Home

Lenox Heat Pump 50677201 User's Manual

image

Contents

1. 41127 108 SIDE VIEW UNIT SUPPORT FEET 9 1 2 8 1 2 241 216 8 1 4 210 13 1 2 343 5 1 2 140 XP14 018 024 AND 030 BASE SECTION Model Number A LIQUID LINE CONNECTION ELECTRICAL INLETS A SUCTION LINE CONNECTION 4 3 4 121 I B TOP VIEW UNIT SUPPORT FEET p 16 7 8 429 3 1 8 79 30 3 4 781 XP14 036 TO 060 BASE WITH ELONGATED LEGS XP14 018 230 31 787 XP14 024 230 39 991 XP14 030 230 39 991 XP14 036 230 35 889 30 1 2 775 35 889 XP14 042 230 39 991 XP14 048 230 39 991 XP14 060 230 45 1143 506728 01 39 1 2 1003 35 1 2 902 Page 2 Typical Unit Parts Arrangement CONTROL PANEL CAPACITOR C12 CONTACTOR 1POLE K1 1 aca CONTROL THERMAL PROTECTION GROUND SWITCH S173 LUG ONLY ON UNITS USING EXTERNAL SWITCH COMPRESSOR MUFFLER 5 TON UNIT EXAMPLED HERE DEFROST TRUE SUCTION THERMOSTAT S6 PORT CHECK EXPANSION R
2. cae Heating Cooling F C 20 30 40 50 60 65 70 75 80 85 90 95 100 105 110 115 018 67 83 100 118 137 145 145 146 147 148 149 151 151 153 154 155 024 58 72 88 105 123 139 140 142 143 144 145 145 146 147 147 148 030 55 69 84 102 122 135 136 138 140 141 143 144 145 147 148 149 036 62 76 91 106 124 135 137 139 141 143 145 146 148 150 151 153 042 58 73 89 108 130 127 129 131 132 134 136 137 139 140 141 142 048 60 75 90 105 121 136 137 138 139 140 141 142 143 144 146 147 060 56 70 84 99 114 132 133 134 135 137 138 139 141 142 143 144 Liquid Pressure F C 20 30 40 50 60 65 70 75 80 85 90 95 100 105 110 115 018 272 287 305 321 339 242 259 279 302 326 351 376 406 433 462 498 024 281 295 309 324 340 243 262 281 302 325 348 373 399 426 454 463 030 274 286 299 313 327 250 268 288 308 330 352 376 400 426 452 460 036 287 304 322 342 365 230 248 268 288 311 334 359 385 412 441 471 042 293 335 368 394 411 215 234 254 275 298 321 346 371 398 426 455 048 282 299 316 334 353 219 237 256 277 298 321 344 369 395 422 450 060 266 285
3. 25 System Operation 28 Defrost System 29 Maintenance Dealer and Homeowner 30 Start up and Performance Checklist 32 Shipping and Packing List Check the unit for shipping damage and listed times below are intact If damaged or if parts are missing immediately contact the last shipping carrier 1 Assembled XP14 outdoor unit The XP14 outdoor unit uses HFC 410A refrigerant This unit must be installed with a matching indoor blower coil and line set as outlined in the XP14 Engineering Handbook These outdoor units are designed for use in check expansion valve CTXV systems only and are not to be used with other refrigerant flow control devices An indoor coil check expansion valve approved for use with HFC 410A must be ordered separately and installed prior to operating the unit 506772 01 Model Number Identification 230 08 XP 14 036 Refrigerant Type HFC 410A Unit Type P Heat Pump Outdoor Unit Series Minor Revision Number Voltage 230 208 230V 1ph 60hz Nominal Cooling Capacity 018 1 5 tons 024 2 tons 030 2 5 tons 036 3 tons 042 3 5 tons 048 4 tons 060 5 tons Unit Dimensions Inches mm
4. LENNOX J 2011 Lennox Industries In Dallas Texas USA RETAIN THESE INSTRUCTIONS FOR FUTURE REFERENCE These instructions are intended as a general guide and do not supersede local codes in any way Consult authorities having jurisdiction before installation 4 WARNING Improper installation adjustment alteration service or maintenance can cause personal injury loss of life or damage to property Installation and service must be performed by a licensed professional installer or equivalent or a service agency A IMPORTANT The Clean Air Act of 1990 bans the intentional venting of refrigerant CFCs HFCs and HCFCs as of July 1 1992 Approved methods of recovery recycling or reclaiming must be followed Fines and or incarceration be levied for noncompliance A IMPORTANT This unit must be matched with an indoor coil as specified in Lennox Engineering Handbook Coils previously charged with HCFC 22 must be flushed NOTICE TO INSTALLER UNIT PLACEMENT It is critical for proper unit operation to place outdoor unit on an elevated surface as described in Unit Placement section on page 7 BRAZING LINE SET TO SERVICE VALVES Follow the brazing technique illustrated starting on page 12 to avoid damaging the service valve s internal seals DEFROST OPERATION It is critical for proper time temperature defrost operation to set the defrost termination pins P1 on the defrost control prior to starting s
5. hazardous to your health Avoid breathing vapors or fumes from brazing operations Perform operations only in well ventilated AWARNING areas When using a high pressure gas such as dry nitrogen to pressurize refrigeration or air conditioning system use a Wear gloves and protective goggles or face shield to protect against burns regulator that can control the pressure down to 1 or 2 psig 6 9 to 13 8 kPa Wash hands with soap and water after handling brazing alloys and flux 506728 01 Page 12 1 CUT AND DEBUR CAP AND CORE REMOVAL Cut ends of the refrigerant lines square free from nicks or dents Remove service cap and core from both the suction vapor and and debur the ends The pipe must remain round Do not crimp end liquid line service ports of the line CUT AND DEBUR lt SERVICE PORT SERVICE PORT LINE SET SIZE MATCHES SERVICE VALVE CONNECTION 4 SERVICE VALVE CONNECTION COPPER TUBE SUCTION VAPOR LINE SERVICE VALVE BALL TYPE FOR 060 AND ANGLE TYPE FOR ALL OTHER SIZES LINE SET SIZE IS SMALLER DO NOT CRIMP SERVICE VALVE THAN CONNECTION CONNECTOR WHEN PIPE IS SMALLER THAN CONNECTION REFRIGERANT LINE 3 ATTACH THE MANIFOLD GAUGE SET FOR BRAZING LIQUID AND SUCTION VAPOR LINE SERVICE VALVES Flow regulated nitrogen at 1 to 2 psig through the low side refrigeration gauge set into the liquid line service port valve and out
6. 0 CBX40UHV 048 11 4 0 1 CBX40UHV 048 16 6 0 0 25 20 10 1 1 CBX40UHV 036 18 3 0 5 CBX40UHV 060 20 8 1 0 CH33 25B 19 8 1 2 CH33 43B 14 8 2 1 2008 23 68 24 6 2 8 1 15 11 1 15 1036 CH33 43C 26 9 2 10 CH33 50 60C 17 6 1 5 CH33 36C 10 12 0 0 CH33 44 48B 24 8 2 3 CH33 60D 18 6 0 13 CH33 36A 20 10 1 1 CH33 48C 26 9 2 10 CH33 62D 13 7 3 6 CR33 30 036 17 4 0 14 CH33 49C 15 8 2 12 CR33 50 60 19 6 1 1 CX34 25 15 9 0 15 CH33 50 60C 15 8 2 12 CR33 60 19 6 1 1 CX34 31 15 16 0 9 CR33 48 38 5 0 0 CX34 49C 10 6 1 9 CX34 36 26 6 0 9 CR33 50 60 15 5 1 4 CX34 60 28 7 3 14 CX34 38 13 11 1 7 CX34 38 40 4 0 15 CX34 62C 10 6 3 12 CBX26UH 030 19 11 1 5 CX34 43 23 8 2 8 CX34 62D 14 7 3 12 CBX27UH 030 10 2 2 15 CX34 44 48 40 4 0 15 CBX26UH 060 31 6 3 0 CBX27UH 036 10 2 2 15 CX34 49 11 7 3 9 CBX27UH 060 13 7 0 8 CBX32M 030 15 4 2 7 CX34 50 60 23 8 2 8 CBX32M 060 17 5 1 4 CBX32M 036 10 2 2 15 CBX26UH 042 42 5 0 8 CBX32MV 048 20 6 0 0 CBX32MV 024 030 15 4 2 7 CBX27UH 042 13 5 2 2 CBX32MV 060 17 5 1 4 CBX32MV 036 10 2 2 15 CBX32M 048 13 5 2 2 CBX32MV 068 11 8 2 12 CBX40UHV 030 10 2 2 15 CBX32MV 048 13 5 2 2 CBX40UHV 048 20 6 0 0 030 CBX40UHV 036 10 2 2 15 CBX40UHV 042 13 5 2 2 060 CBX40UHV 060 17 5 1 4 CH23 41 11 4 0 8 CBX40UHV 048 13 5 2 2 CH23 68 27 7 0 13 CH23 51 11 6 0 14 042 CH23 68 20 9 1 5 CH33 50 60C 11 4 0 0 CH33 31A 16 18 2 8 CH33 43B 7 9 3 2 CH33 62D 19 6 2 4 CH33 31B 16 18 2 6 CH33 43C 22 5 1 0 CR33 50 60 19 6 2 4 CH33 36A 10
7. 16 for liquid line valve sizes and 5 16 for vapor line valve sizes to back the stem out counterclockwise as far as it will go to open the service valve SERVICE PORT CAP s SERVICE PORT CORE VALVE STEM Z SHOWN Et INSERT HEX SERVICE PORT WRENCH CORE HERE TO INDOOR UNIT TO OUTDOOR UNIT When service valve is OPEN the service port is open to line set indoor and outdoor unit INSERT HEX HEAD EXTENSION HERE TO INDOOR UNIT 9 GAS TO OUTDOOR UNIT VALVE STEM SHOWN CLOSED REMOVE STEM CAP When service valve stem is the CLOSED position the service port is open to the line set and indoor unit Figure 3 Operating Angle Type Service Valve Page 4 To Access Service Port e With Torque Wrench Finger A service port cap protects the service port core from tighten and then torque cap per table 1 contamination and serves as the primary leak seal Without Torque Wrench Finger tighten and use an appropriately sized wrench to turn an 1 Remove service port cap with an appropriately sized additional 1 12 turn clockwise wrench 112 TURN 2 Connect gauge set to service port 3 When testing is completed replace service port cap and tighten as follows e With torque wrench Finger tighten and torque cap per table 1 e Without torque wrench Finger tighten and use an A IMPORTANT appropriately sized wrench to turn an additional 1 6 Only use Allen wrenches of suf
8. 21 XP14 SERIES lvls 1 1509331 HOLIMS 39055394 H51H 1109 JA NA 9N1S03A39 H211MS 19055394 MOT NNO38 M01134 Xov 18 yov18 yov 18 M01134 yov 18 2 y YOSS 3U A02 901231084 WNUSHL 1V1SONH 3H L ASVIMNVYD 39 4 99 9 uU31V3H JSVOXNY V2 A INO 090 970 2v0 9 0 NOTI3A 3n18 eo 4 gt e E D 034 033 2v18 JONVHO M01134 039 3714909 Figure 17 Typical Factory Wiring Interlink Compressor Page 22 506728 01 A WARNING Electric Shock Hazard Can cause injury or death Unit must be grounded in accordance with national and local codes w supplies Unit Start Up A IMPORTANT If unit is equipped with a crankcase heater it should be energized 24 hours before unit start up to prevent compressor damage as a result of slugging IMPORTANT During installation service or maintenance make sure that copper tubing does not rub against metal edges or other copper tubing Care should also be taken to ensure that tubing does not become kinked Use wire ties to se cure tubing to prevent movement Do not secure electrical wires to tubing that carries hot refrigerant gas Heat from the tubing may melt the wiring insulation causing a short circuit UNIT START UP 1 Rotate fan to check for binding 2 Ins
