Home

Intel Xeon W3540

image

Contents

1. Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 5 of 36 Sheet 6 of 36 Land Name po Direction Land Name ps pss Direction DDR1 BA 2 H27 CMOS O DDR1_DQ 28 334 CMOS 1 0 DDR1_CAS E14 CMOS O DDR1_DQ 29 H34 CMOS 1 0 DDR1_CKE 0 H28 CMOS O DDR1_DQ 3 Y34 CMOS 1 0 DDR1_CKE 1 E27 CMOS e DDR1 DQ 30 L32 CMOS 1 0 DDR1_CKE 2 D27 CMOS o DDR1_DQ 31 K30 CMOS 1 0 DDR1_CKE 3 C27 CMOS o DDR1_DQ 32 E9 CMOS 1 0 DDR1_CLK_N O D21 CLOCK O DDR1_DQ 33 E8 CMOS 1 0 DDR1_CLK_N 1 G20 CLOCK O DDR1 DQ 34 E5 CMOS 1 0 DDR1_CLK_N 2 L18 CLOCK O DDR1 DQ 35 F5 CMOS 1 0 DDR1_CLK_N 3 H19 CLOCK O DDR1 DQ 36 F10 CMOS 1 0 DDR1 CLK P 0 C21 CLOCK O DDR1 DQ 37 G8 CMOS 1 0 DDR1_CLK_P 1 G19 CLOCK O DDR1 DQ 38 D6 CMOS 1 0 DDR1_CLK_P 2 K18 CLOCK O DDR1 DQ 39 F6 CMOS 1 0 DDR1_CLK_P 3 H18 CLOCK O DDR1 DQ 4 AA35 CMOS 1 0 DDR1_CS 0 D12 CMOS O DDR1_DQ 40 H8 CMOS 1 0 DDR1_CS 1 A8 CMOS e DDR1 DQ 41 J6 CMOS 1 0 DDR1_CS 4 C17 CMOS o DDR1_DQ 42 G4 CMOS 1 0 DDR1_CS 5 E10 CMOS o DDR1_DQ 43 H4 CMOS 1 0 DDR1 DQ 0 AA37 CMOS 1 0 DDR1_DQ 44 G9 CMOS 1 0 DDR1 DQ 1 AA36 CMOS 1 0 DDR1_DQ 45 H9 CMOS 1 0 DDR1_DQ 10 P39 CMOS 1 0 DDR1_DQ 46 G5 CMOS 1 0 DDR1_DQ 11 N39 CMOS 1 0 DDR1_DQ 47 J5 CMOS 1 0 DDR1_DQ 12 R34 CMOS 1 0 DDR1_DQ 48 K4 CMOS 1 0 DDR1_DQ 13 R35 CMOS 1 0 DDR1 DQ 49 K5 CMOS 1 0 DDR1_DQ 14 N37 CMOS 1 0 DDR1 DQ 5 AB
2. pola Pin Name e Direction pog Pin Name Doi Direction B19 DDRO MA 10 CMOS 0 BA16 VCC PWR B2 VSS GND BA17 vss GND B20 RSVD Bag VCC PWR B21 DDRO_MA 1 CMOS o BA19 VCC PWR B22 VDDQ PWR BA20 VSS GND B23 DDRO MA 4 CMOS o BA24 VCC PWR B24 DDRO MA 5 CMOS o BA25 VCC PWR B25 DDRO_MA 8 CMOS o BA26 VSS GND B26 DDRO_MA 12 CMOS o BA27 VCC PWR B27 VDDQ PWR BA28 VCC PWR B28 RSVD BA29 vss GND B29 DDRO_MA 15 CMOS o BA3 vss GND B3 BPM 0 GTL 1 0 BA30 VCC PWR B30 DDRO CKE 2 CMOS o BA35 VSS GND B31 DDRO_CKE 3 CMOS o BA36 QPI_DRX_DP 4 QPI I B32 VDDQ PWR BA37 QPI DRX DN 4 QPI I B33 RSVD BA38 QPI DRX DP 6 QPI I B34 DDRO ECC 6 CMOS Jo BA39 vss GND BA4 RSVD B35 ROMD BA40 RSVD Bae Reve BAS VSS GND B37 VSS GND SE Sean B38 DDRO DQ 31 CMOS Jo 5 RSUD B39 DDRO_DQS_P 3 CMOS 1 0 BAB Reb B4 BPM 3 GTL yo BAG VE SUE B40 DDRO DQS N 3 CMOS 1 0 ED VERS EWR B41 PRDY GTL o cm EE Ba vss END Cia DDRO CAS CMOS oO B5 DDRO DQ 32 CMOS Jo Bi S B6 DDRO DQ 36 CMOS T O a EGUE B7 VDDQ PWR C15 VDDQ PWR BB RSM C16 DDR2_WE CMOS 0 Be RSUD C17 DDR1_CS 4 CMOS o BATO E PWR C18 DDR1 BA O cmos lo BALL VSS GND C19 DDRO CLK N 1 clock lo BATA vec PWR C2 BPM 2 GTL 1 0 BA13 VCC PWR T uba We BA14 j VSS GND C21 DDR1_CLK_P 0 clock lo BA15 VCC PWR E B Intel Xeon Processor 3500 Series Datasheet Volume 1 65
3. Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 2 of 36 No Pin Name Type Direction A10 DDRO_MA 13 CMOS O A14 VDDQ PWR A15 DDRO_RAS CMOS O A16 DDRO_BA 1 CMOS O A17 DDR2 BA 0 CMOS O A18 DDR2_MA 0 CMOS O A19 VDDQ PWR A20 DDRO MA 0 CMOS O A24 VDDQ PWR A25 DDRO_MA 7 CMOS O A26 DDRO_MA 11 CMOS O A27 RSVD A28 DDRO_MA 14 CMOS O A29 VDDQ PWR A30 DDRO_CKE 1 CMOS O A31 RSVD A35 VSS GND A36 DDRO_ECC 1 CMOS 1 0 A37 DDRO_ECC 5 CMOS 1 0 A38 DDRO DQ 26 CMOS I O A39 VSS GND A4 VSS GND A40 RSVD A41 VSS GND A5 BPM 1 GTL 1 0 A6 VSS GND A7 DDRO_CS 5 CMOS O A8 DDR1 CS 1 CMOS O A9 VDDQ PWR AA10 VTTD PWR AA11 VTTD PWR AA3 VSS GND AA33 VTTD PWR AA34 VSS GND AA35 DDR1_DQ 4 CMOS 1 0 AA36 DDR1_DQ 1 CMOS 1 0 AA37 DDR1_DQ 0 CMOS 1 0 AA38 VSS GND 56 Land Pin Name Buffer Direction No Type AA39 VSS GND AA4 BCLK ITP DN CMOS O AA40 RSVD AA41 RSVD AA5 BCLK_ITP_DP CMOS O AA6 VDDPWRGOOD Asynch I AA7 DDR1_DQ 62 CMOS I O AA8 DDR COMP O0 Analog AA9 VSS GND AB10 VTTD PWR AB11 VTTD PWR AB3 RSVD AB33 VTTD PWR AB34 VTTD PWR AB35 VTTPWRGOOD Asynch I AB36 DDR1 DQ 5 CMOS I O AB37 VSS GND AB38 QPI DTX DN 17 QPI O AB39 QPI_DTX_DP 17 QPI O AB4 VSS GND AB40 VSS GND AB41 COMPO Analog
4. m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 21 of 36 Sheet 22 of 36 Land Pin Name Buffer Direction tand Pin Name Buffer Direction No Type No Type C23 DDRO_MA 2 CMOS O D2 BPM 6 GTL 1 0 C24 DDRO MA 6 CMOS O D20 RSVD C25 VDDQ PWR D21 DDR1_CLK_N 0 CLOCK O C26 DDRO_MA 9 CMOS O D22 DDR1_MA 7 CMOS O C27 DDR1_CKE 3 CMOS O D23 VDDQ PWR C28 DDRO_BA 2 CMOS O D24 DDRO_MA 3 CMOS O C29 DDRO_CKE 0 CMOS O D25 RSVD C3 BPM 5 GTL 1 0 D26 DDR2_CKE 2 CMOS O C30 VDDQ PWR D27 DDR1 CKE 2 CMOS O C31 RSVD D28 VDDQ PWR c32 ryo ms DDR1_RESET cmos lo C33 DDRO_ECC 3 CMOS 1 0 D3 VSS GND C34 DDRO_ECC 7 CMOS 1 0 D30 RSVD C35 VSS GND D31 RSVD C36 DDRO_ECC 0 CMOS 1 0 D32 DDRO_RESET CMOS O C37 DDRO ECC 4 CMOS 1 0 D33 VSS GND C38 DDRO_DQ 30 CMOS 1 0 D34 DDRO_DQS_P 8 CMOS 1 0 C39 RSVD D35 DDRO_DQS_N 8 CMOS 1 0 C4 DDRO_DQ 33 CMOS 1 0 D36 DDR1 ECC 0 CMOS 1 0 C40 VSS GND D37 DDRO_DQ 27 CMOS 1 0 C41 DDRO_DQ 25 CMOS 1 0 D38 VSS GND C42 PREQ GTL I D39 RSVD C43 VSS GND D4 RSVD C5 vss GND D40 DDRO_DQ 24 CMOS 1 0 C6 DDRO DQ 37 CMOS 1 0 D41 DDRO_DQ 28 CMOS 1 0 C7 DDRO_ODT 3 CMOS O D42 DDRO_DQ 29 CMOS 1 0 C8 DDR1 ODT 1 CMOS O D43 VSS GND C9 DDRO_ODT 1 CMOS O D5 RSVD
5. Intel Xeon Processor 3500 Series Datasheet Volume 1 Land Name pe pi Direction Land Name p 7 Direction DDR2_ECC 1 F33 CMOS I O QPI_CLKTX_DN AF42 QPI O DDR2_ECC 2 E29 CMOS I O QPI CLKTX DP AG42 QPI O DDR2_ECC 3 E30 CMOS I O QPI_CMP 0 AL43 Analog DDR2_ECC 4 J31 CMOS I O QPI_DRX_DN 0 AU37 QPI I DDR2_ECC 5 J30 CMOS 1 0 QPI_DRX_DN 1 AV38 QPI I DDR2_ECC 6 F31 CMOS I O QPI_DRX_DN 10 AT42 QPI I DDR2_ECC 7 F30 CMOS I O QPI_DRX_DN 11 AR43 QPI I DDR2_MA 0 A18 CMOS O QPI_DRX_DN 12 AR40 QPI I DDR2_MA 1 K17 CMOS O QPI_DRX_DN 13 AN42 QPI I DDR2_MA 10 H17 CMOS O QPI_DRX_DN 14 AM43 QPI I DDR2_MA 11 H23 CMOS O QPI_DRX_DN 15 AM40 QPI I DDR2_MA 12 G23 CMOS O QPI_DRX_DN 16 AM41 QPI I DDR2_MA 13 F15 CMOS O QPI_DRX_DN 17 AP40 QPI I DDR2_MA 14 H24 CMOS O QPI_DRX_DN 18 AP39 QPI I DDR2_MA 15 G25 CMOS O QPI_DRX_DN 19 AR38 QPI I DDR2_MA 2 G18 CMOS O QPI_DRX_DN 2 AV37 QPI I DDR2_MA 3 J20 CMOS O QPI_DRX_DN 3 AY36 QPI I DDR2 MA 4 F20 CMOS O QPI_DRX_DN 4 BA37 QPI I DDR2_MA 5 K23 CMOS O QPI_DRX_DN 5 AW38 QPI I DDR2_MA 6 K22 CMOS O QPI DRX DN 6 AY38 QPI I DDR2 MA 7 J24 CMOS O QPI_DRX_DN 7 AT39 QPI I DDR2_MA 8 L25 CMOS O QPI_DRX_DN 8 AV40 QPI I DDR2_MA 9 H22 CMOS O QPI_DRX_DN 9 AU41 QPI I DDR2_ODT 0 L16 CMOS O QPI_DRX_DP 0 AT37 QPI I DDR2_ODT 1 F13 CMOS O QPI_DRX_DP 1 AU38 QPI I DDR2_ODT 2 D15 CMOS e QPI_DRX_DP 10 AU42 QPI I DDR2_ODT 3 D10 CMOS O QPI_DRX_DP 11 AT43 QPI I DDR2_RAS D17 CMOS O QP
6. Table 2 13 Table 2 14 28 Symbol Parameter Min Typ Max Units Notes Vit Input Low Voltage 0 40 V ra V 2 Vin Input High Voltage 0 80 Vita 2 4 111 Input Leakage Current 200 uA 3 Notes 1 Unless otherwise noted all specifications in this table apply to all processor frequencies 2 The Vra referred to in these specifications refers to instantaneous Vra 3 For Vin between 0 V and Vrra Measured when the driver is tristated 4 Vg and Voy may experience excursions above Vr TAP Signal Group DC Specifications Symbol Parameter Min Typ Max Units Notes Vit Input Low Voltage 0 40 x Vita V 2 Vin Input High Voltage 0 75 Vita 2 4 VoL Output Low Voltage Vra Ron V 2 Ron Rsys term Vou Output High Voltage VTA _ V 2 4 Ron Buffer on Resistance 10 18 11 Input Leakage Current 200 uA 3 Notes 1 Unless otherwise noted all specifications in this table apply to all processor frequencies 2 The Va referred to in these specifications refers to instantaneous V ra 3 For Vin between 0 V and Vrra Measured when the driver is tristated 4 Vyy and Voy may experience excursions above V PWRGOOD Signal Group DC Specifications Symbol Parameter Min Typ Max Units Notes Input Low Voltage for VCCPWRGOOD _ ViL and VTTPWRGOOD Signals 0 25 Vita LA 2 5 We Input Low Voltage for VDDP
7. Table 8 1 Figure 8 6 8 4 8 4 1 Fan Heatsink Power and Signal Specifications Description Min Typ Max Unit Notes 12 V 12 volt fan power supply 10 8 12 13 2 V IC 2 Peak steady state fan current draw _ 3 0 A Average steady state fan current draw 2 0 A SENSE SENSE frequency 2 pulses per fan 1 revolution CONTROL 21 25 28 kHz Ze 1 Baseboard should pull this pin up to 5V with a resistor 2 Open drain type pulse width modulated 3 Fan will have pull up resistor for this signal to maximum of 5 25 V Baseboard Power Header Placement Relative to Processor Socket R110 4 33 Thermal Specifications This section describes the cooling requirements of the fan heatsink solution used by the boxed processor Boxed Processor Cooling Requirements The boxed processor may be directly cooled with a fan heatsink However meeting the processor s temperature specification is also a function of the thermal design of the entire system and ultimately the responsibility of the system integrator The processor temperature specification is found in Chapter 6 of this document The boxed processor fan heatsink is able to keep the processor temperature within the specifications see Table 6 1 in chassis that provide good thermal management For the boxed processor fan heatsink to operate properly it is critical that the airflow provided to the fan heatsink is
8. D1 BPM 4 GTL 1 0 D6 DDR1_DQ 38 CMOS 1 0 D10 DDR2_ODT 3 CMOS O D7 DDR1_DQS_N 4 CMOS 1 0 D11 DDR1_ODT 0 CMOS O D8 VSS GND D12 DDR1_CS 0 CMOS O D9 DDR2_CS 5 CMOS O D13 VDDQ PWR El VSS GND D14 DDR1_ODT 2 CMOS O E10 DDR1_CS 5 CMOS O D15 DDR2_ODT 2 CMOS O E11 VDDQ PWR D16 RSVD E12 RSVD D17 DDR2_RAS CMOS O E13 RSVD pis vogo ewR E14 DDR1_CAS CMOS O D19 DDRO_CLK_P 1 CLOCK O E15 RSVD 66 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 23 of 36 intel Table 4 2 Land Listing by Land Number Sheet 24 of 36 pla Pin Name rii Direction pog Pin Name pese Direction E16 VDDQ PWR F12 DDRO_ODT 0 CMOS O E17 DDR2_CS 4 CMOS F13 DDR2 ODI 1 CMOS O E18 DDRO_CLK_N 2 CLOCK O F14 VDDQ PWR E19 DDRO_CLK_N 3 CLOCK F15 DDR2_MA 13 CMOS O E2 BPM 7 GTL 1 0 F16 DDR2_CAS CMOS O E20 DDRO_CLK_P 3 CLOCK O F17 DDR2_BA 1 CMOS O E21 VDDQ PWR F18 DDRO_CLK_P 2 CLOCK O E22 DDR1_MA 8 CMOS O F19 VDDQ PWR E23 DDR1 MA 11 CMOS F2 DDRO DQ 39 CMOS 1 0 E24 DDR1_MA 12 CMOS O F20 DDR2_MA 4 CMOS O E25 RSVD F21 RSVD E26 VDDQ PWR F22 DDR1_MA 5 CMOS O E27 DDR1_CKE 1 CMOS O F23 RSVD E28 RSVD F24 VDDQ PWR E29 DDR2_ECC 2 CMOS IO F25 RSVD E3 DDRO DOS P 4 CMOS
9. QPI DRX DN 11 QPI I ATA RSVD ARS RSVD AT40 QPI_DRX_DP 12 QPI I AR6 RSVD AT41 VSS GND UAR7 vccPWRGOO lAsynh r AT42 GPI DRX DN 10 QPI I AR8 VSS SENSE Analog AT43 QPI DRX DP 11 QPI I AR9 VCC SENSE Analog ATS RSVD AT1 RSVD AT6 RSVD AT10 VCC PWR AT7 VSS GND AT11 VSS GND AT8 VSS GND AT12 VCC PWR ATO VCC PWR AT13 VCC PWR AU1 VSS GND AT14 VSS GND AU10 VCC PWR AT15 VCC PWR AU11 VSS GND AT16 VCC PWR AU12 VCC PWR AT17 VSS GND AU13 VCC PWR AT18 VCC PWR AU14 VSS GND AT19 VCC PWR AU15 VCC PWR AT2 RSVD AU16 VCC PWR AT20 VSS GND AU17 VSS GND AT21 VCC PWR AU18 VCC PWR AT22 VSS GND AU19 VCC PWR AT23 VSS GND AU2 RSVD AT24 VCC PWR AU20 VSS GND AT25 VCC PWR AU21 VCC PWR AT26 VSS GND AU22 VSS GND AT27 VCC PWR AU23 VSS GND AT28 VCC PWR AU24 VCC PWR AT29 VSS GND AU25 VCC PWR AT3 RSVD AU26 VSS GND AT30 VCC PWR AU27 J VCC PWR az Ivc pwr aus VCC PWR AT32 VSS GND AU29 VSS GND 62 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 15 of 36 intel Table 4 2 Land Listing by Land Number Sheet 16 of 36 L Pin Name a Direction N Pin Name pii Direction AU3 RSVD AV26 VSS GND AU30 VCC PWR AV27 VCC PWR AU31 VCC PWR AV28 VCC PWR AU32 VSS GND AV29 VSS G
10. Jono H39 DDR2 DQ 28 CMOS 1 0 G43 RSVD H4 DDR1_DQ 43 CMOS 1 0 68 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 27 of 36 intel Table 4 2 Land Listing by Land Number Sheet 28 of 36 pra Pin Name a Direction N Pin Name e Direction H40 vss GND 337 DDR2_DQ 26 CMOS 1 0 H41 DDRO_DQ 16 CMOS 1 0 J38 VSS GND H42 RSVD J39 DDR2_DQ 19 CMOS 1 0 H43 DDRO_DQ 17 CMOS 1 0 J4 DDR1_DQ 52 CMOS 1 0 H5 VSS GND J40 DDR2_DQ 18 CMOS 1 0 H6 DDR1_DQS_P 5 CMOS 1 0 J41 DDRO_DQ 21 CMOS 1 0 H7 RSVD J42 DDRO_DQ 20 CMOS 1 0 H8 DDR1_DQ 40 CMOS I O J43 VSS GND H9 DDR1_DQ 45 CMOS 1 0 J5 DDR1_DQ 47 CMOS 1 0 J1 RSVD J6 DDR1 DQ 41 CMOS 1 0 J10 DDR2_DQS_P 4 CMOS I O J7 RSVD J11 RSVD J8 VSS GND J12 DDR2 DQ 33 CMOS I O J9 DDR2 DQS N 4 CMOS I O J13 VSS GND K1 VSS GND J14 DDR1_MA 0 CMOS O K10 DDR2_DQ 41 CMOS 1 0 J15 RSVD K11 VSS GND J16 DDR1_MA 1 CMOS O K12 DDR2_DQ 32 CMOS 1 0 J17 DDR1_MA 2 CMOS K13 DDR1_BA 1 CMOS O J18 VDDQ PWR K14 DDR2_CS 1 CMOS O J19 DDRO_CLK_P 0 CLOCK O K15 RSVD J2 RSVD K16 VDDQ PWR J20 DDR2_MA 3 CMOS O K17 DDR2_MA 1 CMOS O J21 DDR2 CLK N 0 CLOCK K18 DDR1 CLK P 2 CLOCK 322 DDR2_CLK_P 0 CLOCK K19 DDRO_CLK_N 0 CLOCK 323 VDDQ PWR K
11. ODT resistors There are some signals that do not have ODT and need to be terminated on the board The signals that have ODT are listed in Table 2 4 Signal Groups Sheet 1 of 2 Signal Group Type Signals System Reference Clock Differential Clock Input BCLK_DP BCLK_DN Intel QPI Signal Groups Differential Intel QPI Input Differential Intel QPI Output QPI DRX D N P 19 0 QPI_CLKRX_DP QPI CLKRX DN GPL DTX D N P 19 0 QPI CLKTX DP QPI CLKTX DN DDR3 Reference Clocks Differential DDR3 Output DDR 0 1 2 _CLK D P 3 0 DDR3 Command Signals Single ended CMOS Output DDR 0 1 2 _RAS DDR 0 1 2 _CAS DDR 0 1 2 _WE DDR 0 1 2 _MA 15 0 DDR 0 1 2 _BA 2 0 Single ended Asynchronous Output DDR 0 1 2 _RESET DDR3 Control Signals Single ended CMOS Output DDR 0 1 2 _CS 5 4 DDR 0 1 2 CS 1 0 DDR 0 1 2 _ODT 3 0 DDR 0 1 2 _CKE 3 0 DDR3 Data Signals Single ended CMOS Bi directional DDR 0 1 2 _DQ 63 0 DDR 0 1 2 _ECC 7 0 Differential CMOS Bi directional DDR 0 1 2 _DQS_ N P 7 0 TAP Single ended TAP Input TCK TDI TMS TRST Single ended GTL Output TDO Control Sideband Single ended Asynchronous GTL Output PRDY Single ended Asynchronous GTL Input PREQ Single ended GTL Bi directional CAT_ERR BPM 7 0 Single Ended Asynchronous Bi directional PECI Single Ended Analog Input COMPO QPI CMP 0 DDR COMP 2 0 Si
12. Once below the TCC activation temperature TM1 will be discontinued and TM2 will be exited by stepping up to the appropriate ratio VID state Intel Xeon Processor 3500 Series Datasheet Volume 1 m Thermal Specifications n tel 6 2 2 4 6 2 2 5 6 2 3 Critical Temperature Flag If TM2 is unable to reduce the processor temperature then TM1 will be also be activated TM1 and TM2 will then work together to reduce power dissipation and temperature It is expected that only a catastrophic thermal solution failure would create a situation where both TM1 and TM2 are active If TM1 and TM2 have both been active for greater than 20 ms and the processor temperature has not dropped below the TCC activation point then the Critical Temperature Flag in the IA32_THERM_STATUS MSR will be set This flag is an indicator of a catastrophic thermal solution failure and that the processor cannot reduce its temperature Unless immediate action is taken to resolve the failure the processor will probably reach the Thermtrip temperature see Section 6 2 3 Thermtrip Signal within a short time To prevent possible permanent silicon damage Intel recommends removing power from the processor within Y second of the Critical Temperature Flag being set PROCHOT Signal An external signal PROCHOT processor hot is asserted when the processor core temperature has exceeded its specification If Adaptive Thermal Monitor is enabled note it must be enabled
13. Packet based protocol Point to point cache coherent interconnect Intel Interconnect Built In Self Test Intel IBIST toolbox built in e 1366 land Package e ECC and DCA Direct Cache Access Intel Xeon Processor 3500 Series Datasheet Volume 1 Revision History Revision Number Description Date 321332 001 e Public release March 2009 e Added Processor Information for W3580 W3550 July 2009 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Datasheet Volume 1 Introduction 1 Figure 1 1 Note intel Introduction The Intel Xeon Processor 3500 Series are intended for Uni processor UP and workstation systems Several architectural and microarchitectural enhancements have been added to this processor including four processor cores in the processor package and increased shared cache The Intel Xeon Processor 3500 Series is the first multi core processor to implement key new technologies e Integrated memory controller e Point to point link interface based on Intel QuickPath Interconnect Intel QPI Figure 1 1 shows the interfaces used with these new technologies High Level View of Processor Interfaces Processor Intel QuickPath Interconnect Intel QPI In this document the Intel Xeon Processor 3500 Series will be referred to as the processor The processor is optimized for performance
14. Processor 3500 Series Datasheet Volume 1 m Thermal Specifications n tel 6 2 2 1 The Thermal Monitor does not reguire any additional hardware software drivers or interrupt handling routines The following sections provide more details on the different TCC mechanisms used by the Intel Xeon Processor 3500 Series Freguency VID Control When the Digital Temperature Sensor DTS reaches a value of 0 DTS temperatures reported via PECI may not equal zero when PROCHOT is activated see Section 6 3 for further details the TCC will be activated and the PROCHOT signal will be asserted This indicates the processors temperature has met or exceeded the factory calibrated trip temperature and it will take action to reduce the temperature Upon activation of the TCC the processor will stop the core clocks reduce the core ratio multiplier by 1 ratio and restart the clocks All processor activity stops during this frequency transition which occurs within 2 us Once the clocks have been restarted at the new lower frequency processor activity resumes while the voltage requested by the VID lines is stepped down to the minimum possible for the particular frequency Running the processor at the lower frequency and voltage will reduce power consumption and should allow the processor to cool off If after 1ms the processor is still too hot the temperature has not dropped below the TCC activation point DTS still 0 and PROCHOT is still active then
15. VrrD m Low level output sink Isi 1 A SIR VoL 0 25 Vrrp Zi i r High impedance state leakage to V Theses ME SFS TB N A 100 UA 2 Vieak VoL High i d leak to GND Teak igh impedance leakage to N A 100 UA 2 Vieak Von Cbus Bus capacitance per node N A 10 pF Vnoise Signal noise immunity above 300 MHz 0 1 Vip N A Vp p Notes 1 Vrp supplies the PECI interface PECI behavior does not affect Vrrp min max specifications 2 The leakage specification applies to powered devices on the PECI bus Intel Xeon Processor 3500 Series Datasheet Volume 1 m Electrical Specifications n tel 2 9 2 Input Device Hysteresis The input buffers in both client and host models must use a Schmitt triggered input design for improved noise immunity Use Figure 2 2 as a guide for input buffer design Figure 2 2 Input Device Hysteresis Vro 2 R Maximum Vp J PECI High Range Yj Minimum Vp B Minimum gt Valid Input Hysteresis Signal Range Maximum Vy Minimum Vy SS PECI Low Range PECI Ground S 2 10 Absolute Maximum and Minimum Ratings Table 2 6 specifies absolute maximum and minimum ratings which lie outside the functional limits of the processor Only within specified operation limits can functionality and long term reliability be expected At conditions outside functional operation condition limits but within absolute maximum and minimum ratings neither functio
16. the maximum processor power consumption The Adaptive Thermal Monitor feature is intended to help protect the processor in the event that an application exceeds the TDP recommendation for a sustained time period For more details on this feature refer to Section 6 2 Refer to the appropriate processor Thermal and Mechanical Design Guide see Section 1 2 for details on system thermal solution design thermal profiles and environmental considerations Table 6 1 Processor Thermal Specifications Core Thermal Idle Minimum Maximum TTV ln e nd Processor Design Power Power TTV TcasE TcasE Notes Frequenc Processor TTV ixi W W C C C W 5 W3580 3 33 GHz 130 12 5 0 222 W3570 3 20 GHz 130 12 5 i 0 222 W3550 3 06 GHz 130 12 5 aci al e 1 0 222 sear W3540 2 93 GHz 130 12 5 0 222 W3520 2 66 GHz 130 15 5 0 222 Notes 1 80 These values are specified at Vcc max for all processor frequencies Systems must be designed to ensure the processor is not to be subjected to any static Vcc and Icc combination wherein Vcc exceeds Vcc max at specified Icc Refer to the loadline specifications in Chapter 2 m Thermal Design Power TDP should be used for processor thermal solution design targets TDP is not the maximum power that the processor can dissipate TDP is measured at the TCC activation temperature These specifications are based on initial silicon characterization These specifications may be further
17. 0 0 0 1 1 0 99375 0 0 0 0 1 0 0 1 1 55625 0 1 1 0 0 1 0 o 0 98750 0 0 0 0 1 0 1 0 1 55000 0 1 1 0 0 1 0 1 0 98125 0 0 0 0 1 0 1 1 1 54375 0 1 1 0 0 1 1 0 0 97500 0 0 0 0 1 1 0 0 1 53750 0 1 1 0 0 1 1 1 0 96875 0 0 0 0 1 1 0 1 1 53125 0 1 1 0 1 0 0 0 0 96250 0 0 0 0 1 1 1 0 1 52500 0 1 1 0 1 0 0 1 0 95626 0 0 0 0 1 1 1 1 1 51875 0 1 1 0 1 0 1 o 0 95000 0 0 0 1 0 0 0 0 1 51250 0 1 1 0 1 0 1 1 0 94375 0 0 0 1 0 0 0 1 1 50625 0 1 1 0 1 1 0 0 0 93750 0 0 0 1 0 0 1 0 1 50000 0 1 1 0 1 1 0 1 0 93125 0 0 0 1 0 0 1 1 1 49375 0 1 1 0 1 1 1 0 0 92500 0 0 0 1 0 1 0 0 1 48750 0 1 1 0 1 1 1 1 0 91875 0 0 0 1 0 1 0 1 1 48125 0 1 1 1 0 0 0 o 0 91250 0 0 0 1 0 1 1 o 1 47500 0 1 1 1 0 0 0 1 0 90625 0 0 0 1 0 1 1 1 1 46875 0 1 1 1 0 0 1 o 0 90000 0 0 0 1 1 0 0 0 1 46250 0 1 1 1 0 0 1 1 0 89375 0 0 0 1 1 0 0 1 1 45625 0 1 1 1 0 1 0 o 0 88750 0 0 0 1 1 0 1 0 1 45000 0 1 1 1 0 1 0 1 0 88125 0 0 0 1 1 0 1 1 1 44375 0 1 1 1 0 1 1 o 0 87500 0 0 0 1 1 1 0 0 1 43750 0 1 1 1 0 1 1 1 0 86875 0 0 0 1 1 1 0 1 1 43125 0 1 1 1 1 0 0 o 0 86250 0 0 0 1 1 1 1 0 1 42500 0 1 1 1 1 0 0 1 0 85625 Intel Xeon Processor 3500 Series Datasheet Volume 1 15 Electrical Specifications intel Sheet 2 of 3 inition Voltage Identification Def Table 2 1 Vcc Max 0 85000 0 84374 0 83750 0 83125 0 82500 0 81875 0 81250 0 80625 0 80000 0 7937
18. 17 259 Signal GrOW PS sis E 18 2 4 Signals With ODT rrain a Acad 19 225 PECI DC Electrical Limits cnica ci A i ka baw o i 20 2 6 Processor Absolute Minimum and Maximum Ratings seseseesn m 22 2 7 Voltage and Current SpecificationS cccceeeee eee eee eee ee eee nennen memes 23 2 8 VCC Static and Transient Tolerance cceceee cece eee eee eee eee kak aka aa kaka kaka kak kk kaka kk aka 24 2 9 VIT Voltage Identification VID Definition cece eee cece cette eee eee e eens Hn 25 2 10 VIT Static and Transient Tolerance cccceceee eee eee ee ee ee eee eee aka ka kalak kak kk aka lk kak ka a 25 2 11 DDR3 Signal Group DC Specifications 0 kk ee eect aaa neta eee eens aa kaka kk kk kk kake 27 2 12 RESET Signal DC Specifications 5 tis xil dees aina aa a ika aaa kh ia a ba ceased i ja 28 2 13 TAP Signal Group DC Specifications cccceeece cece eee kk kk ee nemen 28 2 14 PWRGOOD Signal Group DC Specifications esssssssssssseeeene mmn 28 2 15 Control Sideband Signal Group DC SpecificatiONS cocococccconononcnconennrnennnnnnennnnnnnnnnes 29 2 16 VCC Overshoot Specifications 2eeeceee eee aa a RR W ba b n aa Wa ba aAA 29 3 1 Processor Loading Specifications y hLhL k W L lkkk kk kk kk kk kk kk kk kk kk kk kk kk kak 34 3 2 Package Handling Guidelines na kk es kerk kan cata a 34 3 3 Processor Materials iren dak kak ninen cn Kai ik aj k ra kn
