Home

National Instruments NI cDAQ-9172 User's Manual

image

Contents

1. 1 T 1 1 1 1 1 1 B Z Figure 31 Channel Z Reload with X4 Decoding NI cDAQ 9172 User Guide and Specifications 48 ni com Measurements Using Two Pulse Encoders The counter supports two pulse encoders that have two channels channels A and B The counter increments on each rising edge of channel A The counter decrements on each rising edge of channel B as shown in Figure 32 ChA ChB Counter Value 2 X 3 X 4 X 5 X 4 X 3 X 4 Figure 32 Measurements Using Two Pulse Encoders For information on connecting counter signals refer to the Default Counter Timer Routing section Two Signal Edge Separation Measurement Two signal edge separation measurement is similar to pulse width measurement except that there are two measurement signals AUX and Gate An active edge on the AUX input starts the counting and an active edge on the Gate input stops the counting You must arm a counter to begin a two edge separation measurement After the counter has been armed and an active edge occurs on the AUX input the counter counts the number of rising or falling edges on the Source The counter ignores additional edges on the AUX input The counter stops counting upon receiving an active edge on the Gate input The counter stores the count in a hardware save register You ca
2. Figure 46 80 MHz Source Mode Source A Synchronize Count Figure 47 Other Internal Source Mode NI cDAQ 9172 User Guide and Specifications 66 ni com External Source Mode In external source mode the chassis generates a delayed Source signal by delaying the Source signal by several nanoseconds The NI cDAQ 9172 chassis synchronizes signals on the rising edge of the delayed Source signal and counts on the following rising edge of the source as shown in Figure 48 Sore OO A Synchronize Delayed Source A Count Figure 48 External Source Model Digital Routing and Clock Generation The digital routing circuitry has the following functions e Manages the flow of data between the bus interface and the acquisition generation sub systems analog input analog output digital I O and the counters The digital routing circuitry uses FIFOs if present in each sub system to ensure efficient data movement e Routes timing and control signals The acquisition generation sub systems use these signals to manage acquisitions and generations These signals can come from the following sources Your C Series I O modules User input through the PFI terminals using correlated digital C Series I O modules in slots 5 and or 6 e Routes and generates the main clock signals for the NI cDAQ 9172 chassis To determine the signal routing options for C Seri
3. National Instruments Corporation 29 NI cDAQ 9172 User Guide and Specifications Buffered Digital Waveform Generation A buffer is a temporary storage in computer memory for generated samples In a buffered generation data is moved from a host buffer to the NI cDAQ 9172 onboard FIFO before it is written to the C Series I O modules Buffered generations typically allow for much faster transfer rates than nonbuffered generations because data is moved in large blocks rather than one point at a time The DO sample clock causes all lines in the task to update at the same time One property of buffered I O operations is the sample mode The sample mode can be either finite or continuous Finite sample mode generation refers to the generation of a specific predetermined number of data samples Once the specified number of samples has been written out the generation stops Continuous generation refers to the generation of an unspecified number of samples Instead of generating a set number of data samples and stopping a continuous generation continues until you stop the operation There are several different methods of continuous generation that control what data is written These methods are regeneration onboard regeneration and non regeneration modes In regeneration mode you define a buffer in host memory The data from the buffer is continually downloaded to the FIFO to be written out New data can be written to the host buffer at any
4. 25 4 cm X 8 89 cm x 5 84 cm 10 0 in x 3 5 in x 2 3 in Safety Standards The NI cDAQ 9172 chassis is designed to meet the requirements of the following standards of safety for electrical equipment for measurement control and laboratory use e IEC 61010 1 EN 61010 1 e UL61010 1 CSA 61010 1 i Note For UL and other safety certifications refer to the product label or go to ni com certification search by model number or product line and click the appropriate link in the Certification column National Instruments Corporation 73 NI cDAQ 9172 User Guide and Specifications Environmental The NI cDAQ 9172 chassis is intended for indoor use only For outdoor use mount the system in a suitably rated enclosure Operating temperature IEC 60068 2 1 and IEC 60068 2 2 20 to 55 C Storage temperature IEC 60068 2 1 and IEC 60068 2 2 40 to 85 C Ingress protection cee eeeeeees IP 30 Operating humidity IEC 60068 2 56 10 to 90 RH noncondensing Storage humidity IEC 60068 2 56 5 to 95 RH noncondensing Maximum altitude 2 000 m Shock and Vibration To meet these specifications you must panel mount the NI cDAQ 9172 system and affix ferrules to the ends of the terminal lines Operational shock 0 eee eee eeeeeeeeeeees 30 g peak half sine 11 ms pulse Tested in accordance with IEC 60068 2 27 Test profile developed in accordance with MIL PRF 28800F Random vibration
5. e ai StartTrigger e Analog Comparison Event NI cDAQ 9172 User Guide and Specifications 58 ni com You can route Counter 1 Internal Output to Counter 0 HW Arm You can also route Counter 0 Internal Output to Counter 1 HW Arm Some of these options may not be available in some driver software Counter n Internal Output and Counter n TC Signals Counter n TC is an internal signal that asserts when the counter value is 0 The Counter n Internal Output signal changes in response to Counter n TC The two software selectable output options are pulse output on TC and toggle output on TC The output polarity is software selectable for both options Routing Counter n Internal Output to an Output Terminal You can route Counter n Internal Output to any output PFI terminal Frequency Output Signal The Frequency Output FREQ OUT signal is the output of the frequency output generator Routing Frequency Output to a Terminal You can route Frequency Output to any output PFI terminal The FREQ OUT signal can also route to DO Sample Clock and DI Sample Clock Default Counter Timer Routing Counter timer signals are available to correlated digital I O C Series modules in slots 5 and or 6 To determine the signal routing options for modules installed in your system refer to the Device Routes tab in MAX Counter Triggering Counters support three different triggering actions arm start start and pause Arm Start Trigger To begin a
6. Programs National Instruments NI DA Q NI DA Qm x Help To view the LabVIEW Help in version 8 0 or later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals You also can specify whether the measurement acquisition begins on the rising edge or falling edge of ai StartTrigger Using an Analog Source Some C Series I O modules can generate a trigger based on an analog signal In NI DAQmx this is called the Analog Comparison Event When you use an analog trigger source for ai StartTrigger the acquisition begins on the first rising or falling edge of the Analog Comparison Event signal depending on the trigger properties Routing Al Start Trigger to an Output Terminal You can route ai StartTrigger to any output PFI terminal The output is an active high pulse Al Reference Trigger Signal Use a reference trigger ai ReferenceTrigger signal to stop a measurement acquisition To use a reference trigger specify a buffer of finite size and a number of pretrigger samples samples that occur before the reference trigger The number of posttrigger samples samples that occur after the reference trigger desired is the buffer size minus the number of pretrigger samples When the acquisition begins the NI cDAQ 9172 chassis begins to fill the buffer After the specified number of pretrigger samples are captured the NI cDAQ 9172 begins to look for the reference trigger condit
7. Programs National Instruments NI DA Q NI DA Qmx Help To view the LabVIEW Help in version 8 0 or later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals Analog Output To generate analog output insert an analog output C Series I O module in any slot on the NI cDAQ 9172 chassis The generation specifications such as the number of channels channel configuration update rate and output range are determined by the type of C Series I O module used For more information refer to the documentation included with your C Series I O modules You can run one hardware timed waveform analog output task at a time on the NI cDAQ 9172 chassis with up to 16 waveform channels At the same time you can also run one or more software timed single point or immediate tasks For each analog output module you can either e Assign all of the channels on the module to the hardware timed task e Assign all of the channels on the module to one or more software timed tasks On a single AO module you cannot assign some channels to a hardware timed task and other channels on the same module to a software timed task Analog Output Data Generation Methods When performing an analog output operation you either can perform software timed or hardware timed generations Hardware timed generations must be buffered Software Timed Generations With a software timed generation so
8. specifications are typical at 25 C unless otherwise noted For the C Series T O module specifications refer to the documentation for the C Series I O modules you are using Input FIFO size reres Sample rate MaxiMUM noieses Minimum ossee Timing accuracy sesser Timing resolution 0 0 Number of channels supported Numbers of channels supported In hardware timed task In non hardware timed task Maximum update rate eee Timing accuracy Timing resolution seeeeeeseeeeeeee Output FIFO size eee sii 2 047 samples Buie 3 2 MS s multi channel aggregate PE 0 S s Rg 50 ppm of sample rate AN 50 ns Auk Determined by the C Series T O modules beads 16 ita Determined by the C Series I O modules rr 1 6 MS s multi channel aggregate nt 50 ppm of sample rate ee 50 ns eden 8 191 samples shared among channels used 1 Performance dependent on type of installed C Series I O modules and number of channels in the task 2 Does not include group delay Refer to C Series I O module documentation for more information National Instruments Corporation 69 NI cDAQ 9172 User Guide and Specifications AO waveform modes Non periodic waveform periodic waveform regeneration mode from onboard memory periodic waveform regeneration from host buffer including dynamic update Digital Waveform Characteristics Slots 1 through 4 Only Waveform acqu
9. A wide variety of I O types are available allowing you to customize the cDAQ system to meet your application needs C Series I O modules are hot swappable and automatically detected by the NI cDAQ 9172 chassis I O channels are accessible using the NI DAQmx driver software Because the modules contain built in signal conditioning for extended voltage ranges or industrial signal types you can usually make your NI cDAQ 9172 User Guide and Specifications 10 ni com wiring connections directly from the C Series I O modules to your sensors actuators In most cases the C Series I O modules provide isolation from channel to earth ground For more information about which C Series I O modules are compatible with the NI cDAQ 9172 chassis refer to the KnowledgeBase document C Series Modules Supported in the NI cDAQ 9172 To access this KnowledgeBase go to ni com info and enter the info code rdcdaq Correlated vs Static DIO Modules Digital I O module capabilities are determined by the type of digital signals that the module is capable of measuring or generating Static Digital I O modules are designed for signals that change slowly and are accessed by software timed reads and writes Correlated Digital I O modules are for signals that change rapidly and are updated by either software or hardware timed reads and writes Correlated Digital I O modules can perform the following tasks e Used in any slot software timed reads and writes
10. Access PFI signals To determine the capability of digital I O modules supported by the NI cDAQ 9172 chassis refer to the KnowledgeBase document C Series Modules Supported in the NI cDAQ 9172 To access this KnowledgeBase document go to ni com info and enter the info code rdcdaq Available features such as trigger and counter timer are determined by the slot containing the digital C Series I O module and the capabilities of the module Table 3 Digital Module Slot Features Digital Waveform Change Slots Static DIO PFI Counter Timer Detection 1 Yes Yes 2 Yes Yes 3 Yes Yes 4 Yes Yes National Instruments Corporation 27 NI cDAQ 9172 User Guide and Specifications Table 3 Digital Module Slot Features Continued Digital Waveform Change Slots Static DIO PFI Counter Timer Detection 5 Yes Yes Yes 6 Yes Yes Yes 7 Yes 8 Yes 1 Requires the use of a correlated digital I O module Static DIO Each of the DIO lines can be used as a static DI or DO line You can use static DIO lines to monitor or control digital signals on some C Series I O modules Each DIO line can be individually configured as a digital input DD or digital output DO depending on the C Series I O module being used All samples of static DI lines and updates of static DO lines are software timed Digital W
