Home

VAr-Min Operator Manual - Valquest Systems, Inc.

image

Contents

1. ang pang ans olelololololololololo m gt eo o q D H A o SI g g c g c c g l g o o SINIST RAJON olo NO NO NO N N N DO D D D D O NIOJ AJOJN m o Co A o O w N o A e 0271 Most Recent Record 2 Type 0272 Most Recent Record 2 Date 027231 BL 027 0275 Most Recent Record 2 Time 027 NO no x lo lz oo nm malo bi 4 N A A o E Y o kary un 2 co A N 4 A A o 5 4 A A o o o Y o un co o To Y I 0278 Most Recent Record 3 Type 30279 Most Recent Record 3 Date 0280405 709 0282 Most Recent Record 3 Time 30285 Most Recent Record 4 Type 0286 Most Recent Record 4 Date 30287 1 028 0289 Most Recent Record 4 Time Most Recent Record 5 Type Most Recent Record 5 Date 0295 as 0296 Most Recent Record 5 Time KHA 0299 Most Recent Record 6 Type 0300 Most Recent Record 6 Date 0303 Most Recent Record 6 Time E Y I z al oo Y oo pert o 3 4 A En N o o N o A A o o m 00 A NI oo erg i N co N A A o o m CO o N co o A A Ul m i N ENS N oo o A A o Years Minutes N o m m N ES 3 N co A N e o N c
2. Nf N N N N Aa A aja N N N N N NG N N aai aai ai afa u o sr ho co o o gt c lt o sol e o o gt o lt lco s woleo c o cl lt ua ols ho c clo o lt Ic o s o el o o gt lo E E xt E E xc E E 00 ino t o t ro o to to co LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO to LO LO LO LO to LO H 10 t LO LO LO LO LO LO to LO LO LO LO LO LO LO A14 rite FC 6 or FC 16 an z 1 z LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO tO LO LO LO LO LO LO LO LO LO LO QUE QUEUE QU QUE OUT OUT OUT NG NG NG Nf NG NG NG NG NN CN NG NG NN NG Nf NG NG NG NG c c NG NG
3. 21 40034 0036 40038 N iy 26 4099 Current Gain 27 40040 40042 40044 20 40046 no o NO 4 N UJ N U N 40048 Historical Third of Day 40054 izard Settings AddrRegister Held Index 20 48 40073 Turn Off Temp 0074 40076 Field win ead FC3 Write FC 6 or FC 16 Mpy Unit motes Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer ead FC3 Write FC 6 or FC 16 Mpy Unit Notes NA Integer NA Integer Hz Integer Vots Integer 1 Seconds Integer Seconds Integer d Seconds Integer d Seconds Integer Amps Volt Integer FE EA A 00 i aes 18 N N N o A o o c c cO o c c cO iy 91 iy 91 Ce Te c cO a cO Sec Vott Integer Sec Volt Integer 1 Vots integer 108 NA Integer NA nteri 09 NA Integer NA Integer Write FC 6 or FC 16 M ajo o c c co co c c cO Ce c c cO mo no o oi lt lt lt lt lt o o e To e N S PE ilo olo 5 a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 2
4. NA Integer NA Integer NA Integer Pp es AAA z zd E Y 99 m N o Y E G i a N N mir co no zz o o o lt o N N m 2 a lt o 2 e N 2 o lt gt o N m gt N lt o do N 2 2 E co A gt o N 2 Flo 2 2 o co 2 UJ NA integer NA hteger NA hteger NA Integer j NA Integer o N 2 O lt 8 co a 2 lt o N lt gt o 2 T lt o N e lt N A lt 55 2 00 Din UJ o 5 o c N no E lt lt Max Default s 31 31 sl 6 sl 8 si a 31 NA 31 31 31 o o icd AJ D m Ul S L lt NO UJ A o RN Unt Notes NA Integer NA Integer NA Integer NA Integer NA Integer 007 NA Integer NA Integer NA Integer NA Integer NA Integer 0 Pp 080 Pp 00 50 lt lt lt lt lt 711 2C7 40712 DNPBinary put ndex7 712 208 40713 DNPBinary hput ndex8 718 209 40714 DNP Binary Inputindex9 C 715 208 40716 DNP Binary put index 11 717 2CD 40718 DNP Binary input ndex13 40720 2122 hteger 2122
