y Axis Scaling and Utlts rre nn tta en tt 310 Selecting the Pulse The pulse traces frequency magnitude and pulse vs time always display the trace for one specific pulse namely the currently selected pulse To select a pulse use the following command SENSe TRACe MEASurement DEFine PULSe SELected eee 254 SENSe TRACe MEASurement DEFine PULSe SELected lt PulseNumber gt Selects a particular pulse for which the traces parameters and results are displayed or queries the number of the selected pulse The number of the current or all detected pulses can be queried using SENSe PULSe NUMBer on page 344 or SENSe PULSe ID on page 344 Note that this command causes an error if no measurement results are available Parameters lt PulseNumber gt Range 0 to number of detected pulses RST 0 Defining the Result Ran
497. ult dis plays only Remote command SENS TRAC MEAS DEF RRAN AUTO ON see SENSe TRACe MEASurement DEFine RRANge AUTO on page 255 DISP TRAC Y SCAL AUTO ON see DISPlay WINDow lt n gt TRACe Y SCALe AUTO on page 310 Auto Scale Once All Automatically determines the optimal result range and reference level position once for the current measurement settings in all displayed diagrams and pulse based result dis plays All automatic scaling functions are then switched off Remote command SENS TRAC MEAS DEF RRAN AUTO ONCE see SENSe TRACe MEASurement DEFine RRANge AUTO on page 255 DISP TRAC Y SCAL AUTO ONCE see DISPlay WINDow lt n gt TRACe Y SCALe AUTO on page 310 Result Configuration 6 Analysis After a Pulse measurement has been performed you can analyze the results in vari ous ways EE ET le Te DEE 129 Ee Eed UTC DEE 145 LEE uil DEP 146 e Ne Ire EE 153 e Export Ener Le E 159 LOOM e 162 s Analysis in MSRA MSRT age s ier rte tte oed re tta rnt d t added 163 6 1 Result Configuration Some evaluation methods require or allow for additional settings to configure the result display Note that the available settings depend on the selected window see Specifics for on page 69 The Result Configuration dialog box is displayed when you do one of the following Select the Result Config softkey e Inthe Overview select Result Config e nthe Meas Setup menu selec
498. urns the statistical value for the amplitude droop in dB over the specified pulses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer ADRoop PERCent lt QueryRange gt Returns the amplitude droop in percent for the specified pulse s Retrieving Results Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only Manual operation See Droop on page 21 SENSe PULSe POWer ADRoop PERCent AVERage lt QueryRange gt SENSe PULSe POWer ADRoop PERCent MAXimum lt QueryRange gt SENSe PULSe POWer ADRoop PERCent MINimum lt QueryRange gt SENSe PULSe POWer ADRoop PERCent SDEViation lt QueryRange gt Returns the statistical value for the amplitude droop in percent over the specified pul ses Query parameters lt QueryRange gt CURRent ALL CURRent Detected pulses in the current capture buffer ALL All detected pulses in the entire measurement Usage Query only SENSe PULSe POWer AMPLitude lt QueryRange gt Returns the pulse amplitude for the specified pulse s Query parameters lt QueryRange gt SELected CURRent ALL SELected Currently selected pulse CURRent Detected pulse
499. ut iDIG RANGe UPPer UINIT cucine ror ie eR gear ra Ye Ee Ren ERR nn ENEE KE cons Eeer Reger 213 INPut aile WM 213 MIN PUES RAMS AUTON m H P HO 213 INPut DPATh IS Ta GAR RE ele GREEN 225 dei si aM PRSE VE D 225 INPUtRILE PATH 215 INPutEIETer ele ERR KEE 193 INPutEIETer YIGES AT tt eterne tette tri ea erede eive ct nd ead 193 INPut GAIN STATe INPUCGAINPVYA LUE A INPUt IMPOd Ee Jl fg REITER HR KE E 208 INPUtIO REINER 208 INPut IQ FULLEscale l EVel ntet ntn rr Rep n tn erre erre 209 INPUtIO TYPE EE 209 INPut SELect INSTr ment CREate DUPLICATE arniran rre ti n env tp rn hne NENE 183 INSTr ment CREate REPLB66 iier pe ree re Er eee Eire XE ERR E ED Eed eR ER Fe EYE EFE n 184 INS Trument CRE Ate NEWI 183 INSTr merntDE l le corr rer ten n sued it deer n e repr eaa AGAAT 184 INSTr ment SNR 184 rw wee El 186 INSTr rment SEL6Ct e rnnt rr e inen enr tr tenen re i a e e PE eR a E 186 LAVYOUCADDEWINDOW EE 315 Esfera er rero spon 317 EAYOUUIDENUVEWINDOW iis ctt eet nt e et cto ecce tovt e ete p tus 317 LAYout REMove WINDow 317 LAY OuUTREPESCE VVIN DOW e 318 RN fossil