11. Analog Output A buffer is a temporary storage in computer memory for generated samples In a buffered generation data is moved from a host buffer to the NI cDAQ 9172 onboard FIFO before it is written to the C Series I O modules One property of buffered I O operations is sample mode The sample mode can be either finite or continuous Finite sample mode generation refers to the generation of a specific predetermined number of data samples Once the specified number of samples is written out the generation stops Continuous generation refers to the generation of an unspecified number of samples Instead of generating a set number of data samples and stopping National Instruments Corporation 21 NI cDAQ 9172 User Guide and Specifications a continuous generation continues until you stop the operation There are three different continuous generation modes that control how the data is written These modes are regeneration onboard regeneration and non regeneration In regeneration mode you define a buffer in host memory The data from the buffer is continually downloaded to the FIFO to be written out New data can be written to the host buffer at any time without disrupting the output With onboard regeneration the entire buffer is downloaded to the FIFO and regenerated from there After the data is downloaded new data cannot be written to the FIFO To use onboard regeneration the entire buffer must fit within the FIFO size The
12. Figure 10 Sample Clock Timing Options Routing Al Sample Clock to an Output Terminal You can route ai SampleClock to any output PFI terminal Al Sample Clock Timebase The AI Sample Clock Timebase ai SampleClockTimebase signal is divided down to provide a source for ai SampleClock ai SampleClock Timebase can be generated from external or internal sources ai SampleClockTimebase is not available as an output from the chassis Convert Behavior For Analog Input Modules Scanned Scanned C Series analog input modules contain a single A D converter and a multiplexer to select between multiple input channels When the cDAQ Module Interface receives a Sample Clock pulse it begins generating a Convert Clock for each scanned module in the current task Each Convert Clock signals the acquisition of a single channel from that module The Convert Clock rate depends on the module being used the number of channels used on that module and the system Sample Clock rate The driver chooses the fastest conversion rate possible based on the speed of the A D converter for each module and adds 10 us of padding between each channel to allow for adequate settling time This scheme enables the channels to approximate simultaneous sampling If the AI Sample Clock rate is too fast to allow for 10 us of padding NI DAQm x selects a conversion rate that spaces the AI Convert Clock pulses evenly throughout the sample NI DAQm x uses the same amount of padding for
13. Gate input In most applications this first point should be discarded Figure 22 shows an example of a buffered period measurement Counter Armed GATE SOURCE ME TFA LELA LE Le ee Counter Value ie 22 1 2 Sta 2 ga 2 2 Discard 3 2 Discard 3 2 Discard Buffer 3 3 Figure 22 Buffered Period Measurement 3 Note Ifyou are using an external signal as the Source at least one Source pulse should occur between each active edge of the Gate signal This condition ensures that correct values are returned by the counter If this condition is not met consider using duplicate count prevention described in the Duplicate Count Prevention section For information about connecting counter signals refer to the Default Counter Timer Routing section National Instruments Corporation 39 NI cDAQ 9172 User Guide and Specifications Semi Period Measurement In semi period measurements the counter measures a semi period on its Gate input signal after the counter is armed A semi period is the time between any two consecutive edges on the Gate input You can route an internal or external periodic clock signal with a known period to the Source input of the counter The counter counts the number of rising or falling edges occurring on the Source input between two edges of the Gate signal You can calculate the semi period of the Ga
14. I O module into any slot on the cDAQ chassis The measurement specifications such as number of channels channel configuration sample rate and gain are determined by the type of C Series I O module used For more information and wiring diagrams refer to the documentation included with your C Series I O modules NI cDAQ 9172 User Guide and Specifications 12 ni com The NI cDAQ 9172 has one AI timing engine which means that only one analog input task may be running at a time on a chassis However the analog input task can include channels from multiple analog input modules Analog Input Triggering A trigger is a signal that causes an action such as starting or stopping the acquisition of data When you configure a trigger you must decide how you want to produce the trigger and the action you want the trigger to cause The NI cDAQ 9172 chassis supports internal software triggering external digital and analog triggering Three triggers are available start trigger reference trigger and pause trigger An analog or digital trigger can initiate these three trigger actions Any C Series correlated digital input module can supply a digital trigger when installed in slots 5 or 6 and some C Series analog modules can supply an analog or digital trigger in any slot The start reference and pause triggers can come from three separate modules if desired To find your module triggering options refer to the documentation included with your C Se
15. Operating v5 chee ie at 5 to 500 Hz 0 3 gims Nomnoperating 0 0 eee eeeeeeeeeeeeeeee 5 to 500 Hz 2 4 gms Tested in accordance with IEC 60068 2 64 Nonoperating test profile exceeds the requirements of MIL PRF 28800F Class 3 1 When operated in temperatures below 0 C you must use the PS 5 power supply or another power supply rated for below 0 C NI cDAQ 9172 User Guide and Specifications 74 ni com Electromagnetic Compatibility This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement control and laboratory use e EN 61326 EMC requirements Minimum Immunity e EN 55011 Emissions Group 1 Class A e CE C Tick ICES and FCC Part 15 Emissions Class A 3 Note For EMC compliance operate this device according to product documentation CE Compliance This product meets the essential requirements of applicable European Directives as amended for CE marking as follows e 73 23 EEC Low Voltage Directive safety e 89 336 EEC Electromagnetic Compatibility Directive EMC 3 Note Refer to the Declaration of Conformity DoC for this product for any additional regulatory compliance information To obtain the DoC for this product visit ni com certification search by model number or product line and click the appropriate link in the Certification column Waste Electrical and Electronic Equipment WEEE X EU Customers At the end of their life cycle
16. a known timebase Figure 25 illustrates this method Intervals Measured F1 Gat Gate Fi Ft Source TANG hi Na ai Mueni Nk ee UUU UUU Buffered Period Measurement N No Nk 1 A Period of F1 x verage Period o K Fi K x Ft Frequency of F1 _ N No Nk Figure 25 Frequency Measurement Method 1b You can route the signal to measure F1 to the Gate of a counter You can route a known timebase Ft to the Source of the counter The known timebase can be 80MHzTimebase For signals that might be slower than 0 02 Hz use a slower known timebase You can configure the counter to make K 1 buffered period measurements Recall that the first period measurement in the buffer should be discarded Average the remaining K period measurements to determine the average period of F1 The frequency of F1 is the inverse of the average period NI cDAQ 9172 User Guide and Specifications 42 ni com Method 2 Measure High Frequency With Two Counters This method is good for high frequency signals Use this method to measure one pulse of a known width using your signal and derive the frequency of your signal from the result Figure 26 illustrates this method lt _ Width of Pulse T gt Pulse __ Pulse Gate 1 2 ses N F1 Source F1 A A Pulse Width Width
17. advantage of using onboard regeneration is that it does not require communication with the main host memory once the operation is started which prevents problems that may occur due to excessive bus traffic or operating system latency With non regeneration old data is not repeated New data must continually be written to the buffer If the program does not write new data to the buffer at a fast enough rate to keep up with the generation the buffer underflows and causes an error Analog Output Triggering Analog output supports two different triggering actions e Start trigger e Pause trigger An analog or digital trigger can initiate these actions Any C Series correlated digital module in slots 5 and or 6 can supply a digital trigger and some C Series analog modules can supply an analog trigger For more information refer to the AO Start Trigger Signal section of this document or to the documentation included with your C Series I O module s Analog Output Timing Signals The NI cDAQ 9172 chassis features the following AO waveform generation timing signals e AO Sample Clock e AO Start Trigger e AO Pause Trigger NI cDAQ 9172 User Guide and Specifications 22 ni com AO Sample Clock The AO sample clock signals when all the analog output channels in the task update ao SampleClock can be generated from external or internal sources PFI __ Analog Comparison Event ao SampleClock PFI _ Ctr n Internal Outpu
18. all products must be sent to a WEEE recycling E center For more information about WEEE recycling centers and National Instruments WEEE initiatives visit ni com environment weee htm National Instruments Corporation 75 NI cDAQ 9172 User Guide and Specifications Where to Go for Support National Instruments corporate headquarters is located at 11500 North Mopac Expressway Austin Texas 78759 3504 National Instruments also has offices located around the world to help address your support needs For telephone support in the United States create your service request at ni com support and follow the calling instructions or dial 512 795 8248 For telephone support outside the United States contact your local branch office Australia 1800 300 800 Austria 43 662 457990 0 Belgium 32 0 2 757 0020 Brazil 55 11 3262 3599 Canada 800 433 3488 China 86 21 5050 9800 Czech Republic 420 224 235 774 Denmark 45 45 76 26 00 Finland 385 0 9 725 72511 France 01 57 66 24 24 Germany 49 89 7413130 India 91 80 41190000 Israel 972 3 6393737 Italy 39 02 413091 Japan 81 3 5472 2970 Korea 82 02 3451 3400 Lebanon 961 0 1 33 28 28 Malaysia 1800 887710 Mexico 01 800 010 0793 Netherlands 31 0 348 433 466 New Zealand 0800 553 322 Norway 47 0 66 90 76 60 Poland 48 22 3390150 Portugal 351 210 311 210 Russia 7 495 783 6851 Singapore 1800 226 5886 Slovenia 386 3 425 42 00 South Africa 27 0 11 805 8197 Spain 34 91 640 008
19. all the modules in the task To explicitly specify the conversion rate use the National Instruments Corporation 17 NI cDAQ 9172 User Guide and Specifications ActiveDevs and AI Convert Clock Rate properties using the DAQmx Timing property node or functions Simultaneous Sample and Hold Simultaneous sample and hold SSH C Series analog input modules contain multiple A D converters or circuitry that allows all the input channels to be sampled at the same time These modules sample their inputs on every Sample Clock pulse Sigma Delta Sigma delta C Series analog input modules function much like SSH modules but use A D converters that require a high frequency oversample clock to produce accurate synchronized data Sigma delta modules in the cDAQ chassis automatically share a single oversample clock to synchronize data from all sigma delta modules This clock is used as the AI Sample Clock Timebase While most modules supply acommon oversample clock frequency 12 8 MHz some modules like the NI 9234 supply a different frequency When sigma delta modules with different oversample clock frequencies are used in an analog input task the AI Sample Clock Timebase can use any of the available frequencies by default the fastest available is used The sampling rate of all modules in the system is an integer divisor of the frequency of the AI Sample Clock Timebase When one or more sigma delta modules are in an analog input task the
20. at Counisro Gale Counter 0 Internal Output Counter 0 Aux A Counter 0 HW Arm aa Counter 0 A Counter 0 B Counter 0 Up_Down Counter ne Counter 0 Z Input Selection Muxes Counter 1 7 Counter 1 Source Counter 1 Timebase g Counter 1 Gate Counter 1 Internal Output Counter 1 Aux waa Counter 1 HW Arm Counter 1A Counter 1 TC Counter 1 B Counter 1 Up_Down g Counter 1 Z Input Selection Muxes Frequency Generator X Frequency Output Timebase Freq Out Figure 15 NI cDAQ 9172 Counters Counters have seven input signals although in most applications only a few inputs are used For information about connecting the counter signals refer to the Default Counter Timer Routing section The following sections describe various counter applications National Instruments Corporation 33 NI cDAQ 9172 User Guide and Specifications Counter Input Applications Counting Edges In edge counting applications the counter counts edges on its Source after the counter is armed You can configure the counter to count rising or falling edges on its Source input You also can control the direction of counting up or down The counter values can be read on demand or with a sample clock Single Point On Demand Edge Counting With single point on demand edge counting the counter counts the number of edges on the Source input after the counter is armed On