9. 230 60 1 zwi L2 LJ jJ A NOTE FOR USE WITH COPPER CONDUCTORS ONLY REFER TO UNIT RATING PLATE FOR MINIMUM CIRCUIT AMOACITY AND MAXIMUM OVERCURRENT PROTECTION SIZE A NOTE IF ANY WIRE IN THIS APPLIANCE IS REPLACED IT MUST BE REPLACED WITH WIRE OF LIKE SIZ RATING S41 S87 INSULATION THICKNESS AND TERMINATION LOW LOW S41 TO BE MOUNTED IN CONTROL BOX AND WIRED AMBIENT PRESSURE IN PARALLEL WITH LOW PRESSURE SWITCH THERMO SWITCH 173 SWITCH USED ONLY UNITS EQUIPPED WITH COMPRESSORS WHICH DO NOT INCLUDE INTERNAL LINE VOLTAGE FIELD INSTALLED SWITCH CLASS VOLTAGE FIELD WIRING DENOTES OPTIONAL COMPONENTS EY LO PS E ERMOSTAT CRANKCASE HERMOSTAT LOW AMBIENT WITCH LOW PRESS COMP 1 173 SWITCH THERMAL PROTECTION Figure 15 Typical Unit Wiring Diagram 506728 01 Page 20 1919 1 150933 HOLIMS 19055399 1109 JA WA HOLIMS 39 55344 MO NOTAS pri YOSSIYdNOD u 035 NMONUG NMOUB M01134 MO113A yov 18 y3v18 G4u AVY G3u AVES 431V3H 3SVONNVUD KINO 090 9 0 20 9 0 M01134 M01134 aay 039 NMONUB NMOBUG yov 18 33v18 yv 18 Q38 AVU9 Y013Y1N09 033 yov 18 JONVYO M01134 039 A1dund 492 Figure 16 Typical Factory Wiring Copeland Compressor Page
10. 4 before brazing to line set Water saturated cloths must remain water saturated throughout the brazing and cool down process SUCTION VAPOR LINE SERVICE VALVE LIQUID LINE SERVICE VALVE VAPOR LINE SERVICE VALVE COULD BE EITHER A ANGLE TYPE ANGLE TYPE SERVICE OR BALL TYPE VALVE VALVE WHEN BRAZING LINE SET TO SERVICE VALVES POINT FLAME AWAY FROM SERVICE VALVE WATER SATURATED CLOTH LIQUID LINE SUCTION VAPOR LINE WATER SATURATED CLOTH WHEN BRAZING LINE SET TO SERVICE VALVES POINT FLAME AWAY FROM SERVICE VALVE PREPARATION FOR NEXT STEP After all connections have been brazed disconnect manifold gauge set from service ports Apply additional water saturated cloths to both service valves to cool piping Once piping is cool remove all water saturated cloths Figure 10 Brazing Procedures continued A IMPORTANT Allow braze joint to cool Apply additional water saturated cloths to help cool brazed joint Do not remove water saturated cloths until piping has cooled Temperatures above 250 F will damage valve seals WARNING FIRE PERSONAL INJURY OR PROPERTY DAMAGE may result if you do not wrap a water satu rated cloth around both liquid and suction line service valve bodies and copper tube stub while brazing in the line set The braze when complete must be quenched with water to absorb any residual heat Do not open service valves until refrigerant lines and indoor coil have been leak tested a
11. GAUGE SET connector on the 1 4 SAE in line tee Connect the vacuum pump with vacuum gauge to the center port of the 1 manifold gauge set The center port MICRON TO VAPOR line will be used later for both the GAUGE SERVICE VALVE HFC 410A and nitrogen containers NITROGEN 1 CONNECT GAUGE SET OUTDOOR UNIT TO LIQUID LINE HFC 410A SERVICE VALVE 2 VACUUM PUMP 1 RECOMMEND MINIMUM 3 8 HOSE 1 2 EVACUATE THE SYSTEM A Open both manifold valves and start the vacuum pump B Evacuate the line set and indoor unit to an absolute pressure of 23 000 microns 29 01 inches of mercury NOTE During the early stages of evacuation it is desirable to close the manifold gauge valve at least once A rapid rise in pressure indicates a relatively large leak If this occurs repeat the leak testing procedure NOTE The term absolute pressure means the total actual pressure within a given volume or system above the absolute zero of pressure Absolute pressure in a vacuum is equal to atmospheric pressure minus vacuum pressure When the absolute pressure reaches 23 000 microns 29 01 inches of mercury perform the following Close manifold gauge valves Close valve on vacuum pump and turn off vacuum pump e Disconnect manifold gauge center port hose from vacuum pump Attach manifold center port hose to a dry nitrogen cylinder with press
12. Set Installation Page 11 XP14 SERIES Brazing Connections Use the procedures outline in figures 9 and 10 for brazing line set connections to service valves WARNING A IMPORTANT Polyol Ester POE oils used with HFC 410A Allow braze joint to cool before removing the wet rag refrigerant absorb moisture very quickly It is very from the service valve Temperatures above 250 F can important that the refrigerant system be kept closed damage valve seals as much as possible DO NOT remove line set caps or service valve stub caps until you are ready to make connections A IMPORTANT Use silver alloy brazing rods with 5 minimum silver alloy for brazing Use 45 minimum alloy for copper to brass and copper to steel brazing A WARNING Danger of fire Bleeding the refrigerant charge from only the high side may result 4 in pressurization of the low side shell and suction tubing Application of brazing torch to a pressurized system may result in ignition of the refrigerant and oil mixture Check the high and low pressures before applying heat AWARNING Fire Explosion and Personal Safety Hazard Failure to follow this warning could result in damage personal injury or death Never use oxygen to pressurize or purge refrigeration lines Oxygen h dt k CAUTION flame can cause fire and or an ex Brazing alloys and flux contain materials which are n that oa result in propery
13. a drain pan to collect condensate formed as your system removes humidity from the inside air Have your dealer show you the location of the drain line and how to check for obstructions This would also apply to an auxiliary drain if installed Thermostat Operation See the thermostat homeowner manual for instructions on how to operate your thermostat Heat Pump Operation Your new Lennox heat pump has several characteristics that you should be aware of e Heat pumps satisfy heating demand by delivering large amounts of warm air into the living space This is quite different from gas or oil fired furnaces or an electric furnace which deliver lower volumes of considerably hotter air to heat the space Do not be alarmed if you notice frost on the outdoor coil in the winter months Frost develops on the outdoor coil during the heating cycle when temperatures are below 45 F 7 C The heat pump control activates a defrost cycle lasting 5 to 15 minutes at preset intervals to clear the outdoor coil of the frost During the defrost cycle you may notice steam rising from the outdoor unit This is a normal occurrence The thermostat may engage auxiliary heat during the defrost cycle to satisfy a heating demand however the unit will return to normal operation at the conclusion of the defrost cycle Extended Power Outage The heat pump is equipped with a compressor crankcase heater which protects the compressor from refrigerant sluggin
14. at Ground Level Install unit level or if on a slope maintain slope tolerance of two 2 degrees or two inches per five feet 50 mm per 1 5 m away from building structure TWO 90 ELBOWS INSTALLED IN LINE SET WILL REDUCE LINE SET VIBRATION DETAIL __ Elevated Slab Mounting using Feet Extenders LEG DETAIL 2 50 8MM SCH 40 FEMALE THREADED ADAPTER 2 50 8MM SCH 40 MALE THREADED ADAPTER Use additional 2 SCH 40 male threaded adapters which can be threaded into the female threaded adapters to make additional adjustments to the level of the unit DETAIL E Deck Top Mounting MINIMUM ONE One bracket per side PER SIDE minimum For extra stability two brackets per side two inches 51mm from each corner SAME FASTENERS AS SLAB SIDE MOUNTING STABILITY wd z FOR EXTRA 7 BUILDING STRUCTURE MOUNTING GROUND LEVEL 10 1 2 LONG SELF DRILLING SHEET METAL SCREWS STABILIZING BRACKET 18 GAUGE METAL 2 WIDTH HEIGHT 5 X REQUIRED 10 1 1 4 LONG HEX HD SCREW AND FLAT WASHER NG Concrete slab use two plastic anchors hole drill 1 4 Wood or plastic slab no plastic anchor hole drill 1 8 Stabilizing bracket 18 gauge metal 2 50 8mm width height as required bend to form right angle as exampled below DETAI L F Roof Top Mounting If unit coil cannot
15. defrost control will lock out the unit after the fifth time that the circuit is interrupted by any pressure switch wired to the defrost control In addition the diagnostic LEDs will indicate a locked out pressure switch after the fifth occurrence of an open pressure switch as listed in table 6 The unit will remain locked out until power to the defrost control is interrupted then re established or until the jumper is applied to the TEST pins for 0 5 seconds Defrost Control Diagnostic LEDs The defrost control uses two LEDs for diagnostics The LEDs flash a specific sequence according to the condition Table 6 Defrost Control CMC1 Diagnostic LED Green LED DS2 No power to control OFF OFF Normal operation power Simultaneous Slow FLASH to control Red LED DS1 Anti short cycle lockout Alternating Slow FLASH Low pressure switch fault OFF Slow FLASH Low pressure switch OFF ON lockout High pressure switch fault Slow FLASH High pressure switch ON lockout NOTE The defrost control ignores input from the low pressure switch terminals as follows e during the TEST mode e during the defrost cycle e during the 90 second start up period for the first 90 seconds each time the reversing valve switches heat cool modes Maintenance DEALER Maintenance and service must be performed by a qualified installer or service agency At the beginning of each cooling season the syste
16. of the suction vapor line service port valve A Connect gauge set low pressure side to liquid line service valve service port B Connect gauge set center port to bottle of nitrogen with regulator C Remove core from valve in suction vapor line service port to allow nitrogen to escape USE REGULATOR TO FLOW LOW HU NITROGEN AT 1 TO 2 PSIG P d z GAUGES SUCTION VAPOR SERVICE PORT MUST BE OPEN TO ALLOW EXIT POINT FOR NITROGEN SUCTION VAPOR LINE SERVICE VALVE VAPOR LINE Y INDOOR OUTDOOR UNIT E e UNIT N E NITROGEN LIGUIB LIQUID LINE SERVICE WHEN BRAZING LINE SET TO VALVE SERVICE VALVES POINT FLAME AWAY FROM SERVICE VALVE Figure 9 Brazing Procedures Page 13 XP14 SERIES WRAP SERVICE VALVES To help protect service valve seals during brazing wrap water saturated cloths around service valve bodies and copper tube stubs Use additional water saturated cloths underneath the valve body to protect the base paint 5 FLOW NITROGEN Flow regulated nitrogen at 1 to 2 psig through the refrigeration gauge set into the valve stem port connection on the liquid service valve and out of the suction vapor valve stem port See steps 3A 3B and 3C on manifold gauge set connections 6 BRAZE LINE SET Wrap both service valves with water saturated cloths as illustrated here and as mentioned in step
