Home
Epson S1F70000 User's Manual
Contents
1. Diodes Shindengen DINS4 Schottky barrier diodes Rati Parameter Symbol Conditions a Unit Min Typ Max lF 1 1A Forward voltage VF 0 55 V pulse measurement Reverse current IR VIE NAM 1 mA pulse measurement Junction to lead thermal resistance Oil 23 C W Junction to ambient thermal resistance ja 157 C W Characteristics Hp 25 C Typ Tp lt 3 s 3 S LC e a 0 05 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 Forward voltage V Smoothing capacitors NEC MSV series capacitors Package Static capacitance gano Leakage Device 9 Voltage V p 25 85 125 55 9 type UF current UA C C C MSVA0J475M A 6 3 4 7 0 08 0 1 0 12 0 5 MSVB20J106M B2 6 3 10 0 08 0 1 0 12 0 6 MSVB20J156M B2 6 3 15 0 08 0 1 0 12 0 9 MSVBOJ156M B 6 3 15 0 08 0 1 0 12 0 9 MSVCOJ336M C 6 3 33 0 08 0 1 0 12 2 0 MSVD20J686M D2 6 3 68 0 08 0 1 0 12 4 2 MSVD0J686M D 6 3 68 0 08 0 1 0 12 4 2 Note The figures on the previous pages show data from the documents of various manufacturers For further details please contact the relevant manufacturer S1F70000 Series EPSON 4 31 Technical Manual S1F76300 Series Other Applications Voltage booster Combining an S1F76330M1B0 switching regulator with an S1F76610C M DC DC converter and voltage regulator creates the voltage booster circuit
2. S1F76380M1H0 Vss OV Ta 25 C unless otherwise noted Parameter Symbol Condition Min Ee Max Unit Input voltage Vi 0 9 2 0 V Output voltage Vo Vit 1 5V 2 10 2 20 2 30 V Output voltage temperature gradient Kt 5 5 45 3 5 mV C Detection voltage VDET 1 00 1 05 1 10 V Detection voltage hysteresis ratio AVDET 5 96 Operating current IDDO Vii 1 5V lo 1 0mA 7 35 uA Standby current IDDS Vi 1 5V _ 3 10 uA Switching transistor ON resistance Rswon Mi 1 5V VO 2 2V 7 14 Q Vsw 0 2V me Vn 1 5V Vo 1 5V Switching transistor leakage current Iswa Vane b S 0 5 uA RST Low level output current loL Vii 0 9V Vor 0 2V 0 05 0 15 mA PS pullup current In Vu 1 5V _ 0 5 uA Multiplication clock frequency fck Vi 1 5V 25 35 45 kHz 3 S S1F76380M1LO Vss OV Ta 25 C unless otherwise noted 9 Parameter Symbol Condition Min E Max Unit Input voltage Vu 0 9 2 0 V Output voltage Vo Vii 1 5V 2 30 2 40 2 50 V Output voltage temperature gradient Kt 5 5 4 0 3 5 mV C Detection voltage VDET 1 00 1 05 1 10 V Detection voltage hysteresis ratio AVDET 5 96 Operating current IDDO Vii 1 5V lo 1 0mA 7 35 uA Standby current IDDS Vi 1 5V _ 3 10 uA Switching transistor ON resistance RSWON ue pes NO EAN 7 14 Q SW 0 2V Swi
3. Plastic SOP4 8pin Reference D 8 5 A 1 LW LLI INDEX 4 iN PL O p Y Y 1 4 D Hi Ui L ms D 4 L2 L de b zl 03 Li aj gt Lead type STD SOP4 8pin STD Symbol Dimension in Milimeters Dimension in Inches Min Nom Max Min Nom Max 4 8 5 5 2 0 189 0 197 0 204 D1 A 1 75 0 069 Ai 0 15 0 006 A2 1 6 0 063 e 1 27 0 05 b 0 25 0 35 0 45 0 010 0 014 0 017 C 0 05 0 15 0 25 0 002 0 006 0 009 0 L 0 55 0 022 L1 L2 HE 6 4 6 8 7 2 0 252 0 268 0 283 D 4 8 5 5 2 0 189 0 197 0 204 02 03 R R1 for reference 4 40 EPSON S1F70000 Series Technical Manual S1F71200 Series S1F71200 Series PWM Type Step up down DC DC Switching Regulator DESCRIPTION S1F71200 is a step up step down DC DC converter control IC for which the CMOS process is used and to which a power transistor is connected outside S1F71200 is composed of an oscillator a reference voltage circuit an error amplifier a PWM circuit a se ries regulator a driver etc When this IC drives an ex ternal power transistor S1F71200 can constitute a step up step down DC DC converter that operates as a step down series regulator when the input voltage is High and that operates as a step up switching regulator of pulse width modulation system PWM when the input voltage is Low S1F71200 is also provided with
4. e A lo V Z RL Vo e e C2 _ Cs C4 TIE om Rosc e Stabilization circuit characteristic measurement circuit ww H Vo 1 16 e 2 15 R R LY 3 14 Y o 4 13 R2 5 12 A 6 11 Poe e T 10 pe 8 9 M e Rrv R1 R2 S1F70000 Series EPSON 2 49 Technical Manual i lt T e To N LL T Wu S1F76640 Series Input leak current measurement circuit 0 N O A A C MN Iu EPSON og Connection to each measurement pin S1F70000 Series Technical Manual S1F76640 Series CHARACTERISTICS GRAPH 1000 30 Ta 25 28 26 100 24 VDD 5V w 22 x Z 20 3 E 3 O g 18 N 10 16 o 14 12 Vpp 2V Vpp 3V 1 10 10 100 1000 10000 40 20 0 20 40 60 80 100 R kQ Sena Ta C 1 Oscillation frequency vs External resistance 2 Oscillation frequency vs Temperature for oscillation 200 Gies zur fosc 40kHz SE C3 10pF x 150 fosc 20k 2 times step up lt o x 100 gt fosc 10kHz 50 0 0 1 2 3 4 5 6 VDD V lo mA 3 Step up circuit current consumption vs Input 4 Output voltage Vo vs Output current 1 voltage S1F70000 Series EPSON 2 51 Technical Manual S1F76640 Series 4 times step up 10 Y 3 times step up Vo V
5. Device Rated current Ioc Inductance uH at 20kHz 5V_ Diameter x height Wire gauge A Ipc 0 Ipc rating mm Max mmg HP011 1 200 160 0 5 HP021 2 65 55 p 20 x 12 0 7 HP031 3 30 23 0 8 HP012 1 600 450 0 5 HP022 2 180 135 22 x 13 0 7 HP032 3 120 80 0 8 HP052 5 45 30 1 0 HP013 1 1000 800 0 5 HP023 2 500 330 26 x 14 0 7 HP033 3 130 100 0 8 HP055 5 90 55 1 0 HP034S 3 400 250 0 8 HP054S 5 350 160 36 x 18 1 0 HP104S 10 50 30 1 6 HP024 2 1500 950 0 7 HP034 3 300 230 36 x 21 0 8 HP054 3 210 140 1 0 HP104 10 45 30 1 6 HP035 3 700 500 0 5 HP055 5 600 330 43 x 23 1 0 HP105 10 180 95 1 6 HP205 20 20 14 1 8 x 2 P 4 18 EPSON S1F70000 Series Technical Manual S1F76300 Series Diodes Shindengen DINS4 Schottky barrier diodes Ratin Parameter Symbol Condition ue Unit Min Typ Max IF 1 1A Forward voltage VF 0 55 V pulse measurement Reverse current IR Weise 71 mA pulse measurement Junction to lead thermal resistance Oji 23 C W Junction to ambient thermal resistance Oja 157 C W Characteristics Tp 25 e Typ 7 Tp 125 C Typ 2 X 4 Fre 25 C Max S Tp 125 C Max a 0 5 S mM 502 a 0 1 0 05 0 2 0 4 0 6 0 8 1 0 1 2 1 4 Forward voltage V Smoothing capacitors
6. fosc kHz Vi V 11 Output impedance vs Input voltage 12 Multiplication efficiency vs Clock frequency 2 8 EPSON S1F70000 Series Technical Manual Peff fosc kHz 13 Multiplication efficiency vs Clock frequency Vree V 15 Output voltage vs Output current 7 850 7 900 Vrea V S1F76610 Series 7 950 T Ke N LL T Ku 0 0001 0 0010 0 0100 0 1000 lo V 14 Output voltage vs Output current 0 0001 0 0010 0 0100 0 1000 lo V 16 Output voltage vs Output current S1F70000 Series EPSON Technical Manual 2 9 S1F76610 Series 0 30 50 0 25 O Vo 5V 5 0 20 Y S Vo 10V 2 C Vo 15V O 0 15 a 0 g R Z Z CTO 0 10 o i CT1 0 05 E CT2 0 00 50 0 5 10 15 20 40 20 0 20 40 60 80 100 lo mA Ta C 17 Regulator voltage vs Output current 18 Regulator output stability ratio vs Ambient temperature Temperature Gradient Control The S1F7661 COBO offers a choice of three
7. Plastic SOP5 14pin SOT 89 3pin 10 5Max ve 0 44Max 2 10 2 0 2 L ee 28 7 INDEX E ME p TM I TM xz At e4 1 2 3 eeh Gemeen 15 15 0 44Max ei vi rj 1 27304 5 0 48Max 0 48Max 7 p 53Max Unit mm Unit mm Plastic SOP2 24pin Plastic SOP2 28pin 15 5Max 18 1Max 15 2 0 1 17 8 0 1 28 15 ULI T 2 4 E D BE o I TTP UU 1 14 w S ai s bh i 5 0 1540 05 de RER EUH ESPERE Eo 1 27 0 440 1 1 0 Unit mm Unit mm Plastic SSOP2 16pin Plastic SSOP1 20pin 6 8 0 2 6 5 0 1 gt 6 6 0 2 D 16 9 5 O00000 2 o lt INDEX E E 1 8 E 015 LO 10 0 8 0 3640 1 2 0 5102 Unit mm Unit mm S1F70000 Series EPSON 6 5 Technical Manual Appendix EMBOSS CARRIER TAPING STANDARD SOT89 3pin TAPING INFORMATION The emboss carrier taping standard is shown in the the EIAJ RCIOOB electronic parts taping specification following table and figure This standard conforms to Each tape holds 1 000 devices Dimension code Dimensions angles mm Dimension code Dimensions angles mm A 5 0 P2 2 0 0 05 B 4 6 T 0 3 D
8. Basic Circuit De TIT Driver _ Oscillator Z Ma da Oe detection L circuit T o 777 ISENSE D PWM VDD2 9 5 TIT 7774 2 SSC Soft start EXO J L Vss Zr 9 Swa ZF ZA 8 Vo regulator J 20 i Vsw E AE 2 SWC S H SRC Error amplifier gt Vc 7774 IREF Reference voltage POFFX LI L circuit VREF TI T 4 52 EPSON S1F70000 Series Technical Manual S1F71200 Series Example of Parts Connection S1F71200 TIT Input voltage i Q e e E ISENSE ZIT FN CVDD1 AC DC VBAT ZIT 748 PNPTr Output voltage O 0 0 Z CVOUT e 77 o RIREF CVREF Parts examples CVDDI 47uF Sanyo 16SA47M NchTr Hitachi HAT2037T L 47uH Sumida CR54 D Schottky Rohm RB161L 40 CVsw 47uF Sanyo 16SA47M PNPTr 2SA1242 CVOUT 22uF Sanyo 10SL22M RIREF 100kQ CVREF 0 1uF CSSC 0 1uF RSENSE 0 10 Characteristics vary with applicable conditions and parts Select proper parts after sufficient evaluation S1F70000 Series EPSON 4 53 Technical Manual S1F71200 Series MECHANICAL DATA Plastic SSOP2 16pin Reference D D1 16 A n INDEX ES Y Y 1 lt lt
9. A 330 2 0 B 80 1 0 C 13 0 0 5 BA D 21 0 1 0 E 2 0 0 5 W 14 0 1 5 See note Wi 2 0 0 5 le WT W2 20 5 max See note r 1 0 Note W and W2 are measured at the reel core DEVICE POSITIONING Type B products are positioned so that the index mark is on the sprocket hole side of the tape as shown in the following figure Index mark e Travel direction 6 12 EPSON S1F70000 Series Technical Manual Appendix Type F products are positioned so that the index mark is on the opposite side to the sprocket holes as shown in the following figure oO EE Index mark _ gt Travel direction Appendix S1F70000 Series EPSON Technical Manual Appendix EMBOSS CARRIER TAPING STANDARD SOP2 24pin TAPING INFORMATION The emboss carrier taping standard is shown in the the EIAJ RCI009B electronic parts taping specification following table and figure This standard conforms to Each tape holds 1 000 devices Dimension code Dimensions mm Dimension code Dimensions mm A 12 4 PO 4 0 0 1 B 15 6 P2 2 0 0 1 DO 1 55 0 1 0 T 0 3 0 05 D1 2 0 0 1 0 T2 3 0 0 1 E 1 75 0 1 W 24 0 2 F 11 5 20 1 Wi 21 5 Typ P1 16 0 1 Note The tape thickness is 0 1 mm Max Tb PT T2 There are no joints in either the cover or carrier tapes trailer The t
10. Voo 0v Voo OV CL 10uF L5V C2 10pFL 5 le Vi 5 V r 8 10 uF quired when any number of devices are connected in parallel Also the voltage regulator in one chip is suffi cient to regulate the combined output Vpop 0 V T 1 14 C1 GL aai E i Rosc 1 MO c2 13 12 10uFT 4 11 YB V 7 5 a 6 9 v v La s 10 uF 2 12 EPSON S1F70000 Series Technical Manual Serial Connection Connecting two or more chips in series obtains a higher output voltage than can be obtained using a parallel lt Precautions when connecting loads gt In case of series connections when connecting loads between the first stage VDD or other potential of the second stage VDD or up and the second stage VREG as shown in Fig 2 13 be cautions about the following point When normal output is not occurring at the VREG ter minal such as at times of starting up or when turning the VREG off by POFF signals if current flows into the second stage VREG terminal through the load from S1F76610 Series connection however this also raises the output imped ance the first stage VDD or other potential of the second stage VDD or up to cause a voltage exceeding the absolute maximum rating for the second stage VDD at the VREG terminal n
11. S1F77210Y1RO0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 73 2 80 2 87 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET a 144100 nme l VDD 3 0V High level output current loH OUT 2 7V 1 00 0 25 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD Cen u 8 40 ge Detection voltage Ta 25 C TPHL response time VDD 3V52V m Ta 30 C to 85 C EZ e 5 8 EPSON S1F70000 Series Technical Manual S1F77200Y Series S1F77210Y1G0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 93 3 00 3 07 V Hysteresis width VHYS VHYS VREL VDET 0 09 0 15 0 21 V Operating current IDD VDD 4 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET Feuer lana OE BPN VDD 4 0V High level output current loH OUT 3 6V 1 60 0 40 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD TE _ 8 40
12. 40 20 0 20 40 60 80 100 Ta C 2 Clock frequency vs Ambient temperature Vo V 4 Output voltage vs Output current S1F70000 Series Technical Manual 25 C 5 Output voltage vs Output current 100 90 80 70 60 50 40 Peff 30 20 10 100 Ta 25 C 70 Vi 5 OV x2 multiplier 60 Peff i multiplier x3 multiplier 50 l Peff x2 multiplier 20 li 10 20 30 40 50 lo mA 7 Multiplication efficiency input current S1F70000 Series Technical Manual vs Output current S1F76610 Series Vo V i o o N u T o 0 1 2 34 5 6 7 8 9 10 lo mA 6 Output voltage vs Output current 100 li mA Peff 3 li mA 0 5 10 15 20 25 30 lo mA 8 Multiplication efficiency input current vs Output current EPSON 2 7 S1F76610 Series 500 Ta 25 C 400 lo 6mA 300 2 5 2 C 200 x3 multiplier 100 x2 multiplier ACHE o 1 0 0 012 3 4 5 6 7 8 9 10 7 6 5 4 3 2 lo mA Vi V 9 Multiplication efficiency input current 10 Output impedance vs Input voltage vs Output current Ro Q Peff Banes CT
13. FUNCTIONAL DESCRIPTIONS Basic Voltage Booster Operation Tr1 switches ON and OFF at half the frequency of the clock pulses from the built in RC oscillator When the transistor is ON the circuit stores energy in L When it is off this energy flows through D to change C S1F70000 Series Technical Manual EPSON S1F76300 Series Measurement circuit Vo Vo R 100 kQ PWCR RST Internal Circuits CR oscillator The S1F76310 S1F76380 series use a built in CR os cillator to drive the voltage booster circuit The circuit is supplied by Vri All circuit components are on chip and thus the drive frequency is set internally To ensure 50 duty this frequency is twice that used by the volt age booster circuit When PS is Low the oscillator is disabled and the chip is in standby mode gt o gt Lag oO N LL Wu S1F76300 Series Reference voltage generator and output voltage regulator The reference voltage generator regulates VI1 to gener ate a votlage for the voltage regulator and voltage detec tion circuits The voltage regulator regulates the boosted output votlage This is determined by the level at point A be tween the two resistors connecting VO and GND These series use an on chip resistor to set the output at a speci fied voltage Output voltage regulator U Reference voltage generator CR oscillator Note I
14. S1F78100Y2T0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 5 0V lo 10mA Output voltage oe 3 23 3 30 3 37 V Current consumption loPR Vpp 3 3V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vr Vo Vo 3 3V lo 10mA _ 0 30 0 50 V Output voltage AVO temperature characteristic Vo 0 100 200 ppm C Taz 30 C to 85 C AVO Same temperature condition Input stability AVI Vo VDD 4 0V to 15 0V 0 1 SN lo 10mA Taz 30 C to 85 C Load stability AVo EE conden ag mV lo 1mA to 30mA Supply voltage rejection VDD 5 0V fin 40kHz ratio Tam Ci 10pF lo 5mA see rewh dB S1F78100Y2C0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 5 0V lo 10mA Output voltage Vo Ta 25 C 3 13 3 20 3 27 V Current consumption loPR VDD 3 2V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vr Vo Vo 3 2V lo 10mA 0 30 0 50 V Output voltage AVO temperature characteristic Vo 0 100 200 ppm C Taz 30 C to 85 C AVO Same temperature condition Input stability AVI Vo VDD 4 0V to 15 0V 0 1 AN lo 10mA Taz 30 C to 85 C Same temp
15. Pin No Pin name Description 1 NC No connection 2 OSC2 Resistor connection Open when using external clock 3 OSC1 Resistor connection Clock input when using external clock 4 VDD Positive supply system Vcc 5 CAP 1 Positive charge pump connection 6 CAP1 Negative charge pump connection 7 Vo x2 multiplier output 8 Vi Negative supply system ground S1F70000 Series Technical Manual EPSON 1 1 o oO lo lo N LL Wu S1F76600 Series SPECIFICATIONS Absolute Maximum Ratings Parameter Symbol Rating Unit Input voltage range Vi 10 0 to 0 5 V Output voltage range Vo Min 20 0 V Power dissipation PD ae mW 150 SOP Operating temperature range Topr 40 to 85 C Storage temperature range Tstg 65 to 150 C Soldering temperature for 10s See note Tsol 260 C Note Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions Never use solder dip to mount S1F70000 series power supply devices Recommended Operating Conditions VDD OV Ta 40 to 85 C unless otherwise noted Parameter Symbol Condition Rating Unit Min Typ Max Rosc 1MQ C1 C2 lt 1 20 C2 gt 10uF 1 5 Oscillator startup voltage Ven Ta 20 to 85 C V See note 1 Rosc 1MQ 2 2 Oscillator shutdown voltage VsTP Rosc MO 1 5 V Load resistance RL FEA
16. Ai Symbol Dimension in Milimeters Dimension in Inches Min Nom Max Min Nom Max E 4 2 4 4 4 6 0 166 0 173 0 181 D1 6 4 6 6 6 8 0 252 0 260 0 267 A 1 7 0 066 Ai 0 05 0 002 A2 1 4 1 5 1 6 0 056 0 059 0 062 e 0 8 0 031 b 0 26 0 36 0 46 0 011 0 014 0 018 C 0 1 0 15 0 25 0 004 0 006 0 009 0 0 10 0 10 L 0 3 0 5 0 7 0 012 0 020 0 027 L1 0 9 0 035 L2 0 4 0 016 HE 5 9 6 2 6 5 0 233 0 244 0 255 D 7 0 275 02 03 R Hi for reference 4 54 EPSON S1F70000 Series Technical Manual 5 Voltage Detector S1F77200Y Series S1F77200Y Series CMOS Voltage Detectors DESCRIPTION The S1F77200Y series products are non adjusting volt age detectors being developed utilizing he base of the CMOS silicon gate process This voltage detector consists of the reference voltage circuit voltage comparator hysteresis circuit and out F EATURES Full lineups 19 types are prepared for the detection range between 2 0V to 5 0V For the detection range from 0 8V to 2 5V 7 types are available products designed for lower voltage detection put circuit all operating on smaller current e Low operating current Typ 2 0 HA VDD 5 0V A voltage range to be detected is internally set on re Low operating voltage 1 5V at minimum spective detectors A wide variety of our
17. 4 N C 2 V 2 times step up C1toC4 10uF 0 5 10 15 20 lo mA 5 Output voltage Vo vs Output current 2 700 600 500 4 times step up 400 Ro Q 3 times step up 300 times step up 200 100 Vpp V 7 Output impedance vs Input voltage 1 2 52 Vo V N d A al Oo N 4 times step up c 3 times step up VDD 3V Ta 25 C C1 to C4 1 OUF 2 times step up 1 23 4 5 6 7 8 9 10 lo mA 6 Output voltage VO vs Output current 3 700 4 times step up y 3 times step up 2 times step up VDD V 8 Output impedance vs Input voltage 2 EPSON S1F70000 Series Technical Manual 100 90 80 70 60 50 40 30 20 10 Peff at step up loo imes C1 to C4 1 DUE lo mA 9 Step up power conversion efficiency vs Output current 1 Input current vs Output current 1 100 90 80 70 60 50 40 30 20 10 Peff 2 times step up Peff 4 times s ep up Peff 3 times step up Peff 4 times step up loo 3 times step up loo Ta 25 C Vpp 2V C1 to C4 1 OF 2 times step up loo 0 1 2 3 4 5 6 7 lo mA 8 9 1 Ipp mA 50 40 30 20 10 0 11 Step up power conversion efficiency vs Output current 3 Input c
18. Output Voltage V Output Voltage N o 230 0 25 50 75 85 75 85 Ambient temperature C An blesi denon Output voltage vs ambient temperature Output voltage vs ambient MM S1F76380M1H0 S1F76380M1L0 S1F76310M1B0 S1F76310M1K0 60 Vi 1 5 V 50 o N N z 2 8 Z 40 LC c c p o o o E 30 x x o o 2 2 O O 20 10 30 Input voltage V nibient temeer Clock frequency vs input voltage Clock frequency vs ambient temperature S1F76310M1A0 60 Ta 25 C 50 T bs x T gt X 40 E gt o S 30 2 20 o O 10 10 0 5 1 0 15 2 0 2 5 30 0 25 50 85 Input voltage V Ambient temperature C Clock frequency vs input voltage Clock frequency vs ambient temperature S1F70000 Series EPSON 4 9 Technical Manual S1F76300 Series Load Characteristics S1F76310M1A0 5 5 T T T Ta 25 C fcuk 32 kHz 5 0 Z45 2 Vi 21 5 V hj Vii 1 0 VI Vn 1 25 V o 4 0 gt 5 235 eh O 3 0 2 5 5 Load current mA Notes Inductor TDK NLF453232 221k 220uH Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSUB20J106M 10uF S1F76310M1B0 4 0 fcLk 32 8 kHz 3 5 Z 30 0 D g 525 gt 5 Vi 21 5 V 2 20 1 1 25 V O Vii lt 1 0 V 1 5 1 0 0 5 10 15 20 25 Load c
19. 3 0Min 4 4 0 1 7 62 rm E 0 8 0 1 TTT P 12 54 0 25 110 46 0 1 7 62 to 9 02 7 62 to 9 02 Unit mm Unit mm Plastic QFP5 48pin Plastic QFP12 48pin 19 6 0 4 me T0 7 0401 1 36 25 LUI UL INDEX 1 EE ES 23 ol CH de INDEX E No 48 E13 24 S ba N 0 5 0 2 Unit mm Unit mm Plastic SOP3 8pin 5 0 0 2 st S o wo d D LO 0 230 1 e 27 0 4 0 1 2 0 8 o Unit mm Plastic SOP4 8pin 5 0 0 2 foe S lt g s INDEX g S OS NS o j Ur f 0 15 0 1 1 27 p 35 501 Toss Unit mm EPSON S1F70000 Series Technical Manual Appendix
20. Vss Gein S1F77220Y1 0 Type S1F77200Y Series S1F77200Y2 0 Type OUT Ipin NA Vss Gpin S1F77210Y2 0 Type VDD 2pin T OUT 1pin VREF Vss o lt Gpin S1F77220Y2 0 Type Note A different code can be employed for the ones preceded by a marking depending on their detecting voltage specification S1F70000 Series EPSON 5 3 Technical Manual o O N N N LL Wu S1F77200Y Series PIN DESCRIPTIONS Pin No Pin name Description 1 OUT Voltage detection output pin VDD Input voltage pin positive side 3 Vss Input voltage pin negative side PIN ASSIGNMENTS SOT89 3pin FUNCTIONAL DESCRIPTIONS The S1F77200Y series has the circuit configuration as shown in the figure below For the detection divided potential VREG across the resistors inserted across the power supply and the reference voltage VREF gener ated on the IC are entered to the voltage comparator Since the voltage comparator is designed to detect a tar get voltage even when potential difference between VREG and Vref minute hysteresis is added so that the comparator may not fail due to noise on the power sup ply and such In the example shown in the figure below detection voltage VDET for the input voltage drop and relief voltage VREL for the increased input voltage are set
21. Vi Figure 2 8 Wiring example of 4 time booster and regulator Setup conditions of Figure 2 8 Internal clock ON Low Output mode Booster circuit ON Regulator ON if CT 0 04 C Power off procedure e Set the POFF1 pin to logical low Vr to turn off all circuits Regulator For the regulator setup and notes see the voltage regulator circuit section Application in other setup conditions CD When used in the High Output mode Connect the FC pin to the Vr pin When changing the temperature coefficient CT e Change the TCI and TC2 pin setup by following the definition of Table 2 7 2 30 EPSON S1F70000 Series Technical Manual S1F76540 Series 4 time Booster Only the booster circuit operates and it boosts the input appearing at the VO pin may contain ripple components voltage VI four times in negative direction and outputs Figure 2 9 gives a wiring example it at the VO pin As the regulator is not used the voltage o st D lo N LL Wu Figure 2 9 Wiring example of 4 time booster O Setup conditions of Figure 2 9 Internal clock ON Low Output mode Booster circuit ON Regulator OFF O Power off procedure Set the POFF2 pin to low VI to turn off all circuits O Ripple voltage As the output at VO pin is unstable it can contain ripple components as shown in Figure 2 10 The ripple voltage VRP increases according to the loa
22. 0 3 Vpp 0 3 V TC2 and FC pins Output pin voltage 1 Voci Vi 0 3 VDD 0 3 V C1P and C2P pins Output pin voltage 2 Voc2 2xVi 0 3 VI 0 3 V C1N pin Output pin voltage 3 Voc3 3x VI 0 3 2 x VI 0 3 V C2N pin Output pin voltage 4 Voc4 4xVi 0 3 3x VI 0 3 V C3N pin Regulator inpol power VRI NxV 0 3 Vpp4 0 3 V N Boost time Vni pin voltage Regulator input pin voltage VRV N x V1 0 3 VDD 0 2 V N Boost time RV pin N Boost time Output voltage Vo NxV 0 3 Vpp 0 3 V Vo and VREG pins Input current li 80 mA Vi pin N lt 4 20 N Boost time aid lo N 4 80N Vo and Vree pins Allowable loss PD 210 mW Ta lt 25 C Operating temperature Topr 30 85 C Storage temperature Tstg 55 150 9C Sale mo Temperature Tsol 260 10 C s Atleads and time Notes 1 An operation exceeding the above absolute maximum ratings may cause a malfunction or permanent damage of devices The device reliability may drop excessively even if the devices temporarily operate normally 2 Electrical potential to peripheral systems The S1F76540 common power supply has the highest potential VDD The electrical poten tial given by this specification is based on VDD 0 V Take care to avoid a potential problem during connection to a peripheral system 2 18 EPSON S1F70000 Series Technical Manual Figure 2 3 Potential relationship S1F76540 Series Vcc System S1F76540 Mob 5 V i 0 V 5 V i GND h Vi
23. S1F76600 Series 100 90 80 70 60 50 Peff 40 30 20 100 90 80 70 60 50 Peff 40 30 20 10 11 Multiplication efficiency input current vs Output current lo 2mA lo 5mA lo 10mA lo 30mA lo 20mA x 5 CL Vi 5 0V 10 100 1000 fosc kHz 9 Multiplication efficiency vs Clock frequency 100 li 90 80 70 Ta 25 C Vi 5 0V Batt 60 _ lt 50 E c 40 a 30 20 10 0 10 20 30 40 50 lo mA EPSON 100 90 80 N Pp CO O N c o o o o o 100 90 80 70 60 50 40 30 20 10 lo 0 5mA lo 1 0mA lo 2 0mA lo 4 0mA Vi 3 0V 1 10 100 1000 fosc kHz 10 Multiplication efficiency vs Clock frequency 100 90 80 70 60 50 li mA 40 30 20 10 12 Multiplication efficiency input current vs Output current S1F70000 Series Technical Manual 100 40 90 36 80 Peff 32 70 28 Ta 25 C 60 Vi 2 0V 24 Se lt 50 li 20 E D A0 16 30 12 20 8 10 4 0 0 lo mA 13
24. o o 20 Gate capacitance pF Normalized frequency deviation vs gate capacitance 1 o 30 o o N LL Wu Normalized frequency devi ation Af f Normalized frequency deviation ppm 0 5 1 0 1 5 Input voltage V 2 0 Normalized frequency deviation vs input voltage 2 a o 2 5 Normalized frequency deviation f fo E amp fo Ro 0Q S Vi lt 1 5 V T fo 96 kHz gt bal jo gt o E Cp 10 pF o 2 jo g D 20 pF o E o z 30 10 20 30 Gate capacitance pF Normalized frequency deviation vs gate capacitance 2 EPSON S1F70000 Series Technical Manual 4 25 S1F76300 Series Load characteristics S1F76330M1B0 100 T E 2 Z E R o o o oF 3 50 5 5 Vi 1 5 V 9 5 5 5 E 6 E 3 3 1 5 1 0 0 0 5 10 15 20 25 100 200 300 500 1000 Load current mA Inductance uH Notes Notes Inductor TDK NLF453232 221k 220uH 1 Vun 2 1 5V Diode Shindengen DINS4 Schottky barrier diode 2 Inductor TDK NLF453232 series Capacitor NEC MSVB20J106M 10uF Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSVB20J106M 10uF PACKAGE MARKINGS S1F76330 device packages use the following marking Series number First subcode character Second subcode character Code number 4 26 EPSON S1F70
25. Q See note 2 Output current lo 30 0 mA Clock frequency fosc 10 0 30 0 kHz CR oscillator network B se 680 _ 2 000 ko resistance Capacitance C1 C2 3 3 uF Notes 1 The recommended circuit configuration for low voltage operation when VI is between 1 2V and 2 2V is shown in the following figure Note that diode D1 should have a maximum forward voltage of 0 6V with 1 0mA forward current 2 RL min can be varied depending on the input voltage 1 2 EPSON S1F70000 Series Technical Manual S1F76600 Series o To To N LL T Wu 3 RL min is a function of VI 5 G g VSTA1 E s 3 3 5 2 5 E E 1 Mu Mera 0 1 0 1 5 2 0 3 0 40 5 0 6 0 Input voltage V Electrical Characteristics VDD OV Ta 40 to 85 C unless otherwise noted Parameter Symbol Condition Rating Unit Min Typ Max Input voltage VI 8 0 1 5 V Output voltage Vo 16 0 V Multiplier current loPR dd SNE s 20 30 uA Quiescent current la RL Vi 8V 2 0 uA Clock frequency fosc Rosc 1MO VI 5V 16 20 24 kHz Output impedance Ro lo 10mA VI DM 75 100 Q Multiplication efficiency Peff lo 5mA VI DM 90 95 96 OSC1 Input leakage current ILKI VI 8V _ 2 0 uA S1F70000 Series EPSON 1 3 Technical Manual S1F76600 Series Typi
26. When the external clock operates make the pin OSC2 open as shown in Figure 5 2 and input the 5096 duty of the external clock from the pin OSCI Voltage Conversion Circuits I and Il The voltage conversion circuits T and II doubles and triples the input voltage VDD respectively by using clock generated in the CR oscillator In case of 2 times step up 2 times step up output of the input voltage is obtained from the VO pin when a pump up capacitor is connected between CAP1 and CAP1 CAP2 and CAP3 are short circuited to VO and a smoothing capacitor is connected between VDD and Vo outside In case of 3 times step up 3 VDD is output from the Vo pin when a pump up capacitor is connected between CAP1 and CAP1 and between CAP2 and CAP2 respectively and a smoothing capacitor is connected between the VDD and Vo pins outside In case of 4 times step up 4 VDD is output from the Vo pin when a pump up capacitor is connected between CAP1 and CAP1 between CAP2 and CAP2 and between CAP1 and CAP3 respectively and a smoothing capacitor is connected between the VDD and VO pins outside When GND is 0 and VDD is 5 the relations between the input voltage and the output voltage are as shown in Figures 5 3 5 4 and 5 5 S1F70000 Series EPSON 2 43 Technical Manual o lt T le lo N LL Wu S1F76640 Series CAP3 4VDD 20V CAP2 3VDD 15V CAP1 2VDD 10V AN LZ e VDD 5V VDD 5V VDD 5V GND 0V GND 0V GND 0V Figure 5 3
27. 0 3 V Voltage at POFFX pin POFFX POFFX Vss 0 3 to VDD1 0 3 V Voltage at Vc pin Vc Vc Vss 0 3 to VDD1 0 3 V Voltage at SWC pin SWC SWC Vss 0 3 to 15 V Voltage at Vsw pin Vsw Vsw Vss 0 3 to 15 V Voltage at SSC pin SSC SSC Vss 0 3 to VDD1 0 3 V S 9 ISENSE ISENSE ISENSE Vss 0 3 to VDD1 0 3 V i 8 SWO SWO SWO Vss 0 3 to VDD1 0 3 V A Package allowable loss PD PD T s 5 MW a lt 25 C Operating temperature Topr 30 to 85 C Storage temperature Tstg 55 to 150 C Soldering temperature and time Tsol 260 10 C s Note Any operation under conditions exceeding the above absolute maximum ratings may result in a malfunction or a permanent destruction When even an item is more than the rating a temporary normal operation is possible but with remarkably low reliability So be sure to keep all items below the ratings S1F70000 Series EPSON 4 47 Technical Manual S1F71200 Series ELECTRICAL CHARACTERISTICS S1F71200M0A0 Output 5 0V DC Characteristics Unless otherwise specified Ta 25 C Rating Parameter Symbol Conditions Unit Min Typ Max Input supply voltage 1 VDD1 VDD1 pin 2 5 12 0 Input supply voltage 2 VDD2 VDD2 pin 12 0 Vswi pin Vc VDD 6 0 Step up set voltage Vsw TE V Vc Vss 5 5 VDD2 6V Output voltage Vo S 4 8 5 0 5 2 V Ta 30 C to 85 C Operating time DEBET Von 3V VoD2 6V 150 250 wA current consumptio