21. com Even if the Source pulses are long the counter increments only once for each Source pulse Normally the counter value and Counter n Internal Output signals change synchronously to the Source signal With duplicate count prevention the counter value and Counter n Internal Output signals change synchronously to the 80 MHz Timebase ay Note Duplicate count prevention should only be used if the frequency of the Source signal is 20 MHz or less When To Use Duplicate Count Prevention Use duplicate count prevention if the following conditions are true e You are making a counter measurement e You are using an external signal such as PFI x as the counter Source e The frequency of the external source is 20 MHz or less e You can have the counter value and output to change synchronously with the 80 MHz Timebase In all other cases you should not use duplicate count prevention Enabling Duplicate Count Prevention in NI DAQmx You enable duplicate count prevention in NI DAQmx by setting the Enable Duplicate Count Prevention attribute property For specific information on finding the Enable Duplicate Count Prevention attribute property refer to the help file for the API you are using Synchronization Modes The 32 bit counter counts up or down synchronously with the Source signal The Gate signal and other counter inputs are asynchronous to the Source signal The NI cDAQ 9172 chassis synchronizes these signals before presenting
22. eee A PA dud TR 1 43 in 88 1 mm A eee W oe 3 50 in T J 59 6 mm Sam ee EL 0 A 0 O E d A 2 04 in C GG i 4 lt 254 0 mm p gt lt q 4 10 mm 10 00 in i 0 16 in 23 7 mm Ape 0 94 in 44 1 mm 20 3 mm 1 74 in 0 80 in 25 0 mm p gt 0 98 in i i H 53 8 mm 44 1 mm e 2 12in 1 74 in i e a 1 i 631mm P 46 0 mm aed lt q 2 49 in 1 81 in to 24 8 mm p i 1 0 98 in i ne flo ddd ld ld lol To 2 35 in ry 31 7 mm TIYI 1 25 in j 19 1 mm 0 75 in 23 2 mm 0 91 in Figure 2 NI cDAQ 9172 with Dimensions in Millimeters Inches National Instruments Corporation 3 NI cDAQ 9172 User Guide and Specifications Mounting the NI cDAQ 9172 You can mount the NI cDAQ 9172 chassis using a desktop a 35 mm DIN Rail or a panel mount accessory kit For accessory ordering information refer to ni com UN Caution Your installation must meet the following requirements e Allows 25 4 mm 1 in of clearance above and below the NI cDAQ 9172 chassis for air circulation e Allows 50 8 mm 2 in of clearance in front of modules for common connector cabling such as the 10 terminal detachable screw terminal connector NI 9901 Desktop Mounting Kit The NI 9901 Desktop Mounting Kit includes two metal feet you can install on the sides of the NI cDAQ 9172 chassis for desktop use With this kit you can tilt the NI cDAQ 9172 chassis for conveni
23. in the panel mount kit can be used with M4 M5 No 8 or No 10 panhead National Instruments Corporation 5 NI cDAQ 9172 User Guide and Specifications screws Figure 5 illustrates the panel dimensions and installation on the NI cDAQ 9172 chassis Refer to the documentation included with the NI 9905 shipping kit for more detailed dimensions i 330 2 mm i a 13 00 in E s j Ata A 2 3 4 5 6 7 e 88 1 Mm 3 47 in F 0 0 6 0 0 8 BAI AAAA 4 ae a Ae We Figure 5 Panel Mount Dimensions and Installation on the NI cDAQ 9172 NI cDAQ 9172 User Guide and Specifications 6 ni com Setting Up the NI cDAQ 9172 Complete the following steps to prepare the NI cDAQ 9172 chassis for use 1 Before connecting the hardware install NI DAQm x software VI Logger and the NI DAQ Device Documentation Browser Refer to the DAQ Getting Started Guide for more information about software installation 3 Note The NI DAQmx software is included on the CD shipped with your kit and is available for download at ni com support After you install it the NI DAQ Device Documentation Browser is available from Start Programs National Instruments NI DAQ Browse Device Documentation The DAQ Getting Started Guide is available after installation from Star
24. more details Caution The NI cDAQ 9172 chassis is not certified for use in hazardous locations Hot Surface This icon denotes that the component may be hot Touching this component may result in bodily injury Safety Guidelines for Hazardous Voltages gt PoP P If hazardous voltages are connected to the module take the following precautions A hazardous voltage is a voltage greater than 42 4 V pk or 60 VDC to earth ground Caution Ensure that hazardous voltage wiring is performed only by qualified personnel adhering to local electrical standards Caution Do not mix hazardous voltage circuits and human accessible circuits on the same module Caution Make sure that chassis and circuits connected to the module are properly insulated from human contact Caution The NI cDAQ 9172 chassis provides no isolation but some modules offer isolation Follow the safety guidelines for each module when using hazardous voltage NI cDAQ 9172 User Guide and Specifications 2 ni com Installing the NI cDAQ 9172 Figure 2 shows the dimensions of the NI cDAQ 9172 chassis q 165 1 mm gt lt q 19 0mm 6 50 in 0 75 in D SE TE e E aw
25. of _ N Measurement Pulse F1 Frequency of F1 lt Figure 26 Frequency Measurement Method 2 In this method you route a pulse of known duration T to the Gate of a counter You can generate the pulse using a second counter You also can generate the pulse externally and connect it to a PFI terminal You only need to use one counter if you generate the pulse externally Route the signal to measure F1 to the Source of the counter Configure the counter for a single pulse width measurement Suppose you measure the width of pulse T to be N periods of F1 Then the frequency of F1 is N T Another option would be to measure the width of a known period instead of a known pulse Method 3 Measure Large Range of Frequencies Using Two Counters By using two counters you can accurately measure a signal that might be high or low frequency This technique is called reciprocal frequency measurement In this method you generate a long pulse using the signal to measure You then measure the long pulse with a known timebase The NI cDAQ 9172 chassis can measure this long pulse more accurately than the faster input signal National Instruments Corporation 43 NI cDAQ 9172 User Guide and Specifications You can route the signal to measure to the Source input of Counter 0 as shown in Figure 27 Assume this signal to measure has frequency F1 Configure Counter 0 to generate a single pulse that is the width of N periods of the source inp
26. on a 50 kHz signal using an 80 MHz Timebase This frequency corresponds to 1600 cycles of the 80 MHz Timebase Your measurement may return 1600 1 cycles depending on the phase of the signal with respect to the timebase As your frequency becomes larger this error of 1 cycle becomes more significant as Table 4 illustrates Table 4 Frequency Measurement Method 1 Task Equation Example 1 Example 2 Actual Frequency to Measure F1 50 kHz 5 MHz Timebase Frequency Ft 80 MHz 80 MHz Actual Number of Timebase Ft F1 1600 16 Periods Worst Case Measured Number Ft F1 1 1599 15 of Timebase Periods Measured Frequency Ft F1 Ft F1 50 031 kHz 5 33 MHz Error Ft F1 Ft F1 F1 31 Hz 333 kHz Error Ft Ft F1 1 0 06 6 67 e Method 1b measuring K periods of F1 improves the accuracy of the measurement A disadvantage of Method 1b is that K 1 measurements are required These measurements take more time and consume some of the available USB bandwidth e Method 2 is accurate for high frequency signals However the accuracy decreases as the frequency of the signal to measure decreases At very low frequencies Method 2 may be too inaccurate for your application Another disadvantage of Method 2 is that it requires two counters if you cannot provide an external signal of known width An advantage of Method 2 is that the measurement completes in a known amount of time e Method 3 mea
27. task Change detection acquisitions can be buffered or nonbuffered Nonbuffered Change Detection Acquisition In nonbuffered acquisitions correlated digital input modules in any slot may be in the task but the rising falling edge detection lines must be in slots 1 through 4 Buffered Change Detection Acquisition A buffer is a temporary storage in computer memory for acquired samples In a buffered acquisition data is stored in the NI cDAQ 9172 onboard FIFO then transferred to a PC buffer Buffered acquisitions typically allow for much faster transfer rates than nonbuffered acquisitions because data accumulates and is transferred in blocks rather than one sample at a time With buffered acquisitions all modules in the task must be in slots 1 through 4 Digital Input Output Configuration for NI 9401 When you change the configuration of lines on a NI 9401 digital I O module between input and output NI DAQmx temporarily reserves all of the lines on the module for communication to send the module a line configuration command If another task or route is actively using the module to avoid interfering with the other task NI DAQm x generates an error instead of sending the line configuration command During the line configuration command the output lines are maintained without glitching National Instruments Corporation 31 NI cDAQ 9172 User Guide and Specifications PFI Counters You can configure channels of a correlated
28. the number of rising or falling edges on the Source signal while the pulse on the Gate signal is active You can calculate the pulse width by multiplying the period of the Source signal by the number of edges returned by the counter A pulse width measurement is accurate even if the counter is armed while a pulse train is in progress If a counter is armed while the pulse is in the active state it waits for the next transition to the active state to begin the measurement Single Pulse Width Measurement With single pulse width measurement the counter counts the number of edges on the Source input while the Gate input remains active When the Gate input goes inactive the counter stores the count in a hardware save register and ignores other edges on the Gate and Source inputs The software then reads the stored count NI cDAQ 9172 User Guide and Specifications 36 ni com Figure 19 shows an example of a single pulse width measurement GATE source LA LAL LIL Counter Value 0 1 2 HW Save Register 2 Figure 19 Single Pulse Width Measurement Buffered Pulse Width Measurement Buffered pulse width measurement is similar to single pulse width measurement but buffered pulse width measurement takes measurements over multiple pulses The counter counts the number of edges on the Source input while the Gate input remains active On each trailing edge of the Gate sign
29. 4 ni com When you generate analog output signals the generation pauses as soon as the pause trigger is asserted If the source of the sample clock is the onboard clock the generation resumes as soon as the pause trigger is deasserted as shown in Figure 13 Pause Trigger Sample Clock Figure 13 ao PauseTrigger with the Onboard Clock Source If you are using any signal other than the onboard clock as the source of the sample clock the generation resumes as soon as the pause trigger is deasserted and another edge of the sample clock is received as shown in Figure 14 Pause Trigger Sample Clock Figure 14 ao PauseTrigger with Other Signal Source Using a Digital Source To use ao PauseTrigger specify a source and a polarity The source can be a PFI signal or one of several other internal signals on the NI cDAQ 9172 chassis You also can specify whether the samples are paused when ao PauseTrigger is at a logic high or low level Refer to Device Routing in MAX in the NI DAQmx Help or the LabVIEW Help in version 8 0 or later for more information National Instruments Corporation 25 NI cDAQ 9172 User Guide and Specifications The NI DAQmx Help is available after installation from Start Programs National Instruments NI DA Q NI DAQm x Help To view the LabVIEW Help in version 8 0 or later select Help Searc
30. 5 Sweden 46 0 8 587 895 00 Switzerland 41 56 2005151 Taiwan 886 02 2377 2222 Thailand 662 278 6777 Turkey 90 212 279 3031 United Kingdom 44 0 1635 523545 NNational Instruments NI ni com and LabVIEW are trademarks of National Instruments Corporation Refer to the Terms of Use section on ni com 1legal for more information about National Instruments trademarks Other product and company names mentioned herein are trademarks or trade names of their respective companies For patents covering National Instruments products refer to the appropriate location Help Patents in your software the patents txt file on your CD or ni com patents 2006 2007 National Instruments Corporation All rights reserved 371747D 01 Jun07
31. Instruments Corporation 61 NI cDAQ 9172 User Guide and Specifications Prescaling Prescaling allows the counter to count a signal that is faster than the maximum timebase of the counter The NI cDAQ 9172 chassis offers 8X and 2X prescaling on each counter prescaling can be disabled Each prescaler consists of a small simple counter that counts to eight or two and rolls over This counter can run faster than the larger counters which simply count the rollovers of this smaller counter Thus the prescaler acts as a frequency divider on the Source and puts out a frequency that is one eighth or one half of what it is accepting External Signal Prescaler Rollover Used as Source by Counter Counter Value 0 X 1 Figure 42 Prescaling Prescaling is intended for frequency measurement where the measurement is made on a continuous repetitive signal The prescaling counter cannot be read therefore you cannot determine how many edges have occurred since the previous rollover You can use prescaling for event counting provided it is acceptable to have an error of up to seven or one You can use prescaling when the counter Source is an external signal Prescaling is not available if the counter Source is one of the internal timebases 80MHzTimebase 20MHzTimebase or 100kHzTimebase Duplicate Count Prevention Duplicate c