500. v The actual filter shape for a larger 3 dB BW Ideal Gaussian shape 3 dB BW lt 10 MHz Follows only at the top the ideal Gaussian shape in the whole range oflinterest Ideal gaussian filter shape for a 3 dB BW 10 MHz Frequency MHz 50 40 30 20 10 0 10 20 30 40 50 Table 1 2 Gauss filters with large 3 dB bandwidths 3 dB BW Max freq with Attenuation at max freq Attenuation at UO range edge 40 Gaussian shape MHz 40 MHz 24 MHz 4dB gt 60 dB 28 MHz 22 MHz 7 dB gt 65 dB 18 MHz 28 MHz 29 dB gt 100 dB 10 MHz 25 MHz 75 dB gt 100 dB Gauss filters with larger 3dB bandwidths with active R amp S FSW B160 B320 B500 With the bandwidth extension option R amp S FSW B160 B320 B500 being active all Gauss filters can follow the ideal filter shape in the range from approximately 80 MHz to 80 MHz Thus the deviation from the Gauss filter only has an effect for filter band widths 40 MHz UO Data File Format iq tar Hu Nearly rectangular lowpass filter Ideal gaussian filter shape for a larger 3 dB BW Ideal gaussian filter shape for a 3 dB BW 10 MHz The final filter shapes for the 2 examples N WOH i Frequency 100 80 60 40 20 0 20 40 60 80 100 MHz Table 1 3 Gauss filters with large bandwidths with R amp S FSW B160 3 dB BW Max freq with Attenuation at max freq A
501. value Range 0 1 dB to 100 dB RST 10 dB Example MIX PORT 3 Manual operation See Auto ID Threshold on page 82 Input Output Settings 9 6 2 2 Mixer Settings The following commands are required to configure the band and specific mixer set tings SENSE MIXEN FREQUENCY HANDOVER eias ccena dees 197 SENSe MIXer FREGitiency S TARLU iui cione erra kite ye AE EE AE Ea E RTENE 197 SENSeMIXerFREQuenDcy E 198 SENSe MIXer HARMO e BAND PRE Sel 2 2 teeth Ed EAR Nd 198 SENSe MIXer HARMonic BAND VALuUue eese n nennen 198 SENSe MIXer HARMonic HIGH STATe esses rennen nennen nns 199 ISGENGe IMixer HAbRMontc HIGHI MAL ue 199 SENSE MIX HARMO e PY EE 199 SENSe MIXer HARMonic LOW iiris nacenenie aa TEEN eer pede 200 SENSE MI REPEC SS Ue mE mE 200 I SENSe MIXer E EE DEE 200 SENSe MIXer LOSS TABLe LOW eee tette tette teens 200 SENSe MIXer LOSS LOW eec tet tette tetti 201 IIb POR it HP 201 SENSe MIXer RFOVelraligel STATE du aane exer ner nautae ree t eas 201 SENSe MIXer FREQuency HANDover Frequency This command defines the frequency at which the mixer switches from one range to the next if two different ranges are selected The handover frequency for each band can be selected freely within the overlapping frequency range This command is only available if the external mixer is active see SENSe MIXer
502. vated an error message is displayed in the status bar INPUT OVLD and a message box informs you that the RF Input was discon nected Furthermore a status bit bit 3 in the STAT QUES POW status register is set In this case you must decrease the level at the RF input connector and then close the message box Then measurement is possible again Reactivating the RF input is also possible via the remote command INPut ATTenuation PROTection RESet 4 6 2 Basics on Input from UO Data Files The I Q data to be evaluated in a particular R amp S FSW application can not only be cap tured by the application itself it can also be loaded from a file provided it has the cor rect format The file is then used as the input source for the application For example you can capture UO data using the UO Analyzer application store it to a file and then analyze the signal parameters for that data later using the R amp S FSW Pulse application The I Q data must be stored in a format with the file extension iq tar For a detailed description see chapter A 3 I Q Data File Format iq tar on page 405 As opposed to importing data from an UO data file using the import functions provided by some R amp S FSW applications e g the I Q Analyzer or the R amp S FSW VSA applica tion the data is not only stored temporarily in the capture buffer where it overwrites the current measurement data and is in turn overwritten by a new measurement Instead th
503. vels and trigger bandwidths see the data sheet Trigger Settings Note Be aware that in auto sweep type mode due to a possible change in sweep types the trigger bandwidth may vary considerably for the same RBW setting Remote command TRIG SOUR IFP see TRIGger SEQuence SOURce on page 230 RF Power Trigger Source Trigger Settings Defines triggering of the measurement via signals which are outside the displayed measurement range For this purpose the instrument uses a level detector at the first intermediate fre quency The input signal must be in the frequency range between 500 MHz and 8 GHz The resulting trigger level at the RF input depends on the RF attenuation and preampli fication For details on available trigger levels see the instrument s data sheet Note If the input signal contains frequencies outside of this range e g for fullspan measurements the measurement may be aborted and a message indicating the allowed input frequencies is displayed in the status bar A Trigger Offset Trigger Polarity and Trigger Holdoff to improve the trigger stabil ity can be defined for the RF trigger but no Hysteresis Remote command TRIG SOUR RFP see TRIGger SEQuence SOURce on page 230 Trigger Level Trigger Settings Defines the trigger level for the specified trigger source For details on supported trigger levels see the data sheet Remote command TRIGger SEQuence LEVel IFPower on p