28. 0 V 5 V i 10 V i sets E 10 V Two time i boosting 15 V M m 15 V i Three time i boosting 20 V i 20V Four time boosting ELECTRICAL CHARACTERISTICS Table 2 3 DC characteristics 1 o st D lo N LL Wu Ta 30 C to 85 C Vpp 0 V VI 5 0 V unless otherwise noted Parameter Symbol Characteristics Min Typ Max Unit N Boost time if CTO is selected 22 N 2 4 V N Boost time if CT1 is selected 22 N 2 4 V Input power voltage VI N Boost time if CT2 is selected 22 N 2 4 V N Boost time if CT3 is selected 22 N 2 4 V Boost start input power VSTA N Boost time FC VDD during _09 N 24 V voltage no loading Boost output voltage Vo 22 V Regulator input voltage VRI 22 24 V IREG 0 VRI 22V Regulator output voltage VREG Rav 1MO 24 V S1F70000 Series EPSON 2 19 Technical Manual S1F76540 Series Table 2 3 DC characteristics 2 Ta 30 C to 85 C VDD 0 V VI 5 0 V unless otherwise noted Parameter Symbol Characteristics Min Typ Max Unit lo 10 mA Vi 5 0 V during 4 time boosting 200 300 Q 1 C2 10 uF Boost output impedance Ro 61 CA 63 CO TOM ena lo 10 mA Vi 3 0 V Ta 25 C during 4 time boosting 250 300 Q C1 C2 C3 Co 10 uF tantalum lo 2 mA VI 0 V during 4 time boosting
29. Selection Guide Product Features Package S1F76310M1L0 Step up switching regulator from 1 5V to 2 4V Low operating voltage Min 0 9V Low operating current Typ 7UA High precision voltage detection function and battery backup function Built in CR oscillator circuit Power on clear function SOP3 8pin S1F76380M1H0 Step up switching regulator from 1 5V to 2 2V Low operating voltage Min 0 9V Low operating current Typ 7A Built in CR oscillator circuit High precision voltage detection Output voltage response compensation Temperature characteristics of output voltage for LCD panel 4 5mV C SOP3 8pin S1F76380M1L0 Step up switching regulator from 1 5V to 2 4V Low operating voltage Min 0 9V Low operating current Typ 7uA Built in CR oscillator circuit High precision voltage detection Output voltage response compensation Temperature characteristics of output voltage for LCD panel 4 0mV C SOP3 8pin S1F76330M1B0 Step up switching regulator from 1 5V to 3 0V Low operating voltage Min 0 9V Low operating current Typ 5UA Built in crystal oscillator circuit Equipped with crystal oscillator output pin SOP3 8pin S1F71100M0A0 Step down switching regulator from 3 3V 12 0V to 3 3V Power off current 11A Frequency fixing 200kHz PWM Soft start function Overcurrent protection function Low voltage protection functio
30. higher time boosting using diodes The example of Figure 2 12 must have the Vr that can satisfy the input voltage conditions during 6 time boosting see Table 2 3 O Application in other setup conditions CD When used in the High Output mode Connect the FC pin to the VI pin 2 When changing the temperature coefficient CT Change the TC1 and TC2 pin setup by following the definition of Table 2 7 2 34 EPSON S1F70000 Series Technical Manual S1F76540 Series Positive Voltage Conversion The S1F76540 can also boost up a voltage to the posi gives a wiring example for three time positive boosting tive potential using external diodes In such case how and Figure 2 15 provides its electrical potential rela ever the regulator function is unavailable Figure 2 14 tionship D1 D2 D3 gt st lo lo N LL Wu Figure 2 14 Wiring example of positive voltage conversion 3 time boosting 9 Setup conditions of Figure 2 14 Internal clock ON Low Output mode Booster circuit ON Regulator OFF 3VI VDD 3VI 3 VF Vi Figure 2 15 Potential relationship during positive voltage conversion 3 time boosting O Power off procedure Set the POFF2 pin to low VI to turn off all circuits O Two time boosting To boost up a voltage two times remove capacitor C1 and diode D1 of Figure 2 14 and connect the anode of diode D2 to the VDD pin S1F70000 Series EPSON 2 35 Techni
31. temperature coefficient ATopr o N N LL Wu These values are available when external parts are used in the example of circuit connection shown on the at tached sheet The characteristics vary with applicable parts Select proper parts after sufficient evaluation S1F70000 Series EPSON 4 49 Technical Manual S1F71200 Series S1F71200MOBO Output 3 3V DC Characteristics Unless otherwise specified Ta 25 C Rating Parameter Symbol Conditions Unit Min Typ Max Input supply voltage 1 VDD1 VDD1 pin 2 5 12 0 Input supply voltage 2 VDD2 VDD2 pin 12 0 Vswi pin Vc VDD1 4 3 Step up set voltage Vsw V p up g Vc Vss 3 8 VDD2 4 3V Output voltage Vo 3 15 3 3 3 45 V n 3 Ta 30 C to 85 C ina ti IVDD1 VDD1 3V VDD2 4 3V Operating time DD1 1 DD1 3 VDD2 3 _ 150 250 uA current consumption 1 VDD1 system during step up IVDD2 VDD1 3V VDD2 4 3V DD2 1 DD1 VDD2 15 30 id operation Vop2 system Operating time IVDD1 2 VDD1 5V VDD2 5V 100 200 uA current consumption 2 VDD1 system operation for IVDD2 2 VDD1 5V VDD2 5V hd de es step down only Vop2 system Power off time VDD1 12V VDD2 12V la 1 0 uA current consumption iste VDD1 3V VDD2 4 3V BK e Output current Von 50mV at SWO pin VDD1 3V VDD2 4 3V loLswo 1 0 mA Vor 50mV Input stability A
32. 0 1 V SOT89 3pin S1F79100Y1D0 3 00V negative output voltage regulator Low operating current Typ 4 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F79100Y1G0 1 80V negative output voltage regulator Low operating current Typ 4 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F79100Y1H0 1 50V negative output voltage regulator Low operating current Typ 4 0 uA Input voltage stability Typ 0 1 V DC DC Switching Regulator SOT89 3pin Product Features Package S1F76310M1A0 Step up switching regulator from 1 5V to 5 0V Low operating voltage Min 0 9V Low operating current Typ 10UA High precision voltage detection function and battery backup function Built in CR oscillator circuit Power on clear function SOP3 8pin S1F76310M1K0 Step up switching regulator from 1 5V to 3 5V Low operating voltage Min 0 9V Low operating current Typ 8UA High precision voltage detection function and battery backup function Built in CR oscillator circuit Power on clear function SOP3 8pin S1F76310M1B0 S1F70000 Series Technical Manual Step up switching regulator from 1 5V to 3 0V Low operating voltage Min 0 9V Low operating current Typ 8uA High precision voltage detection function and battery backup function Built in CR oscillator circuit Power on clear function EPSON SOP3 8pin
33. 10101 wn ratio AVI Vo lo 10mA Isothermal VI 7V Output voltage drift AVO lo 2 1mA to 30mA 140 0 mV S1F79100Y1B0 VDD OV Ta 40 C to 85 C unless otherwise noted Ratin Parameter Symbol Conditions 9 Unit Min Typ Max Input voltage Vi _ 15 0 V Output voltage Wa klem 5 10 5 00 490 V Ta 25 C Operating current IOPR Vi 5 0V to 15 0V 4 0 180 uA E voltage IVi Vol Vi 5 0V lo 10mA 047 034 V Input voltage stabilization AVO VI 6 0V to 15 0V 1010 v v ratio AVI Vo lo 10mA Isothermal S VI 7 0V Output voltage drift AVO lo mA to SOMA 150 0 mV 3 24 EPSON S1F70000 Series Technical Manual S1F79100Y Series Typical Performance Characteristics S1F79100Y1B0 7 0 6 0 Vi 7V Ta 25 C BUI 5 0 Hlo OmA ae 4 0 X 40 3 x x 3 0 3 0 9 2 0 2 0 gt 1 0 s S o 0 0 0 0 F 40 20 0 20 40 60 80 100 0 5 10 15 dn Ta C Vi V loPR vs Ta loPR vs VI 1 2 S o 1 gt gt 0 4 RS E 0 0 40 20 0 20 40 60 80 100 0 10 20 30 40
34. BAC temperature coefficient ATa Ta 30 to 85 C Characteristics vary with applicable conditions and parts Select proper parts after sufficient evaluation 4 38 EPSON S1F70000 Series Technical Manual S1F71100 Series EXAMPLE OF EXTERNAL CONNECTION OF REFERENCE CIRCUIT Example of Standard Circuit VDD Ce e e CIN2 CIN1 Low voltage Overcurrent N n protection circuit protection A a circuit J 7 Load current d lt detection resistor R Reference ne voltage circuit gt e ISENSE SSCAP Soft start Oscillator SSCAP soft start Driver Pch TC MOSTr PWM circuit L Vo 3 3V LIV O 8 ERCAP Ms phase c IS Compen D A CVouT D sation e e Parts examples CINI 100uF Sanyo 16SA100M CIN2 1uF SSCAP 0 1uF ERCAP 330pF R 100mQ PchTr Hitachi 2SJ484 L 47uH Sumida CD105 CVO 47uF Sanyo 16SA47M D Schottkey Rohm RB161L 40 Characteristics vary with applicable conditions and parts Select proper parts after sufficient evaluation S1F70000 Series EPSON 4 39 Technical Manual S1F71100 Series MECHANICAL DATA
35. C response time VDD 1 5V 0 8V 200 Ta 30 C to 85 C ES 5 16 EPSON S1F70000 Series Technical Manual S1F77200Y Series S1F77200Y1Y0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 0 80 10 0 V Detection voltage VDET Ta 25 C 1 05 1 10 1 15 V Hysteresis width VHYS VHYS VREL VDET 0 03 0 05 0 08 V Operating current IDD VDD 1 5V 1 50 4 00 uA Detection voltage AVDET o temperature characteristics VDET o aal a EERE VDD 0 8V Low level output current loL OUT 0 16V 0 05 0 40 mA VDD TI WM u 8 40 we Detection voltage TPHL Ta 25 C response time VDD 1 5V gt 0 8V 200 Ta 30 C to 85 C TT En Technical Manual S1F77200Y1A0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 0 80 10 0 V Detection voltage VDET T 25 C 1 00 1 05 1 10 V Hysteresis width VHYS VHYS VREL VDET 0 03 0 05 0 08 V Operating current IDD VDD 1 5V 1 50 4 00 uA Detection voltage AVDET temperature characteristics VDET gad 10019100 PRES VDD 0 8V Low level output current loL OUT 0 16V 0 05 0 40 mA VDD eee _ 8 40 e Detection voltage T
36. C response time VDD 3V gt 2V 200 Ta 30 C to 85 C TT us S1F70000 Series EPSON 5 15 gt o N N N LL L Wu S1F77200Y Series Ta 30 C to 85 C S1F77200Y1N0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 0 80 10 0 V Detection voltage VDET Ta 25 C 1 85 1 90 1 95 V Hysteresis width VHYS VHYS VREL VDET 0 03 0 05 0 08 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET SERM 100 100 CERS VDD 1 5V Low level output current IOL OUT 0 15V 0 15 0 75 mA exo e e etection i tage TPHL response time p VDD 2V gt 1V _ 200 ji S1F77200Y1B0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 0 80 10 0 V Detection voltage VDET Ta 25 C 1 10 1 15 1 20 V Hysteresis width VHYS VHYS VREL VDET 0 03 0 05 0 08 V Operating current IDD VDD 1 5V 1 50 4 00 uA Detection voltage AVDET 9 temperature characteristics VDET SE 4100 DB VDD 0 8V Low level output current loL OUT 0 16V 0 05 0 40 mA VDD 15V ey _ 8 40 jii Detection voltage TeuL Ta 25
37. LD Porr Vo ii wW 3 OSCi CAP1 6 _ GND CAP1 Dk 4 osc2 Voo 5 VL m osci cari ST LAD osc2 Voo 5 V Figure 3 Series Connection First stage Next stage Vo 15V Vo 10V T VDD VDD 5V r GND GND 0V Figure 4 Power Supply Relations in Series Connection 1 Note When the input voltage in the next stage is as per the specification VDD GND lt 8V in a series connection the output in the first stage VO VDD can be used as the input in the next stage VDD GND See Figure 5 First stage Next stage Vo 8V Vo 4V i VDD Ed Vpp 2V r GND GND 0V i Figure 5 Power Supply Relations in Series Connection 2 1 22 EPSON S1F70000 Series Technical Manual S1F76620 Series Negative Voltage Conversion S1F76620 can boost input voltage to twice on the positive potential side by using the circuit shown in Figure 6 But the output voltage drops by the forward voltage VF of the diode When GND is OV VDD is 5V and VF is 0 6V as shown in Figure 6 for example Vo is calculated as follows Vo 5V 2x 0 6V gt 3 8V 8 8 i a o G POFF Vo T 2 GND CAP1 7 A l w osci CAP1 604 4 OSCH von 5 _ O Vo Figure 6 Negative Voltage Conversion Negative Voltage Conversion Positive
38. NEC MSV series capacitors Pack Rated Stati it Leak Devica ackage ate atic capaci ance e 185 125 55 eakage type voltage V uF C C C current uA MSVAOJ475M A 6 3 4 7 0 08 0 1 0 12 0 5 MSVB20J106M B2 6 3 10 0 08 0 1 0 12 0 6 MSVB20J156M B2 6 3 15 0 08 0 1 0 12 0 9 MSVBOJ156M B 6 3 15 0 08 0 1 0 12 0 9 MSVCOJ336M C 6 3 33 0 08 0 1 0 12 2 0 MSVD20J686M D2 6 3 68 0 08 0 1 0 12 4 2 MSVDOJ686M D 6 3 68 0 08 0 1 0 12 4 2 Note The figures on the previous pages show data from the documents of various manufactures For further details please contact the relevant manufacture S1F70000 Series EPSON 4 19 Technical Manual S1F76300 Series Other Applications Voltage booster Combining an S1F76310 switching regulator with an creates the voltage booster circuit shown in the follow S1F76610C M DC DC converter and voltage regulator ing figure SNN K L D Vsw C1 TUE Rosc Vh Vo 1 MO E a u re DY s1F76310M P T GND C1 HH VO 15V PS PWCR o Vi 5 V 7 7 Potential levels are shown in the following figure S1F76310M1A0 The input voltage still reaches the S1F76610C M through L and D S1F76310M1A0 gt gt S1F76610C M Vi 15V PS GND 0V I Vo 5 V Vp 5 V L Boost IE Boost d ON OFF 1 A EET Vi 5V GND 0 V l VDD 0 V Por GND 0V Boost Boost gt ON OFF Y VO 10 V Although the circu
39. S1F70000 Series Technical Manual aon oo O O O o Cc o 20 00 90 NN o 60 50 4 Ta 25 C 7 VDD 3V C1 C2 10uF 5 10 15 20 lo mA S1F76620 Series 00 N te N LL im Wu 10 Step up power conversion efficiency vs Output current 2 Input current vs Output current 2 10 100 focs kHz 1000 12 Step up power conversion efficiency vs Oscillation frequency 1 EPSON S1F76620 Series 100 90 o Peff Peff 10 100 1000 focs kHz 13 Step up power conversion efficiency vs VSTA1 V _ _ k _ oO 4 bh P D O N 0 9 Oscillation frequency 2 100 1000 10000 100000 RL Q 100 90 o N o 60 10 100 1000 focs kHz 14 Step up power conversion efficiency vs 15 Step up start voltage 1 vs Load resistance Oscillation frequency 3 EPSON S1F70000 Series Technical Manual S1F76620 Series EXAMPLE OF REFERENCE E
40. Typ Max Unit Operating voltage VDD _ 1 50 12 0 V Detection voltage VDET Ta 25 C 4 50 4 60 4 70 V Hysteresis width VHYS VHYS VREL VDET 0 08 0 15 0 22 V Operating current IDD VDD 5 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET aal aal Laad PRm E VDD 5 0V High level output current loH OUT 4 5V 2 00 0 50 mA VDD 2 0V Low level output current loL OUT 0 2V 0 20 1 00 mA VDD A _ 8 40 lis Detection voltage TeHL Ta 25 C response time p VDD 5V gt 4V _ 200 T S1F77210Y1K0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 150 12 0 V Detection voltage VDET Ta 25 C 4 70 4 80 4 90 V Hysteresis width VHYS VHYS VREL VDET 0 13 0 20 0 27 V Operating current IDD VDD 5 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET o aad laal Kad dd l VDD 5 0V High level output current loH OUT 4 5V 2 00 0 50 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD ino u 8 40 ge Detection voltage Ta 25 C TPHL response time VDD 5V gt 4V m Ta 30 C to 85 C EZ e 5 12 EPSON S1F70000 Series Technical Manual S1F77200Y Series S1F77210Y1L0 Ta 30 C to 85 C is assu
41. W 50 100 150 Ambient temperature C The following figure shows the cost and reliability of a product and is significant when designing a Maximum output current limits are set to prevent system thermal damage 5 Operating temperature range The temperature range for normal device operation Reliability with no change in performance characteristics 6 Storage temperature range Gost The temperature range for device storage with no Z degradation or damage This specification is par m 3 ticularly important when ICs are being transported S E by air a 7 Soldering temperature and the duration The maximum soldering temperature and the time for which the leads can be at this temperature RECOMMENDED OPERATING Junction temperature e CONDITIONS Recommended operating conditions are the conditions under which a device functions correctly These include power supply voltage input conditions and output current These conditions are sometimes listed as part of the electrical characteristics ELECTRICAL CHARACTERISTICS Electrical characteristics specify the DC and AC characteristics of a device under the worst measure ment conditions S1F70000 Series EPSON 6 1 Technical Manual Appendix Appendix The following figure shows a thermal design model which can be used to determine heatsink capacity 2 Ensure that the regulator common pin is a sin gle point ground to prevent earth loops Make ground lin
42. lt 20 mA VREFO TC1 VDD TC2 VDD 1 55 1 50 1 45 V T y Reference voltage VREF1 TC1 VDD TC2 VI 1 701 1 50 1 30 V lt E Ta 25 C VREF2 TC1 Vi TC2 VDD 1 90 1 50 1 10 V ne VREF3 TC1 VI TC2 VI 2 15 1 50 0 85 V Cro TC1 VoD TC2 VDD SSOP product 0 07 0 04 O C Reference voltage J G CT1 TC1 VDD TC2 Vi SSOP product 0 25 0 15 0 07 C temperature coefficient 4 5 Cra TC1 VI TC2 VDD SSOP product 0 45 0 35 0 20 C CT3 TC1 VI TC2 Vi SSOP product 0 75 0 55 0 30 C VI 2 4 to 5 5 V VIH Pins used POFF1 POFF2 FC 0 2 VI V TC1 TC2 Input voltage level VI 2 4 to 5 5 V VIL Pins used POFF1 POFF2 FC 0 8 VII V TC1 TC2 Booster capacitance CMAX Capacitors used C1 C2 and C3 47 uF A VREG VRI RSAT AIREG VREG VRI 20 V VREG VRI 10 V 2 AVR AVRI VREG VRI gt 10 V 3 AVO VREG IREG 20 mA VREG IREG 0 mA ATREG VREF 50 C VREF 0 C 100 is 50 C 0 C TVREF 25 C 5 The reference voltage and temperature coefficient of the chip products may vary depending on the mold ings used on each chip Use these chips only after the temperature test S1F70000 Series EPSON 2 21 Technical Manual S1F76540 Series Table 2 4 AC characteristics Vpp 0 V and VI 5 0 V unl
43. o loPR uA Co o m o gt o N LL dp 1 0 1 0 0 0 0 0 40 20 0 20 40 60 80 100 Ta C Vo VI Ta 1 2 VDD 1 45V 1 0 0 8 lo 3mV 0 6 Vo Vn V 0 4 0 2 0 0 40 20 0 20 40 60 80 100 5 4 3 2 1 0 Ta C lo mA S1F70000 Series EPSON 3 19 Technical Manual S1F78100Y Series Vo Ta Vo VI 2 0 2 0 1 8 r lo 1mA VDD 3V 1 6 H 1 4 1 2 Z x S 1 5 51 0 gt 0 8 re lo 30mA 0 6 0 4 0 2 Llo 10mA Ta 25 C 4 1 0 0 0 40 20 0 20 40 60 80 100 0 5 10 15 Ta C VI V AVo Ta Vo lo 5 VDD 3V 4 imA lt lo lt 30mA ES gt 3 gt lt 2 1 0 40 20 0 20 40 60 80 100 Ta C lo mA 3 20 EPSON S1F70000 Series Technical Manual S1F79100Y Series S1F79100Y Series CMOS Negative Voltage Regulators DESCRIPTION Built in highly stable reference voltage source Typ S1F79100Y series voltage regulators provide step 0V down and stabilization for an input vol
44. 0 1 0 gt 0 0 0 0 5 40 20 0 20 40 60 80 100 0 5 10 15 LC Ta C Vi V Si loPR vs Ta IOPR vs VI 1 2 0 8 Vi 1 45V o7 B7 25 C 1 0 Vi 1 45V 0 6 0 8 0 5 gt 0 6 2 0 4 d T gt 2 03 lo 5mA 0 2 0 2 lo 1mA EE EE 0 0 40 20 0 20 40 60 80 100 0 2 4 6 8 10 Ta C lo mA Vo Vil vs Ta Vi Vo vs lo S1F70000 Series EPSON 3 33 Technical Manual S1F79100Y Series I VI lo 1mA Vo V 1 0 40 0 20 40 60 80 100 Ta C 20 Vo vs Ta 40 lt 10mA 30 20 AVo mV 10 NE TT 0 40 20 0 20 40 60 80 100 Ta C AVo vs Ta 3 34 6 0 5 0 4 0 gt o 3 0 gt I2 L 9 lo 1mA 1 0 lo 30mA lo 2 10mA Ta 25 C 0 0 0 5 10 15 Vi V Vo vs VI 2 0 Ta 25 C VI 3V gt g 1 5 gt 1 0 0 2 4 6 8 10 lo mA Vo vs lo EPSON S1F70000 Series Technical Manual PACKAGE MARKINGS The markings on S1F79100Y series device packages use the following abbreviations Parameter Code Description Output voltage code B 5 V D 3 V Voltage regulator code P Positive N Negative Note The reflow furnace temperatu
45. 0 2 VREG 788 0 z 3 TESTOUT 580 0 T 4 TC1 390 0 a 5 TC2 96 0 6 POFF 218 0 7 GND 510 0 8 OSC1 802 0 9 OSC2 Y 1094 0 10 VDD 984 0 1134 0 11 CAP1 892 0 12 CAP1 514 0 13 CAP2 182 0 14 CAP2 372 0 15 CAP3 750 0 16 Vo 942 0 17 VRI Y 1134 0 EPSON S1F70000 Series Technical Manual S1F76640 Series FUNCTIONAL DESCRIPTIONS CR Oscillator S1F76640 has a built in CR oscillator as the internal oscillator and an external oscillation resistor ROSC is connected between the pins OSC1 and OSC2 before operation Figure 5 1 Note 1 Rosc OSC1 C OSCI O External clock OSC2 C OSC2 O Open Figure 5 1 CR Oscillator Figure 5 2 External Clock Operation Note 1 Since the oscillation frequency varies with wiring capacitance make the cables between the terminals OSCI and OSC2 and Rosc as short as possible When setting the external resistor ROSC find the oscillation frequency fosc that brings about the maximum effi ciency from Figures 6 5 12 and 6 5 13 and find Rosc suitable for the fosc from Figure 6 5 1 The relations between Rosc and fosc in Figure 6 5 1 are expressed approximately with the following formula as far as the straight portion 500kQ lt Rosc lt 2MQ is concerned S I s Constant When GND is 0V and OSC A fosc Vpp is 5V A is 2 0X10 1 F So the Rosc value can be obtained from this formula Recommended oscillation frequency 10kHz to 30kHz Rosc 2MQ to 680kQ
46. 0 6 O T gt gt 0 4 0 2 lo 10mA 0 0 40 20 0 20 40 60 80 100 0 6 12 18 24 30 Ta C lo mA Vo Vi vs Ta Vi Vol vs lo S1F70000 Series EPSON 3 29 Technical Manual S1F79100Y Series 3 5 6 0 VI DM lo 2 10mA 5 0 4 0 gt lo 10mA o 3 0 o 3 0 gt gt 2 0 1 0 lo 30mA Ta 25 C 2 5 0 0 40 20 0 20 40 60 80 100 0 5 10 15 Ta C VI V Vo vs Ta Vo vs VI 40 3 5 VI 5V Ta 25 C 1mA lt lo lt 30mA Vi 5V 30 gt gt ES an Sgele A gt 3 lt 10 0 2 5 40 20 0 20 40 60 80 100 0 6 12 18 24 30 Ta C lo mA AVo vs Ta Vo vs lo 3 30 EPSON S1F70000 Series Technical Manual S1F79100Y Series S1F79100Y1G0 7 0 6 0 Vi 3V Ta 25 C 6 0 5 0 lo 0mA 5 0 4 0 3 4 0 lt 3 0 tc 30 S 2 0 2 0 1 0 1 0 gt i 0 0 0 0 40 20 0 20 40 60 80 100 0 5 10 15 LC
47. 0V to 15 0V m 0 1 N lo 10mA Taz 30 C to 85 C Same temperature condition Load stability Me uem T 40 m lo 1mA to 40mA Supply voltage rejection VDD 6 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 0 m dB S1F78100Y2P0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 6 0V lo 10mA Output voltage Vo Ta 25 C 3 90 4 00 4 10 V Current consumption loPR Vpp 4 0V to 15 0V No load 3 0 8 0 uA Difference between input V Vo Vo 4 0V lo 10mA _ 0 27 0 44 V and output voltages Output voltage AVo 0 100 200 re temperature characteristic Vo F ppm Ta 30 C to 85 C T AVO Same temperature condition x Input stability AVI VO Vop 5 0V to 15 0V SE Ire lo 10mA Ta 30 C to 85 C Same temperature condition Load stability io a Il ao mv lo 1mA to 40mA Supply voltage rejection VDD 6 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 740 dB S1F70000 Series EPSON 3 7 Technical Manual gt o N LL y dp S1F78100Y Series S1F78100Y2K0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 6 0V lo 10mA Output voltage te 3 80 3 90 400 V Current consumption loPR VDD 3 9V to 1
48. 1 5 0 1 0 05 T2 2 3 E 1 50 0 1 W 12 0 0 2 F 5 65 0 05 Wi 9 5 P1 8 0 0 1 0 30 Max PO 4 0 0 1 Note The tape thickness is 0 1 mm Max Le T 7 Feeder hole Cross section with device position Device cavity eje Travel direction T2 La P1 gt it P2 gt lt PO gt gt There are no joints in either the cover or carrier tapes blanks This does not apply to the tape leader and Less than 0 2 of the total device count is comprised trailer of non sequential blanks There are no sequential 6 6 EPSON S1F70000 Series Technical Manual REEL SPECIFICATIONS The reel specifications are shown in the following table and figure The reel is made of paperboard Note Dimension code Dimensions mm A 178 2 0 80 1 0 C 13 0 0 5 D 21 0 1 0 E 2 0 0 5 w 14 0 See note Wi 1 5 0 1 W2 17 See note r 1 0 W and W2 are measured at the reel core DEVICE POSITIONING Small molded power IC devices are positioned as shown in the following figure O O O TTT S1F70000 Series Technical Manual T1 Appendix EPSON T2 W2 B A Wi x lt Lo E o Q a lt 6 7 Appendix EMBOSS CARRIER TAPING STANDARD SOP3 8pin TAPING INFORMATION The emboss carrier taping standard is
49. 20 40 60 80 100 0 8 16 24 32 40 Ta C lo mA Vo Vi vs Ta Vi Vol vs lo S1F70000 Series EPSON 3 27 Technical Manual S1F79100Y Series 4 5 6 0 NI gt 7V lo 10mA 5 0 4 0 gt gt 040 5 3 0 gt gt 2 0 1 0 3 5 0 0 40 20 0 20 40 60 80 100 0 Ta C Vi V Vo vs Ta Vo vs VI 40 4 5 MIE N L Ta 25 C 1mA lt lo lt 30MA Vi 7V 30 gt E E 20 E 4 0 SS lt 10 0 3 5 40 20 0 20 40 60 80 100 0 8 16 24 32 40 Ta C lo mA AVo vs Ta Vo vs lo 3 28 EPSON S1F70000 Series Technical Manual S1F79100Y Series S1F79100Y1D0 7 0 6 0 Vi 5V Ta 25 C 6 0 F 5 0 Hlo OmA 5 0 4 0 X 4 0 3 3 0 3 0 6 2 0 2 0 1 0 10 y 0 0 0 0 40 20 0 20 40 60 80 100 0 5 10 15 LC Ta C Vi V Si loPR vs Ta loPR vs VI 1 2 0 8 Vi 2 93V 07 a 29 C 1 0 0 8 o 30mA e gt
50. 3 13 3 20 3 27 CMOS Low level High level S1F77210Y130 3 43 3 50 3 57 CMOS Low level High level S1F77210Y1T0 3 90 4 00 4 10 CMOS Low level High level S1F77210Y1MO 4 10 4 20 4 30 CMOS Low level High level S1F77210Y1J0 4 30 4 40 4 50 CMOS Low level High level S1F77210Y120 4 50 4 60 4 70 CMOS Low level High level S1F77210Y1KO0 4 70 4 80 4 90 CMOS Low level High level S1F77210Y1LO 4 90 5 00 5 10 CMOS Low level High level S1F77210Y2C0 2 10 2 15 2 20 CMOS High level Low level S1F77210Y2F0 2 60 2 65 2 70 CMOS High level Low level Table 5 2 Product Voltage detectable Output type Output phase Min Typ Max Less than VDET VDET or above S1F77200Y1T0 3 90 4 00 4 10 N ch Open Drain Low level Hi Z S1F77200Y1F0 2 60 2 65 2 70 N ch Open Drain Low level Hi Z S1F77200Y1C0 2 10 2 15 2 20 N ch Open Drain Low level Hi Z S1F77200Y1NO 1 85 1 90 1 95 N ch Open Drain Low level Hi Z S1F77200Y1BO0 1 10 1 15 1 20 N ch Open Drain Low level Hi Z S1F77200Y1Y0 1 05 1 10 1 15 N ch Open Drain Low level Hi Z S1F77200Y1A0 1 00 1 05 1 10 N ch Open Drain Low level Hi Z S1F77200Y1VO0 0 90 0 95 1 00 N ch Open Drain Low level Hi Z S1F77220Y2DO0 1 20 1 25 1 30 P ch Open Drain High level Hi Z 5 2 EPSON S1F70000 Series Technical Manual BLOCK DIAGRAM S1F77200Y1 0 Type VDD 2pin Vss spin Y S1F77210Y1 0 Type VDD Opin
51. 4 Vo 12V Vo 8V lt o 5 gt gt L 0 2 UI DC gt 0 1 Ta 25 C 0 C1 to C4 10uF 100 1000 10000 100000 0 5 10 15 20 25 30 RL Q lo mA 15 Step up start voltage 1 vs Load resistance 16 Stabilization output saturation resistance vs Load current 2 54 EPSON S1F70000 Series Technical Manual S1F76640 Series 8 00 7 95 gt 9 9 UI UI tc tc gt gt e 7 90 i N Ta 25 C Vo 20V w 7 85 0 1 1 0 10 0 100 0 0 1 1 0 10 0 100 0 IREG mA IREG mA 17 Output voltage VREG vs Output current 1 18 Output voltage VREG vs Output current 2 4 00 gt o e X 3 95 Ti LO y S G uw gt T 3 90 E Ta 25 C Vo 8V u gt 3 85 0 1 1 0 10 0 100 0 40 20 0 20 40 60 80 100 IREG mA Tat C 19 Output voltage VREG vs Output current 3 20 Reference voltage vs Temperature S1F70000 Series EPSON 2 55 Technical Manual S1F76640 Series MECHANICAL DATA Reference Unit mm Plastic SSOP2 16pin 7Max 0 275Max 6 6 0 2 0 260005 6 2 0 3 0 244 0 0
52. 50 Ta C lo mA Vo Vi vs Ta Vi Vol vs lo S1F70000 Series EPSON 3 25 Technical Manual S1F79100Y Series 5 5 VI 7V lo 10mA o 73 0 gt 4 5 40 20 0 20 40 60 80 100 Ta C Vo vs Ta 40 VI 7V 1mA lt lo lt 50mA 30 gt E o 20 gt lt 10 0 40 20 O 20 40 60 80 100 Ta C AVo vs Ta 3 26 Vo V EPSON lo 10mA Ta 25 C 5 10 VI V Vo vs VI Ta 25 C 10 20 30 40 50 lo mA Vo vs lo S1F70000 Series Technical Manual S1F79100Y Series S1F79100Y1P0 7 0 6 0 Vi 7V Ta 25 C 6 0 F 5 0 lo OmA 5 0 4 0 lt 40 lt i gt S 3 0 6 3 0 o 2 0 2 0 1 0 1 0 gt 0 0 0 0 40 20 0 20 40 60 80 100 0 5 10 15 LC Ta C Vi V o loPR vs Ta loPR vs VI 1 2 Vi 2 3 9V 1 0 0 8 E gt i 0 6 g _ l a lo 30mA 0 4 0 2 Llo 10mA 0 0 40 20 0
53. 5V A is approximately 2 0 x 10 I F So the ROSc value can be obtained from this formula Recommended oscillation frequency 10kHz to 30kHz Rosc 2MQ to 680kQ When the external clock operates make the pin OSC2 open as shown below and input the 50 duty of the ex ternal clock from the pin OSC1 OSCI o External clock OSC2 o Open S1F70000 Series Technical Manual EPSON S1F76620 Series Voltage Conversion Circuit The voltage conversion circuit uses clocks generated in the CR oscillator to double the input supply voltage VDD In case of 2 times step up 2 times voltage 2VDD of the input voltage is obtained from the VO pin when a pump up capacitor is connected between CAP1 and CAP2 and a smoothing capacitor is connected be tween VDD and VO outside When GND is O and VDD is 5 the relations between input output and voltage are as shown below CAP1 2VDD 10V T VDD 5V GND 0V N lo lo N LL Wu S1F76620 Series ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings Ta 40 to 85 C Rating Parameter Symbol Unit Remarks Min Max Input supply voltage VIN 0 5 10 0 V Input pin voltage VI 0 5 VDD 0 5 V OSC1 OSC2 Output voltage Vo 20 V Output supply voltage VCAP 0 5 VDD 0 5 V CAP Output pin voltage VCAP 0 5 Vo 0 5 V CAP 300 DIP 8pi Allowable
54. D3 and short circuit the both ends of Da But the output voltage drops by the forward voltage VF of the diode When GND is OV VDD is 5V and VF is 0 6V as shown in Figure 8 6 for example VO is calculated as follows Vo 15V 4 x 0 6V 12 6V In case of 3 times step up VO is calculated to 10V 3x0 6V 8 2V and in case of 2 times step up Vo is calculated to 5V 2 x 0 6V 3 8V O Moi Co Figure 8 6 Negative Voltage Conversion Example of 3 times step up circuit Negative Voltage Conversion Positive Voltage Conversion When the 3 times step up operation shown in Figure 8 1 and the positive voltage conversion in Figure 8 6 are combined the circuit shown in Figure 8 7 can be formed and 20V and 12 6V can be obtained from the input 5V However the output impedance is higher than in case of connection of either one only the negative voltage conver sion or the positive voltage conversion Figure 8 7 Negative Voltage Conversion Positive Voltage Conversion 2 60 EPSON S1F70000 Series Technical Manual S1F76640 Series Example of Temperature Gradient Change by External Temperature Sensor Ther mistor S1F76640 has a temperature gradient selection circuit inside the stabilization circuit and three kinds of tempera ture gradients 0 20 C 0 40 C and 0 60 C can be selected as the VREG output When other temperature gradients are necessary a thermi