19. 36 Sheet 2 of 36 Land Name pow m Direction Land Name pod ae Direction BCLK DN AH35 CMOS I DDRO_CS 5 A7 CMOS O BCLK_DP AJ35 CMOS I DDRO DQ 0 W41 CMOS I O BCLK ITP DN AA4 CMOS O DDRO_DQ 1 V41 CMOS I O BCLK_ITP_DP AA5 CMOS O DDRO_DQ 10 K42 CMOS 1 0 BPM 0 B3 GTL I O DDRO DQ 11 K43 CMOS I O BPM 1 A5 GTL 1 0 DDRO_DQ 12 P42 CMOS 1 0 BPM 2 C2 GTL 1 0 DDRO_DQ 13 P41 CMOS 1 0 BPM4 3 B4 GTL 1 0 DDRO_DQ 14 L43 CMOS 1 0 BPM 4 D1 GTL 1 0 DDRO_DQ 15 L42 CMOS 1 0 BPM 5 C3 GTL 1 0 DDRO_DQ 16 H41 CMOS 1 0 BPM 6 D2 GTL 1 0 DDRO_DQ 17 H43 CMOS 1 0 BPM 7 E2 GTL 1 0 DDRO DQ 18 E42 CMOS 1 0 CAT_ERR AC37 GTL 1 0 DDRO_DQ 19 E43 CMOS I O COMPO AB41 Analog DDRO DQ 2 R43 CMOS 1 0 DBR AF10 Asynch I DDRO_DQ 20 J42 CMOS 1 0 DDR_COMP 0 AA8 Analog DDRO_DQ 21 J41 CMOS 1 0 DDR_COMP 1 Y7 Analog DDRO DQ 22 F43 CMOS I O DDR COMP 2 AC1 Analog DDRO DQ 23 F42 CMOS I O DDR VREF L23 Analog I DDRO DQ 24 D40 CMOS 1 0 DDRO BA 0 B16 CMOS O DDRO_DQ 25 C41 CMOS 1 0 DDRO_BA 1 A16 CMOS O DDRO_DQ 26 A38 CMOS 1 0 DDRO_BA 2 C28 CMOS O DDRO_DQ 27 D37 CMOS 1 0 DDRO_CAS C12 CMOS O DDRO_DQ 28 D41 CMOS I O DDRO_CKE 0 C29 CMOS O DDRO_DQ 29 D42 CMOS 1 0 DDRO_CKE 1 A30 CMOS O DDRO_DQ 3 R42 CMOS 1 0 DDRO_CKE 2 B30 CMOS O DDRO_DQ 30 C38 CMOS 1 0 DDRO_CKE 3 B31 CMOS O DDRO DQ 31 B38 CMOS I O DDRO CLK N 0 K19 CLOCK O DDRO_DQ 32 BS CMOS 1 0 DDRO_CLK_N 1 C19 CLOCK O DDRO_DQ 33 C4 CMOS I O DDRO CLK N 2 E18 CLOCK O DDRO_DQ 34 F1 CMOS 1 0
20. AB42 VSS GND AB43 QPI_DTX_DN 13 QPI O AB5 RSVD AB6 RSVD AB7 VSS GND AB8 VTTD PWR AB9 VTTD PWR AC1 DDR COMP 2 Analog AC10 VTTD PWR AC11 VTTD PWR AC2 VSS GND AC3 RSVD AC33 VTTD PWR AC34 VTTD PWR AC35 VTTD PWR AC36 VSS GND Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 3 of 36 intel Table 4 2 Land Listing by Land Number Sheet 4 of 36 ps Pin Name pied Direction N Pin Name pose Direction AC37 CAT ERR GTL I O AE3 RSVD AC38 QPI DTX DN 16 QPI O AE33 VTTA PWR AC39 QPI_DTX_DP 16 QPI O AE34 VTTD PWR AC4 RSVD AE35 VTTD PWR AC40 QPI_DTX_DN 15 QPI O AE36 VTT_SENSE Analog AC41 QPI_DTX_DP 15 QPI O AE37 VSS_SENSE_VTT Analog AC42 QPI DTX DN 12 QPI O AE38 QPI_DTX_DN 18 QPI O AC43 QPI_DTX_DP 13 QPI O AE39 VSS GND AC5 VSS GND AE4 RSVD AC6 RSVD AE40 QPI_DTX_DP 19 QPI O AC7 VSS GND AE41 QPI_DTX_DN 11 QPI O AC8 RSVD AE42 QPI_DTX_DP 11 QPI O AC9 VSS GND AE43 QPI_DTX_DN 10 QPI O AD1 RSVD AE5 RSVD AD10 VTTA PWR AE6 RSVD AD11 vss GND AE7 vss GND AD2 RSVD AE8 VTTD PWR AD3 RSVD AE9 VTTD PWR AD33 VSS GND AF1 RSVD AD34 VTTD PWR AF10 DBR Asynch I AD35 VTTD PWR AF11 VTTA PWR AD36 VTTD PWR AF2 RSVD AD37 VSS GND AF3 RSVD AD38 QPI_DTX_DP 18 QPI O AF33 VTTA PWR AD39 QPI_DTX_DN 14 QPI O AF34 VTTA PWR AD4 RSVD A
21. AE2 GND VSS AL2 GND VSS AE39 GND VSS AL20 GND VSS AE7 GND VSS AL22 GND VSS AF35 GND VSS AL23 GND VSS AF38 GND VSS AL26 GND VSS AF41 GND VSS AL29 GND VSS AF5 GND VSS AL32 GND VSS AG11 GND VSS AL35 GND VSS AG3 GND VSS AL36 GND VSS AG33 GND VSS AL37 GND VSS AG43 GND VSS AL42 GND Intel Xeon Processor 3500 Series Datasheet Volume 1 51 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 29 of 36 Sheet 30 of 36 Land Name p gaia Direction Land Name ee pos Direction VSS AL7 GND VSS AP32 GND VSS AM11 GND VSS AP35 GND VSS AM14 GND VSS AP36 GND VSS AM17 GND VSS AP37 GND VSS AM20 GND VSS AP43 GND VSS AM22 GND VSS AP5 GND VSS AM23 GND VSS AP6 GND VSS AM26 GND vss AR11 GND VSS AM29 GND VSS AR14 GND VSS AM32 GND VSS AR17 GND vss am35 cv vss AR2 GND VSS AM37 GND VSS AR20 GND VSS AM39 GND VSS AR22 GND VSS AM5 GND VSS AR23 GND VSS AM9 GND VSS AR26 GND VSS AN11 GND VSS AR29 GND VSS AN14 GND VSS AR3 GND VSS AN17 GND VSS AR32 GND vss AN20 GND VSS AR35 GND VSS AN22 GND VSS AR39 GND VSS AN23 GND VSS AT11 GND VSS AN26 GND VSS AT14 GND VSS AN29 GND VSS AT17 GND VSS AN3 GND VSS AT20 GND vss AN32 GND VSS AT22 GND VSS AN35 GND VSS AT23 GND VSS AN37 GND VSS AT26 GND VSS AN41 GND VSS AT29 GND VSS AN7 G
22. CMOS 1 0 Y5 RSVD W42 DDRO_DQ 5 CMOS I O Y6 VSS GND w43 vss GND Y7 DDR COMP 1 Analog W5 DDR1 DQ 61 CMOS 1 0 Y8 DDR1_DQS_P 7 CMOS 1 0 W6 DDR1 DQ 56 CMOS I O Y9 DDR1 DOS N 7 CMOS I O W7 DDR1 DQ 57 CMOS 1 0 w8 VSS GND w9 DDR1_DQ 63 CMOS 1 0 Intel Xeon Processor 3500 Series Datasheet Volume 1 73 74 Intel Xeon Processor 3500 Series Land Listing Intel Xeon Processor 3500 Series Datasheet Volume 1 Signal Definitions 5 5 1 Signal Definitions Signal Definitions Table 5 1 Signal Definitions Sheet 1 of 4 Name Type Description Notes BCLK_DN I Differential bus clock input to the processor BCLK_DP BCLK_ITP_DN O Buffered differential bus clock pair to ITP BCLK_ITP_DP BPM 7 0 I O BPM 7 0 are breakpoint and performance monitor signals They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance BPM 7 0 should be connected in a wired OR topology between all packages on a platform The end points for the wired OR connections must be terminated CAT_ERR I O Indicates that the system has experienced a catastrophic error and cannot continue to operate The processor will set this for non recoverable machine check errors and other internal unrecoverable error Since this is an I O pin external agents are allowed to assert this pin which will caus
23. DDRO_CLK_N 3 E19 CLOCK O DDRO_DQ 35 G3 CMOS 1 0 DDRO_CLK_P 0 J19 CLOCK O DDRO_DQ 36 B6 CMOS I O DDRO CLK P 1 D19 CLOCK O DDRO_DQ 37 C6 CMOS I O DDRO_CLK_P 2 F18 CLOCK o DDRO_DQ 38 F3 CMOS 1 0 DDRO_CLK_P 3 E20 CLOCK O DDRO_DQ 39 F2 CMOS 1 0 DDRO_CS 0 G15 CMOS O DDRO_DQ 4 W40 CMOS I O DDRO_CS 1 B10 CMOS O DDRO_DQ 40 H2 CMOS 1 0 DDRO_CS 4 B15 CMOS O DDRO DQ 41 Hi CMOS I O 38 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Intel Xeon Processor 3500 Series Land Listing n tel Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 3 of 36 Sheet 4 of 36 Land Name pole 2 Direction Land Name peg pridie Direction UDDRO DG42 la cwo lyo DDRO DOS P 3 B39 cmos ro DDRO DQ 43 M1 CMOS 1 0 DDRO DOS P 4 E3 CMOS 1 0 DDRO_DQ 44 Gi CMOS 1 0 DDRO DOS P 5 K2 CMOS 1 0 DDRO_DQ 45 H3 CMOS 1 0 DDRO DOS P 6 R2 CMOS 1 0 DDRO_DQ 46 L3 CMOS 1 0 DDRO_DQS_P 7 w2 CMOS 1 0 DDRO_DQ 47 L2 CMOS 1 0 DDRO_DQS_P 8 D34 CMOS 1 0 DDRO DQ 48 N1 CMOS 1 0 DDRO_ECC 0 C36 CMOS 1 0 DDRO_DQ 49 N2 CMOS 1 0 DDRO_ECC 1 A36 CMOS 1 0 DDRO_DQ 5 w42 CMOS 1 0 DDRO_ECC 2 F32 CMOS 1 0 pbRo po T1 CMos lyo DDRO ECC 3 C33 CMOS ro DDRO DQ 51 T2 CMOS 1 0 DDRO_ECC 4 C37 CMOS 1 0 DDRO_DQ 52 M3 CMOS 1 0 DDRO_ECC 5 A37 CMOS 1 0 UDDRO DG 53 N3 cm
24. GHz Enhanced Intel Speedstep Technology e Supports Intel 64 Architecture e Multiple low power states e 8 way cache associativity provides improved cache hit rate on load store operations e System Memory Interface Supports Intel virtualization Technology Intel Turbo Boost Technology Supports Execute Disable Bit capability Binary compatible with applications running on previous members of the Intel microprocessor line Intel Wide Dynamic Execution Very deep out of order execution Enhanced branch prediction Optimized for 32 bit applications running on advanced 32 bit operating systems Intel Smart Cache 8 MB Level 3 cache Intel Advanced Digital Media Boost Enhanced floating point and multimedia unit for enhanced video audio encryption and 3D performance New accelerators for improved string and text processing operations Power Management capabilities System Management mode Memory controller integrated in processor package 3 channels 2 DIMMs channel supported 6 total 24 GB maximum memory supported Support unbuffered DIMMs only Single Rank and Dual Rank DIMMs supported DDR3 speeds of 800 1066 MHz supported 512 Mb 1 Gb 2 Gb Technologies Densities supported Intel QuickPath Interconnect Intel QPI Fast narrow unidirectional links Concurrent bi directional traffic Error detection via CRC Error correction via Link level retry
25. L40 DDR2_DQ 22 CMOS 1 0 K6 VSS GND L41 DDRO DOS P 1 CMOS 1 0 K7 DDR2_DQS_N 5 CMOS 1 0 L42 DDRO_DQ 15 CMOS 1 0 K8 RSVD L43 DDRO DQ 14 CMOS 1 0 K9 RSVD L5 DDR1_DQS_N 6 CMOS 1 0 L1 DDRO_DQ 42 CMOS 1 0 L6 DDR1_DQS_P 6 CMOS 1 0 L10 DDR2_DQ 40 CMOS 1 0 L7 DDR2 DOS P 5 CMOS 1 0 L11 DDR2 DQ 44 CMOS 1 0 L8 DDR2 DQ 46 CMOS 1 0 L12 DDR2 DQ 39 CMOS 1 0 L9 VSS GND L13 DDR2 DQ 35 CMOS 1 0 1 DDRO DQ 43 CMOS 1 0 L14 VDDQ PWR 10 DDR2 DQ 45 CMOS 1 0 L15 RSVD 11 VCC PWR L16 DDR2 ODT 0 CMOS O M12 vss GND L17 RSVD M13 VCC PWR L18 DDR1_CLK_N 2 CLOCK O M14 vss GND L19 VDDQ PWR 15 VCC PWR L2 DDRO_DQ 47 CMOS 1 0 16 vss GND L20 DDR2_CLK_P 1 CLOCK O 17 VDDQ PWR L21 DDR2_CLK_N 3 CLOCK O M18 vss GND L22 DDR2_CLK_P 3 CLOCK O M19 VCC PWR L23 DDR_VREF Analog I M2 VSS GND L24 VDDQ PWR 20 vss GND L25 DDR2 MA 8 CMOS O 21 VCC PWR L26 DDR2_BA 2 CMOS O 22 vss GND L27 DDR2_CKE 3 CMOS O M23 VCC PWR L28 DDR1_MA 3 CMOS O M24 vss GND L29 VSS GND M25 VCC PWR 70 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 31 of 36 intel Table 4 2 Land Listing by Land Number Sheet 32 of 36 pos Pin Name e Direction pog Pin Name e Direction M26 VSS GND N41 DDRO_DQ 8 CMOS 1 0 M27 VDDQ PWR N42 RSVD
26. Notes 1 Diagram does not show the attached hardware for the clip design and is provided only as a mechanical representation Figure 8 4 Space Requirements for the Boxed Processor overall view Intel Xeon Processor 3500 Series Datasheet Volume 1 101 8 2 3 8 3 8 3 1 Figure 8 5 102 n tel Boxed Processor Specifications Boxed Processor Fan Heatsink Weight The boxed processor fan heatsink will not weigh more than 550 grams See Chapter 6 and the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 for details on the processor weight and heatsink requirements Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly The boxed processor thermal solution requires a heatsink attach clip assembly to secure the processor and fan heatsink in the baseboard socket The boxed processor will ship with the heatsink attach clip assembly Electrical Requirements Fan Heatsink Power Supply The boxed processor s fan heatsink requires a 12 V power supply A fan power cable will be shipped with the boxed processor to draw power from a power header on the baseboard The power cable connector and pinout are shown in Figure 8 5 Baseboards must provide a matched power header to support the boxed processor Table 8 1 contains specifications for the input and output signals at the fan heatsink connector The fan heatsink outputs a SENSE signal which is an open collector output
27. O DDR1_DQS_N 1 R37 CMOS 1 0 DDR1_MA 8 E22 CMOS O DDR1_DQS_N 2 L36 CMOS 1 0 DDR1_MA 9 G24 CMOS O DDR1_DQS_N 3 L31 CMOS 1 0 DDR1_ODT 0 D11 CMOS O DDR1_DQS_N 4 D7 CMOS 1 0 DDR1 ODI 1 C8 CMOS O DDR1_DQS_N 5 G6 CMOS 1 0 DDR1_ODT 2 D14 CMOS O DDR1_DQS_N 6 L5 CMOS 1 0 DDR1_ODT 3 Fil CMOS O DDR1 DQS N 7 Y9 CMOS I O DDR1_RAS G14 CMOS O DDR1_DQS_N 8 G34 CMOS I O DDR1_RESET D29 CMOS O DDR1_DQS_P 0 Y38 CMOS I O DDR1_WE G13 CMOS O DDR1_DQS_P 1 R38 CMOS 1 0 DDR2 BA 0 A17 CMOS O DDR1_DQS_P 2 L35 CMOS 1 0 DDR2_BA 1 F17 CMOS O DDR1_DQS_P 3 L30 CMOS 1 0 DDR2_BA 2 L26 CMOS O DDR1_DQS_P 4 E7 CMOS I O DDR2_CAS F16 CMOS O DDR1_DQS_P 5 H6 CMOS 1 0 DDR2_CKE 0 J26 CMOS O DDR1_DQS_P 6 L6 CMOS 1 0 DDR2_CKE 1 G26 CMOS O DDR1_DQS_P 7 Y8 CMOS 1 0 DDR2_CKE 2 D26 CMOS O DDR1_DQS_P 8 G33 CMOS 1 0 DDR2_CKE 3 L27 CMOS O DDR1 ECC O0 D36 CMOS 1 0 DDR2 CLK N 0 J21 CLOCK o DDR1_ECC 1 F36 CMOS 1 0 DDR2_CLK_N 1 K20 CLOCK o DDR1_ECC 2 E33 CMOS 1 0 DDR2_CLK_N 2 G21 CLOCK o DDR1 ECC 3 G36 CMOS 1 0 DDR2_CLK_N 3 L21 CLOCK o DDR1_ECC 4 E37 CMOS 1 0 DDR2_CLK_P 0 J22 CLOCK o DDR1 ECC 5 F37 CMOS 1 0 DDR2_CLK_P 1 L20 CLOCK o DDR1 ECC 6 E34 CMOS 1 0 DDR2 CLK P 2 H21 CLOCK o DDR1 ECC 7 G35 CMOS 1 0 DDR2_CLK_P 3 L22 CLOCK o DDR1_MA 0 J14 CMOS O DDR2_CS 0 G16 CMOS O DDR1_MA 1 J16 CMOS O DDR2_CS 1 K14 CMOS O DDR1_MA 10 H14 CMOS O DDR2_CS 4 E17 CMOS O DDR1_MA 11 E23 CMOS O DDR2_CS 5 D9 CMOS O DDR1_MA 12 E24 CMOS O DDR2_DQ 0 w34 C
28. Specifications iecore be at a n k aka I aida 89 6 4 Storage Conditions Specifications kk kk kk kk kk aaa aaa kaka kasai 90 Intel Xeon Processor 3500 Series Datasheet Volume 1 3 intel FedtU res coincida BARRE ka i k ej a a ik a a IR MEE DV Raga 93 7 1 Power On Configuration POC is lt k kcska xlkla ak hs askk lalan kalk ka dak al a alla lk ake ku a eh a k d al k kaka aaa 93 7 2 Clock Control and Low Power StateS Mk Kk hA kkkk kk kk kk kk kk kk kaka aaa aaa kaka kk ka kaka ka 93 7 2 1 Thread and Core Power State Descriptions Lhk kFk kWIkkkklk kk esse eee kaka eee kaka 94 7 2 2 Package Power State DescriptiONS ocococcccoccnnncnccnnenncnnnnnennancnnnencnnenanrnnanen 95 723 Sleep States in a A a sl als respon aa a E ka 96 7 4 ACPI P States Intel Turbo Boost Technology kk kk ka 96 7 5 Enhanced Intel SpeedStep Technology eene enne n 97 Boxed Processor Specifications ccccceceeee eee ee eee kk kk kak eee nemen 99 6 4 INErOdUCEON em 99 8 2 Mechanical Sp cifications setae cei ska sis da dad a da dade 100 8 2 1 Boxed Processor Cooling Solution Dimensions esee 100 8 2 2 Boxed Processor Fan Heatsink Weight hk h WhkWkkkl kk kk kk kk kk kk kk k 102 8 2 3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly 102 8 3 Electrical Requirements gt sc sa as siyana Laninas binan si i conde a W k yk d
29. _CKE 3 0 Clock Enable DDR 0 1 2 _CLK_N 2 0 O Differential clocks to the DIMM All command and control signals are valid on the DDR 0 1 2 _CLK_P 2 0 rising edge of clock DDR 0 1 2 _CS 1 0 O Each signal selects one rank as the target of the command and address DDR 0 1 2 _CS 5 4 DDR 0 1 2 _DQ 63 0 I O DDR3 Data bits DDR 0 1 2 _DQS_N 7 0 1 0 Differential pair Data Strobe x8 Differential strobes latch data for each DRAM DDR 0 1 2 _DQS_P 7 0 Different numbers of strobes are used depending on whether the connected T gt DRAMs are x4 or x8 Driven with edges in center of data receive edges are aligned with data edges Intel Xeon Processor 3500 Series Datasheet Volume 1 75 intel Table 5 1 Signal Definitions Signal Definitions Sheet 2 of 4 Name DDR 0 1 2 _DQS_N 8 DDR 0 1 2 _DQS_P 8 Type 1 0 Description Differential pair ECC Check Bit Strobe Differential strobes latch data ECC for each DRAM Different numbers of strobes are used depending on whether the connected DRAMs are x4 x8 Driven with edges in center of data receive edges are aligned with data edges Notes DDR 0 1 2 _ECC 7 0 I O Check Bits An Error Correction Code is driven along with data on these lines for DIMMS that support that capability DDR 0 1 2 _MA 15 0 Selects the Row address for Reads and writes and the column address for activates Also used to set values for DRAM configuration registers DDR
30. a second frequency and voltage transition will take place This sequence of temperature checking and Frequency VID reduction will continue until either the minimum frequency has been reached or the processor temperature has dropped below the TCC activation point If the processor temperature remains above the TCC activation point even after the minimum frequency has been reached then clock modulation described below at that minimum frequency will be initiated There is no end user software or hardware mechanism to initiate this automated TCC activation behavior A small amount of hysteresis has been included to prevent rapid active inactive transitions of the TCC when the processor temperature is near the TCC activation temperature Once the temperature has dropped below the trip temperature and the hysteresis timer has expired the operating frequency and voltage transition back to the normal system operating point via the intermediate VID frequency points Transition of the VID code will occur first to insure proper operation as the frequency is increased Refer to Table 6 3 for an illustration of this ordering Intel Xeon Processor 3500 Series Datasheet Volume 1 85 m n tel Thermal Specifications Figure 6 3 6 2 2 2 6 2 2 3 86 Frequency and Voltage Ordering BE d Temperature fuax EI 2 Frequency ViDfmax VIDf 7 gute VID 7 777 VID B PROCHOT Clock Modulation Clock modulation is
31. a second method of thermal control available to the processor Clock modulation is performed by rapidly turning the clocks off and on at a duty cycle that should reduce power dissipation by about 50 typically a 30 50 duty cycle Clocks often will not be off for more than 32 microseconds when the TCC is active Cycle times are independent of processor frequency The duty cycle for the TCC when activated by the Thermal Monitor is factory configured and cannot be modified It is possible for software to initiate clock modulation with configurable duty cycles A small amount of hysteresis has been included to prevent rapid active inactive transitions of the TCC when the processor temperature is near its maximum operating temperature Once the temperature has dropped below the maximum operating temperature and the hysteresis timer has expired the TCC goes inactive and clock modulation ceases Immediate Transiton to combined TM1 and TM2 As mentioned above when the TCC is activated the processor will sequentially step down the ratio multipliers and VIDs in an attempt to reduce the silicon temperature If the temperature continues to increase and exceeds the TCC activation temperature by approximately 5 C before the lowest ratio VID combination has been reached then the processor will immediately transition to the combined TM1 TM2 condition The processor will remain in this state until the temperature has dropped below the TCC activation point
32. description of MSID and CSC Clock Control and Low Power States The processor supports low power states at the individual thread core and package level for optimal power management The processor implements software interfaces for requesting low power states MWAIT instruction extensions with sub state hints the HLT instruction for C1 and C1E and P LVLx reads to the ACPI P BLK register block mapped in the processor s I O address space The P_LVLx I O reads are converted to equivalent MWAIT C state requests inside the processor and do not directly result in I O reads to the system The P LVLx I O Monitor address does not need to be set up before using the P LVLx I O read interface Software may make C state requests by using a legacy method involving I O reads from the ACPI defined processor clock control registers referred to as P_LVLx This feature is designed to provide legacy support for operating systems that initiate C state transitions via access to pre defined ICH registers The base P LVLx register is P LVL2 corresponding to a C3 request P_LVL3 is C6 P LVLx is limited to a subset of C states For Example P LVL8 is not supported and will not cause an I O redirection to a C8 request Instead it will fall through like a normal I O instruction The range of I O addresses that may be converted into C state requests is also defined in the PMG IO CAPTURE MSR in the C state Range field This field maybe written by BIOS to restrict t
33. must be connected to their respective processor power planes while all VSS lands must be connected to the system ground plane The processor VCC lands must be supplied with the voltage determined by the processor Voltage IDentification VID signals Table 2 1 specifies the voltage level for the various VIDs Decoupling Guidelines Due to its large number of transistors and high internal clock speeds the processor is capable of generating large current swings between low and full power states This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate Larger bulk storage Cgu x such as electrolytic capacitors supply current during longer lasting changes in current demand such as coming out of an idle condition Similarly capacitors act as a storage well for current when entering an idle condition from a running condition Care must be taken in the baseboard design to Intel Xeon Processor 3500 Series Datasheet Volume 1 13 m e n tel Electrical Specifications 2 3 1 2 4 2 4 1 2 5 14 ensure that the voltage provided to the processor remains within the specifications listed in Table 2 7 Failure to do so can result in timing violations or reduced lifetime of the processor Vec Vrta Vrro Vppo Decoupling Voltage regulator solutions need to provide bulk capacitance and the baseboard designer must assure a low interconnect resistance from the regulator to the LGA1366 sock
34. processors with an integrated memory controller the DRAM will be put into self refresh Sleep States The processor supports the ACPI sleep states SO S1 S3 and S4 S5 as shown in For information on ACPI S states and related terminology refer to ACPI Specification The S state transitions are coordinated by the processor in response PM Request PMReq messages from the chipset The processor itself will never request a particular S state Processor S States S State Power Reduction Allowed Transitions S0 Normal Code Execution S1 via PMReq S1 Cores in C1E like state processor responds with SO via reset or PMReq CmpD S1 message S3 S4 via PMReq S3 Memory put into self refresh processor responds with SO via reset CmpD S3 message S4 S5 Processor responds with CmpD S4 S5 message SO via reset Notes 1 If the chipset requests an S state transition which is not allowed a machine check error will be generated by the processor ACPI P States Intel Turbo Boost Technology The processor supports ACPI P States A new feature is that the PO ACPI state will be a request for Intel Turbo Boost Technology This technology opportunistically and automatically allows the processor to run faster than its marked frequency if the processor is operating below power thermal and current specifications Maximum turbo frequency is dependant on the processor component and number of active cores No special ha
35. that provides a communication channel between Intel processors and chipset components to external thermal monitoring devices The processor contains a Digital Thermal Sensor DTS that reports a relative die temperature as an offset from Thermal Control Circuit TCC activation temperature Temperature sensors located throughout the die are implemented as analog to digital converters calibrated at the factory PECI provides an interface for external devices to read the DTS temperature for thermal management and fan speed control More detailed information may be found in the Platform Environment Control Interface PECI Specification DC Characteristics The PECI interface operates at a nominal voltage set by Vrp The set of DC electrical specifications shown in Table 2 5 is used with devices normally operating from a Vro interface supply V 7p nominal levels will vary between processor families All PECI devices will operate at the Vrp level determined by the processor installed in the system For specific nominal Vrp levels refer to Table 2 7 PECI DC Electrical Limits Symbol Definition and Conditions Min Max Units Notes Vin Input Voltage Range 0 150 VTD V Vhysteresis Hysteresis 0 1 Vip N A V Vn Negative edge threshold voltage 0 275 Vip 0 500 Vip V Vp Positive edge threshold voltage 0 550 Vip 0 725 Vip V High level output source I 6 N A A Sources Vou 0 75