504. w the reference model which occurs within the ripple portion of the pulse top Liop The magnitude in V of the reference model at the point in time where Lj is measured For definitions of time sidelobe parameters see chapter 4 5 Time Sidelobe Analysis on page 53 Parameter Definitions AMERIG DOOD tS 43 e RPE EUR 43 E D E M 45 4 1 1 Amplitude Droop The amplitude droop is calculated as the difference between the power at the begin ning of the pulse ON time and the power at the end of the pulse ON time divided by the pulse amplitude 0 m Ls L an Droop V 2 x100 100 0 Ls n Droop W 7 x100 100 Toma La Droop dB 20 x log ta fall L V Measured Magnitude V Reference Magnitude V t s Fig 4 1 Illustration of levels used to define the droop measurement 4 1 2 Ripple The ripple is calculated as the difference between the maximum and minimum devia tion from the pulse top reference within a user specified interval Parameter Definitions The default behaviour compensates for droop in the pulse top using the following for mulae pr Lipi iu RE HE Ripple 96V E boo Ly Lo LL E ST Ls Ripple W 2 7 r 7 x100 Liom Ly Lou ce Ripple dB 210 x log I 100 Lop Lo However if Pulse Has Droop is set to Off or the 100 Level Position is set
505. wing commands determine how much data is measured for each pulse in relation to defined levels points or ranges e Measurement Level 239 e MeasutemoenhtPoltib uc en eb eb eee a a c eli rer cr e c ea bue aa 241 e Measurement Rage ememiieei mec iiec aae LE Le E T 244 e Time Sidelobe RANGE 2 aciei reet rrt ter tron knn n hern LE Lee d ecd ERR nana eras 245 Measurement Levels SGENZeTRACeMEAGurement Al Gortthm 239 SENSe TRACe MEASurement DEFine AMPLitude UNIT 0cccccesccesseecesceeseeeeeeanes 239 SENSe TRACe MEASurement DEFine BOUNdary TOP sse 240 GENZGeTRACeMtEAGurement DE Fine COMbensate ADboop 240 SGENZeTRACeMEAGurement DE Eine hRipple 240 SGENZeTRACeMEAGurement DE EineTbRANston HR Ference 240 SENSe TRACe MEASurement DEFine TRANSition L REFerence Lesen 241 GENZeTRACeMEAGurement Dt EineTbRAhNstonREterence 241 SENSe TRACe MEASurement ALGorithm Algorithm The measurement algorithm used for finding the pulse top and base levels Parameters Algorithm MEAN The arithmetic average of the measured values MEDian The level for which half the values lie above the other half below in the histogram PEAKpower The peak power is used to detect the pulse top level RST MEDian Manual operation See Measurement Algorithm on page 120 SENSe TRACe MEASurement DEFine AMPLitude UNIT Unit Defines the unit of the pulse amplitude values i e whether magnitude V or p
506. x L piplio Mew 402 A 1 Reference ASCII File Export Format eeeeeeseseseeeeee eene nennt 402 A 2 Effects of Large Gauss Filters eeeeeeeeeeseseeeeeeeeee ener nnne 403 A 3 Q Data File Format iq tar eeeseeeeeeeeeeeeeeeneneenenen enne nnne nnns 405 List of Remote Commands Pulse cesses 412 It 428 About this Manual 1 Preface 1 1 About this Manual This Pulse Measurements User Manual provides all the information specific to the application All general instrument functions and settings common to all applications and operating modes are described in the main R amp S FSW User Manual The main focus in this manual is on the measurement results and the tasks required to obtain them The following topics are included Welcome to the Pulse Measurements Application Introduction to and getting familiar with the application e Measurements and Result Displays Details on supported measurements and their result types Measurement Basics Background information on basic terms and principles in the context of the mea surement Configuration Analysis A concise description of all functions and settings available to configure measure ments and analyze results with their corresponding remote control command How to Perform Measurements in the Pulse Application The basic procedure to perform each measuremen