55. Multiplication efficiency input current vs Output current FUNCTIONAL DESCRIPTIONS CR Oscillator S1F76600 has a built in CR oscillator as the internal os cillator and an external oscillation resistor ROSC is con nected between the pins OSC1 and OSC2 before opera tion OSC1 O Note 1 OSC2 o Note 1 Since the oscillation frequency varies with wiring ca pacitance make the cables between the terminals OSCI and OSC2 and Rosc as short as possible When setting the external resistor Rosc find Rosc suit able for fosc that brings about the maximum efficiency from characteristics graph 9 and 10 The relations between Rosc and fosc in characteristics graph 1 are expressed approximately with the following formula as S1F70000 Series Technical Manual EPSON S1F76600 Series far as the straight portion 500kQ lt Rosc lt 2MQ is concerned Rosc A 1 fosc A Constant When GND is OV and VDD is 5V A is approximately 2 0 x 10 I F o oO lo lo N LL Wu So the ROSC value can be obtained from this formula Recommended oscillation frequency 10kHz to 30kHz ROSC 2MQ to 680kQ When the external clock operates make the pin OSC2 open as shown below and input the 50 duty of the ex ternal clock from the pin OSCI OSC1 Lia External clock OSC2 Open Voltage Multiplier The voltage multiplier uses the clock signal from the o
56. OSC1 2 OSC2 4 NC Por 13 OSC2 OFF ba PorF 9 RV 11 RV 9 VREG tol VREG 8 Vo 9 Vo S1F76610C0B0 MOBO S1F76610M2B0 PIN DESCRIPTIONS S1F76610C0B0 MOBO Pin No Pin name Description 1 CAP1 Positive charge pump connection for x2 multiplier 2 CAP1 Negative charge pump connection for x2 multiplier 3 CAP2 Positive charge pump connection for x3 multiplier 4 CAP2 Negative charge pump connection for x3 multiplier or x2 multiplier output 5 TC1 S 702 Temperature gradient selects 7 Vi Negative supply system ground 8 Vo x3 multiplier output 9 VREG Voltage regulator output 10 Rv Voltage regulator output adjust 11 POFF Voltage regulator output ON OFF control 12 OSC2 Resistor connection Open when using external clock 13 OSC1 Resistor connection Clock input when using external clock 14 VDD Positive supply system Vcc EPSON S1F70000 Series Technical Manual S1F76610 Series SPECIFICATIONS Absolute Maximum Ratings Parameter Codes Ratings Units Remarks N 2 Boosting to a double voltage N 3 Boosting to a triple voltage OSC1 OSC2 POFF Input supply voltage Vi VDD 20 N to VDD 0 3 Vi 0 3 to VDD 0 3 Input terminal voltage Vi VDD lt lt lt lt lt Vo 0 3 to VDD 0 3 TC1 TC2 RV o E Output voltage Vo Voo 20 to VDD 0 3 Vo Note 3 8 Voto VDD 0 3 VREG Note 3 l A
57. SOP3 8pin Yes Yes S1F76310M1LO 2 4 SOP3 8pin S1F76380M1LO 1 5 2 4 On chip CR No Yes 4 0 mV C SOP3 8pin S1F76380M1H0 0 9 Min 2 2 oscillator 4 5 mV C SOP3 8pin S1F70000 Series EPSON 4 1 Technical Manual S1F76300 Series BLOCK DIAGRAMS S1F76310 Series Vie PWCR RST Vin O Vsw Reference voltage generator t 0 GND PS S1F76380 Series RST PWCR Vi O o d E p Vsw T E TT rr Vo Ge FH voltage T Control generator T gt switch E VCONT GND CR oscillator O PS 4 2 EPSON S1F70000 Series Technical Manual S1F76300 Series PIN ASSIGNMENTS S1F76310 Series S1F76380 Series PS PWCR PS S1F76310 v RST 2 S1F76380 bd series Via GND 3 series VCONT Vo Vsw 4 Vo PIN DESCRIPTIONS S1F76310 Series Pin No Pin name Description 1 PWCR Power on clear See note 1 2 RST Reset signal output See note 1 3 GND Ground o 4 Vsw External inductor drive MR 5 Vo Output votlage Wu 6 Via Backup input voltage 7 VI Step up input voltage 8 PS Power save See note 2 Notes 1 See voltage detection and power on clear in the functional description 2 See standby mode and battery backup in the functional description S1F76380 Series Pin No Pin name Description 1 PWCR Power on clear See note 1 2 RST
58. Ta 25 C response time VDD 5V gt 4V 200 Ta 30 C to 85 C TT i 5 14 EPSON S1F70000 Series Technical Manual S1F77200Y Series S1F77200Y1F0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 1 50 12 0 V Detection voltage VDET Ta 25 C 2 60 2 65 2 70 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET E temperature characteristics VDET TAO EES ppn VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD V RRR _ 8 40 we Detection voltage TeuL Ta 25 C response time VDD 3V 52V 200 Ta 30 C to 85 C er an Technical Manual S1F77200Y1C0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 0 80 10 0 V Detection voltage VDET Ta 25 C 2 10 2 15 2 20 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET 08 100 OL RII Gs VDD 1 5V Low level output current loL OUT 0 15V 0 15 0 75 mA VDD ee _ 8 40 T Detection voltage reu Ta 25
59. Ta C Vi V o loPR vs Ta loPR vs VI 1 2 0 8 Vie 1 75V 07 Ta 25 C 1 0 VI 1 75V 0 6 0 8 E 0 5 o Es 04 lo 5mA 0 2 0 2 TTT TT 0 1 lo 1mA 40 20 0 20 40 60 80 100 0 2 4 6 8 10 Ta C lo mA Vo Vi vs Ta Vi Vol vs lo S1F70000 Series EPSON 3 31 Technical Manual S1F79100Y Series 2 5 6 0 Vi 3V lo 1mA 5 0 4 0 gt gt o 2 0 S 3 0 gt gt En en LL 1 5 40 20 0 20 40 60 80 100 Ta C VI V Vo vs Ta Vo vs VI 40 2 5 Vi 3V Ta 25 C 1mA lt lo lt 10mA Vi 3V 30 c E 2 20 E 2 0 lt 10 OL 0 1 5 40 20 0 20 40 60 80 100 0 2 4 6 8 10 Ta C lo mA AVo vs Ta Vo vs lo 3 32 EPSON S1F70000 Series Technical Manual S1F79100Y Series S1F79100Y1H0 7 0 6 0 Vi 8V Ta 25 C 6 0 5 0 lo 0mA 59 4 0 3 40 3 3 0 o 3 0 9 2 0 2 0 1
60. Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi _ 15 V VDD 3 0V lo 10mA Output voltage Vo Ta 25 C 2 15 2 20 2 25 V Current consumption loPR VDD 2 2V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vi Vo Vo 2 2V lo 5mA 0 36 0 62 V Output voltage AVO temperature characteristic Vo m 0 100 200 ppm C Ta 30 C to 85 C AVO Same temperature condition Input Stay AVI Vo VDD 3 0V to 15 0V 01 lo 10mA Ta 30 C to 85 C Same temperature condition Load stability Au ea VL 20 mv lo 1mA to 10mA Supply voltage rejection Vpp 3 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 40 dB S1F70000 Series EPSON 3 11 Technical Manual gt o N LL dp S1F78100Y Series S1F78100Y2G0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 3 0V lo 1mA Output voltage Vo Kee ENN 1 75 1 80 1 85 V Current consumption loPR VDD 2 2V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages ViVo Vo 1 8V lo 1mA 0 075 0 18 V Output voltage AVO temperature characteristic Vo 0 100 200 ppm C Ta 30 C to 85 C AVO Same temperature condition Input stability AVI Vo Vop 3
61. Y 1 4 a lt i l 9 b zi SC Symbol Dimension in Milimeters Dimension in Inches Lal Min Nom Max Min Nom Max E 4 8 5 5 2 0 189 0 197 0 204 D1 A 1 75 0 069 At 0 15 0 006 A2 1 6 0 063 e 1 27 0 050 b 0 25 0 35 0 45 0 010 0 014 0 017 C 0 05 0 15 0 25 0 002 0 006 0 009 0 L 0 55 0 022 L1 L2 HE 6 4 6 8 7 2 0 252 0 268 0 283 D 4 8 5 5 2 0 189 0 197 0 204 02 03 R Hi for reference Note This drawing is subject to change without notice for improvement S1F70000 Series Technical Manual EPSON 1 25 N te N LL im Wu 2 DC DC Converter amp Voltage Regulator S1F76610 Series S1F76610 Series CMOS DC DC Converter Voltage Doubler Tripler amp Voltage Regulator DESCRIPTION The S1F76610 Series is a highly effecient CMOS DC DC converter for doubling or tripling an input voltage It incorporates an on chip voltage regulator to ensure stable output at the specified voltage The S1F76610 Series offers a choice of three optional temperature gradients for applications such as LCD panel power supplies The S1F76610C0BO is available in 14 pin plastic DIPs the SIF76610MOBO in 14 pin plastic SOPs and the SIF76610M2BO in 16 pin plastic SSOPs FEATURES 9596 Typ conversion efficiency Up to four output voltages VO relative to the input voltage VI On chip voltage regulator 20mA maximum output
62. aal aal aad Apio VDD 4 0V High level output current loH OUT 3 6V 1 60 0 40 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD Ken 8 40 lis Detection voltage TeHL Ta 25 C response time p VDD 4V gt 3V 200 is S1F77210Y1T0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 1 50 12 0 V Detection voltage VDET Ta 25 C 3 90 4 00 4 10 V Hysteresis width VHYS VHYS VREL VDET 0 13 0 20 0 27 V Operating current IDD VDD 5 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET o aad laal Kad dd l VDD 5 0V High level output current loH OUT 4 5V 2 00 0 50 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD ino u 8 40 ge Detection voltage Ta 25 C TPHL response time VDD 5V gt 4V m Ta 30 C to 85 C EZ e 5 10 EPSON S1F70000 Series Technical Manual S1F77200Y Series S1F77210Y1M0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 4 10 4 20 4 30 V Hysteresis width VHYS VHYS VREL VDET 0 13 0 20 0 27 V Opera
63. base current of the PNP transistor at the EXO pin to stabilize voltage at the VO pin 4 46 EPSON Power Off Function S1F71200 can control circuit operations according to external signal control When the POFFX pin is set to the Vss level all circuits stop and their powers are turned off The current consumption at the power off state is less than IuA When the power is off the SWO pin is set to the VDD level the EXO pin is set to the VDD2 level and respective external transistors are turned The voltage at the SSCAP pin comes to the VSS level and the soft start circuit controls the step up operation output voltage is controlled with the soft start circuit af ter the power off state is released The soft start circuit controls step up operations after power off release When being set to the VDD level the POFFX pin oper ates in general The POFFX pin cannot be used in an open state When the power off function is not used connect the POFFX pin to the VDD1 pin S1F70000 Series Technical Manual S1F71200 Series ABSOLUTE MAXIMUM RATINGS Parameter Symbol Applicable Pin Rating Unit Input voltage VDD ed 15 0 V DD2 Voltage at EXO pin EXO EXO Vss 0 3 to VDD2 0 3 V Voltage at Vo pin Vo Vo Vss 0 3 to 15 V Voltage at SRC pin SRC SRC Vss 0 3 to 15 V Voltage at IREF pin IREF IREF Vss 0 3 to VDD1 0 3 V Voltage at VREF pin VREF VREF Vss 0 3 to VDD1
64. hold time lo Output current tHD Data hold time loH High level output current THD Total harmonic distortion lot Low level output current Din Thermal resistance loPR1 Multiplier circuit power dissipation tMRR Memory reset recovery time 6 2 EPSON S1F70000 Series Technical Manual Appendix Symbol Parameter Symbol Parameter tMR Memory reset Vi Input voltage Topr Operating temperature Vin High level input voltage tPAE Propagation delay VIL Low level input voltage tPHL Low level transition time Vi Input voltage tPLH High level transition time Vo Output voltage tPLs Propagation delay Vott Input offset voltage trop Propagation delay Vop Input voltage range tPs Propagation delay VOPMAX Maximum output voltage tsa Address setup time VOPMIN Minimum output voltage tsp Data setup time VREF Reference voltage Tsol Soldering temperature and time VREG Output voltage regulated Tstg Storage temperature Vss Power supply voltage VDD Power supply voltage Vssn Power supply voltage VDET Detection voltage VSTA Oscillator start up voltage VF Forward voltage VsTP Oscillator shut down voltage S1F70000 Series Technical Manual EPSON Appendix Appendix MECHANICAL DATA Plastic DIP 8pin 9 7Max INDEX 6 4 0 1 3 0Min 4 4 0 1 Plastic DIP 14pin 19 7Max 19 0 0 1 6 3 0 1
65. m Detection voltage reu Ta 25 C response time VDD 4V gt 3V Se Ta 30 C to 85 C me kn Es Technical Manual S1F77210Y1H0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 1 50 12 0 V Detection voltage VDET Ta 25 C 3 13 3 20 3 27 V Hysteresis width VHYS VHYS VREL VDET 0 09 0 15 0 21 V Operating current IDD VDD 4 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET o 900 100 4100 RPM VDD 4 0V High level output current loH OUT 3 6V 1 60 0 40 mA VDD 2 0V Low level output current loL OUT 0 2V 0 20 1 00 mA VDD Do 8 40 js Detection voltage TPHL Ta 25 C response time VDD 4V gt 3V 200 Ta 30 C to 85 C us S1F70000 Series EPSON 5 9 o N N N LL Wu S1F77200Y Series Ta 30 C to 85 C S1F77210Y130 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 150 12 0 V Detection voltage VDET Ta 25 C 3 43 3 50 3 57 V Hysteresis width VHYS VHYS VREL VDET 0 09 0 15 0 21 V Operating current IDD VDD 4 0V 2 00 5 00 uA Detection voltage AVDET p temperature characteristics VDET o
66. may vary depending on the moldings used on each chip Use these chips only after the temperature test The temperature coefficient CT is defined by the following equation The negative sign of the temperature coeffi cient CT means that the IVREF value decreases when the temperature rises VREF 50 C VREF 0 C 100 CT 50 C 0 C Notes on TC1 and TC2 pin replacement VREF 25 C When replacing the TC1 and TC2 pins after power on always select the power off mode POFF1 POFF2 VI and replace them by each other Voltage Regulator Circuit The voltage regulator circuit regulates a voltage entered in the VRI pin and can output any voltage It uses the series voltage regulation As shown in Figure 2 5 the VRI and Vo pins must be short circuited by a jumper as short as possible except for larger time boosting by us ing external diodes As shown by equation 1 any output voltage can be set by the ratio of external division resistors R1 and R2 The sum of division resistance is recommended to be S1F70000 Series Technical Manual EPSON small as possible to avoid an external noise interfer ence As the current consumed by division resistors equation 2 flows the 1000 to IMQ are recom mended to use The temperature coefficient of the regulated voltage is equal to the temperature coefficient of the reference voltage that is explained in the reference voltage cir cuit section
67. recommended to be not more than 0 6V Recommended Circuit RLmin varies with input voltage See Characteristics Graph 15 S1F70000 Series Technical Manual EPSON CN lo lo N LL Wu Series S1F76620 Series Electrical Characteristics VDD 5V Ta 40 to 85 C Rating Parameter Symbol Unit Remarks Min Typ Max Input supply voltage VDD 1 8 8 0 V Output voltage VO 16 0 V Step up circuit current consumption loPR 35 50 uA Rosc 1MQ Static current la 1 0 uA _ Oscillation frequency fosc 16 20 24 kHz Rosc 1MQ Output impedance Ro 85 130 Q lo 10mA Step up power conver o sion efficiency Peff 90 95 o lo 5mA Input leak current ILKI 1 0 uA OSC1 pin Note 1 All voltage values are based on GND being OV 1 16 EPSON S1F70000 Series Technical Manual Characteristics Graph 1000 fosc kHz _ e eo A o 4 1000 Rosc kQ 10 100 10000 1 Oscillation frequency vs External resistance for oscillation 100 Ta 25 C 80 C1 C2 10uF El 90 fo Er fosc 20 40 fosc 10kHz 20 0 0 1 2 3 4 5 6 VDD V 3 Step up circuit current consumption vs Input current S1F70000 Series Technical Manual S1F76620 Series 30 28 26 24 N22 I 220 2 218 16 14 12 N te N LL im Wu VDD 5V x Vbp 2V VD
68. shown in the the EIAJ RCI009B electronic parts taping specification following table and figure This standard conforms to Each tape holds 2 000 devices Dimension code Dimensions angles mm Dimension code Dimensions angles mm A 6 7 P2 2 0 0 05 B 5 4 T 0 3 0 05 D 1 55 0 05 0 T2 2 5 D1 1 55 0 05 WwW 12 0 0 3 E 1 75 0 1 W1 9 5 F 5 5 0 1 0 15 Max P1 8 0 0 1 Note PO 4 0 0 1 The tape thickness is 0 1 mm Max D1 Index mark ___ Travel direction There are no joints in either the cover or carrier tapes blanks This does not apply to the tape leader and Less than 0 2 of the total device count is comprised trailer of non sequential blanks There are no sequential 6 8 EPSON S1F70000 Series Technical Manual Appendix REEL SPECIFICATIONS The reel specifications are shown in the following table and figure The reel is made of paperboard Dimension code Dimensions mm A 330 2 0 B 80 1 0 C 13 0 0 5 D 21 0 0 5 E 2 0 0 5 Ww 15 4 1 0 See note Wi 2 0 0 5 W2 23 4 See note r 1 0 Note W and W2 are measured at the reel core DEVICE POSITIONING Type B products are positioned so that the index mark is on the sprocket hole side of the tape as shown in the following figure Appendix Travel direction Index mark S1F70000 Series EPSON
69. standard prod Absolute maximum rated voltage 15V maximum ucts are grouped as shown below according to the out Highly stable built in reference voltage source Typ put format employed for the voltage detector output pin 1 0V The S1F77200Y series employs N channel open drain e Better temperature characteristics of output voltage output approach And the S1F77210Y series and S1F Typ 100ppm C 77220Y series employ the CMOS output and P channel output respectively The package used is the SOT89 3 pin plastic package Our voltage detectors are used for determining battery life and also for monitoring supply voltage fed to mi crocomputers and LSI systems S1F70000 Series EPSON 5 1 Technical Manual gt o N N N LL Wu S1F77200Y Series LINEUP Table 5 1 Product Voltage detectable Ouiput type Output phase Min Typ Max Less than VDET VDET or above S1F77210Y1C0 2 10 2 15 2 20 CMOS Low level High level S1F77210Y1P0 2 20 2 25 2 30 CMOS Low level High level S1F77210Y1S0 2 30 2 35 2 40 CMOS Low level High level S1F77210Y1E0 2 50 2 55 2 60 CMOS Low level High level S1F77210Y1FO0 2 60 2 65 2 70 CMOS Low level High level S1F77210Y1RO 2 73 2 80 2 87 CMOS Low level High level S1F77210Y1G0 2 93 3 00 3 07 CMOS Low level High level S1F77210Y1H0
70. step up operation mentioned in 8 1 and operation of 2 times step up stabilization circuit is possible by using the 2 times step up operation VREG O O re Note 2 R1 R2 RV R1 VREG Rrv R1 R2 Figure 8 2 Operation of 4 Times Step up Stabilization Circuit Temperature Gradient CT1 is selected Note 1 Since input impedance at the RV pin No 1 is high it is necessary to use a shielded wire as a measure against noise in case of a long connection It is also effective to make the RRV value small for reducing noise influence In this case however more current comes to be consumed at RRV S1F70000 Series EPSON 2 57 Technical Manual S1F76640 Series Parallel Connection It is possible to make the output impedance RO small when several pieces of the circuit shown in Figure 8 1 are connected Parallel connection of n circuits reduces RO to 1 n approximately One piece of the smoothing capaci tor C4 can be commonly used in the same way To get stabilized outputs after parallel connection include 1 pieces of the circuit shown in Figure 8 2 in the parallel connection of n circuits as shown in Figure 8 3 VREG O RRV 100kQ 1MQ Figure 8 3 Parallel Connection Series Connection When S1F76640 is connected in series VDD and VO in the previous stage are connected to GND and VDD in the next stage respectively the o
71. the VREG value reduces by 48mV When VREG is 10V at 25 C the formula below is formed A VREG AT2 60mV C Note 3 Note 4 Note 5 At power off time VREG output OFF CR oscillator OFF the potential of the VO output is about VpD 0 5V When this mode is selected at a series connection the first stage clock can drive the next stage IC and this mode is effective for reducing the power consumption of the next stage IC See Figure 8 4 Select this mode for boosting only And the current consumption can be reduced S1F70000 Series Technical Manual EPSON 2 45 q LO N LL m 1 Series S1F76640 Series ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings Rating Parameter Symbol 5 Unit Remarks Min Max Input supply voltage VDD GND 0 3 24 N V VDD N 2 2 times step up N 3 3 times step up N 4 4 times step up Input pin voltage VI GND 0 3 VDD 0 3 V OSC1 POFF GND 0 3 Vo 0 3 V TC1 TC2 RV Output voltage Vo GND 0 3 22 V Vo Note 3 GND 0 3 Vo V VREG Note 3 Output pin voltage 1 VOC1 GND 0 3 VDD 0 3 V CAP1 CAP2 OSC2 Output pin voltage 2 VOC2 GND 0 3 2 x VDD 0 3 V CAP1 Output pin voltage 3 VOC3 GND 0 3 3 x VDD 0 3 V CAP2 Output pin voltage 4 VOC4 GND 0 3 4 x VDD 0 3 V CAP3 Allowable loss PD _ 210 mW SSOP 16PIN Operating temperature Topr 40 85 C Storage temperature Tstg 55 150 C Soldering Tso
72. the level at point A between the two resistors connecting Vo and GND These series use an on chip resistor to set the output at a specified voltage Crystal D Reference voltage D generator CG Output voltage regulator Crystal oscillator Note In step up voltage operation the ripple voltage created by the switching operation is large relative to the output voltage described above This ripple voltage is affected by external components and load conditions The user is advised to check this voltage carefully Standby mode Connecting PS to GND places the chip in standby mode In this mode the crystal oscillator is disabled switching off the inductor drive transistor and the volt age booster circuit Typically PS is connected to RST If standby mode is not required leave PS open as it has a pull up resistor Output voltage response compensation The S1F76340 series incorporates a response compen sation input A response compensation capacitor is connected between VCONT and Vo allowing the ripple voltage generated by the boosted output voltage to be suppressed to a minimum 4 27 o Lag lo N LL Wu S1F76300 Series Powering up Ensure that VO is at least the minimum operating volt age 0 9V before switching on the booster circuit One way to do this is to connect a capacitor between PS and GND so that the chip connects Vo to VI when the power is applie
73. 00 Series EPSON 4 43 Technical Manual S1F71200 Series PIN DESCRIPTIONS Pin No Pin name Pin type Power system Description 1 VDD1 Power supply VDD1 Power pin 1 Input power pin Power pin 2 Power pin for series regulator 2 VDD2 Power supply VDD2 d circuit EXO Output VDD2 PNP transistor base drive pin for series regulator Vo Step up step down output feedback pin 5 SRC Series regulator phase compensation capaci tor connection pin B o v Reference resistor connection pin Connect a REF Dr ES 100kQ resistor between the Vss pins Reference voltage pin Connect a 0 1uF d TREE pr SE capacitance between the Vss pins 8 N C No connection Power off control pin 9 POFFX Input VDD1 During normal operation POFFX VDD1 At power off time POFFX Vss Step up output voltage setting pin 10 Vc Input VDD1 For setting Vsw Vo 1 0V Vc VDD1 For setting Vsw Vo 0 5V Vc Vss Switching regulator phase compensation 11 SWC capacitor connection pin 12 Vsw Step up output feedback pin 13 Vss Power pin Ground pin 14 SSC VDD1 Capacitor connection pin for soft start 15 ISENSE Input VDD1 Overcurrent detection pin 16 SWO Output VDD1 Step up switching power transistor drive pin 4 44 EPSON S1F70000 Series Technical Manual FUNCTIONAL DESCRIPTIONS Description of Operation S1F71200 is a switching reg
74. 000 Series Technical Manual FUNCTIONAL DESCRIPTIONS Basic Voltage Booster Operation Trl switches ON and OFF at the frequency of the clock pulses from the crystal oscillator When the transistor is ON the circuit stores energy in L When it is OFF this energy flows through D to charge C L D I Lp T gt Tr1 C Le GNDO O GND Internal Circuits Crystal oscillator The S1F76330 series incorporate a crystal oscillator cir cuit An external crystal and drain resistor are used to generate the booster circuit clock The crystal oscillator is connected to CI and Co as shown in the following figure Cl L1 Crystal S1F76330 O a Lo RD l Ca ZCD l l JT TT In the S1F76330 series the crystal oscillator output is sent to CLo as the Vo system signal The crystal oscil lator circuit is activated by VI but because the output level is shifted and the output is connected to CLo the oscillator output cannot be obtained without a voltage at VO Since the crystal oscillator is activated when an input voltage is applied oscillation continues even in standby mode Reference voltage generator and output voltage regulator The reference voltage generator regulates VU to gener ate a voltage for the voltage regulator circuit S1F70000 Series Technical Manual EPSON S1F76300 Series The output voltage regulator regulates the boosted out put voltage This voltage is determined by
75. 0000 Series EPSON 5 13 gt o N N N LL im Wu S1F77200Y Series Ta 30 C to 85 C S1F77210Y1FO Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 150 12 0 V Detection voltage VDET Ta 25 C 2 60 2 65 2 70 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET Red 10 5100 RANG E VDD 2 0V High level output current loH OUT 1 8V 0 40 0 10 mA VDD 3 0V Low level output current loL OUT 0 3V 0 50 2 00 mA VDD e Nu 8 40 lis Detection voltage TeHL Ta 25 C response time p VDD 3V gt 2V _ 200 T S1F77200Y1T0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD m 1 50 12 0 V Detection voltage VDET Ta 25 C 3 90 4 00 4 10 V Hysteresis width VHYS VHYS VREL VDET 0 13 0 20 0 27 V Operating current IDD VDD 5 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET 900 O0 FIOD pase VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD ME u 8 40 ii Detection voltage TeuL
76. 0V This means that each IC in this series connection is requested t satisfy the specification values VDD GND lt 6 OV Vo GND lt 24V See Figure 8 5 gt st le lo N LL Wu Vol First stage Next stage VREG Figure 8 5 Power Supply System in Series Connection Note 3 2 times step up in the first stage allows using the CAP output in the first stage as the next stage clock but 3 times step up does not Attach an external ROSC as the next stage clock for internal oscillation Also since the next stage external clock can operate according the CAP output in the previous stage as shown in Table 4 1 only when the temperature gradient CT is 0 6 C use the internal oscillator in the same way when other temperature gradients are necessary Note4 Incase of series connection the voltage VDD VREG VREG VDD in Figure 8 5 of the IC for which the stabilization circuit operates has temperature gradient This means that V REG changes at the following rate as temperature changes Appel AT CT VREG 25 C GND S1F70000 Series EPSON 2 59 Technical Manual S1F76640 Series Negative Voltage Conversion S1F76640 can boost input voltage to negative power on the negative potential side by using the circuit shown in Figure 8 6 In case of 3 times step up remove the capacitor C3 and the diode D4 and short circuit the both ends of D4 In case of 2 times step up remove the capacitor C2 and the diode
77. 0V to 15 0V ot v lo 10mA Ta 30 C to 85 C Load stability AVo WA SE Ih 20 mv lo 1mA to 10mA Supply voltage rejection VDD 3 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 74 dB S1F78100Y2H0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 3 0V lo 1mA Output voltage Vo O DR 1 45 1 50 1 55 V Current consumption loPR VDD 2 2V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vi Vo Vo 1 5V lo 1mA 0 18 0 5 V Output voltage AVO temperature characteristic Vo 0 100 200 ppm C Ta 30 C to 85 C B AVO Same temperature condition Input Stab AVI Vo VDD 3 0V to 15 0V 01 N lo 10mA Ta 30 C to 85 C Load stability o eb ETE ay lo 1mA to 10mA Supply voltage rejection VDD 3 0V fin 40kHz ratio PSRR CL 104F lo 5mA dB 3 12 EPSON S1F70000 Series Technical Manual S1F78100Y Series Note Circuit Diagram for Measuring Supply Voltage Rejection Ratio Characteristic Y Nl VDD fin 50kHz S1F78100Y Series BE Vo VDD __ IL L ZA CL 10uF IL 10mA 3 i co N LL S1F70000 Series EPSON 3 13 Technical Manual S1F78100Y Series EXAMPLE OF REFERENCE EXTERNAL CONNECTION 3pin Input voltage C
78. 1 00 1 05 1 10 V Detection voltage hysteresis ratio AVDET 5 K Operating current IDDO Vii 1 5V lo 1 0mA 40 uA 8 Standby current IDDS Vi 1 5V _ 3 10 uA Switching transistor ON resistance Rewon t VO RON 6 12 Q Vsw 0 2V PNE Vit 1 5V Vo 1 5V _ _ Switching transistor leakage current Iswa Vsw 7 0V 0 5 uA Backup switch ON resistance Reson Y TE Vie RUN 70 160 Q lo 1 0mA TO Vii 1 0V Vo 3 0V Backup switching leakage current IBSQ Vie 2 0V 0 1 uA RST Low level output current loL Vii 0 9V Vos 0 2V 0 05 0 15 mA PS pull up current Iu Vii 1 5V 0 5 uA Multiplication clock frequency IST Vi 1 5V 30 40 50 kHz S1F70000 Series EPSON 4 5 Technical Manual S1F76300 Series S1F76310M1K0 Vss OV Ta 25 C unless otherwise noted Ou Rating Parameter Symbol Condition Min Typ Max Unit V a Input voltage d Vo Vie as as Y Vu 0 9 2 0 V Output voltage Vo Vit 1 5V 3 40 3 50 3 60 V Detection voltage VDET 1 00 1 05 1 10 V Detection voltage hysteresis ratio AVDET 5 96 Operating current IDDO Vi 1 5V lo 1 0mA 8 40 uA Standby current Ipps Vit 1 5V 3 10 uA Switching transistor ON resistance Rswon V11 1 5V VO 3 5V _ 6 12 Q Vs
79. 1 5V 3 10 uA Switching transistor ON resistance Baner Pet VOR BOM e a Q Vsw 0 2V c Vit 1 5V Vo 1 5V Switching transistor leakage current Iswa Vsw 7 0V 0 5 uA Vit 1 5V Vo 3 0V CLo Low level output current loL VoL 0 2V 0 5 1 0 uA Vit 1 5V Vo 3 0V CLo High level output current loH VoH 0 2V 0 55 1 1 uA PS pull up current Im VIH 1 5V 05 uA Oscillator start up voltage vsta CG 10pF CD 10pF 0 9 V RD 300kQ Oscillator shut down voltage VSTP fosc 32kHz 09 V 4 24 EPSON S1F70000 Series Technical Manual Typical Performance Characteristics 2 0 Ta 25 C u Fixed output voltage temperature characteristic mV C 5 E i m 2 3 4 Fixed output voltage V Fixed output voltage temperature characteristic Vii 2 1 5 V Standby current uA 30 0 25 50 Ambient temperature C Standby current vs ambient temperature L Ro lt 200 kQ 9 FV 15V lt fo 32 kHz Ca Cp 10 pF 2 5 L 5 gt 6 ke gt 2 0 Ca Cp 20 pF 3 o g 5 N E Normalized frequency deviation Af f Z0 0 5 1 0 15 20 25 Input voltage V Normalized frequency deviation vs input voltage 1 S1F76300 Series a o Normalized frequency deviation ppm a o
80. 11 0 059 0 003 1 7Max 0 066Max TESTS Aas 0 00678 883 0 8 0 36 0 1 S 0 4 0 5 0 2 0 02 8 882 0 9 0 035 0 01428 gt 0 016 T Note This dimensional drawing is subject to change without notice for improvement 2 56 EPSON S1F70000 Series Technical Manual S1F76640 Series APPLICATION EXAMPLE 2 Times Step up 3 Times Step up and 4 Times Step up Figure 8 1 shows the connection for getting 4 times step up output of an input voltage by operating the step up circuit only In case of 3 times step up the capacitor C3 is removed and CAP3 Pin No 14 is short circuited to Vo Pin No 15 and 3 times step up voltage is obtained from VO CAP3 In case of 2 times step up the capacitor C2 is also removed and CAP2 Pin No 13 is short circuited to VO Pin No 15 and 2 times step up voltage 10V is obtained from VO CAP2 o st O 4VI E o NE C4 T Figure 8 1 4 times step up circuit 4 Times Step up Stabilization Circuit Figure 8 2 shows an application example for stabilizing step up outputs obtained in 8 1 through the stabilization circuit and for providing temperature gradient to VREG output by means of the temperature gradient selection cir cuit In this application example both outputs from VO and VREG can be indicated at the same time Also operation of 3 times step up stabilization circuit is possible by using the 3 times