36. that pulses at a rate of 2 pulses per fan revolution A baseboard pull up resistor provides Voy to match the system board mounted fan speed monitor requirements if applicable Use of the SENSE signal is optional If the SENSE signal is not used pin 3 of the connector should be tied to GND The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the connector labeled as CONTROL The boxed processor s fanheat sink requires a constant 12 V supplied to pin 2 and does not support variable voltage control or 3 pin PWM control The power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it The power header identification and location should be documented in the platform documentation or on the system board itself Figure 8 6 shows the location of the fan power connector relative to the processor socket The baseboard power header should be positioned within 110 mm 4 33 inches from the center of the processor socket Boxed Processor Fan Heatsink Power Cable Connector Description Pin Signal Straight square pin 4 pin terminal housing with 1 GND polarizing ribs and friction locking ramp 2 0 100 pitch 0 025 square pin width 4 CONTROL Match with straight pin friction lock header on mainboard Las EEEE 1234 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Boxed Processor Specifications i n tel
37. the integrated memory controller QPI and Shared Cache Power for the digital portion of the integrated memory controller QPI and Shared Cache Intel Xeon Processor 3500 Series Datasheet Volume 1 77 intel SENE Table 5 1 Signal Definitions Sheet 4 of 4 Name Type Description Notes VTT_VID 4 2 O VTT_VID 2 4 VTT Voltage ID are used to support automatic selection of power supply voltages Vr VTT_SENSE O VTT_SENSE and VSS_SENSE_VTT provide an isolated low impedance VSS_SENSE_VTT o connection to the processor Vyr voltage and ground They can used to sense or measure voltage near the silicon VTTPWRGOOD I The processor requires this input signal to be a clean indication that the V power supply is stable and within specifications Clean implies that the signal will remain low capable of sinking leakage current without glitches from the time that the power supplies are turned on until they come within specification The signal must then transition monotonically to a high state Note that it is not valid for VTTPWRGOOD to be deasserted while VCCPWRGOOD is asserted Notes 1 DDRX0 1 2 refers to DDR3 Channel 0 DDR3 Channel 1 and DDR3 Channel 2 8 78 Intel Xeon Processor 3500 Series Datasheet Volume 1 n Thermal Specifications n tel 6 Thermal Specifications 6 1 Package Thermal Specifications The processor reguires a thermal solution to mai
38. unimpeded Airflow of the fan heatsink is into the center and out of the sides of the fan heatsink Airspace is required around the fan to ensure that the airflow through the fan heatsink is not blocked Blocking the airflow to the fan heatsink reduces the cooling efficiency and decreases fan life Figure 8 7 and Figure 8 8 illustrate an acceptable airspace clearance for the fan heatsink The air temperature entering the fan should be kept below 40 9C Again meeting the processor s temperature specification is the responsibility of the system integrator Intel Xeon Processor 3500 Series Datasheet Volume 1 103 m e n tel p Boxed Processor Specifications Figure 8 7 Boxed Processor Fan Heatsink Airspace Keepout Reguirements top view Figure 8 8 Boxed Processor Fan Heatsink Airspace Keepout Requirements side view 81 3 3 2 a 104 Intel Xeon Processor 3500 Series Datasheet Volume 1 Boxed Processor Specifications n tel 8 4 2 Figure 8 9 Table 8 2 Variable Speed Fan If the boxed processor fan heatsink 4 pin connector is connected to a 3 pin motherboard header it will operate as follows The boxed processor fan will operate at different speeds over a short range of internal chassis temperatures This allows the processor fan to operate at a lower speed and noise level while internal chassis temperatures are low If internal chassis temperature in
39. 0 1 2 _ODT 3 0 Enables various combinations of termination resistance in the target and non target DIMMs when data is read or written DDR 0 1 2 _RAS Row Address Strobe DDR 0 1 2 _RESET Resets DRAMs Held low on power up held high during self refresh otherwise controlled by configuration register DDR 0 1 2 _WE Write Enable ISENSE PECI I O Current sense from VRD11 1 PECI Platform Environment Control Interface is the serial sideband interface to the processor and is used primarily for thermal power and error management Details regarding the PECI electrical specifications protocols and functions can be found in the Platform Environment Control Interface Specification PRDY PRDY is a processor output used by debug tools to determine processor debug readiness PREQ I O PREQ is used by debug tools to request debug operation of the processor PROCHOT I O PROCHOT will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature This indicates that the processor Thermal Control Circuit has been activated if enabled This signal can also be driven to the processor to activate the Thermal Control Circuit This signal does not have on die termination and must be terminated on the system board PSI RESET Processor Power Status Indicator signal This signal is asserted when maximum possi
40. 0 118 1 43 105 VID 0 084 VID 0 103 VID 0 122 L 2 3 110 VID 0 088 VID 0 107 VID 0 126 1 2 3 115 VID 0 092 VID 0 111 VID 0 130 1 2 3 120 VID 0 096 VID 0 115 VID 0 134 1 2 3 125 VID 0 100 VID 0 119 VID 0 138 1 2 3 130 VID 0 104 VID 0 123 VID 0 142 E 2 3 135 VID 0 108 VID 0 127 VID 0 146 1 2 3 140 VID 0 112 VID 0 131 VID 0 150 L 2 3 Notes 1 The Vcc min and Vcc max loadlines represent static and transient limits See Section 2 11 2 for Vec overshoot specifications 2 This table is intended to aid in reading discrete points on Figure 2 3 3 The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands Voltage regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and VSS_SENSE lands 24 Intel Xeon Processor 3500 Series Datasheet Volume 1 Electrical Specifications Figure 2 3 Vcc Static and Transient Tolerance Load Lines Table 2 9 Icc A VID VID VID VID VID VID VID VID VID VID VID VID VID VID VID 0 000 0 013 0 025 0 038 0 050 0 063 0 075 0 088 0 100 0 113 0 125 0 138 0 150 0 163 0 175 30 40 Vcc Typical 50 60 70 pi Vcc Minimum 90 100 110 Vr Voltage Identification VID Definition VTT VR VID Input V
41. 0 62 2 2 43 6 36 50 0 70 56 5 102 62 6 4 44 0 38 50 4 72 56 9 104 63 0 6 44 3 40 50 8 74 57 3 106 63 3 8 44 7 42 51 2 76 57 6 108 63 7 10 45 1 44 51 6 78 58 0 110 64 1 12 45 5 46 51 9 80 58 4 112 64 5 14 45 9 48 52 3 82 58 8 114 64 9 16 46 2 50 52 7 84 59 2 116 65 2 18 46 6 52 53 1 86 59 5 118 65 6 20 47 0 54 53 5 88 59 9 120 66 0 22 47 4 56 53 8 90 60 3 122 66 4 24 47 8 58 54 2 92 60 7 124 66 8 26 48 1 60 54 6 94 61 1 126 67 1 28 48 5 62 55 0 96 61 4 128 67 5 30 48 9 64 55 4 98 61 8 130 67 9 32 49 3 66 55 7 81 intel 6 1 1 1 Table 6 3 82 Thermal Specifications Specification for Operation Where Digital Thermal Sensor Exceeds TCONTROL When the DTS value is less than TcontroL the fan speed control algorithm can reduce the speed of the thermal solution fan This remains the same as with the previous guidance for fan speed control During operation where the DTS value is greater than TcontroL the fan speed control algorithm must drive the fan speed to meet or exceed the target thermal solution performance ca shown in Table 6 3 The ability to monitor the inlet temperature TAMBIENT IS required to fully implement the specification as the target Yc is explicitly defined for various ambient temperature conditions See the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 for details on characterizing the fan speed to ca and ambient temperature measurement Thermal Solution Performance above T
42. 1 0 F26 DDR1_MA 15 CMOS O E30 DDR2_ECC 3 CMOS I O F27 RSVD E31 VDDQ PWR F28 RSVD E32 DDR2_RESET CMOS O F29 VSS GND E33 DDR1_ECC 2 CMOS 1 0 F3 DDRO_DQ 38 CMOS 1 0 E34 DDR1_ECC 6 CMOS 1 0 F30 DDR2_ECC 7 CMOS 1 0 E35 RSVD F31 DDR2_ECC 6 CMOS 1 0 E36 VSS GND F32 DDRO_ECC 2 CMOS 1 0 E37 DDR1_ECC 4 CMOS 1 0 F33 DDR2_ECC 1 CMOS 1 0 E38 DDR2_DQ 31 CMOS 1 0 F34 vss GND E39 DDR2 DQS P 3 CMOS 1 0 F35 RSVD E4 DDRO_DQS_N 4 CMOS 1 0 F36 DDR1_ECC 1 CMOS 1 0 E40 DDR2 DQS N 3 CMOS 1 0 F37 DDR1_ECC 5 CMOS 1 0 E41 vss GND F38 DDR2_DQ 30 CMOS 1 0 E42 DDRO_DQ 18 CMOS 1 0 F39 vss GND E43 DDRO_DQ 19 CMOS 1 0 F4 vss GND E5 DDR1_DQ 34 CMOS 1 0 F40 DDR2_DQ 25 CMOS 1 0 E6 vss GND F41 DDRO_DQS_P 2 CMOS 1 0 E7 DDR1_DQS_P 4 CMOS 1 0 F42 DDRO_DQ 23 CMOS 1 0 ES DDR1_DQ 33 CMOS 1 0 F43 DDRO_DQ 22 CMOS 1 0 E9 DDR1_DQ 32 CMOS 1 0 FS DDR1_DQ 35 CMOS 1 0 F1 DDRO_DQ 34 CMOS 1 0 F6 DDR1_DQ 39 CMOS 1 0 F10 DDR1_DQ 36 CMOS 1 0 F7 RSVD F11 DDR1 ODT 3 CMOS O F8 RSVD Intel Xeon Processor 3500 Series Datasheet Volume 1 67 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 25 of 36 Sheet 26 of 36 Land Pin Name Buffer Direction Bana Pin Name Buffer Direction No Type No Type F9 VSS GND G5 DDR1_DQ 46 CMOS 1 0 G1 DDRO_DQ 44 CMOS 1 0 G
43. 1T Typ VID7 VID6 VIDS VIDA VID3 VID2 VID1 VIDO 0 1 0 0 0 0 1 0 1 220 V 0 1 0 0 0 1 1 0 1 195 V 0 1 0 0 1 0 1 0 1 170 V 0 1 0 0 1 1 1 0 1 145 V 0 1 0 1 0 0 1 0 1 120 V 0 1 0 1 0 1 1 0 1 095 V 0 1 0 1 1 0 1 0 1 070 V 0 1 0 1 1 1 1 0 1 045 V Notes 1 This is a typical voltage see Table 2 10 for VTT_Max and VTT_Min voltage Table 2 10 Vr7 Static and Transient Tolerance Sheet 1 of 2 Intel Xeon Processor 3500 Series Datasheet Volume 1 120 130 140 Irr A V1T Max V V1T Typ V V1T Min V Notes 0 VID 0 0315 VID 0 0000 VID 0 0315 1 VID 0 0255 VID 0 0060 VID 0 0375 2 VID 0 0195 VID 0 0120 VID 0 0435 3 VID 0 0135 VID 0 0180 VID 0 0495 4 VID 0 0075 VID 0 0240 VID 0 0555 5 VID 0 0015 VID 0 0300 VID 0 0615 25 m n tel Electrical Specifications Table 2 10 V4 Static and Transient Tolerance Sheet 2 of 2 Irr A Vrr Max V Vrr Typ V Vrr Min V Notes 6 VID 0 0045 VID 0 0360 VID 0 0675 7 VID 0 0105 VID 0 0420 VID 0 0735 8 VID 0 0165 VID 0 0480 VID 0 0795 9 VID 0 0225 VID 0 0540 VID 0 0855 10 VID 0 0285 VID 0 0600 VID 0 0915 11 VID 0 0345 VID 0 0660 VID 0 0975 12 VID 0 0405 VID 0 0720 VID 0 1035 13 VID 0 0465 VID 0 0780 VID 0 1095 14 VID 0 0525 VID 0 0840 VID 0 1155 15 VID 0 058
44. 2 DDRO_DQS_P 5 CMOS 1 0 324 DDR2_MA 7 CMOS O K20 DDR2_CLK_N 1 CLOCK O J25 RSVD K21 VDDQ PWR J26 DDR2_CKE 0 CMOS O K22 DDR2_MA 6 CMOS O 327 DDR1_MA 6 CMOS K23 DDR2_MA 5 CMOS J28 VDDQ PWR K24 RSVD J29 RSVD K25 RSVD J3 VSS GND K26 VDDQ PWR J30 DDR2 ECC 5 CMOS I O K27 RSVD J31 DDR2 ECC 4 CMOS 1 0 K28 DDR1_MA 4 CMOS O 332 DDR1_DQ 27 CMOS 1 0 K29 RSVD 333 vss GND K3 DDRO_DQS_N 5 CMOS 1 0 334 DDR1_DQ 28 CMOS 1 0 K30 DDR1_DQ 31 CMOS 1 0 J35 DDR1 DQ 19 CMOS 1 0 K31 vss GND J36 DDR1_DQ 22 CMOS 1 0 K32 DDR1_DQ 26 CMOS 1 0 Intel Xeon Processor 3500 Series Datasheet Volume 1 69 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 29 of 36 Sheet 30 of 36 po Pin Name Butter Direction Land Pin Name Butter Direction O Type No Type K33 RSVD L3 DDRO DQ 46 CMOS 1 0 K34 RSVD L30 DDR1 DOS P 3 CMOS 1 0 K35 DDR1_DQ 18 CMOS 1 0 L31 DDR1 DQS N 3 CMOS 1 0 K36 VSS GND L32 DDR1 DQ 30 CMOS 1 0 K37 RSVD L33 DDR1 DQ 25 CMOS 1 0 K38 DDR2_DQ 23 CMOS 1 0 L34 vss GND K39 DDR2_DQS_N 2 CMOS 1 0 L35 DDR1 DOS P 2 CMOS 1 0 K4 DDR1_DQ 48 CMOS 1 0 L36 DDR1_DQS_N 2 CMOS 1 0 K40 DDR2_DQS_P 2 CMOS 1 0 L37 RSVD K41 VSS GND L38 RSVD k42 DDRO_DQ 10 cmos yo L39 vss GND K43 DDRO_DQ 11 CMOS 1 0 L4 VSS GND K5 DDR1 DQ 49 CMOS 1 0
45. 2 GND VSS W43 GND VSS M20 GND VSS w8 GND VSS M22 GND VSS Y1 GND VSS M24 GND VSS Y11 GND VSS M26 GND VSS Y33 GND vs m2e Tew VSS Y36 GND VSS M30 GND VSS Y41 GND 54 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Sheet 35 of 36 intel Table 4 1 Land Listing by Land Name Sheet 36 of 36 Land Name rt pre Direction Land Name N Es Direction VSS Y6 GND VTTD AB34 PWR VSS SENSE AR8 Analog VTTD AB8 PWR VSS SENSE VTT AE37 Analog VTTD AB9 PWR VTT SENSE AE36 Analog VTTD AC10 PWR VIT VID2 AV3 CMOS O VTTD AC11 PWR VTT_VID3 AF7 CMOS O VTTD AC33 PWR VTT_VID4 AV6 CMOS O VTTD AC34 PWR VTTA AD10 PWR VTTD AC35 PWR VTTA AE10 PWR VTTD AD34 PWR VTTA AE11 PWR VTTD AD35 PWR VTTA AE33 PWR VTTD AD36 PWR VTTA AF11 PWR VTTD AD9 PWR VTTA AF33 PWR VTTD AE34 PWR VTTA AF34 PWR VTTD AE35 PWR VTTA AG34 PWR VTTD AE8 PWR VTTD AA10 PWR VTTD AE9 PWR VTTD AA11 PWR VTTD AF36 PWR VTTD AA33 PWR VTTD AF37 PWR VTTD AB10 PWR VTTD AF8 PWR VTTD AB11 PWR VTTD AF9 PWR VTTD AB33 PWR VTTPWRGOOD AB35 Asynch I Intel Xeon Processor 3500 Series Datasheet Volume 1 55 intel 4 1 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 1 of 36 Land Buffer
46. 24 VCC PWR AN20 VSS GND AM25 VCC PWR AN21 VCC PWR AM26 VSS GND AN22 VSS GND AM27 VCC PWR AN23 VSS GND AM28 VCC PWR AN24 VCC PWR AM29 VSS GND AN25 VCC PWR AM3 RSVD AN26 VSS GND AM30 VCC PWR AN27 VCC PWR AM31 VCC PWR AN28 VCC PWR AM32 VSS GND AN29 VSS GND AM33 VCC PWR AN3 VSS GND AM34 VCC PWR AN30 VCC PWR AM35 VSS GND AN31 VCC PWR AM36 RSVD AN32 VSS GND AM37 VSS GND AN33 VCC PWR AM38 RSVD AN34 VCC PWR AM39 VSS GND AN35 VSS GND AM4 RSVD AN36 RSVD AM40 QPI DRX DN 15 QPI AN37 VSS GND AM41 QPI_DRX_DN 16 QPI AN38 RSVD AM42 QPI_DRX_DP 16 QPI AN39 QPI DRX DP 18 QPI I AM43 QPI DRX DN 14 QPI AN4 RSVD AM5 VSS GND AN40 QPI_DRX_DP 15 QPI I AM6 RSVD AN41 VSS GND AM7 RSVD AN42 QPI_DRX_DN 13 QPI I AM8 RSVD AN43 QPI DRX DP 14 QPI I 60 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 11 of 36 intel Table 4 2 Land Listing by Land Number Sheet 12 of 36 T Pin Name a Direction N Pin Name pem Direction AN5 RSVD AP40 QPI_DRX_DN 17 QPI I AN6 RSVD AP41 QPI_DRX_DP 17 QPI I AN7 VSS GND AP42 QPI_DRX_DP 13 QPI I AN8 VID 7 CMOS O AP43 VSS GND AN9 VID 2 MSID 2 CMOS I O AP5 VSS GND AP1 VSS GND AP6 VSS GND AP10 VSS GND AP7 PSI CMOS O AP11 VSS GND AP8 VID 6 CMOS O AP12 VCC PWR AP9 VID 5 CSC 2 CMOS I O AP13 VCC PWR AR1
47. 36 CMOS 1 0 DDR1_DQ 15 N38 CMOS 1 0 DDR1 DQ 50 R5 CMOS 1 0 DDR1_DQ 16 M35 CMOS 1 0 DDR1_DQ 51 T5 CMOS 1 0 DDR1_DQ 17 M34 CMOS 1 0 DDR1_DQ 52 J4 CMOS 1 0 DDR1_DQ 18 K35 CMOS 1 0 DDR1_DQ 53 M6 CMOS 1 0 DDR1_DQ 19 J35 CMOS 1 0 DDR1_DQ 54 R8 CMOS 1 0 DDR1_DQ 2 Y35 CMOS 1 0 DDR1_DQ 55 R7 CMOS 1 0 DDR1_DQ 20 N34 CMOS 1 0 DDR1 DQ 56 W6 CMOS 1 0 DDR1_DQ 21 M36 CMOS 1 0 DDR1_DQ 57 W7 CMOS 1 0 DDR1_DQ 22 J36 CMOS 1 0 DDR1_DQ 58 Y10 CMOS 1 0 DDR1_DQ 23 H36 CMOS 1 0 DDR1_DQ 59 W10 CMOS 1 0 DDR1_DQ 24 H33 CMOS 1 0 DDR1 DQ 6 Y40 CMOS 1 0 DDR1_DQ 25 L33 CMOS 1 0 DDR1_DQ 60 v9 CMOS 1 0 DDR1_DQ 26 K32 CMOS 1 0 DDR1_DQ 61 W5 CMOS 1 0 DDR1_DQ 27 32 CMOS 1 0 DDR1_DQ 62 AA7 CMOS 1 0 40 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Sheet 7 of 36 intel Table 4 1 Land Listing by Land Name Sheet 8 of 36 Intel Xeon Processor 3500 Series Datasheet Volume 1 Land Name N prid Direction Land Name pea pridie Direction DDR1_DQ 63 w9 CMOS 1 0 DDR1_MA 3 L28 CMOS O DDR1_DQ 7 Y39 CMOS 1 0 DDR1_MA 4 K28 CMOS O DDR1_DQ 8 P34 CMOS 1 0 DDR1_MA 5 F22 CMOS O DDR1_DQ 9 P35 CMOS 1 0 DDR1_MA 6 327 CMOS O DDR1_DQS_N 0 Y37 CMOS 1 0 DDR1_MA 7 D22 CMOS
48. 4 PWR VDDQ A9 PWR VDDQ M17 PWR VDDQ B12 PWR VDDQ M27 PWR VDDQ B17 PWR VID 0 MSID 0 AL10 CMOS 1 0 VDDQ B22 PWR VID 1 MSID 1 AL9 CMOS 1 0 VDDQ B27 PWR VID 2 MSID 2 AN9 CMOS 1 0 vogo Imaz Iar VID 3 CSC 0 AM10 cmos 1 0 VDDQ B7 PWR VID 4 CSC 1 AN10 CMOS 1 0 50 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Intel Xeon Processor 3500 Series Land Listing n tel Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 27 of 36 Sheet 28 of 36 Land Name eba pe Direction Land Name n poe Direction v p 5 Csc 2 aro cmos lyo vss AG9 GND VID 6 AP8 CMOS O VSS AH1 GND VID 7 AN8 CMOS O VSS AH34 GND VSS A35 GND VSS AH37 GND VSS A39 GND VSS AH39 GND VSS A4 GND VSS AH7 GND VSS A41 GND VSS AJ34 GND VSS A6 GND VSS AJ36 GND VSS AA3 GND VSS AJ41 GND VSS AA34 GND VSS AJ5 GND VSS AA38 GND VSS AK10 GND VSS AA39 GND VSS AK14 GND VSS AA9 GND VSS AK17 GND VSS AB37 GND VSS AK20 GND VSS AB4 GND VSS AK22 GND VSS AB40 GND VSS AK23 GND VSS AB42 GND VSS AK26 GND VSS AB7 GND VSS AK29 GND VSS AC2 GND VSS AK3 GND VSS AC36 GND VSS AK32 GND VSS AC5 GND VSS AK34 GND VSS AC7 GND VSS AK39 GND VSS AC9 GND VSS AK43 GND VSS AD11 GND VSS AK9 GND Ivss Ap3 Ten VSS AL1 GND VSS AD37 GND VSS AL11 GND VSS AD41 GND VSS AL14 GND VSS AD43 GND VSS AL17 GND VSS
49. 5 0 78750 0 78125 0 77500 0 76875 0 76250 0 75625 0 75000 0 74375 0 73750 0 73125 0 72500 0 71875 0 71250 0 70625 0 70000 0 69375 0 68750 0 68125 0 67500 0 66875 0 66250 0 65625 0 65000 0 64375 0 63750 0 63125 0 62500 0 61875 0 61250 0 60625 0 60000 0 59375 0 58750 0 58125 0 57500 0 56875 0 56250 0 55625 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 2 3 4 5 6 7 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VID VID VID VID VID VID VID VID Vcc Max 1 41875 1 41250 1 40625 1 40000 1 39375 1 38750 1 38125 1 37500 1 36875 1 36250 1 35625 1 35000 1 34375 1 33750 1 33125 1 32500 1 31875 1 31250 1 30625 1 30000 1 29375 1 28750 1 28125 1 27500 1 26875 1 26250 1 25625 1 25000 1 24375 1 23750 1 23125 1 22500 1 21875 1 21250 1 20625 1 20000 1 19375 1 18750 1 18125 1 17500 1 16875 1 16250 1 15625 1 15000 1 14375 1 13750 1 13125 1 12500 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5 6 VID VID VID VID VID V
50. 5 PWR VCC AP15 PWR VCC AT27 PWR VCC AP16 PWR VCC AT28 PWR VCC AP18 PWR VCC AT30 PWR vec Tang pwr VCC AT31 PWR VCC AP21 PWR VCC AT33 PWR 48 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Intel Xeon Processor 3500 Series Land Listing n tel Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 23 of 36 Sheet 24 of 36 Land Name poly phate Direction Land Name pa prse Direction vec w34 pwr VCC AW15 PWR VCC AT9 PWR VCC AW16 PWR VCC AU10 PWR VCC AW18 PWR VCC AU12 PWR VCC AW19 PWR VCC AU13 PWR VCC AW21 PWR VCC AU15 PWR VCC AW24 PWR VCC AU16 PWR VCC AW25 PWR VCC AU18 PWR VCC AW27 PWR VCC AU19 PWR VCC AW28 PWR vec Tauz1 pwr VCC AW30 PWR VCC AU24 PWR VCC AW31 PWR VCC AU25 PWR VCC AW33 PWR vec auz7 pwr VCC AW34 PWR VCC AU28 PWR VCC AW9 PWR VCC AU30 PWR VCC AY10 PWR VCC AU31 PWR VCC AY12 PWR VCC AU33 PWR VCC AY13 PWR VCC AU34 PWR VCC AY15 PWR VCC AU9 PWR VCC AY16 PWR VCC AV10 PWR VCC AY18 PWR VCC AV12 PWR VCC AY19 PWR VCC AV13 PWR VCC AY21 PWR VCC AV15 PWR VCC AY24 PWR VCC AV16 PWR VCC AY25 PWR vwc ais pwr VCC AY27 PWR VCC AV19 PWR VCC AY28 PWR VCC AV21 PWR VCC AY30 PWR VCC AV24 PWR VCC AY31 PWR VCC AV25 PWR VCC AY33 PWR VCC AV27 PWR VCC AY34 PWR VCC AV28 PWR VCC AY9 PWR VCC AV30 PWR VCC BA10 PWR VCC AV31 PWR VC
51. 5 VID 0 0900 VID 0 1215 16 VID 0 0645 VID 0 0960 VID 0 1275 17 VID 0 0705 VID 0 1020 VID 0 1335 18 VID 0 0765 VID 0 1080 VID 0 1395 19 VID 0 0825 VID 0 1140 VID 0 1455 20 VID 0 0885 VID 0 1200 VID 0 1515 21 VID 0 0945 VID 0 1260 VID 0 1575 22 VID 0 1005 VID 0 1320 VID 0 1635 23 VID 0 1065 VID 0 1380 VID 0 1695 24 VID 0 1125 VID 0 1440 VID 0 1755 25 VID 0 1185 VID 0 1500 VID 0 1815 26 VID 0 1245 VID 0 1560 VID 0 1875 27 VID 0 1305 VID 0 1620 VID 0 1935 28 VID 0 1365 VID 0 1680 VID 0 1995 Notes 1 The I listed in this table is a sum of IrrA and Irrp 2 The loadlines specify voltage limits at the die measured at the VTT SENSE and VSS SENSE VTT lands Voltage regulation feedback for voltage regulator circuits must also be taken from processor VTT SENSE and VSS SENSE VIT lands 26 Intel Xeon Processor 3500 Series Datasheet Volume 1 Electrical Specifications i n tel Figure 2 4 Vrr Static and Transient Tolerance Load Line Itt A sum of Itta and Ittd 0 5 10 15 20 25 0 0500 0 0375 0 0250 0 0125 0 0000 0 0125 t 0 0250 0 0375 0 0500 0 0625 0 0750 Vtt Typical 0 0875 0 1000 0 1125 a 0 1250 d Vtt Minimum 0 1375 0 1500 0 1625 0 1750 0 1875 0 2000 0 2125 Table 2 11 DDR3 Signal Group DC Specifications Symbol Parame
52. 6 DDR1_DQS_N 5 CMOS 1 0 G10 DDR2_DQ 37 CMOS 1 0 G7 VSS GND G11 DDR2_DQ 36 CMOS 1 0 G8 DDR1_DQ 37 CMOS 1 0 G12 VSS GND G9 DDR1_DQ 44 CMOS 1 0 G13 DDR1_WE CMOS O H1 DDRO_DQ 41 CMOS 1 0 G14 DDR1_RAS CMOS O H10 VSS GND G15 DDRO_CS 0 CMOS O H11 RSVD G16 DDR2_CS 0 CMOS O H12 DDR2_DQ 38 CMOS 1 0 G17 VDDQ PWR H13 DDR2_DQ 34 CMOS 1 0 cis DbR2MA2 cmos Jo H14 DDR1_MA 10 CMOS O G19 DDR1_CLK_P 1 CLOCK O H15 VDDQ PWR G2 vss GND H16 RSVD G20 DDR1_CLK_N 1 CLOCK O H17 DDR2_MA 10 CMOS O G21 DDR2_CLK_N 2 CLOCK e H18 DDR1 CLK P 3 CLOCK O G22 VDDQ PWR H19 DDR1_CLK_N 3 CLOCK O G23 DDR2_MA 12 CMOS O H2 DDRO_DQ 40 CMOS 1 0 G24 DDR1_MA 9 CMOS O H20 VDDQ PWR G25 DDR2_MA 15 CMOS O H21 DDR2_CLK_P 2 CLOCK O G26 DDR2_CKE 1 CMOS O H22 DDR2_MA 9 CMOS O G27 VDDQ PWR H23 DDR2_MA 11 CMOS O G28 RSVD H24 DDR2_MA 14 CMOS O G29 DDR2_DQS_P 8 CMOS 1 0 H25 VDDQ PWR G3 DDRO_DQ 35 CMOS 1 0 H26 DDR1_MA 14 CMOS O G30 DDR2_DQS_N 8 CMOS 1 0 H27 DDR1_BA 2 CMOS O G31 RSVD H28 DDR1_CKE 0 CMOS O G32 VSS GND H29 RSVD G33 DDR1_DQS_P 8 CMOS 1 0 H3 DDRO_DQ 45 CMOS 1 0 G34 DDR1_DQS_N 8 CMOS 1 0 H30 VSS GND G35 DDR1_ECC 7 CMOS 1 0 H31 RSVD G36 DDR1_ECC 3 CMOS 1 0 H32 DDR2 ECC 0 CMOS 1 0 G37 VSS GND H33 DDR1_DQ 24 CMOS 1 0 G38 RSVD H34 DDR1_DQ 29 CMOS 1 0 G39 DDR2_DQ 29 CMOS 1 0 H35 VSS GND G4 DDR1_DQ 42 CMOS 1 0 H36 DDR1_DQ 23 CMOS 1 0 G40 DDR2_DQ 24 CMOS 1 0 H37 DDR2_DQ 27 CMOS 1 0 G41 DDRO_DQS_N 2 CMOS 1 0 H38 RSVD ca2 vs
53. AY20 VSS GND AW23 vSS GND AY21 VCC PWR AW24 VCC PWR AY22 VSS GND AW25 VCC PWR AY23 VSS GND AW26 vss GND AY24 VCC PWR AW27 VCC PWR AY25 VCC PWR AW28 VCC PWR AY26 VSS GND AW29 vss GND AY27 VCC PWR AW3 RSVD AY28 VCC PWR AW30 VCC PWR AY29 VSS GND aw31 Ivc fwr AB RSVD AW32 vSS GND AY30 VCC PWR AW33 VCC PWR AY31 VCC PWR AW34 VCC PWR AY32 VSS GND AW35 VSS GND AY33 VCC PWR AW36 QPI DRX DP 3 QPI I AY34 VCC PWR AW37 QPI_DRX_DP 5 QPI I AY35 RSVD AW38 QPI_DRX_DN 5 QPI I AY36 QPI_DRX_DN 3 QPI I AW39 RSVD AY37 VSS GND AW4 RSVD AY38 QPI_DRX_DN 6 QPI I AW40 QPI_DRX_DP 8 QPI I AY39 RSVD AW41 RSVD AY4 RSVD AW42 RSVD AY40 RSVD AW5 RSVD AY41 RSVD AW6 VSS GND AY42 VSS GND AW7 RSVD AY5 RSVD AW8 VSS GND AY6 RSVD AW9 VCC PWR AY7 VSS GND AY10 VCC PWR AY8 RSVD AY11 VSS GND AY9 VCC PWR AY12 VCC PWR B10 DDRO_CS 1 CMOS O AY13 VCC PWR B11 DDRO_ODT 2 CMOS O AY14 VSS GND B12 VDDQ PWR AY15 VCC PWR B13 DDRO_WE CMOS O AY16 VCC PWR B14 DDR1_MA 13 CMOS O AY17 VSS GND B15 DDRO_CS 4 CMOS O AY18 VCC PWR B16 DDRO BA 0 CMOS O avi9 vce air B17 VDDQ PWR AY2 VSS GND B18 RSVD 64 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 19 of 36 intel Table 4 2 Land Listing by Land Number Sheet 20 of 36