32. NI cDAQ 9172 chassis Refer to the Specifications section for more information about the connector 9 Secure the power supply and USB cables as depicted in Figure 7 using the two tie wraps and adhesive tie wrap mounts included in the shipping kit The tie wraps and adhesive mounts help secure the non latching USB connection They can also be used to route the cables to a desirable position Figure 7 cDAQ Chassis With Secured Cables 10 Power on the NI cDAQ 9172 chassis x 11 Double click the Measurement amp Automation icon shown at left oS on the desktop to open MAX Measurement amp Automation NI cDAQ 9172 User Guide and Specifications 8 ni com 12 Expand Devices and Interfaces and then expand NI DAQmx Devices 13 Check that your device appears under Devices and Interfaces If your device does not appear press lt F5 gt to refresh the view in MAX If your device is still not recognized refer toni com support instal1 for troubleshooting information 14 Right click your device and select Self Test If you need help during the self test select Help Help Topics NI DAQmx and click MAX Help for NI DAQmx When the self test finishes a message indicates successful verification or an error If an error occurs refer to ni com support install for troubleshooting information 3 Note When in use the NI cDAQ 9172 chassis may become warm to the touch This is normal Understanding LED Indicati
33. Start Trigger signal to the Gate input of the counter You can specify a delay from the Start Trigger to the beginning of each pulse You also can specify the pulse width The delay and pulse width are measured in terms of a number of active edges of the Source input The counter ignores the Gate input while a pulse generation is in progress After the pulse generation is finished the counter waits for another Start Trigger signal to begin another pulse generation Figure 37 shows a generation of two pulses with a pulse delay of five and a pulse width of three using the rising edge of Source GATE m Start Trigger SOURCE TL jij fl OUT Figure 37 Retriggerable Single Pulse Generation For information on connecting counter signals refer to the Default Counter Timer Routing section NI cDAQ 9172 User Guide and Specifications 52 ni com Pulse Train Generation Continuous Pulse Train Generation This function generates a train of pulses with programmable frequency and duty cycle The pulses appear on the Counter n Internal Output signal of the counter You can specify a delay from when the counter is armed to the beginning of the pulse train The delay is measured in terms of a number of active edges of the Source input You specify the high and low pulse widths of the output signa
34. al the counter stores the count in a hardware save register The NI cDAQ 9172 transfers the stored values to host memory Figure 20 shows an example of a buffered pulse width measurement GATE ____ sd ee ee SOURCE L fil 4 A Ai A AY Counter Value 0 1 2 3 1 2 3 B 2 Buffer 3 2 Figure 20 Buffered Pulse Width Measurement National Instruments Corporation 37 NI cDAQ 9172 User Guide and Specifications B Note Ifyou are using an external signal as the Source at least one Source pulse should occur between each active edge of the Gate signal This condition ensures that correct values are returned by the counter If this condition is not met consider using duplicate count prevention described in the Duplicate Count Prevention section For information on connecting counter signals refer to the Default Counter Timer Routing section Period Measurement In period measurements the counter measures a period on its Gate input signal after the counter is armed You can configure the counter to measure the period between two rising edges or two falling edges of the Gate input signal You can route an internal or external periodic clock signal with a known period to the Source input of the counter The counter counts the number of rising or falling edges occurring on the Source input between the two active edges of the Gate signal You
35. an example of low to high transitions of the input signal High to low transitions work similarly Assume that an input terminal has been low for a long time The input terminal then changes from low to high but glitches several times When the filter clock samples the signal high on N consecutive edges the low to high transition is propagated to the rest of the circuit The value of N depends on the filter setting as listed in Table 7 Table 7 Counter Input Filters N Filter Clocks Pulse Width Pulse Width Needed to Guaranteed to Guaranteed to Filter Setting Pass Signal Pass Filter Not Pass Filter 125 ns 5 125 ns 100 ns 6 425 us 257 6 425 us 6 400 us 2 56 ms 101 800 2 56 ms 2 54 ms Disabled You can configure the filter setting for each input independently On power up the filters are disabled Figure 41 shows an example of a low to high transition on an input with its filter set to 125 ns N 5 PFI Terminal Filtered input goes high when terminal is sampled Filter Clock 1 1 2 3 4 12 3 45 high on five consecutive 40 MHz filter clocks Filtered Input Figure 41 Filter Example Enabling filters introduces jitter on the input signal For the 125 ns and 6 425 us filter settings the jitter is up to 25 ns On the 2 56 ms setting the jitter is up to 10 025 us National
36. aveform Acquisition Correlated Input You can acquire digital waveforms using correlated digital modules in slots 1 through 4 The DI waveform acquisition FIFO stores the digital samples The NI cDAQ 9172 chassis samples the DIO lines on each rising or falling edge of the di SampleClock signal DI Sample Clock Signal Use the DI Sample Clock di SampleClock signal to sample digital I O on slots 1 through 4 using correlated digital modules and store the result in the DI waveform acquisition FIFO The NI cDAQ 9172 chassis does not have an independent DI Sample Clock circuit Therefore you must route an external signal or one of many internal signals from another subsystem to function as the DI Sample Clock For example you can correlate digital and analog samples in time by setting the AI Sample Clock or AO Sample Clock as the source of the DI Sample Clock To sample a digital signal independent of an AI AO or DO operation you can configure a counter to generate the desired DI Sample Clock or use an external signal as the source of the DI Sample Clock If the NI cDAQ 9172 chassis receives a di SampleClock signal when the FIFO is full it reports an overflow error to the host software NI cDAQ 9172 User Guide and Specifications 28 ni com Using an Internal Source To use di SampleClock with an internal source specify the signal source and the polarity of the signal Use the following signals as the source e ATI Sample Clock e AT C
37. c eeeees Gate Source HWarm Aux A B Z Up_Down Module 1 0 States At pOWET ON o oo eeeceessceseeeeeeeeaeeeseeeeeeeeee Module dependent Refer to the documentation included with the C Series I O module s When USB cable removed Reverts to power on state Power Requirements You must use a National Electric Code NEC Class 2 power source with the NI cDAQ 9172 chassis B Note Some I O modules have additional power requirements For more information about C Series I O module s power requirements refer to documentation included with the C Series I O module s 3 Note Sleep mode for C Series I O modules is not supported in the NI cDAQ 9172 NI cDAQ 9172 User Guide and Specifications 72 ni com Input voltage range eee 11 V to 30 V Maximum required input power 15 W Power input connector 0 0 eee DC input jack with locking threaded ring 0 8 in 2 mm center pin Power input mating connector Switchcraft S760K Bus Interface USB specification 0 0 eee eens USB 2 0 Hi Speed Power from USB ANO1OS25 V staa 500 uA maximum High performance data streams 4 Types available eee eeeeeeeeeeees Analog input analog output digital input digital output counter timer input Physical Characteristics If you need to clean the chassis wipe it with a dry towel Chassis weight unloaded Approx 840 g 1 Ib 13 oz Chassis dimensions unloaded
38. can calculate the period of the Gate input by multiplying the period of the Source signal by the number of edges returned by the counter Single Period Measurement With single period measurement the counter counts the number of rising or falling edges on the Source input occurring between two active edges of the Gate input On the second active edge of the Gate input the counter stores the count in a hardware save register and ignores other edges on the Gate and Source inputs The software then reads the stored count Figure 21 shows an example of a single period measurement GATE ee L F source I LALALALA ELTTI 1 2 3 4 5 Counter Value 0 HW Save Register 5 Figure 21 Single Period Measurement NI cDAQ 9172 User Guide and Specifications 38 ni com Buffered Period Measurement Buffered period measurement is similar to single period measurement but buffered period measurement measures multiple periods The counter counts the number of rising or falling edges on the Source input between each pair of active edges on the Gate input At the end of each period on the Gate signal the counter stores the count in a hardware save register The NI cDAQ 9172 transfers the stored values to host memory The counter begins when it is armed The arm usually occurs in the middle of a period of the Gate input So the first value stored in the hardware save register does not reflect a full period of the
39. demand refers to the fact that software can read the counter contents at any time without disturbing the counting process Figure 16 shows an example of single point edge counting Counter Armed SOURCE Counter Value 0 Figure 16 Single Point On Demand Edge Counting You also can use a pause trigger to pause or gate the counter When the pause trigger is active the counter ignores edges on its Source input When the pause trigger is inactive the counter counts edges normally NI cDAQ 9172 User Guide and Specifications 34 ni com You can route the pause trigger to the Gate input of the counter You can configure the counter to pause counting when the pause trigger is high or when it is low Figure 17 shows an example of on demand edge counting with a pause trigger Counter Armed Pause Trigger Pause When Low SOURCE MAAALALA Oo 1 2 3 4 5 Counter Value 0 Figure 17 Single Point On Demand Edge Counting with Pause Trigger Buffered Sample Clock Edge Counting With buffered edge counting edge counting using a sample clock the counter counts the number of edges on the Source input after the counter is armed The value of the counter is sampled on each active edge of a sample clock The NI cDAQ 9172 transfers the sampled values to host memory The count values returned are the cumulative counts since the counter armed eve
40. digital module in slots 5 and 6 as Programmable Function Interface PFI terminals You can configure each PFI individually as the following e Static digital input e Static digital output Timing input signal for AI AO DI DO or counter timer functions Timing output signal from AI AO DI DO or counter timer functions Each PFI input also has a programmable digital filter circuit that is configurable on a per line basis The filters allow the rejection of noise caused by noisy environments bounces on switches and so on Refer to the NI DAQmx Help for more information The N J DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help The NI cDAQ 9172 chassis has two general purpose 32 bit counter timers and one frequency generator as shown in Figure 15 The general purpose counter timers can be used for many measurement and pulse generation applications Some counter timer signals may be routed to PFI signals To access PFI signals you must use a correlated digital C Series I O module in slot 5 or 6 3 Note For more information about C Series signal connections for counters refer to the NJ DAQmx Help The NI DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help NI cDAQ 9172 User Guide and Specifications 32 ni com Input Selection Muxes Counter 0 7 Counter 0 Source Counter 0 Timebase 2 ounter
41. e Used in slots 1 though 4 Digital Waveform Generation and Acquisition Correlated Input Output e Used in slots 5 and 6 Counter Timer e Used in slots 5 and 6 Access PFI signals To determine the capability of digital I O modules supported by the NI cDAQ 9172 chassis refer to the KnowledgeBase document C Series Modules Supported in the NI cDAQ 9172 To access this KnowledgeBase document go to ni com info and enter the info code rdcdaq cDAQ Module Interface The cDAQ Module Interface manages data transfers between the USB STC2 and the C Series I O modules The interface also handles autodetection signal routing and synchronization USB STC2 The USB STC2 features independent High Speed data streams flexible AI and AO sample timing triggering PFI signals for multi device synchronization flexible counter timers with hardware gating digital waveform acquisition and generation and static DIO Al and AO Sample Timing The USB STC2 contains advanced analog input and analog output timing engines A wide range of timing and synchronization signals are available National Instruments Corporation 11 NI cDAQ 9172 User Guide and Specifications Analog Input through the PFI lines Refer to the Analog Input Timing Signals and Analog Output Timing Signals sections for more information about the configuration of these signals Triggering Modes The NI cDAQ 9172 supports different trigger modes such as start trigger refere
42. ee USER GUIDE AND SPECIFICATIONS NI cDAQ 9172 CMOKFFAAYEOARARBHRICOUYTIE ni com jp manuals amp BSMRLT ESL For a Japanese language version go to ni com jp manuals This user guide describes how to use the National Instruments cDAQ 9172 chassis and lists specifications For an interactive demonstration of how to install the NI cDAQ 9172 go to ni com info and enter daqinstall The NI cDAQ 9172 is an eight slot USB chassis designed for use with C Series I O modules The NI cDAQ 9172 chassis is capable of measuring a broad range of analog and digital I O and sensors using a Hi Speed USB 2 0 interface For module specifications refer to the documentation included with your C Series I O module s or go to ni com manuals 1 Power Switch 5 Empty Module Slots 2 Ready Active LEDs 6 Installed C Series I O Modules 3 Power Connector 7 Screw for Ground Connection 4 USB Connector Figure 1 NI cDAQ 9172 7 NATIONAL p INSTRUMENTS Safety Guidelines 3 A A Operate the NI cDAQ 9172 chassis only as described in this user guide Note Because some C Series I O modules may have more stringent certification standards than the NI cDAQ 9172 chassis the combined system may be limited by individual component restrictions Refer to the Using the NI cDAQ 9172 section of this document for