81. 2 15 C2N VREG 3 14 C3N RV 4 13 CIN VoD 5 12 C1P FC 6 11 Vi TC1 7 10 POFF1 TC2 8 9 Porra Figure 2 2 S1F76540M0A0 COAO0 pin assignments 2 16 EPSON S1F70000 Series Technical Manual S1F76540 Series Table 2 1 Pin descriptions Pin name Pin No Pad No Description Vo 1 18 Four time booster output VRI 2 19 Regulator input VREG 3 20 Regulator output Rv 4 21 Regulator output voltage adjustment input VDD 5 22 23 Power pin positive i FC 6 24 Internal clock frequency input and clock input in serial parallel n connection 9 TC1 7 3 Regulator output temperature gradient setup input 1 TC2 8 4 Regulator output temperature gradient setup input 2 Porra 9 5 Power off control input 2 POFF1 10 6 Power off control input 1 Vi 11 11 12 Power voltage negative C1P 12 13 Two or four time booster capacitor positive pin CIN 13 14 Two time booster capacitor negative pin C3N 14 15 Four time booster capacitor negative pin C2N 15 16 Three time booster capacitor negative pin C2P 16 17 Three time booster capacitor positive pin S1F70000 Series EPSON 2 17 Technical Manual S1F76540 Series Table 2 2 Absolute maximum ratings VDD reference Parameter Symbol Rating Unit Remarks Min Max N Boost time Input power voltage Vi 26 0 N Vpp 0 3 V VI pin POFF1 POFF2 TC1 Input pin voltage V1 Vi
82. 2 25 gt lt T lo lo N LL Wu S1F76540 Series 8 TC2 POFF2 Figure 2 5 VREG setup and mounting notes Setup Relationship between VREG and reference voltage R1 R2 VREG 7 x Reference voltage e e o o Equation 1 e Current consumption of division resistors VREG IREG RI R2 sees Equation 2 Setup example e To output VREG 18 V by four time boosting if VI 5 V and Vo 20 V First determine the total resistance of division resistors R1 and R2 If the current consumption is assumed to be 20 HA the total resistance can be obtained from equation 2 as follows R1 R2 12V 20 uA 900 kQ If the reference voltage is 1 5 V the division resistance ratio can be obtained from equation 1 as follows RI R2 R2 18 V 1 5 V 12 Therefore R1 and R2 are R1 75kQ R2 825 kQ 2 26 EPSON S1F70000 Series Technical Manual S1F76540 Series Changing the temperature coefficient The temperature coefficient of the regulated voltage depends on the temperature coefficient of the reference voltage if the division ratio of setup resistors does not depend on the temperature It is necessary to change the temperature coefficient using thermistors resistors or others to set any other temperature coefficient of the regulated voltage The following explains how to calculate the VREG voltage in temperature T VREG T 1 RER CD x T T Equation 3 REG D 7 Oma s
83. 25 C 1 87 1 80 1 73 V Operating current OPR Vi 2 1 8V to 15 0V 4 0 18 0 uA ee voltage IVi Vo Vi 1 8V lo 10mA o35 070 V Input voltage stabilization AVO VI 8 0V to 15 0V 040 wv ratio AVI Vo lo 10mA Isothermal i VI 3 0V Output voltage drift AVO lo 1mA to 10mA Isothermal 120 0 mV S1F79100Y1D0 VDD OV Ta 40 C to 85 C unless otherwise noted ae Rating Parameter Symbol Conditions Unit Min Typ Max Input voltage VI _ 15 0 _ V Output voltage Vo v oe e 3 07 3 00 2 93 V Ta 25 C Operating current OPR VI 3 0V to 15 0V 4 0 18 0 uA ee voltage Vi Vof Vi 3 0V lo 10mA 023 046 V Input voltage stabilization AVO Vi 4 0V to 15 0V 040 wv ratio AVI Vo lo 10mA Isothermal S VI 5 0V Output voltage drift AVO lo 1mA to 30mA 130 0 mV S1F70000 Series EPSON 3 23 Technical Manual gt o y o N LL y dp S1F79100Y Series S1F79100Y1P0 VDD OV Ta 40 C to 85 C unless otherwise noted Parameter Symbol Conditions Unit id Min Typ Max Input voltage Vi 15 0 V Output voltage Vo m AMA 4 10 4 00 3 90 V Operating current IOPR Vi 4 0V to 15 0V 4 0 180 uA Input output voltage IVi Vol Vi 4 0V lo 10mA 019 038 V differential Input voltage stabilization AVO Vi 5 0V to 15V
84. 5 0V No load 3 0 8 0 uA Difference between input and output voltages Vi Vo Vo 3 9V lo 10mA 0 27 0 44 V Output voltage AVO temperature characteristic Vo E 0 100 200 ppm C Ta 30 C to 85 C n AVo Same temperature condition Input stability AVI Vo Vop 5 0V to 15 0V ot w v lo 10mA Ta 30 C to 85 C Same temperature condition Load stability AVO VDD 6 0V 40 mV lo 1mA to 40mA Supply voltage rejection Vop 6 0V fin 40kHz ratio PSRR CL 10uF lo 5mA S dB S1F78100Y2N0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 5 0V lo 10mA Output voltage Vo Ta 25 C 3 43 3 50 3 57 V Current consumption loPR VDD 3 5V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages ViVo Vo 3 5V lo 10mA 0 29 0 48 V Output voltage AVo temperature characteristic Vo 0 100 200 ppm C Ta 30 C to 85 C AVO Same temperature condition Aas AN Vo VDD 5 0V to 15 0V 01 lo 10mA Ta 30 C to 85 C Same temperature condition Load stability x uu sa mv lo 1mA to 30mA Supply voltage rejection VDD 5 0V fin 40kHz ratio PSRR CL 104F lo 5mA 74 dB 3 8 EPSON S1F70000 Series Technical Manual S1F78100Y Series
85. 6 9 Technical Manual Appendix Type F product are positioned so that the index mark is on the opposite side to the sprocket holes as shown in the following figure Travel direction Index mark 6 10 EPSON S1F70000 Series Technical Manual Appendix EMBOSS CARRIER TAPING STANDARD SOP5 14pin TAPING INFORMATION The emboss carrier taping standard is shown in the following table and figure This standard conforms to the EIAJ RCI009B electronic parts taping specification Each tape holds 2 000 devices Dimension code Dimensions mm Dimension code Dimensions mm A 8 4 P2 2 0 0 1 B 10 6 T 0 3 0 05 DO 1 55 0 05 T2 3 0 D1 1 55 0 05 W 16 0 0 3 1 75 0 1 W1 13 5 F 7 5 20 1 Note P1 12 04 The tape thickness is 0 1 mm Max PO 4 0 0 1 E DIA DO T There are no joints in either the cover or carrier tapes Less than 0 146 of the total device count is comprised of non sequential blanks There are no sequential S1F70000 Series Technical Manual Pl EPSON DIA D1 T2 blanks This does not apply to the tape leader and trailer Appendix Appendix REEL SPECIFICATIONS The reel specifications are shown in the following table and figure The reel is made of paperboard je W2 Dimension code Dimensions mm
86. 8 0V fin 40kHz ratio PSRR CL 10pF lo 5mA 4 dB S1F78100Y2B0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 7 0V lo 10mA Output voltage Vo Ta 25 C 4 90 5 00 5 10 V Current consumption loPR VDD 5 0V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vi Vo Vo 5 0V lo 10mA 0 25 0 40 V Output voltage AVO temperature characteristic Vo gt 0 100 200 ppm C Ta 30 C to 85 C Input stability A ame eo condition 1 o4 n lo 10mA Ta 30 C to 85 C Load stability AVo E ERNE SES cs ls lo 1mA to 50mA Supply voltage rejection VDD 7 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 790 dB 3 6 EPSON S1F70000 Series Technical Manual S1F78100Y Series S1F78100Y2M0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 6 0V lo 10mA Output voltage Vo Ta 25 C 4 40 4 50 4 60 V Current consumption loPR VDD 4 5V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages VEVO Vo 4 5V lo 10mA 0 26 0 42 V Output voltage AVO temperature characteristic Vo m 0 100 4200 ppm C Taz 30 C to 85 C m AVO Same temperature condition Input stability AVI VO Vbb 6
87. 95 Boost power conversion Pett C1 C2 C3 Co 10 pF tantalum efficiency lo 2 mA Vi 3 0 V Ta 25 C during 4 time boosting 94 C1 C2 C3 Co 10 uF tantalum FC VDD POFF1 VI POFF2 VDD Vi 5 0 V during no loading 130 220 uA Booster operation current C C2 03 Co 10 pF tantalum consumption 1 FC Vo Port Vi POFF2 VDD Vi 3 0 V Ta 25 C during no loading 100 150 uA C1 C2 C3 Co 10 uF tantalum FC VI POFF1 VI POFF2 VDD Vi 5 0 V during no loading 520 880 uA Booster operation current jopre C1 C2 C3 Co 10 pF tantalum consumption 2 FC Vi PorFt Vi POFF2 VDD V 3 0 V Ta 25 C during no loading 400 600 LA C1 C2 C3 Co 10 uF tantalum Regulator operation kopp VRI 20 V RRv 1 MQ during 10 15 uA current consumption no loading Static current la p debi 5 0 pA Input leakage current ILKI N CSC PORRI GEE PO 0 5 uA 0 lt IREG lt 20 mA hanen SE NEE Rye von LIRE Ta 25 C Requlated output 20 V lt VRI lt 10 V IREG 1 mA 9 utp AVR 2 VREG 9 V 0 2 N voltage stability Ta 25 C 2 20 EPSON S1F70000 Series Technical Manual S1F76540 Series Table 2 3 DC characteristics 3 Ta 30 C to 85 C VDD 0 V Vi 5 0 V unless otherwise noted Parameter Symbol Characteristics Min Typ Max Unit VRI 20 V VREG 15 V Regulated output load vo 3 Ta 25 C setup 30 50 mv variation 0 lt IREG
88. AGE MARKINGS Es Zanten eentiende enn 3 35 FUNCTIONAL DESCRIPTION EE 3 35 TYPIGALUABPLIGATIONS ca Ob 3 36 4 DC DC Switching Regulators S1F76300 Series S1F76310 S1F76380 Series Sia e iaa 4 1 A Mm MEE 4 1 APPLICATIONS nasse tete Ia ete 4 1 IE o AO ET E 4 1 BLOCK DIAGRAMS EN 4 2 PIN ASSIGNIMENES TTT 4 3 PIN DESCHIPTIONS reen ene ARATI RE ta E 4 3 SPECIFICA MON S aa 4 4 PAGKAGE MARKINGS tania 4 13 FUNCTIONAL DESCHIPTIONS 4 13 T PICALAPPLICA TIONS eneen tette n cO RI RS asa eases pd eta o EE 4 15 S1F76330 Series DESCRIPTION ata 4 22 FEATURES ERN RE TN 4 22 e da naninira i a A AAR 4 22 HE 4 22 BLOCK e E 4 23 PIN ASSIGNMENTS puerta tada 4 23 PIN DESCRIPTIONS sereen 4 23 SPECIFICATIONS cscs aa c 4 24 S1F70000 Series EPSON iii Technical Manual Contents PACKAGE silere T 4 26 FUNCTIONAL DESCRIP TONS sisi 2 1 aret ta tea Pad eta Eae ERR Ee E GU hd n a M Fa tee 4 27 TYPIGAL APPLICATIONS ierat tuos oon ta etatis poten ato t tn ke nici add inna nk RE TR aora ena redes 4 28 S1F71100 Series B NON 4 34 FEATURES aca td 4 34 BEOGK DIAGRAM EE 4 34 el Re OTT WEE 4 35 lk ee Elle 4 35 FUNCTIONAL DESCRIPTIONS a eiui terae a dank delle lee aint 4 36 ABSOLUTE MAXIMUM RATINGS c 2722022020225320 2220222025204422 7259259745271522 nan nnns teres ennt 5229222576 nnne nnne nnns erret nnns nnns nnns nnns 4 37 ELECTRICAL CHARACTERISTICS iier deed evene terne ds 4 38 EXAMPLE OF EXTERNAL CONNECTION OF REFE
89. Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 50 2 55 2 60 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET SE 00 1 ee VDD 3 0V High level output current loH OUT 27V 1 00 0 25 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD ee _ 8 40 us Detection voltage Ta 25 C TPHL response time VDD 3V 52V 200 Ta 30 C to 85 C TLT ES S1F70000 Series EPSON 5 7 gt o N N N LL im Wu S1F77200Y Series Ta 30 C to 85 C S1F77210Y1F0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 1 50 12 0 V Detection voltage VDET Ta 25 C 2 60 2 65 2 70 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET 208 aal 5100 Apto E VDD 3 0V High level output current loH OUT 27V 1 00 0 25 mA VDD 2 0V Low level output current loL OUT 0 2V 0 20 1 00 mA VDD inan 8 40 lis Detection voltage TeHL Ta 25 C response time p VDD 3V gt 2V _ 200 T
90. D 3V 20 40 60 80 Ta C 10 40 20 0 100 2 Oscillation frequency vs Temperature 10 9 8 7 6 gt 9 5 4 3 o Ta 25 C Vpp 5V 1 C1 C2 10uF 0 5 10 15 20 25 30 lo mA 4 Output voltage VO vs Output current 1 EPSON S1F76620 Series 0 5 10 15 20 0 1 2 3 4 5 6 7 8 9 10 lo mA lo mA 5 Output voltage Vo vs Output current 2 6 Output voltage Vo vs Output current 3 300 250 Vpp V Vop V 7 Output impedance vs Input current 8 Output impedance vs Input voltage 2 1 18 EPSON S1F70000 Series Technical Manual 100 Peff N O A A ONO O oo O Q O O C Q o 9 Step up power conversion efficiency vs Output current 1 100 90 80 70 60 50 40 30 20 10 Peff 150 120 90 lt E 8 60 Ta 25 C 30 Vpp 5V C1 C2 10uF 0 0 10 20 30 lo mA Input current vs Output current 1 50 40 30 0 0 Ta 25 C VDD 5V C1 C2 10uF 123 45 6 7 8 9 10 lo mA IDD mA Peff 100 Peff gt o 4 11 Step up power conversion efficiency vs Output current 3 Input current vs Output current 3
91. ERISTICS GRAPH 200 300 280 180 260 lt T 160 a 5 Q 240 a q E 140 5 Ps 5 D 220 Te 2 3 G E LL o E 120 a 200 dp 2 5 8 e 5 100 Dow o 7 E S 2 m 8 160 80 140 60 120 40 100 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Input voltage V Input voltage V Input voltage VI vs Booster circuit current consumption loer Input voltage VI vs Booster output impedance Ro Vo Peff Vo Peff V V Vi 3 V Four times Booster Vi 5 V Four times Booster 12 00 100 0 20 00 100 0 Vo L T vo Pet Pet 0 50 00 0 50 00 0 20 00 0 20 00 lo mA lo mA Power conversion efficiency Peff vs Output voltage Vo Power conversion efficiency Peff vs Output voltage Vo Input current lo vs Output voltage Vo Input current lo vs Output voltage Vo Figure 2 7 Characteristics graphs S1F70000 Series EPSON 2 29 Technical Manual S1F76540 Series APPLICATION CIRCUIT EXAMPLES Four time Booster and Regulator Figure 2 8 gives a wiring example of four time booster and regulator that is the typical S1F76540 application This example boosts the input voltage VI four times in negative direction and outputs the regulated voltage at VREG pin
92. F2 pins from an external sys tem such as microprocessor as defined on Table 2 7 This power off function can also cut the reactive current in parallel connection and other application circuits To use the dual state power off control all ON and all OFF states only connect pin POFF2 to pin VI and use only pin POFF1 for power off control Table 2 7 Available combination of power off control POFF1 POFF2 Functions High VoD High Von Oscillator Booster Regulator Applications Mode N Low Vi Low VI circuit circuit PS1 High Low ON ON ON All circuits are turned on PS2 Low Low OFF OFF 1 OFF 2 All circuits are turned off PS3 High High OFF ON ON Slave unit side of parallel connection Booster and regulator PS4 Low High ON ON OFF Master unit side of parallel connection Booster only 1 When the booster circuit is off approximately VI 0 6 V voltage appears at Vo pin 2 When the regulator is off the VREG pin becomes high impedance state Application notes on power off function When using external system signals for power on control start to control the power only when VI voltage becomes stable after power on Unstable VI voltage may destroy the IC permanently during on off control Vi Vi Barr POFF1 Porra Porr2 Figure 2 6 Start timing of power off control 2 28 EPSON S1F70000 Series Technical Manual S1F76540 Series CHARACT
93. Figure 2 16 Internal clock ON Low Output mode Booster circuit ON Regulator ON Thermistor resistor RT O Power off procedure e Set the POFF1 pin to low VI to turn off all circuits O Regulator temperature coefficient For the regulator setup and notes see the voltage regulator circuit section of the function The thermistor resistor RT has the non linear temperature characteristics To correct them to the linear char acteristics insert the RP as shown Figure 2 16 gt lt T D lo N LL Wu Application in other setup conditions When used in the High Output mode connect the FC pin to the VI pin S1F70000 Series EPSON 2 37 Technical Manual S1F76640 Series S1F76640 Series CMOS DC DC Converter amp Voltage Regulator DESCRIPTION S1F76640 is a high efficiency and low power con sumption CMOS DC DC converter It is roughly di vided into two portions step up circuit and stabilization circuit The step up circuit can provide 2 times step up outputs 3 6 to 11V 3 times step up outputs 5 4 to 16 5V or 4 times step up outputs 7 2 to 22V of input voltages 1 8 to 5 5V If external parts diode capaci tor are attached to it it can realize step up operations of higher magnifications The stabilization circuit enables to set outputs to any voltages Since the stabilization circuit can provide three kinds of minus temperature gradients to stabilized outputs it is optimum a
94. Figure 5 4 Figure 5 5 Example of 2 times step up Example of 3 times step up Example of 4 times step up potential relations potential relations potential relations Note 1 At the 3 times step up time 2 times step up output 10V cannot be taken out from the CAP2 pin Note 2 At the 4 times step up time 2 times step up output 10V cannot be taken out from the CAP2 pin Note 3 At the 4 times step up time 3 times step up output 15V cannot be taken out from the CAP3 pin Reference Voltage Generator Voltage Stabilization Circuit The reference voltage generator generates reference voltage necessary for operation of the voltage stabilization circuit and adds temperature gradient to reference voltage Three temperature gradients are available and signal from the temperature gradient selection circuit select one of them The voltage stabilization circuit stabilizes the step up output voltage VO and outputs optional voltages When an external resistor RRV is connected as shown in Figure 5 5 and the potential of the intermediate tap is changed VREG output voltage can be set to optional voltages between the reference voltage VRV and Vo Vss LI Porr 77777 Control signal pi RV Rrv 100kQ to 1MQ VREG GE VREG JURE VRV R1 Figure 5 6 Voltage Stabilization Circuit The voltage stabilization circuit has power off function and can control ON OFF of VREG output according to signals from the system side microprocessor etc Wh
95. ICE 50F KLI 63 Bldg 60 Yoido dong Youngdeungpo Ku Seoul 150 763 KOREA Phone 02 784 6027 Fax 02 767 3677 GUMI OFFICE 6F Good Morning Securities Bldg 56 Songjeong Dong Gumi City 730 090 KOREA Phone 054 454 6027 Fax 054 454 6093 SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION IC Marketing Department IC Marketing amp Engineering Group 421 8 Hino Hino shi Tokyo 191 8501 JAPAN Phone 81 0 42 587 5816 Fax 81 0 42 587 5624 ED International Marketing Department Europe amp U S A 421 8 Hino Hino shi Tokyo 191 8501 JAPAN Phone 81 0 42 587 5812 Fax 81 0 42 587 5564 ED International Marketing Department Asia 421 8 Hino Hino shi Tokyo 191 8501 JAPAN Phone 81 0 42 587 5814 Fax 81 0 42 587 5110 ENERGY SAVING EPSON In pursuit of Saving Technology Epson electronic devices Our lineup of semiconductors liquid crystal displays and quartz devices assists in creating the products of our customers dreams Epson IS energy savings S1F70000 Series Technical Manual SEIKO EPSON CORPORATION H EPSON Electronic Devices Website PRINTED WITH SOY INK This manual was made with recycle paper First issue November 19900 and printed using soy based inks Revised July 2002 in Japan Hp qv
96. IPTION Source nee deed 1 7 TYPIGAGAPPDIGATIONS E 1 8 S1F76620 Series DESGRIPHON ac coc cat terc nicas dada datos 1 10 gll icc E 1 10 BEOGKIDIAGRAM irae Rt eH RI b ert ee repere Eee EE Re dean ies e A eee IU 1 10 SO Te Nn 1 11 FUNCTIONAL DESCRIPTIONS citare rene erra ett ia betonnen niee 1 13 ELECTRICAL CHARACTERISTICS sese ee 1 14 EXAMPLE OF REFERENCE EXTERNAL CONNECTION 1 21 A sritedelsisisageliie ne H 1 24 MECHANICAL Sl 1 25 2 DC DC Converter amp Voltage Regulator S1F76610 Series DESCRIPTION tentamen P LM E 2 1 A AS 2 1 A E ME 2 1 BLOCK DIAGRAM oe esr Fastest Men Hua dni um NIMM E ME M UU er 2 1 PINLASSIGNMENTS tapioca 2 2 PINDESCRIPTIONS icem anite Oia 2 2 o ste utate i Meu a tte 2 3 FUNCTIONAL DESCRIPTION A iii 2 11 TYPICAL APPLICATIONS TTT 2 12 S1F70000 Series EPSON i Technical Manual Contents S1F76540 Series DESCRIPTION LEER 2 15 FEATURES O O 2 15 EREM 2 15 Eels GBI NE 2 16 PINIDESGRIPTIONS umarme ie tenen ee reer M Peer ati M A ned 2 16 ELECTRICAL CHARACTERISTICS inc icccstcccazcascccasccececcecaecaasecaacassaccasceseacseccieasaeadincedacduectssincnaisansitanianiasntecatebedscnees 2 19 EUNGTIONALDESGRIPTIONS asten taihnd Mess ea 2 22 CHARACTERISTICS GRAPH nnn 2 29 APPLIGATIONFGIRCGUIT EXAMPLES itte diet dei tr iei te a 2 30 S1F76640 Series DESCRIPTION E 2 38 FEATURE
97. MAXIMUM RATINGS Parameter Symbol Rating Unit Input voltage Vpp Vss 21 y Output voltage Vo VDD 0 3 to Vss 0 3 Output current lo 100 mA Allowable loss PD 200 mW Operating temperature Topr 40 to 85 Storage ambient Tstg 65 to 150 temperature Solderi 260 1 0 dering temperature Tsol 60 10 Ces and time at leads gt o N LL dp RECOMMENDED OPERATING CONDITIONS Parameter Symbol Min Typ Max Unit Input voltage Vpp Vss 15 V Output current lo 0 01 mA S1F70000 Series EPSON 3 5 Technical Manual S1F78100Y Series ELECTRICAL CHARACTERISTICS S1F78100Y2A0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V Output voltage Vo c H 5 75 6 00 6 25 v Current consumption loPR VDD 6 0V to 15 0V No load 3 0 8 0 uA Difference between input VI Vo Vo 6 0V lo 10mA 0 24 0 38 V and output voltages Output voltage AVO temperature characteristic Vo mi 0 100 200 ppm C Ta 30 C to 85 C AVO Same temperature condition Input stability AVI Vo Vop 7 0V to 15 0V ot v lo 10mA Ta 30 C to 85 C Load stability AVo u adi gt ag loo amv lo 1mA to 50mA Supply voltage rejection VDD
98. MF302 13 EPSON POWER SUPPLY IC S1F70000 Series Technical Manual CICI SEIKO EPSON CORPORATION NOTICE No part of this material may be reproduced or duplicated in any from or by any means without the written permission of Seiko Epson Seiko Epson reserves the right to make changes to this material without notics Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and further there is no repersesnation that this material is applicable to products requiring high level reliability such as medical products Moreover no license to any intellectual property rights is granted by implication or otherwise and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Low of Japan and may require an export licenes from the Ministry of International Trade and Industry or other approval from another government agency HD44103 is a registered trademark of Hitachi Ltd All other product names mentioned herein are trademarks and or registered trademarks of their respective companies OSEIKO EPSON CORPORATION 2002 All rights reserved The i
99. NLF453232 121K 120 0 10 50 0 796 8 3 64 30 NLF453232 151K 150 0 10 50 0 796 7 4 16 28 NLF453232 181K 180 0 10 40 0 796 6 5 72 26 NLF453232 221K 220 0 10 40 0 796 5 5 6 30 24 NLF453232 271K 270 0 10 40 0 796 5 6 90 23 3 3 NLF453232 331K 330 0 10 40 0 796 4 5 7 54 23 n NLF453232 391K 390 0 10 40 0 796 4 8 20 21 2 NLF453232 471K 470 0 10 40 0 796 3 8 9 20 19 NLF453232 561K 560 0 10 40 0 796 3 6 10 50 18 NLF453232 681K 680 0 10 40 0 796 3 4 12 00 17 NLF453232 821K 820 0 10 40 0 796 3 13 50 16 NLF453232 102K 1000 0 10 40 0 252 2 5 16 00 15 Characteristic response 1000 500 uH Inductance 3 a Measurement circuit DC 20 000 pF d supply YHP4255A universal bridge 10 50 DC current mA 100 S1F70000 Series EPSON Technical Manual S1F76300 Series Drum coil inductors Taiyo Yuuden FL series micro inductors Device Inductance Direct current mA FL3H 0 22uH to 10uH 280 to 670 FL4H 0 47uH to 1 2u H 300 to 680 FL5H 10uH to 1mH 50 to 320 FL7H 680uH to 8 2mH 50 to 170 FL9H 330uH to 33mH 50 to 500 FL11H 10mH to 150mH 35 to 110 Toroidal coil inductors Tohoku Metal Industries HP series toroidal coil inductors
100. O Dix T HA Dar Rosc t 1MQ T5V D3 Voi 15 V Voz 8 2 Vi 5 V Potential levels Vo2 8 2V VoD 0V Vi 5 V Voi 15 V EPSON Using an External Gradient The S1F7661C0B0 MOBO offers three built in tem perature gradients 0 1 0 4 and 0 6 C To set the gradient externally place a thermistor RT in series with the variable resistor RRV used to adjust the output voltage S1F70000 Series Technical Manual S1F76540 Series S1F76540 Series Charge Pumping DC DC Converter amp Voltage Regulator DESCRIPTION The S1F76540C0A0 MOAO is a CMOS process charge pumping DC DC converter and voltage regula tor featuring the very high efficiency but low power consumption An addition of four three or two exter nal capacitors can generate four three or two time output voltage in negative direction than the input volt age Also the built in voltage regulator can set any out put voltage of DC DC converter and can output the regulated voltage using two external resistances As the regulator output can have a negative temperature gradi ent that is required for LCD panels it is optimum for the LCD panel power supply FEATURES Charge pumping DC to DC converter four three or two time negative boosting Built in voltage regulator regulated voltage output circuit High power conversion efficie
101. ON CAP1 CAP1 S1F70000 Series Technical Manual S1F76620 Series PIN DESCRIPTIONS Pin Assignments Pin descriptions Pin No Pin name Le N N MEM LL POFF 1 8 Vo Hi GND 2 7 CAP1 OSC 3 6 CAP1 OSC2 4 5 VDD Pin Assignments of SOP4 8pin Description 1 POFF Input pin for power off control 2 GND Vss Power pin Minus side System GND Oscillation resistor connection pin Works as the clock input pin when the 3 OSC1 external clock operates 4 OSC2 Oscillation resistor connection pin Opens when the external clock operates 5 VDD Power pin Plus side System Vcc 6 CAP1 Pump up capacitor minus side connection pin for 2 times step up 7 CAP1 Pump up capacitor plus side connection pin for 2 times step up 8 Vo Output pin at the time of 2 times step up S1F70000 Series Technical Manual EPSON 1 11 Series S1F76620 Series Pad Center Coordinates S1F76620D0A0 Pad center Pad center Pad No Pad name coordinates coordinates Description X um Y um 1 NC 984 1096 2 NC 788 3 POFF 580 Input pin for power off control 4 NC 390 5 NC 96 6 NC 218 7 GND Vss 510 Power input pin Minus side 8 OSC1 802 Oscillation res
102. Output voltage m COUT MECHANICAL DATA S1F78100Y SOT89 3pin 4 5 0 1 1 8Max T e Y Y i A x B a A L lt A 1 21 21 Y 1 1 1 5 1 5 o x x r t E H o o LO Y T 0 48Max 0 48Max 0 53Max Unit mm 3 14 EPSON S1F70000 Series Technical Manual S1F78100Y Series CHARACTERISTICS GRAPH S1F78100Y2B0 loPR Ta loPR VI 7 0 6 0 5 0 lt 4 0 lt gt gt 5 3 0 3 gt i 2 0 N LL 1 0 o 0 0 40 20 0 20 40 60 80 100 Ta C Vo VI Ta lt gt gt L 2 2 40 20 0 20 40 60 80 100 50 40 30 20 10 0 Ta C lo mA S1F70000 Series EPSON 3 15 Technical Manual S1F78100Y Series Vo Ta Vo VI 5 5 VDD 7V o 5 0 gt 4 5 40 20 0 20 40 60 80 100 Ta C AVo Ta E 9 S
103. RENCE CIRCUIT sese eee 4 39 MEGHANIGAL DATA sisters eerie tere eee eae e er i als 4 40 S1F71200 Series DESCRIPTION c PO 4 41 EEATURBES za 1n i A petet e ete nemi iti te d 4 41 BEOGK DIAGRAM E 4 42 PINASSIGNMENT S 4 43 PIN DESGRIPTIONS p n 4 44 EUNGTIONALJDESGRIBPTIONS curia bd EE EE e te ute ci id 4 45 ABSOLUTE MAXIMUM RATINGS iret n LEE Ee LEER EE HE ra eara s Rc Pe ia tekani enai o Eae eoi dea 4 47 ELECTRICAL CHARACTERISTICS armani dd 4 48 EXAMPLE OF EXTERNAL CONNECTION OF REFERENCE CIRCUIT sse 4 52 MECHANICAL DATA trot rte pna hate Pe ER o c UN d Endo REA oo Reb B Re did Ma Ese aobre Ra att Ear 4 54 iv EPSON S1F70000 Series Technical Manual Contents 5 Voltage Detector S1F77200Y Series IR TH ME e a e ee ia aee e E EEEE E E E a aa 5 1 FEATURES cout E00 EL ege 5 1 Hh H EQ 5 2 BLOGK DIAGRAM iste nnen ie ie ie tenen eee 5 3 Eil Wi Le der LEE 5 4 FUNCTIONAL DESCRIPTION Sucia adicta ds 5 4 ABSOLUTE MAXIMUM RATINGS sss sese eee 5 5 ELECTRIC CHARACTERISTICS aia e 5 6 EXAMPLES OF EXTERNAL CONNECTION 5 19 SAMPLE CIRCUITS S1E77210V Series i i dett dal e fe toi eh ec ei ee 5 20 SAMPLE CIRCUITS S1F77200Y Series cccccccesceeeceeeeeeceseeceneeeaeecea
104. Reset signal output See note 1 3 GND Ground 4 Vsw External inductor drive 5 Vo Output votlage 6 VCONT Comparator input 7 Vit Step up input voltage 8 PS Power save See note 2 Notes 1 See voltage detection and power on clear in the functional description 2 See standby mode and battery backup in the functional description S1F70000 Series EPSON 4 3 Technical Manual S1F76300 Series SPECIFICATIONS Absolute Maximum Ratings S1F76310 series VSS 0V Ta 25 C Parameter Symbol Rating Unit Input voltage Vu 7 V Output current lo 100 mA Output voltage Vo 7 V Power dissipation PD eo mW 300 DIP Operating temperature range Topr 90 to 85 C Storage temperature range Tstg 65 to 150 C Soldering temperature for 10 s See note Tsol 260 C Notes Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions Never use solder dip to mount S1F70000 series power supply devices S1F76380 series Vss OV Ta 25 C Parameter Symbol Rating Unit Input voltage Vu T V Output current lo 100 mA Output voltage Vo 7 V Power dissipation PD poti sili mW 300 DIP Operating temperature range Topr 90 to 85 C Storage temperature range Tstg 65 to 150 C Soldering temperature for 10 s See note Tsol 260 C Notes Temperatures during reflow soldering must remain within the limits set out in LSI Device Preca
105. S ot ennen E M ND E 2 38 BEOGK DIAGRAM iet ertet ride e e ele RP nins 2 39 PINFASSIGNMENIS testen UC EE ERES 2 40 PIN DESCRIPTIONS c iain decision a einai binatang 2 41 CHIP EXTERNAL SHAPE AND PAD CENTER COORDINATES sxs sees eee eee 2 42 FUNCTIONAL DESCRIPTIONS siscicioninaanarararn dei 2 43 ELECTRICAL CHARACTERISTICS iii 2 46 CHARACTERISTICS GRAPE EEERRERIPSEERT 2 51 MECHANICAL DATA 2 56 APPLICATION EXAM P B cp 2 57 3 Voltage Regulator S1F78100Y Series DESCRIPTION semen eenn ee 3 1 FEATURES srl 3 1 A ee 3 1 PIN DESCRIPTIONS nennen eeen is 3 2 PINASSIGNMENTS mias 3 2 FUNCTIONAL DESCRIPTIONS cc as 3 3 RE 3 4 ABSOLUTE MAXIMUM RATINGS tette tette ttt 0000000000000000000000000ene 3 5 RECOMMENDED OPERATING CONDITIONS ssssssssssssssessseseeeseeeetnennniiiiiiitteiitririreeetttteetettnnnsssntsrnnnnnn rnrn nnen 3 5 ELECTRICAL CHARACTERISTICS estt tton citadel eed 3 6 EXAMPLES OF REFERENCE EXTERNAL CONNECTION iiic 3 14 MECHANICAL DATA uti m 3 14 ii EPSON S1F70000 Series Technical Manual Contents GHARAGTEBISTIGS GBADBDLI EE 3 15 S1F79100Y Series DESCRIPTION T LL D OI 3 21 FEATURES uti hie IEEE m E IM 3 21 NAA Bre ONE 3 21 LINEUP REESE 3 21 BLOCGKDIAGRAM crese E ee eig Ei eare ea a E E a a e aa E O 3 21 PINASSIGNMENTS sunt ta ta aan 3 21 PINI DESCRIPTIONS eegen 3 22 SPECIFICATIONS acta det enn eee adrianhelm nen 3 22 PACK