54. C AL19 PWR RSVD K25 VCC AL21 PWR RSVD K27 VCC AL24 PWR RSVD K29 VCC AL25 PWR RSVD L15 VCC AL27 PWR RSVD U11 VCC AL28 PWR RSVD Vil VCC AL30 PWR RSVD AK7 VCC AL31 PWR Intel Xeon Processor 3500 Series Datasheet Volume 1 47 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 21 of 36 Sheet 22 of 36 Land Name p gaia Direction Land Name hee poss Direction VCC AL33 PWR VCC AP24 PWR VCC AL34 PWR VCC AP25 PWR VCC AM12 PWR VCC AP27 PWR VCC AM13 PWR VCC AP28 PWR VCC AM15 PWR VCC AP30 PWR VCC AM16 PWR VCC AP31 PWR VCC AM18 PWR VCC AP33 PWR VCC AM19 PWR VCC AP34 PWR VCC AM21 PWR VCC AR10 PWR VCC AM24 PWR VCC AR12 PWR vec ams PWR VCC AR13 PWR VCC AM27 PWR VCC AR15 PWR VCC AM28 PWR VCC AR16 PWR VCC AM30 PWR VCC AR18 PWR VCC AM31 PWR VCC AR19 PWR VCC AM33 PWR VCC AR21 PWR VCC AM34 PWR VCC AR24 PWR VCC AN12 PWR VCC AR25 PWR VCC AN13 PWR VCC AR27 PWR VCC AN15 PWR VCC AR28 PWR VCC AN16 PWR VCC AR30 PWR VCC AN18 PWR VCC AR31 PWR VCC AN19 PWR VCC AR33 PWR VCC AN21 PWR VCC AR34 PWR VCC AN24 PWR VCC AT10 PWR VCC AN25 PWR VCC AT12 PWR VCC AN27 PWR VCC AT13 PWR VCC AN28 PWR VCC AT15 PWR VCC AN30 PWR VCC AT16 PWR VCC AN31 PWR VCC AT18 PWR VCC AN33 PWR VCC AT19 PWR VCC AN34 PWR VCC AT21 PWR VCC AP12 PWR VCC AT24 PWR VCC AP13 PWR VCC AT2
55. C BA12 PWR VCC AV33 PWR VCC BA13 PWR VCC AV34 PWR VCC BA15 PWR VCC AV9 PWR VCC BA16 PWR VCC AW10 PWR VCC BA18 PWR VCC AW12 PWR VCC BA19 PWR VCC AW13 PWR VCC BA24 PWR Intel Xeon Processor 3500 Series Datasheet Volume 1 49 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 25 of 36 Sheet 26 of 36 Land Name pi gaia Direction Land Name hee poss Direction VCC BA25 PWR VDDQ C10 PWR VCC BA27 PWR VDDQ C15 PWR VCC BA28 PWR VDDQ C20 PWR VCC BA30 PWR VDDQ C25 PWR VCC BA9 PWR VDDQ C30 PWR VCC M11 PWR VDDQ D13 PWR VCC M13 PWR VDDQ D18 PWR VCC M15 PWR VDDQ D23 PWR VCC M19 PWR VDDQ D28 PWR VCC M21 PWR VDDQ E11 PWR vcc m3 pwr VDDQ E16 PWR VCC M25 PWR VDDQ E21 PWR VCC M29 PWR VDDQ E26 PWR VCC M31 PWR VDDQ E31 PWR VCC M33 PWR VDDQ F14 PWR VCC N11 PWR VDDQ F19 PWR VCC N33 PWR VDDQ F24 PWR VCC R11 PWR VDDQ G17 PWR VCC R33 PWR VDDQ G22 PWR VCC T11 PWR VDDQ G27 PWR VCC T33 PWR VDDQ H15 PWR VCC wil PWR VDDQ H20 PWR VCC_SENSE ARO Analog VDDQ H25 PWR VCCPLL U33 PWR VDDQ J18 PWR VCCPLL V33 PWR VDDQ J23 PWR VCCPLL w33 PWR VDDQ J28 PWR VCCPWRGOOD AR7 Asynch I VDDQ K16 PWR VDDPWRGOOD AA6 Asynch I VDDQ K21 PWR VDDQ A14 PWR VDDQ K26 PWR VDDQ A19 PWR VDDQ L14 PWR VDDQ A24 PWR VDDQ L19 PWR VDDQ A29 PWR VDDQ L2
56. Control Circuit is factory calibrated and is not user configurable Snooping and interrupt processing are performed in the normal manner while the TCC is active When the TCC activation temperature is reached the processor will initiate TM2 in attempt to reduce its temperature If TM2 is unable to reduce the processor temperature then TM1 will be also be activated TM1 and TM2 will work together clocks will be modulated at the lowest frequency ratio to reduce power dissipation and temperature With a properly designed and characterized thermal solution it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would be immeasurable An under designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss and in some cases may result in a Tcasg that exceeds the specified maximum temperature and may affect the long term reliability of the processor In addition a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously Refer to the appropriate processor Thermal and Mechanical Design Guide see Section 1 2 for information on designing a compliant thermal solution Intel Xeon
57. D AU6 RSVD AL5 RSVD AU7 RSVD AL6 RSVD AU8 RSVD AL8 RSVD AV1 RSVD AM1 RSVD AV2 RSVD AM2 RSVD AV35 RSVD AM3 RSVD AV42 RSVD AM36 RSVD AV43 RSVD AM38 RSVD AV5 RSVD AM4 RSVD AV7 RSVD AM6 RSVD AV8 RSVD AM7 RSVD AW2 Rvo jams RSVD AW3 RSVD AN1 RSVD AW39 46 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Sheet 19 of 36 intel Table 4 1 Land Listing by Land Name Sheet 20 of 36 Land Name pote O Direction Land Name a pred Direction RSVD AW4 SKTOCC AG36 GTL O RSVD AW41 TCK AH10 TAP I RSVD AW42 TDI AJ9 TAP I RSVD AW5 TDO AJ10 TAP O RSVD AW7 THERMTRIP AG37 GTL O RSVD AY3 TMS AG10 TAP I RSVD AY35 TRST AH9 TAP I RSVD AY39 VCC AH11 PWR RSVD AY4 VCC AH33 PWR RSVD AY40 VCC AJ11 PWR RSVD AY41 VCC AJ33 PWR RSVD AY5 VCC AK11 PWR RSVD AY6 VCC AK12 PWR RSVD AY8 VCC AK13 PWR RSVD B33 VCC AK15 PWR RSVD BA4 VCC AK16 PWR RSVD BA40 VCC AK18 PWR RSVD BA6 VCC AK19 PWR RSVD BA7 VCC AK21 PWR RSVD BA8 VCC AK24 PWR RSVD C31 VCC AK25 PWR RSVD C32 VCC AK27 PWR RSVD D30 VCC AK28 PWR RSVD D31 VCC AK30 PWR RSVD E28 VCC AK31 PWR RSVD F27 VCC AK33 PWR RSVD F28 VCC AL12 PWR RSVD G28 VCC AL13 PWR RSVD H29 VCC AL15 PWR RSVD J29 VCC AL16 PWR RSVD K15 VCC AL18 PWR RSVD K24 VC
58. DQ 7 CMOS 1 0 V38 DDR2_DQ 7 CMOS 1 0 T43 DDRO_DQS_P 0 CMOS 1 0 v39 DDR2_DQ 13 CMOS 1 0 T5 DDR1_DQ 51 CMOS 1 0 v4 DDRO_DQ 62 CMOS 1 0 T6 DDR2_DQ 60 CMOS 1 0 v40 VSS GND 17 DDR2_DQ 61 CMOS 1 0 v41 DDRO DQ 1 CMOS 1 0 T8 DDR2_DQS_N 7 CMOS 1 0 V42 RSVD T9 vss GND V43 RSVD U1 DDRO_DQ 60 CMOS 1 0 V5 VSS GND U10 DDR2_DQ 59 CMOS 1 0 V6 RSVD ui Irv l V RSVD U2 vss GND v8 DDR2_DQ 62 CMOS 1 0 72 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 35 of 36 intel Table 4 2 Land Listing by Land Number Sheet 36 of 36 poss Pin Name iiir Direction N Pin Name pii Direction V9 DDR1_DQ 60 CMOS 1 0 Yi vss GND wi DDRO_DQS_N 7 CMOS I O Y10 DDR1_DQ 58 CMOS I O W10 DDR1 DQ 59 CMOS 1 0 Y11 vss GND wii VCC PWR Y2 DDRO_DQ 58 CMOS 1 0 W2 DDRO DQS P 7 CMOS I O Y3 DDRO DQ 59 CMOS I O W3 VSS GND Y33 VSS GND W33 VCCPLL PWR Y34 DDR1 DQ 3 CMOS 1 0 W34 DDR2_DQ 0 CMOS 1 0 Y35 DDR1_DQ 2 CMOS 1 0 W35 DDR2_DQ 1 CMOS I O Y36 VSS GND W36 DDR2_DQS_N 0 CMOS 1 0 Y37 DDR1_DQS_N 0 CMOS 1 0 W37 DDR2_DQS_P 0 CMOS I O Y38 DDR1 DQS P 0 CMOS I O W38 VSS GND Y39 DDR1 DQ 7 CMOS I O W39 DDR2_DQ 12 CMOS I O Y4 RSVD W4 DDRO_DQ 63 CMOS 1 0 Y40 DDR1 DQ 6 CMOS I O W40 DDRO DQ 4 CMOS 1 0 Y41 vss GND w41 DDRO DQ 0
59. F35 VSS GND AD40 QPI_DTX_DP 14 QPI O AF36 VTTD PWR AD41 VSS GND AF37 VTTD PWR AD42 QPI DTX DP 12 QPI O AF38 VSS GND AD43 VSS GND AF39 QPI_DTX_DP 1 QPI O AD5 RSVD AF4 RSVD AD6 RSVD AF40 QPI_DTX_DN 19 QPI O AD7 RSVD AF41 VSS GND AD8 RSVD AF42 QPI_CLKTX_DN QPI AD9 VTTD PWR AF43 QPI DTX DP 10 QPI O AE1 RSVD AF5 VSS GND AE10 VTTA PWR AF6 RSVD AE11 VTTA PWR AF7 VTT_VID3 CMOS O AE2 VSS GND AF8 VTTD PWR Intel Xeon Processor 3500 Series Datasheet Volume 1 57 intel Table 4 2 Land Listing by Land Number Sheet 5 of 36 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 6 of 36 Land Pin Name Eurer Direction Bana Pin Name Buffer Direction No Type No Type AF9 VTTD PWR AH43 QPI_DTX_DN 8 QPI O AG1 RSVD AH5 FC AH5 AG10 TMS TAP I AH6 RSVD AG11 VSS GND AH7 VSS GND AG2 RSVD AH8 RSVD AG3 VSS GND AH9 TRST TAP I AG33 VSS GND AJ1 RSVD AG34 VTTA PWR AJ10 TDO TAP O AG35 PROCHOT GTL I O AJ11 VCC PWR AG36 SKTOCC GTL O AJ2 RSVD AG37 THERMTRIP GTL O AJ3 RSVD AG38 QPI_DTX_DP 0 QPI O AJ33 VCC PWR AG39 QPI_DTX_DN 1 QPI O AJ34 VSS GND AG4 RSVD AJ35 BCLK DP CMOS I AG40 QPI_DTX_DP 9 QPI O AJ36 VSS GND AG41 QPI_DTX_DN 9 QPI O AJ37 RSVD AG42 QPI_CLKTX_DP QPI O AJ38 QPI_DTX_DP 3 QPI O AG43 VSS GND AJ39 QPI DTX DN 3 QPI O AG5 R
60. I Command Functions and Codes command Code Comments Function i This command targets a valid PECI device address followed by zero Ping n a Write Length and zero Read Length Write Length 1 GetTemp0 01h Read Length 2 Returns the temperature of the processor in Domain 0 PECI Fault Handling Requirements PECI is largely a fault tolerant interface including noise immunity and error checking improvements over other comparable industry standard interfaces The PECI client is as reliable as the device that it is embedded in and thus given operating conditions that fall under the specification the PECI will always respond to requests and the protocol itself can be relied upon to detect any transmission failures There are however certain scenarios where the PECI is know to be unresponsive Prior to a power on RESET and during RESET assertion PECI is not ensured to provide reliable thermal data System designs should implement a default power on condition that ensures proper processor operation during the time frame when reliable data is not available via PECI Intel Xeon Processor 3500 Series Datasheet Volume 1 89 6 3 2 4 Table 6 5 6 4 Table 6 6 90 intel Thermal Specifications To protect platforms from potential operational or safety issues due to an abnormal condition on PECI the Host controller should take action to protect the system from possible damaging states If the Host con
61. ID VID VID 7 Intel Xeon Processor 3500 Series Datasheet Volume 1 16 m Electrical Specifications n tel Table2 1 Voltage Identification Definition Sheet 3 of 3 VID VID VID VID VID VID VID VID v VID VID VID VID VID VID VID VID v 7 6 5 4 3 2 1 0 CC MAX 7 6 5 4 3 2 1 0 CC MAX 0 1 0 0 1 1 1 1 1 11875 1 0 1 0 1 0 1 0 0 55000 0 1 0 1 0 0 0 0 1 11250 1 0 1 0 1 0 1 1 0 54375 0 1 0 1 0 0 0 1 1 10625 1 0 1 0 1 1 0 0 0 53750 0 1 0 1 0 0 1 0 1 10000 1 0 1 0 1 1 0 1 0 53125 0 1 0 1 0 0 1 1 1 09375 1 0 1 0 1 1 1 0 0 52500 0 1 0 1 0 1 0 0 1 08750 1 0 1 0 1 1 1 1 0 51875 0 1 0 1 0 1 0 1 1 08125 1 0 1 1 0 0 0 0 0 51250 0 1 0 1 0 1 1 0 1 07500 1 0 1 1 0 0 0 1 0 50625 0 1 0 1 0 1 1 1 1 06875 1 0 1 1 0 0 1 0 0 50000 0 1 0 1 1 0 0 0 1 06250 1 1 1 1 1 1 1 0 OFF 0 1 0 1 1 0 0 1 1 05625 1 1 1 1 1 1 1 il OFF 0 1 0 1 1 0 1 0 1 05000 Table 2 2 Market Segment Selection Truth Table for MS ID 2 0 MSID2 MSID1 MSIDO Description 0 0 0 Reserved 0 0 1 Reserved 0 1 0 Reserved 0 1 1 Reserved 1 0 0 Reserved 1 0 1 Reserved 1 1 0 Intel Xeon Processor 3500 Series 1 1 1 Reserved Notes 1 The MSID 2 0 signals are provided to indicate the Market Segment for the processor and may be used fo
62. IHS 2 This is the minimum and maximum static force that can be applied by the heatsink and retention solution to maintain the heatsink and processor interface 3 These specifications are based on limited testing for design characterization Loading limits are for the package only and do not include the limits of the processor socket 4 Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement Package Handling Guidelines Table 3 2 includes a list of guidelines on package handling in terms of recommended maximum loading on the processor IHS relative to a fixed substrate These package handling loads may be experienced during heatsink removal Package Handling Guidelines Parameter Maximum Recommended Notes Shear 70 Ibs 5 Tensile 25 Ibs Torque 35 in lbs a Package Insertion Specifications The processor can be inserted into and removed from an LGA1366 socket 15 times The socket should meet the LGA1366 requirements detailed in the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Package Mechanical Specifications n tel p 3 6 Processor Mass Specification The typical mass of the processor is 35g This mass weight includes all the components that are included in the package 3 7 Processor Materials Table 3 3 lists some of the package components a
63. I_DRX_DP 12 AT40 QPI I DDR2_RESET E32 CMOS O QPI_DRX_DP 13 AP42 QPI I DDR2_WE C16 CMOS O QPI_DRX_DP 14 AN43 QPI I FC_AH5 AH5 QPI_DRX_DP 15 AN40 QPI I ISENSE AK8 Analog I QPI DRX DP 16 AM42 QPI I PECI AH36 Asynch I O QPI_DRX_DP 17 AP41 QPI I PRDY B41 GTL O QPI_DRX_DP 18 AN39 QPI I PREQ C42 GTL I QPI DRX DP 19 AP38 QPI I PROCHOT AG35 GTL I O QPI DRX DP 2 AV36 QPI I PSI AP7 CMOS O QPI DRX DP 3 AW36 QPI I QPI CLKRX DN AR42 QPI I QPI_DRX_DP 4 BA36 QPI I QPI_CLKRX_DP AR41 QPI I QPI_DRX_DP 5 AW37 QPI I m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 13 of 36 Sheet 14 of 36 Land Name p uu Direction Land Name ee ao Direction QPI_DRX_DP 6 BA38 QPI I QPI DTX DP 5 AK40 QPI O QPI_DRX_DP 7 AU39 QPI I QPI_DTX_DP 6 AH41 QPI O QPI_DRX_DP 8 AW40 QPI I QPI_DTX_DP 7 AK42 QPI O QPI_DRX_DP 9 AU40 QPI I QPI_DTX_DP 8 AJ43 QPI O QPI DTX DN 0 AH38 QPI o QPI_DTX_DP 9 AG40 QPI O QPI_DTX_DN 1 AG39 QPI o RESET AL39 Asynch I QPI_DTX_DN 10 AE43 QPI O RSVD ABS QPI DTX DN 11 AE41 QPI O RSVD C13 QPI DTX DN 12 AC42 QPI O RSVD B9 QPI DTX DN 13 AB43 QPI o RSVD C11 QPI_DTX_DN 14 AD39 QPI o RSVD B8 QPI_DTX_DN 15 AC40 QPI O RSVD M43 QPI_DTX_DN 16 AC38 QPI O RSVD G43 QPI DTX DN 17 AB38 QPI e RSVD C39 QPI DTX D
64. Intel Xeon Processor 3500 Series Datasheet Volume 1 July 2009 Document Number 321332 002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS NO LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT EXCEPT AS PROVIDED IN INTEL S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE MERCHANTABILITY OR INFRINGEMENT OF ANY PATENT COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL LIFE SAVING OR LIFE SUSTAINING APPLICATIONS Intel may make changes to specifications and product descriptions at any time without notice Designers must not rely on the absence or characteristics of any features or instructions marked reserved or undefined Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them The Intel Xeon Processor 3500 Series may contain design defects or errors known as errata which may cause the product to deviate from published specifications Intel processor numbers are not a measure of performance Processor numbers differentiate features within each processor family not acro
65. KQ pulldown to Vss 4 TRST has ODT in package with a 1 kQ to 5 kQ pullup to Vy 5 All DDR signals are terminated to VDDQ 2 6 DDR 0 1 2 refers to DDR3 Channel 0 DDR3 Channel 1 and DDR3 Channel 2 7 While TMS and TDI do not have On Die Termination these signals are weakly pulled up using a 1 5 kQ resistor to Vr 8 While TCK does not have On Die Termination this signal is weakly pulled down using a 1 5 KQ resistor to Vss All Control Sideband Asynchronous signals are required to be asserted deasserted for at least eight BCLKs for the processor to recognize the proper signal state See Section 2 11 for the DC specifications See Chapter 6 for additional timing requirements for entering and leaving the low power states 2 8 Test Access Port TAP Connection Due to the voltage levels supported by other components in the Test Access Port TAP logic it is recommended that the processor be first in the TAP chain and followed by any other components within the system A translation buffer should be used to connect to the rest of the chain unless one of the other components is capable of accepting an input of the appropriate voltage Two copies of each signal may be required with each driving a different voltage level Intel Xeon Processor 3500 Series Datasheet Volume 1 19 2 9 1 Table 2 5 20 Electrical Specifications Platform Environmental Control Interface PECI DC Specifications PECI is an Intel proprietary interface
66. Loadline 6 lcc max specification is based on the Vcc max loadline Refer to Figure 2 3 for details 7 This spec is based on a processor temperature as reported by the DTS of less than or equal to Tcontrol 25 Intel Xeon Processor 3500 Series Datasheet Volume 1 23 m e n tel Electrical Specifications Table 2 8 Vcc Static and Transient Tolerance Icc A Vcc Max V Vcc Typ V Vcc Min V Notes 0 VID 0 000 VID 0 019 VID 0 038 1 23 3 5 VID 0 004 VID 0 023 VID 0 042 1 2 3 10 VID 0 008 VID 0 027 VID 0 046 12 3 15 VID 0 012 VID 0 031 VID 0 050 1 2 3 20 VID 0 016 VID 0 035 VID 0 054 1 2 3 25 VID 0 020 VID 0 039 VID 0 058 1 2 3 30 VID 0 024 VID 0 043 VID 0 062 1 2 3 35 VID 0 028 VID 0 047 VID 0 066 1 2 3 40 VID 0 032 VID 0 051 VID 0 070 1 2 3 45 VID 0 036 VID 0 055 VID 0 074 1 2 3 50 VID 0 040 VID 0 059 VID 0 078 1 2 3 55 VID 0 044 VID 0 063 VID 0 082 i 2 3 60 VID 0 048 VID 0 067 VID 0 086 1 2 3 65 VID 0 052 VID 0 071 VID 0 090 1 2 3 70 VID 0 056 VID 0 075 VID 0 094 1 2 3 75 VID 0 060 VID 0 079 VID 0 098 1 2 3 78 VID 0 062 VID 0 081 VID 0 100 1 2 3 85 VID 0 068 VID 0 087 VID 0 106 1 2 3 90 VID 0 072 VID 0 091 VID 0 110 1 2 3 95 VID 0 076 VID 0 095 VID 0 114 1 2 3 100 VID 0 080 VID 0 099 VID
67. M NOC IIIA IO r XO OOOOX DOO OO OO OO 2000 CX OCOQOOOQUOCOOOCOODOOODUOUOO Lg qvos OOOOOOOCXDOOOCQOOOOOOCOOOOOOOOOOQOo 3 wu OO OOOOOCOOCOOOOOODOOOOQO yer POBBOOBIBODODIDOO OO OO XO COLD Biza ezo OPPO O22 OPO OBO BOOP PALE PIII III OOD CX XDOOOOOCOOQOOOOOOC XO0DOOQO ODL DO CO BOC OG OC OB PBI POOBOO OOP OOOO OOOO O DOPOD OPPO DOG PP PDD booo ooo COCO POOO OOOOOOOO0d 6G OOo 00000 COOSOOSODOOO ol QOXOCXOXCXOUXUX i DARO r B E a 5 1 2 T gz p2920900 CADDA ooo OOO OOQOQOQOOOQQQO CXOCXOOXOCXOOUQQ oy 299292 zI LAPRA C22 DOL LLONA OOOO SOOOOQOQQOO PE RE En OBBODOBOR BO 5 999 290020 995X977 2 20009002 QOOOOOOOOOOQ COOOOOOOQOOQ OCOOOUOOOOQO COODSODODOS OOOOOOOOQQO 000000 SODA DADA CAA t OO o 29992220000 Tel ed PERROS POP OP OOPOO OPI GI OPO DD OPP 0000 a m OOOO DOD BOOP OO IID III I DOOD COPOS OOOCOOOOOQOOOQOOOOOXOOOOQO QOOCOOOOOOOOQQQO OOOOOQCOOOOQOOOOXOXDOODOO COOCOOOOOOOQOQODOOOOOOOCOCODOOOOOUOOCOOOOOOXOCXOOOOCA D OCOD GO OO CA DOB OOO BODE OOOO OOOO CC CO AXI QOOOOODOODOOOQOOOOOODOOOXDOOOOOOOOQOQOCOOOODODOOOOQ l POD DIDO PADMA IID OO OO ION IO OOD L COOOOOOOOQOOQDOOO OO X DOO OO CCOO COOCOO tU SK RT as aa DODO OOO IX IOI ui i POLO OOOCXOOOOOOOOOOXX090 NG EN Li m ZA i EITI EI OK by EN E M IS H 4 j a m g mass E mw ns 921940 ON sma Processor Package Drawing Sheet 2 of 2 Package Mechanical Specifications Figure 3 3 Intel
68. M28 vss GND N43 DDRO_DQ 9 CMOS 1 0 M29 VCC PWR N5 VSS GND M3 DDRO_DQ 52 CMOS 1 0 N6 DDR2_DQ 49 CMOS 1 0 M30 vss GND N7 DDR2_DQ 53 CMOS 1 0 M31 VCC PWR N8 DDR2_DQ 52 CMOS 1 0 M32 vss GND N9 DDR2_DQ 43 CMOS 1 0 M33 VCC PWR P1 RSVD M34 DDR1_DQ 17 CMOS 1 0 P10 DDR2_DQ 51 CMOS 1 0 M35 DDR1 DQ 16 CMOS IO Pil VSS GND M36 DDR1_DQ 21 CMOS 1 0 P2 RSVD M37 VSS GND P3 VSS GND M38 RSVD P33 VSS GND M39 DDR2 DQ 16 CMOS 1 0 P34 DDR1_DQ 8 CMOS 1 0 M4 RSVD P35 DDR1_DQ 9 CMOS 1 0 M40 DDR2_DQ 17 CMOS 1 0 P36 RSVD M41 DDRO_DQS_N 1 CMOS 1 0 P37 RSVD M42 VSS GND P38 VSS GND M43 RSVD P39 DDR1_DQ 10 CMOS 1 0 M5 RSVD P4 RSVD M6 DDR1_DQ 53 CMOS 1 0 P40 DDR2_DQ 20 CMOS 1 0 M7 VSS GND P41 DDRO_DQ 13 CMOS 1 0 M8 DDR2_DQ 47 CMOS 1 0 P42 DDRO_DQ 12 CMOS 1 0 M9 DDR2_DQ 42 CMOS 1 0 P43 vss GND N1 DDRO_DQ 48 CMOS 1 0 P5 DDR2 DOS N 6 CMOS 1 0 N10 VSS GND P6 DDR2 DQS P 6 CMOS 1 0 N11 VCC PWR P7 DDR2_DQ 48 CMOS I O N2 DDRO_DQ 49 CMOS 1 0 P8 vss GND N3 DDRO_DQ 53 CMOS 1 0 P9 DDR2_DQ 50 CMOS 1 0 N33 VCC PWR R1 VSS GND N34 DDR1_DQ 20 CMOS 1 0 R10 DDR2_DQ 54 CMOS 1 0 N35 VSS GND R11 VCC PWR N36 DDR2_DQ 21 CMOS 1 0 R2 DDRO_DQS_P 6 CMOS 1 0 N37 DDR1_DQ 14 CMOS 1 0 R3 DDRO_DQS_N 6 CMOS 1 0 N38 DDR1_DQ 15 CMOS 1 0 R33 VCC PWR N39 DDR1_DQ 11 CMOS 1 0 R34 DDR1_DQ 12 CMOS 1 0 N4 RSVD R35 DDR1_DQ 13 CMOS 1 0 N40 VSS GND R36 VSS GND Intel Xeon Processor 3500 Series Datasheet Volume 1 71 m n t el Intel Xeon
69. MOS 1 0 DDR1_MA 13 B14 CMOS O DDR2_DQ 1 w35 CMOS 1 0 DDR1_MA 14 H26 CMOS O DDR2_DQ 10 R39 CMOS 1 0 DDR1_MA 15 F26 CMOS O DDR2_DQ 11 T36 CMOS 1 0 DDR1_MA 2 J17 CMOS O DDR2_DQ 12 w39 CMOS 1 0 41 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 9 of 36 Sheet 10 of 36 Land Name p Direction Land Name ee pss Direction DDR2 DQ 13 V39 CMOS 1 0 DDR2_DQ 49 N6 CMOS 1 0 DDR2 DQ 14 T41 CMOS 1 0 DDR2 DQ 5 V34 CMOS 1 0 DDR2_DQ 15 R40 CMOS 1 0 DDR2 DQ 50 P9 CMOS 1 0 DDR2_DQ 16 M39 CMOS 1 0 DDR2_DQ 51 P10 CMOS 1 0 DDR2_DQ 17 M40 CMOS 1 0 DDR2_DQ 52 N8 CMOS 1 0 DDR2 DQ 18 J40 CMOS 1 0 DDR2_DQ 53 N7 CMOS 1 0 DDR2_DQ 19 J39 CMOS 1 0 DDR2 DQ 54 R10 CMOS 1 0 DDR2 DQ 2 V36 CMOS 1 0 DDR2_DQ 55 R9 CMOS 1 0 DDR2_DQ 20 P40 CMOS 1 0 DDR2 DQ 56 U5 CMOS 1 0 DDR2_DQ 21 N36 CMOS 1 0 DDR2_DQ 57 U6 CMOS 1 0 DDR2_DQ 22 L40 CMOS 1 0 DDR2_DQ 58 T10 CMOS 1 0 DDR2_DQ 23 K38 CMOS I O DDR2 DQ 59 U10 CMOS 1 0 DDR2_DQ 24 G40 CMOS 1 0 DDR2 DQ 6 V37 CMOS 1 0 DDR2_DQ 25 F40 CMOS 1 0 DDR2_DQ 60 T6 CMOS 1 0 DDR2 DQ 26 337 CMOS 1 0 DDR2_DQ 61 17 CMOS 1 0 DDR2_DQ 27 H37 CMOS 1 0 DDR2_DQ 62 V8 CMOS 1 0 DDR2_DQ 28 H39 CMOS 1 0 DDR2 DQ 63 U9 CMOS 1 0 DDR2_DQ 29 G39 CMOS 1 0 DDR2 DQ 7 V38 CMOS 1 0 DDR2 DQ 3
70. N 18 AE38 QPI O RSVD D4 QPI_DTX_DN 19 AF40 QPI O RSVD Ji QPI_DTX_DN 2 AK38 QPI e RSVD P1 QPI DTX DN 3 AJ39 QPI O RSVD V3 QPI DTX DN 4 AJ40 QPI e RSVD B35 QPI DTX DN 5 AK41 QPI O RSVD V42 QPI DTX DN 6 AH42 QPI o RSVD N42 QPI_DTX_DN 7 AJ42 QPI e RSVD H42 QPI DTX DN 8 AH43 QPI e RSVD D39 QPI DTX DN 9 AG41 QPI o RSVD D5 QPI_DTX_DP 0 AG38 QPI O RSVD J2 QPI_DTX_DP 1 AF39 QPI o RSVD P2 QPI DTX DP 10 AF43 QPI O RSVD V2 QPI_DTX_DP 11 AE42 QPI o RSVD B36 QPI_DTX_DP 12 AD42 QPI o RSVD V43 QPI_DTX_DP 13 AC43 QPI O RSVD B20 QPI_DTX_DP 14 AD40 QPI O RSVD D25 QPI_DTX_DP 15 AC41 QPI O RSVD B28 QPI_DTX_DP 16 AC39 QPI O RSVD A27 QPI_DTX_DP 17 AB39 QPI e RSVD E15 QPI DTX DP 18 AD38 QPI o RSVD E13 QPI_DTX_DP 19 AE40 QPI o RSVD C14 QPI DTX DP 2 AK37 QPI e RSVD E12 QPI DTX DP 3 AJ38 QPI e RSVD P37 QPI DTX DP 4 AH40 QPI o RSVD E35 44 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Sheet 15 of 36 intel Table 4 1 Land Listing by Land Name Sheet 16 of 36 Land Name re O Direction Land Name n pred Direction RSVD K37 RSVD V6 RSVD K33 RSVD H31 RSVD F7 RSVD U35 RSVD J7 RSVD B18 RSVD M4 RSVD F21 RSVD Y5 RSVD J25 RSVD AA41 RSVD F23 RSVD P36 RSVD A31
71. ND AU33 VCC PWR AV3 VTT_VID2 CMOS O AU34 VCC PWR AV30 VCC PWR AU35 VSS GND AV31 VCC PWR AU36 VSS GND AV32 VSS GND AU37 QPI_DRX_DN 0 QPI AV33 VCC PWR AU38 QPI DRX DP 1 QPI AV34 VCC PWR AU39 QPI_DRX_DP 7 QPI AV35 RSVD AU4 RSVD AV36 QPI_DRX_DP 2 QPI I AU40 QPI_DRX_DP 9 QPI AV37 QPI_DRX_DN 2 QPI I AU41 QPI_DRX_DN 9 QPI AV38 QPI_DRX_DN 1 QPI I AU42 QPI_DRX_DP 10 QPI AV39 VSS GND AU43 VSS GND AV4 VSS GND AU5 VSS GND AV40 QPI_DRX_DN 8 QPI I AU6 RSVD AV41 VSS GND AU7 RSVD AV42 RSVD AU8 RSVD AV43 RSVD AU9 VCC PWR AV5 RSVD AV1 RSVD AV6 VTT_VID4 CMOS O AV10 VCC PWR AV7 RSVD AV11 VSS GND AV8 RSVD AV12 VCC PWR AV9 VCC PWR AV13 VCC PWR AW1 VSS GND AV14 VSS GND AW10 VCC PWR AV15 VCC PWR AW11 VSS GND AV16 VCC PWR AW12 VCC PWR AV17 VSS GND AW13 VCC PWR AV18 VCC PWR AW14 VSS GND AV19 VCC PWR AW15 VCC PWR AV2 RSVD AW16 VCC PWR AV20 VSS GND AW17 VSS GND AV21 VCC PWR AW18 VCC PWR AV22 VSS GND AW19 VCC PWR AV23 VSS GND AW2 RSVD AV24 VCC PWR AW20 VSS GND AV25 VCC PWR AW21 VCC PWR Intel Xeon Processor 3500 Series Datasheet Volume 1 63 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 17 of 36 Sheet 18 of 36 Land Pin Name Buffer Direction rand Pin Name Buffer Direction No Type No Type AW22 VSS GND
72. ND VSS AT32 GND vss AP1 GND VSS AT35 GND VSS AP10 GND VSS AT38 GND VSS AP11 GND VSS AT41 GND VSS AP14 GND VSS AT7 GND VSS AP17 GND VSS AT8 GND VSS AP20 GND VSS AU1 GND VSS AP22 GND VSS AU11 GND VSS AP23 GND VSS AU14 GND VSS AP26 GND VSS AU17 GND VSS AP29 GND VSS AU20 GND 52 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Intel Xeon Processor 3500 Series Land Listing n tel Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 31 of 36 Sheet 32 of 36 Land Name poing pred Direction Land Name p 27 Direction VSS az GND fys AY22 GND VSS AU23 GND VSS AY23 GND VSS AU26 GND VSS AY26 GND VSS AU29 GND VSS AY29 GND VSS AU32 GND VSS AY32 GND VSS AU35 GND VSS AY37 GND VSS AU36 GND VSS AY42 GND VSS AU43 GND VSS AY7 GND VSS AUS GND VSS B2 GND VSS AV11 GND VSS B37 GND VSS AV14 GND VSS B42 GND VSS AV17 GND VSS BA11 GND VSS AV20 GND VSS BA14 GND VSS AV22 GND VSS BA17 GND VSS AV23 GND VSS BA20 GND VSS AV26 GND VSS BA26 GND VSS AV29 GND VSS BA29 GND VSS AV32 GND VSS BA3 GND VSS AV39 GND VSS BA35 GND VSS AV4 GND VSS BA39 GND VSS AV41 GND VSS BAS GND VSS AW1 GND VSS C35 GND VSS AW11 GND VSS C40 GND VSS AW14 GND VSS C43 GND VSS AW17 GND VSS C5 GND VSS AW20 GND VSS D3 GND VSS AW22 GND VSS D33 GND VSS AW23 GND VSS D38 GND VSS AW26 GND V