17. oil Attach the stubbed end of the expansion valve to the liquid line orifice housing Finger tighten and use an appropriately sized wrench to turn an additional 1 2 turn clockwise as illustrated in the figure above or 20 ft lb Place the remaining Teflon washer around the other end of the check expansion valve Lightly lubricate connector threads and expose surface of the Teflon ring with refrigerant oil Attach the liquid line assembly to the check expansion valve Finger tighten and use an appropriately sized wrench to turn an additional 1 2 turn clockwise as illustrated in the figure above or 20 ft lb ASSEMBLY WITH SENSING BULB INSTALLATION A Attach the vapor line sensing bulb in the proper orientation as illustrated to the right using the clamp and Screws provided NOTE Confirm proper thermal contact between vapor line and expansion bulb before insulating the sensing bulb once installed MALE BRASS EQUALIZER LINE FITTING VAPOR LINE Connect the equalizer line from the check expansion valve to the equalizer vapor port on the vapor line Finger tighten the flare nut plus 1 8 turn 7 ft Ibs as illustrated below 1 2 Turn 1 8 Turn ON LINES SMALLER THAN VAPOR LINE 7 8 MOUNT SENSING BULB AT EITHER THE 3 OR 9 O CLOCK POSITION ON 7 8 AND LARGER LINES MOUNT SENSING BULB AT EITHER THE 4 OR 8 O CLOCK POSITION NEVER MOUNT ON BOTTOM OF LINE NOTE NEVER MOUNT ON BOTTOM OF LIN
18. refrigerant from the pressures will result in overheating of the System scrolls and permanent damage to the scroll NOTE It may be necessary to bypass the low pressure switches if equipped to tips drive bearings and internal seals ensure complete refrigerant evacuation Once the compressor can not pump down to a lower pressure due to any of the above mentioned system C Whenthe low side system pressures reach 0 psig close the vapor line valve conditions shut off the vapor valve Turn OFF the main D Check gauges after shutdown to confirm that the valves are not allowing power to unit and use a recovery machine to recover refrigerantto flow back into the low side of the system any refrigerant left in the indoor coil and line set Compressor has internal vacuum protection that Figure 4 Refrigerant Recovery A IMPORTANT The Environmental Protection Agency EPA prohibits the intentional venting of HFC refrigerants during maintenance service repair and disposal of appliance Approved methods of recovery recycling or reclaiming must be followed WARNING Refrigerant can be harmful if it is inhaled Refrigerant must be used and recovered responsibly Failure to follow this warning may result in personal injury or death 506728 01 Page 6 A CAUTION In order to avoid injury take proper precaution when lift ing heavy objects Remove existing outdoor unit prior to placement of new outdoor unit See Unit Dimensi
19. the unit e Measuring amperage being drawn by the heat unit s Then apply the measurements taken in the following formula to determine CFM Amps x Volts x 3 41 CFM So 1 08 x Temperature rise F Cooling Mode Indoor Airflow Check Check airflow using the Delta T DT process using figure 22 Page 25 XP14 SERIES Temp 1 Determine the desired DT Measure entering air temper of air ature using dry bulb A and wet bulb B DT is the intersect entering ing value of A and B in the table see triangle coil F 2 Find temperature drop across coil Measure the coil s dry bulb entering and leaving air temperatures A and C Tem perature Drop Formula Tprop A minus C 3 Determine if fan needs adjustment f the difference between the measured Tprop and the desired DT Tprop DT is within 3 no adjustment is needed See examples Assume DT 15 and A temp 72 these C temperatures would necessi tate stated actions C Tprop DT F ACTION 53 19 15 4 Increase the airflow 58 14 15 1 within 3 range no change 62 10 15 5 Decrease the airflow INDOOR COIL 4 Adjust the fan speed See indoor unit instructions to in All temperatures are 1 expressed F crease decrease fan speed Changing air flow affects all temperatures recheck tempera tures to confirm that the temperature drop and DT are within 3 Check liquid and vapor line pressures Compa
20. 309 337 369 222 241 262 283 306 330 354 380 406 434 463 Temperature of the air entering the outside coil Page 27 XP14 SERIES Table 5 Indoor Unit Matches Targeted Subcooling and Add Charge Values Subcool iti Subcool iti Subcool iti bod Indoor Model Heat Cool Indoor Model Heat Cool S Indoor Model Heat Cool Ohara CBX27UH 018 13 14 1 9 CH33 43C 4 9 1 12 CH33 60D 42 8 0 9 CBX27UH 024 13 14 1 9 CR33 30 36 22 5 1 0 CH33 62D 19 1 7 CBX32MV 018 024 12 14 0 0 CX34 31 17 15 2 10 CR33 50 60 29 5 0 4 CH33 25A 14 14 0 7 CX34 36 25 6 0 10 CR33 60D 29 5 0 4 919 CH33 25B 14 13 0 5 090 CX34 38 14 17 2 10 042 CX34 49 11 6 1 4 CR33 30 36 12 5 0 7 CX34 42 25 6 0 10 CX34 50 60 25 8 1 15 CX34 25 15 15 1 1 CX34 43 13 17 2 14 CX34 60 8 8 1 4 CX34 31 14 24 1 12 CX34 44 48 9 21 2 12 CX34 62C 8 11 3 10 CBX26UH 024 17 3 0 15 CBX26UH 036 31 3 0 4 CX34 62D 11 7 1 15 CBX27UH 024 12 12 1 2 CBX27UH 036 18 3 0 5 CBX26UH 048 20 10 3 11 CBX32M 018 024 14 11 0 4 CBX27UH 042 11 4 0 1 CBX27UH 048 16 6 0 0 CBX32M 030 12 12 1 2 CBX27UH 048 11 4 0 1 CBX27UH 060 12 6 1 4 CBX32MV 018 024 14 11 0 4 CBX32M 036 18 3 0 CBX32M 048 16 6 0 0 CBX32MV 024 030 12 12 1 2 CBX32M 042 18 3 0 5 CBX32M 060 20 8 1 0 CBX32MV 036 11 11 2 1 CBX32MV 036 18 3 0 5 CBX32MV 048 16 6 0 0 CBX40UHV 024 11 11 2 1 CBX32MV 048 11 4 0 1 CBX32MV 060 20 8 1 0 CBX40UHV 030 11 11 2 1 CBX40UHV 042 11 4 0 1 CBX32MV 068 10 8 4 5 CH23 41 10 3 0
21. 6 0 6 CH33 44 48B 18 4 0 0 CR33 60 23 6 1 3 CH33 36B 6 3 0 0 CH33 48C 22 5 1 0 CX34 62C 10 7 2 14 CH33 36C 10 11 1 5 CH33 49C 16 6 1 6 CX34 62D 19 7 3 2 CH33 42B 16 18 2 6 CH33 50 60C 10 9 3 4 Amount of charge required in additional to charge shown on unit nameplate System Operation A IMPORTANT Some scroll compressor have internal vacuum protector that will unload scrolls when suction pressure goes below 20 psig A hissing sound will be heard when the compressor is running unloaded Protector will reset when low pressure in system is raised above 40 psig DO NOT REPLACE COMPRESSOR High Pressure Switch S4 This unit is equipped with a auto reset high pressure switch single pole single throw which is located on the liquid line The switch shuts off the compressor when discharge pressure rises above the factory setting High Pressure auto reset trip at 590 psig reset at 418 psig 506728 01 Low Pressure Switch S87 This unit is equipped an auto reset low pressure switch which is located on the vapor line The switch shuts off the compressor when the vapor pressure falls below the factory setting Low Pressure auto reset trip at 25 psig reset at 40 psig Low Pressure Switch Bypass S41 Optional For use in applications where the heat pump is operated in outdoor ambient temperatures below 15 F e Prevents nuisance trips form the low pressure switch e Wired in parallel with the low pressure switch Ther
22. D 2 LIMITATIONS Use Method 1 if the existing outdoor unit is not equipped with shut off valves or NOTE When using Method 2 the listed devices if the unit is not operational and you plan to use the existing HCFC 22 to flush below could prevent full system charge recovery into the system the outdoor unit Recover all HCFC 22 refrigerant from the existing system using a recovery machine and clean recovery cylinder Check gauges after shutdown to confirm that the entire system is completely void of refrigerant Outdoor unit s high or low pressure switches if applicable when tripped can cycle the compressor OFF Compressor can stop pumping due to tripped internal pressure relief valve METHOD 2 Use Method 2 if the existing outdoor unit is equipped with manual shut off valves and you plan to use new HCFC 22 refrigerant to flush the system _ is designed to unload the scrolls compressor Perform the following task stops pumping when the pressure ratio meets a A Start the existing HCFC 22 system in the cooling mode and close the liquid line certain value or when the suction pressure is as valve high as 20 psig Compressor suction B Usethe compressor to pump as much of the existing HCFC 22 refrigerant into pressures should never be allowed to go into the outdoor unit until the outdoor system is full Turn the outdoor unit main power a vacuum Prolonged operation at low suction OFF and use a recovery machine to remove the remaining
23. E Figure 12 Installing Indoor Check Expansion Valve 506728 01 Page 16 4 IMPORTANT Leak detector must be capable of sensing HFC refrigerant CONNECT GAUGE SET A Connect an HFC 410A manifold gauge set high pressure hose to the vapor valve service port HIGH NOTE Normally the high pressure hose is connected to the liquid MANIFOLD GAUGE SET line port However connecting it to the vapor port better protects the manifold gauge set from high pressure damage With both manifold valves closed connect the cylinder of HFC 410A refrigerantto the center port of the manifold gauge set NOTE Later in the procedure the HFC 410A container will be replaced by the nitrogen container 1 TO VAPOR SERVICE VALVE ANGLE OR BALL TYPE NITROGEN OUTDOOR UNIT HFC 410A Figure 13 Manifold Gauge Set Connections for Leak Testing TEST FOR LEAKS side of the manifold gauge set Disconnect the After the line set has been connected to the indoor and HFC 410A cylinder outdoor units check the line set connections and indoor 3 Connect a cylinder of dry nitrogen with a pressure unit for leaks Use the following procedure to test for leaks regulating valve to the center port of the manifold 1 With both manifold valves closed connect the cylinder gauge set of HFC 410A refrigerant to the center port of the manifold ga