106. SOP89 3pin EPSON S1F70000 Series Technical Manual 1 DC DC Converter S1F76600 Series S1F76600 Series CMOS DC DC Converter Voltage Doubler DESCRIPTION The S1F76600 Series is a highly efficient CMOS DC DC converter for doubling an input voltage from 1 5V to 8V This power saving IC allows portable computers and similar hand held equipment to operate from a single power supply even when they incorporate LSIs that operate at voltages different from those of logic circuits for example LCD drivers and analog LSIs The S1F76600C0BO0 is available in 8 pin plastic DIPs and the S1F76600MOBO in 8 pin plastic SOPs FEATURES 95 Typ conversion efficiency Two output voltages Vo relative to VDD and VI 30mA maximum output current at 5V Connecting in series configuration obtains a higher output voltage V1 5V Vo 15V at two in series Low operating voltage On chip CR oscillator 8 pin plastic DIP and 8 pin plastic SOP APPLICATIONS Fixed voltage power supplies for battery operated equipment Power supplies for pagers memory cards calculators and similar hand held equipment PIN DESCRIPTIONS Fixed voltage power supplies for medical equipment Fixed voltage power supplies for communications equipment Uninterruptable power supplies BLOCK DIAGRAM VDD OSC1 CR oscillator OSC2 O _ Vi CAP1 Voltage converter CAP1 Vo PIN ASSIGNMENTS
107. TINGS Absolute maximum ratings are the maximum physical and electrical ratings of a device beyond which perfor mance degradation or damage will occur Always check circuit conditions before using a device to avoid exceeding these ratings Typically absolute maximum ratings include the following parameters 1 Power supply voltage Steady state applied voltages noise reverse voltage transients and power on transients can degrade or damage the integrated circuit if they exceed the maximum power supply voltage rating 2 Input signal voltage Input signals exceeding this rate can damage input protection circuits 3 Output current Generally specifications are not set for CMOS devices with small output currents Devices that provide large drive currents will have output cur rent specifications 4 Power dissipation The maximum power dissipation of a device is limited by its construction and package type Appendix POWER DISSIPATION CONDITIONS To prevent damage always consider the following points when designing with power regulation ICs 1 A precise thermal design is necessary to ensure adequate heat dissipation The following figure shows the power dissipation capacity in relation to ambient temperature 3 25 x 80 x 0 7 mm3 ceramic substrate 12 5 x 40 x 0 7 mm ceramic substrate 12 5 x 20 x 0 7 mm ceramic substrate or 1 7 mm thick glass epox substrate with 1 cm2 collector surface area Power dissipation
108. Typ 0 1 V 3 20V positive output voltage regulator S1F78100Y2C0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability Typ 0 1 V EPSON S1F70000 Series Technical Manual Selection Guide Product Features Package S1F78100Y2D0 3 00V positive output voltage regulator Low operating current Typ 3 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F78100Y2R0 2 80V positive output voltage regulator Low operating current Typ 3 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F78100Y2L0 2 60V positive output voltage regulator Low operating current Typ 3 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F78100Y2F0 2 20V positive output voltage regulator Low operating current Typ 3 0UA Input voltage stability Typ 0 1 V SOT89 3pin S1F78100Y2G0 1 80V positive output voltage regulator Low operating current Typ 3 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F78100Y2H0 1 50V positive output voltage regulator Low operating current Typ 3 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F79100Y1B0 5 00V negative output voltage regulator Low operating current Typ 4 0 uA Input voltage stability Typ 0 1 V SOT89 3pin S1F79100Y1P0 4 00V negative output voltage regulator Low operating current Typ 4 0 uA Input voltage stability Typ
109. Vo VDD 3V to 12V 50 mV Load stability AVO IL 10mA to 100mA 50 mV Input voltage level VIH 0 8VDD1 V at POFFX pin at Vc pin VIL _ 0 2VDD1 V 4 50 EPSON S1F70000 Series Technical Manual S1F71200 Series DC Characteristics Unless otherwise specified Ta 25 C 2 Rating Parameter Symbol Conditions Unit Min Typ Max Input pin leak current ILINH VIN VDD1 1 0 uA at POFFX pin at Vc pin ILINL VIN Vss 1 0 uA SSCAP 0 1uF Step up soft start time Tss VDD1 3 0V Vc VDD1 70 ms lo 50mA Slep up porton EFFI Von 3V Vc Vss 85 Sin conversion efficiency VDD 3V Oscillation frequency fosc x 120 200 280 kHz Measure it at the SWO pin Overcurrent detection voltage IDET VISENSE 0 10 0 15 0 20 V Output voltage AVO temperature coefficient ATopr Ta 30 C to 85 C kaa 0 015 C o N N LL Wu These values are available when external parts are used in the example of circuit connection shown on the at tached sheet The characteristics vary with applicable parts Select proper par ts after sufficient evaluation S1F70000 Series EPSON 4 51 Technical Manual S1F71200 Series EXAMPLE OF EXTERNAL CONNECTION OF REFERENCE CIRCUIT
110. Voltage Conversion When the 3 times step up operation shown in Figure 1 and the positive voltage conversion in Figure 6 are combined the circuit shown in Figure 7 can be formed and 10V and 3 8V can be obtained from the input 5V However the output impedance is higher than in case of connection of either one only the negative voltage conversion or the positive voltage conversion va Potential Relations Diagram S lt POFF Vo CT e h 2 VI 2 GND CAPt 7 P A SE D SE Vi gt L L 3 o0sci CAP1 6 e Vss p A OSCH Voo 5 e Vos O Vos Figure 7 Negative Voltage Conversion Positive Voltage Conversion S1F70000 Series EPSON 1 23 Technical Manual S1F76620 Series MEASUREMENT CIRCUIT V O b RL 1 Porr Vo 8 e e GND caPt 7 V loPR S SE G L Cz H r 3 osci CAP1 6 L Rosc Tui 4 osc2 Voo 5 e 1 24 EPSON S1F70000 Series Technical Manual MECHANICAL DATA S1F76620M0A0 SOP4 8pin S1F76620 Series Reference D r 8 5 4 INDEX u E pfA P PIE O g Y
111. XTERNAL CONNECTION 2 Times Step up 2 times step up output of VO 2 x VDD is obtained from the circuit shown in Figure 1 1 Porr Vo 8 e o 2 M 2 GND CAP1 3 N te N LL im Wu wl MW 3 osci CAP1 ES 4 OSCH Voo 5 Figure 1 2 Time Step up Operation Parallel Connection It is possible to make the output impedance Ro small when several pieces of the circuit shown in Figure 1 are connected Parallel connection of n circuits reduces Ro to 1 n approximately One piece of the smoothing capacitor C2 can be commonly used 1 Porr Vo 8 2 GND CAP1 7 1 Porr Vo 8 e E L wW 3 OSC1 CAP1 6 7 2 GND CAP1 7 4 OSCH von 5 E m wW osci CAP1 6 F 4 osc2 von 5 e p Figure 2 Parallel Connection S1F70000 Series EPSON 1 21 Technical Manual S1F76620 Series Series Connection When S1F76620 is connected in series VDD and VO in the previous stage are connected to GND and VDD in the next stage respectively the output voltage can be increased more But the series connection makes the output impedance high Figure 3 shows an example of the series connection to get VO 15V from VDD 5V Vo 2 VI Vo 23 VI o 0 Por vo 2 GND CAP1 7 SE
112. Y130 Voltage detection Typ 3 50V Output format COMS Low operating power Typ 2 0 UA Voo 4 0V SOP89 3pin S1F77210Y1H0 Voltage detection Typ 3 20V Output format COMS Low operating power Typ 2 0 UA Voo 4 0V SOP89 3pin S1F77210Y1G0 Voltage detection Typ 3 00V Output format COMS Low operating power Typ 2 0 UA Voo 4 0V SOP89 3pin S1F77210Y1R0 Voltage detection Typ 2 80V Output format COMS Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77210Y1F0 Voltage detection Typ 2 65V Output format COMS Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77210Y1E0 Voltage detection Typ 2 55V Output format COMS Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77210Y1S0 Voltage detection Typ 2 35V Output format COMS Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77210Y1P0 Voltage detection Typ 2 25V Output format COMS Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77210Y1C0 Voltage detection Typ 2 15V Output format COMS Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77210Y2F0 Voltage detection Typ 2 65V Output format COMS Low operating power Typ 2 0 uA Voo 3 0V SOP89 3pin S1F77210Y2C0 Voltage detection Typ 2 15V Output format COMS Low operating power Typ 2 0 UA V
113. Z 100 D E o gt 8 3 10 o2 3 Peff o gt S E 5 E 50 s wee em d i x lt 1 0 5 5 G Se Se SS 100 200 300 500 1000 Inductance uH Load current mA Notes Notes Inductor TDK NLF453232 221k 220uH 1 Vn 1 5V Diode Shindengen DINS4 Schottky barrier diode 2 Inductor TDK NLF453232 series Capacitor NEC MSUB20J106M 10uF Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSUB20J106M 10uF S1F70000 Series EPSON 4 11 Technical Manual S1F76300 Series Reset delays S1F76310M1A0 S1F76310M1K0 R 200 kQ 200 200 R 200 kQ 150 150 Z E 5 100 gt 100 50 50 S R 100 kQ On 0 2 0 3 04 05 060708 1 0 On 0 2 0 3 04 05 060 708 1 0 C uF C uF S1F76310M1B0 S1F76310M1L0 and S1F76380M1L0 200 R 200 kQ 150 T u 100 50 0 1 0 2 0 3 0 4 0 5 0 6 0 70 8 1 0 GR 0 2 0 3 04 05 060 708 1 0 C uF C uF S1F76380M1H0 200 R 200 kQ 150 T 0 Ka 100 50 R 100 KQ 0 1 0 2 0 3 04 05 060708 1 0 C uF 4 12 EPSON S1F70000 Series Technical Manual Timing diagram vi DN ud PWCR RST PACKAGE MARKINGS S1F76310 S1F76380 series device packages use the following markings E 763 1 Series number First subcode character y OT Second subcode character O tt M Code number
114. al comparator They feature low power consumption low operating voltages and standby operation The devices offer a range of fixed output voltages from 2 35 to 5 00V They are available in 8 pin SOP3s FEATURES 0 9V Min operating voltage 8UA Typ maximum current consumption Standby operation 3uA Typ standby current consumption Built in oscillator circuit for use with external crystal oscillator APPLICATIONS Fixed voltage power supplies for battery operated equipment such as portable video cassette recorders video cameras and radios Power supplies for pages memory cards calculators and similar hand held equipment Fixed voltage power supplies for medical equipment Fixed voltage power for communications equipment Power supplies for microcomputers Uninterruptable power supplies SOP3 8pin LINEUP Voltage V M Output Multiplication Crystal Voltage Power on Battery Response voltage l Product frequency Oscillator Package Input Output detection clear backup compensation temperature source Output characteristic S1F76330M1B0 15 3 00 Cystal Me No No No Yes SOP3 8pin 0 9 Min oscillator 4 22 EPSON S1F70000 Series Technical Manual S1F76300 Series BLOCK DIAGRAMS PIN ASSIGNMENTS S1F76330 series S1F76330 series PS Ci Co CLO O O O O ECH S1F76330 Oscillator O Vsw series Vo Reference voltage Control genera
115. an overcurrent protec tion circuit and a soft start circuit When receiving ex ternal signals S1F71200 can stop the oscillator and the switching circuit and turn off the power so that it can reduce wasteful current consumption at the time of sys tem halt FEATURES Input voltage 2 5V to 12 0V Output voltage 5 0V SIF71200M0A0 3 3V SIF71200MOBO Power off current 1 0UA Self current consumption 150UA step up portion 154A step down portion Frequency fixing 200kHz PWM at step up time Power off function IC shutdown Soft start function Overcurrent protection function Shipping pattern plastic package SSOP2 16 pin Radiation resistant design has not been provided for this specification o al N LL Wu S1F70000 Series EPSON 4 41 Technical Manual S1F71200 Series BLOCK DIAGRAM 4 42 IREF O VREF Driver Oscillator Overcurrent detection circuit O SWO O ISENSE Soft start O SSC Error amplifier Reference voltage circuit 74 EPSON S1F70000 Series SWC Vc POFFX Technical Manual S1F71200 Series PIN ASSIGNMENTS 1 16 2 Ys Index 15 3 14 4 13 5 12 6 11 2 N N LL 7 10 o 8 9 SSOP2 16pin S1F700
116. ape tension should be approximately 10 N Less than 0 2 of the total device count is comprised 1 kgf A label indicates the part name quantity and of non sequential blanks There are no sequential lot number blanks This does not apply to the tape leader and 6 14 EPSON S1F70000 Series Technical Manual Appendix Tape configuration The tape configuration is shown in the following figure Blank sections are provided as a leader and trailer with 1 000 SOP2 packages fitted into the com ponent mounting section between them At the begin ning of the leader section there is an extra section of tape which contains the cover tape only Finish open gt 40mm ei _ Travel direction Cover tape__ only Embossed carrier Appendix S1F70000 Series EPSON 6 15 Technical Manual Appendix REEL SPECIFICATIONS The reel specifications are shown in the following table and figure The reel is made of conductive PVC Dimension code Dimensions mm A 330 2 0 B 80 1 0 C 13 0 0 5 D 21 0 1 0 E 2 0 0 5 W 24 4 2 0 See note Wi 2 0 0 5 w2 31 4 Max See note r 1 0 Note W and W2 are measured at the reel core DEVICE POSITIONING Type B products are positioned so that the index mark is on the sprocket hole side of the tape as shown in the following figure Wooo Index mark
117. based the following formula R1 R2 R3 R2 R3 REF Detection voltage VDET VREL VREF Relief voltage D VDD 2pin gi OUT pin Vss Gpin 5 4 EPSON S1F70000 Series Technical Manual S1F77200Y Series The following figures show the input and output characteristics of the S1F77200Y series OUT Diddl 0 B m VDET VREL Operating voltage lower limit VDET Detection voltage VREL Relief voltage Vpp V 1 Operating voltage upper limit S1F772 KOY1 kO Type Note OUT VHYS o Le 0 VDET VREL Operating voltage lower limit L ik lt VDET Detection voltage VREL Relief voltage Vpp V1 Operating voltage upper limit S1F772 0Y2 0 Type The above input output characteristics assumes that the pull up resistor is connected to the output pin for the S1F77200Y series For the S1F77220 series it assumes that the pull down resistor is connected between the OUT and VDD pins If the input voltage that is applied between Vpp and Vss terminals drops below the lower limit of voltage for IC operation the output condition of the OUT terminal may become unsteady Ensure to prevent problems from occurring in circuit operation ABSOLUTE MAXIMUM RATINGS Parameter Symbol Rating Unit Supply voltage range VDD VSS 15 V VDD 0 3 to Vss 0 3 S1F77210 3 N 15 to Vss 0 3 E Outp
118. cal Manual S1F76540 Series O Output voltages When diodes are used for voltage boosting the characteristics of diodes directly affect on the voltage boosting characteristics The forward voltage drop VF of diodes can reduce the booster output voltage As the example of Figure 2 14 uses three diodes the drop of VF voltage multiplied by three occurs The booster output voltage is expressed by equation 5 To increase the VY OT value use the diodes having a smaller VF Vo I2 3xI Vil 3 x VF sees Equation 6 Notes CD Input and output current conditions To satisfy the input and output current ratings take care to limit the input current below the ratings 2 Input and output voltage conditions During forward voltage conversion the input voltage ratings are the same as two time negative voltage boost ing see Table 2 3 Application in other setup conditions When used in the High Output mode connect the FC pin to the VI pin Wiring Example When Changing the Regulator Temperature Coefficient The temperature coefficient of the regulator depends on voltage To set another temperature coefficient use a the temperature coefficient of the internal reference thermistor resistor or others as shown in Figure 2 16 Figure 2 16 Wiring example when changing the regulator temperature coefficient 2 36 EPSON S1F70000 Series Technical Manual S1F76540 Series O Setup conditions of
119. cal Performance Characteristics 1000 26 25 Ta 25 C 24 23 22 Vi 5V Vi 3V 21 Vi 5 0V 100 HUE 20 Vi 2V d Vi 3 0V y I 18 x m 17 Vi 2 0V 8 2 16 15 10 14 13 12 11 10 9 4 8 10 100 1000 10000 40 20 0 20 40 60 80 100 Rosc kQ Ta C 1 Clock frequency vs External resistance 2 Clock frequency vs Ambient temperature 50 45 40 35 30 lt 3 25 2 20 15 10 5 0 7 4 Vi V 3 Multiplier current vs Input voltage 4 Output voltage vs Output current 1 4 EPSON S1F70000 Series Technical Manual S1F76600 Series 0 1 2 3 4 5 6 7 8 9 10 lo mA 0 lo mA 5 Output voltage vs Output current 6 Output voltage vs Output current 300 Ta 25 C lo 7mA 200 G G o o 100 v V Vi V 7 Output impedance vs Input voltage 8 Output impedance vs Input voltage S1F70000 Series EPSON Technical Manual o To To N LL T Wu Series
120. current at VI 5V Three temperature gradients 0 1 0 4 and 0 6 C BLOCK DIAGRAM External shut down control e 2uA maximum output current when shut down Two in series configuration doubles negative output voltage On chip RC oscillator e SIF76610C0BO Plastic DIP 14 pin SIF76610MOBO Plastic SOP5 14 Pin S1F76610M2BO Plastic SSOP2 16 pin APPLICATIONS Power supplies for LCD panels Fixed voltage power supplies for battery operated equipment Power supplies for pagers memory cards calculators and similar hand held equipment Fixed voltage power supplies for medical equipment Fixed voltage power supplies for communications equipment Power supplies for microcomputers Uninterruptable power supplies VDD C OSC1 OSC2 CR oscilator Vi CAP1 Voltage CAP1 1 CAP2 C Voltage Reference voltge generator TCI Temperature gradient selector TC2 Voltage regulator T U U U U U U U U U U U U U U U multiplier ai I I I I I I I I I U U U U U 1 I I CAP2 C multiplier HO VREG 2 Vo Multiplication Stabilization stage stage S1F70000 Series EPSON 2 1 Technical Manual gt le lo N LL Wu S1F76610 Series PIN ASSIGNMENTS 4 VDD 16 VDD 3 OSC1 15
121. d current and it can roughly be calculated by equation 4 S1F70000 Series EPSON 2 31 Technical Manual S1F76540 Series Io VRP 2o fe Co IO RCOUT where Io Load current A fCL Clock frequency Hz VRP sees Equation 4 Rcour Serial equivalent resistance Q of output capacitor Co Figure 2 10 Ripple waveforms Application in other setup conditions CD When used in the High Output mode Connect the FC pin to the VI pin Parallel Connection for Increased Boosting The parallel connection is useful for reduction of booster output impedance or reduction of ripple volt age In the parallel connection of n lines the booster output impedance can be reduced to approximately 1 n Only the smoothing capacitor Co for booster out put can be used commonly in the parallel connection When using the regulator use only one of n S1F76540 chips which are in parallel connection If multiple regulators are operated in parallel mode the reactive current consumption occurs Figure 2 11 gives a wiring example of 4 time booster and regulator where two S1F76540s are parallelly connected cap 18 cen C2 C3N 14 cs GIN 13 cT c1P 12 vid Pore 10 Porr2 Figure 2 11 Parallel connection example 2 32 EPSON S1F70000 Series Technical Manual S1F76540 Series O Setup conditions of Figure 2 11 First stage Second stage I
122. d for the first time TYPICAL APPLICATIONS Example Circuits The output current Io and power conversion efficiency Peff of a particular device in the series depends on fac S1F76330 series Vo S1F76330M C1 Crystal CG PS CLo T Notes E 100uH lt L lt 1mH C lt 10uF D Schottky diode H S1F76330M1BO e Peff 70 when L 220uH leadless inductor Vi 1 5V fcLK 32kHz Io 8mA e Peff 7596 when L 220uH drum coil Vu 1 5V fCLK 32kHz Io 9mA e Peff 80 when L 300uH toroidal coil Vi 1 5V fCLK 32kHz Io 10mA External Components The performance characteristics of switching regulators depend greatly on the choice of external components Observing the following guidelines will ensure high performance and maximum efficiency 4 28 EPSON Battery PS S1F76330M tors such as the switching frequency type of coil and the size and type of other external components Inductor Use an inductor with low direct current resistance and low losses Leadless Pre wound leadless inductors using surface mount technology are the most suitable for portable equipment and other space critical applications Drum coll Avoid drum coils because their magnetic field can in duce noise Toroidal coil Use a toroidal coil to virtually eliminate magnetic field leakage reduce losses and improve performance S1F70000 Series Technical Manual S1F76300 Series Di
123. e beginning on the following page to choose the IC or IC series that most closely matches your application Then you can S1F70000 Series Technical Manual use the detailed product descriptions in subsequent sections to confirm device specifications and charac teristics Please contact your local SEIKO EPSON sales representative for further information or assistance on these or other products EPSON 1 Selection Guide DC DC Converter Product Features Package Supply voltage conversion IC dee SE It effectively converts input voltage Voo into Voo or 2Vpp SOP4 6piri Output current Max 30mA at 5V ani S1F76600C0B0 Power conversion efficiency Typ 95 DEEN Supply voltage conversion IC It effectively converts input voltage Von into Von or 2Vpp S1F76620M0A0 Output current Max 30mA at 5V SOP4 8pin Power conversion efficiency Typ 95 DC DC Converter and Voltage Regulator Product Features Package S1F76610M0BO On chip voltage regulator SOP5 14pin It effectively converts input voltage Voo into Vpp 2Vbp or 2Vpp 3Vpp S1F76610M2B0 Output current Max 20mA at 5V SSOP2 16pin Power conversion efficiency Typ 95 S1F76610C0B0 Three temperature gradients for LCD panel power DIP 14pin On chip voltage regulator S1F76540M0A0 It effectively converts input voltage Voo into 2Voo 3Voo 4Voo SSOP2 16pin Low cu
124. ed to drive the inductor is turned OFF and the built in backup switch is turned ON so that the input voltage at Vr is output at Vo This enables the battery backup function PS is pulled up internally so when standby mode is not required the pin should be left open Powering up Ensure that Vo is at least the minimum operating volt age 0 9V before switching on the booster circuit One way to do this is to attach a battery so that Vo never drops below the minimum required for backup mode If no such external power supply is available connect V12 to Vri and hold PS Low when applying power for the first time c Battery S1F76310M factors such as the switching frequency type of coil and the size and type of other external components S1F76380 series o oO mM Le N LL Wu S1F76300 Series Notes H 100uH lt L lt 1mH C lt 10uF D Schottky diode H S1F76310M1A0 e Peff 70 when L 220uH leadless inductor Vi 1 5V fCLK 32kHz Io 4mA e Peff 75 when L 220uH drum coil Vri 1 5V fcLK 32kHz Io 6mA e Peff 80 when L 300uH toroidal coil Vu 1 5V fCLK 32kHz Io 7mA B SIF76310MIBO e Peff 70 when L 220uH leadless inductor Vi 1 5V fCLK 32kHz Io 8mA e Peff lt 7596 when L 220uH drum coil Vi 1 5V fCLK 32kHz Io 9mA e Peff 80 when L 300uH toroidal coil Vu 1 5V fCLK 32kHz Io 10mA External components The performance cha
125. eesececcaceseaeeseaeeeaeeseaeeseaeesaeecaeeseaeessaeeneeeeeaes 5 21 alle UT eN 5 22 6 Appendix ABSOLUTE MAXIMUM RATINGS sss sese eee 6 1 RECOMMENDER OPERATING CONDITIONS sss eterne oiii tcrra acha 6 1 ELECTRICAL CHARACTERISTICS nanne eonseeenernenenenneeenseeenerennenennternerennenennenenneeenseennevensrenneeendvennerenne 6 1 POWER DISSIPATION CONDITIONS atis seren ener rn aisle ie lial alien detecta e Eee 6 1 PARAMETER SUMMARY soria tented idiaal nie 6 2 lee er DATA EE 6 4 EMBOSS CARRIER TAPING STANDARD SOT89 3pin TAPING INFORMATION usario nente eaten eenen dn 6 6 ARS el lela Nt 6 7 DEVICE POSITIONING atre nana nadal ee 6 7 EMBOSS CARRIER TAPING STANDARD SOP3 8pin TARINGIINFORMATIOIN zit RT 6 8 REEL SPEGIFIGATON Sii MME raae e tasca flere re E E A E D de 6 9 ISIS LET a eT leia 6 9 EMBOSS CARRIER TAPING STANDARD SOP5 14pin TAPING INFORMATION mU 6 11 REEL ene er ae EE 6 12 DEVICEPOSITIONING sassen EE EE 6 12 S1F70000 Series EPSON V Technical Manual Contents EMBOSS CARRIER TAPING STANDARD SOP2 24pin TAPING INFORMATION REEL SPECIFICATIONS DEVICE POSITIONING vi EPSON S1F70000 Series Technical Manual Introduction This book describes SEIKO EPSON s full lineup of power supply ICs and includes a complete set of product specifications Also included are sections on quality assurance and packaging We suggest that you use the selector guid
126. eir powers are turned off The current consump tion at the power off state is less than 1uA When the power is off the SWO pin is at the VDD level and turns off the voltage transistor The voltage at the SSCAP pin ABSOLUTE MAXIMUM RATINGS S1F71100 Series comes to the VSS level and the output voltage is con trolled with the soft start circuit after the power off state is released In the operating state set the POFFX pin to the VDD level to operate it The POFFX pin cannot be operated in a open state When the power off function is not used connect the POFFX pin to the VDD pin Parameter Symbol Applicable Pin Rated Value Unit Input voltage VDD VDD 15 0 V Voltage at Vo pin Vo Vo Vss 0 3 to VDD 0 3 V Voltage at POFFX pin POFFX POFFX Vss 0 3 to VDD 0 3 V Voltage at ERCAP pin ERCAP ERCAP Vss 0 3 to VDD 0 3 V Voltage at SSCAP pin SSCAP SSCAP Vss 0 3 to VDD 0 3 V Voltage at SWO pin SWO SWO Vss 0 3 to VDD 0 3 V 3 Voltage at Isense pin ISENSE ISENSE Vss 0 3 to VDD 0 3 V E Package allowable loss PD PD 300 MW o Ta lt 25 C Operating temperature Topr 30 to 85 C Storage temperature Tstg 55 to 150 C Soldering temperature and time Tsol 260 10 CS Note Any operation under conditions exceeding the above absolute maximum ratings may result in a malfunc tion or a permanent destruction When even an item is more than the rating a temporary normal operation is possible but with remarkab
127. em To SI ET ioo quada To 25 C CTRI Temperature coefficient of resistor R1 Ratio to the value at 25 C CTR2 Temperature coefficient of resistor R2 Ratio to the value at 25 C CT Temperature coefficient of internal reference voltage C R1 To RI value Q at 25 C R2 To R2 value Q at 25 C VREF To Internal reference voltage V at 25 C If the temperature coefficient of R1 and R2 is identical in equation 3 the VREG voltage depends on the tem perature coefficient of internal reference voltage only Application notes on voltage regulator circuit e To satisfy the absolute maximum ratings of the S1F76540 the setup resistor s must be inserted between VDD and VREG pins of the S1F76540 that uses the voltage regulator The S1F76540 IC itself may be degraded or destroyed if the R1 resistor is connected to pin VDD of S1F76540 that does not use the regulator during serial connection The regulation voltage adjustment input pin RV has the very high input impedance and its noise insertion can drop the regulator stability As shown in Figure 2 5 shield the cable between the division resistor and RV pin or use a cable as short as possible between them S1F70000 Series EPSON 2 27 Technical Manual o st lo Le N LL Wu S1F76540 Series Power off Control Function The S1F76540 has the power off function and turns on or off each circuit function when control signals are en tered in the POFF1 and POF
128. en POFF is high VDD VREG output is turned on and when POFF is Low GND it is turned off When the control is not necessary POFF is fixed to High VDD 2 44 EPSON S1F70000 Series Technical Manual Temperature Gradient Selection Circuit S1F76640 can provide three kinds of temperature gradients suitable for driving LCD to VREG output as shown S1F76640 Series Table 5 1 Table 5 1 Temperature Gradient Adaptation Table POFF TC2 TC1 Temperature VREG CR Remarks Note 1 Note 1 Note 1 Gradient Cr Note 2 Output Oscillator 1 VDD Low Vss Low Vss 0 40 C ON ON 1 VDD Low Vss High Vo 0 2594 C ON ON 1 VDD High Vo Low Vss 0 55 C ON ON 1 VDD High Vo High Vo 0 5594 C ON OFF Series connection Note 4 O Vss Low Vss Low Vss OFF Hi Z Note 3 OFF O Vss Low Vss High Vo OFF Hi Z Note 3 OFF 0 Vss High Vo Low Vss _ OFF Hi Z Note 3 OFF O Vss High Vo High Vo OFF Hi Z ON Boosting only Note 5 Note 1 Please note that potentials on the High side are different between the Porr pin and TC2 TC1 pin Note2 The formula below is used to define temperature gradient CT Cr F x Tm aro x 100 C Example When CT 0 6 C is selected When Ta is 25 C the VREG output becomes 8V at 25 C AVREG AT CT VREG 25 C 0 6 x 10 x 8 48mV C When the temperature rises 1 C
129. erature condition Load stability Mb ei DP 30 mv lo 1mA to 30mA Supply voltage rejection VDD 5 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 79 dB S1F70000 Series Technical Manual EPSON gt o N LL y dp S1F78100Y Series S1F78100Y2D0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VpD 5 0V lo 10mA Output voltage Vo Weeer SEN 293 3 00 3 07 V Current consumption loPR VDD 3 0V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vi Vo Vo 3 0V lo 10mA 0 31 0 52 V Output voltage AVO temperature characteristic Vo LI 0 100 200 ppm C Ta 30 C to 85 C AVO Same temperature condition Input stability AVI Vo Vop 4 0V to 15 0V ot v lo 10mA Ta 30 C to 85 C Load stability AVo CON aa lo 1mA to 30mA Supply voltage rejection Vop 5 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 74 dB S1F78100Y2R0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 5 0V lo 10mA Output voltage Vo Ta 25 C 2 73 2 80 2 87 V Current consumption loPR VDD 2 8V to 15 0V No load 3 0 8 0 uA Difference between