73. OOOCOOCO CO OOO COOOOOOOOOCO OOOOOOOOOOOOOOOOOCOOO OOOOOOOOOOOOOOOOOOOCO GOO OOO OOOO OOOO OO OOOO OC OOOO OOO OOO OOO OOOO OOOO OOOOOOCOOOOOCOOOOOOOOCOOOCQOOCOOOOCOOOOCOOOOCOOCOOOCOO OQOOOOOOCOOOCOCOOOOOOCOOCOCQXOOOOOOOOOOCOOCOOCOOCOOOOCO COOOOOOOOOOCOOOOCOOCOOCOOCOOCOOCOOCOOOOOCOOOCOOOOOOOO CQOOOOOOOOOOOOOOOOCOOCOCXQQOOOCOOCOOOOCOOCOOOOOOOOCOO OOO OO OOOO OOO OOOO OOO ONO OOOO OOOO OOOO OOOO OOO QOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOCOOCOOCOOCO QOOOOOOOOOOOOOOOOOqQOCOOCOOOOOOOCOOOOOOOOQO PODODOD OOOOOOO OOOOOOOO OOOOOORP 36 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Intel Xeon Processor 3500 Series Land Listing n tel j 4 Intel Xeon Processor 3500 Series Land Listing 4 1 Intel Xeon Processor 3500 Series Land Assignments This section provides sorted land list in Table 4 1 and Table 4 2 Table 4 1 is a listing of all processor lands ordered alphabetically by land name Table 4 2 is a listing of all processor lands ordered by land number Intel Xeon Processor 3500 Series Datasheet Volume 1 37 m n t el Intel Xeon Processor 3500 Series Land Listing 4 1 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 1 of
74. Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 33 of 36 Sheet 34 of 36 Land Pin Name Buffer Direction tand Pin Name Buffer Direction No Type No Type R37 DDR1 DQS N 1 CMOS 1 0 U3 DDRO DQ 61 CMOS 1 0 R38 DDR1 DOS P 1 CMOS 1 0 U33 VCCPLL PWR R39 DDR2_DQ 10 CMOS 1 0 U34 DDR2_DQ 4 CMOS 1 0 R4 DDRO_DQ 54 CMOS 1 0 U35 RSVD R40 DDR2_DQ 15 CMOS 1 0 U36 DDR2_DQ 3 CMOS 1 0 R41 VSS GND U37 VSS GND R42 DDRO DQ 3 CMOS 1 0 U38 DDR2_DQ 8 CMOS 1 0 R43 DDRO DQ 2 CMOS 1 0 U39 DDR2_DQ 9 CMOS 1 0 R5 DDR1_DQ 50 CMOS 1 0 U4 DDRO_DQ 56 CMOS 1 0 R6 VSS GND U40 RSVD Rz DDRIDG 55 CMOS yo U41 DDRO DO 6 CMOS 1 0 R8 DDR1_DQ 54 CMOS 1 0 U42 VSS GND R9 DDR2_DQ 55 CMOS 1 0 U43 DDRO_DQS_N 0 CMOS 1 0 T1 DDRO_DQ 50 CMOS 1 0 U5 DDR2_DQ 56 CMOS 1 0 T10 DDR2_DQ 58 CMOS 1 0 U6 DDR2_DQ 57 CMOS 1 0 T11 VCC PWR U7 VSS GND T2 DDRO_DQ 51 CMOS 1 0 U8 DDR2_DQS_P 7 CMOS 1 0 T3 DDRO_DQ 55 CMOS 1 0 U9 DDR2_DQ 63 CMOS 1 0 T33 VCC PWR vi DDRO_DQ 57 CMOS 1 0 T34 VSS GND V10 VSS GND T35 RSVD vii RSVD T36 DDR2_DQ 11 CMOS 1 0 v2 RSVD 137 DDR2_DQS_P 1 CMOS 1 0 v3 RSVD T38 DDR2 DOS N 1 CMOS 1 0 v33 VCCPLL PWR T39 VSS GND V34 DDR2_DQ 5 CMOS 1 0 T4 vss GND V35 VSS GND T40 RSVD V36 DDR2_DQ 2 CMOS 1 0 T41 DDR2_DQ 14 CMOS 1 0 V37 DDR2_DQ 6 CMOS 1 0 T42 DDRO_
75. R AK36 RSVD AL32 VSS GND AK37 QPI_DTX_DP 2 QPI AL33 VCC PWR AK38 QPI_DTX_DN 2 QPI O AL34 VCC PWR AK39 VSS GND AL35 VSS GND AK4 RSVD AL36 VSS GND AK40 QPI_DTX_DP 5 QPI O AL37 VSS GND AK41 QPI_DTX_DN 5 QPI AL38 RSVD AK42 QPI_DTX_DP 7 QPI O AL39 RESET Asynch I AK43 VSS GND AL4 RSVD AK5 RSVD AL40 RSVD AK6 RSVD AL41 RSVD AK7 RSVD AL42 VSS GND AK8 ISENSE Analog I AL43 QPI CMP 0 Analog AK9 VSS GND AL5 RSVD AL1 VSS GND AL6 RSVD AL10 VID 0 MSID 0 CMOS I O AL7 VSS GND AL11 VSS GND AL8 RSVD AL12 VCC PWR AL9 VID 1 MSID 1 CMOS I O AL13 VCC PWR AMi RSVD AL14 VSS GND AM10 VID 3 CSC 0 CMOS I O AL15 VCC PWR AM11 VSS GND Intel Xeon Processor 3500 Series Datasheet Volume 1 59 intel Table 4 2 Land Listing by Land Number Sheet 9 of 36 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 10 of 36 Land Pin Name Eurer Direction Land Pin Name Buffer Direction No Type No Type AM12 VCC PWR AM9 VSS GND AM13 VCC PWR AN1 RSVD AM14 VSS GND AN10 VID 4 CSC 1 CMOS 1 O AM15 VCC PWR AN11 VSS GND AM16 VCC PWR AN12 VCC PWR AM17 VSS GND AN13 VCC PWR AM18 VCC PWR AN14 VSS GND AM19 VCC PWR AN15 VCC PWR AM2 RSVD AN16 VCC PWR AM20 VSS GND AN17 VSS GND AM21 VCC PWR AN18 VCC PWR AM22 VSS GND AN19 VCC PWR AM23 VSS GND AN2 RSVD AM
76. RSVD AP14 VSS GND AR10 VCC PWR AP15 VCC PWR AR11 VSS GND AP16 VCC PWR AR12 VCC PWR AP17 VSS GND AR13 VCC PWR AP18 VCC PWR AR14 VSS GND AP19 VCC PWR AR15 VCC PWR AP2 RSVD AR16 VCC PWR AP20 vss GND AR17 VSS GND AP21 VCC PWR AR18 VCC PWR AP22 VSS GND AR19 VCC PWR AP23 VSS GND AR2 VSS GND AP24 VCC PWR AR20 VSS GND AP25 VCC PWR AR21 VCC PWR AP26 VSS GND AR22 VSS GND AP27 VCC PWR AR23 VSS GND AP28 VCC PWR AR24 VCC PWR AP29 VSS GND AR25 VCC PWR AP3 RSVD AR26 VSS GND AP30 VCC PWR AR27 VCC PWR AP31 VCC PWR AR28 VCC PWR AP32 VSS GND AR29 VSS GND AP33 VCC PWR AR3 VSS GND AP34 VCC PWR AR30 VCC PWR AP35 VSS GND AR31 VCC PWR AP36 VSS GND AR32 VSS GND AP37 VSS GND AR33 VCC PWR AP38 QPI_DRX_DP 19 QPI I AR34 VCC PWR AP39 QPI_DRX_DN 18 QPI I AR35 VSS GND AP4 RSVD AR36 RSVD Intel Xeon Processor 3500 Series Datasheet Volume 1 61 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Table 4 2 Land Listing by Land Number Sheet 13 of 36 Sheet 14 of 36 po Pin Name Sum Direction Ts Pin Name pss Direction AR37 RSVD AT33 VCC PWR AR38 QPI DRX DN 19 QPI I AT34 VCC PWR AR39 vss GND AT35 VSS GND AR4 RSVD AT36 RSVD AR40 QPI DRX DN 12 QPI I AT37 QPI_DRX_DP 0 QPI I AR41 QPI_CLKRX_DP QPI I AT38 VSS GND AR42 QPI_CLKRX_DN QPI I AT39 QPI DRX DN 7 QPI I AR43
77. RSVD L37 RSVD A40 RSVD K34 RSVD AB3 RSVD F8 RSVD AB6 RSVD H7 RSVD AC3 RSVD M5 RSVD AC4 RSVD Y4 RSVD AC6 RSVD F35 RSVD AC8 RSVD AA40 RSVD AD1 RSVD D20 RSVD AD2 RSVD C22 RSVD AD3 RSVD E25 RSVD AD4 RSVD F25 RSVD AD5 RSVD D16 RSVD AD6 RSVD H16 RSVD AD7 RSVD L17 RSVD AD8 RSVD J15 RSVD AE1 RSVD T40 RSVD AE3 RSVD L38 RSVD AE4 RSVD G38 RSVD AE5 RSVD J11 RSVD AE6 RSVD K8 RSVD AF1 RSVD P4 RSVD AF2 RSVD V7 RSVD AF3 RSVD G31 RSVD AF4 RSVD T35 RSVD AF6 RSVD U40 RSVD AG1 RSVD M38 RSVD AG2 RSVD H38 RSVD AG4 RSVD H11 RSVD AG5 RSVD K9 RSVD AG6 RSVD N4 RSVD AG7 Intel Xeon Processor 3500 Series Datasheet Volume 1 45 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 17 of 36 Sheet 18 of 36 Land Name p gable Direction Land Name ee po Direction RSVD AG8 RSVD AN2 RSVD AH2 RSVD AN36 RSVD AH3 RSVD AN38 RSVD AH4 RSVD AN4 RSVD AH6 RSVD AN5 RSVD AH8 RSVD AN6 RSVD AJ1 RSVD AP2 RSVD AJ2 RSVD AP3 RSVD AJ3 RSVD AP4 RSVD AJ37 RSVD AR1 RsvD m4 RSVD AR36 RSVD AJ6 RSVD AR37 RSVD AJ7 RSVD AR4 RSVD AJ8 RSVD ARS RSVD AK1 RSVD AR6 RSVD AK2 RSVD AT1 RSVD AK35 RSVD AT2 RSVD AK36 RSVD AT3 RSVD AK4 RSVD AT36 RSVD AK5 RSVD AT4 RSVD AK6 RSVD AT5 RSVD AL3 RSVD AT6 RSVD AL38 RSVD AU2 RSVD AL4 RSVD AU3 RSVD AL40 RSVD AU4 RSVD AL41 RSV
78. SS D43 GND VSS AW29 GND VSS D8 GND VSS AW32 GND VSS E1 GND VSS AW35 GND VSS E36 GND VSS AW6 GND VSS E41 GND VSS AW8 GND VSS E6 GND VSS AY11 GND VSS F29 GND VSS AY14 GND VSS F34 GND VSS AY17 GND VSS F39 GND VSS AY2 GND VSS F4 GND VSS AY20 GND VSS F9 GND Intel Xeon Processor 3500 Series Datasheet Volume 1 53 m n t el Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Table 4 1 Land Listing by Land Name Sheet 33 of 36 Sheet 34 of 36 Land Name p gaia Direction Land Name ee pai Direction VSS G12 GND VSS M32 GND VSS G2 GND VSS M37 GND VSS G32 GND VSS M42 GND VSS G37 GND VSS M7 GND VSS G42 GND VSS N10 GND VSS G7 GND VSS N35 GND VSS H10 GND VSS N40 GND VSS H30 GND vss N5 GND VSS H35 GND VSS P11 GND VSS H40 GND VSS P3 GND vss Ies ono VSS P33 GND VSS J13 GND VSS P38 GND VSS J3 GND VSS P43 GND VSS J33 GND VSS P8 GND VSS J38 GND VSS R1 GND VSS J43 GND VSS R36 GND VSS J8 GND VSS R41 GND VSS K1 GND VSS R6 GND VSS K11 GND VSS T34 GND VSS K31 GND VSS T39 GND VSS K36 GND VSS T4 GND VSS K41 GND VSS T9 GND VSS K6 GND VSS U2 GND VSS L29 GND VSS U37 GND VSS L34 GND VSS U42 GND VSS L39 GND VSS U7 GND VSS L4 GND VSS V10 GND VSS L9 GND VSS V35 GND VSS M12 GND VSS V40 GND VSS M14 GND VSS V5 GND VSS M16 GND VSS W3 GND VSS M18 GND VSS W38 GND VSS M
79. SVD AJ4 RSVD AG6 RSVD AJ40 QPI_DTX_DN 4 QPI O AG7 RSVD AJ41 VSS GND AG8 RSVD AJ42 QPI_DTX_DN 7 QPI O AG9 VSS GND AJ43 QPI_DTX_DP 8 QPI O AH1 VSS GND AJ5 VSS GND AH10 TCK TAP I AJ6 RSVD AH11 VCC PWR AJ7 RSVD AH2 RSVD AJ8 RSVD AH3 RSVD AJ9 TDI TAP I AH33 VCC PWR AK1 RSVD AH34 VSS GND AK10 VSS GND AH35 BCLK_DN CMOS I AK11 VCC PWR AH36 PECI Asynch 1 0 AK12 VCC PWR AH37 VSS GND AK13 VCC PWR AH38 QPI_DTX_DN 0 QPI O AK14 VSS GND AH39 VSS GND AK15 VCC PWR AH4 RSVD AK16 VCC PWR AH40 QPI_DTX_DP 4 QPI O AK17 VSS GND AH41 QPI_DTX_DP 6 QPI O AK18 VCC PWR AH42 QPI_DTX_DN 6 QPI O AK19 VCC PWR 58 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 2 Land Listing by Land Number Sheet 7 of 36 intel Table 4 2 Land Listing by Land Number Sheet 8 of 36 pda Pin Name pod Direction N Pin Name pir Direction AK2 RSVD AL16 VCC PWR AK20 VSS GND AL17 VSS GND AK21 VCC PWR AL18 VCC PWR AK22 VSS GND AL19 VCC PWR AK23 VSS GND AL2 VSS GND AK24 VCC PWR AL20 VSS GND AK25 VCC PWR AL21 VCC PWR AK26 VSS GND AL22 VSS GND AK27 VCC PWR AL23 VSS GND AK28 VCC PWR AL24 VCC PWR AK29 VSS GND AL25 VCC PWR AK3 VSS GND AL26 VSS GND AK30 VCC PWR AL27 VCC PWR AK31 VCC PWR AL28 VCC PWR AK32 VSS GND AL29 VSS GND AK33 VCC PWR AL3 RSVD AK34 VSS GND AL30 VCC PWR AK35 RSVD AL31 VCC PW
80. Series Datasheet Volume 1 m Boxed Processor Specifications n tel 8 8 1 Note Note Figure 8 1 Boxed Processor Specifications Introduction The processor will also be offered as an Intel boxed processor Intel boxed processors are intended for system integrators who build systems from baseboards and standard components The boxed processor will be supplied with a cooling solution This chapter documents baseboard and system requirements for the cooling solution that will be supplied with the boxed processor This chapter is particularly important for OEMs that manufacture baseboards for system integrators Unless otherwise noted all figures in this chapter are dimensioned in millimeters and inches in brackets Figure 8 1 shows a mechanical representation of a boxed processor Drawings in this section reflect only the specifications on the Intel boxed processor product These dimensions should not be used as a generic keep out zone for all cooling solutions It is the system designers responsibility to consider their proprietary cooling solution when designing to the required keep out zone on their system platforms and chassis Refer to the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 for further guidance Contact your local Intel Sales Representative for this document Mechanical Representation of the Boxed Processor NSS gt liil ill Note The airflo
81. U36 CMOS 1 0 DDR2 DQ 8 U38 CMOS 1 0 DDR2_DQ 30 F38 CMOS 1 0 DDR2 DQ 9 U39 CMOS 1 0 DDR2_DQ 31 E38 CMOS 1 0 DDR2_DQS_N 0 W36 CMOS 1 0 DDR2_DQ 32 K12 CMOS 1 0 DDR2_DQS_N 1 T38 CMOS 1 0 DDR2_DQ 33 312 CMOS 1 0 DDR2_DQS_N 2 K39 CMOS 1 0 DDR2_DQ 34 H13 CMOS 1 0 DDR2_DQS_N 3 E40 CMOS 1 0 DDR2_DQ 35 L13 CMOS 1 0 DDR2 DQS N 4 J9 CMOS 1 0 DDR2_DQ 36 G11 CMOS 1 0 DDR2_DQS_N 5 K7 CMOS 1 0 DDR2_DQ 37 G10 CMOS 1 0 DDR2_DQS_N 6 P5 CMOS 1 0 DDR2_DQ 38 H12 CMOS 1 0 DDR2_DQS_N 7 T8 CMOS 1 0 DDR2_DQ 39 L12 CMOS 1 0 DDR2_DQS_N 8 G30 CMOS 1 0 DDR2 DQ 4 U34 CMOS 1 0 DDR2_DQS_P 0 W37 CMOS 1 0 DDR2_DQ 40 L10 CMOS 1 0 DDR2_DQS_P 1 137 CMOS 1 0 DDR2_DQ 41 K10 CMOS I O DDR2 DOS P 2 K40 CMOS 1 0 DDR2_DQ 42 M9 CMOS 1 0 DDR2_DQS_P 3 E39 CMOS 1 0 DDR2_DQ 43 N9 CMOS 1 0 DDR2_DQS_P 4 J10 CMOS 1 0 DDR2_DQ 44 L11 CMOS 1 0 DDR2_DQS_P 5 L7 CMOS 1 0 DDR2_DQ 45 M10 CMOS 1 0 DDR2_DQS_P 6 P6 CMOS 1 0 DDR2 DQ 46 L8 CMOS 1 0 DDR2_DQS_P 7 U8 CMOS 1 0 DDR2_DQ 47 M8 CMOS 1 0 DDR2_DQS_P 8 G29 CMOS 1 0 DDR2_DQ 48 P7 CMOS I O DDR2_ECC 0 H32 CMOS 1 0 42 Intel Xeon Processor 3500 Series Datasheet Volume 1 Intel Xeon Processor 3500 Series Land Listing Table 4 1 Land Listing by Land Name Sheet 11 of 36 intel Table 4 1 Land Listing by Land Name Sheet 12 of 36
82. WRGOOD 0 29 V 6 Signal Input High Voltage for VCCPWRGOOD _ _ VIH and VITPWRGOOD Signals 0 25 VTA y 2 5 V Input High Voltage for VDDPWRGOOD 0 87 V 5 IH Signal z gna Ron Buffer on Resistance 10 18 Q 111 Input Leakage Current 200 HA 4 Notes gum um Unless otherwise noted all specifications in this table apply to all processor frequencies The Vrr referred to in these specifications refers to instantaneous Vrra For Vin between 0 V and Vra Measured when the driver is tristated Vin and Voy May experience excursions above Vy This spec applies to VCCPWRGOOD and VITPWRGOOD This specification applies to VDDPWRGOOD Intel Xeon Processor 3500 Series Datasheet Volume 1 Electrical Specifications Table 2 15 Control Sideband Signal Group DC Specifications Symbol Parameter Min Typ Max Units Notes Vit Input Low Voltage 0 64 x Vita V 2 Vin Input High Voltage 0 76 x Vita V 2 VoL Output Low Voltage a Vita Ron Ron V 2 4 sys term Vou Output High Voltage Vita V 2 4 Ron Buffer on Resistance 10 18 Buffer on Resistance for Q Ron vID 7 0 E 100 T Ir Input Leakage Current 200 uA 3 COMPO COMP Resistance 49 4 49 9 50 40 Q 5 Notes 1 Unless otherwise noted all specifications in this table apply to all processor frequencies 2 The Vra referred to in these specifications refers to instantaneous Vrra 3 For Vin between 0 V and V
83. Xeon Processor 3500 Series Datasheet Volume 1 3 3 Table 3 1 3 4 Table 3 2 3 5 34 Package Mechanical Specifications Processor Component Keep Out Zones The processor may contain components on the substrate that define component keep out zone requirements A thermal and mechanical solution design must not intrude into the required keep out zones Decoupling capacitors are typically mounted to either the topside or land side of the package substrate See Figure 3 2 and Figure 3 3 for keep out zones The location and quantity of package capacitors may change due to manufacturing efficiencies but will remain within the component keep in Package Loading Specifications Table 3 1 provides dynamic and static load specifications for the processor package These mechanical maximum load limits should not be exceeded during heatsink assembly shipping conditions or standard use condition Also any mechanical system or component testing should not exceed the maximum limits The processor package substrate should not be used as a mechanical reference or load bearing surface for thermal and mechanical solution Processor Loading Specifications Parameter Maximum Notes Static Compressive Load 934 N 210 Ibf 1 2 3 Dynamic Compressive Load 1834 N 410 Ibf max static 1 3 4 compressive dynamic load Notes 1 These specifications apply to uniform compressive loading in a direction normal to the processor
84. a A danay nk vibes ke aba ak HW nedan 35 4 1 Land Listing by Land Na ix 4545 53 kt xa s kui a aran a nan a aa ia aj 38 4 2 Land Listing by Land NuUmbDer LKh KAb lhk hk kk kk kk eee aka aa kk kaka enne 56 5 1 Signal DefinItions uiis mun salk karke dik kaka dan n Gulan maa sayan ba ad a nari q a i S Qaza aa a n r na 75 6 1 Processor Thermal Specifications h hWW Lk kk kk kk aa aaa eee aaa aaa aa kak nemen eene nnne 80 6 2 Processor Thermal Profile oec asis Det ERE a aki ji G availa a iai 81 6 3 Thermal Solution Performance above TCONTROL sceeeeeeeeeeeee mme 82 6 4 Supported PECI Command Functions and Codes aka kk kk kk kk kk kk kK kk ka 89 6 5 GetlempO Error CO GS ransis ika een rer be den kn keda a ak a is 90 6 6 Storage Condition Ratings iue ciiin eh ties dha nenn rete 90 7 1 Power On Configuration Signal Options sesssssssseeen nemen 93 7 2 Coordination of Thread Power States at the Core Level ML Lh A lkkkk kk kk 94 7 3 Processor DATOS siiu skinas Kasa na saaa a mule viene an ai la EE m iii a ted m 96 8 1 Fan Heatsink Power and Signal Specifications sess 103 8 2 Fan Heatsink Power and Signal SpecificationS ccceeceeee esse eee tees ka kaka 105 Intel Xeon Processor 3500 Series Datasheet Volume 1 5 intel Intel Xeon Processor 3500 Series Features e Available at 3 33 GHz 3 20 GHz 3 06 GHz 2 93 GHz and 2 66
85. ag 102 8 3 1 Fan Heatsink Power Supply sis saza edna a kaka naka karane a iiaii ak aa a aye a a al aji 102 8 4 Thermal Specifications cance sasas d de aa e i a EWAN k 103 8 4 1 Boxed Processor Cooling RequirementS hkhk k k kKk WK hki ikkkkkkkk kk kk kk k 103 8 4 2 Variable Speed Fall xass sak s s ra x xana anya xaka aisiais 105 Figures 1 1 High Level View of Processor Interf CeS Lhk kK h K A kY Ckk kk aaa ka aaa aaa kak kk kak ka 9 2 1 Active ODT for a Differential Link Example csssssssseeeee kk mme 13 2 2 Input Device F y St S Sis r ye ou c nik h w selkan naa q ia a 21 2 3 VCC Static and Transient Tolerance Load Lines MhhL h kW WLkVKkk kk kk kk eee eee eens eaten nena enna 25 2 4 VIT Static and Transient Tolerance Load Line cc ccecee eee eee e eee eee kk kk aaa 27 2 5 VCC Overshoot Example Waveform s4 si sl ask akla ka ak Mi kaka kk ak da ajel ak aa alla ae eee Aa al k aj a 30 3 1 Processor Package Assembly SKetCh ss ainsi sa nid sula niake nanan n nda adana da aie Pa a aa ka WR a 31 3 2 Processor Package Drawing Sheet 1 of 2 HK K Kklk kk kk kk kk kk kak kk kaka 32 3 3 Processor Package Drawing Sheet 2 of 2 HkK KKkkkk kk kk kk kk kk kk kk kak kk kake 33 3 4 Processor Top Side MarkiNgS viii e da aya cutie Ia xo Rad RD wada a aa d 35 3 5 Processor Land Coordinates and Quadrants Bottom View ococccnccncnnn
86. appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 Figure 6 2 Thermal Test Vehicle TTV Case Temperature Tcase Measurement Location B I pa E Measure Tcase FI geometric center of the top surface of the IHS B L f e A i H m H3 LID Notes Figure is not to scale and is for reference only B1 Max 45 07 mm Min 44 93 mm B2 Max 42 57 mm Min 42 43 mm C1 Max 39 1 mm Min 38 9 mm C2 Max 36 6 mm Min 36 4 mm C3 Max 2 3 mm Min 2 2 mm C4 Max 2 3 mm Min 2 2 mm Refer to the appropriate Thermal and Mechanical Design Guide see Section 1 2 for instructions on thermocouple installation on the processor TTV package Qo LOU ds pues Intel Xeon Processor 3500 Series Datasheet Volume 1 83 m e n tel Thermal Specifications 6 2 6 2 1 Note 6 2 2 84 Processor Thermal Features Processor Temperature A new feature in the Intel Xeon Processor 3500 Series is a software readable field in the IA32_TEMPERATURE_TARGET register that contains the minimum temperature at which the TCC will be activated and PROCHOT will be asserted The TCC activation temperature is calibrated on a part by part basis and normal factory variation may result in the actual TCC activation temperature being higher than the value listed in the register TCC activation t
87. ase temperature thermal profile at the customer defined boundary conditions is expected to be compliant with this update No redesign of the thermal solution should be necessary A fan speed control algorithms that was compliant to the previous thermal requirements is also expected to be compliant with this specification The fan speed control algorithm can be updated to utilize the additional information to optimize acoustics To allow the optimal operation and long term reliability of Intel processor based systems the processor thermal solution must deliver the specified thermal solution performance in response to the DTS sensor value The thermal solution performance will be measured using a Thermal Test Vehicle TTV See Table 6 1 and Figure 6 1 for the TTV thermal profile and Table 6 3 for the required thermal solution performance table when DTS values are greater than TcontroL Thermal solutions not designed to provide this level of thermal capability may affect the long term reliability of the processor and system When the DTS value is less than Tcontrol the thermal solution performance is not defined and the fans may be slowed down This is unchanged from the prior specification For more details on thermal solution design refer to the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 The processors implement a methodology for managing processor temperatures which is intended to support acoustic noise reductio
88. ble processor core current consumption is less than 20A Assertion of this signal is an indication that the VR controller does not currently need to be able to provide ICC above 20A and the VR controller can use this information to move to more efficient operation point This signal will de assert at least 3 3 us before the current consumption will exceed 20A The minimum PSI assertion and de assertion time is 1 BCLK Asserting the RESET signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents Note some PLL QPI and error states are not effected by reset and only VCCPWRGOOD forces them to a known state For a power on Reset RESET must stay active for at least one millisecond after VCC and BCLK have reached their proper specifications RESET must not be kept asserted for more than 10 ms while VCCPWRGOOD is asserted RESET must be held deasserted for at least one millisecond before it is asserted again RESET must be held asserted before VCCPWRGOOD is asserted This signal does not have on die termination and must be terminated on the system board RESET is a common clock signal SKTOCC SKTOCC Socket Occupied will be pulled to ground on the processor package There is no connection to the processor silicon for this signal System board designers may use this signal to determine if the processor is present TCK TCK Test Clock provides the clock input for the
89. cPLL PLL supply current DC AC specification 1 1 A Notes 1 Unless otherwise noted all specifications in this table are based on estimates and simulations or empirical data These specifications will be updated with characterized data from silicon measurements at a later date 2 Each processor is programmed with a maximum valid voltage identification value VID which is set at manufacturing and can not be altered Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range Please note this differs from the VID employed by the processor during a power management event Adaptive Thermal Monitor Enhanced Intel SpeedStep Technology or Low Power States 3 The voltage specification requirements are measured across VCC SENSE and VSS SENSE lands at the Socket with a 100 MHz bandwidth oscilloscope 1 5 pF maximum probe capacitance and 1 MO minimum impedance The maximum length of ground wire on the probe should be less than 5 mm Ensure external noise from the system is not coupled into the oscilloscope probe 4 Refer to Table 2 8 and Figure 2 3 for the minimum typical and maximum Vcc allowed for a given current The processor should not be subjected to any Vcc and Icc combination wherein Vcc exceeds Vcc max for a given current 5 See Table 2 9 for details on V7 Voltage Identification and Table 2 9 and Figure 2 4 for details on the Vyr
90. coNTROL TAMBIENT Yca at DTS TcontroL Yca at DTS 13 43 2 0 190 0 190 42 0 0 206 0 199 41 0 0 219 0 207 40 0 0 232 0 215 39 0 0 245 0 222 38 0 0 258 0 230 37 0 0 271 0 238 36 0 0 284 0 245 35 0 0 297 0 253 34 0 0 310 0 261 33 0 0 323 0 268 32 0 0 336 0 276 31 0 0 349 0 284 30 0 0 362 0 292 29 0 0 375 0 299 28 0 0 388 0 307 27 0 0 401 0 315 26 0 0 414 0 322 25 0 0 427 0 330 24 0 0 440 0 338 23 0 0 453 0 345 22 0 0 466 0 353 21 0 0 479 0 361 20 0 0 492 0 368 19 0 0 505 0 376 18 0 0 519 0 384 Notes 1 The ambient temperature is measured at the inlet to the processor thermal solution 2 This column can be expressed as a function of Tampient by the following equation Yca 0 19 43 2 TambrenT 0 013 3 This column can be expressed as a function of Tampient by the following equation Yca 0 19 43 2 TAMBIENT 0 0077 Intel Xeon Processor 3500 Series Datasheet Volume 1 m Thermal Specifications n tel 6 1 2 Thermal Metrology The minimum and maximum TTV case temperatures Tcase are specified in Table 6 1 and Table 6 2 and are measured at the geometric top center of the thermal test vehicle integrated heat spreader IHS Figure 6 2 illustrates the location where Tcase temperature measurements should be made For detailed guidelines on temperature measurement methodology and attaching the thermocouple refer to the