5. 15 Minute Demand 18 15 15 30601 15 Minute Demand 29 30604 15 Minute Demand 30 15 Minute Demand 31 Wind NIN 2 LO NIN O TIT Fed bi Mat Moy umt 3 o B o e g 5 c z 1o co c LO LO 218 15 Minute Demand 17 30568 SE 15 Minute Demand 19 3057 30574 SE 24 Historical Page One Third Day A8 Index Addr Register Field wel Mel wel Unt Notes 30641 30644 30645 30646 30647 30648 30649 30652 30653 30654 30655 30656 30657 30658 660 294 30661 30662 30663 30664 30665 30666 666 29A 30667 HistoricalDate Day26 30669 669 29D 30670 30671 30672 30673 30674 30677 30678 30679 30680 30681 30682 30685 30686 30687 30688 30689 30690 690 282 30691 Historical Date Day 50 30693 30694 30695 30696 lt 1 1231 1231 Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Mo Day Softw are use only See User Manual Integer Integer Integer Integer
6. DEET AE A GEET RE E eun ym Aug 20 12A z0 ao smes oym LOA o 00 UONEHEA jung ynejeg uoneueA owas inaya Sy Ate PENNE EE s ub C ji EE A irl e 19 68 5 LNANI ueuonolq 6120 eljold 99120 0 ANG EHS UIIA IVA s nd no 041u02 HO eqisnur jeoo 9 indu Aveulg HO op payak S0 pe qeue pojgesip oiny oj uunjeH HO eqisnu 18207 9 ndu Aug HO 0 payat O p lqev p lqesip eiejroso nuv HO 94 snw Ie5o1 9 indu Aeulg HO 60 payag 60 sejnulu OL HO 90 snw j2007 9 indu HO zo payag co DuiuJeo7 uonoa4102 uj eDe1oA HO eq snw e907 9 indu HO o payoe7 10 apo ONY epo N uO eqisnu pue O eg snw 9 indu Aug HO 00 payag oo oouenbes eso o du uos yueg deo x j dq O ere re ynejeg sindino Deus Areuonoig eq e lJ01d 89149A O S ANG EHS uIN IVA sindu Bojeuy FT Tl TELS UOISIOA SEU UIW IA EES ros 1 9 str row Buppued ebeuosiq r T rs o oun Duipuod ojeijoso nuv wes 9 oun Bupued fejeq do el EE T Suome1edo YOUMS jo JSQUINN mil Tee EG SUE SS soopul Pe i h y suyi s SITO Tenney de seal To 2 eseyd 1 ejBue seud Yo L oseud I 10196 J9MOd VAN ex eseud 1 VAM mms Ex seud 1 le w j C j oc gxoseud I N l sy
7. VAr Min Connections C Close T Trip N Neutral Current Signal V 120 VAC 4 D C d e E UF 2 G Important The Transformer C should be connected through its own fuse to the same phase as the Current Sensor A AE OS1 OS2 OS3 Neut Xfmr T LPCS GWB Q Q 0 ik To VAr Min r i C TNI V Main Junction Box Valquest Systems Inc Figure 1 VAr Min Pole Configuration Pictorial Diagram 0126 06 01 12 31 91 T Landes 1 Components Line Post Current Sensor LPCS Junction Box Service Transformer Capacitor Switches Main Junction Box Neutral Support Connector Capacitor Bank VAr Min Control Unit Meter Base J Ground Rod rommoou WARNING Never make any connection from the Gound Rod wire to the VAr Min or its Meter Base 4 Af Note As noted with the Red and Blue Li
