Home

Navman LA000578A User's Manual

image

Contents

1. 2 Configuration DIP switch The configuration DIP switch on the front panel provides the ability to configure the Jupiter 30 module offering flexibility depending on the specific application Refer to section 3 2 for a description of the functionality of each individual switch including the typical settings when using the Jupiter 30 module 3 1 3 Function LEDs The four LEDs on the front panel provide an indication of the current status of basic features associated with the development unit Refer to section 3 3 for a complete description of the function of each LED 3 1 4 Reset switch A reset push button is provided on the front panel to generate a receiver system hardware reset 3 1 5 Clock out connector The Clock out connector located on the rear panel of the development unit can be used to provide module generated timing signals Refer to section 3 4 for more detailed information 3 1 6 Serial port 1 This host serial port is used to send and receive serial data This port is used as the default with transmission in NMEA format at the rate of 9600 Baud The connectors to be used with these serial ports are 9 pin D subminiature connectors LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 3 1 7 Serial port 2 This is the auxiliary serial port and primarily used for the reception of RTCM SC 104 DGPS Differential GPS correction messages 3 1 9 Ant
2. DIP Switch E 7 3 2 1 DIP switch 1 GPIO3 GYROIN Input 7 3 2 2 DIP switch 2 GPIO15 FR Input 7 3 2 3 DIP switch 3 BOOT from serial mode 8 3 2 4 DIP switch 4 GPIO1 W_TICKS Imput secs eeseeeeseeeneeeeseeeees 8 3 2 5 DIP switch 5 RTC backup power enable 8 3 2 6 DIP switch 6 Antenna preamp power select 3 3 V or 5 12 V ossee 8 3 2 7 DIP switch 7 Antenna preamp power select 5 V or 12 V aeeie 8 3 2 8 DIP switch 8 Antenna preamp power enable eeececeeeeeeeeeeeeeeeeetnneeeeeetnea 8 E PUNCUON LEDS E 9 3S ARPS eege eege ebessi 9 Bids 2 EIERE arene Gnade bias 9 KEE 9 BSA SPIO EE 9 3A ele 9 3 5 Internal confiouration E ERAN EEE 11 3 6 Jupiter 30 module on adapter board eee eee ee eeeeee eee eete eee eeette eee eeeteeeeeeeeneeeeeneaas 13 4 0 OPE rating IMStPU d sisicsicccsececnisicsdennnhasncciciusiseabsdemrsnensaaamedsensecacbenanctictacenes 13 4 1 Initial connection and Operation cece cette eee eeeeee eee eeeeeeeeseeeeeeeeeeeiaeeeeteeanees 13 4 2 Positioning the GPS antenna sisusid rionn aeiiaaie ai aiaa 14 4 3 Connecting an RTCM differential source eceecececeeceeeeceeeeeeeeeeeeteaeeeseeeeteaeeneeeeeees 14 4 4 Operating the GPS Analyser software 15 RE 15 4 4 2 SIRFD SMO EE 15 5 0 Acronyms used in THIS document iisccisissciciscncsnnadsckadeencsntascnninnncedenvetnanetacnnesion 16 Figures Figure 2 1 Equipment supplied in the Jupiter 30 GPS Development Kn 4 Figure
3. by the internal switch SW3 4 3 2 5 DIP switch 5 RTC backup power enable DIP switch 5 provides control of the RTC backup power to the module When set to the on position the RTC backup power is applied to the module allowing the RTC and SRAM to continue being powered when the primary source is removed The jumper JB5 6 must also be in place for the backup power to be supplied This power supply will be supplied to the module even with the main power switch in the off position 3 2 6 DIP switch 6 Antenna preamp power select 3 3 V or 5 12 V Dip switch 6 provides control of the antenna preamp voltage applied to the module The switch position determines the supply voltage off 3 3 V on 5 12 V Switch 6 should be left in the 3 3V off position The positions of switches 7 and 8 also need to be considered when using the preamp function Note the supplied antenna is a 3 3 V type 3 2 7 DIP switch 7 Antenna preamp power select 5 V or 12 V DIP switch 7 also controls the antenna preamp voltage applied to the module If switch 6 is on then switch 7 will determine the supply voltage to the active antenna off 12 V on 5 V Switch 7 is not operational when switch 6 is in the 3 3 V off position 3 2 8 DIP switch 8 Antenna preamp power enable DIP switch 8 provides the ability to enable disable the antenna preamp voltage to the module depending on the antenna being used Typically this switch is on enabling 3 V to b