91. creases beyond a lower set point the fan speed will rise linearly with the internal temperature until the higher set point is reached At that point the fan speed is at its maximum As fan speed increases so does fan noise levels Systems should be designed to provide adequate air around the boxed processor fan heatsink that remains cooler then lower set point These set points represented in Figure 8 9 and Table 8 2 can vary by a few degrees from fan heatsink to fan heatsink The internal chassis temperature should be kept below 40 C Meeting the processor s temperature specification see Chapter 6 is the responsibility of the system integrator The motherboard must supply a constant 12 V to the processor s power header to ensure proper operation of the variable speed fan for the boxed processor Refer to Table 8 1 for the specific requirements Boxed Processor Fan Heatsink Set Points Higher Set Point i Highest Noise Level Lower Set Point Lowest Noise Level X en Z Internal Chassis Temperature Degrees C Fan Heatsink Power and Signal Specifications Boxed Processor Fan Heatsink Set Point Boxed Processor Fan Speed Notes X lt 30 When the internal chassis temperature is below or equal to this set point the fan operates at its lowest speed Recommended maximum internal chassis temperature for nominal operating environment Z gt 40 When the internal chassis temperature is above or
92. digital thermal sensor DTS provides an improved capability to monitor device hot spots which inherently leads to more varying temperature readings over short time intervals To reduce the sample rate requirements on PECI and improve thermal data stability vs time the processor DTS implements an averaging algorithm that filters the incoming data This filter is expressed mathematically as PECI t PECI t 1 1 2 X Temp PECI t 1 Where PECI t is the new averaged temperature PECI t 1 is the previous averaged temperature Temp is the raw temperature data from the DTS X is the Thermal Averaging Constant TAC Only values read via the PECI interface are averaged Temperature values read via the IA32 THERM STATUS MSR are not averaged The Thermal Averaging Constant is a BIOS configurable value that determines the time in milliseconds over which the DTS temperature values are averaged Short averaging times will make the averaged temperature values respond more quickly to DTS Intel Xeon Processor 3500 Series Datasheet Volume 1 n Thermal Specifications n tel 6 3 2 6 3 2 1 6 3 2 2 Table 6 4 6 3 2 3 changes Long averaging times will result in better overall thermal smoothing but also incur a larger time lag between fast DST temperature changes and the value read via PECI Refer to the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 for further details on the Data Filter and the T
93. e s anvas sit valsas Sovxova SNIMVHG 5 a EN i 611878086 VO VY TO VINYS suexonos JOJU ama 3037105 NOE K moe Se i iso 60 y 2 a LIE ezo oro W asva SLO Zo 5 ss HEBE JL o sva a1 m DEAA voz awos 8591 7 olsvaccoc EH 2 ma oisva oerz hi Spes Olsva ver 5 son ansa oisva cts c m N zove vez vy iia 335 m m zy Pm a Ec cc Waxy Era rar i f EEG SE 2 o w ma 200 T El alone 99 voc A aer ree eae by sm DR d iste rer Em P4 t6 v la ET Ir a suena Museum sens Ere bo LV 12 TWNSIA HOS CSAOWSH AMHLI3WO3O ONIMVNO 3WOS W V Nouoss V ansa W o i i 2 Hr Hd a b cel eee Jt ova e RB t la m N y maas al L y al Earl lo L i023 E a 3 4 ta j sl Y 921910 pues z v S 1 8 Intel Xeon Processor 3500 Series Datasheet Volume 1 32 l z S 9 L Z 207 3349 ONIMVKO 3 OS LON OG KE 379 icona vo YATO vi ar m as 9219 d AN QAUM E ee intel E zu 3 gt E e n zo pur __ g maas E id m Es amp XVII NIN e SINSWNOO ET IOBWAS 33 a M YN H f DELLA QOOOOOO SODODOD N OXID DAM
94. e 1 n Thermal Specifications n tel The JEDEC J JSTD 020 moisture level rating and associated handling practices apply to all moisture sensitive devices removed from the moisture barrier bag Nominal temperature and humidity conditions and durations are given and tested within the constraints imposed by TSUSTAINED and customer shelf life in applicable intel box and bags 8 Intel Xeon Processor 3500 Series Datasheet Volume 1 91 92 Thermal Specifications Intel Xeon Processor 3500 Series Datasheet Volume 1 Features 7 7 1 Table 7 1 7 2 intel Features Power On Configuration POC Several configuration options can be configured by hardware For electrical specifications on these options refer to Chapter 2 Note that request to execute BIST is not selected by hardware but is passed across the Intel QPI link during initialization The sampled information configures the processor for subsequent operation These configuration options cannot be changed except by another reset All resets reconfigure the processor for reset purposes the processor does not distinguish between a warm reset and a power on reset Power On Configuration Signal Options Configuration Option Signal MSID VID 2 0 MSID 2 0 1 2 CSC VID 5 3 CSC 2 0 1 2 Notes 1 Latched when VTTPWRGOOD is asserted and all internal power good conditions are met 2 See the signal definitions in Table 6 1 for the
95. e the processor to take a machine check exception COMPO I Impedance compensation must be terminated on the system board using a precision resistor QPI_CLKRX_DN I Intel QPI received clock is the input clock that corresponds to the received data QPI_CLKRX_DP I QPI_CLKTX_DN O Intel QPI forwarded clock sent with the outbound data QPI_CLKTX_DP O QPI_CMP 0 I Must be terminated on the system board using a precision resistor QPI DRX DN 19 0 I QPI DRX DN 19 0 and QPI DRX DP 19 0 comprise the differential receive QPI DRX DP 19 0 I data for the QPI port The inbound 20 lanes are connected to another n component s outbound direction QPI DTX DN 19 0 O QPI_DTX_DN 19 0 and QPIQPI_DTX_DP 19 0 comprise the differential QPI_DTX_DP 19 0 O transmit data for the QPI port The outbound 20 lanes are connected to another gt iy component s inbound direction DBR I DBR is used only in systems where no debug port is implemented on the system board DBR is used by a debug port interposer so that an in target probe can drive system reset If a debug port is implemented in the system DBR is a no connect in the system DBR is not a processor signal DDR COMP 2 0 I Must be terminated on the system board using precision resistors DDR VREF I Voltage reference for DDR3 DDR 0 1 2 _BA 2 0 O Defines the bank which is the destination for the current Activate Read Write 1 or Precharge command DDR 0 1 2 _CAS O Column Address Strobe DDR 0 1 2
96. emperatures may change based on processor stepping frequency or manufacturing efficiencies There is no specified correlation between DTS temperatures and processor case temperatures therefore it is not possible to use this feature to ensure the processor case temperature meets the Thermal Profile specifications Adaptive Thermal Monitor The Adaptive Thermal Monitor feature provides an enhanced method for controlling the processor temperature when the processor silicon exceeds the Thermal Control Circuit TCC activation temperature Adaptive Thermal Monitor uses TCC activation to reduce processor power via a combination of methods The first method Frequency VID control similar to Thermal Monitor 2 TM2 in previous generation processors involves the processor reducing its operating frequency via the core ratio multiplier and input voltage via the VID signals This combination of lower frequency and VID results in a reduction of the processor power consumption The second method clock modulation known as Intel Thermal Monitor 1 TM1 in previous generation processors reduces power consumption by modulating starting and stopping the internal processor core clocks The processor intelligently selects the appropriate TCC method to use on a dynamic basis BIOS is not required to select a specific method as with previous generation processors supporting TM1 or TM2 The temperature at which Adaptive Thermal Monitor activates the Thermal
97. eous temperature readings from the DTS are available via the IA32 THERM STATUS MSR averaged DTS values are read via the PECI interface The PECI physical layer is a self clocked one wire bus that begins each bit with a driven rising edge from an idle level near zero volts The duration of the signal driven high depends on whether the bit value is a logic 0 or logic 1 PECI also includes variable data transfer rate established with every message The single wire interface provides low board routing overhead for the multiple load connections in the congested routing area near the processor and chipset components Bus speed error checking and low protocol overhead provides adequate link bandwidth and reliability to transfer critical device operating conditions and configuration information Fan Speed Control with Digital Thermal Sensor Fan speed control solutions use a value stored in the static variable TcontroL The DTS temperature data which is delivered over PECI in response to a GetTempO command is compared to this TcontroL reference The DTS temperature is reported as a relative value versus an absolute value The temperature reported over PECI is always a negative value and represents a delta below the onset of thermal control circuit TCC activation as indicated by PROCHOT Therefore as the temperature approaches TCC activation the value approaches zero degrees Processor Thermal Data Sample Rate and Filtering The processor
98. equal to this set point the fan operates at its highest speed Recommended maximum internal chassis temperature for worst case operating environment 1 Set point variance is approximately 1 C from fan heatsink to fan heatsink Intel Xeon Processor 3500 Series Datasheet Volume 1 105 106 n tel Boxed Processor Specifications If the boxed processor fan heatsink 4 pin connector is connected to a 4 pin motherboard header and the motherboard is designed with a fan speed controller with PWM output CONTROL see Table 8 1 and remote thermal diode measurement capability the boxed processor will operate as follows As processor power has increased the reguired thermal solutions have generated increasingly more noise Intel has added an option to the boxed processor that allows system integrators to have a guieter system in the most common usage The 4th wire PWM solution provides better control over chassis acoustics This is achieved by more accurate measurement of processor die temperature through the processor s Digital Thermal Sensors DTS and PECI Fan RPM is modulated through the use of an ASIC located on the motherboard that sends out a PWM control signal to the 4th pin of the connector labeled as CONTROL The fan speed is based on actual processor temperature instead of internal ambient chassis temperatures If the new 4 pin active fan heat sink solution is connected to an older 3 pin baseboard processor fan
99. es Care should be taken to read all notes associated with each parameter Intel Xeon Processor 3500 Series Datasheet Volume 1 Electrical Specifications 2 11 1 DC Voltage and Current Specification Table 2 7 Voltage and Current Specifications Symbol Parameter Min Typ Max Unit Notes 1 VID VID range 0 8 _ 1 375 V 2 Processor Vcc for processor core Number W3580 3 33 GHz Vcc W3570 3 20 GHz See Table 2 8 and Figure 2 3 V 3 4 W3550 3 06 GHz W3540 2 93 GHz W3520 2 66 GHz Voltage for the analog portion of the VTA integrated memory controller Intel QPI See Table 2 10 and Figure 2 4 V 5 link and Shared Cache Voltage for the digital portion of the Vip integrated memory controller Intel QPI See Table 2 9 and Figure 2 4 V 5 link and Shared Cache VDDQ Processor I O supply voltage for DDR3 1 425 1 5 1 575 V V PLL supply voltage DC AC 1 71 1 8 1 89 V CCPL specification Processor Icc for processor Number W3580 3 33 GHz 145 Icc W3570 3 20 GHz 145 A 6 W3550 3 06 GHz 145 W3540 2 93 GHz 145 W3520 2 66 GHz 145 Current for the analog portion of the Fra integrated memory controller Intel QPI 5 A link and Shared Cache Current for the digital portion of the Imo integrated memory controller Intel QPI 23 A link and Shared Cache Ippo Processor I O supply current for DDR3 6 A I S3 Processor I O supply current for DDR3 _ 1 A 7 DDQ while in S3 Icc vc
100. essary to design a thermal solution for the processor These dimensions include e Package reference with tolerances total height length width and so forth e IHS parallelism and tilt e Land dimensions e Top side and back side component keep out dimensions e Reference datums e All drawing dimensions are in mm e Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the cooling solution is available in the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 Intel Xeon Processor 3500 Series Datasheet Volume 1 31 Package Mechanical Specifications intel Figure 3 2 Processor Package Drawing Sheet 1 of 2 L z S B 9 40 13389 SNIMYHO 31V2S LON OG KZ wa 9zi9 IV BE vov awos Loz awas Es mere pa 73 g ma V wis
101. et Bulk decoupling must be provided on the baseboard to handle large current swings The power delivery solution must insure the voltage and current specifications are met as defined in Table 2 7 Processor Clocking BCLK_DP BCLK_DN The processor core Intel QPI and integrated memory controller frequencies are generated from BCLK_DP and BCLK_DN Unlike previous processors based on front side bus architecture there is no direct link between core frequency and Intel QPI link frequency such as no core frequency to Intel QPI multiplier The processor maximum core frequency Intel QPI link frequency and integrated memory controller frequency are set during manufacturing It is possible to override the processor core frequency setting using software This permits operation at lower core frequencies than the factory set maximum core frequency The processor s maximum non turbo core frequency is configured during power on reset by using values stored internally during manufacturing The stored value sets the highest core multiplier at which the particular processor can operate If lower max non turbo speeds are desired the appropriate ratio can be configured via the CLOCK_FLEX_MAX MSR The processor uses differential clocks BCLK_DP BCLK_DN Clock multiplying within the processor is provided by the internal phase locked loop PLL which requires a constant frequency BCLK_DP BCLK_DN input with exceptions for spread spectrum clocking The p
102. for the processor to be operating within specification the TCC will be active when PROCHOT is asserted The processor can be configured to generate an interrupt upon the assertion or de assertion of PROCHOT Although the PROCHOT signal is an output by default it may be configured as bi directional When configured in bi directional mode it is either an output indicating the processor has exceeded its TCC activation temperature or it can be driven from an external source for example a voltage regulator to activate the TCC The ability to activate the TCC via PROCHOT can provide a means for thermal protection of system components As an output PROCHOT Processor Hot will go active when the processor temperature monitoring sensor detects that one or more cores has reached its maximum safe operating temperature This indicates that the processor Thermal Control Circuit TCC has been activated if enabled As an input assertion of PROCHOT by the system will activate the TCC for all cores TCC activation when PROCHOT is asserted by the system will result in the processor immediately transitioning to the minimum frequency and corresponding voltage using Freq VID control Clock modulation is not activated in this case The TCC will remain active until the system de asserts PROCHOT Use of PROCHOT in bi directional mode can allow VR thermal designs to target maximum sustained current instead of maximum current Systems should still p
103. g point lowest supported voltage and associated frequency When entering the C1E state the processor will first switch to the lowest bus ratio and then transition to the lower VID No notification to the system occurs upon entry to C1 C1E Package C3 State The package will enter the C3 low power state when all cores are in the C3 or lower power state and the processor has been granted permission by the other component s in the system to enter the C3 state The package will also enter the C3 state when all cores are in an idle state lower than C3 but other component s in the system have only granted permission to enter C3 Intel Xeon Processor 3500 Series Datasheet Volume 1 95 intel TR 7 2 2 4 7 3 Table 7 3 7 4 96 If Intel QPI L1 has been granted the processor will disable some clocks and PLLs and for processors with an integrated memory controller the DRAM will be put into self refresh Package C6 State The package will enter the C6 low power state when all cores are in the C6 or lower power state and the processor has been granted permission by the other component s in the system to enter the C6 state The package will also enter the C6 state when all cores are in an idle state lower than C6 but the other component s have only granted permission to enter C6 If Intel QPI L1 has been granted the processor will disable some clocks and PLLs and the shared cache will enter a deep sleep state Additionally for
104. he range of I O addresses that are trapped and redirected to MWAIT instructions Note that when I O instructions are used no MWAIT substates can be defined as therefore the request defaults to have a sub state or zero but always assumes the break on IF 0 control that can be selected using ECX with an MWAIT instruction Intel Xeon Processor 3500 Series Datasheet Volume 1 93 intel T Figure 7 1 7 2 1 Table 7 2 7 2 1 1 7 2 1 2 94 Power States MWAIT C1 HLT MWAIT C6 2 I O C6 MWAIT C1 HLT C1E enabled MWAIT C3 1 0 C3 1 No transition to CO is needed to service a snoop when in C1 or C1E 2 Transitions back to CO occur on an interrupt or on access to monitored address if state was entered via MWAIT Thread and Core Power State Descriptions Individual threads may request low power states Core power states are automatically resolved by the processor as shown in Table 7 2 Coordination of Thread Power States at the Core Level Threadi State Core State co ci C3 C6 CO CO CO CO CO ThreadO cit CO cil cit cil State C3 CO C1 C3 C3 C6 CO ci C3 C6 Notes 1 If enabled state will be C1E CO State This is the normal operating state in the processor C1 C1E State C1 C1E is a low power state entered when all threads within a core execute a HLT or MWAIT C1E instruction The processor thread will transition to the CO
105. header it will default back to a thermistor controlled Under thermistor controlled mode the fan RPM is automatically varied based on the Tinlet temperature measured by a thermistor located at the fan inlet For more details on specific motherboard requirements for 4 wire based fan speed control see the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 Intel Xeon Processor 3500 Series Datasheet Volume 1
106. hermal are satisfied Enhanced Intel SpeedStep Technology Enhanced Intel SpeedStep Technology allows the operating system to reduce power consumption when performance is not needed Execute Disable Bit Execute Disable allows memory to be marked as executable or non executable when combined with a supporting operating system If code attempts to run in non executable memory the processor raises an error to the operating system This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the system See the Intel Architecture Software Developer s Manual for more detailed information Refer to http developer intel com for future reference on up to date nomenclatures Intel 64 Architecture An enhancement to Intel s IA 32 architecture allowing the processor to execute operating systems and applications written to take advantage of Intel 64 Further details on Intel 64 architecture and programming model can be found at http developer intel com technology intel64 Intel virtualization Technology Intel VT A set of hardware enhancements to Intel server and client platforms that can improve virtualization solutions Intel VT provides a foundation for widely deployed virtualization solutions and enables a more robust hardware assisted virtualization solution More information can be found at http www intel com technology virtua
107. hermal Averaging Constant Within the processor the DTS converts an analog signal into a digital value representing the temperature relative to TCC activation The conversions are in integers with each single number change corresponding to approximately 1 C DTS values reported via the internal processor MSR will be in whole integers As a result of the averaging function described above DTS values reported over PECI will include a 6 bit fractional value Under typical operating conditions where the temperature is close to Tcontrol the fractional values may not be of interest But when the temperature approaches zero the fractional values can be used to detect the activation of the TCC An averaged temperature value between 0 and 1 can only occur if the TCC has been activated during the averaging window As TCC activation time increases the fractional value will approach zero Fan control circuits can detect this situation and take appropriate action as determined by the system designers Of course fan control chips can also monitor the Prochot pin to detect TCC activation via a dedicated input pin on the package Further details on how the Thermal Averaging Constant influences the fractional temperature values are available in the Thermal Design Guide PECI Specifications PECI Device Address The PECI register resides at address 30h PECI Command Support The processor supports the PECI commands listed in Table 6 4 Supported PEC