507. y WINDow lt n gt ZOOM MULTiple lt zoom gt STATe on page 323 for each multiple zoom window 6 7 Analysis in MSRA MSRT Mode The data that was captured by the MSRA MSRT Master can be analyzed in the Pulse application Analysis in MSRA MSRT Mode The analysis settings and functions available in MSRA MSRT mode are those descri bed for common Signal and Spectrum Analyzer mode Analysis line settings In addition an analysis line can be positioned The analysis line is a common time marker for all MSRA MSRT applications To hide or show and position the analysis line a dialog box is available To display the Analysis Line dialog box tap the AL icon in the toolbar only available in MSRA MSRT mode The current position of the analysis line is indicated on the icon FOS MOU eene TEES 164 SHOW LNE PRECOR ERU TTE TE 164 Position Defines the position of the analysis line in the time domain The position must lie within the measurement time of the multistandard measurement Remote command CALCulate lt n gt MSRA ALINe VALue on page 336 CALCulate lt n gt RTMS ALINe VALue on page 338 Show Line Hides or displays the analysis line in the time based windows By default the line is displayed Note even if the analysis line display is off the indication whether or not the currently defined line position lies within the analysis interval of the active application remains in the window title bars Remote comman
508. ype Trigger 2 3 Type of signal to be sent to the output Device Trig Default Sends a trigger when the R amp S FSW triggers gered Trigger Sends a high level trigger when the R amp S FSW is in Ready for trig Armed ger state This state is indicated by a status bit in the STATus OPERation reg ister bit 5 as well as by a low level signal at the AUX port pin 9 User Defined Sends a trigger when user selects Send Trigger button In this case further parameters are available for the output signal Remote command OUTPut TRIGger lt port gt OTYPe on page 232 Trigger Settings Level Output Type Trigger 2 3 Defines whether a constant high 1 or low 0 signal is sent to the output connector Remote command OUTPut TRIGger lt port gt LEVel on page 231 Pulse Length Output Type Trigger 2 3 Defines the length of the pulse sent as a trigger to the output connector Remote command OUTPut TRIGger lt port gt PULSe LENGth on page 233 Send Trigger Output Type Trigger 2 3 Sends a user defined trigger to the output connector immediately Note that the trigger pulse level is always opposite to the constant signal level defined by the output Level setting e g for Level High a constant high signal is output to the connector until the Send Trigger button is selected Then a low pulse is sent Which pulse level will be sent is indicated by a graphic on the button Remote comm
509. ystems The advantage of tar files is that the archived files inside the tar file are not changed not com pressed and thus it is possible to read the UO data directly within the archive without the need to unpack untar the tar file first Sample iq tar files If you have the optional R amp S FSW VSA application R amp S FSW K70 some sample iq tar files are provided in the C R S Instr user vsa DemoSignals directory on the R amp S FSW Contained files An iq tar file must contain the following files e Q parameter XML file e g xyz xm1 Contains meta information about the UO data e g sample rate The filename can be defined freely but there must be only one single I Q parameter XML file inside an ig tar file e Q data binary file e g xyz complex f10oat32 Contains the binary UO data of all channels There must be only one single UO data binary file inside an iq tar file Optionally an iq tar file can contain the following file e Q preview XSLT file e g open IqTar xml file in web browser xslt Contains a stylesheet to display the UO parameter XML file and a preview of the UO data in a web browser A sample stylesheet is available at htto www rohde schwarz com file open IqTar xml file in web browser xslt A 3 4 I Q Parameter XML File Specification The content of the UO parameter XML file must comply with the XML schema RsIqTar xsd available at http www rohde schwarz com file RslqTar xsd In p

Download Pdf Manuals

image

Related Search

Related Contents

Instruction Manual - Cole  HP DeskJet 935c InkJet Printer  組込みコンピュータ AR4400 モデル100H / モデル200H 取扱説明書  取扱説明書  Télécharger les règles de confidentialité  CFP19R2 User`s Manual  Bravo! Marine Heating System Bravo User's Manual  Documentación técnica  Ryobi A25RT02 Router User Manual    

Copyright © All rights reserved.
Failed to retrieve file