4. more detailed information on any of the analysis windows use the Help function in the top toolbar 4 4 2 SiRFDemo SiRFDemo software can provide analysis of receiver output in either SIRF binary or NMEA protocols When enabled in NMEA format the only analysis provided is raw data being transmitted by the receiver While the module is transmitting serial data in NMEA format it is LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 15 suggested that VisualGPS is used for analysis rather than SiRFDemo To provide graphical presentation of the data the receiver can be set to output in SiRF binary format To set the receiver output to SIRF binary 1 Open the SiRFDemo software 2 When the Data Source setup is displayed select the appropriate COM port and 9600 Baud from the drop down menu 3 Select the Action menu and click on Open Data Source If the development unit is powered and the serial port is connected to the PC NMEA data should appear in the Debug View window To change to SiRF binary select the Action menu and click on the Switch to SIRF Protocol This should now present information in each window similar to that of VisualGPS Whilst enabled in SiRF binary protocol more of the analysis software s functionality can be accessed To switch back into NMEA mode select the Action menu and click on Switch to NMEA Protocol Select 9600 f
5. on the roof of a building to effectively evaluate receiver performance With stationary developments care should be taken to keep the antenna away from the side of a building as GPS signals can reflect off metal or coated glass These reflections have a longer path than direct signals and can cause multi path errors 4 3 Connecting an RTCM differential source For debugging purposes it is suggested that users log both the GPS and RTCM data simultaneously To allow the provision to do this Navman can supply a software program called Labmon The development unit PC and the RTCM SC 104 differential correction source are connected as shown in Figure 4 1 If RTCM SC 104 data needs to be logged at the same time it is sent to the receiver the OEM must supply a cable with three connectors to connect the RTCM correction source to the development unit s auxiliary port and to an unused serial port on the PC In this case data is only logged when Labmon is invoked with file names as command line arguments refer to the Labmon application note LA010103 Logging and subsequent review of the RTCM correction data often resolves performance or compatibility issues The development unit should be set up as shown in Figure 4 1 with only the RTCM correction source connected to the receiver If the RTCM cable is not connected to the receiver s auxiliary port DGPS operation will not be possible When RTCM data is being received the AUX LED will be lit Not
6. panel 2 6 1 DC Power i i 9 16Volts ee Serial Port1 Serial Port 2 Antenna 9 pain CE e Kal DR 5 JD SE Figure 2 1 Equipment supplied in the Jupiter 30 GPS Development Kit software and documentation Note before supplying power to the development unit please review the configuration settings and operation described in this document for optimum performance of the Jupiter 30 GPS receiver LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 4 2 GPS antenna with pre amp magnetic base and SMA connector A magnetic mount active antenna is supplied with the receiver development kit along with an RF cable RG 316 already terminated with the proper connector for the development unit The nominal measured attenuation of the cable with connectors is approximately 5 dB The supplied active antenna should be biased at 3 VDC but a different active antenna with a bias of either 3 5 or 12 VDC may be used Refer to section 3 2 to ensure that the configuration switches on the front panel of the development unit are chosen to select the appropriate bias voltage Caution ensure antenna power switches are properly set before connecting the antenna An antenna designed for 3 VDC operation will be damaged if connected to a 12 VDC source 3 Serial interface cable A serial cable is provided to interface between the develo
7. required The following equipment is also required to evaluate the Jupiter 30 receiver e IBM compatible PC e Minimum one serial port If your PC only has USB a USB RS232 converter can be employed e Windows 95 98 WinNT4 0 or higher e 486 100MHz or higher e SVGA at least 800x600 resolution e 16 Megabytes of RAM e 6 Megabytes min of disk space 3 0 Technical configuration This section provides a detailed description of all the technical aspects and configurable functionality of the Jupiter 30 GPS development unit 3 1 Overview Figure 3 1 illustrates the connectors switches and LEDs available on the development unit 3 1 1 Power switch On Off The switch on the front panel controls primary power to the Jupiter 30 receiver module inside The power status LED see section 3 3 indicates the state of the unit if lit the module has primary power supplied If the configuration DIP switch 5 is on and Jumper JB5 6 linked the module s secondary supply SRAM and RTC will continue to be powered when the power switch is off Only the removal of the DC power input at the rear of the unit will stop secondary power being applied assuming Jumper JB5 6 and switch 5 are correctly set Having this secondary power supply applied means that the Jupiter 30 will have a hot start capability when primary power is re applied within 4 hours and a warm start thereafter by maintaining last position current time and satellite ephemerides 3 1