108. latform Environmental Control Interface PECI DC Specifications 20 2 9 1 DG Characteristics e tora teteka sep a a 20 2 9 2 Input Device HysteresiS s saye huna cratere a sie E aa a apes e bete rie 21 2 10 Absolute Maximum and Minimum Ratings hkhk K k k kk kk eee kk eene 21 2 11 Processor DC Specifications scele nayhnana inkna eese nak nia Ra neis i niy REX a ka la a Aaa sasas 22 2 11 1 DC Voltage and Current Specification c cece a aaa nan kaka kaka tetas eee ene 23 2 11 2 VCC Overshoot Specification erre rra deni nuncu nk ne gage ta ki ala a aa 29 2 11 3 Die Voltage Validation rincon cotes Dore tac eee RR 4ya PERI ba RATE IA k 30 3 Package Mechanical Specifications L L L L LL LL kk kk kk kk kk kk kk kk kk kk ak 31 3 1 Package Mechanical Dra Wind coin A w A Kw rea Yade naka 31 3 2 Processor Component Keep Qut ZONES sss c a n a lrdan kl s l lll dal daa aaa aaa ene s n na van eene 34 3 3 Package Loading Specifications sinan n aa aaa aaa anas anas rr 34 3 4 Package Handling Guidelines iesu ian panna nhan a dk i 34 3 5 Package Insertion Specifications vecinita pasai sa kara kao indas agna da ali xa pa E kak da 34 3 6 Processor Mass Specification lt a Lk aaa ana nas aa nana y nn sen b k lan k aa aa sk sana a sa sias an rasa sana a nnn 35 3 7 Processor Materials siy xun A kykdak iaa 35 3 8 Processor Markings
109. lization Intel Xeon Processor 3500 Series Datasheet Volume 1 Introduction 1 2 Table 1 1 intel Unit Interval UI Signaling convention that is binary and unidirectional In this binary signaling one bit is sent for every edge of the forwarded clock whether it is a rising edge or a falling edge If a number of edges are collected at instances t t5 th t then the UI at instance n is defined as UI n ta tan Jitter Any timing variation of a transition edge or edges from the defined Unit Interval Storage Conditions Refers to a non operational state The processor may be installed in a platform in a tray or loose Processors may be sealed in packaging or exposed to free air Under these conditions processor lands should not be connected to any supply voltages have any I Os biased or receive any clocks OEM Original Equipment Manufacturer References Material and concepts available in the following documents may be beneficial when reading this document References Document Reference Notes Intel Xeon Processor 3500 Series Specification Update 321333 1 Intel Xeon Processor Series Datasheet Volume 2 321344 1 Intel Xeon Processor 3500 Series and LGA1366 Socket 321461 1 Thermal and Mechanical Design Guide Note Document is available publicly at http www intel com Intel Xeon Processor 3500 Series Datasheet Volume 1 11 12 Introduc
110. m with an enabled Intel processor BIOS virtual machine monitor VMM and for some uses certain computer system software enabled for it Functionality performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update Software applications may not be compatible with all operating systems Please check with your application vendor Intel Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability Intel Turbo Boost Technology performance varies depending on hardware software and overall system configuration Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology For more information see www intel com Enhanced Intel SpeedStep Technology See the http processorfinder intel com or contact your Intel representative for more information Copies of documents which have an order number and are referenced in this document or other Intel literature may be obtained by calling 1 800 548 4725 or by visiting Intel s website at http www intel com Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order Intel Pentium Intel Xeon Intel Atom Enhanced Intel SpeedStep Technology Intel Turbo Boost Technology Intel Hyper Threading Technology Intel Virtualization Technology Intel Advanced Digital Media Boost and the Intel logo are trademarks or regis
111. n through fan speed control and to assure processor reliability Selection of the appropriate fan speed is based on the relative temperature data reported by the processor s Digital Temperature Sensor DTS The DTS can be read via the Platform Environment Control Interface PECI as described in Intel Xeon Processor 3500 Series Datasheet Volume 1 79 n tel Thermal Specifications Section 6 3 The temperature reported over PECI is always a negative value and represents a delta below the onset of thermal control circuit TCC activation as indicated by PROCHOT see Section 6 2 Processor Thermal Features Systems that implement fan speed control must be designed to use this data Systems that do not alter the fan speed only need to guarantee the thermal solution provides the Yc that meets the TTV thermal profile specifications A single integer change in the PECI value corresponds to approximately 1 C change in processor temperature Although each processors DTS is factory calibrated the accuracy of the DTS will vary from part to part and may also vary slightly with temperature and voltage In general each integer change in PECI should egual a temperature change between 0 9 C and 1 1 C Analysis indicates that real applications are unlikely to cause the processor to consume maximum power dissipation for sustained time periods Intel recommends that complete thermal solution designs target the Thermal Design Power TDP instead of
112. nality nor long term reliability can be expected If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits but within the absolute maximum and minimum ratings the device may be functional but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits At conditions exceeding absolute maximum and minimum ratings neither functionality nor long term reliability can be expected Moreover if a device is subjected to these conditions for any length of time then when returned to conditions within the functional operating condition limits it will either not function or its reliability will be severely degraded Although the processor contains protective circuitry to resist damage from Electro Static Discharge ESD precautions should always be taken to avoid high static voltages or electric fields Intel Xeon Processor 3500 Series Datasheet Volume 1 21 intel Table 2 6 2 11 22 Electrical Specifications Processor Absolute Minimum and Maximum Ratings Symbol Parameter Min Max Unit Notes 2 Vcc Processor Core voltage with respect to Vss 0 3 1 55 V Voltage for the analog portion of the integrated 1 35 V 3 VITA memory controller Intel QPI link and Shared Cache with respect to Vss Voltage for the digital portion of the integrated 1 35 V 3 Vitb mem
113. nd associated materials Table 3 3 Processor Materials Component Material Integrated Heat Spreader IHS Nickel Plated Copper Substrate Fiber Reinforced Resin Substrate Lands Gold Plated Copper 3 8 Processor Markings Figure 3 4 shows the topside markings on the processor This diagram is to aid in the identification of the processor Figure 3 4 Processor Top Side Markings INTEL 008 PROG BRAND SLxxx COO SPEED CACHE INTC FMB FPO O Intel Xeon Processor 3500 Series Datasheet Volume 1 35 n tel Package Mechanical Specifications 3 9 Processor Land Coordinates Figure 3 5 shows the top view of the processor land coordinates The coordinates are referred to throughout the document to identify processor lands Figure 3 5 Processor Land Coordinates and Quadrants Bottom View 29oooooooooooooooooOQ OOOOOOO OCOCOS OOOOOOOOOOOOCOOOOOOOCQOCOOOCOOOOOOOOOOOOOCOOOO POO000O000000000000000000000000000000000000 OOOOOOCOOOOOOCOOOOCOOOOCOCQOOOOOCOOCOOOCOOOCOOOCOOOCOOOCOCOOCO tp COODOOOOOOOOCOOOOOOOOOCOCXp9OOOOOOOOOOOOOOCOOOOCOOCO OOOOOOCOOOOOOOOOOCOOCOOCOCXpOOOOOCOOCOOOOOOOOOOOCOOCOOCO OOOOOOOOOOOOOOOOOOOCOCXPOOOOOOOOOOOOCOOOOOOOOO CIOS OOOO OOOO OOOO COCO CUE OOOO OC OO OOOO OOOO OOOO OOOOOOOOCOOOOOOOOCOOOCOCXQOOOOOCOOOOCOOCOOOCOOOCOOCOOOCOO GOGO OOO OOOO OC OO OOO OOO OOOO OO OOOO OOOO OOOO OOO OOOCOOOOOOOOOOOOOOCOOCOQOCQOOOCOOCOOOOOOOCOOOOOCOOCOQOCO j ODO OOOO
114. ngle ended Asynchronous GTL Bi PROCHOT directional Single ended Asynchronous GTL Output THERMTRIP Single ended CMOS Input Output VID 7 6 VID 5 3 CSC 2 0 VID 2 0 MSID 2 0 VTT_VID 4 2 Intel Xeon Processor 3500 Series Datasheet Volume 1 Electrical Specifications Table 2 3 Signal Groups Sheet 2 of 2 Signal Group Type Signals Single ended CMOS Output VTT VID 4 2 Single ended Analog Input ISENSE Reset Signal Single ended Reset Input RESET PWRGOOD Signals Single ended Asynchronous Input VCCPWRGOOD VTTPWRGOOD VDDPWRGOOD Power Other Power VCC VTTA VTTD VCCPLL VDDQ Asynchronous CMOS Output PSI Sense Points VCC_SENSE VSS_SENSE Other SKTOCC DBR Notes Notes 1 Refer to Chapter 5 for signal descriptions 2 DDR 0 1 2 refers to DDR3 Channel 0 DDR3 Channel 1 and DDR3 Channel 2 Table 2 4 Signals with ODT QPI_DRX_DP 19 0 QPI_DRX_DN 19 0 QPI_DTX_DP 19 0 QPI_DTX_DN 19 0 QPI_CLKRX_D N P QPI_CLKTX_D N P e DDR 0 1 2 _DQ 63 0 DDR 0 1 2 _DQS_ N P 7 0 DDR 0 1 2 _ECC 7 0 DDR 0 1 2 _PAR_ERR 0 2 VDDPWRGOOD BCLK_ITP_D N P e PECI BPM 7 0 PREQ TRST VCCPWRGOOD VTTPWRGOOD Notes 1 Unless otherwise specified signals have ODT in the package with 50 O pulldown to Vss 2 PREQ BPM 7 0 TDI TMS and BCLK_ITP_D N P have ODT in package with 35 Q pullup to V 3 VCCPWRGOOD VDDPWRGOOD and VTTPWRGOOD have ODT in package with a 10 kQ to 20
115. nnnnncnnnrncnnanno 36 6 1 Processor Thermal Profile rai crete cd descend ee RR a aa i a ss 81 6 2 Thermal Test Vehicle TTV Case Temperature TCASE Measurement Location 83 6 3 Frequency and Voltage Ordering ococococcncononononcnnnincnncnnnnnnanennnranenenanrnranenrnrnnenanans 86 TL PoOWenStates m eec 94 8 1 Mechanical Representation of the Boxed Processor cccceeeeeeee eee ee eee kk eae nnne 99 8 2 Space Requirements for the Boxed Processor side view hk l kk 100 8 3 Space Requirements for the Boxed Processor top view oooooooccoconncnncncnnncancnnnnnnns 101 8 4 Space Requirements for the Boxed Processor overall view esee 101 8 5 Boxed Processor Fan Heatsink Power Cable Connector Description 102 8 6 Baseboard Power Header Placement Relative to Processor Socket 103 8 7 Boxed Processor Fan Heatsink Airspace Keepout Requirements top view 104 8 8 Boxed Processor Fan Heatsink Airspace Keepout Requirements side view 104 8 9 Boxed Processor Fan Heatsink Set Points cceeeee kk kk eee eee tees eens meme 105 Intel Xeon Processor 3500 Series Datasheet Volume 1 Tables Ted References ani ks anais iai ai a ane a a iai ag sad a ia S o 11 2 1 Voltage Identification Definition ccc eect nemen aa aaa aa aaa kak 15 2 2 Market Segment Selection Truth Table for MS ID 2 0 enm mH
116. ntain temperatures within its operating limits Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components within the system Maintaining the proper thermal environment is key to reliable long term system operation A complete solution includes both component and system level thermal management features Component level thermal solutions can include active or passive heatsinks attached to the processor integrated heat spreader IHS This section provides data necessary for developing a complete thermal solution For more information on designing a component level thermal solution refer to the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 6 1 1 Thermal Specifications The processor thermal specification uses the on die Digital Thermal Sensor DTS value reported via the PECI interface for all processor temperature measurements The DTS is a factory calibrated analog to digital thermal sensor As a result it will no longer be necessary to measure the processors case temperature Consequently there will be no need for a Thermal Profile specification defining the relationship between the processors TcAse and power dissipation Note Unless otherwise specified the term DTS refers to the DTS value returned by from the PECI interface gettemp command Note A thermal solution that was verified compliant to the processor c
117. nts of processor die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope 8 30 Intel Xeon Processor 3500 Series Datasheet Volume 1 Package Mechanical Specifications n tel 3 Figure 3 1 3 1 Package Mechanical Specifications The processor is packaged in a Flip Chip Land Grid Array package that interfaces with the motherboard via an LGA1366 socket The package consists of a processor mounted on a substrate land carrier An integrated heat spreader IHS is attached to the package substrate and core and serves as the mating surface for processor thermal solutions such as a heatsink Figure 3 1 shows a sketch of the processor package components and how they are assembled together Refer to the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 for complete details on the LGA1366 socket The package components shown in Figure 3 1 include the following e Integrated Heat Spreader IHS e Thermal Interface Material TIM e Processor core die e Package substrate e Capacitors Processor Package Assembly Sketch TIM iHs__ Die gt Substrate ___y r Capacitors ker LGA1366 Socket System Boar Note 1 Socket and motherboard are included for reference and are not part of processor package Package Mechanical Drawing The package mechanical drawings are shown in Figure 3 2 and Figure 3 3 The drawings include dimensions nec
118. orage 55 C 125 C 1 2 3 temperature beyond which damage latent or otherwise may occur when subjected to for any length of time Tsustained storage The ambient storage temperature limit in 5 C 40 C 4 5 shipping media for a sustained period of time RHsustained storage The maximum device storage relative 60 24 C 60 24 C 5 6 humidity for a sustained period of time Timesustained storage A prolonged or extended period of time 0 months 6 months 6 typically associated with customer shelf life Notes 1 Refers to a component device that is not assembled in a board or socket that is not to be electrically connected to a voltage reference or I O signals 2 Specified temperatures are based on data collected Exceptions for surface mount reflow are specified in by applicable JEDEC standard and MAS document Non adherence may affect processor reliability 3 TABSOLUTE STORAGE applies to the unassembled component only and does not apply to the shipping media moisture barrier bags or desiccant 4 Intel branded board products are certified to meet the following temperature and humidity limits that are given as an example only Non Operating Temperature Limit 40 C to 70 C amp Humidity 50 to 90 non condensing with a maximum wet bulb of 28 C Post board attach storage temperature limits are not specified for non Intel branded boards Intel Xeon Processor 3500 Series Datasheet Volum
119. ory controller Intel QPI link and Shared Cache with respect to Vss V Processor I O supply voltage for DDR3 with B 1 875 V DDQ respect to Vss VccPLL Processor PLL voltage with respect to Vss 1 65 1 89 V T Processor case temperature See See E CASE Chapter 6 Chapter 6 T Storage temperature See See ie STORAGE Chapter 6 Chapter 6 Notes 1 For functional operation all processor electrical signal quality mechanical and thermal specifications must be satisfied 2 Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor 3 Vrr and Vrp should be derived from the same VR Processor DC Specifications The processor DC specifications in this section are defined at the processor pads unless noted otherwise See Chapter 4 for the processor land listings and Chapter 5 for signal definitions Voltage and current specifications are detailed in Table 2 7 For platform planning refer to Table 2 8 which provides Vcc static and transient tolerances This same information is presented graphically in Figure 2 3 The DC specifications for the DDR3 signals are listed in Table 2 11 Control Sideband and Test Access Port TAP are listed in Table 2 12 through Table 2 15 Table 2 7 through Table 2 15 list the DC specifications for the processor and are valid only while meeting specifications for case temperature Tease as specified in Chapter 6 Thermal Specifications clock frequency and input voltag
120. os lyo DDRO ECC 6 B34 cmos ro DDRO DQ 54 R4 CMOS 1 0 DDRO_ECC 7 C34 CMOS 1 0 DDRO DQ 55 T3 CMOS 1 0 DDRO MA 0 A20 CMOS O DDRO DQ 56 U4 CMOS 1 0 DDRO_MA 1 B21 CMOS O DDRO_DQ 57 vi CMOS 1 0 DDRO_MA 10 B19 CMOS O DDRO DQ 58 Y2 CMOS 1 0 DDRO_MA 11 A26 CMOS O DDRO DQ 59 Y3 CMOS 1 0 DDRO_MA 12 B26 CMOS o DDRO DQ 6 U41 CMOS 1 0 DDRO_MA 13 A10 CMOS O DDRO DQ 60 Ui CMOS 1 0 DDRO_MA 14 A28 CMOS O DDRO DQ 61 U3 CMOS 1 0 DDRO_MA 15 B29 CMOS O DDRO DQ 62 v4 CMOS 1 0 DDRO_MA 2 C23 CMOS O DDRO DQ 63 WA CMOS 1 0 DDRO_MA 3 D24 CMOS O pbRo Do7 T42 Tcewos yo DDRO_MA 4 B23 cmos lo DDRO_DQ 8 N41 CMOS 1 0 DDRO_MA 5 B24 CMOS O DDRO_DQ 9 N43 CMOS 1 0 DDRO_MA 6 C24 CMOS O DDRO_DQS_N 0 U43 CMOS 1 0 DDRO_MA 7 A25 CMOS O DDRO_DQS_N 1 M41 CMOS 1 0 DDRO_MA 8 B25 CMOS O DDRO_DQS_N 2 G41 CMOS 1 0 DDRO_MA 9 C26 CMOS O DDRO_DQS_N 3 B40 CMOS 1 0 DDRO_ODT 0 F12 CMOS o DDRO_DQS_N 4 E4 CMOS 1 0 DDRO_ODT 1 C9 CMOS O DDRO_DQS_N 5 K3 CMOS 1 0 DDRO_ODT 2 B11 CMOS O DDRO_DQS_N 6 R3 CMOS 1 0 DDRO_ODT 3 C7 CMOS O DDRO_DQS_N 7 wi CMOS 1 0 DDRO_RAS A15 CMOS O DDRO_DQS_N 8 D35 CMOS 1 0 DDRO_RESET D32 CMOS O DDRO_DQS_P 0 T43 CMOS 1 0 DDRO_WE B13 CMOS O DDRO_DQS_P 1 L41 CMOS 1 0 DDR1 BA 0 C18 CMOS O DDRO_DQS_P 2 F41 CMOS 1 0 DDR1 BA 1 K13 CMOS O Intel Xeon Processor 3500 Series Datasheet Volume 1 39 m n t el Intel Xeon Processor 3500 Series Land Listing
121. processor Test Bus also known as the Test Access Port TDI TDI Test Data In transfers serial test data into the processor TDI provides the serial input needed for JTAG specification support TDO TDO Test Data Out transfers serial test data out of the processor TDO provides the serial output needed for JTAG specification support TESTLOW 76 TESTLOW must be connected to ground through a resistor for proper processor operation Intel Xeon Processor 3500 Series Datasheet Volume 1 Signal Definitions Table 5 1 Signal Definitions Sheet 3 of 4 intel Name THERMTRIP Type O Description Assertion of THERMTRIP Thermal Trip indicates the processor junction temperature has reached a level beyond which permanent silicon damage may occur Measurement of the temperature is accomplished through an internal thermal sensor Upon assertion of THERMTRIP the processor will shut off its internal clocks thus halting program execution in an attempt to reduce the processor junction temperature To further protect the processor its core voltage Vcc Vita Vrrp and Vppg must be removed following the assertion of THERMTRIP Once activated THERMTRIP remains latched until RESET is asserted While the assertion of the RESET signal may de assert THERMTRIP if the processor s junction temperature remains at or above the trip level THERMTRIP will again be asserted after RESET is de asse
122. r future processor compatibility or for keying 2 6 Reserved or Unused Signals All Reserved RSVD signals must remain unconnected Connection of these signals to Vcc Vrra Vito Vooo Veerle Vss or to any other signal including each other can result in component malfunction or incompatibility with future processors See Chapter 4 for a land listing of the processor and the location of all Reserved signals For reliable operation always connect unused inputs or bi directional signals to an appropriate signal level except for unused integrated memory controller inputs outputs and bi directional pins which may be left floating Unused active high inputs should be connected through a resistor to ground Vss Unused outputs maybe left unconnected however this may interfere with some Test Access Port TAP functions complicate debug probing and prevent boundary scan testing A resistor must be used when tying bi directional signals to power or ground When tying any signal to power or ground a resistor will also allow for system testability Intel Xeon Processor 3500 Series Datasheet Volume 1 17 Table 2 3 18 Signal Groups Electrical Specifications Signals are grouped by buffer type and similar characteristics as listed in Table 2 3 The buffer type indicates which signaling technology and specifications apply to the signals All the differential signals and selected DDR3 and Control Sideband signals have On Die Termination
123. r can enter the C6 state by initiating a P LVL3 read to the P BLK or an MWAIT C6 instruction Before entering Core C6 the processor saves core state data such as registers to the last level cache This data is retired after exiting core C6 The processor achieves additional power savings in the core C6 state Package Power State Descriptions The package supports CO C3 and C6 power states Note that there is no package C1 state The package power state is automatically resolved by the processor depending on the core power states and permission from the rest of the system as described in the following sections Package CO State This is the normal operating state for the processor The processor remains in the Normal state when at least one of its cores is in the CO or C1 state or when another component in the system has not granted permission to the processor to go into a low power state Individual components of the processor may be in low power states while the package in CO Package C1 C1E State The package will enter the C1 C1E low power state when at least one core is in the C1 C1E state and the rest of the cores are in the C1 C1E or lower power state The processor will also enter the C1 C1E state when all cores are in a power state lower than C1 C1E but the package low power state is limited to C1 C1E using the PMG CST CONFIG CONTROL MSR In the C1E state the processor will automatically transition to the lowest power operatin
124. rdware support is necessary for Intel Turbo Boost Technology BIOS and the operating system can enable or disable Intel Turbo Boost Technology Intel Xeon Processor 3500 Series Datasheet Volume 1 intel 7 5 Enhanced Intel SpeedStep Technology The processor features Enhanced Intel SpeedStep Technology Following are the key features of Enhanced Intel SpeedStep Technology e Multiple voltage and frequency operating points provide optimal performance at the lowest power e Voltage and frequency selection is software controlled by writing to processor MSRs If the target frequency is higher than the current frequency Vcc is ramped up in steps by placing new values on the VID pins and the PLL then locks to the new frequency If the target frequency is lower than the current frequency the PLL locks to the new frequency and the Vcc is changed through the VID pin mechanism Software transitions are accepted at any time If a previous transition is in progress the new transition is deferred until the previous transition completes e The processor controls voltage ramp rates internally to ensure smooth transitions e Low transition latency and large number of transitions possible per second Processor core including shared cache is unavailable for less than 5 us during the frequency transition Intel Xeon Processor 3500 Series Datasheet Volume 1 97 98 Features Intel Xeon Processor 3500