8. lt 2 69 s s s s s s s s s c s s c s U A16 Algorithm Codes Algorithm Step Parameters All expressed as Float 2 registers Code Parameter Min 0 Voltage 06071 1 Currer 4 Frequency 5 Temperature 0 6 pe 101 7 ffm 8 9 Voltage with Correction Algorithm Step Conditions Code Condition 1 L 0 l greater than Is less than Is equal to Algorithm Closed Step True Operation Directives Code OpDirective 0 0 jOpenSwithesafterDeay 1 Switches Stay Closed 2 GotoNextSep 01 3 SkipNextSep 06060 1 4 Trip Switches Immediately Fast Trip Algorithm Closed Step False Operation Directives Open Switches after Delay Algorithm Open Step True False Operation Directives SwitchesStayOpen A17 Unit Mon Sun Event Code Description OX x 2x 3X AX 5X 6X Time Code MSN ox o EE EE Lp iL E e gt 7 8x 8 JjDaotWek 08 22 en EI Q l 0 PO C21 11 1601 C21 11 1 601 Ge Pex 14 t R peration in Least Significant Nibble Code LSN Xo o CloseforCause 12 15 gt 1 HOpenfor Cause 12 15
9. o Z eseud 1 Wano sa o 0 I SSEud 1 01991105 SBEIIDA a Caon o eseud 1 eDeijoa uepuooos STEE 1 EC OA a Se ee PT seo sun jJooej mos sseo xepu uonduoseq o A SEET 301 di 5 Su O M NG 91 20 JEN ZE lao wagt oue oe dO 0600000000 1 uoneueA jue 3 qgnejed uoneueAoneis inejag _ _ _ smduiDojeuy NNN paz r EE 1 EE aag E to f9 no z KON 2 N Areuonoig 8120 91 0 4 91A9q 0 ANG EHS UIJN JVA spueqpe q 9 9A9 Ind z suoneJedo uos Jo JegunN eJnjeJeduioe Joopu eJnjeJeduioe T 1Ju uino des seal o esed 1 eseug ho oon seud 1 10198 J9MOd vw gt gt fos S Ex seud 1 V V x eeu 1 l vi os Tor emo 2 sw hi OS eseud 1 uonoeuioo ui eDeioA c sim pro OS eseud 1 abeyon uepuoo LL LL ll sseo shun owes eros weed xepu uonduoseg E lr l i Su le tg gt 20 A Lv qo s nd no Bojeuy bulsn See Eege UOHELEA 911819 jnejeq s ndui 10 spueqpeoq NEN 1 S ai oigindino luA WILSASANS LNANI Areuonoig 8120 eljo4d 0 ANG EHS UIlN AV A Valquest Systems 351 S Sherman Suite 100 Richardson Texas 75081 Phone 972 234 2954 Fax 972 238 9501
10. Rotate knob to modify values Transformer Primary When Phase Neutral Current Sensor and Transformer Should be on the same Phase Line Post Current Sensor Type Sensor Position When possible the Current Sensor should be on the Source side of the switches Current Phase adjust 0 or 180 deg Use Auto Correct in most cases Bank Size 50 kVAr increments Primary Voltage 20 volt increments Current Range from max 180 to 1530 AE Config XEHE gt Hardware Wizard SCADA Xformer Primary When Phase Phase Current Sensor should be on phase opposite Transformer x Phase Neutral Phase Phase LP Sensor Type Lindsey H Core FshrPierce x7A FshrPierce x1A Sensor Position Relative to Bank Source Side Load Side Current Phasing Auto Correct Standard Reversed Capacitor Bank 688 kUAr Primary Voltage 7208 Volts Current Range B 188 Amps B 278 Amps B 368 Amps Configuration Screens Hardware Continued S4 Cap Bank Neutral Sensing For blown fuse detection Use CT for Grounded Y Use PT for Ungrounded Y Neutral Sensing CT Ratio Seen only when Cap Fuse Sensing above was set to CT Neutral Sensing PT Secondary Voltage Seen only when Cap Fuse Sensing above was set to PT Switch Status Sensing When possible use Both Capacitor Switch operation time Use 2 sec for solenoid switch Use 7 sec for most motor operated switches Switch Opening Control Method Use DC t