43. ent access to the I O module connectors When you put on the two metal feet the two existing screws on the power switch side of the chassis must be removed After removing the screws replace them with the two longer screws included in the NI 9901 Desktop Mounting Kit Figure 3 NI 9901 Desktop Mounting Kit NI cDAQ 9172 User Guide and Specifications 4 ni com Mounting the NI 9910 DIN Rail Kit The NI 9910 DIN Rail kit contains one clip for mounting the chassis on a standard 35 mm DIN Rail To mount the chassis on a DIN Rail fasten the DIN Rail clip to the chassis using a number 2 Phillips screwdriver and two M4 x 16 screws The screws are included in the DIN Rail kit Make sure the DIN Rail kit is installed as illustrated in Figure 4 with the larger lip of the DIN RAIL positioned up When the DIN Rail kit is properly installed the NI cDAQ 9172 chassis is centered on the DIN Rail UN Caution Remove the I O modules before removing the chassis from the DIN Rail Figure 4 DIN Rail Dimensions and Installation on the NI cDAQ 9172 Mounting the NI 9905 Panel Mount Kit To mount the chassis on a panel align the chassis on the panel mount accessory Attach the chassis to the panel mount kit using two M4 x 16 screws as pictured in the following diagram National Instruments provides these screws with the panel mount kit You must use these screws because they are the correct depth and thread for the panel These slots
44. es I O modules installed in the NI cDAQ 9172 chassis refer to the Device Routes tab in MAX National Instruments Corporation 67 NI cDAQ 9172 User Guide and Specifications Clock Routing Figure 49 shows the clock routing circuitry of the NI cDAQ 9172 chassis 80 MHz Timebase Onboard 80 MHz Oscillator 4 20 MHz Timebase 200 100 kHz Timebase Figure 49 NI cDAQ 9172 Clock Routing Circuitry 80 MHz Timebase You can use the 80 MHz Timebase as the Source input to the 32 bit general purpose counter timers The 80 MHz Timebase can be generated from the following sources e Onboard oscillator e External signal by using the external reference clock 20 MHz Timebase The 20 MHz Timebase normally generates many of the AI and AO timing signals The 20 MHz Timebase can function as the Source input to the 32 bit general purpose counter timers The 20 MHz Timebase is generated by dividing down the 80 MHz Timebase 100 kHz Timebase You can use the 100 kHz Timebase to generate many of the AI and AO timing signals The 100 kHz Timebase can also function as the Source input to the 32 bit general purpose counter timers The 100 kHz Timebase is generated by dividing down the 20 MHz Timebase by 200 NI cDAQ 9172 User Guide and Specifications 68 ni com Specifications Analog Input Analog Output These specifications are for the NI cDAQ 9172 chassis only These
45. ftware controls the rate at which data is generated Software sends a separate command to the hardware to initiate each DAC conversion In NI DAQm x software timed generations are referred to as on demand timing Software timed generations are also NI cDAQ 9172 User Guide and Specifications 20 ni com referred to as immediate or static operations They are typically used for writing out a single value such as a constant DC voltage The following considerations apply to software timed generations e If any AO channel on a module is used in a hardware timed waveform task no channels on that module can be used in a software timed task e You can configure software timed generation to simultaneously update e Only one simultaneous update task can run at a time e Simultaneous update is not restricted to 16 channels e A hardware timed AO task and a simultaneous update AO task cannot run at the same time Hardware Timed Generations With a hardware timed generation a digital hardware signal controls the rate of the generation This signal can be generated internally on the chassis or provided externally Hardware timed generations have several advantages over software timed acquisitions e The time between samples can be much shorter e The timing between samples is deterministic e Hardware timed acquisitions can use hardware triggering Hardware timed AO operations on the NI cDAQ 9172 chassis must be buffered Buffered
46. gnal is low and resumes when the signal goes high or vice versa For continuous pulse generations the counter stops generating pulses while the external trigger signal is low and resumes when the signal goes high or vice versa When using a pause trigger the pause trigger source routes to the Counter n Gate signal input of the counter Other Counter Features Cascading Counters You can internally route the Counter n Internal Output and Counter n TC signals of each counter to the Gate inputs of the other counter By cascading two counters together you can effectively create a 64 bit counter By cascading counters you also can enable other applications For example to improve the accuracy of frequency measurements use reciprocal frequency measurement as described in the Method 3 Measure Large Range of Frequencies Using Two Counters section Counter Filters You can enable a programmable debouncing filter on each PFI signal When the filters are enabled the NI cDAQ 9172 chassis samples the input NI cDAQ 9172 User Guide and Specifications 60 ni com on each rising edge of a filter clock The NI cDAQ 9172 chassis uses an onboard oscillator to generate the filter clock with a 40 MHz frequency For more information refer to the NI DA Qmx Help The NI DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help ay Note NI DAQmx only supports filters on counter inputs The following is
47. h the Lab VIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals Using an Analog Source Some C Series I O modules can generate a trigger based on an analog signal In NI DAQm x this is called the Analog Comparison Event depending on the trigger properties When you use an analog trigger source the samples are paused when the Analog Comparison Event signal is at a high or low level depending on the trigger properties The analog trigger circuit must be configured by a simultaneously running analog input task Minimizing Glitches on the Output Signal When you use a DAC to generate a waveform you may observe glitches on the output signal These glitches are normal when a DAC switches from one voltage to another it produces glitches due to released charges The largest glitches occur when the most significant bit of the DAC code changes You can build a lowpass deglitching filter to remove some of these glitches depending on the frequency and nature of the output signal Go to ni com support for more information about minimizing glitches Getting Started with AO Applications in Software You can use the NI cDAQ 9172 chassis in the following analog output applications e Single Point On Demand Generation e Finite Generation e Continuous Generation e Waveform Generation For more information about programming analog output applications and triggers in software refer the LabVIEW Help in ver
48. ion For information on connecting counter signals refer to the Default Counter Timer Routing section Frequency Measurement You can use the counters to measure frequency in several different ways You can choose one of the following methods depending on your application Method 1 Method 1b Method 2 and Method 3 Method 1 Measure Low Frequency With One Counter This method is good for low frequency signals Use this method to measure one period of your signal using a known timebase Figure 24 illustrates this method a Interval Measured E i F1 Gate 1 2 3 T ER N Ft Source Ft A 4 Single Period Period of F1 N Measurement Ft Ft Frequency of F1 q y N Figure 24 Frequency Measurement Method 1 You can route the signal to measure F1 to the Gate of a counter You can route a known timebase Ft to the Source of the counter The known timebase can be 80MHzTimebase For signals that might be slower than 0 02 Hz use a slower known timebase You can configure the counter to measure one period of the gate signal The frequency of F1 is the inverse of the period National Instruments Corporation 41 NI cDAQ 9172 User Guide and Specifications Method 1bh Measure Low Frequency With One Counter Averaged This method is good for low to medium frequency signals Use this method to measure several periods of your signal using
49. ion If the reference trigger condition occurs before the NI cDAQ 9172 captures the specified number of pretrigger samples the NI cDAQ 9172 ignores the condition If the buffer becomes full the NI cDAQ 9172 continuously discards the oldest samples in the buffer to make space for the next sample This data can be accessed with some limitations before the NI cDAQ 9172 discards it Refer to the KnowledgeBase document Can a Pretriggered Acquisition NI cDAQ 9172 User Guide and Specifications 14 ni com be Continuous for more information To access this KnowledgeBase go to ni com info and enter the info code rdcanq When the reference trigger occurs the NI cDAQ 9172 continues to write samples to the buffer until the buffer contains the number of posttrigger samples desired Figure 9 shows the final buffer Reference Trigger Pretrigger Samples Posttrigger Samples l l T Complete Buffer Figure 9 Reference Trigger Final Buffer Using a Digital Source To use ai ReferenceTrigger with a digital source specify a source and an edge Either PFI or one of several internal signals on the NI cDAQ 9172 chassis can provide the source Refer to Device Routing in MAX in the NI DAQmx Help or the LabVIEW Help in version 8 0 or later for more information The NI DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help To view the LabVIEW Help in version 8 0 o
50. is Refer to Device Routing in MAX in the NI DAQmx Help or the LabVIEW Help in version 8 0 or later for more information The NI DAQmx Help is available after installation from Start Programs National Instruments NI DA Q NI DA Qm x Help To view the LabVIEW Help in version 8 0 or later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals Using an Analog Source Some C Series I O modules can generate a trigger based on an analog signal In NI DAQmx this is called the Analog Comparison Event When you use an analog trigger source the internal sample clock pauses when the Analog Comparison Event signal is low and resumes when the signal goes high or vice versa 3 Note Pause triggers are only sensitive to the level of the source not the edge Analog Input Timing Signals Al Sample Clock A sample consists of one reading from each channel in the AI task ai SampleClock signals the start of a sample of all analog input channels in the task ai SampleClock can be generated from external or internal sources NI cDAQ 9172 User Guide and Specifications 16 ni com PFI _ Analog Comparison _ Event 20 MHz Timebase 100 kHz Timebase a PFI Analog Comparison Event Ctr n Internal Output i leClock Sigma Delta Module Internal Output aSampleclog ai SampleClock Timebase Programmable Clock Divider
51. isition DI Digital input sample clock frequency Streaming from application memory Regenerate from FIFO PCG sie ee cpe setts see arenes ccs ninie Digital output sample clock frequency Streaming from application MCMOLY ie sess eor aea R E Regenerate from FIFO Pinite orones iisti Digital output or digital input sample clock source PFI Characteristics Slots 5 and 6 Only Functionality Timing output sources 1 Requires correlated digital I O modules installed on the appropriate slot s NI cDAQ 9172 User Guide and Specifications 70 2 047 samples 2 047 samples 0 to 8 MHz system dependent 0 to 10 MHz 0 to 10 MHz 0 to 8 MHz system dependent 0 to 10 MHz 0 to 10 MHz Any PFI analog sample or convert clock analog output sample clock Ctr n Internal Output and many other sources Static digital input static digital output timing input and timing output Many analog input analog output counter digital input and digital output timing signals ni com Debounce filter settings Timing input frequency Timing output frequency ee aes Selectable per input 125 ns 6 425 us 2 54 ms disable high and low transitions wih 0 to 20 MHz tones 0 to 20 MHz General Purpose Counter Timers Slots 5 and 6 Only Number of counter timers 0 RESO UHION sneon Output applications 0 0 eee Internal base clocks ee eeeeeeeeeeeees Exter
52. l The pulse widths are also measured in terms of a number of active edges of the Source input You also can specify the active edge of the Source input rising or falling The counter can begin the pulse train generation as soon as the counter is armed or in response to a hardware Start Trigger You can route the Start Trigger to the Gate input of the counter You also can use the Gate input of the counter as a Pause Trigger if it is not used as a Start Trigger The counter pauses pulse generation when the Pause Trigger is active Figure 38 shows a continuous pulse train generation using the rising edge of Source SOURCE UUU OUT Counter Armed Figure 38 Continuous Pulse Train Generation Continuous pulse train generation is sometimes called frequency division If the high and low pulse widths of the output signal are M and N periods then the frequency of the Counter n Internal Output signal is equal to the frequency of the Source input divided by M N For information on connecting counter signals refer to the Default Counter Timer Routing section National Instruments Corporation 53 NI cDAQ 9172 User Guide and Specifications Frequency Generation You can generate a frequency by using a counter in pulse train generation mode or by using the frequency generator circui