125. rocessor core frequency is determined by multiplying the ratio by 133 MHz PLL Power Supply An on die PLL filter solution is implemented on the processor Refer to Table 2 7 for DC specifications Voltage Identification VID The voltage set by the VID signals is the reference voltage regulator output voltage to be delivered to the processor VCC pins VID signals are CMOS push pull drivers Refer to Table 2 15 for the DC specifications for these signals The VID codes will change due to temperature and or current load changes in order to minimize the power of the part A voltage range is provided in Table 2 7 The specifications have been set such that one voltage regulator can operate with all supported frequencies Individual processor VID values may be set during manufacturing such that two devices at the same core frequency may have different default VID settings This is reflected by the VID range values provided in Table 2 1 Intel Xeon Processor 3500 Series Datasheet Volume 1 o Electrical Specifications n tel The processor uses eight voltage identification signals VID 7 0 to support automatic selection of voltages Table 2 1 specifies the voltage level corresponding to the state of VID 7 0 A 1 in this table refers to a high voltage level and a 0 refers to a low voltage level If the processor socket is empty VID 7 0 11111111 or the voltage regulation circuit cannot supply the voltage that is requested the
126. rovide proper cooling for the VR and rely on PROCHOT only as a backup in case of system cooling failure The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power THERMTRIP Signal Regardless of whether or not Adaptive Thermal Monitor is enabled in the event of a catastrophic cooling failure the processor will automatically shut down when the silicon has reached an elevated temperature refer to the THERMTRIP definition in Intel Xeon Processor 3500 Series Datasheet Volume 1 87 m n tel Thermal Specifications 6 3 6 3 1 6 3 1 1 6 3 1 2 Note 88 Table 5 1 THERMTRIP activation is independent of processor activity The temperature at which THERMTRIP asserts is not user configurable and is not software visible Platform Environment Control Interface PECI Introduction The Platform Environment Control Interface PECI is a one wire interface that provides a communication channel between Intel processor and chipset components to external monitoring devices The processor implements a PECI interface to allow communication of processor thermal and other information to other devices on the platform The processor provides a digital thermal sensor DTS for fan speed control The DTS is calibrated at the factory to provide a digital representation of relative processor temperature Instantan
127. rra Measured when the driver is tristated 4 Vg and Voy may experience excursions above Vr 5 COMP resistance must be provided on the system board with 1 resistors See the applicable platform design guide for implementation details COMPO resistors are to Vss 2 11 2 Vcc Overshoot Specification The processor can tolerate short transient overshoot events where Vcc exceeds the VID voltage when transitioning from a high to low current load condition This overshoot cannot exceed VID Vos max Vos max is the maximum allowable overshoot above VID These specifications apply to the processor die voltage as measured across the VCC SENSE and VSS SENSE lands Table 2 16 Vcc Overshoot Specifications Symbol Parameter Min Max Units Figure Notes Vos MAX Magnitude of Vccp overshoot above VID 50 mV 2 5 Tos MAX Time duration of Vccp overshoot above VID 25 us 2 5 Intel Xeon Processor 3500 Series Datasheet Volume 1 29 m e n tel Electrical Specifications Figure 2 5 Vcc Overshoot Example Waveform Example Overshoot Waveform Voltage V Time Tos Overshoot time above VID Vos Overshoot above VID 2 11 3 Die Voltage Validation Core voltage Vcc overshoot events at the processor must meet the specifications in Table 2 16 when measured across the VCC SENSE and VSS SENSE lands Overshoot events that are 10 ns in duration may be ignored These measureme
128. rted Notes TMS TMS Test Mode Select is a JTAG specification support signal used by debug tools TRST VCC TRST Test Reset resets the Test Access Port TAP logic TRST must be driven low during power on Reset Power for processor core VCC_SENSE VSS_SENSE VCC_SENSE and VSS_SENSE provide an isolated low impedance connection to the processor core power and ground They can be used to sense or measure voltage near the silicon VCCPLL Power for on die PLL filter VCCPWRGOOD VCCPWRGOOD Power Good is a processor input The processor requires this signal to be a clean indication that BCLK Vcc Vccpi VrrA and Vqrp supplies are stable and within their specifications Clean implies that the signal will remain low capable of sinking leakage current without glitches from the time that the power supplies are turned on until they come within specification The signal must then transition monotonically to a high state VCCPWRGOOD can be driven inactive at any time but BCLK and power must again be stable before a subsequent rising edge of VCCPWRGOOD In addition at the time VCCPWRGOOD is asserted RESET must be active The PWRGOOD signal must be supplied to the processor It should be driven high throughout boundary scan operation VDDPWRGOOD VDDPWRGOOD is an input that indicates the Vppo power supply is good The processor requires this signal to be a clean indication that the Vppo power suppl
129. ss different processor families See http www intel com products processor_number for details Over time processor numbers will increment based on changes in clock speed cache FSB or other features and increments are not intended to represent proportional or quantitative increases in any particular feature Current roadmap processor number progression is not necessarily representative of future roadmaps See www intel com products processor_number for details Hyper Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology enabled chipset BIOS and operating system Performance will vary depending on the specific hardware and software you use For more information including details on which processors support HT Technology see http www intel com products ht hyperthreading_more htm Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality 64 bit computing on Intel architecture requires a computer system with a processor chipset BIOS operating system device drivers and applications enabled for Intel 64 architecture Performance will vary depending on your hardware and software configurations Consult with your system vendor for more information Intel Virtualization Technology requires a computer syste
130. state upon occurrence of an interrupt or an access to the monitored address if the state was entered via the MWAIT instruction RESET will cause the processor to initialize itself A System Management Interrupt SMI handler will return execution to either Normal state or the C1 state See the Inte 64 and IA 32 Architectures Software Developer s Manuals Volume III System Programmer s Guide for more information Intel Xeon Processor 3500 Series Datasheet Volume 1 Features 7 2 1 3 7 2 1 4 7 2 2 7 2 2 1 7 2 2 2 7 2 2 3 intel While in C1 C1E state the processor will process bus snoops and snoops from the other threads C3 State Individual threads of the processor can enter the C3 state by initiating a P_LVL2 I O read to the P BLK or an MWAIT C3 instruction Before entering core C3 the processor flushes the contents of its caches Except for the caches the processor core maintains all its architectural state while in the C3 state All of the clocks in the processor core are stopped in the C3 state Because the core s caches are flushed the processor keeps the core in the C3 state when the processor detects a snoop on the Intel QPI Link or when another logical processor in the same package accesses cacheable memory The processor core will transition to the CO state upon occurrence of an interrupt RESET will cause the processor core to initialize itself C6 State Individual threads of the processo
131. ter Min Typ Max Units Notes VIL Input Low Voltage 0 43 VDDQ V 2 4 Vin Input High Voltage 0 57 Vppq V 3 Output Low Voltage Vppo 2 Ron V DD O a V SE PR aaa Output High Voltage Vppo Vppo 2 V Q V 4 OH Ron Row Rut TEKM DDR3 Clock Buffer On Ron Resistance 21 gt 31 B DDR3 Command Buffer Ron On Resistance 16 en o DDR3 Reset Buffer On Ron Resistance 25 ui 75 9 DDR3 Control Buffer On RoN Resistance 21 n 31 9 DDR3 Data Buffer On RoN Resistance B Ti 31 B Iu Input Leakage Current N A N A 1 mA DDR_COMPO COMP Resistance 99 100 101 Q 5 DDR_COMP1 COMP Resistance 24 65 24 9 25 15 Q 5 DDR_COMP2 COMP Resistance 128 7 130 131 30 Q 5 Notes 1 Unless otherwise noted all specifications in this table apply to all processor frequencies 2 Vy is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value 3 Vy is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value Intel Xeon Processor 3500 Series Datasheet Volume 1 27 Electrical Specifications 4 Vr and Voy may experience excursions above Vppo However input signal drivers must comply with the signal quality specifications 5 COMP resistance must be provided on the system board with 1 resistors See the applicable platform design guide for implementation details DDR COMP 2 0 resistors are to Vss Table 2 12 RESETZ Signal DC Specifications
132. tered trademarks of Intel Corporation in the U S and other countries Other names and brands may be claimed as the property of others Copyright 2009 Intel Corporation 2 Intel Xeon Processor 3500 Series Datasheet Volume 1 Contents 1 Mi nfirpmee 9 1 1 Terminology saori ora edit CREME cease e Ras gx cR ia ka e 10 1 2 References ios deiade lesu tia 11 2 Electrical Specifications sre entere Wa aya ka gua iai a a la sa pa k l a i y ala a a aa ilk 13 2 1 Intel QPI Differential Signaling s a sa sil anas is ka del kk EW k yaka baway ka bkn eka bala a Wek a 13 2 2 Power and Ground Lands ss anha k l kalak o kayan n Dal A kasik a la da 13 2 3 DECOUPIING G idelines a c eiii kala ke niba raa bek k a b ba d Wa ea a k r b k ba kb e D nade bes 13 2 3 1 VCC VTTA VTTD VDDQ Decoupling csse mmm 14 2 4 Processor Clocking BCLK DP BCLK DN sssssennIIHmHHHmememhrens 14 2 4 1 PLL Power Supply oci pire siai sa io a e 14 2 5 Voltage Identification VID oocoonoscnranronancanarnconsan aa sence aaa aaa la a da kk kala ra 14 2 6 Reserved or Unused Signals akknana snake naka eue sese ha aka dar 17 2 2 Signal GEO DS a dakais E m 18 2 8 Test Access Port TAP Connection sana au anna kaka sanae na k n a a a sia ia n a k a e a aa RA ud 19 2 9 P
133. tion Intel Xeon Processor 3500 Series Datasheet Volume 1 n Electrical Specifications i n tel 2 2 1 Figure 2 1 2 2 2 3 Electrical Specifications Intel QPI Differential Signaling The processor provides an Intel QPI port for high speed serial transfer between other Intel QPI enabled components The Intel QPI port consists of two unidirectional links for transmit and receive Intel QPI uses a differential signalling scheme where pairs of opposite polarity D_P D_N signals are used On die termination ODT is provided on the processor silicon and termination is to Vss Intel chipsets also provide ODT thus eliminating the need to terminate the Intel QPI links on the system board Intel strongly recommends performing analog simulations of the Intel QPI interface Figure 2 1 illustrates the active ODT Signal listings are included in Table 2 3 and Table 2 4 See Chapter 5 for the pin signal definitions All Intel QPI signals are in the differential signal group Active ODT for a Differential Link Example Signal Rx Power and Ground Lands For clean on chip processor core power distribution the processor has 210 VCC pads and 119 VSS pads associated with Vcc 8 VITA pads and 5 VSS pads associated with V ra 28 VITD pads and 17 VSS pads associated with Vrp 28 VDDQ pads and 17 VSS pads associated with V5po and 3 VCCPLL pads All VCCP VTTA VTTD VDDQ and VCCPLL lands
134. troller cannot complete a valid PECI transactions of GetTempO with a given PECI device over 3 consecutive failed transactions or a one second max specified interval then it should take appropriate actions to protect the corresponding device and or other system components from overheating The host controller may also implement an alert to software in the event of a critical or continuous fault condition PECI GetTempO Error Code Support The error codes supported for the processor GetTemp command are listed in Table 6 5 GetTempO Error Codes Error Code Description 8000h General sensor error Storage Conditions Specifications Environmental storage condition limits define the temperature and relative humidity limits to which the device is exposed to while being stored The specified storage conditions are for component level prior to board attach see following notes on post board attach limits Table 6 6 specifies absolute maximum and minimum storage temperature limits which represent the maximum or minimum device condition beyond which damage latent or otherwise may occur The table also specifies sustained storage temperature relative humidity and time duration limits At conditions outside sustained limits but within absolute maximum and minimum ratings quality amp reliability may be affected Storage Condition Ratings Symbol Parameter Min Max Notes Tabs storage The non operating device st
135. updated as more characterization data becomes available Power specifications are defined at all VIDs found in Table 2 1 The processor may be shipped under multiple VIDs for each frequency Target ca Using the processor TTV C W is based on a Tampient Of 39 C Processor idle power is specified under the lowest possible idle state processor package C6 state Achieving processor package C6 state is not supported by all chipsets See Intel X58 Express Chipset specifications for more details Intel Xeon Processor 3500 Series Datasheet Volume 1 Thermal Specifications Figure 6 1 Processor Thermal Profile TTV Tcase in C 70 0 y 43 2 0 19 P 65 0 60 0 55 0 1 50 0 45 0 40 0 1 60 70 TTV Power W 80 90 100 110 120 130 Notes 1 Refer to Table 6 2 for discrete points that constitute the thermal profile 2 Refer to the appropriate processor Thermal and Mechanical Design Guidelines see Section 1 2 for system and environmental implementation details 3 The thermal profile is based on data from the Thermal Test Vehicle TTV Table 6 2 Processor Thermal Profile Intel Xeon Processor 3500 Series Datasheet Volume 1 Power TcasE MAX Power TcasE MAX Power TcasE MAX Power Tcase MAX W Ce w Ce w c W c 0 43 2 34 49 7 68 56 1 10
136. vic a haan Eddie 35 3 9 Processor Land Coordinates ooonocococarnonnancarancanncn rana aa nara narrar arranca 36 4 Intel Xeon Processor 3500 Series Land Listing 37 4 1 Intel Xeon Processor 3500 Series Land Assignments ceceeeeeeeee aaa kaka aaa 37 4 1 1 Land Listing by Land Name cere ceca rine Mp e soe Rap ai 38 4 1 2 Land Listing by Land Number ssssssssseem meminere 56 5 Signal Definitions oorrexi e e bal la ana a Kan a siai PT n k Aka 75 Sel Signal Definition Susini ri ra kaya d k A leo aa 75 6 Thermal Specifications L Likti ax aa 2sal da kanan nana aka ka bek paisa pa a EE j RR fiae 79 6 1 Package Thermal SpecificationS iioii ci sausas sula saga kak cae daskan saut exec ad wala aa a Ra ska ea k 79 6 1 1 Thermal Specifications msnm xen mur paslas nen sk Nan nanan e Raa yb na REFERRE kK es 79 6 1 2 Thermal Metrology 1 esed secte pea dn hne dan dd ta RI wa 83 6 2 Processor Thermal Features ss sion nrinn nala ak aa a a e soja ban ea ERI aa alia NE Ra E DADE k 84 6 2 1 Processor Temperature iaa A ale dena en is O a lai a 84 6 2 2 Adaptive Thermal Monitor s ss sc saa inui d n aa naman kikan a anan kanala sa Aaaa a asi 84 6 2 3 THERMTRIP Signal is astisius ea a 87 6 3 Platform Environment Control Interface PECI esesssseeseeeeenen mmn 88 6 3 1 Ihntrod ctlOn waists ias i irk ine kin kak EU RI RR NA nae e a 88 6 3 2 PECL
137. voltage regulator must disable itself The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage Vcc This will represent a DC shift in the loadline It should be noted that a low to high or high to low voltage state change will result in as many VID transitions as necessary to reach the target core voltage Transitions above the maximum specified VID are not permitted Table 2 8 includes VID step sizes and DC shift ranges Minimum and maximum voltages must be maintained as shown in Table 2 8 The VR used must be capable of regulating its output to the value defined by the new VID DC specifications for dynamic VID transitions are included in Table 2 7 and Table 2 8 Table 2 1 Voltage Identification Definition Sheet 1 of 3 VID VID VID VID VID VID VID VID y VID VID VID VID VID VID VID VID y 7 6 5 4 3 2 1 0 CC MAX 7 6 5 4 3 2 1 0 CC MAX 0 0 0 0 0 0 0 0 OFF 0 1 0 1 1 0 1 1 1 04375 0 0 0 0 0 0 0 1 OFF 0 1 0 1 1 1 0 o 1 03750 0 0 0 0 0 0 1 0 1 60000 0 1 0 1 1 1 0 1 1 03125 0 0 0 0 0 0 1 1 1 59375 0 1 0 1 1 1 1 o 1 02500 0 0 0 0 0 1 0 0 1 58750 0 1 0 1 1 1 1 1 1 01875 0 0 0 0 0 1 0 1 1 58125 0 1 1 0 0 0 0 o 1 01250 0 0 0 0 0 1 1 0 1 57500 0 1 1 0 0 0 0 1 1 00625 0 0 0 0 0 1 1 1 1 56875 0 1 1 0 0 0 1 o 1 00000 0 0 0 0 1 0 0 0 1 56250 0 1 1
138. w of the fan heatsink is into the center and out of the sides of the fan heatsink Intel Xeon Processor 3500 Series Datasheet Volume 1 99 n n tel Boxed Processor Specifications 8 2 8 2 1 Mechanical Specifications Boxed Processor Cooling Solution Dimensions This section documents the mechanical specifications of the boxed processor The boxed processor will be shipped with an unattached fan heatsink Figure 8 1 shows a mechanical representation of the boxed processor Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling The physical space requirements and dimensions for the boxed processor with assembled fan heatsink are shown in Figure 8 2 Side View and Figure 8 3 Top View The airspace requirements for the boxed processor fan heatsink must also be incorporated into new baseboard and system designs Airspace requirements are shown in Figure 8 7 and Figure 8 8 Note that some figures have centerlines shown marked with alphabetic designations to clarify relative dimensioning Figure 8 2 Space Requirements for the Boxed Processor side view 104 0 4 09 100 81 3 3 20 NEM 10 1 27 0 40 1 06 Intel Xeon Processor 3500 Series Datasheet Volume 1 Boxed Processor Specifications n tel Figure 8 3 Space Reguirements for the Boxed Processor top view 104 0 4 09 i 104 0 4 09 s MEET
139. wer rail is stable _N and P after a signal name refers to a differential pair Commonly used terms are explained here for clarification Intel Xeon Processor 3500 Series The entire product including processor substrate and integrated heat spreader IHS 1366 land LGA package The Intel Xeon Processor 3500 Series is available in a Flip Chip Land Grid Array FC LGA package consisting of the processor mounted on a land grid array substrate with an integrated heat spreader IHS LGA1366 Socket The processor in the LGA 1366 package mates with the system board through this surface mount 1366 contact socket DDR3 Double Data Rate 3 Synchronous Dynamic Random Access Memory SDRAM is the name of the new DDR memory standard that is being developed as the successor to DDR2 SRDRAM Intel QuickPath Interconnect Intel QPI Intel QPI is a cache coherent point to point link based electrical interconnect specification for Intel processors and chipsets Integrated Memory Controller A memory controller that is integrated into the processor die Integrated Heat Spreader IHS A component of the processor package used to enhance the thermal performance of the package Component thermal solutions interface with the processor at the IHS surface Functional Operation Refers to the normal operating conditions in which all processor specifications including DC AC signal quality mechanical and t
140. with the power efficiencies of a low power microarchitecture This document provides DC electrical specifications differential signaling specifications pinout and signal definitions package mechanical specifications and thermal requirements and additional features pertinent to the implementation and operation of the processor For information on register descriptions refer to the Intel Xeon Processor 3500 Series Datasheet Volume 2 The processor is a multi core processor built on the 45 nm process technology that uses up to 130 W thermal design power TDP The processor features an Intel QPI point to point link capable of up to 6 4 GT s 8 MB Level 3 cache and an integrated memory controller The processor supports all the existing Streaming SIMD Extensions 2 SSE2 Streaming SIMD Extensions 3 SSE3 and Streaming SIMD Extensions 4 SSE4 The processor supports several Advanced Technologies Intel 64 Technology Intel 64 Enhanced Intel SpeedStep Technology Intel Virtualization Technology Intel VT Intel Turbo Boost Technology and Intel Hyper Threading Technology Intel Xeon Processor 3500 Series Datasheet Volume 1 9 intel 1 1 10 Introduction Terminology A symbol after a signal name refers to an active low signal indicating a signal is in the active state when driven to a low level For example when RESET is low a reset has been requested Conversely when VITPWRGOOD is high the Vr po
141. y is stable and within specifications Clean implies that the signal will remain low capable of sinking leakage current without glitches from the time that the Vddq supply is turned on until it comes within specification The signals must then transition monotonically to a high state The PwrGood signal must be supplied to the processor VID 7 6 VID 5 3 CSC 2 0 VID 2 0 MSID 2 0 I O VID 7 0 Voltage ID are used to support automatic selection of power supply voltages Vcc The voltage supply for these signals must be valid before the VR can supply Vcc to the processor Conversely the VR output must be disabled until the voltage supply for the VID signals become valid The VR must supply the voltage that is requested by the signals or disable itself VID7 and VID6 should be tied separately to Vss using a 1 kQ resistor during reset This value is latched on the rising edge of VTTPWRGOOD MSID 2 0 MSID 2 0 is used to indicate to the processor whether the platform supports a particular TDP A processor will only boot if the MSID 2 0 pins are strapped to the appropriate setting on the platform see Table 2 2 for MSID encodings In addition MSID protects the platform by preventing a higher power processor from booting in a platform designed for lower power processors CSC 2 0 Current Sense Configuration bits for ISENSE gain setting This value is latched on the rising edge of VTTPWRGOOD Power for analog portion of

Download Pdf Manuals

image

Related Search

Related Contents

神戸医療産業都市における企業・団体の集積状況  Cisco Nexus 2224  Samsung SCX-4600    Les réseaux sociaux  Manual - RayBiotech, Inc.  KVH Industries 01-0148 Boating Equipment User Manual  User manual    Toshiba 26EL833F LED TV  

Copyright © All rights reserved.
Failed to retrieve file