8. 3 1 Front and back panels of the Jupiter 30 development unit cceeeee 5 Figure 3 2 Configuration DIP SWIG 92 egrdgeeNC gedd 7 Figure 3 5 Internal layout of the development unt 8 Figure 3 3 Function LEDs on front Dance 9 Figure 3 6 Jupiter 30 adapter board 000 2 eee eeneeeeeeenete eee eeeeneeeeeeeeaeeeeseenaeeeeeeeneeeeeeeaas 10 Figure 3 4 Pin layout of the clock out Connechor 11 Figure 4 1 Development unit test equipment eee ee eente treet etteeeeeeeeaeeeeeetaaeeeeeeeaaes 15 Tables Table 3 1 DIP switch Settings eiccin o a aee aaa 7 Table 3 2 Pin functions of the clock out connector ssssssseesseessseesserssensserrsstrreerrner nent 9 Table 3 3 Mating connector part description 11 Table 3 4 Pin functionality ceccccecceeeceeeeeeeceeeeeeeeeeeceaeeeceeeeecaeeeeeeeeeseaeesseeeeseaeeeseneeessas 11 Table 3 5 Signals available on the test points 12 Table 3 6 Connections J1 2 mm pitch header and J2 2 54 mm pitch header 13 1 0 Introduction This document provides detailed guidelines for the operation and configuration of the Jupiter 30 GPS Module Development Kit The AA003029 series of development kits assist in the integration of the Jupiter 30 in a customer s application offering a simple and easy to use platform for evaluation purposes It is recommended that the user pays particular attention to the configuration settings outlined in section 3 0 prior to applying power and operati
9. con and follow the installation process Set up the hardware 1 Connect the DC power adapter to the power input J1 2 Connect the antenna cable to the SMA coaxial antenna connector on the rear panel of the Development unit LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 3 Connect the DB9 serial data cable between the PC serial communication port and the development unit s Serial Port 1 4 Place the antenna in a site where a good view of the sky can be seen refer to section 4 2 for more detail 5 Run the GPS analyser software on the PC Refer to section 4 4 for more details 6 Connect the power supply to a suitable AC outlet 7 Turn the unit on using the power switch on the front panel to provide primary power to the Jupiter 30 receiver Once power is applied the Power LED should be lit 4 2 Positioning the GPS antenna The GPS antenna should be located with a clear view of the sky for optimal reception of the satellite signals The 1PPS LED should begin flashing at 1 Hz once the receiver is powered and has started receiving at least one satellite This provides an indication of whether or not the receiver is running Note GPS signals may be severely attenuated or totally obscured by roofs solid walls dense foliage or even coated glass found in many office structures and car windows The development unit should be outside or
10. e the development unit may be connected to either the COM1 COM2 COM3 or COM4 serial ports and the RTCM differential correction data source connected either directly to the receiver s auxiliary I O port to one of the remaining serial ports of the PC or to both using an OEM supplied three connector serial cable LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 14 antenna power development unit Soe pe ee ere ane optional antenna or pre amplifier RTCM DGPS data source monitor Figure 4 1 Development unit test equipment 4 4 Operating the GPS Analyser software There are two software packages supplied with the GPS Development Kit SiRFDemo and SiRFflash The VisualGPS program can be obtained free of charge from the VisualGPS website www visualgps net VisualGPS 4 4 1 VisualGPS VisualGPS graphically presents the serial data transmitted by the receiver The receiver output must be enabled in the NMEA protocol for this software to be used To enable the receiver output 1 Open the VisualGPS software installed on the PC 2 Select the Settings gt Communications tab 3 When the Communications Settings window is displayed select the correct COM Port and set the Baud rate to 9600 Baud When this has been carried out and the development unit is powered raw NMEA data should appear in the NMEA Monitor Window For
11. e applied to the active antenna supplied with the kit serial port 2 serial port 1 DC power DR connector timing connector JB10 11 12 JB13 14 15 voltage selection switch 3 3V or 5V test points E1 to E9 JB1 2 JB16 17 JB3 4 SW3 all off except SW3 3 ON OFF switch configuration DIP function LEDS JB5 6 reset switch switch Figure 3 5 Internal layout of the development unit LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 3 3 Function LEDs There are four LEDs on the front panel of the development unit indicating the status of a selection of basic functions The functions of the LEDs are described in the sections that follow 1PPS Power AUX GPIO 0e 0 Figure 3 3 Function LEDs on front panel Note that some early versions of the evaluation unit have different LED legends 3 3 1 1PPS This LED will flash on with each transition of the 1 PPS Pulse Per Second output of the GPS receiver The 1PPS LED will begin flashing when the receiver is tracking a satellite 3 3 2 Power This LED indicates presence of primary DC power to the module 3 3 3 AUX This LED shows activity on the auxiliary serial RS232 port DGPS 3 3 4 GPIO This LED indicates the state of GPIO15 which can be set via DIP switch 2 This LED is lit when switch 2 is set to on Note that switch 2 has no effect when using standard Jupiter 30