24. E VALVE EXISTING INDOOR OUTDOOR CLOSED RECOVERY CYLINDER D DISCHARGE RECOVERY MACHINE Inverted HCFC 22 cylinder with clean refrigerant to the vapor service valve HCFC 22 gauge set low side to the liquid line valve HCFC 22 gauge set center port to inlet on the recovery machine with an empty recovery tank to the gauge set Connect recovery tank to recovery machines per machine instructions TWO PIECE PATCH PLATE UNCASED COIL ONLY TYPICAL EXISTING EXPANSION VALVE REMOVAL PROCEDURE UNCASED COIL SHOWN STUB END LIQUID LINE ORIFICE EXPANSION DISTRIBUTOR VALVE SENSING _ LINE RET EQUALIZER LIQUID LINE ASSEMBLY WITH BRASS NUT MALE EQUALIZER LINE FITTING SENSING BULB A Onfully cased coils remove the coil access and plumbing panels B Remove any shipping clamps holding the liquid line and distributor assembly Disconnect the equalizer line from the check expansion valve equalizer line fitting on the vapor line Remove the vapor line sensing bulb Disconnect the liquid line from the check expansion valve at the liquid line assembly Disconnect the check expansion valve from the liquid line orifice housing Take care not to twist or damage distributor tubes during this process Remove and discard check expansion valve and the two Teflon rings Use a field provided fitting to temporary reconnect the liquid line to the indoor unit s liquid lin
25. EVERSING VALVE VALVE REVERSING VALVE LIQUID LINE FILTER SOLENOID DRIER BI FLOW CRANKCASE HEATER 036 042 048 AND 060 UNITS ONLY CHECK EXPANSION VALVE SENSING BULB SWITCH S87 036 042 048 AND 060 UNITS ONLY LOW PRESSURE S CRANKCASE HEATER THERMOSTAT 540 HIGH PRESSURE SWITCH AUTO RESET S4 VAPOR LINE SERVICE LIQUID LINE VALVE SERVICE VALVE FIELD CONNECTION FOR VAPOR LINE FIELD CONNECTION BALL TYPE 060 ONLY FOR LIQUID LINE SET FIELD CONNECTION FOR VAPOR PLUMBING SWITCHES AND LINE ANGLE TYPE ALL SIZES SENSOR COMPONENTS EXCEPT 060 Figure 1 Typical Parts Arrangements Page 3 XP14 SERIES Caps and Fasteners Torque Requirements When servicing or repairing HVAC equipment and components ensure the fasteners are appropriately tightened Table 1 list torque values for various caps and fasteners Table 1 Torque Requirements Parts Recommended Torque Service valve cap 8 ft Ib 11 NM Sheet metal screws 16 in Ib 2NM Machine screws 10 28 in Ib 3 NM Compressor bolts 90 in Ib 10 NM Gauge port seal cap 8 ft Ib 11 NM Operating Gauge Set and Service Valves A IMPORTANT To prevent stripping of the various caps used the appropriately sized wrench should be used and fitted snugly over the cap before tightening USING MANIFOLD GAUGE SET When checking the system charge only use a manifold g
26. EXPANSION VALVE gt INDOOR COIL Figure 21 Heat Pump Cooling Cycle Optimizing System Refrigerant Charge This section provides instructions on optimizing the system charge This section includes Optimizing procedure e Adjusting indoor airflow e Using subcooling method e Approved matched components targeted subcooling SC values and add charge values e Normal operating pressures Temperature pressures OPTIMIZING PROCEDURE 1 Move the low side manifold gauge hose from the vapor line service valve to the true suction port see figure 19 2 Set the thermostat for either cooling or heating demand Turn on power to the indoor unit and close the outdoor unit disconnect switch to start the unit 3 Allow unit to run for five minutes to allow pressures to stabilize 4 Check the airflow as instructed under Adjusting Indoor Airflow to verify or adjust indoor airflow for maximum efficiency Make any air flow adjustments before continuing with the optimizing procedure 5 Use subcooling method to optimize the system charge see figure 23 Adjust charge as necessary ADJUSTING INDOOR AIRFLOW Heating Mode Indoor Airflow Check Only use when indoor unit has electric heat Indoor blower airflow CFM may be calculated by energizing electric heat and measuring Temperature rise between the return air and supply air temperatures at the indoor coil blower unit Measuring voltage supplied to
27. NSITION REFRIGERANT LINE SET INSTALLING FROM VERTICAL TO HORIZONTAL VERTICAL RUNS NEW CONSTRUCTION SHOWN NOTE Insulate liquid line when it is routed through areas where the surrounding ambient temperature could become higher than the ANCHORED HEAVY NYLON temperature of the liquid line or when pressure drop is equal to or greater WIRE TIE OR AUTOMOTIVE AUTOMOTIVE than 20 psig MUFFLER TYPE HANGER MUFFLER TYPE HANGER 2 OUTSIDE WALL QUID LINE VAPOR LINE QUID L WIRE TIE INSIDE WALL STRAP WOOD BLOCK NON CORROSIVE STRAP LIQUID LINE TO BETWEEN STUDS VAPOR LINE METAL SLEEVE WIRE TIE NON CORROSIVE VAPOR LINE WRAPPED METAL SLEEVE IN ARMAFLEX WOOD BLOCK REFRIGERANT LINE SET INSTALLING j MRE TE HORIZONTAL RUNS STRAP To hang line set from joist or rafter use either metal strapping material or anchored heavy nylon wire ties WIRE TIE AROUND VAPOR LINE ONLY 8 FEET 2 43 METERS STRAPPING MATERIAL AROUND m gt VAPOR LINE WRAPPED VAPOR LINE ONLY ELOORJOIST R 7 WITH ARMAFLEX TAPE OR OUTSIDE WIRE TIE LIQUID LINE NON CORROSIVE METAL SLEEVE STRAP THE VAPOR LINE TO THE JOIST TAPE OR OR RAFTER 8 FEET 2 43 METERS WIRE TIE INTERVALS THEN STRAP THE LIQUID LINE TO THE VAPOR LINE FIBERGLASS INSULATION FLOOR JOIST OR 5 NOTE Similar installation practices ROOF RAFTER 2 7 should be used if line set is to be installed on exterior of outside wall Figure 8 Line
28. ary to extend further consider a different type of field fabricated framework that is sturdy enough for greater heights ROOF MOUNTING Install the unit a minimum of 6 inches 152 mm above the roof surface to avoid ice build up around the unit Locate the unit above a load bearing wall or area of the roof that can adequately support the unit Consult local codes for rooftop applications See figure 6 detail F for other roof top mounting considerations NOTICE Roof Damage This system contains both refrigerant and oil Some rubber roofing material may absorb oil and cause the rubber to swell when it comes into contact with oil The rubber will then bubble and could cause leaks Protect the roof surface to avoid exposure to refrigerant and oil during service and installation Failure to follow this notice could result in damage to roof surface MINIMUM CLEARANCE ABOVE UNIT Service clearance of 30 inches 762 mm must be maintained on one of the sides adjacent to the control panel Clearance to one of the other three sides must be 36 inches 914mm Clearance to one of the remaining two sides may be 12 inches 305mm and the final side may be 6 inches 152mm CONTROL PANEL ACCESS LOCATION Figure 5 Installation Clearances Page 7 XP14 SERIES DETAIL Outside Unit Placement Install unit away from windows DETAIL B Slab Mounting
29. auge set that features low loss anti blow back fittings Manifold gauge set used for HFC 410A refrigerant systems must be capable of handling the higher system operating pressures The manifold gauges should be rated for High side Pressure range of 0 800 pound force per square inch gauge psig e Low side Use with 30 vacuum to 250 psig with dampened speed to 500 psig Manifold gauge set hoses must be rated for use to 800 psig of pressure with a 4000 psig burst rating OPERATING SERVICE VALVES The liquid and vapor line service valves are used for refrigerant recovery flushing leak testing evacuating weighing in refrigerant and optimizing system charge Each valve is equipped with a service port which has a factory installed valve core Figure 3 provides information on how to access and operate both angle and ball type service valves BALL TYPE SERVICE VALVE 1 Remove stem cap with an appropriately sized wrench 2 Use an appropriately sized wrenched to open or close valve A open rotate stem counterclockwise 90 506728 01 B To close rotate stem clockwise 90 TO INDOOR UNIT BALL SHOWN CLOSED 2 VALVE STEM SERVICE PORT SERVICE PORT CORE SERVICE PORT CAP TO OUTDOOR UNIT REMOVE STEM CAP Figure 2 Operating Ball Type Service Valve ANGLE TYPE SERVICE VALVE 1 Remove stem cap with an appropriately sized wrench 2 Use a service wrench with a hex head extension 3
30. be mounted away from prevailing winter winds a wind barrier should be constructed Size barrier at least the same height and width as outdoor unit Mount barrier 24 inches 610 mm from the sides of the unit in the direction of prevailing winds as illustrated PREVAILING WINTER WINDS WIND BARRIER Q INLET AIR 3y 22 INLET AIR INLET AIR VW C INLET AIR Figure 6 Placement Slab Mounting and Stabilizing Unit 506728 01 Page 8 Removing and Installing Panels LOUVERED PANEL REMOVAL Remove the louvered panels as follows 1 Remove two screws allowing the panel to swing open slightly 2 Hold the panel firmly throughout this procedure Rotate bottom corner of panel away from hinged corner post until lower three tabs clear the slots as illustrated in detail B Move panel down until lip of upper tab clears the top slot in corner post as illustrated in detail A LOUVERED PANEL INSTALLATION Position the panel almost parallel with the unit as illustrated in detail D with the screw side as close to the unit as possible Then in a continuous motion Slightly rotate and guide the lip of top tab inward as illustrated in detail A and C then upward into the top slot of the hinge corner post Rotate panel to vertical to fully engage all tabs Holding the panel s hinged side firmly in place close the right hand side of the panel aligning the screw holes When panel is correctly position