53. mmitted The second point is acquired after the start trigger ai StartTrigger Data from A D Conversion Slow Module ai SampleClock Data Returned to Al Task i 1st A D Conversion yh 2nd A D Conversion 3rd A D Conversion ROAA A AA AAA E AVAAN C YOK et ee Hf A A A A A A A A A B B B Cc Figure 11 Sample Clock Timing Example For example if running an AI task at 1 kHz using a module with a maximum rate of 10 Hz the slow module returns 100 samples of the first point followed by 100 samples of the second point etc Other modules in the task will return 1 000 new data points per second which is normal When performing a single point acquisition no points are repeated Refer to the KnowledgeBase document C Series Modules Supported in the NI cDAQ 9172 for more information To access this KnowledgeBase go to ni com info and enter the info code rdcdaq Getting Started with Al Applications in Software You can use the NI cDAQ 9172 chassis in the following analog input applications e Single Point e Finite e Continuous National Instruments Corporation 19 NI cDAQ 9172 User Guide and Specifications For more information about programming analog input applications and triggers in software Refer to the NJ DAQm x Help or the LabVIEW Help in version 8 0 or later for more information The NI DAQmx Help is available after installation from Start
54. n configure the rising or falling edge of the AUX input or the Gate input to be the active edge Use this type of measurement to count events or measure the time that occurs between edges on two signals This type of measurement is sometimes referred to as start stop trigger measurement second gate measurement or A to B measurement Single Two Signal Edge Separation Measurement With single two signal edge separation measurement the counter counts the number of rising or falling edges on the Source input occurring between an active edge of the Gate signal and an active edge of the AUX signal The counter then stores the count in a hardware save register and ignores other edges on its inputs Software then reads the stored count National Instruments Corporation 49 NI cDAQ 9172 User Guide and Specifications Figure 33 shows an example of a single two signal edge separation measurement Counter Armed i r Measured Interval gt AUX 4 GATE _4 SOURCE F Counter Value 00001 23 4 5 6 7 8 8 8 HW Save Register 8 Figure 33 Single Two Signal Edge Separation Measurement Buffered Two Signal Edge Separation Measurement Buffered and single two signal edge separation measurements are similar but buffered measurement measures multiple intervals The counter counts the number of rising or falling edges on
55. nal e ai ReferenceTrigger e ai StartTrigger e ai SampleClock e ai ConvertClock e ao SampleClock e di SampleClock e do SampleClock e Change Detection Event e Analog Comparison Event In addition you can route Counter Internal Output or Counter Source to Counter 0 Gate You can also route Counter 0 Internal Output or Counter 0 Source to Counter Gate Some of these options may not be available in some driver software Routing Counter n Gate to an Output Terminal You can route Counter n Gate to any output PFI terminal Counter n Aux Signal The Counter n Aux signal indicates the first edge in a two signal edge separation measurement Routing a Signal to Counter n Aux Each counter has independent input selectors for the Counter n Aux signal You can route the following signals to the Counter n Aux input e Any PFI terminal e ai ReferenceTrigger e ai StartTrigger e Analog Comparison Event In addition you can route Counter 1 Internal Output Counter Gate Counter 1 Source or Counter 0 Gate to Counter 0 Aux You can also route Counter 0 Internal Output Counter 0 Gate Counter 0 Source or Counter 1 Gate to Counter 1 Aux Some of these options may not be available in some driver software National Instruments Corporation 57 NI cDAQ 9172 User Guide and Specifications Counter n A Counter n B and Counter n Z Signals Counter n B can control the direction of counting in edge co
56. nal base clock frequency Base clock accuracy eeseeseeeees 1 Requires correlated digital I O modules installed in the appropriate slot s National Instruments Corporation 71 Aes 32 bits fash Edge counting pulse semi period period two edge separation n X1 X2 X4 quadrature encoding with Channel Z reloading two pulse encoding Ba Pulse pulse train with dynamic updates frequency division equivalent time sampling Hes 80 MHz 20 MHz 100 kHz bates 0 to 20 MHz ies Gate Source HWarm Aux A B Z Up_Down with Any PFI analog trigger many internal signals ites 2 samples eae High speed data stream programmed I O NI cDAQ 9172 User Guide and Specifications Frequency Generator Slots 5 and 6 Only Number of channels eeseeeseeeeeeeee 1 Base CIOCKS cccccecececeeseseeeeesesssreeeeees 10 MHz 100 kHz IDINO SAA 1 to 16 integers Base clock accuracy 50 ppm Output is available on any PFI terminal External Digital Triggers Slots 5 and 6 or with Some Al Modules SOULE sirrien e ee benoes Any PFI terminal POL arty csc csevs hascetistsaghstnistsietsaveapcestsevaaed Software selectable for most signals Analog input function eee Start Trigger Reference Trigger Pause Trigger Sample Clock Sample Clock Timebase Analog output function ee Start Trigger Pause Trigger Sample Clock Sample Clock Timebase Counter timer functions 0
57. nce trigger and pause trigger with analog digital or software sources Refer to the Analog Input Triggering and Analog Output Triggering sections for more information Independent Data Streams The NI cDAQ 9172 supports four independent high speed data streams allowing for up to four simultaneous hardware timed tasks such as analog input analog output buffered counter timers and correlated digital input output PFI Signals The PFI signals available through correlated digital input and output modules installed in slots 5 and 6 provide access to advanced features such as triggering synchronization and counter timers Refer to the PFI section for more information The PFI pins have a digital filter circuit at the inputs that is configurable on a per line basis The filters allow the rejection of noise caused by noisy environments bounces on switches and so on Flexible Counter Timers The NI cDAQ 9172 includes two general purpose 32 bit counter timers that can be used to count edges measure pulse widths measure periods and frequencies and perform position measurements encoding In addition the counter timers can generate pulses pulse trains and square waves with adjustable frequencies You can access the counter inputs and outputs using correlated digital I O modules in slots 5 and or 6 Refer to the Counters section for more information To perform analog input measurements insert a supported analog input C Series
58. ns Channel Z Behavior Some quadrature encoders have a third channel channel Z which is also referred to as the index channel A high level on channel Z causes the counter to be reloaded with a specified value in a specified phase of the quadrature cycle You can program this reload to occur in any one of the four phases in a quadrature cycle Channel Z behavior when it goes high and how long it stays high differs with quadrature encoder designs You must refer to the documentation for your quadrature encoder to obtain timing of channel Z with respect to channels A and B You must then ensure that channel Z is high during at least a portion of the phase you specify for reload For example in Figure 31 channel Z is never high when channel A is high and channel B is low Thus the reload must occur in some other phase In Figure 31 the reload phase is when both channel A and channel B are low The reload occurs when this phase is true and channel Z is high Incrementing and decrementing takes priority over reloading Thus when the channel B goes low to enter the reload phase the increment occurs first The reload occurs within one maximum timebase period after the reload phase becomes true After the reload occurs the counter continues counting as before The figure illustrates channel Z reload with X4 decoding ChA _f 1 chB p gt 7 Ch Z i i Tt Max Timebase Counter Value x 6 7 AE 1 y 2 X 3 Ya 0 0 1
59. nt That is the sample clock does not reset the counter You can route the counter sample clock to the Gate input of the counter You can configure the counter to sample on the rising or falling edge of the sample clock Figure 18 shows an example of buffered edge counting Notice that counting begins when the counter is armed which occurs before the first active edge on Gate Counter Armed Sample Clock Sample on Rising Edge SOURCE LALALA Counter Value 0 5 6 MEJEJE a Buffer ojj N Figure 18 Buffered Sample Clock Edge Counting National Instruments Corporation 35 NI cDAQ 9172 User Guide and Specifications Controlling the Direction of Counting In edge counting applications the counter can count up or down You can configure the counter to do the following e Always count up e Always count down e Count up when the Counter n B input is high count down when it is low For information on connecting counter signals refer to the Default Counter Timer Routing section Pulse Width Measurement In pulse width measurements the counter measures the width of a pulse on its Gate input signal You can configure the counter to measure the width of high pulses or low pulses on the Gate signal You can route an internal or external periodic clock signal with a known period to the Source input of the counter The counter counts
60. nts The amount of increments and decrements per cycle depends on the type of encoding X1 X2 or X4 NI cDAQ 9172 User Guide and Specifications 46 ni com Figure 28 shows a quadrature cycle and the resulting increments and decrements for X1 encoding When channel A leads channel B the increment occurs on the rising edge of channel A When channel B leads channel A the decrement occurs on the falling edge of channel A Cha ahi f H ChB i seJ i i Counter Value 5 4 6 7 7 X 6 5 Figure 28 X1 Encoding X2 Encoding The same behavior holds for X2 encoding except the counter increments or decrements on each edge of channel A depending on which channel leads the other Each cycle results in two increments or decrements as shown in Figure 29 ChA tt e che mo ii m e A Aa cma o aa aE MT NONE Figure 29 X2 Encoding X4 Encoding The counter increments or decrements similarly on each edge of channels A and B for X4 encoding Whether the counter increments or decrements depends on which channel leads the other Each cycle results in four increments or decrements as shown in Figure 30 ChB ChA Counter Value SOGOGDOOE BVDV OENTNENG Figure 30 X4 Encoding National Instruments Corporation 47 NI cDAQ 9172 User Guide and Specificatio
61. ny counter input or output function you must first enable or arm the counter Software can arm a counter or configure counters to be armed on a hardware signal Software calls this hardware signal the Arm Start Trigger Internally software routes the Arm Start Trigger to the Counter n HW Arm input of the counter National Instruments Corporation 59 NI cDAQ 9172 User Guide and Specifications For counter output operations you can use the arm start trigger to have start trigger like behavior The arm start trigger can be used for synchronizing multiple counter input and output tasks Start Trigger For counter output operations you can configure a start trigger to begin a finite or continuous pulse generation Once a continuous generation triggers the pulses continue to generate until you stop the operation in software For finite generations the specified number of pulses is generated and the generation stops unless you use the retriggerable attribute When you use this attribute subsequent start triggers cause the generation to restart When using a start trigger the start trigger source routes to the Counter n Gate signal input of the counter For counter input operations the arm start trigger can imitate trigger like behavior Pause Trigger You can use pause triggers in edge counting and continuous pulse generation applications For edge counting acquisitions the counter stops counting edges while the external trigger si
62. ons Active LED The Active LED indicates whether the NI cDAQ 9172 chassis is communicating over the USB bus Table 1 Active LED LED Definition Amber Power is applied but USB connection is not established Green USB traffic present Off No USB traffic present Ready LED The Ready LED is lit when the NI cDAQ 9172 chassis is ready for use The color indicates whether the USB connection is Full Speed or Hi Speed Table 2 Ready LED LED Definition Amber Hi Speed 480 Mbit sec National Instruments Corporation 9 NI cDAQ 9172 User Guide and Specifications Table 2 Ready LED Continued LED Definition Green Full Speed 12 Mbit sec Off USB connection is not established Using the NI cDAQ 9172 The cDAQ system consists of three parts C Series I O modules the cDAQ module interface and the USB STC2 These components digitize signals perform D A conversions to generate analog output signals measure and control digital I O signals and provide signal conditioning C Series 1 0 Module C Series I O Module C Series 1 0 Module cDAQ Module USB USB Interface STC2 2 0 Figure 8 NI cDAQ 9172 Block Diagram C Series 1 0 Modules National Instruments C Series I O modules provide built in signal conditioning and screw terminal spring terminal BNC D SUB or RJ 50 connectors
63. onvert Clock e AO Sample Clock e Counter n Internal Output e Frequency Output e DI Change Detection Output Several other internal signals can be routed to di SampleClock Refer to Device Routing in MAX in the NI DAQmx Help or the LabVIEW Help in version 8 0 or later for more information The NI DAQmx Help is available after installation from Start Programs National Instruments NI DA Q NI DA Qm x Help To view the LabVIEW Help in version 8 0 or later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals Using an External Source You can route the following signals as di SampleClock e Any PFI terminal e Analog Comparison Event an analog trigger You can sample data on the rising or falling edge of di SampleClock Routing DI Sample Clock to an Output Terminal You can route di SampleClock to any output PFI terminal The PFI circuitry inverts the polarity of di SampleClock before driving the PFI terminal Digital Waveform Generation Correlated Output With a hardware timed generation a digital hardware signal controls the rate of the generation This signal can be generated internally on the chassis or provided externally Hardware timed generations have several advantages over software timed acquisitions e The time between samples can be much shorter e The timing between samples can be deterministic Hardware timed operations must be buffered