12. en NAVMAN Jupiter 30 20 channel GPS receiver module Development kit Guide AA003029 series 1 ZS NAVMAN JUPITER 30 AA003025 G HU e Made in Indonesia Related products Jupiter 30 standard AA003025 G Related documents e Jupiter 30 Data sheet LA000576 e Jupiter 30 Product brief LA000575 e SIRF Binary Protocol reference manual MNO000314 e NMEA reference manual MN000315 e SiRFDemo and SiRFflash user guide MNO000316 LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice Contents Related Ree te 1 KE Be el En CG 1 AD IMEFODUCUON ii cnisinctsesmrenientscneineesasinriseneisensradensssiussesjaninsnentinendeansieninenenniaahereians 4 2 0 EQUIPMO TE 4 2 Equipment supple desses eran a A 4 2 2 Equipment required sisi cece ttre e reenter eee eee nEn NANE ENNn NENANA RENANE ANNAE EEEE RENAN 6 3 0 Technical COMMUNAL E 6 3 1 e 6 3 1 1 Power switch OmniOm 6 31 2 Configuration DIP SWitCRs iicitesisisisgine EERSTEN 6 31 3 FUNCHOR RE 6 314 Reset SWO csi ves six secesuvsivcaceessaanccrvivsiacoeves banka avevsuitcaeveivsinccvuvesiaheav elvind cpeviiinecedvusiaae 6 3 1 5 Clock out conpnechor Ean EEEa a ARAA Aaa aaa E aAa aiian 6 JLO Seral PON EE 6 Sef S6nal PON 2 tege eebe tease rite deplore haste Ee 7 31 9 Antenna CONNEC CIO scsnnasisoresiisri ar E O aiiiieeveeinereein 7 31410 DC power le ET 7 3 2 Contiguration
13. enna connector The antenna provided with this development kit should be connected to the SMA connector located on the rear panel of the development unit 3 1 10 DC power input The supplied DC power adapter is to be plugged into the DC connector on the rear panel of development unit The development unit will accept voltages from 9 to 16 VDC The middle pin on J1 is negative polarity while the outer shell is positive 3 2 Configuration DIP switch A typical setting of the Configuration DIP switch is shown in Figure 3 2 1234567 8 SOOT OEE or Figure 3 2 Configuration DIP switch Table 3 1 outlines the available functionality and corresponding switch position for the Configuration DIP switch Switch Description Typical setting GPIO3 GYROIN OFF high GPIO15 FR OFF high Serial BOOT OFF normal run GPIO1 W_TICKS OFF high RTC BACKUP POWER ON enabled PREAMP power select OFF 3 V PREAMP power select OFF 12 V PREAMP power enable ON enabled These functions have been disabled by internal switch SW3 to allow correct operation of the antenna current sense circuits on the Jupiter 30 adapter board Table 3 1 DIP switch settings A brief description of the functionality of each switch is specified below Refer to the Jupiter 30 Data sheet for more information about the functionality of specific pads The receiver operating settings will not change after moving the position of a configurati
14. ives to produce quality documentation and welcomes your feedback Please send comments and suggestions to tech pubs navman com For technical questions contact your local Navman sales office or field applications engineer LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 17
15. llows e SW2 must remain selected on 3 3 VDC e Link for JB3 4 must be fitted e Link for JB16 17 must be fitted e SW3 DIP switch must be all off except SW3 3 LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 12 3 6 Jupiter 30 module on adapter board Figure 3 6 on the following page shows the adapter board with the positions of the connectors and indicators Table 3 6 lists the pin configurations for the J1 and J2 connectors Jupiter function J2 2 54 mm J1 2mm pitch header pitch header pin no pin no V_ANT VCC_RF V_BATT VDD M_RST GPIO3 GYRO IN GPIO15 FR BOOT GPIO1 W TICKS RFON GND TXA RXA GPIO4 GND TXB RXB Wake up GND GPIO13 GND GND 1PPS GPS_FIX GPIO10 O OINI OD aA R Jwl rm gt Table 3 6 Connections J1 2 mm pitch header and J2 2 54 mm pitch header 4 0 Operating instructions This section provides important information for the evaluation of the Jupiter 30 GPS module Step by step instructions for connecting and operating the GPS development kit are included for first time setup 4 1 Initial connection and operation The following steps describe how to connect and operate the GPS Development Kit Install the supplied SiRFdemo on your PC 1 Insert the supplied CD into the CDROM drive 2 Double click on the SiRFDemo software i