31. blower speed for cooling Measure the pressure drop over the coil to determine the correct blower CFM Refer to the unit information service manual for pressure drop tables and procedure Check blower drive belt for wear and proper tension Check all wiring for loose connections Check for correct voltage at unit blower operating Oo Check amp draw on blower motor UNIT NAMEPLATE ACTUAL Indoor Coil 1 Clean coil if necessary 2 Check connecting lines and coils for signs of oil leaks 3 Check condensate line and clean if necessary NOTE The filter and all access panels must be in place any time the unit is in operation HOMEOWNER Cleaning of the outdoor unit s coil should be performed by a trained service technician Contact your dealer and set up a schedule preferably twice a year but at least once a year to inspect and service your outdoor unit The following maintenance may be performed by the homeowner A IMPORTANT Sprinklers and soaker hoses should not be installed where they could cause prolonged exposure to the outdoor unit by treated water Prolonged exposure of the unit to treated water i e sprinkler systems soakers waste water etc will corrode the surface of steel and aluminum parts and diminish performance and longevity of the unit Page 30 Outdoor Coil The outdoor unit must be properly maintained to ensure its proper operation e Please contact your dealer to
32. create unnecessary vibration and subsequent sounds See figure 8 for recommended installation practices NOTE When installing refrigerant lines longer than 50 feet see the Lennox Refrigerant Piping Design and Fabrication Guidelines CORP 9351 L9 or contact Lennox Technical Support Product Applications for assistance To obtain the correct information from Lennox be sure to communicate the following information Model XP14 and size of unit e g 036 e Line set diameters for the unit being installed as listed in table 2 and total length of installation e Number of elbows vertical rise or drop in the piping USING EXISTING LINE SET Things to consider e Liquid line that meter the refrigerant such as RFC1 liquid line must not be used in this application e Existing line set of proper size as listed in table 2 may be reused e If system was previously charged with HCFC 22 refrigerant then existing line set must be flushed see Flushing Line Set and Indoor Coil on page 15 If existing line set is being used then proceed to Brazing Connections on page 11 A IMPORTANT Lennox highly recommends changing line set when converting the existing system from HCFC 22 to HFC 410A If that is not possible and the line set is the proper size as reference in table 2 use the procedure outlined under Flushing Line Set and Indoor Coil on page 13 A IMPORTANT If this unit is being matched with an approved line set or in
33. d the liquid line pressure then find its corresponding temperature pressure listed in table 3 and record it in the SAT space to the left Read the liquid line temperature record in the LIQ space to the left Subtract LIQ temperature from SAT temperature to determine subcooling record it in SC space to the left Compare SC results with table 5 either Heating or Cooling mode column also consider any additional charge required for line set lengths longer than 15 feet and or unit matched component combinations Add Charge column If subcooling value is AGREATER than shown for the applicable unit match component REMOVE refrigerant BLESS than shown for the applicable unit match component ADD refrigerant If refrigerant is added or removed repeat steps 3 through 6 to verify charge Close all manifold gauge set valves and disconnect gauge set from outdoor unit Replace the stem and service port caps and tighten as specified in Operating Service Valves on page Recheck voltage while the unit is running Power must be within range shown on the nameplate Figure 23 Using HFC 410A Subcooling Method Second Stage High Capacity 506728 01 Page 26 APPROVED MATCHED SYSTEM COMPONENTS TARGETED SUBCOOLING SC VALUES AND ADD CHARGE VALUES Listed below are the approved matched system Subcooling values listed in the following tables are based components air handlers and indoor coils targeted on outdoor ambient air t
34. door unit coil which was previously charged with mineral oil or if it is being matched with a coil which was manufactured before January of 1999 the coil and line set must be flushed prior to installation Take care to empty all existing traps Polyol ester POE oils are used in Lennox units charged with HFC 410A refrigerant Residual mineral oil can act as an insulator preventing proper heat transfer It can also clog the expansion device and reduce the system performance and capacity Failure to properly flush the system per the instructions below will void the warranty Table 2 Refrigerant Line Set Inches mm Valve Field Connections Recommended Line Set Liquid Line Vapor Line XP14 018 230 XP14 024 230 XP14 030 230 3 8 10mm 3 4 in 19 mm Liquid Line 3 8 in 10 mm Vapor Line L15 Line Sets 3 4 19mm L15 41 15 ft 50 ft 4 6 m 15 m XP14 036 230 XP14 042 230 XP14 048 230 3 8 10 mm 7 8 in 22 mm 3 8 in 10 mm 7 8 22mm L15 65 15 ft 50 ft 4 6 m 15 m XP14 060 230 3 8 in 10 mm 1 1 8 in 29 mm 3 8 in 10 mm 1 1 8 in 29 mm Field Fabricated NOTE Some applications may required a field provided 7 8 to 1 1 8 adapter 506728 01 Page 10 Line Set Isolation The following illustrations are examples of proper refrigerant line set isolation REFRIGERANT LINE SET TRA
35. e orifice housing FLUSHING LINE SET The line set and indoor unit coil must be flushed with at least the same amount of clean refrigerant that previously charged the system Check the charge in the flushing cylinder before proceeding A Set the recovery machine for liquid recovery and start the recovery machine Open the gauge set valves to allow the recovery machine to pull a vacuum on the existing system line set and indoor unit coil Invert the cylinder of clean HCFC 22 and open its valve to allow liquid refrigerant to flow into the system through the vapor line valve Allow the refrigerant to pass from the cylinder and through the line set and the indoor unit coil before it enters the recovery machine After all of the liquid refrigerant has been recovered switch the recovery machine to vapor recovery so that all of the HCFC 22 vapor is recovered Allow the recovery machine to pull down to 0 the system Close the valve on the inverted HCFC 22 drum and the gauge set valves Pump the remaining refrigerant out of the recovery machine and turn the machine off Figure 11 Removing Indoor Refrigerate Metering Device and Flushing Procedures Page 15 XP14 SERIES Installing New Indoor Metering Device This outdoor unit is designed for use in HFC 410A systems that use a check expansion valve metering device purchased separately at the indoor coil See the Lennox XP14 Engineering Handbook for approved check expansi
36. ed and aligned insert the screws and tighten Detail C MAINTAIN MINIMUM PANEL ANGLE AS CLOSE TO PARALLEL WITH THE UNIT AS POSSIBLE WHILE INSTALLING PANEL IMPORTANT DO NOT ALLOW PANELS TO HANG ON UNIT BY TAB IS FOR ALIGNMENT AND NOT DESIGNED TO SUPPORT WEIGHT OF PANEL PANEL SHOWN SLIGHTLY ROTATED TO ALLOW TOP TAB TO EXIT OR ENTER TOP SLOT FOR REMOVING OR INSTALLING PANEL SCREW n h f HOLES LIP Detail A 0 r Detail B ROTATE IN THIS DIRECTION P THEN DOWN TO REMOVE PANEL HOLD DOOR FIRMLY TO THE HINGED ANGLE MAY BE TOO SIDE TO MAINTAIN EXTREME i FULLY ENGAGED TABS I h PREFERRED ANGLE FORINSTALLATION Detail D Figure 7 Removing and Installing Panels WARNING To prevent personal injury or damage to panels unit or structure be sure to observe the following While installing or servicing this unit carefully stow all removed panels out of the way so that the panels will not cause injury to personnel nor cause damage to objects or structures nearby nor will the panels be subjected to damage e g being bent or scratched While handling or stowing the panels consider any weather conditions especially windy conditions that may cause panels to be bl
37. emperature of subcooling and add charge values for the XP14 This information is also listed on the unit charging sticker located on the outdoor unit access panel 60 F 15 5 C and above for cooling mode 59 F 15 0 C and below for heating mode Table 3 HFC 410A Temperature F Pressure Psig oF Psig F Psig 40 40 0 11 6 60 15 6 170 35 372 14 9 65 18 3 185 30 34 4 18 5 70 21 1 201 25 31 7 22 5 75 23 9 217 20 28 9 26 9 80 26 7 235 15 26 1 31 7 85 29 4 254 10 23 3 36 8 90 32 2 274 5 20 6 42 5 95 35 0 295 0 17 8 48 6 100 37 8 317 5 15 0 55 2 105 40 6 340 10 422 62 3 110 43 3 365 15 94 70 0 115 46 1 391 20 6 7 78 3 120 48 9 418 25 3 9 87 3 125 51 7 446 30 1 1 96 8 130 54 4 476 35 1 7 107 135 57 2 507 40 4 4 118 140 60 0 539 45 7 2 130 145 62 8 573 50 10 0 142 150 65 6 608 55 12 8 155 Table 4 Normal Operating Pressures Liquid 10 and Vapor 5 PSIG IMPORTANT Use table 4 as a general guide when performing maintenance checks This is not a procedure for charging the unit Refer to Charging Checking Charge section Minor variations in these pressures may be expected due to differences in instal lations Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system Vapor Pressure
38. en the liquid line warms up to 70 F 21 C Bi Flow Liquid Line Filter Drier The unit is equipped with a large capacity biflow filter drier which keeps the system clean and dry If replacement is necessary order another of the same design and capacity The replacement filter drier must be suitable for use with HFC 410A refrigerant Defrost System The XP14 defrost system includes two components a defrost thermostat S6 and a defrost control CMC1 figure 15 DEFROST CONTROL CMC1 The defrost control includes the combined functions of a time temperature defrost control defrost relay diagnostic LEDs and terminal strip for field wiring connections 2 P1 FIELD SELECT TIMING PINS a KI RELAY TEST PINS DIAGNOSTIC LEDS P5 COMPRESSOR DELAY PINS K2 RELAY REVERSING VALVE v 24 TERMINAL STRIP CONNECTIONS 587 LOW PRESSURE SWITCH A DEFROST THERMOSTAT eee S4 K3 RELAY HIGH PRESSURE SWITCH s T T T T T Ts TH PS OF 9 TI Figure 24 Outdoor Unit Defrost Control CMC1 The defrost control provides automatic switching from normal heating operation to defrost mode and back When the defrost thermostat is closed the control accumulates compressor r