130. es as thick and short as possible Use the specified bypass capacitors for inputs and outputs If there is a switching load use a tantalum or onee ceramic capacitor as these devices have a high dis frequency response between the power supply and ground Te mesma BA O Des temperature Osa temperature PARAMETER SUMMARY Symbol Parameter Symbol Parameter Co Drain capacitance loPR2 Stabilization circuit power dissipation Cra Field slew capacitance la Quiescent current Ca Gate capacitance IR Reverse current Ci Input capacitance Iswa Switching transistor leakage current Cn Capacitance Ki Output voltage temperature gradient CT Crosstalk PD Power dissipation CTn Temperature gradient Pett Voltage multiplication efficiency fCLK Clock frequency RBSON Backup switch ON resistance fmax Maximum clock frequency RL Load resistance fosc Oscillator frequency Ro Output impedance FT Field through channel OFF Ron ON resistance lesa Backup switching leakage current Rosc Oscillator network resistor IDDO Operating current Rav Stabilization voltage sensing resistor DDS Standby current RRvn Reference voltage IDD Power supply current RsAT Stabilization output saturation resistance In High level input current Rswon Switching transistor ON resistance liL Low level input current Ta Ambient temperature ILKI input leakage current tAE Minimum pulsewidth IMAX Maximum current THA Address
131. ess otherwise noted Parameter Symbol Conditions Min Typ Max Unit Ta 25 C 3 0 4 0 6 0 kHz Internal clock frequency 1 fci le FORRA tee Ta 30 C Pin used C1P tosgse 20 40 70 kHz SC 2 Vi Ta 25 C 120 16 0 24 0 kHz Internal clock frequency 2 fcL2 5 _ Fore VER Ta 30 C Pin used C1P to 85 C 8 0 16 0 28 0 kHz FUNCTIONAL DESCRIPTIONS Clock Generator Circuit j As the S1F76540 has a built in clock generator circuit load current as the boost output impedance changes de no more parts are required for voltage boost control Pending on the clock frequency and external booster ca The clock frequency changes according to the FC pin Pacitance However the High Output mode has the voltage level as defined on Table 2 5 Low Output mode Current consumption approximately four times larger or High Output mode is selectable This allows fre than the Low Output mode quency selection according to the used capacitance and Table 2 5 FC pin setup Characteristics FC pin Mode Clock frequency Current Outputripple Output Capacitance consumption impedance High VDD Low Output 4 0 kHz Typ lop 1 VRR 2 See Figure A1 See Figure A1 Low VI High Output 16 0 kHz Typ lor x Approx AND x Approx dee Figure A1 See Figure A1 1 See the DC characteristics table for current consumption 2 See Section Page 2 32 for the output ripple definitio
132. euL Ta 25 C response time VDD 1 5V gt 0 8V 200 Ta 30 C to 85 C TT dh S1F70000 Series EPSON 5 17 o N N N LL Wu S1F77200Y Series Ta 30 C to 85 C S1F77200Y1V0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 0 80 10 0 V Detection voltage VDET Ta 25 C 0 90 0 95 1 00 V Hysteresis width VHYS VHYS VREL VDET 0 03 0 05 0 08 V Operating current IDD VDD 1 5V 1 50 4 00 uA Detection voltage AVDET u temperature characteristics VDET 09 160 5100 s VDD 0 8V Low level output current IOL OUT 0 16V 0 05 0 40 mA VDD ee _ 8 40 is Detection voltage TeuL Ta 25 C response time VDD 1 5V 0 8V 200 us S1F77220Y2D0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 5 12 0 V Detection voltage VDET Ta 25 C 1 20 1 25 1 30 V Hysteresis width VHYS VHYS VREL VDET 0 03 0 05 0 08 V Operating current IDD VDD 3 0V 1 50 4 00 uA Detection voltage AVDET 9 temperature characteristics VDET 900 lal aen a VDD 1 5V Low level output current IOL OUT 0 64V 0 03 0 06 mA VDD LONDEN _ 8 40 jii Detection vol
133. ft start function Overcurrent protection function Low voltage protection function Shipping pattern plastic package SOP4 8pin Radiation resistant design has not been provided for this specification Reference Low voltage protection circuit aa Overcurrent protection circuit T Ai voltage circuit ISENSE SSCAP Soft start Oscillator Driver ERCAP gt PWM circuit Error amplifier Vss 4 34 EPSON S1F70000 Series Technical Manual S1F71100 Series PIN ASSIGNMENTS Top View SSCAP 1 C 8 Vss POFFX 2 X index 7 Vo VDD 3 6 ERCAP ISENSE 4 5 SWO SOP4 8pin PIN DESCRIPTIONS o PinNo Pin name Pin Type Description e 1 SSCAP The soft start function is obtained when a capacitor is connected E between the capacitor connection pin for setting soft start and the Vss a pin 2 POFFX Power off control pin During normal operation VDD level At power off time Vss level 3 VDD Power Power supply pin supply 4 ISENSE Load current feedback pin Load current detection resistor connection pin Connect a resistor of 100mQ 5 SWO Output Switching Pch power MOS transistor drive pin 6 ERCAP Capacitor connection p
134. ge Protection Circuit The low voltage protection circuit monitors the supply voltage voltage at the VDD pin When the supply volt age drops below a detected voltage value the low volt age protection circuit works and stops the switching operation of the output transistor This low voltage pro tection circuit links to the soft start circuit and drops the voltage at the SSCAP pin to the Vss level during detec tion of low voltage The low voltage protection circuit has hysteresis When the supply voltage returns to more than the re lease voltage the voltage at the SSCAP pin rises slowly and the soft start circuit starts it operation then the low voltage protection circuit resumes the switching opera tion Overcurrent Protection Circuit When the current flowing through the current detection resistor increases more than the set current value and the voltage at the ISENSE pin drops below a detected voltage value the overcurrent protection circuit oper ates When the overcurrent protection circuit operates it maintains the SWO pin at the VDD level and turns off the output transistor It links to the soft start circuit and the soft start circuit controls output voltage rise after de tection of overcurrent S1F70000 Series Technical Manual Power Off Function S1F71100 can control circuit operations according to external signal control When the POFFX pin is con nected to the VSS level all circuits stop their operations and th
135. ge sensing resis ES ane RRV 100 1 000 kQ Notes 1 The recommended circuit configuration for low valtage operation when VI is between 1 2V and 2 2V is shown in the following figure Note that diode D1 should have a maximum forward voltage of 0 6V with 1 0mA forward current 2 RL min can be varied depending on the input voltage S1F70000 Series EPSON 2 3 Technical Manual S1F76610 Series 3 RLmin is a function of V1 5 E A S i D 3 X H 3 i S E EN gt L E 1 E Voltage doubler Si 15 2 3 4 6 Input voltage V Electrical Characteristics VDD OV Vi 5V Ta 40 to 85 C unless otherwise noted Ss Rating Parameter Symbol Conditions Unit Min Typ Max Input voltage Vi 6 0 1 8 V Output voltage Vo 18 0 V Regul V uM Edu 18 0 2 6 egulator voltage REG Vo _18V 18 2 V Stabilization circuit operating voltage Vo 18 0 _ 3 2 V Multiplier current loPR1 RL eo Rosc 1MQ 40 80 uA Stabilizati l RL RRV 1MQ tabilization current OPR2 Vo _15V 5 0 12 0 uA Quiescent current la TC2 TC1 Vo RL 2 0 uA Clock frequency fosc Rosc 1MQ 16 0 20 0 24 0 kHz 2 4 EPSON S1F70000 Series Technical Manual S1F76610 Series Rating Parameter Symbol Conditio
136. gt Travel direction 6 16 EPSON S1F70000 Series Technical Manual Appendix Type F products are positioned so that the index mark is on the opposite side to the sprocket holes as shown in the following figure 100000000000000000 Index mark Travel direction x D o o 2 lt S1F70000 Series EPSON 6 17 Technical Manual EPSON International Sales Operations AMERICA ASIA EPSON ELECTRONICS AMERICA INC HEADQUARTERS 150 River Oaks Parkway San Jose CA 95134 U S A Phone 1 408 922 0200 Fax 1 408 922 0238 SALES OFFICES West 1960 E Grand Avenue El Segundo CA 90245 U S A Phone 1 310 955 5300 Fax 1 310 955 5400 Central 101 Virginia Street Suite 290 Crystal Lake IL 60014 U S A Phone 1 815 455 7630 Fax 1 815 455 7633 Northeast 301 Edgewater Place Suite 120 Wakefield MA 01880 U S A Phone 1 781 246 3600 Fax 1 781 246 5443 Southeast 3010 Royal Blvd South Suite 170 Alpharetta GA 30005 U S A Phone 1 877 EEA 0020 Fax 1 770 777 2637 EUROPE EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS Riesstrasse 15 80992 Munich GERMANY Phone 49 0 89 14005 0 Fax 49 0 89 14005 110 D SSELDORF BRANCH OFFICE Altstadtstrasse 176 51379 Leverkusen GERMANY Phone 49 0 2171 5045 0 Fax 49 0 2171 5045 10 UK amp IRELAND BRANCH OFFICE Unit 2 4 Doncastle House Doncastle Road Bracknell Ber
137. hing Output S1F79100Y series devices are designed for continuous operation An external switching circuit allows the regulated output to be switched ON and OFF Vss o ON OFF control signal Vi o S1F79100Y o Vo Note Temperatures during reflow soldering must re main within the limits set out under LSI Device Precautions in this catalog Do not immerse QFP and SOT89 packages during soldering as the rapid temperature gradient during dipping can cause damage gt o o N LL dp S1F70000 Series EPSON 3 37 Technical Manual 4 DC DC Switching Regulators S1F76300 Series The S1F76300 series of CMOS switching regulators comprises nine series the S1F76310 S1F76380 series S1F76310 S1F76380 Series Built in CR Oscillator Type CMOS Switching Regulators DESCRIPTION The S1F76310 S1F76380 series of CMOS switching APPLICATIONS regulators provide input voltage step up and regulation Fixed voltage power supplies for battery operated to a specified fixed voltage using an external coil The equipment such as portable video cassette recorders devices in these series incorporate precision low power video cameras and radios reference voltage generators and transistors for driving Power supplies for pagers memory cards calculators an internal comparator They feature low power con and similar hand held equipment sumption low operating voltages voltage detection and Fixed voltage power supplies fo
138. in for external phase compensation T Vo Input Output voltage feedback pin 8 Vss Power Power supply pin supply S1F70000 Series EPSON 4 35 Technical Manual S1F71100 Series FUNCTIONAL DESCRIPTIONS Description of Operation S1F71100 is a step down switching regulator control IC of load current detection type pulse width modulation PWM system and is composed of an oscillator a ref erence voltage circuit an error amplifier a PWM cir cuit various protection circuits etc S1F71100 can constitute a switching regulator which converters input voltages up to 12V into output voltages of 3 3V when external parts such as a power MOSFET a diode an inductor and a capacitor are connected to it S1F71100 controls PWM by means of the two systems of output voltage feedback and load current feedback The output voltage feedback system converts output voltage values of the switching regulator into voltage feedback signals through the error amplifier And the load current feedback system detects currents flown to the external load current detection resistor as voltage values at the load current detection pin and converts them into current feedback signal in the internal circuit These two feedback signals control the switching duty so that outputs from the switching regulator become optimum all the time When the output voltage reduces the output level of the error amplifier changes and the switching duty is controlled so that the swi
139. input Vi Vo Vo 2 8V lo 10mA _ 0 32 0 54 V and output voltages Output voltage AVo B temperature characteristic Vo 0 100 200 ppm C Ta 30 C to 85 C AVO Same temperature condition Input stability AVI Vo Mp a 15 0V 0 1 V lo 10mA Ta 30 C to 85 C Same temperature condition Load stability ave AE ll 30 mv lo 1mA to 30mA Supply voltage rejection Vop 5 0V fin 40kHz ratio PSRR CL 10uF lo 5mA 740 dB EPSON S1F70000 Series Technical Manual S1F78100Y Series S1F78100Y2L0 Unless otherwise specified Ta ranges from 40 C to 85 C Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Input voltage Vi 15 V VDD 5 0V lo 10mA Output voltage Vo bi pacis 2 53 2 60 2 67 V Current consumption loPR VDD 2 6V to 15 0V No load 3 0 8 0 uA Difference between input and output voltages Vr Vo Vo 2 6V lo 10mA _ 0 33 0 56 V Output voltage AVO g temperature characteristic Vo 0 100 200 ppm C Taz 30 C to 85 C AVO Same temperature condition Input stability AVI Vo VDD 4 0V to 15 0V 0 1 AN lo 10mA Taz 30 C to 85 C Load stability AVo ER condi T ap mw lo 1mA to 40mA Supply voltage rejection VDD 5 0V fin 40kHz ratio Tam Ci 10pF lo 5mA AOS dB S1F78100Y2F0
140. istor connection pin 9 OSC2 Y 1094 Oscillation resistor connection pin 10 VDD 984 1134 Power input pin Plus side Pump up capacitor minus side connection pin for 2 11 CAP1 892 lines Step up p Pump up capacitor plus side connection pin for 2 12 CAP1 514 fine step up p p 13 NC 182 14 Vo 372 2 times step up output pin 15 NC 750 16 NC 942 17 NC Y 1134 Chip External Shape D Y 4 lt X 2 60mm 0 0 Y 2 30mm Pad Assignment Pad aperture 100um x 100um Chip thickness 400um Note Do not bond the NC pad 1 12 EPSON S1F70000 Series Technical Manual FUNCTIONAL DESCRIPTIONS CR Oscillator S1F76620 has a built in CR oscillator as the internal os cillator and an external oscillation resistor ROSC is con nected between the pins OSC1 and OSC2 before opera tion OSCi G Note 1 Rosc OSC2 o Note 1 Since the oscillation frequency varies with wiring ca pacitance make the cables between the terminals OSCI and OSC2 and Rosc as short as possible When setting the external resistor ROSC find ROSC suit able for fosc that brings about the maximum efficiency from characteristics graph 9 and 10 The relations between ROSC and fosc in characteristics graph 1 are expressed approximately with the following formula as far as the straight portion 500kQ lt Rosc lt 2M is concerned Rosc A 1 fosc A Constant When GND is OV and VDD is
141. it appears to have two ON OFF con trol points PS on the S1F76310M1A0 and POFF on the S1F76610C M PS only shuts down the 4 20 EPSON S1F70000 Series Technical Manual Output voltage adjustment To ensure stable output any circuit that adjusts the out put voltage must contain Cl RA and RB To stop switching current from affecting VO the circuit must also satisfy the condition IO lt IR S1F76300 Series The following figure summarizes the relevant circuits inside an S1F76300 series chip VO is connected to the level shift and buffer circuit which provide the gate bias for the switching transistor driving the inductor The current drain IO1 varies with the load and is typically 10uA The current Io2 XY O c c s Ser through the internal resistors R1 and R2 is typically output 1pA Vsw Vi Vi 4 IR Vsw Vo S1F76310M TCL GND Level shifter lo lt Ir R2 Voltage adjustment circuit TIT TIT 777 S1F70000 Series EPSON 4 21 Technical Manual o gt Lag oO N LL Wu S1F76300 Series S1F76330 Series Built in Crystal Oscillator Type CMOS Switching Regulators DESCRIPTION The S1F76330 series of CMOS switching regulators provide input voltage step up and regulation to a speci fied voltage using an external coil The devices in these series incorporate precision low power reference volt age generators and transistors for driving an intern
142. kshire RG12 8PE ENGLAND Phone 44 0 1344 381700 Fax 44 0 1344 381701 FRENCH BRANCH OFFICE 1 Avenue de l Atlantique LP 915 Les Conquerants Z A de Courtaboeuf 2 F 91976 Les Ulis Cedex FRANCE Phone 33 0 1 64862350 Fax 33 0 1 64862355 BARCELONA BRANCH OFFICE Barcelona Design Center Edificio Testa Avda Alcalde Barrils num 64 68 E 08190 Sant Cugat del Vall s SPAIN Phone 34 93 544 2490 Fax 34 93 544 2491 Scotland Design Center Integration House The Alba Campus Livingston West Lothian EH54 7EG SCOTLAND Phone 44 1506 605040 Fax 44 1506 605041 EPSON CHINA CO LTD 23F Beijing Silver Tower 2 North RD DongSanHuan ChaoYang District Beijing CHINA Phone 64106655 Fax 64107319 SHANGHAI BRANCH 4F Bldg 27 No 69 Gui Qing Road Caohejing Shanghai CHINA Phone 21 6485 5552 Fax 21 6485 0775 EPSON HONG KONG LTD 20 F Harbour Centre 25 Harbour Road Wanchai Hong Kong Phone 852 2585 4600 Fax 852 2827 4346 Telex 65542 EPSCO HX EPSON TAIWAN TECHNOLOGY amp TRADING LTD 10F No 287 Nanking East Road Sec 3 Taipei Phone 02 2717 7360 Telex 24444 EPSONTB Fax 02 2712 9164 HSINCHU OFFICE 13F 3 No 295 Kuang Fu Road Sec 2 HsinChu 300 Phone 03 573 9900 Fax 03 573 9169 EPSON SINGAPORE PTE LTD No 1 Temasek Avenue 36 00 Millenia Tower SINGAPORE 039192 Phone 65 6337 7911 Fax 65 6334 2716 SEIKO EPSON CORPORATION KOREA OFF
143. l 260 10 C s Atleads temperature and time Note 1 Under the conditions exceeding the above absolute maximum ratings the IC may result in a permanent destruction An operation for a long period under the conditions of the above absolute maximum ratings may deteriorate the reliability remarkably Note 2 Note 3 All voltage values are based on GND The output pins VO and VREG are for stabilizing and outputting boosted voltages So they are not used to apply voltage from outside When voltage is applied from outside for unavoidable reasons limit the voltage to the rated voltage mentioned above or less 2 46 EPSON S1F70000 Series Technical Manual S1F76640 Series Recommended Operating Conditions Rating Parameter Symbol Unit Remarks Min Max Step up start voltage VSTA1 1 8 V Rosc 1MQ C4 gt 10uF CL C4 lt 1 20 Note 2 VSTA2 22 V Rosc 1MQ S 2 vo 2 Step up stop voltage VSTP _ 1 8 V Rosc 1MQ 8 Output load resistance RL RLmin Note 3 _ Q H Output load current lO 20 mA Oscillation frequency fosc 10 30 kHz External resistor Rosc 680 2000 kQ for oscillation Step up capacitor C1 C2 C3 C4 3 3 uF Stabilization output RRV 100 1000 kQ regulation resistance Note 1 All voltages are based on the GND being OV Note 2 The figure below shows the recommended circuit for operati
144. llowable dissipation PD Max 300 mW o Working temperature Topr 40 to 85 C Plastic package Storage temperature Tstg 55 to 150 C Soldering temperature e Tsol 260 10 C S Atleads and time Notes 1 Using the IC under conditions exceeding the aforementioned absolute maximum ratings may lead to permanent destruction of the IC Also if an IC is operated at the absolute maximum ratings for a longer period of time its functional reliability may be substantially deteriorated 2 All the voltage ratings are based on VDD OV 3 The output terminals Vo VREG are meant to output boosted voltage or stabilized boosted voltage They therefore are not the terminals to apply an external voltage In case the using specifications unavoidably call for application of an external voltage keep such voltage below the voltage ratings given above Reconmmended Operating Conditions VDD OV Ta 40 to 85 C unless otherwise noted Parameter Symbol Conditions Unit Min Typ Max Rosc 1MQ C3 10 pF CL C3 lt 1 20 Ta 20 to 85 C See note 1 Rosc 1MQ Rosc 1MQ Oscillator startup voltage VSTA 1 8 Oscillator shutdown voltage RLmin Load resistance RL See note 2 9 Output current lo 20 0 mA Clock frequency fosc 10 0 30 0 kHz CR oscillator network resistance Rosc 680 2 000 kQ Capacitance C1 C2 C3 3 3 uF Stabilization volta
145. loss PD mW ES 150 SOP 8pin Operating temperature Topr 40 85 C Storage temperature Tstg 65 150 C Note 1 Under the conditions exceeding the above absolute maximum ratings the IC may result in a permanent destruction An operation for a long period under the conditions of the above absolute maximum ratings may deteriorate the reliability remarkably Note 2 All voltage values are based on GND being OV EPSON S1F70000 Series Technical Manual Recommended Operating Conditions S1F76620 Series Ta 40 to 85 C Rating Parameter Symbol Unit Remarks Min Max Rosc 1MQ j VSTA1 1 5 V C22 10uF CL C2 gt 1 20 Step up start operation See note 2 VSTA2 2 2 V Rosc 1MQ Step up stop voltage VSTP _ 1 5 V Rosc 1MQ Output load resi R dd o utput load resistance RL See note 3 _ _ Output load current lo _ 30 mA Oscillation frequency fosc 10 30 kHz External resistor for s Rosc 680 2000 kQ _ oscillation Step up capacitor C1 C2 3 3 uF Note 1 Note 2 The figure below shows the recommended circuit for operation with low voltages VDD 1 5 to 2 2V Note 3 All voltages are based on the GND being OV 1 Porr 2 GND L MS OSCH CAP1 a Vo 806 CAP1 7 n Z Ca CL A D1 4 OSC2 VDD OT DI VF IF 1mA is
146. lt en 40 80 20 10 0 Ta C lo mA EPSON S1F70000 Series 3 16 Technical Manual S1F78100Y2G0 loPR uA e B a o o o o o N o 1 0 0 0 loPR Ta 40 20 0 20 40 60 80 100 1 0 0 9 0 8 0 7 0 6 0 5 0 4 Vo Vi V S1F70000 Series Ta C VI Vo Ta Technical Manual loPR uA Vi Vo V S1F78100Y Series loPR VI S1F78100Y lo mA EPSON 3 17 S1F78100Y Series Vo Ta Vo VI 2 0 2 0 VDD 3V 1 8 1 6 lo 10mA 1 4 1 2 E E 1 0 0 8 HH lo 30mA 0 6 0 4 t Ta 25 C lo 1mA 0 2 1 5 0 0 40 20 0 20 40 60 80 100 0 5 10 15 Ta C Vi V AVo Ta Vo lo 5 4 gt 3 E gt 3 lt 9 1 0 40 20 0 20 40 60 80 100 10 8 6 4 2 0 Ta C lo mA 3 18 EPSON S1F70000 Series Technical Manual S1F78100Y Series S1F78100Y2H0 loPR Ta loPR VI 6 0 N o o o or o e o o gt o loPR uA eo
147. ly low reliability So be sure to keep all items below the ratings S1F70000 Series Technical Manual EPSON 4 37 S1F71100 Series ELECTRICAL CHARACTERISTICS DC Characteristics S1F71100M0A0 Unless otherwise specified Ta 25 C Parameter Symbol Conditions Specification Unit Min Typ Max Input supply voltage VDD 3 3 12 0 V Output voltage Vo Vpp 5 0V 3 150 3 3 3 450 V Ta 30 to 85 C Current consumption IVDD VDD 5 0V 0 8 1 4 mA during operation Vo VDD Current consumption lOPR1 VDD 5 0V 1 0 uA at power off time POFFX Vss Output current loHswo Vop 5 0V VoH 50mV 1 0 mA at SWO pin loLswo Vop 5 0V VoL 50mV 1 0 mA Input stability AVO VDD 5 0 to 10v 30 mV Load stability AVO lo 10mA to 300mA 30 mV Soft start time TSS Capacitance for SS 0 1uF 40 ms Vpp 5 0V lo 300mA Input voltage VIH 0 8VDD V at POFFX pin VIL _ 0 2VDD V Leak current ILINH Vi VDD 0 1 uA at POFFX pin ILINL Vi Vss 0 1 uA Conversion efficiency EFFI VDD 5 0V _ 90 lo 200mA Oscillation frequency fosc VDD 5 0V Vo Vss 150 200 250 kHz SWO pin Overcurrent detection IDET VDD 5 0V 0 08 0 12 0 16 V voltage VDD VISENSE Low voltage detection VDET1 Object pin VDD 2 5 2 6 2 7 V voltage value Low voltage detection VHYS Object pin VDD 0 15 V hysteresis Output voltage AVO Vpp 5 0V 0 02
148. med except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD _ 1 50 12 0 V Detection voltage VDET Ta 25 C 4 90 5 00 5 10 V Hysteresis width VHYS VHYS VREL VDET 0 13 0 20 0 27 V Operating current IDD VDD 6 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET Feuer li OE BPS VDD 6 0V High level output current loH OUT 54V 2 40 0 60 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD Cr _ 8 40 m Detection voltage reu Ta 25 C response time VDD 6V gt 4V Se Ta 30 C to 85 C me kn Es Technical Manual S1F77210Y1C0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 10 2 15 2 20 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET Saal DP BPS VDD 2 0V High level output current loH OUT 1 8V 0 40 0 10 mA VDD 3 0V Low level output current IOL OUT 0 3V 0 50 2 00 mA VDD iR u 8 40 us Detection voltage Ta 25 C TPHL response time VDD 3V 52V 200 Ta 30 C to 85 C TLT ES S1F7
149. n SOP4 8pin S1F71200M0A0 Step up down switching regulator from 2 5V 12 0V to 5 0V Power off current 11A Frequency fixing 200kHz PWM Soft start function Overcurrent protection function SSOP2 16pin S1F71100M0B0 Step up down switching regulator from 2 5V 12 0V to 3 3V Power off current 14A Frequency fixing 200kHz PWM Soft start function Overcurrent protection function SSOP2 16pin Voltage Detector Product Features Package S1F77210Y1L0 Voltage detection Typ 5 00V Output format COMS Low operating power Typ 2 0 UA Voo 6 0V SOP89 3pin S1F77210Y1K0 Voltage detection Typ 4 80V Output format COMS Low operating power Typ 2 0 UA Voo 5 0V EPSON SOP89 3pin S1F70000 Series Technical Manual Selection Guide Product Features Package S1F77210Y120 Voltage detection Typ 4 60V Output format COMS Low operating power Typ 2 0 UA Voo 5 0V SOP89 3pin S1F77210Y1J0 Voltage detection Typ 4 40V Output format COMS Low operating power Typ 2 0 UA Voo 5 0V SOP89 3pin S1F77210Y1M0 Voltage detection Typ 4 20V Output format COMS Low operating power Typ 2 0 UA Voo 5 0V SOP89 3pin S1F77210Y1T0 Voltage detection Typ 4 00V Output format COMS Low operating power Typ 2 0 UA Voo 5 0V SOP89 3pin S1F77210
150. n 1 VDD1 system during step up i DA Von 3V VoD2 6V 15 30 uA operation VDD2 system H H IV 3 Operating time Ge Vom 6V Vbp2 6V 100 200 wA current consumption 2 VDD1 system operation for la op i as Von 6V Vop2 6V 20 40 uA step down only VDD2 system Power off time la VDD1 12V VDD2 12V _ _ 1 0 uA current consumption VDD1 3V VDD2 6V loHswo 0 6 mA Output current VOH 50mV at SWO pin VDD1 3V VDD2 6V loLswo 1 0 mA VoL 50mV Input stability AVo VDD 3V to 12V _ 50 _ mV Load stability AVO lL 10mA to 100mA 50 mV Input voltage level Vin 0 8VDD1 V at POFFX pin at Vc pin ViL 0 2VDD1 V 4 48 EPSON S1F70000 Series Technical Manual S1F71200 Series DC Characteristics Unless otherwise specified Ta 25 C SC Rating l Parameter Symbol Conditions Unit Min Typ Max Input pin leak current ILINH Vin VDD1 1 0 uA at POFFX pin at Vc pin ILINL VIN Vss 1 0 uA SSCAP 0 1uF Step up soft start time Tss VDD1 3 0V Vc VDD1 100 ms lo 50mA Step up portion h M EFFI VDD1 3 3V Vc Vss 85 conversion efficiency VDD1 3V Oscillation frequenc fosc 120 200 280 kHz 3 2 Measure it at the SWO pin Overcurrent detection IDET VISENSE 0 10 0 15 0 20 V voltage AV ee 2 Ta 30 C to 85 C 0 015 auec
151. n and calculation 2 22 EPSON S1F70000 Series Technical Manual S1F76540 Series Capacitance vs output impedance characteristic when 4X pressure is applied Load current 10 mA Ta 25 C C1 C2 Co Capacitor used Tantalum electrolytic capacitor 550 500 450 i st 1 To N LL r Wu 400 Output impedance Q 300 250 200 150 B Vi 3 0V FC High D Vi 3 0V FC Low e Vi 5 0V FC High O Vi 5 0V FC Low Figure A1 Characteristic chart Capacitance vs output impedance when 4X pressure is applied NOTE This characteristic chart simply indicates an approximate trend in the characteristics which may vary depending on evaluation environment parts used and other factors S1F70000 Series EPSON 2 23 Technical Manual S1F76540 Series Voltage Converter The voltage converter consisting of a boost control cir time boost outputs cannot be obtained simultaneously cuit and a voltage converter circuit receives clocks Figure 2 4 gives the potential relationship during four from the clock generator circuit and boosts the input three and two time boosting The C2P pin is also used power voltage VI four three or two times During as the master clock output during parallel connection four time boosting however the three time and two Figure 2 4 Electrical potentials during boosting a
152. n step up voltage operation the ripple voltage created by the switching operation is large relative to the output voltage described above This ripple voltage is affected by external components and load conditions The user is advised to check this voltage carefully Voltage detection The S1F76310 S1F76380 series are equipped with a built in voltage detection function The detection volt age VDET is fixed internally at 1 05 0 05V Power on clear function The S1F76310 series and S1F76380 series are equipped with a built in power on clear function As shown in the following figure R1 and C1 are connected to PWCR and R2 is connected to RST to operate the func tion If Vi drops below VDET Trl and Tr2 conduct and PWCR and RST are grounded If Vi recovers and rises higher than VREL Trl turns OFF The detection volt age hysteresis is 5 Typ and VREL is VDET X 1 05 Typ 4 14 EPSON S1F76310M Vo 4 Voltage detector R2 RST yes gh ee Tr2 Vo Vo Vo returns to its normal value when the voltage of PWCR increases and Tr2 turns OFF so that RST re turns to VO after a delay specified by the time coeffi cient of RI and C1 Thus after normal output has been obtained a reset pulse of adjustable width can be ob tained which can reset a system connected to RST The output from RST is an N channel open drain When Vri exceeds VDET the drain is opened and when Vu drops below VDET again the outp
153. ncy Low current consumption 95 130 HA VI 3 0 V during four time boosting Typ High output capacity 20 mA Max S1F70000 Series Technical Manual Input voltages 2 4 to 5 5 V during four time boosting 2 4 to 7 3 V during three time boosting 2 4 to 11 V during two time boosting DC DC converter output voltage Input voltagel x 4 Max Built in reference voltage for high precision regulator 1 5 0 05 V at CTO Temperature gradient function of regulator output voltages o st D lo N LL Wu 0 04 0 15 0 35 0 55 C Low standby current during power off 5 0 HA Power off by the external signal Full built in oscillator circuit Lineup S1F76540M0A0 16 pin SSOP S1F76540C0A0 16 pin DIP APPLICATIONS EPSON Power supply of medium and small capacity LCD panels Regulated power supply of battery driven devices S1F76540 Series BLOCK DIAGRAM eo Reference TC1 Porri Power off voltage hu circuit TC2 Bere control circuit I HO Clock Booster control Orv FC O generator rei W s circuit circuit Voltage regulation AY VREG gt gt circuit O Wi Voltage converter WT circuit Vo K CP CIN C3N C2P C2N Figure 2 1 Block diagram PIN DESCRIPTIONS vo 1 C 16 C2P Vrij