16. n the unit Figure 3 5 illustrates the internal layout of the development unit board As shown in Figure 3 5 there is a selection of links that can be configured to provide functionality depending on the application Table 3 4 lists the functions available Function when linked Current link for 5 V supply Can be used to determine current on 5 V rail Not used for the Jupiter 30 module Current link for the primary power 3 3 V supply Can be used to determine supply current for 3 3 V rail Current link for the secondary power RTC JB5 6 supply Can be used to determine supply current for RTC rail JB10 11 5 V supplied to Pin 1 of the DR connector 3 3 V supplied to Pin 1 of the DR connector JB13 14 not used JB14 15 not used JB11 12 JB16 17 Internal interface enable normally fitted Table 3 4 Pin functionality LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice In addition to the configurable jumpers there is a selection of test points on the board The signals available on the test points are shown in Table 3 5 Test point Function E1 1PPS not used ground ground Table 3 5 Signals available on the test points There are some settings that should not be changed when using the standard Jupiter 30 module in conjunction with the development unit These are as fo
17. ng the development unit For example it is important to understand and recognise the main functional switches and connector locations accessible on the development unit s front and rear panels Following this information simple step by step guidelines are presented to ensure successful setup of the development unit In addition to hardware the GPS Development Kit is supplied with SiRFDemo and SiRFflash analysis software to allow communication with the Jupiter 30 GPS receiver through a serial port The Windows based software presents the receiver s raw data in a geographical form allowing both detailed analysis and evaluation for both NMEA and SiRF Binary formats 2 0 Equipment This section provides a brief overview of the equipment included in the Jupiter 30 GPS Development Kit 2 1 Equipment supplied This kit should contain the items illustrated in Figure 2 1 1 Jupiter 30 GPS development unit The Jupiter 30 GPS receiver development unit includes all of the following hardware to allow thorough evaluation e Dual RS232 level serial data I O ports e Selectable bias voltages for active GPS antennas e Backup power source for SRAM and RTC e Provision to insert a current measuring device to monitor both primary and backup power usage under various conditions e Regulated DC power supply to the Jupiter 30 module e Status indication through four LEDs on front panel e Configurable functionality using a DIP switch accessed through the front
18. on switch while the development unit is operating Pressing the reset switch or turning the unit off and on will enable the settings to take effect in the receiver The recommended method for reconfiguration is to switch the unit off modify the switch positions then re apply the power 3 2 1 DIP switch 1 GPIO3 GYROIN input DIP switch 1 interfaces with the GPIO3 GYROIN pad of the module The switch is typically off but has no effect with the standard module s software This switch can be enabled by the internal switch SW3 1 3 2 2 DIP switch 2 GPIO15 IER input DIP switch 2 interfaces with the GPIO15 FR pad of the module The switch is typically off but has no effect with the standard module s software This switch can be enabled by the internal switch SW3 2 LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 3 2 3 DIP switch 3 BOOT from serial mode DIP switch 3 interfaces with the BOOT pad of the module and allows the user to upgrade the Flash memory For normal operation the switch should be set to off To boot from the serial port the switch should be set to on This switch is enabled by the internal switch SW3 3 3 2 4 DIP switch 4 GPIO1 W_TICKS input DIP switch 4 interfaces to the GPIO1 W_TICKS pad of the module The switch is typically off but has no effect with the standard module s software This switch can be enabled
19. or the baud rate and click on the Send button Note settings including the current output protocol are reset if all power is removed from the unit For more information refer to the Navman SiRFDemo and SiRFflash User Guide MNO00316 5 0 Acronyms used in this document 1PPS One Pulse Per Second DGPS Differential Global Positioning System GPIO General Purpose Input Output GPS Global Positioning System NMEA National Marine Electronics Association RTC Real Time Clock RTCM Radio Technical Commission for Maritime services LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 16 Windows is a trademark of Microsoft Corporation 2006 Navman New Zealand All Rights Reserved Information in this document is provided in connection with Navman New Zealand Navman products These materials are provided by Navman as a service to its customers and may be used for informational purposes only Navman assumes no responsibility for errors or omissions in these materials Navman may make changes to specifications and product descriptions at any time without notice Navman makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions No license express or implied by estoppel or otherwise to any intellectual