39. ficient hardness 50Rc Rockwell Harness Scale minimum Fully insert the wrench into the valve stem recess Service valve stems are factory torqued from 9 ft lbs for small valves to 25 ft lbs for large valves to prevent turn clockwise 1 6 TURN refrigerant loss during shipping and handling Using Allen wrench rated at less than 50Rc risks rounding or breaking off the wrench or stripping the valve stem Reinstall Stem Cap recess See the Lennox Service and Application Notes Corp 0807 L5 C 08 1 for further details and information Stem cap protects the valve stem from damage and serves as the primary seal Replace the stem cap and tighten as follows Page 5 XP14 SERIES Recovering Refrigerant from Existing System DISCONNECT POWER 2 CONNECT MANIFOLD GAUGE SET Disconnect all power to the existing outdoor unit at the disconnect Connect a manifold gauge set clean recovery cylinder and a switch and or main fuse box breaker panel recovery machine to the service ports of the existing unit NOTE Use the recovery machine instructions to make the correct manifold gauge set connections for recovery MAIN FUSE refrigerant The illustration below is a typical connection BOX BREAKER PANEL MANIFOLD GAUGES DISCONNECT SWITCH RECOVERY MACHINE CLEAN RECOVERY OUTDOOR UNIT 3 RECOVERING REFRIGERANT CYLINDER Remove existing HCFC 22 refrigerant using one of the following procedures METHOD 1 METHO
40. g during cold weather operation If power to your unit has been interrupted for several hours or more set the room thermostat selector to the EMERGENCY HEAT setting to obtain temporary heat without the risk of serious damage to the heat pump In EMERGENCY HEAT mode all heating demand is satisfied by auxiliary heat heat pump operation is locked out After a six hour compressor crankcase warm up period the thermostat can be switched to the HEAT setting and normal heat pump operation may resume Preservice Check If your system fails to operate check the following before calling for service Verify room thermostat settings are correct Verify that all electrical disconnect switches are ON e Check for any blown fuses or tripped circuit breakers e Verify unit access panels in place e Verify air filter is clean service is needed locate and write down the unit model number and have it handy before calling Accessories For update to date information see any of the following publications e Lennox XP14 Engineering Handbook Lennox Product Catalog Lennox Price Book Page 31 XP14 SERIES Start Up and Performance Checklist Job Name Job no Date Job Location City State Installer City State Unit Model No Serial No Service Technician Nameplate Voltage Rated Load Ampacity Compressor Amperage Maximum Fuse or Circuit Breaker Electrical Connec
41. has been determine that the new outdoor unit is void of charge Skip to the next section if refrigerant charge is present LEAK CHECK REPAIR AND EVACUATE If the outdoor unit is void of refrigerant clean the system using the procedure described below 1 Leak check system using procedures provided on page 17 Repair any leaks discovered during leak test 2 Evacuate the system using procedure provided in figure 14 3 Use nitrogen to break the vacuum and install a new filter drier in the system 4 Evacuate the system again using procedure in figure 14 CONNECT MANIFOLD GAUGE SET AND WEIGH IN CHARGE After the evacuation procedure reconnect the manifold gauge set as illustrated in figure 19 NOTE Temperature sensor illustrated in figure 19 is not required for initial system weigh in charging 1 Close manifold gauge set valves and connect the gauge set as exampled in figure 19 2 Check that fan rotates freely Page 23 XP14 SERIES 3 Inspect all factory and field installed wiring for loose 6 Monitor the system to determine the amount of connections moisture remaining in the oil It may be necessary to replace the bi flow filter drier several times to achieve 4 Open the high side manifold gauge valve and weigh in the required dryness level If system dryness is not liquid refrigerant Use figure 20 to calculate the correct verified the compressor will fail in the future weigh in charge 7 Continue to Optimizing S
42. ided with the furnace or air handler for low voltage control power 24VAC 40 VA minimum Install room thermostat ordered separately on an inside wall approximately in the center of the conditioned area and 5 feet 1 5m from the floor It should not be installed on an outside wall or where it can be affected by sunlight or drafts 2 INSTALL THERMOSTAT THERMOSTAT NOTE 24VAC Class circuit connections are made in the control panel HIGH VOLTAGE FIELD WIRING FACTORY WIRING e OW VOLTAGE 24V FIELD WIRING WIRE RUN LENGTH AWG INSULATION TYPE LESS THAN 100 30 METERS 18 TEMPERATURE RATING MORE THAN 100 30 METERS 16 35 C MINIMUM ARun 24VAC control wires through cutout with grommet BRun 24VAC control wires through wire tie CMake 24VAC control wire connections defrost control terminal strip DTighten wire tie to security 24V control wiring NOTE FOR PROPER VOLTAGES SELECT THERMOSTAT WIRE CONTROL WIRES GAUGE PER TABLE ABOVE NOTE WIRE TIE PROVIDES LOW VOLTAGE WIRE STRAIN RELIEF AND TO MAINTAIN SEPARATION OF FIELD INSTALLED LOW AND HIGH VOLTAGE CIRCUITS NOTE DO NOT BUNDLE ANY EXCESS 24VAC CONTROL WIRES INSIDE CONTROL BOX Page 19 XP14 SERIES DUAL PURPEE CAPACITOR THERMOSTAT 2d cd d 1 520 COMPRESSOR CONTACTOR 208 230 60 1 L2 GROUND THERMOSTAT DEFROST THERMOSTAT 208
43. librated in microns Use an instrument capable of accurately measuring down to 50 microns WARNING Danger of Equipment Damage Avoid deep vacuum operation Do not use compressors to evacuate a system Extremely low vacuums can cause internal arcing and compressor failure Damage caused by deep vacuum operation will void warranty SIZE CIRCUIT AND INSTALL DISCONNECT SWITCH Refer to the unit nameplate for minimum circuit ampacity and maximum fuse or circuit breaker HACR per NEC Install power wiring and properly sized disconnect switch MAIN FUSE BOX BREAKER PANEL DISCONNECT SWITCH NOTE Units are approved for use only with copper conductors Ground unit at disconnect switch or to an earth ground 3 UNIT LOW VOLTAGE CONNECTIONS 1 C TERMINAL STRIP In the U S A wiring must conform with current local codes and the current National Electric Code NEC In Canada wiring must conform with current local codes and the current Canadian Electrical Code CEC Refer to the furnace or air handler installation instructions for additional wiring application diagrams and refer to unit nameplate for minimum circuit ampacity and maximum overcurrent protection size 24VAC TRANSFORMER Use the transformer prov
44. m should be checked as follows Outdoor Unit 1 Clean and inspect the outdoor coil The coil may be flushed with a water hose Ensure the power is turned off before you clean the coil 2 Outdoor fan motor is prelubricated and sealed No further lubrication is needed 3 Visually inspect connecting lines and coils for evidence of oil leaks 4 Check wiring for loose connections 5 Check for correct voltage at the unit with the unit operating 506728 01 6 Check amp draw outdoor fan motor UNIT NAMEPLATE ACTUAL NOTE If owner reports insufficient cooling the unit should be gauged and refrigerant charge checked Outdoor Coil It may be necessary to flush the outdoor coil more frequently if it is exposed to substances which are corrosive or which block airflow across the coil e g pet urine cottonwood seeds fertilizers fluids that may contain high levels of corrosive chemicals such as salts e Outdoor Coil The outdoor coil may be flushed with a water hose e Outdoor Coil Sea Coast Moist air in ocean locations can carry salt which is corrosive to most metal Units that are located near the ocean require frequent inspections and maintenance These inspections will determine the necessary need to wash the unit including the outdoor coil Consult your installing contractor for proper intervals procedures for your geographic area or service contract Indoor Unit 1 Clean or change filters 2 Adjust
45. mal Protection Switch S173 Compressor Mounted Some units are equipped with a compressor mounted normally closed temperature switch that prevents compressor damage due to overheating caused by internal friction The switch is located on top of the compressor casing see figure 1 This switch senses the compressor casing temperature and opens at 239 257 F 115 C 125 C to shut off compressor operation The Page 28 auto reset switch closes when the compressor casing temperature falls to 151 187 F 66 C 86 C and the compressor is re energized This single pole single throw SPST bi metallic switch is wired in series with the 24V Y input signal to control compressor operation Crankcase Thermostat S40 036 042 048 and 060 Units Only The reference models are equipped with a 70 watt belly band type crankcase heater HR1 prevents liquid from accumulating in the compressor HR1 is controlled by a thermostat located on the liquid line When liquid line temperature drops below 50 F the thermostat closes energizing HR1 The thermostat will open de energizing HR1 once liquid line temperature reaches 70 Defrost Thermostat S6 The defrost thermostat is located on the liquid line between the check expansion valve and the distributor When defrost thermostat senses 42 F 5 5 C or cooler the thermostat contacts close and send a signal to the defrost control to start the defrost timing It also terminates defrost wh