154. nerates both 10 and 3 8 V outputs from a single input Vo2 3 8 V VDD lt 0 V Vi 5 V Vo1 10V S1F70000 Series EPSON 1 9 Technical Manual S1F76620 Series S1F76620 Series CMOS DC DC Converter Voltage Doubler DESCRIPTION S1F76620 is a high efficiency and low power consump tion CMOS DC DC converter It enables to obtain 2 times step up output 3 0 to 16V from input voltage 1 5 to 8V Also S1F76620 enable to drive ICs liquid crystal driver analog IC etc which require another power supply in addition to logic main power supply with a single power supply and it is suitable for micro power IC of hand held computers handy devices etc due to its small power consumption BLOCK DIAGRAM FEATURES 1 High efficiency and low power consumption CMOS DC DC converter 2 Easy voltage conversion from input voltage VDD 5V to positive potential side or negative potential side e Input VDD 5V to output VDD 5V 2VDD 10V 3 Output current Max 30mA VDD 5V 4 Power conversion efficiency Typ 95 5 Possibility of series connection In 2 piece use VDD 5V Vo 15V 6 Low voltage operation Suitable for battery drive 7 Built in CR oscillator 8 SOP4 8pin enne S1F76620M0A0 Bare Chip nennen S1F76620D0A0 VDD OSC1 osc2 CR oscillator Voltage conversion circuit Vo PoF GND 1 10 EPS
155. nformation of the product number change Starting April 1 2001 the product number has been changed as listed below To order please use the new product number For further information please contact Epson sales representative Configuration of product number DEVICES Example S1F70000D00B100 S1 F 70000 D op 00 LL Packing specification Specifications Shape C DIP D Bare chip M SOP Y SOT89 Model number Model name F Power supply ICs Product classification S1 Semiconductors Comparison table between new and previous number SCI7660MoB S1F76600M0BO SCI7662MoA S1F76620M0A0 SCI7721YxB S1F77210Y2 0 SCI7661MoB S1F76610M0BO SCI7661CoB S1F76610C0B0 SCI7654C0A S1F76540C0A0 S CI7664D0A S1F76640D0A0 SCI7810Y B S1F78100Y2 0 SCI7910Y xA S1F79100Y1 0 SCI7631MLA S1F76310M1LO SCI7631MBA S1F76310M1B0 SCI7631MKkA S1F76310M1K0 SCI7631MAA S1F76310M1A0 SCI7638MHA S1F76380M1HO SCI7638MLA S1F76380M1LO SCI7633MBA S1F76330M1B0 SCI7110MoA S1F71100M0A0 SCI7120Mo0A S1F71200M0A0 SCI7120MoB S1F71200M0BO S1F70000 Series Technical Manual Contents INtrodUGNON ee 1 Selections GIA TTT 2 1 DC DC Converter S1F76600 Series RIESEN WEE 1 1 FEATURES casona rana 1 1 APPLIGATIONS ais 1 1 BLOCK DIAGRAMA ENEAN HENA EN 1 1 PINVASSIGNMEN Gn 1 1 PIN DESCRIPTIONS PLI PEL AE 1 1 ele le 1 2 FUNCTIONAL DESCR
156. ng transistor driving the inductor The current drain 101 varies with the load and is typically 10uA The current Io2 through the internal resistors R1 and R2 is typically 1pA Vu Vsw lo2 Comparator Level Ka geet 4 33 o gt Lag oO N LL Wu S1F71100 Series S1F71100 Series PWM Type Step down DC DC Switching Regulator DESCRIPTION S1F71100 is a pulse width modulation PWM type step down DC DC converter control IC for which the CMOS process is used and to which a power transistor is connected outside S1F71100 is composed of an os cillator a reference voltage circuit an error amplifier a PWM circuit a soft start circuit a driver etc When this IC drives an external P ch power MOS transistor S1F71100 can constitute a step down DC DC converter that converts input voltages up to 12V into the output voltage of 3 3V S1F71100 is also provided with a low voltage protec tion circuit an overcurrent protection circuit and a soft start protection circuit When receiving external sig nals S1F71100 can stop the oscillator and the switching circuit and turn off the power so that it can reduce wasteful current consumption at the time of system halt BLOCK DIAGRAM VDD FEATURES Input voltage 3 3V 12V Output voltage 3 3V SIF71100M0A0 e Power off current luA e Self current consumption 800HA Frequency fixing 200kHz PWM Power off function IC shutdown e So
157. nical Manual S1F76640 Series BLOCK DIAGRAM e e ES NA Vo VRI CAP3 CY YN VREG i Kei o N u o 5 o i AO 8 S E lt o 5 CAP2 c i 9 3 Z E Porr E i 8 S l 8 5 CAP1 0 5 d SS lt G D 2 Cap Q 8 E 28 ZEE 35 S oS O oo O a0 TC1 E VDD s e TC2 OSC1 j CR oscillator OSC2 i GND Q Step up circuit ERN Stabilization circuit 3 Figure 3 1 Block Diagram S1F70000 Series EPSON 2 39 Technical Manual S1F76640 Series PIN ASSIGNMENTS SSOP2 16pin 2 40 VRI Vo CAP3 CAP2 CAP2 CAP1 CAP1 VDD Figure 4 2 Pin Assignments of SSOP2 16pin EPSON S1F70000 Series Technical Manual S1F76640 Series PIN DESCRIPTIONS Pin No Pin name Description 1 RV Stabilization voltage regulation pin When the intermediate tap of the external volume 3 pin resistor o connected between the VDD pin and the VREG pin is connected to the RV pin VREG output voltage can be adjusted i 2 VREG Stabilized voltage output pin H 3 TC1 Temperature gradient selection pin 4 TC2 Temperature gradient selection pin 5 POFF VREG output ON OFF control pin When control signal from the system side is input to this pin the power off VREG outpu
158. nit Input voltage V GND 21 V Output voltage Vo GND 0 3 to Vi 0 3 V Output current lo 100 mA Power dissipation PD 200 mW Operating temperature range Topr 40 to 85 C Storage temperature range Tstg 65 to 150 SE Soldering temperature for 10 s See note Tsol 260 C Note Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions Never use solder dip to mount S1F70000 series power supply devices Electrical Characteristics 1F79100Y1HO Ta 40 C to 85 C Ratin Parameter Symbol Conditions GND 0 0V a Unit Min Typ Max Input voltage Vi 15 0 V Vi 3 0V lo 10mA _ _ _ Output voltage Vo Ta 25 C 1 57 1 50 1 43 V Operating current lopR Viz 1 5V to 15V 4 0 18 0 uA Es IVi Vol Vi 1 5V lo 5mA o25 oe0 v Input voltage stabilization AVO VI 3 0V to 15 0V 040 wv ratio AVI Vo lo 5mA Vi 3 0V Output voltage drift AVO lo 1mA to 5mA 120 0 mV 3 22 EPSON S1F70000 Series Technical Manual S1F79100Y Series S1F79100Y1G0 VDD OV Ta 40 C to 85 C unless otherwise noted Rating l Parameter Symbol Conditions Unit Min Typ Max Input voltage VI _ 15 0 _ V Vi 3 0V lo 10mA Output voltage Vo Ta
159. ns Min Typ Max Unit Output impedance Ro lo 10mA 150 200 Q Multiplication efficiency Peff lo 5mA 90 0 95 0 96 Stabilization output voltage A i sm differential AVo VnEG Ta 25 C Vo 15V Stabilization output load differential Apps VREG 8V Ta 25 C 5 0 Q Alo lo 0 to 104A TC1 VoD TC2 Vo lizati Rsar A VREG Vo Alo Stabilization output saturation ae O RSAT llo 0 to 104A 8 0 Q Rv VDD Ta 25 C RC2 Vo TC1 VDD Ta 25 C 2 3 1 5 1 0 TC2 TC1 Vo Reference voltage VRY Ta 25C 1 7 1 3 1 1 V TC2 Vpop TC1 Vo Ta 25 C 1 1 0 9 0 8 0 25 0 1 0 01 Temperature gradient CT See note 0 5 0 4 0 3 oC 0 7 0 6 0 5 PorF TC1 TC2 OSC1 and RV lis gt m 2 0 uA input leakage current Note C VREG 50 C I IVnEc OCH x 100 um 50 C 0 C Vree 25 C S1F70000 Series EPSON 2 5 Technical Manual i Xm to o N u T 1 S1F76610 Series Typical Performance Characteristics fosc kHz 1 Clock frequency vs External resistance loPR pA 100 1000 Rosc kQ 3 Multiplier current vs Input voltage fosc kHz EPSON 26 25 24 23 22 21 Vi 5 0V 20 19 VI 3 0V 18 17 Vi 2 0V
160. nternal clock ON Low Output mode Internal clock OFF Booster circuit ON Booster circuit ON Regulator OFF Regulator ON if CT 0 04 C O Power off procedure In Figure 2 11 when the POFF2 pin of the first stage S1F76540 is set to low VI voltage boosting is stopped at the first and second stages However the regulator at the second stage does not stop Therefore the voltage that is approximately VI appears at VREG pin during IVREGI gt IVII setup To set the VREG pin to high impedance state set both POFF1 and POFF2 pins to low at the first and second stages o st lo lo N LL Wu O Application in other setup conditions CD When used in the High Output mode Connect the FC pin of the first stage S1F76540 to the VI pin 2 When changing the temperature coefficient CT Change the TC1 and TC2 pin setup by following the definition of Table 2 7 Larger Time Boosting Using Diodes The S1F76540 can be configured to have the five time Figure 2 12 gives a wiring example of 6 time booster or larger voltage boosting and regulation by adding ex and regulator that use two diodes The wiring between ternal diodes As the booster output impedance in Vo and VRI must be minimal Figure 2 13 provides the creases due to the diode forward voltage drop VF the potential relationship diodes having a smaller VF are recommended to use VI Figure 2 12 Wiring example f
161. ode Use a Schottky barrier diode with a high switching speed and low forward voltage drop VF Capacitor To minimize ripple voltages use capacitors with a small equivalent direct current resistance for smooth ing Sample External Components Leadless inductors TDK NLF453232 series magnetically shielded leadless inductors Device Inductance Qmin LQ frequency and DC resistance Rated current uH MHz MHz Min Q Max mA Max NLF453232 390K 39 0 10 50 2 52 13 1 89 44 NLF453232 470K 47 0 10 50 2 52 12 2 10 41 NLF453232 560K 56 0 10 50 2 52 11 2 34 39 NLF453232 680K 68 0 10 50 2 52 10 2 60 36 NLF453232 820K 82 0 10 50 2 52 10 2 86 34 NLF453232 101K 100 0 10 50 0 796 9 3 25 32 NLF453232 121K 120 0 10 50 0 796 8 3 64 30 3 NLF453232 151K 150 0 10 50 0 796 7 4 16 28 R NLF453232 181K 180 0 10 40 0 796 6 5 72 26 NLF453232 221K 220 0 10 40 0 796 5 5 6 30 24 NLF453232 271K 270 0 10 40 0 796 5 6 90 23 NLF453232 331K 330 0 10 40 0 796 4 5 7 54 23 NLF453232 391K 390 0 10 40 0 796 4 8 20 21 NLF453232 471K 470 0 10 40 0 796 3 8 9 20 19 NLF453232 561K 560 0 10 40 0 796 3 6 10 50 18 NLF453232 681K 680 0 10 40 0 796 3 4 12 00 17 NLF453232 821K 820 0 10 40 0 796 3 13 50 16 NLF453232 102K 1000 0 10 40 0 252 2 5 16 00 15 Characteristic response Measurement circuit hx 20 000uF 500 820
162. on Note 3 Alo Ta 25 C 0 lo 10mA TC1 Vo TC2 GND Stabilized output saturation RSAT _ 12 _ Q RsAT A Vo VreG Alo resistance Note 4 0 lt lo lt 10mA RV Vo Ta 25 C Reference voltage VRVO 2 20 3 00 3 80 V TC2 GND TC1 Vo Ta 25 C O VRV1 2 30 2 80 3 30 V TC2 TC1 GND Ta 25 C VRV2 1 70 2 00 2 30 V TC2 Vo TC1 GND Ta 25 C Temperature gradient CTo 0 45 0 27 0 10 C VoD 5V Vo 20V D CT1 0 60 0 42 0 25 C Note 5 CT2 0 70 0 55 0 40 C Input leak current ILKI 2 uA POFF TC1 TC2 0SC1 RV pins 2 48 EPSON S1F70000 Series Technical Manual Note 1 Note 2 Note 3 Note 4 Note 5 S1F76640 Series All voltage values are based on GND being OV The value shown here is the step up circuit conversion efficiency and VO VREG IOUT is lost when the stabilization circuit operates So it is recommended to operate this so that VO VREG becomes as small as possible When VO VREG x IO is large the IC temperature rises and the characteristics of the stabilization circuit change See Figures 6 5 14 6 5 15 and 6 5 16 RSAT means inclination in Fig 6 5 17 and VO A VO VREG indicates the lower limit voltage of the VREG output The calculation formula of CT is as follows VREG 50 C VREG 0 C 1 Gus 50 C 0 C X VREG 25 C x 100 C Measurement Circuit Described on S1F76640M0A0 Step up circuit characteristic measurement circuit
163. on with low voltages VDD 1 8 to 2 2V D1 VF 1F 1mA is recommended to be not more than 0 6V Figure 6 2 1 Recommended Circuit Diagram for Low Voltage Operation Example of 4 times step up circuit Note 3 RLmin varies with input voltage See Characteristics Graph 15 S1F70000 Series EPSON 2 47 Technical Manual S1F76640 Series Electrical Characteristics Jnless otherwise specified Ta 40 C to 85 C GND 0V VDD 5V Specification Value Measurement Parameter Symbol Unit Conditions NM Min Typ Max Circuit Input supply voltage VDD 1 8 5 5 V Output voltage Vo 22 V VREG VRV 22 V R RRV 1MQ Vo 22V Stabilization circuit Vo VRV 2 1 1 22 V operating voltage Step up circuit current lOPR1 60 100 uA RL 09 Rosc 1MQ O consumption VDD system Step up circuit current loPR2 12 25 uA RL Rosc 1MQ consumption VRI system Vo 20V Static current IQ 2 uA TC2 TC1 Vo RI O Oscillation frequency fosc 16 20 24 kHz Rosc 1MQ O Output impedance Ro 250 350 Q lo 10mA D Step up power conversion Peff 90 95 lo 5mA O efficiency Note 2 Stabilized output AVREG 0 2 V 10V Vo 20V VREG 10V O voltage fluctuation AVO VREG RL 0 Ta 25 C Stabilized output load AVREG 5 0 Q Voz20V VnEeG 15V O fluctuati
164. onsumption the voltage is regulated while maintaining high current output Vss o Vio External Voltage Converter The following circuit raises the output voltage of a S1F79100Y series IC Vss o loPR S1F79100Y Vo 3 36 EPSON Output transistor The output side of the p channel MOS transistors in the output transistor circuit is connected to the voltage di vider resistors in the feedback loop Vss VREF i VREG R2 Vo The following equation shows the relationship between the old and new voltages _ R1 R2 Vo R2 VR Note that the application must supply a bias current IB high enough to offset the increase in voltage across R1 due to IOPR An alternative circuit for raising the output voltage is shown in the following figure This configuration however introduces two design problems 1 It reduces the output voltage by VF the forward volt age drop across the diode 2 It is sensitive to fluctuations in VF due to differences in diodes operating temperatures and Iss S1F70000 Series Technical Manual R1 helps reduce the affect of Iss on VF It is also re quired when Iss is lower than the diode bias current For certain input voltages a Zener diode with the re verse polarity can be used High Input Voltages A preliminary regulator circuit is required to bring the input voltage within the S1F79100Y series rated range Vss o Vi o S1F79100Y o Vo S1F79100Y Series Switc
165. oo 3 0V SOP89 3pin S1F77200Y1T0 Voltage detection Typ 4 00V Output format N ch open drain Low operating power Typ 2 0 UA Voo 5 0V SOP89 3pin S1F77200Y1F0 Voltage detection Typ 2 65V Output format N ch open drain Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77200Y1C0 Voltage detection Typ 2 15V Output format N ch open drain Low operating power Typ 2 0 UA Voo 3 0V SOP89 3pin S1F77200Y1N0 Voltage detection Typ 1 90V Output format N ch open drain Low operating power Typ 2 0 uA Voo 3 0V SOP89 3pin S1F70000 Series Technical Manual EPSON Selection Guide Product Features Package S1F77200Y1B0 Voltage detection Typ 1 15V Output format N ch open drain Low operating power Typ 1 5 UA Voo 1 5V SOP89 3pin S1F77200Y1Y0 Voltage detection Typ 1 10V Output format N ch open drain Low operating power Typ 1 5 UA Voo 1 5V SOP89 3pin S1F77200Y1A0 Voltage detection Typ 1 05V Output format N ch open drain Low operating power Typ 1 5 UA Voo 1 5V SOP89 3pin S1F77200Y1V0 Voltage detection Typ 0 95V Output format N ch open drain Low operating power Typ 1 5 UA Voo 1 5V SOP89 3pin S1F77220Y2D0 Voltage detection Typ 1 25V Output format P ch open drain Low operating power Typ 1 5 UA Voo 1 5V
166. or 6 time boosting using diodes S1F70000 Series EPSON 2 33 Technical Manual S1F76540 Series O Setup conditions of Figure 2 12 Internal clock ON Low Output mode Booster circuit ON Regulator ON if CT 0 04 C VDD DVI 2 VF Vo Vo Figure 2 13 Potential relationship during 6 time boosting using diodes O Power off procedure e Set the POFFI pin to low VI to turn off all circuits O Output voltages When diodes are used for voltage boosting the characteristics of diodes directly affect on the voltage boosting characteristics The forward voltage drop VF of diodes can reduce the booster output voltage As the example of Figure 2 12 uses two diodes the drop of VF voltage multiplied by two occurs as shown in Figure 2 13 The booster output voltage is expressed by equation 5 To increase the VY OT value use the diodes having a smaller VF Vo l 6x1VI 2 x VF sees Equation 5 O Notes CD Input and output current conditions To satisfy the input and output current ratings limit the total current does not exceed the rated input current The total current means the total boost time multiplied by the output load current The example of Figure 2 12 has the maximum load current of 13 3 mA 2 80 mA divided by 6 2 Input and output voltage conditions To satisfy the input and output voltage ratings take care not to violate the electric potential relationship of
167. ormal operation of the IC may be hampered Consequently When making a series connection insert a diode D1 between the second stage VI and VREG as shown in Fig 2 13 so that a voltage exceeding the second stage VDD or up may not be applied to the VREG terminal VDD VI 5V UE 71 14 100ka Load H SP 13H 104F 3 12 i iur 25 E4 11 EI 10 6 9 7 VREG 15V Positive Voltage Conversion Adding diodes converts a negative voltage to a positive one To convert the voltage tripler shown earlier to a voltage doubler remove C2 and D2 and short circuit D3 Small Schottky diodes are recommended for all these diodes The resulting voltage is lowered by VF the voltage drop in the forward direction for each diode used For ex ample if VDD OV Vrz 5V and VF 0 6V the re sulting voltages would be as follows For a voltage tripler Vo 10 3 x 0 6 8 2V Fora voltage doubler Vo 5 2 x 0 6 3 8V S1F70000 Series Technical Manual EPSON gt le lo N LL Wu S1F76610 Series Simultaneous Voltage Conversion Combining a standard voltage tripler circuit with one for positive voltage conversion generates both 15 and 8 2V outputs from a single input however it also raises the output impedance A voltage doubler generates 10 and 3 8V outputs Vpp 20V
168. r circuit Battery backup circuit The following is an example of the supply voltage switching circuit for the battery backup configured featuring the S1F77200Y series PNP transistor Vpp O VCC I VBAT NPN transistor gt N N N LL Oo in Enable signal Figure 5 17 Battery backup circuit S1F70000 Series EPSON 5 21 Technical Manual S1F77200Y Series PRECAUTIONS Short cut current on the S1F77210 CMOS output voltage detector Since the S1F77200Y series employs CMOS output as an input voltage nears the detection voltage range short cut current is flown between VDD and Vss The short cut current is voltage sensitive and approximately 2 mA flows at 5V level or so our products are not check for short cut current after volume production has been started Although duration of the short cut current depends on operating conditions such as type the circuit used and supply impedance normally it is assumed to continue several usec to several dozens of usec If a load with high impedance is inserted across the power supply oscillation can be introduced by the short cut current In order to reject this trouble the following measures should be considered 1 Reduce the resistance value 2 Insert a capacitor 3 Replace with the S1F77200Y series it employs N channel open drain approach O e SIF il 77210Y TIT 5 22 EPSON S1F70000 Series Technical Manual 6 Appendix ABSOLUTE MAXIMUM RA
169. r medical equipment standby operation Fixed voltage power supplies for communications The devices offer a range of fixed output voltages from equipment 2 0 to 5 0V The S1F76310 series features battery e Power supplies for microcomputers backup and power on clear the S1F76380 series fea Uninterruptable power supplies tures power on clear and response compensation the Power supplies for LCD panel S1F76380 series offer an output voltage temperature featuring built in RC oscillators the S1F76330 series requiring external crystal oscillators EI characteristic for driving an LCD They are available in 3 SOP3 8pin i a FEATURES 0 9V Min operating voltage e 10uA Typ maximum current consumption Standby operation 3uA Typ standby current consumption 1 05 0 05V high accuracy voltage detection Battery backup available on S1F76310 series On chip CR oscillator Power on clear available on S1F76310 and S1F76380 series Output voltage temperature characteristic for driving an LCD available on S1F76380 series SOP3 8pin LINEUP Voltage Multiplication Output voltage Product V frequency m Power on clear Battery backup Nono temperature Package source p characteristic Input Output S1F76310M1A0 5 0 SOP3 8pin S1F76310M1K0 1 5 3 5 On chip CR SOP3 8pin l Yes No No S1F76310M1B0 0 9 Min 3 0 oscillator
170. racteristics of switching regulators depend greatly on the choice of external components Observing the following guidelines will ensure high performance and maximum efficiency 4 16 EPSON Inductor Use an inductor with low direct current resistance and low losses Leadless Pre wound leadless inductors using surface mount technology are the most suitable for portable equipment and other space critical applications Drum coil Avoid using drum coils because their magnetic field can induce noise Toroidal coil Use a toroidal coil to virtually eliminate magnetic field leakage reduce losses and improve performance Diode Use a Schottky barrier diode with a high switching speed and low forward voltage drop VF Capacitor To minimize ripple voltages use a capacitor with a small equivalent direct current resistance for smooth ing S1F70000 Series Technical Manual S1F76300 Series Sample External Components Leadless Inductors TDK NKF453232 series magnetically shielded leadless inductors Device Inductance Qmin LQ frequency bain DC resistance Rated current uH MHz MHz Min Q Max mA Max NLF453232 390K 39 0 10 50 2 52 13 1 89 44 NLF453232 470K 47 0 10 50 2 52 12 2 10 41 NLF453232 560K 56 0 10 50 2 52 11 2 34 39 NLF453232 680K 68 0 10 50 2 52 10 2 60 36 NLF453232 820K 82 0 10 50 2 52 10 2 86 34 NLF453232 101K 100 0 10 50 0 796 9 3 25 32
171. re profile requirements must be satisfied during package reflow Avoid solder ing on surface mount package including SOT89 as it causes a quick temperature change of package and a device damage FUNCTIONAL DESCRIPTIONS Basic Operation The S1F79100Y series uses a 3 pin series regulator feedback loop An operational amplifier compares VREG from the voltage divider formed by R1 and R2 with VREF The amplifier output adjusts the output transistor gate bias to equalize the voltages and com pensate for fluctuations in VI GND The following equation shows the relationship between VO and VREF _ R1 R2 M Vo VREF S1F70000 Series Technical Manual EPSON S1F79100Y Series Marking locations Output voltage code Voltage regulator code Internal Circuits Reference voltage generator The offset structure used in all three transistors results in a high breakdown voltage that ensures a stable refer ence voltage output over a wide range of input voltages Vss Enhancement mode VREF Depletion mode Depletion mode 3 35 gt o o N LL dp S1F79100Y Series Differential amplifier The built in differential amplifier generates a potential at point X that adjusts the gate bias of the output transis tor if there is any difference betweeen VREF and VREG Vss O To output transistor TYPICAL APPLICATIONS Current Booster At the cost of a small increase in current c
172. rrent Consumption Typ 1200A at DN 4 time boosting S1F76540C0A0 Power conversion efficiency Typ 95 DIP 16pin Three temperature gradients for LCD panel power On chip voltage regulator lteffectively converts input voltage Voo into 2Vpp 3Vpp AVpp S1F76640M0A0 Output current Max 20mA at 5V SSOP2 16pin Power conversion efficiency Typ 95 Three temperature gradients for LCD panel power Voltage regulator Product Features Package 6 00V positive output voltage regulator S1F78100Y2A0 Low operating current Typ 3 011A SOT89 3pin Input voltage stability Typ 0 1 V 5 00V positive output voltage regulator S1F78100Y2B0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability Typ 0 1 V 4 50V positive output voltage regulator S1F78100Y2M0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability Typ 0 1 V 4 00V positive output voltage regulator S1F78100Y2P0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability Typ 0 1 V 3 90V positive output voltage regulator S1F78100Y2K0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability Typ 0 1 V 3 50V positive output voltage regulator S1F78100Y2N0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability Typ 0 1 V 3 30V positive output voltage regulator S1F78100Y2T0 Low operating current Typ 3 0 UA SOT89 3pin Input voltage stability
173. s a power supply for liquid crys tal display LCD Also S1F76640 enable to drive ICs liquid crystal driver analog IC etc which requires another power supply in addition to logic main power supply with a single power supply Also its small power consump tion makes it suitable as a micro power supply for handy devices like hand held computer 2 38 EPSON FEATURES High efficiency and low power consumption CMOS DC DC converter Easy three kinds voltage conversions to positive po tential side from input voltage VDD 3 3V From input voltage VDD 3 3V to outputs 2x VDD 6 6V 3xVDD 9 9V and 4xVDD 13 2V Attachment of external parts diode capacitor makes step up operations of higher magnifications possible Built in output voltage stabilization circuit External resistor enables to set any output voltages Output current Max 20mA Vpp 5V Power conversion efficiency Typ 95 3 kinds of reference voltages with negative tempera ture gradient characteristic suitable for LCD drive power supply can be selected Power off operation by external signal Static current at power off time Max 24A Possibility of high magnification step up operation by series connection Low voltage operation Optimum for battery drive Built in CR oscillator SSOP2 16pin S1F76640M0A0 Bare Chip ees S1F76640D0A0 Radiation resistant design has not been provided for this specification S1F70000 Series Tech
174. scillator to double the input voltage This requires two external capacitors a charge pump capacitor C1 be tween CAP1 and CAP1 and a smoothing capacitor C2 between VI and Vo Sa L C2 10uF Vo1 10V 2V1 L C1 10uF Doubled potential levels Vcc _ 5V 7 VDD lt 0 V GND vi 5 V sv Vo 2V1 10 V S1F76600 Series TYPICAL APPLICATIONS Parallel Connection Connecting two or more chips in parallel reduces the output impedance by 1 n where n is the number of de vices used O Vo 10V Serial Connection Connecting two or more chips in series obtains a higher connection however this also raises the output imped output voltage than can be obtained using a parallel ance Von Vi 5 Ema 5 H 10uF Vo 10 V MI Vo 15 V Potential levels Vo 0 V TTT Vi 5 V vom Wat Vo 10V _W Vo 15 V l Primary stage Secondary stage 1 8 EPSON S1F70000 Series Technical Manual S1F76600 Series Positive Voltage Conversion Diodes can be added to a circuit connected in parallel to make a negative voltage positive o To To N LL T Wu Simultaneous Voltage Conversion Combining a multiplier circuit with a positive voltage Potential levels conversion circuit ge
175. shown in the following figure CYYY gt L D fu Vsw CH s SD ROSC o Ma Vo 5 cae St E a 4 11 S1F76330M 4 STF76610C M Pore T GND C Vo 15V PS RD TELE N C i G G D T Potential levels are shown in the following figure S1F76330M1B0 ee S1F76610C M 1 Vo 5 V i VDD 5 V Vi 1 5 V 7 GND 0 V L L VDD 0 V LL Vo 10 V 4 32 EPSON C3 10 uF Although the circuit appears to have two ON OFF con trol points PS on the S1F76330M1B0 and Porr on the SIF76610C M PS only shuts down the S1F76330MIBO The input voltage still reaches the S1F76610C M through L and D _ VI 1 5V A MEET EE Ip E Boost Boost ON TT OFF VI lt BV Por GND 0 V S1F70000 Series Technical Manual Output voltage adjustment To ensure stable output any circuit that adjusts the out put voltage must contain Cl RA and RB To stop switching current from affecting VO the circuit must also satisfy the condition IO lt IR Step up voltage output Vi 4 1 IR FCL GND T lo lt lr Voltage adjustment circuit 777 777 7 7 S1F70000 Series Technical Manual EPSON S1F76300 Series The following figure summarizes the relevant circuits inside an S1F70000 series chip VO is connected to the level shift and buffer circuit which provide the gate bias for the switchi
176. steresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET a aca osa RRE e VDD 3 0V High level output current loH OUT 2 7V 1 00 0 25 mA VDD 2 0V Low level output current loL OUT 0 2V 0 20 1 00 mA VDD ted u 8 40 ae Detection voltage Ta 25 C j TPHL response time VDD 3V 52V 200 Ta 30 C to 85 C gt lp ES 5 6 EPSON S1F70000 Series Technical Manual S1F77200Y Series S1F77210Y1S0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 30 2 35 2 40 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET o Feuer laal OE BPN VDD 3 0V High level output current loH OUT 2 7V 1 00 0 25 mA VDD 2 0V Low level output current loL OUT 0 2V 0 20 1 00 mA VDD eM u 8 40 m Detection voltage TPHL Ta 25 C response time VDD 3V gt 2V 200 Ta 30 C to 85 C TT us Technical Manual S1F77210Y1E0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol
177. stor is connected in series to the resistor RRV for output voltage regulation as shown in Figure 8 8 and temperature gradients can be changed to any values RV o VREG 0 2 VREG 3 RT RP H 4 T 6 Ri vss Ravi 7 D 8 OA VO AO AN ws aa Figure 8 8 Example of Temperature Gradient Change Pins other than the above Pins 1 2 and 6 are connected as per Figure 5 2 For Pins 3 and 4 smaller temperature gradients than those to be changed are selected from Table 4 1 and are set Note 1 Relations among the thermistor RT and VREG are expressed as follows VREG VRV When a thermistor is used for RT it can make the temperature gradient of VREG larger Note 2 The thermistor temperature characteristics are non linear but can be corrected to linear ones when the resistor RP is connected to the thermistor in parallel S1F70000 Series EPSON 2 61 Technical Manual S1F76640 Series Configuration Example of Voltage Stabilized Output VREG Electronic Volume Circuit r gt Voltage stabilized output VREG E VRI Rv al 15 Vo vrec e 14 CAP3 TC1 8 O vss or Vo 413 CAP2 TC2 4 O Vss or Vo 4d caP2 Porr 5 74HC4051 4 CAP1 vss 6 INO E IN1 3 e QcaPi osci F 15 na COM 9 vob OSC2 4 N3 IN4 5 IN5 XPOF g