20. pment unit and the customer s PC or between the development unit and a DGPS receiver This cable is terminated at both ends with female connectors to match the male connectors on the development unit and the PC If the PC used only supports a USB port an RS232 USB converter could be utilised 4 Power adapter for 240 120 VAC operation DC power for the development unit is provided by either an AC DC converter or automobile adapter The AC DC converter operates from a nominal 120 240 VAC input and provides a 12 VDC at 500 mA out 5 Power adapter for 12 VDC vehicle operation For mobile operation an automotive adapter intended for use in 12 VDC vehicles is provided NAVMAN GPS Development Unit TIME POWER DGPS NMEA RESET CONFIGURATION MARK ACTIVE ASSURED power function reset configuration U slot for SMA antenna antenna DC Power SCH i ee Port 1 Een Port 2 Antenna Clock Out 1PPS dead reckoning comm 1 comm 2 DC input NMEA amp RTCM Figure 3 1 Front and back panels of the Jupiter 30 development unit showing functional switches and connector locations LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice 6 Software and documentation CD The CD contains the Jupiter 30 GPS receiver data sheet PC Analysis software SiRFDemo and SiRFflash and other information on how to use GPS receivers 2 2 Equipment
21. property rights is granted by this document Except as provided in Navman s Terms and Conditions of Sale for such products Navman assumes no liability whatsoever THESE MATERIALS ARE PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED RELATING TO SALE AND OR USE OF NAVMAN PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE CONSEQUENTIAL OR INCIDENTAL DAMAGES MERCHANTABILITY OR INFRINGEMENT OF ANY PATENT COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT NAVMAN FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION TEXT GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS NAVMAN SHALL NOT BE LIABLE FOR ANY SPECIAL INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES INCLUDING WITHOUT LIMITATION LOST REVENUES OR LOST PROFITS WHICH MAY RESULT FROM THE USE OF THESE MATERIALS Navman products are not intended for use in medical lifesaving or life sustaining applications Navman customers using or selling Navman products for use in such applications do so at their own risk and agree to fully indemnify Navman for any damages resulting from such improper use or sale Product names or services listed in this publication are for identification purposes only and may be trademarks of third parties Third party brands and names are the property of their respective owners Additional information posted at www navman com is incorporated by reference Reader Response Navman str
22. software 3 4 Clock out connector The Clock out connector provides an interface for all associated timing signals with the module It provides the user access to the Time Mark 1PPS signal The pinout connections are described in Table 3 2 and illustrated in Figure 3 4 Pin number Function not used inverted 1PPS signal normal 1PPS signal ground Table 3 2 Pin functions of the clock out connector LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice PENINO i SI ANY BS l J2 not normally fitted GPS fix LED RTC backup battery not normally fitted power LED Jupiter 30 module nNNNA antenna Figure 3 6 Jupiter 30 adapter board LA000578A 2006 Navman New Zealand All rights reserved Proprietary information and specifications subject to change without notice OO 2 Figure 3 4 Pin layout of the clock out connector A mating connector for the clock out connector is supplied with the development kit The part number is shown in Table 3 3 Manufacturer Partnumber Molex 70400 series G Table 3 3 Mating connector part description 3 5 Internal configuration It should not be necessary to open the development unit unless accessing the internal test pins Most combinations of I O can be made from the front panel configuration switch In the event that it is necessary to ope

Download Pdf Manuals

image

Related Search

Related Contents

チラシのダウンロード(PDFファイル 約436KB)  FSU14  novembre - Chambre d`Agriculture de la Gironde  HoMedics SS-4520 Downloadable Instruction Book  TR6.3 TREADMILL OWNER`S MANUAL  DynaScan DS72LT4  TROUBLESHOOTING GUIDE FOR VIDEO SYSTEM 200  

Copyright © All rights reserved.
Failed to retrieve file