46. nd evacuated Refer to procedures provided in this supplement 506728 01 Page 14 Indoor Refrigerant Metering Device Removal and Flushing Line Set and Indoor Coil Flushing is only required when the existing system used HCFC 22 refrigerant If the existing system used HFC 410a then remove the original indoor coil metering device and proceed to Installing New Indoor Metering Device on page 16 TYPICAL EXISTING FIXED ORIFICE REMOVAL PROCEDURE UNCASED OR COIL SHOWN 1A 1 DISTRIBUTOR TUBES LIQUID LINE ORIFICE HOUSING TEFLON RING FIXED ORIFICE v 4 A v BRASS NUT DISTRIBUTOR ASSEMBLY REMOVE AND DISCARD WHITE TEFLON SEAL IF PRESENT LIQUID LINE ASSEMBLY INCLUDES STRAINER On fully cased coils remove the coil access and plumbing panels Remove any shipping clamps holding the liquid line and distributor as sembly Using two wrenches disconnect liquid line from liquid line orifice hous ing Take care not to twist or damage distributor tubes during this pro cess Remove and discard fixed orifice valve stem assembly if present and Teflon washer as illustrated above Use a field provided fitting to temporary reconnect the liquid line to the indoor unit s liquid line orifice housing CONNECT GAUGES AND EQUIPMENT FOR FLUSHING PROCEDURE 2 INVERTED HCFC 22 CYLINDER CONTAINS CLEAN HCFC 22 TO BE USED FOR FLUSHING GAUGE MANIFOLD A VAPOR LINE SERVIC
47. ns Time Delay The timed off delay is five minutes long The delay helps to protect the compressor from short cycling in case the power to the unit is interrupted or a pressure switch opens The delay is bypassed by placing the timer select jumper across the TEST pins for 0 5 seconds Test Mode P1 A TEST option is provided for troubleshooting The TEST mode may be started any time the unit is in the heating mode and the defrost thermostat is closed or jumpered If the jumper is in the TEST position at power up the control will ignore the test pins When the jumper is placed across the TEST pins for two seconds the control will enter the defrost mode If the jumper is removed before an additional 5 second period has elapsed 7 seconds total the unit will remain in defrost mode until the defrost thermostat opens or 14 minutes have passed If the jumper is not removed until after the additional 5 second period has elapsed the defrost will terminate and the test option will not function again until the jumper is removed and re applied Page 29 XP14 SERIES Pressure Switch Circuit The defrost control incorporates two pressure switch circuits The high pressure switch 54 is factory connected to the defrost control s HI PS terminals see figure 24 The defrost control also includes a low pressure or loss of charge pressure switch S87 Switches are shown in wiring diagrams in figure 15 During a single demand cycle the
48. on valve kit match ups The check expansion valve device can be installed either internal or external to the indoor coil In applications where an uncased coil is being installed in a field provided plenum install the check expansion valve in a manner that will provide access for field servicing of the check expansion valve see figure 12 INDOOR EXPANSION VALVE INSTALLATION TWO PIECE PATCH PLATE Uncased Coil Shown UNCASED COIL ONLY LIQUID LINE STUB ORIFICE END _CHECK EXPANSION HOUSING DISTRIBUTOR VALVE TUBES __ x x N TEFLON SENSING LINE DISTRIBUTOR EQUALIZER ASSEMBLY O LINE LIQUID LINE BRASS NUT FITTING SEE EQUALIZER LINE INSTALLATION FOR FURTHER DETAILS LIQUID LINE MALE EQUALIZER LINE Sensing bulb insulation is required if mounted external to the coil casing EQUALIZER LINE INSTALLATION Remove and discard either the flare seal cap or flare nut with copper flare seal bonnet from the equalizer line port on the vapor line as illustrated in the figure to the right FLARE SEAL CAP FLARE NUT COPPER FLARE OR SEAL BONNET D Remove the field provided fitting that temporarily reconnected the liquid line to the indoor unit s distributor assembly Install one of the provided Teflon rings around the stubbed end of the check expansion valve and lightly lubricate the connector threads and expose surface of the Teflon ring with refrigerant
49. ons on page 2 for sizing mounting slab platforms or supports Refer to figure 5 for mandatory installation clearance requirements POSITIONING CONSIDERATIONS Consider the following when positioning the unit e Some localities are adopting sound ordinances based on the unit s sound level registered from the adjacent property not from the installation property Install the unit as far as possible from the property line When possible do not install the unit directly outside a window Glass has a very high level of sound transmission For proper placement of unit in relation to a window see the provided illustration in figure 6 detail A PLACING UNIT ON SLAB When installing unit at grade level the top of the slab should be high enough above grade so that water from higher ground will not collect around the unit The slab should have a slope tolerance as described in figure 6 detail B NOTE If necessary for stability anchor unit to slab as described in figure 6 detail D CLEARANCE ON ALL SIDES INCHES MILLIMETERS NOTES ELEVATING THE UNIT Units are outfitted with elongated support feet as illustrated in figure 6 detail C If additional elevation is necessary raise the unit by extending the height of the unit support feet This may be achieved by using a 2 inch 50 8mm schedule 40 female threaded adapter NOTE Keep the height of extenders short enough to ensure a Sturdy installation If it is necess
50. own around and battered Page 9 XP14 SERIES Line Set Requirements This section provides information on installation of new or replacement line set e Adding Polyol ester oil requirements e New or replacement line set installation e Using existing line set ADDING POLYOL ESTER OIL REQUIREMENTS A IMPORTANT Mineral oils are not compatible with HFC 410A If oil must be added it must be a Polyol Ester oil The compressor is charged with sufficient Polyol Ester oil POE for line set lengths up to 50 feet Recommend adding oil to system based on the amount of refrigerant charge in the system Systems with 20 pounds or less of refrigerant required no oil to be added For systems over 20 pounds add one ounce for every five 5 pounds of HFC 410A refrigerant Recommended topping off POE oils are Mobil EAL ARCTIC 22 CC or ICI EMKARATE RL32CF NEW OR REPLACEMENT LINE SET INSTALLATION Field refrigerant piping consists of both liquid and vapor lines from the outdoor unit to the indoor coil Use Lennox L15 sweat non flare series line set or field fabricated refrigerant line sizes as specified in table 2 If refrigerant lines are routed through a wall then seal and isolate the opening so vibration is not transmitted to the building Pay close attention to line set isolation during installation of any HVAC system When properly isolated from building structures walls ceilings floors the refrigerant lines will not
51. pect all factory and field installed wiring for loose connections 3 Verify that the manifold gauge set is connected as illustrated in figure 19 Use a temperature sensor positioned near the liquid line service port as illustrated in figure 19 which will be required later when using the subcooling method for optimizing the system refrigerant charge 4 Replace the stem caps and tighten to the value listed in table 1 5 Check voltage supply at the disconnect switch The voltage must be within the range listed on the unit s nameplate If not do not start the equipment until you have consulted with the power company and the voltage condition has been corrected 6 Open both the liquid and vapor line service valves to release the refrigerant charge contained in outdoor unit into the system 7 Use figure 18 to determine next step in system preparation Line voltage is present at all components when unit is not in operation on units with single pole contactors Disconnect all remote electric power supplies before opening access panel Unit may have multiple power OPEN BOTH VAPOR AND LIQUID SERVICE VALVE STEMS TO RELEASE REFRIGERANT FROM OUTDOOR UNIT TO SYSTEM GO TO SERVICE AND WEIGH IN REFRIGERANT CHARGE FOR OUTDOOR UNITS DELIVERED VOID OF CHARGE ON PAGE 23 GO TO OPTIMIZING SYSTEM REFRIGERANT CHARGE ON PAGE 25 Figure 18 Outdoor Unit Factory Charge The following procedures are only required if it
52. per Amount specified on Adjust amount for variation in line set match indoor air handler or coil Total Charge nameplate length listed on line set length table below listed in table 5 Refrigerant Charge per Line Set Length OUNCES PER 5 FEET GRAMS PER 1 5 METERS LIQUID LINE SET DIAMETER ADJUST FROM 15 FEET 4 6 METERS LINE SET 3 8 9 5 MM 3 OUNCE PER 5 85 GRAMS PER 1 5 M If line length is greater than 15 feet 4 6 meters add this amount If line length is less than 15 feet 4 6 meters subtract this amount NOTE Insulate liquid line when it is routed through areas where the surrounding ambient temperature could become higher than the temperature ofthe liquid line or when pressure drop is equal to or greater than 20 psig NOTE The above nameplate is for illustration purposes only Go to actual nameplate on outdoor unit for charge information Figure 20 Using HFC 410A Weigh In Method 506728 01 Page 24 OUTDOOR UNIT CHECK EXPANSION VALVE BI FLOW FILTER DRIER gt MUFFLER LIQUID LINE SERVICE PORT RESSOR DISTRIBUTOR NOTE ARROWS INDICATE DIRECTION OF REFRIGERANT FLOW REVERSING VALVE INDOOR UNIT TRUE SUCTION NOTE Use gauge ports on vapor line valve and liquid valve for evacuating refrigerant lines and indoor coil Use true suction port to measure vapor pressure during charging CHECK