178. switched ON and OFF VDD PorF Control signal RV gt RRv 100 kQ to 1 MQ VREG S1F70000 Series Technical Manual S1F76610 Series Voltage Multiplier The voltage multiplier uses the clock signal from the oscillator to double or triple the input voltage This re quires three external capacitors two charge pump ca pacitors between CAP1 and CAPI and CAP2 and CAP2 respectively and a smoothing capacitor be tween VI and Vo Vpop 0 V Double voltage potential levels Vcc i 5V VDD lt 0 V S MY _5V h SV VcaP2 2VI 10 V Tripled voltage potential levels VDD 0 V Vi 5 V Vo 3Vi 15 V EPSON 2 11 gt le lo N LL Wu S1F76610 Series TYPICAL APPLICATIONS Voltage Tripler with Regulator The following figure shows the circuit required to triple the input voltage regulate the result and add a tempera ture gradient of 0 4 C Note that the high input im pedance of RV requires appropriate noise countermea sures Parallel Connection Connecting two or more chips in parallel reduces the output impedance by 1 n where n is the number of de vices used Only the single output smoothing capacitor C3 is re Converting a Voltage Tripler to a Voltage Doubler To convert this curcuit to a voltage doubler remove ca pacitor C2 and short circuit CAP2 to Vo
179. t 5V input VDD y 10V Two time boosting 15V T 15 V Three time boosting 20 V 20 V Four time boosting Caution When connecting a capacitor to the C1P C2P C1N C2N C3N or Vo pin for voltage conversion close the capacitor to the IC package as much as possible to minimize the wiring length 2 24 EPSON S1F70000 Series Technical Manual Reference Voltage Circuit The S1F76540 has a built in reference voltage circuit for voltage regulation The regulated voltage ex plained in the next voltage regulator circuit section is set depending on the division ratio between this refer S1F76540 Series ence voltage and the external resistance The reference voltage can be used to change the temperature coeffi cient at pins TC1 and TC2 One of four states can be selected as listed on Table 2 6 Table 2 6 Setup of reference voltage and temperature coefficient TC1 TC2 Reference voltage Temperature coefficient High VDD High VDD VREF V CT C Mode Low Vi Low VI Min Typ Max Min Typ Max CTo High High 1 55 1 5 1 45 0 07 0 04 0 CT1 High Low 1 70 1 5 1 30 0 25 0 15 0 07 Cra Low High 1 90 1 5 1 10 0 45 0 35 0 20 CT3 Low Low 2 15 1 5 0 85 0 75 0 55 0 30 Notes 1 The reference voltage is given at Ta 25 C 2 The reference voltage and temperature coefficient of the chip products
180. t gt H 2 ge Voo Vss 4in7 A lt I CTRLO B CTRL C gt lt cTRL2 6 INH 16 vec VEE Vss 7 8 lt Negative voltage input Positive voltage input Figure 8 9 2 62 EPSON S1F70000 Series Technical Manual S1F76640 Series Configuration Example of High Magnification Step up Circuit with Diode S1F76640 if an external diode is attached can realize 5 times or more step up operation and voltage stabilized output Since the forward voltage drop VF of the diode makes the output impedance of the step up output higher it is recommended to use a diode of small VF Figure 8 10 shows a configuration example of a circuit with 2 diodes which realizes 6 times step up operation and voltage stabilized output Make the wire between VO and VRI as short as possible Figure 8 11 shows the potential relations diagram By the way use the voltage applied to the VRI pin below the absolute maximum rated voltage o 2 VREG o e Vss or Vo O 3 TC1 no Vss or Vo O 4 TC2 A A 2 VF Y A Vo Vo o ie e 4 Vi 6 V1 6 VI 2 VF VDD Vi Vss Figure 8 11 Potential Relations Diagram of 6 times Step up Circuit with Diode S1F70000 Series EPSON 2 63 Technical Manual 3 Voltage Regulator S1F78100Y Series S1F78100Y Series CMOS Positive Voltage Regulators DESCRIPTION SCI78100Y Series is a fixed type positive voltage regu lator developed by using
181. t power off control of S1F76640 becomes available 6 GND Power supply pin minus side system GND 7 OSC1 Oscillation resistor connection pin This pin becomes the clock input pin when an external clock operates 8 OSC2 Oscillation resistor connection pin This pin is released when an external clock operates VDD Power supply pin plus side system Vcc 10 CAP1 Pump up capacitor minus side connection pin for 2 times step up Next stage clock at series connection time 11 CAP1 Pump up capacitor plus side connection pin for 2 times step up 12 CAP2 Pump up capacitor minus side connection pin for 3 times step up Output pin at 2 time step up time to be short circuited to Vo 13 CAP2 Pump up capacitor plus side connection pin for 3 times step up 14 CAP3 Pump up capacitor plus side connection pin for 4 times step up Output pin at 3 times step up time to be short circuited to Vo 15 Vo Output pin at 3 times step up time 16 VRI Stabilization circuit input pin S1F70000 Series EPSON 2 41 Technical Manual S1F76640 Series CHIP EXTERNAL SHAPE AND PAD CENTER COORDINATES Chip External Shape L L L L L Figure 4 4 Pad Assignments x y t Chip size 2 30mm x 2 60mm x 0 30mm PAD aperture 100um x 100um DIE number F76640D0A0 2 42 Pad Center Coordinates S1F7664D0A0 Pad Pad Center Coordinates No Name X um Y um 1 RV 984 0 1096
182. tage TeuL Ta 25 C response time VDD 1 5V 0 8V 200 Ta 30 C to 85 C ES 5 18 EPSON S1F70000 Series Technical Manual S1F77200Y Series EXAMPLES OF EXTERNAL CONNECTION S1F70000 Series Technical Manual Input voltage S1F77210Y Upin E TO Voltage detection output Input voltage O Power supply for pull up resistor Input voltage S1F77210Y Series pin Voltage detection output Input voltage O Input voltage O S1F77210Y 1pin Series Voltage detection output Input voltage O gt o N N N LL Wu Power supply for pull down resistor EPSON 5 19 S1F77200Y Series SAMPLE CIRCUITS S1F77210Y Series CR timer circuit When the S1F77210Y circuit configured as shown in Figure 5 14 it can be used as a CR timer circuit VDD OUT Figure 5 14 CR timer circuit Battery backup circuit The following is an example of the supply voltage switching circuit for the battery backup supply configured featur ing the S1F77210Y series PNP transistor VDD O Vcc VBAT rh NPN transistor Enable signal Figure 5 15 Battery backup circuit 5 20 EPSON S1F70000 Series Technical Manual S1F77200Y Series SAMPLE CIRCUITS S1F77200Y Series CR timer circuit When the S1F77200Y circuit is configured as shown in Figure 5 16 it can be used as a CR timer circuit VDD VDD S1F77200Y OUT Figure 5 16 CR time
183. tage to a speci Small output voltage temperature coefficient Typ fied fixed voltage The four devices in the series incor 100ppm C porate a precision power saving reference voltage gen Wide operating voltage range 15V Max erator a transistorized differential amplifier and resis tors for determining the output voltage The S1F79100Y series is available in 3 pin plastic APPLICATIONS SOT89s Fixed voltage power supplies for battery operated equipment such as portable video cassette recorders FEATURES video cameras and radios e Ample lineup 5 kinds are available in the range from Fixed voltage power supplies for communications 1 5V to 5V equipment gt e Small difference between input and output voltage High stability reference voltage generators 2 Typ 0 17V Ioz10mA Vo 5 0V o LL LINEUP o du Voltage V Current consumption Operating temperature Input Output uA C S1F79100Y1H0 1 5 4 0 S1F79100Y1G0 1 8 4 0 S1F79100Y1D0 15 3 0 4 0 40 to 85 S1F79100Y1PO 4 0 4 0 S1F79100Y1B0 5 0 4 0 BLOCK DIAGRAM PIN ASSIGNMENTS Q GND 2 pin S1F79100Y series Vo 3 pin S1F70000 Series EPSON 3 21 Technical Manual S1F79100Y Series PIN DESCRIPTIONS Pin No Pin name Description 1 VI Input voltage GND Ground Vo Output voltage SPECIFICATIONS Absolute Maximum Ratings Parameter Symbol Rating U
184. tching on duty of the output transistor increases Oscillator Since S1F71100 has a built in oscillator and no exter nal part is necessary The oscillation frequency is fixed to 200kHz Typ The oscillator stops its operation when the power is turned off When the low voltage protection circuit detects a low voltage the output tran sistor is turned off but the oscillation continues inside the IC Soft Start When a capacitor is connected to the SSCAP pin S1F71100 can set a soft start operation to prevent inrush current at the time when the power is turned on Figure 6 1 The SSCAP pin is at the Vss level when the power is turned off When the soft start operation begins the soft start capacitor starts being charged and the voltage at the SSCAP pin rises slowly The output voltage rises gradually as the voltage at the SSCAP pin rises This operation controls the switching pulse width at the time when the power is turned on and restrains surge current and output overshoot The soft start time can be set ac cording to the capacitance value of a capacitor to be 4 36 EPSON connected The voltage at the SSCAP pin drops to the Vss level when an overcurrent is detected when a low voltage is detected or when the power is turned off and the soft start operation begins y SSCAP pin O Soft start circuit Soft start capacitor Figure 6 1 Connection Diagram of SSCAP Pin Low volta
185. tching transistor leakage current Iswa VA mM 0 5 uA RST Low level output current loL Vii 0 9V Vor 0 2V 0 05 0 15 mA PS pullup current In Vu 1 5V _ 0 5 uA Multiplication clock frequency fcLK Vi 1 5V 25 35 45 kHz S1F70000 Series EPSON 4 7 Technical Manual S1F76300 Series Typical Performance Characteristics 2 0 a Fixed output voltage temperature o characteristic mV C 0 0 1 15 1 10 Detection voltage V 8 1 00 0 95 e 2 Ta 25 C 2 3 4 5 o Fixed output voltage V Fixed output voltage temperature characteristic VREL VDET 30 0 Ambient temperature C Detection voltage vs ambient temperature 25 50 75 85 S1F76380M1H0 and S1F76380M1L0 60 a o Ta 25 C gt o o Clock frequency kHz N o 5 1 0 1 5 2 0 2 5 Input voltage V Clock frequency vs Input voltage EPSON 5 Standby current uA 0 Vii 1 5 V 30 0 Ambient temperature C Standby current vs ambient temperature 60 50 z 40 30 Clock frequency kH 20 10 25 50 75 85 Vii 1 5 VI 30 0 25 50 85 Ambient temperature C Clock frequency vs ambient temperature S1F70000 Series Technical Manual S1F76300 Series 2 5 E 2 2 0 1 5 N a
186. temperature gradients which can be used to adjust the voltage regu lator output in applications such as power supplies for driving LCDs Porr TC2 TC1 M eran de Voltage 9 e 1e regulator CR osciliator Remarks C output See note 1 See note 2 1 VDD Low Vo Low Vo 0 4 ON ON 1 VDD Low Vo High VDD 0 1 ON ON 1 VDD High VDD Low Vo 0 6 ON ON 1 VoD High VDD High VDD 0 6 ON OFF Serial connection OFF 0 Vi Low Vo Low Vo high impedance OFF j OFF 0 VI Low Vo High VDD umi high impedance OFF OFF j FF 0 VI High VDD Low Vo gt high impedance O OFF Multiplier 0 V High VDD High Von high impedance FE operational Notes 1 The definition of LOW for Porr differs from that for TC1 and TC2 2 The temperature gradient affects the voltage between VDD and VREG 2 10 EPSON S1F70000 Series Technical Manual FUNCTIONAL DESCRIPTIONS CR Oscillator The on chip CR oscillator network frequency is deter mined by the external resistor ROSC connected be tween OSC1 and OSC2 This oscillator can be disabled in favor of an external clock by leaving OSC2 open and applying an external clock signal to OSCI Oscillator External clock OSC1 osc1e External clock Rose signal OSC2 OSC2 Reference Volatge Generator and Voltage Regulator The reference voltage generator supplies a reference voltage to the voltage regulator to control the output This voltage can be
187. the CMOS silicon gate process and is composed of a low current consumption refer ence voltage circuit a differential amplifier an output control transistor and a voltage setting resistor The output voltage is fixed inside the IC and various standard voltage parts are available The package is a SOT89 3pin plastic package BLOCK DIAGRAM FEATURES Ample lineup 12 kinds are available in the range from 2V to 6V e Low current consumption Typ 3 04A VDD 5 0V Small difference between input and output voltages Typ 0 25V Ioz 10mA Vo 5 0V Built in highly stable reference voltage source Typ 1 0V Small output voltage temperature coefficient Typ 100ppm C Wide operating voltage range 15V Max gt i i m N u 1 VDD Vo 2pin 3pin Vss 1pin S1F70000 Series EPSON 3 1 Technical Manual S1F78100Y Series PIN DESCRIPTIONS PIN ASSIGNMENTS 3 2 Pin No Pin name Description 1 Vss Input voltage pin minus side VDD Input voltage pin plus side Vo Output voltage pin SOT89 3pin 1 2 3 EPSON S1F70000 Series Technical Manual FUNCTIONAL DESCRIPTIONS S1F78100Y Series is a fixed positive output type volt age regulator of series regulator system and is fitted with an output control MOS transistor between the in put and output pins as shown in the fig
188. the step up switching When the switching stops completely the input voltage is supplied to the Vsw pin through the coil and the di ode The voltage at the VSW pin comes to the one ob tained by reducing VF of the diode from the input volt age S1F70000 Series Technical Manual EPSON S1F71200 Series Step up Set Voltage Step up set voltage can be selected at the VC pin CD Vc High VDD1 level Step up set voltage 6 0V S1F71200M0A0 4 3V SIF71200MOBO 2 Vc Low Vss level Step up set voltage 2 5 5V SIF71200M0A0 3 8V S1F71200M0BO In case of output stability and heavy load like ripple 1 is superior bur for the conversion efficiency at step up operation 2 is superior Characteristics vary with ap plicable external parts or voltage and load conditions So select a proper voltage after sufficient evaluation The VC pin cannot be used in the open state Soft Start When a capacitor is connected to the SSCAP pin S1F71200 can set a soft start operation to prevent inrush current at the time when the power is turned on The SSCAP pin is at the Vss level when the power is turned off POFFX Vss When the operation state is set POFFX VDD1 the soft start capacitor starts being charged and the voltage at the SSCAP pin rises slowly The step up output voltage rises gradually as the volt age at the SSCAP pin rises This operation is carried out when the power is turned on when the power off is released or when the overc
189. ting current IDD VDD 5 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET o ee Ee ee Bene f VDD 5 0V High level output current loH OUT 4 5V 2 00 0 50 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD ad u 8 40 m Detection voltage reu Ta 25 C response time VDD 5V gt 4V 200 Ta 30 C to 85 C ffe us S1F77210Y1J0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 4 30 4 40 4 50 V Hysteresis width VHYS VHYS VREL VDET 0 13 0 20 0 27 V Operating current IDD VDD 5 0V 2 00 5 00 uA Detection voltage AVDET o temperature characteristics VDET m 000 1 100 11009 PPM VDD 5 0V High level output current loH OUT 4 5V 2 00 0 50 mA VDD 2 0V Low level output current loL OUT 0 2V 0 20 1 00 mA VDD V 8 40 js Detection voltage TPHL Ta 25 C response time VDD 5V gt 4V See Ta 30 C to 85 C us S1F70000 Series Technical Manual EPSON o N N N LL Wu S1F77200Y Series Ta 30 C to 85 C S1F77210Y120 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min
190. tor _ switch GND PIN DESCRIPTIONS S1F76330 series Number Name Description 1 Co Crystal drain 2 CI Crystal gate 3 GND Ground S 4 Vsw External inductor drive o 5 Vo Output voltage o 6 CLo Oscillator output 7 VI Step up input voltage 8 PS Power save See note Note See standby mode in the functional description S1F70000 Series EPSON 4 23 Technical Manual S1F76300 Series SPECIFICATIONS Absolute Maximum Ratings S1F76330 series Parameter Symbol Rating Unit Input voltage Vi 7 V Output current lo 100 mA Output voltage Vo 7 V Power dissipation PD a mW Operating temperature range Topr 30 to 85 C Storage temperature range Tstg 65 to 150 C Solding temperature for 10 s See note Tsol 260 C Note Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions Never use solder dip to mount S1F70000 series power supply devices Electrical Characteristics S1F76330M1 BO Vss OV Ta 25 C unless otherwise noted Parameter Symbol Conditions Rating Unit Min Typ Max Input voltage Vu Vo gt Vi2 0 9 2 0 V Output voltage Vo Vii 1 5V 2 90 3 00 3 10 V Vit 1 5V Operating current Iboo fcLk 32kHz 5 30 uA lo 1 0mA Standby current Ibos Vu
191. uH 390 uH YHP4255A 100 1150 pH D 100 i 50 supply universal bridge 8 Buh S r H 2 5 S1F70000 Series Technical Manual 50 100 DC current mA 500 1000 EPSON 4 29 S1F763 00 Series Drum coil inductors Taiyo Yuuden FL series micro inductors Device Inductance uH Direct current mA FL3H 0 22 to 10 280 to 670 FL4H 0 47 to 12 300 to 680 FL5H 10 to 1000 50 to 320 FL7H 680 to 8200 50 to 170 FL9H 330 to 33000 50 to 500 FL11H 10000 to 150000 35 to 110 Toroidal coil inductors Tohoku Metal Industries HP series toroidal coil inductors Device Rated current Inductance uH at 20kHz 5V_ Diameter x height Wire gauge Inc A Ipc 0 Ipc rating mm Max mmg HP011 1 200 160 0 5 HP021 2 65 55 20 x 12 0 7 HP031 3 30 23 0 8 HP012 1 600 450 0 5 HP022 2 180 135 22 x 13 0 7 HP032 3 120 80 0 8 HP052 5 45 30 1 0 HP013 1 1000 800 0 5 HP023 2 500 330 Baud 0 7 HP033 3 130 100 0 8 HP055 5 90 55 1 0 HP034S 3 400 250 0 8 HP054S 5 350 160 36 x 14 1 0 HP104S 10 50 30 1 6 HP024 2 1500 950 0 7 HP034 3 300 230 36 x 21 0 8 HP054 5 210 140 1 0 HP104 10 45 30 1 6 HP035 3 700 500 0 8 HP055 5 600 330 43x33 1 0 HP105 10 180 95 1 6 HP205 20 20 14 1 8x2P 4 30 EPSON S1F70000 Series Technical Manual S1F76300 Series
192. ulator step up and series regulator step down control IC of pulse width modu lation PWM system When external parts such as transistor inductor capacitor diode and resistor are connected S1F71200 can constitute a step up step down DC DC converter When the input voltage is lower than the specified volt age value S1F71200 raises the voltage to the set volt age selectable at the VC pin with the switching regula tor and lowers the step up voltage with the series regu lator to stabilize the output voltage On the other hand when the input voltage is higher than the specified volt age value S1F71200 stops the operation of the switch ing regulator step up and operates the series regulator step down only Switching operations with input voltage makes constant voltage outputs possible all the time Operation of Switching Regulator S1F71200 monitors voltage at the VSW pin i e the out put voltage of the step up switching regulator and con trols pulse width of the switching transistor When the voltage at the VSW pin drops below the step up set volt age S1F71200 changes the output level of the error am plifier and increases the on duty of the switching transistor for control On the other hand when the voltage at the VSW pin rises over the step up set voltage S1F71200 reduces the on duty for control When voltages higher than the step up set voltage is constantly supplied to the Vsw pin S1F71200 stops operation of
193. ure below The voltage regulator feeds back voltages VREG divided with the built in resistors R1 and R2 connected between S1F78100Y Series the output pin VO pin and the Vss pin to compare them with the reference voltage VREF and outputs the stable output voltage Vo not depending on input volt age by controlling the gate voltage of the output control transistor The output voltage is fixed inside and is de cided with the following formula R1 R2 Vo VREF VDD Output control transistor Vo 2pin 3pin Operational amplifier Vss 1pin S1F70000 Series EPSON 3 3 Technical Manual gt o N LL dp S1F78100Y Series LINEUP Note Product Output Voltage Min Typ Max S1F78100Y2A0 5 75 6 00 6 25 S1F78100Y2B0 4 90 5 00 5 10 S1F78100Y2M0 4 40 4 50 4 60 S1F78100Y2P0 3 90 4 00 4 10 S1F78100Y2K0 3 80 3 90 4 00 S1F78100Y2NO 3 43 3 50 3 57 S1F78100Y2T0 3 23 3 30 3 37 S1F78100Y2C0 3 13 3 20 3 27 S1F78100Y2D0 2 93 3 00 3 07 S1F78100Y2RO 2 73 2 80 2 87 S1F78100Y2L0 2 53 2 60 2 67 S1F78100Y2F0 215 2 20 2 25 S1F78100Y2G0 1 75 1 80 1 85 S1F78100Y2HO 1 45 1 50 1 55 Other output voltages than those listed in the above table are also applicable EPSON S1F70000 Series Technical Manual S1F78100Y Series ABSOLUTE
194. urrent mA Notes Inductor TDK NLF453232 221k 220uH Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSUB20J106M 10uF 4 10 Ta 25 C fcLk 32 kHz Load efficiency Maximum load current mA 200 300 500 Inductence uH Notes 1 Vn 2 1 5V 2 Inductor TDK NLF453232 series Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSUB20J106M 10uF E N T 100 N lt 10 E z g o 8 gt 5 B o o Q6 2 8 5 o 5 4 S E 1 S gt 2 300 500 Inductance uH Notes 1 Vu 2 1 5V 2 Inductor TDK NLF453232 series EPSON Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSUB20J106M 10uF S1F70000 Series Technical Manual S1F76300 Series S1F76380M1L0 4 0 15 fcLK 35 kHz Ta 25 C _ 3 5 T fcLk 40 kHz Z 100 gt E Z o gt o 5 2 E S Z 9 50 9 E E O 3 0 0 100 200 300 500 1000 Inductance uH Load current mA Notes Notes Inductor TDK NLF453232 221k 2204H 1 Vn 1 5V Diode Shindengen DINS4 Schottky barrier diode 2 Inductor TDK NLF453232 series Capacitor NEC MSUB20J106M 10uF Diode Shindengen DINS4 Schottky barrier diode Capacitor NEC MSUB20J106M 10uF S1 ie oa HO e 15 EI 35 kHz ILmax Ta 25 C N T fcLk 35kHz
195. urrent detection is released and restrains surge current and output overshoot 4 45 o al N LL Wu S1F71200 Series Overcurrent Protection Circuit The overcurrent protection circuit functions when an overcurrent flows through the current detection resistor during the step up operation and the voltage at the ISENSE pin rises over the set voltage value When the overcurrent protection function works the transistor drive pin SWO comes to the Vss level and the switch ing transistor is turned off Since the overcurrent pro tection circuit links to the soft start circuit it drops the voltage at the SSCAP pin to the Vss level during overcurrent detection When the overcurrent detection is released the voltage at the SSCAP pin rises slowly and the soft start operation starts Power lost at the current detection resistor becomes a factor of lower efficiency When the overcurrent pro tection circuit is not necessary short circuit the ISENSE pin to the VSS pin The ISENSE pin cannot be used in an open state Operation of Series Regulator S1F71200 has a built in series regulator control circuit When driving the PNP transistor as an external part S1F71200 reduces voltage supplied to the VDD2 pin and constitutes a series regulator The VDD2 pin is generally connected to the VSW pin of step up output This series regulator operates monitoring voltage at the Vo pin of step up step down output It controls the drive current
196. urrent vs Output current 3 S1F70000 Series Technical Manual Ipp mA S1F76640 Series 100 2 times step up Peff 100 90 90 80 80 70 PH times step up Peff 70 60 4 times SE 60 SZ 50 4 times step up loo 50 t 40 den 40 a 2 30 Pur 30 S lo 20 Ta 25 C 20 C 10 VDD 3V 10 C1 to C4 10uF W 0 0 5 10 15 20 lo mA 10 Step up power conversion efficiency vs Output current 2 Input current vs Output current 2 100 90 80 70 Q 60 lo 2m A 50 40 lo 10mA 30 lo gt m A lo 20mA 20 Ta 25 C 10 Vpp 5V C1 to C4 1 DUE 0 10 100 1000 fosc kHz 12 Step up power conversion efficiency Os vs illation frequency 1 EPSON 2 53 S1F76640 Series 100 90 80 70 60 de ae 50 o 0 a 2 40 30 20 10 0 1 10 100 1000 1 10 100 1000 fosc kHz fosc kHz 13 Step up power conversion 14 Step up power conversion efficiency vs Oscillation frequency 2 efficiency vs Oscillation frequency 3 0 5 Vo 20V 0
197. ut transistor con ducts and the output is grounded The characteristic re sponse is shown in the following figure VREL lc AM us Vn VDET vo PWCR Li VGND Vo RST VGND Disabling power on clear Always connect PWCR to either Vo or GND If volt age detection only is required remove the resistor be tween PWCR and Vo and monitor the level at RST If neither function is required connect PWCR to GND Leaving PWCR unconnected results in an undefined in verter gate voltage in the VO circuit causing transient currents to flow between Vo and GND S1F70000 Series Technical Manual VO circuit Igel VI circuit n l l l I Output voltage response compensation The S1F76380 series are provided with a response com pensation input A response compensation capacitor is connected between VCONT and Vo allowing the ripple voltage generated by the boosted output voltage to be suppressed to a minimum Standby mode and battery backup The S1F76310 series are equipped with a standby mode initiated by connecting PS to GND TYPICAL APPLICATIONS Example Circuits The output current lo and power conversion effi ciency Peff of a particular device in a series depends on S1F76310 series S1F70000 Series Technical Manual EPSON S1F76300 Series In standby mode the booster including the crystal os cillator is disabled the switching transistor us
198. ut voltage Vo S1F77200 V VDD 0 3 to VDD 15 S1F77220 Output current lo 50 mA Allowable dissipation PD 200 mW Operating temperature Topr 40 to 85 C 30 to 85 designed for lower voltage operation Storage temperature Tstg 65 to 150 C Soldering temperature Tsol 260 10 Cs and time at leads S1F70000 Series EPSON 5 5 Technical Manual S1F77200Y Series ELECTRIC CHARACTERISTICS S1F77210Y1C0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 10 2 15 2 20 V Hysteresis width VHYS VHYS VREL VDET 0 05 0 10 0 15 V Operating current IDD VDD 3 0V 2 00 5 00 uA Detection voltage AVDET temperature characteristics VDET pal La eG VDD 3 0V High level output current loH OUT 27V 1 00 0 25 mA VDD 2 0V Low level output current IOL OUT 0 2V 0 20 1 00 mA VDD Sey _ 8 40 T Detection voltage To Ta 25 C response time VDD 3V 52V 200 Ta 30 C to 85 C TT S1F77210Y1P0 Ta 30 C to 85 C is assumed except where otherwise specified Parameter Symbol Conditions Vss 0 0V Min Typ Max Unit Operating voltage VDD 1 50 12 0 V Detection voltage VDET Ta 25 C 2 20 2 25 2 30 V Hy
199. utions Never use solder dip to mount S1F70000 series power supply devices EPSON S1F70000 Series Technical Manual Electrical Characteristics S1F76300 Series S1F76310M1LO Vss OV Ta 25 C unless otherwise noted E Rating E Parameter Symbol Condition Min Typ Max Unit Vi 0 9 1 8 V Input voltage M Vo gt Vie 0 9 1 8 V Output voltage Vo Vi 1 5V 2 32 2 40 2 48 V Detection voltage VDET 1 00 1 05 1 10 V Detection voltage hysteresis ratio AVDET 5 96 Operating current IDDO Vii 1 5V lo 1 0mA 7 35 uA Standby current IDDS Vi 1 5V _ 3 10 uA Switching transistor ON resistance Raon VOS ZAN 7 14 Q Vsw 0 2V DEE Vii 1 5V Vo 1 5V Switching transistor leakage current Iswa Vsw 7 0V 0 5 uA Backup switch ON resistance RBSON Mis EN VE TM _ 100 250 Q lo 1 0mA X ras Vii 1 0V Vo 2 4V Backup switching leakage current IBSQ Vie 2 0V 0 1 uA e RST Low level output current loL Vii 0 9V Vos 0 2V 0 05 0 15 mA o PS pull up current In Vu 1 5V _ _ 0 5 uA u Multiplication clock frequency fcu Vi 1 5V 25 35 45 kHz o S1F76310M1BO Vss OV Ta 25 C unless otherwise noted Rating Parameter Symbol Condition Min Typ Max Unit VI 0 9 2 0 V Input voltage Vo gt Vie Vie 0 9 2 0 V Output voltage Vo Vi 1 5V 2 90 3 00 3 10 V Detection voltage VDET
200. utput voltage can be increased more But the series connection makes the output impedance high Figure 8 4 shows an example of the series connection to get VO 25V from VDD 5V and to stabilize it Figure 8 4 Series Connection 2 58 EPSON S1F70000 Series Technical Manual S1F76640 Series Note 1 Precautions on Load Connection When a load is connected between GND in the first stage or potential below GND in the second stage other than that and VREG in the second stage as shown in Figure 8 4 pay attention to the following When a normal output is not available at the VREG pin at the starting time or when the POFF signal turns off VREG current may flows from GND in the first stage or potential below GND in the second stage other than that to the VREG pin in the second stage through the load and a voltage higher than the absolute maximum rating below GND in the second stage may be generated at the VREG pin Asa result the IC may not work normally For series connection connect the diode D1 between VDD and VREG in the second stage as shown in Figure 8 4 so that no potential below GND in the second stage is added to the VREG pin Note 2 Figure 8 4 shows 3 times step up in the first stage and 4 times step up in the next stage but 4 times step up is possible both in the first stage and in the next stage unless the input voltage VDD GND exceeds the specification value 6
201. w 0 2V Vit 1 5V Vo 1 5V Switching transistor leakage current IswQ Vsw 7 0V 0 5 uA Backup switch ON resistance RBSON Me QU VETED 70 160 Q lo 1 0mA SS Vit 1 0V Vo 3 5V Backup switching leakage current IBSQ Vie 2 0V 0 1 uA RST Low level output current IOL Vii 0 9V Vos 0 2V 0 05 0 15 mA PS pullup current IH Vit 1 5V 0 5 uA Multiplication clock frequency fcLK Vii 1 5V 30 40 50 kHz S1F76310M1A0 Vss OV Ta 25 C unless otherwise noted m Rating Parameter Symbol Condition Min Typ Max Unit a l Vn V V 0 9 2 0 V nput voltage e o gt Vie 0 9 En 20 V Output voltage Vo Vit 1 5V 4 80 5 00 5 20 V Detection voltage VDET 1 00 1 05 1 10 V Detection voltage hysteresis ratio AVDET 5 Operating current IDDO Vii 1 5V lo 1 0mA 10 50 uA Standby current IDDS Vi 1 5V 3 10 uA Switching transistor ON resistance Rswon V11 1 5V Vo 5 0V 5 10 Q Vsw 0 2V ae Vn 1 5V Vo 1 5V Switching transistor leakage current Iswa Vsw 7 0V 0 5 uA Backup switch ON resistance RBSON he TON MOD 50 100 Q lo 1 0mA NT Vit 1 0V Vo 5 0V Backup switching leakage current IBSQ Vie 3 0V 0 1 uA RST Low level output current IOL Vii 0 9V Vos 0 2V 0 05 0 15 mA PS pullup current IH Vit 1 5V _ 0 5 uA Multiplication clock frequency fcLK Vii 1 5V 35 45 55 kHz 4 6 EPSON S1F70000 Series Technical Manual S1F76300 Series
Download Pdf Manuals
Related Search
Related Contents
Einbauanleitung Installation Manual Mercedes B User Manual - Incpt.Mobis Full HD IR Bullet IP Camera User`s Manual See the Manual - Futureshop.co.uk Actiontec electronic MWTV200KIT01 Portable Multimedia Player User Manual Système de purification d`eau Thermo Scientific Barnstead Copyright © All rights reserved.
Failed to retrieve file