64. ount prevention or synchronous counting mode ensures that a counter returns correct data in applications that use a slow or non periodic external source Duplicate count prevention applies only to buffered counter applications such as measuring frequency or period In such buffered applications the counter stores the number of times an external Source pulses between rising edges on the Gate signal NI cDAQ 9172 User Guide and Specifications 62 ni com Example Application That Works Correctly No Duplicate Counting Figure 43 shows an external buffered signal as the period measurement Source Gate Source Counter Value Buffer Rising Edge of Gate Counter detects rising edge of Gate on the next rising edge of Source o 6 X7 X1 X2 Xa Figure 43 Duplicate Count Prevention Example On the first rising edge of the Gate the current count of seven is stored On the next rising edge of the Gate the counter stores a two because two Source pulses occurred after the previous rising edge of Gate The counter synchronizes or samples the Gate signal with the Source signal which means that the counter does not detect a rising edge in the Gate until the next Source pulse In this example the counter stores the values in the buffer on the first rising Source edge after the rising edge of Gate The details of when exactly the counter synchroni
65. performing Table 6 lists how this terminal is used in various applications Table 6 Counter Applications and Counter n Source Application Purpose of Source Terminal Pulse Generation Counter Timebase One Counter Time Measurements Counter Timebase Two Counter Time Measurements Input Terminal Nonbuffered Edge Counting Input Terminal Buffered Edge Counting Input Terminal Two Edge Separation Counter Timebase Routing a Signal to Counter n Source Each counter has independent input selectors for the Counter n Source signal You can route the following signals to the Counter n Source input e 80 MHz Timebase e 20 MHz Timebase e 100 kHz Timebase e Any PFI terminal e Analog Comparison Event In addition you can route Counter 1 TC or Counter 1 Gate to Counter 0 Source You can also route Counter 0 TC or Counter 0 Gate to Counter 1 Source Routing Counter n Source to an Output Terminal You can route Counter n Source to any output PFI terminal Counter n Gate Signal The Counter n Gate signal can perform many different operations depending on the application including starting and stopping the counter and saving the counter contents NI cDAQ 9172 User Guide and Specifications 56 ni com Routing a Signal to Counter n Gate Each counter has independent input selectors for the Counter n Gate signal You can route the following signals to the Counter n Gate input e Any PFI termi
66. r later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals You also can specify whether the measurement acquisition stops on the rising edge or falling edge of ai ReferenceTrigger Using an Analog Source Some C Series I O modules can generate a trigger based on an analog signal In NI DAQmx this is called the Analog Comparison Event When you use an analog trigger source the acquisition stops on the first rising or falling edge of the Analog Comparison Event signal depending on the trigger properties National Instruments Corporation 15 NI cDAQ 9172 User Guide and Specifications Routing Al Reference Trigger Signal to an Output Terminal You can route ai ReferenceTrigger to any output PFI terminal Al Pause Trigger Signal The Pause Trigger signal can be generated from internal or external sources Any time the signal deasserts you can use the Pause Trigger signal to pause the acquisition You can use the AI Pause Trigger ai PauseTrigger signal to pause and resume a measurement acquisition The internal sample clock pauses while the external trigger signal is active and resumes when the signal is inactive You can program the active level of the pause trigger to be high or low Using a Digital Source To use ai PauseTrigger specify a source and a polarity The source can be either from PFI or one of several other internal signals on your NI cDAQ 9172 chass
67. ration of a pulse with a pulse delay of four and a pulse width of three using the rising edge of Source Counter Armed SOURCE i _ OUT Figure 35 Single Pulse Generation Single Pulse Generation with Start Trigger The counter can output a single pulse in response to one pulse on a hardware Start Trigger signal The pulse appears on the Counter n Internal Output signal of the counter You can route the Start Trigger signal to the Gate input of the counter You can specify a delay from the Start Trigger to the beginning of the pulse You also can specify the pulse width The delay and pulse width are measured in terms of a number of active edges of the Source input After the Start Trigger signal pulses once the counter ignores the Gate input National Instruments Corporation 51 NI cDAQ 9172 User Guide and Specifications Figure 36 shows a generation of a pulse with a pulse delay of four and a pulse width of three using the rising edge of Source GATE J Start Trigger SOURCE i OUT Figure 36 Single Pulse Generation with Start Trigger Retriggerable Single Pulse Generation The counter can output a single pulse in response to each pulse on a hardware Start Trigger signal The pulses appear on the Counter n Internal Output signal of the counter You can route the
68. ries I O modules For more information about using digital modules for triggering refer to the Digital I O section Al Start Trigger Signal Use the AI Start Trigger ai StartTrigger signal to begin a measurement acquisition A measurement acquisition consists of one or more samples If you do not use triggers begin a measurement with a software command Once the acquisition begins configure the acquisition to stop in one of the following ways e When a certain number of points is sampled in finite mode e After a hardware reference trigger in finite mode e With a software command in continuous mode An acquisition that uses a start trigger but not a reference trigger is sometimes referred to as a posttriggered acquisition That is samples are measured only after the trigger When you are using an internal sample clock you can specify a delay from the start trigger to the first sample Using a Digital Source To use ai StartTrigger with a digital source specify a source and an edge Use the following signals as the source e Any PFI terminal e Counter n Internal Output National Instruments Corporation 13 NI cDAQ 9172 User Guide and Specifications The source also can be one of several other internal signals on your NI cDAQ 9172 chassis Refer to Device Routing in MAX in the NI DAQmx Help or the LabVIEW Help in version 8 0 or later for more information The NI DAQmx Help is available after installation from Start
69. sigma delta modules also provide the signal used as the AI Sample Clock This signal is used to cause A D conversion for other modules in the system just as the AI Sample Clock does when a sigma delta module is not being used When sigma delta modules are in an AI task the chassis automatically issues a synchronization pulse to each sigma delta modules that resets their ADCs at the same time Both the synchronization pulse and the oversample clock can be routed from or to any PFI line to allow synchronization between multiple chassis Because of the filtering used in sigma delta A D converters these modules usually exhibit a fixed input delay relative to non sigma delta modules in the system This input delay is specified in the C Series I O module documentation Slow Sample Rate Modules Some C Series analog input modules are specifically designed for measuring signals that vary slowly such as temperature Because of their slow rate it is not appropriate for these modules to constrain the AI Sample Clock to operate at or slower than their maximum rate When using such a NI cDAQ 9172 User Guide and Specifications 18 ni com module in the cDAQ chassis the maximum Sample Clock rate can run faster than the maximum rate for the module When operating at a rate faster than these slow rate modules can support the slow rate module returns the same point repeatedly until a new conversion completes The first point is acquired when the task is co
70. sion 8 0 or later or to the NI DAQm x Help The NI DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help To view the LabVIEW Help in version 8 0 or later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go to ni com manuals NI cDAQ 9172 User Guide and Specifications 26 ni com Digital 1 0 To use digital I O insert a digital C Series I O module into any slot on the NI cDAQ 9172 chassis The I O specifications such as number of lines logic levels update rate and line direction are determined by the type of C Series I O module used For more information refer to the documentation included with your C Series I O modules Correlated vs Static DIO Modules Digital I O module capabilities are determined by the type of digital signals that the module is capable of measuring or generating Static Digital I O modules are designed for signals that change slowly and are accessed by software timed reads and writes Correlated Digital I O modules are for signals that change rapidly and are updated by either software or hardware timed reads and writes Correlated Digital I O modules can perform the following tasks e Used in any slot software timed reads and writes e Used in slots 1 though 4 Digital Waveform Generation and Acquisition Correlated Input Output e Used in slots 5 and 6 Counter Timer e Used in slots 5 and 6
71. sures high and low frequency signals accurately However it requires two counters National Instruments Corporation 45 NI cDAQ 9172 User Guide and Specifications Table 5 summarizes some of the differences in methods of measuring frequency Table 5 Frequency Measurement Method Comparison Measures High Measures Low Number of Frequency Frequency Number of Measurements Signals Signals Method Counters Used Returned Accurately Accurately 1 1 1 Poor Good 1b 1 Many Fair Good 2 lor2 1 Good Poor 3 2 1 Good Good For information on connecting counter signals refer to the Default Counter Timer Routing section Position Measurement You can use the counters to perform position measurements with quadrature encoders or two pulse encoders You can measure angular position with X1 X2 and X4 angular encoders Linear position can be measured with two pulse encoders You can choose to do a single point on demand position measurement or a buffered sample clock position measurement You must arm a counter to begin position measurements Measurements Using Quadrature Encoders The counters can perform measurements of quadrature encoders that use X1 X2 or X4 encoding A quadrature encoder can have up to three channels channels A B and Z X1 Encoding When channel A leads channel B in a quadrature cycle the counter increments When channel B leads channel A in a quadrature cycle the counter decreme
72. t Analog Comparison _ ao SampleClock Event Timebase Programmable Clock 20 MHz Timebase Divider 100 kHz Timebase Figure 12 Analog Output Timing Options Routing AO Sample Clock to an Output Terminal You can route ao SampleClock to any output PFI terminal AO Sample Clock Timebase The AO Sample Clock Timebase ao SampleClockTimebase signal is divided down to provide a source for ao SampleClock ao SampleClockTimebase can be generated from external or internal sources and is not available as an output from the chassis AO Start Trigger Signal Use the AO Start Trigger ao StartTrigger signal to initiate a waveform generation If you do not use triggers you can begin a generation with a software command If you are using an internal sample clock you can specify a delay from the start trigger to the first sample For more information refer to the NJ DAQmx Help The NI DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help National Instruments Corporation 23 NI cDAQ 9172 User Guide and Specifications Using a Digital Source To use ao StartTrigger specify a source and a rising or falling edge The source can be one of the following signals e A software pulse e Any PFI terminal e ai ReferenceTrigger e ai StartTrigger The source also can be one of several internal signals on the NI cDAQ 9172 chassis Refer to Device Ro
73. t Using the Frequency Generator The frequency generator can output a square wave at many different frequencies The frequency generator is independent of the two general purpose 32 bit counter timer modules on the NI cDAQ 9172 chassis Figure 39 shows a block diagram of the frequency generator 20 MHz Timebase Frequency Output 100 kHz Timebase ____LL 2 Timebase e Frequency Generator e Freq Out Divisor 1 16 Figure 39 Frequency Generator Block Diagram The frequency generator generates the Frequency Output signal The Frequency Output signal is the Frequency Output Timebase divided by a number you select from to 16 The Frequency Output Timebase can be either the 20 MHz Timebase divided by 2 or the 100 kHz Timebase The duty cycle of Frequency Output is 50 if the divider is either one or an even number For an odd divider suppose the divider is set to D In this case Frequency Output is low for D 1 2 cycles and high for D 1 2 cycles of the Frequency Output Timebase Figure 40 shows the output waveform of the frequency generator when the divider is set to 5 Frequency Output Timebase FREQ OUT 4 Divisor 5 Figure 40 Frequency Generator Output Waveform NI cDAQ 9172 User Guide and Specifications 54 ni com Frequency Output can be rou