53. re pressures with either second stage heat or cooling mode normal operating pressures listed in table 4 Table 4 is a general guide and expect minor pressures variations Significant pressure differences may indicate improper charge or other system problem Decide whether to use cooling or heating mode based on current outdoor ambient temperature AUse COOLING MODE when e Outdoor ambient temperature is 60 F 15 5 C and above e Indoor return air temperature range is between 70 to 80 F 21 27 This temperature range is what the target subcooling values are base upon in table 5 o If indoor return air temperature is not within reference range set thermostat to cooling mode and a setpoint of MODE 68 F 20 C This should place the outdoor unit into second stage high capacity cooling mode When GE operating and temperature pressures have stabilized continue to step 3 15 C BUse HEATING MODE when Outdoor ambient temperature is 59 F 15 0 C and below MODE e Indoor return air temperature range is between 65 75 F 18 24 This temperature range is what the target subcooling values are base upon in table 5 If indoor return air temperature is not within reference range set thermostat to heating mode and a setpoint of 77 F 25 C This should place the outdoor unit into second stage high capacity heating mode When operating and temperature pressures have stabilized continue to step 3 Rea
54. schedule proper inspection and maintenance for your equipment e Make sure no obstructions restrict airflow to the outdoor unit e Grass clippings leaves or shrubs crowding the unit can cause the unit to work harder and use more energy e Keep shrubbery trimmed away from the unit and periodically check for debris which collects around the unit Routine Maintenance In order to ensure peak performance your system must be properly maintained Clogged filters and blocked airflow prevent your unit from operating at its most efficient level 1 Air Filter Ask your Lennox dealer to show you where your indoor unit s filter is located It will be either at the indoor unit installed internal or external to the cabinet or behind a return air grille in the wall or ceiling Check the filter monthly and clean or replace it as needed 2 Disposable Filter Disposable filters should be replaced with a filter of the same type and size NOTE If you are unsure about the filter required for your system call your Lennox dealer for assistance 3 Reusable Filter Many indoor units are equipped with reusable foam filters Clean foam filters with a mild soap and water solution rinse thoroughly allow filter to dry completely before returning it to the unit or grille NOTE The filter and all access panels must be in place any time the unit is in operation 4 Indoor Unit The indoor unit s evaporator coil is equipped with
55. tions Tight j Indoor Filter clean j Indoor Blower RPM S P Drop Over Indoor Dry Vapor Pressure Refrigerant Lines Leak Checked _ Properly Insulated _ Service Valves Fully Opened Caps Tight L SEQUENCE OF OPERATION Heating Correct j Cooling Correct J Supply Voltage Unit Off Outdoor Coil Entering Air Temp Outdoor Fan Checked J Voltage With Compressor Operating THERMOSTAT Calibrated Properly Set Level 506728 01 Page 32
56. uge set Open the valve on the HFC 410A cylinder vapor only 2 Open the high pressure side of the manifold to allow 5 Aft f inut f th 410 into the line set and indoor unit Weigh in dts ee d trace amount of HFC 410A A trace amount is a ports and verify that the refrigerant added to the maximum of two ounces 57 g refrigerant or three system earlier is measurable with a leak detector 4 Adjust dry nitrogen pressure to 150 psig 1034 kPa Open the valve on the high side of the manifold gauge set in order to pressurize the line set and the indoor unit pounds 31 kPa pressure Close the valve on the 6 After leak testing disconnect gauges from service HFC 410A cylinder and the valve on the high pressure ports Page 17 XP14 SERIES Evacuating Line Set and Indoor Coil Evacuating the system of non condensables is critical for proper operation of the unit Non condensables are defined as any gas that will not condense under temperatures and pressures present during operation of an air conditioning system Non condensables and water suction combine with refrigerant to produce substances that corrode copper piping and compressor parts NOTE Remove cores from service valves if not already done A Connectlow side of manifold gauge set with 1 4 SAE in line tee to vapor line service valve Connect high side of manifold gauge set to liquid line service valve MANIFOLD Connect micron gauge available
57. un time at 30 60 or 90 minute field adjustable intervals When the selected compressor run time interval is reached the defrost relay is energized and defrost begins Defrost Control Timing Pins P1 Each timing pin selection provides different accumulated compressor run time period for one defrost cycle This time period must occur before a defrost cycle is initiated The defrost interval can be adjusted to 30 T1 60 T2 or 90 T3 minutes see figure 24 The maximum defrost period is 14 minutes and cannot be adjusted NOTE Defrost control part number is listed near the P1 timing pins e Units with defrost control 100269 02 Factory default is 60 minutes Units with defrost control 100269 04 Factory default is 90 minutes If the timing selector jumper is missing the defrost control defaults to a 90 minute defrost interval Compressor Delay P5 The defrost control has a field selectable function to reduce occasional sounds that may occur while the unit is cycling in and out of the defrost mode e Units with defrost control 100269 02 The compressor will be cycled off for 30 seconds going in and out of the defrost mode when the compressor delay jumper is removed e Units with defrost control 100269 04 The compressor will be cycled off for 30 seconds going in and out of the defrost mode when the compressor delay jumper is installed NOTE The 30 second compressor feature is ignored when jumpering the TEST pi
58. ure regulator set to 150 psig 1034 kPa and purge the hose Open manifold gauge valves to break the vacuum in the line set and indoor unit Close manifold gauge valves Shut off the dry nitrogen cylinder and remove the manifold gauge hose from the cylinder Open the manifold gauge valves to release the dry nitrogen from the line set and indoor unit Reconnect the manifold gauge to the vacuum pump turn the pump on and continue to evacuate the line set and indoor unit until the absolute pressure does not rise above 500 microns 29 9 inches of mercury within a 20 minute period after shutting off the vacuum pump and closing the manifold gauge valves When the absolute pressure requirement above has been met disconnect the manifold hose from the vacuum pump and connect it to an upright cylinder of HFC 410A refrigerant Open the manifold gauge valve 1 to 2 psig in order to release the vacuum in the line set and indoor unit G Perform the following 1 6 TURN Close manifold gauge valves Shutoff HFC 410A cylinder e Reinstall service valve cores by removing manifold hose from service valve Quickly install cores with core tool while maintaining a positive system pressure Replace stem caps and secure finger tight then tighten an additional one sixth 1 6 of a turn as illustrated Figure 14 Evacuating Line Set and Indoor Coil 506728 01 Page 18 A IMPORTANT Use a thermocouple or thermistor electronic vacuum gauge that is ca
59. ystem See Defrost System section on page 29 for further details Also note that a low pressure bypass switch is required when operating unit below 15 F page 28 08 11 Page 1 INSTALLATION INSTRUCTIONS Elite Series XP14 Units HEAT PUMPS Technical 506772 01 Publications 08 11 Litho U S A Supersedes 06 11 TABLE OF CONTENTS Shipping and Packing List 1 General 2 sns ese ne Sate de dome ende kis 1 Model Number Identification 2 Unit Dimensions 2 Unit Parts Arrangement 3 Caps and Fasteners Torque Requirements 4 Operating Gauge Set and Service Valves 4 Recovering Refrigerant from Existing System 6 New Outdoor Unit Placement 7 Removing and Installing Panels 9 Line Set Requirements 10 Brazing Connections 12 Indoor Refrigerant Metering Device Removal and Flushing Line Set and Indoor Coil 15 Installing New Indoor Metering Device 16 Leak Test Line Set and Indoor 17 Evacuating Line Set and Indoor Coil 18 Electrical Connections 19 Unit StartUp J reb ben ened 23 Servicing and Weighing In Refrigerant for Units Delivered Void of Charge 23 Optimizing System Refrigerant Charge
60. ystem Refrigerant Charge on page 25 to optimize the system charge using 5 Close manifold gauge valves subcooling method GAUGE SET CONNECTIONS FOR OPTIMIZING SYSTEM CHARGE NOTE Refrigerant tank should be turned right side up to deliver vapor during charge optimizing procedure B TRUE SUCTION PORT HFC 410A CONNECTION REFRIGERANT TANK CHARGE IN LIQUID PHASE TEMPERATURE SENSOR DIGITAL SCALE LIQUID LINE TO LIQUID LINE SERVICE C VALVE Close manifold gauge set valves and connect the center hose to a cylinder of HFC 410A Set for liquid phase charging NOTE For simplify the illustration Connect the manifold gauge set s low pressure side to the true suction port the line set is not shown connected to Connect the manifold gauge set s high pressure side to the liquid line service port service valves Position temperature sensor on liquid line near liquid line service port use only for subcooling method Figure 19 Typical Gauge Set Connections for Initial Weight in Charge or Optimizing System Charge CALCULATING SYSTEM CHARGE FOR OUTDOOR UNIT VOID OF CHARGE If the system is void of refrigerant first locate and repair any leaks and then weigh in the refrigerant charge into the unit To calculate the total refriger t ch See Mis Additional charge specified

Download Pdf Manuals

image

Related Search

Related Contents

T-Wrex Jr. Manual Serial Numbers 104 to 110  Procedure for GeneMapper® ID for Casework 1.0 Purpose  scala rider Q2™ pro IT  User Manual  Betriebsanleitung electronicVED exclusiv Gerätetyp VED E  Hoover C1631 User's Manual      manual de instalação do economizador pro-flex  Promag 1100 User`s Manual  

Copyright © All rights reserved.
Failed to retrieve file