74. t Programs National Instruments NI DAQ DAQ Getting Started Guide 2 Ifyou are not using any mounting accessories attach the provided rubber standoffs to the back of the NI cDAQ 9172 chassis Make sure the NI cDAQ 9172 chassis power switch is turned off 4 Attach a ring lug to a 14 AWG 1 6 mm wire Connect the ring lug to the ground terminal on the side of the chassis using the ground screw Attach the other end of the wire to the system safety ground 1 Attached to System Ground Figure 6 Ring Lug Attached to Ground Terminal 3 Note Additionally attach a wire with a ring lug to all other C Series I O module cable shields You must connect this wire to the ground terminal of the chassis using the ground screw National Instruments Corporation 7 NI cDAQ 9172 User Guide and Specifications 5 Remove the plastic cover from the connector in any empty module slot 6 Squeeze both C Series I O module latches insert the I O module into the module slot and press until both latches lock the module in place 7 Connect the NI cDAQ 9172 chassis with the supplied USB cable to any available USB port on your computer 8 Connect the power source to the NI cDAQ 9172 chassis The NI cDAQ 9172 chassis requires an external power supply that meets the specifications in the Power Requirements section iy Note The NI cDAQ 9172 chassis uses a DC input jack with a locking ring Use only this connector with the
75. te input by multiplying the period of the Source signal by the number of edges returned by the counter Single Semi Period Measurement Single semi period measurement is equivalent to single pulse width measurement Buffered Semi Period Measurement In buffered semi period measurement on each edge of the Gate signal the counter stores the count in a hardware save register The NI cDAQ 9172 transfers the stored values to host memory The counter begins counting when it is armed The arm usually occurs between edges on the Gate input which means that the first value stored in the hardware save register does not reflect a full semi period of the Gate input In most applications this first point should be discarded Figure 23 shows an example of a buffered semi period measurement Counter Armed ewm rs source FLA LALA LELE LA Counter Value 0 1 2 1 2 3 1 LELNI 2 1 4 2 2 2 3 1 AN Buffer ef a r fo ro Figure 23 Buffered Semi Period Measurement NI cDAQ 9172 User Guide and Specifications 40 ni com B Note Ifyou are using an external signal as the Source at least one Source pulse should occur between each active edge of the Gate signal This condition ensures that correct values are returned by the counter If this condition is not met consider using duplicate count prevention described in the Duplicate Count Prevention sect
76. ted to any output PFI terminal The FREQ OUT signal also can be routed to DO Sample Clock and DI Sample Clock In software program the frequency generator as you would program one of the counters for pulse train generation For information on connecting counter signals refer to the Default Counter Timer Routing section Frequency Division The counters can generate a signal with a frequency that is a fraction of an input signal This function is equivalent to continuous pulse train generation For information on connecting counter signals refer to the Default Counter Timer Routing section Counter Timing Signals In slots 5 and or 6 of the NI cDAQ 9172 chassis you can configure C Series correlated digital input output modules as one of the following counter timing signals e Counter n Source e Counter n Gate e Counter n Aux e Countern A e Counter n B e Countern Z e Counter n Up_Down e Counter n HW Arm e Counter n Internal Output e Counter n TC e Frequency Output In this section n refers to either Counter 0 or 1 For example Counter n Source refers to two signals Counter 0 Source the source input to Counter 0 and Counter 1 Source the source input to Counter 1 National Instruments Corporation 55 NI cDAQ 9172 User Guide and Specifications Counter n Source Signal The selected edge of the Counter n Source signal increments and decrements the counter value depending upon the application the counter is
77. the Source input occurring between an active edge of the Gate signal and an active edge of the AUX signal The counter then stores the count in a hardware save register On the next active edge of the Gate signal the counter begins another measurement The NI cDAQ 9172 transfers the stored values to host memory Figure 34 shows an example of a buffered two signal edge separation measurement AUX A GATE A A A SOURCE Counter Value 1 2 3 1 2 3 1 2 3 3 3 3 Buffer 3 2 Figure 34 Buffered Two Signal Edge Separation Measurement For information about connecting counter signals refer to the Default Counter Timer Routing section NI cDAQ 9172 User Guide and Specifications 50 ni com Counter Output Applications Simple Pulse Generation The counter can output a single pulse The pulse appears on the Counter n Internal Output signal of the counter You can specify a delay from when the counter is armed to the beginning of the pulse The delay is measured in terms of a number of active edges of the Source input You can specify a pulse width The pulse width is also measured in terms of a number of active edges of the Source input You also can specify the active edge of the Source input rising or falling Figure 35 shows a gene
78. them to the internal counter The NI cDAQ 9172 chassis uses one of three synchronization methods e 80 MHz source mode e Other internal source mode e External source mode In NI DAQmx the chassis uses 80 MHz source mode if you perform the following e Perform a position measurement e Select duplicate count prevention National Instruments Corporation 65 NI cDAQ 9172 User Guide and Specifications Otherwise the mode depends on the signal that drives Counter n Source Table 8 describes the conditions for each mode Table 8 Synchronization Mode Conditions Duplicate Count Type of Signal Driving Synchronization Prevention Enabled Measurement Counter n Source Mode Yes Any Any 80 MHz Source No Position Measurement Any 80 MHz Source No Any 80 MHz Timebase 80 MHz Source No All Except Position 20 MHz Timebase Other Internal Source Measurement 100 kHz Timebase No All Except Position Any Other Signal External Source Measurement such as PFI 80 MHz Source Mode In 80 MHz source mode the NI cDAQ 9172 synchronizes signals on the rising edge of the source and counts on the following rising edge of the source as shown in Figure 46 Source A Synchronize Other Internal Source Mode In other internal source mode the NI cDAQ 9172 chassis synchronizes signals on the falling edge of the source and counts on the following rising edge of the source as shown in Figure 47
79. time without disrupting the output With onboard regeneration the entire buffer is downloaded to the FIFO and regenerated from there After the data is downloaded new data cannot be written to the FIFO To use onboard regeneration the entire buffer must fit within the FIFO size The advantage of using on board regeneration is that it does not require communication with the main host memory once the operation is started thereby preventing any problems that may occur due to excessive bus traffic or operating system latency With non regeneration old data is not repeated New data must be continually written to the buffer If the program does not write new data to the buffer at a fast enough rate to keep up with the generation the buffer underflows and causes an error NI cDAQ 9172 User Guide and Specifications 30 ni com Change Detection Event The Change Detection Event is the signal generated when a change on the rising or falling edge lines is detected by the change detection task Routing Change Detection Event to an Output Terminal You can route ChangeDetectionEvent to any output PFI terminal Change Detection Acquisition You can configure lines on correlated digital modules in slots 1 through 4 to detect rising or falling edges When one or more of these lines sees the edge specified for that line the NIcDAQ 9172 chassis samples all the lines in the task The rising and falling edge lines do not necessarily have to be in the
80. unting applications Use the A B and Z inputs to each counter when measuring quadrature encoders or measuring two pulse encoders Routing Signals to A B and Z Counter Inputs Each counter has independent input selectors for each of the A B and Z inputs You can route the following signals to each input e Any PFI terminal e Analog Comparison Event Routing Counter n Z Signal to an Output Terminal You can route Counter n Z to any output PFI terminal Counter n Up_Down Signal Counter n Up_Down is another name for the Counter n B signal Counter n HW Arm Signal The Counter n HW Arm signal enables a counter to begin an input or output function To begin any counter input or output function you must first enable or arm the counter In some applications such as buffered semi period measurement the counter begins counting when armed In other applications such as single pulse width measurement the counter begins waiting for the Gate signal when it is armed Counter output operations can use the arm signal in addition to a start trigger Software can arm a counter or configure counters to be armed on a hardware signal Software calls this hardware signal the Arm Start Trigger Neutrally software routes the Arm Start Trigger to the Counter n HW Arm input of the counter Routing Signals to Counter n HW Arm Input You can route the following signals to the Counter n HW Arm input e Any PFI terminal e ai ReferenceTrigger
81. ut signal Signal to gt SOURCE OUT Measure F1 COUNTER 0 Signal of Known A gt SOURCE OUT Frequency F2 COUNTER 1 __ GATE 012983 N CTR_O_SOURCE pip Signal to Measure CTR_0_OUT CTR_1_GATE lt _ Mtervalto p Measure CTR_1_SOURCE JUUUUUUUUUUUUUUULA Figure 27 Frequency Measurement Method 3 Then route the Counter 0 Internal Output signal to the Gate input of Counter 1 You can route a signal of known frequency F2 to the Counter 1 Source input F2 can be 80MHzTimebase For signals that might be slower than 0 02 Hz use a slower known timebase Configure Counter 1 to perform a single pulse width measurement Suppose the result is that the pulse width is J periods of the F2 clock From Counter 0 the length of the pulse is N F1 From Counter 1 the length of the same pulse is J F2 Therefore the frequency of F1 is given by F1 F2 NIJ NI cDAQ 9172 User Guide and Specifications 44 ni com Choosing a Method for Measuring Frequency The best method to measure frequency depends on several factors including the expected frequency of the signal to measures the desired accuracy how many counters are available and how long the measurement can take e Method 1 uses only one counter It is a good method for many applications However the accuracy of the measurement decreases as the frequency increases Consider a frequency measurement
82. uting in MAX in the NI DAQmx Help or the LabVIEW Help in version 8 0 or later for more information The NI DAQmx Help is available after installation from Start Programs National Instruments NI DAQ NI DAQmx Help To view the LabVIEW Help in version 8 0 or later select Help Search the LabVIEW Help in LabVIEW Alternately to download the LabVIEW Help go toni com manuals You also can specify whether the waveform generation begins on the rising edge or falling edge of ao StartTrigger Using an Analog Source Some C Series I O modules can generate a trigger based on an analog signal In NI DAQmx this is called the Analog Comparison Event depending on the trigger properties When you use an analog trigger source the waveform generation begins on the first rising or falling edge of the Analog Comparison Event signal depending on the trigger properties The analog trigger circuit must be configured by a simultaneously running analog input task Routing AO Start Trigger Signal to an Output Terminal You can route ao StartTrigger to any output PFI terminal The output is an active high pulse AO Pause Trigger Signal Use the AO Pause trigger signal ao PauseTrigger to mask off samples in a DAQ sequence When ao PauseTrigger is active no samples occur but ao PauseTrigger does not stop a sample that is in progress The pause does not take effect until the beginning of the next sample NI cDAQ 9172 User Guide and Specifications 2
83. zes the Gate signal vary depending on the synchronization mode Synchronization modes are described in the Synchronization Modes section National Instruments Corporation 63 NI cDAQ 9172 User Guide and Specifications Example Application That Works Incorrectly Duplicate Counting In Figure 44 after the first rising edge of Gate no Source pulses occur which means that the counter does not write the correct data to the buffer No Source edge so no value written to buffer Gate Source I f Counter Value 6 X7 X 1 Buffer 7 Figure 44 Duplicate Count Example Example Application That Prevents Duplicate Count With duplicate count prevention enabled the counter synchronizes both the Source and Gate signals to the 80 MHz Timebase By synchronizing to the timebase the counter detects edges on the Gate even if the Source does not pulse This enables the correct current count to be stored in the buffer even if no Source edges occur between Gate signals as shown in Figure 45 Counter detects rising Gate edge Counter value increments only one time for each Source pulse Gate Source UUU X1 80 MHz Timebase Counter Value 6 X7 Buffer 7 0 7 Figure 45 Duplicate Count Prevention Example NI cDAQ 9172 User Guide and Specifications 64 ni

Download Pdf Manuals

image

Related Search

Related Contents

SP-810UZ - Olympus  User Manual - Riello UPS  

Copyright © All rights reserved.
Failed to retrieve file