11. Unt Notes Years Integer 1 Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer 1 Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Pp be AAA Zz AA 0 Pp Pp Pp Pp 500 Pp ps 50 Pp pes Pp 50 Pp E co 2 o o e 3 o o 9 co co l c c l c l c l c co l co pia pag paa paa baa paa pag Bat ojona AVN NIN 0 0321 oes 0324 Most Recent Record 9 Time 30325 AA NG NG NG NG AG ANG ETO AG AG KG NG IN AJAJAJA w w ej m oj m m O O U 2 oo g g c o g c c g l g o o AJOJN a u N N NO N NN aja ALATA Oyo co o 0327 Most Recent Record 10 Type 0328 Most Recent Record 10 Date 0391232772 1 0301272 0331 Most Recent Record 10 Time CIN E
12. 0334 Most Recent Record 11 Type 30335 Most Recent Record 11 Date 036 N N a N N co A E 00 o co G co N a o c hula AJA A Ulr io g w o N wo g To a A O co e o o wo C2 o co E o I mimi o o 91 033 0338 Most Recent Record 11 Time 0341 Most Recent Record 12 Type 0342 Most Recent Record 12 Date Y w c c xisliolole Sjojo u laf fl ajajajaja aja o g g c c o o Alo m O co e Years Minutes co bi al o 333 000 034 0345 Most Recent Record 12 Time Most Recent Record 13 Type wo E o ii al N co T o E al co B E al co e o E i co o al co o o A E N 91 UJ 034 034 00 o 00 _ on o Most Recent Record 13 Date o 0352 Most Recent Record 13 Time TEE 0355 Most Recent Record 14 Type 0356 Most Recent Record 14 Date 03557 0359 Most Recent Record 14 Time oseo Most Recent Record 15 Type Most Recent Record 15 Date 0366 Most Recent Record 15 Time 0362 036 036 o o Jo ojo o o o ojo o ojo o o jo jco jco o o o o o G o o o o Q o eo jol u ojo gt o
13. KOLE KOLE DASE LOSA Fani KOLE KOLE DASE LOS dojco nm Oil Of Of OW P Oil CO OW O1 c do 0 nm ajojo j o m ajojojo m O1 c co Co IN Oil CO co Co o alolafolololofojololofolololofofololofolololofofololofolololofofololofolololofolololofolololofofoolofo o FN FN A5 m o 3 r o ead 3 00 Unt Notes Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer 1 Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Pp be AAA Zz AA 0 Pp Pp Pp Pp 500 Pp ps 50 Pp pes Pp 50 Pp E egister Field 30425 042 0427 fo kwa Most Recent Record 24 Time Most Recent Record 24 Time o 2 o o e o o 9 o ho x cM o o 042 0430134000 0432 Most Recent Record 25 Type 0433 Most Rece
14. M M M AS ET 4 M M M M M M nute Demand 12 5 Minute Demand 15 O o N d m N N ojo ojo iy lt AT motes Integer o oltage r Angle Stat Temp oltage r Angle tat Temp oltage r Angle tat Temp oltage r Angle Stat Temp oltage r Angle tat Temp oltage r Angle Stat Temp oltage r Angle tat Temp oltage r Angle tat Temp Voltage r Angle Stat Temp Voltage Cur Angle tat Temp oltage r Angle tat Temp oltage r Angle tat Temp oltage r Angle tat Temp oltage r Angle tat Temp oltage r Angle t Temp oltage r Angle tat Temp Q co rO rS coro 5 O1 O1 co O1 O1 cO lt lt lt lt lt lt lt N N SIE 22 a e c gt sS gt gt S gt gt S 5 S 5 gt IS iy 91 al lt co c 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 55 55 zz z z DEED SuSE SiS Sl igigi o _ 2 SENKER 2 2 N 121 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 12 Voltage Integer NA Stat Temp Byte 121 Voltage Integer
15. np eo w w w ja O0 o o ojoaoj aja a jajaja aja Q B o Imnmn o o o u o o gt o n jo eo Lera Kezi Kezi Keri Keri Keri Keri Kezi Keri keri Keri Keri KeA KOLEKOLE EEL Oj U dco o o O oO m O m m UO o o o A o U A o m o o o m co G O O Ng QO 00 oil c olm c LOLE KOLE rS lc lo KOSA iln c KOLE KOLE DASE LOSA Fani KOLE KOLE DASE LOS dojco nm Oil Of Of OW P Oil CO OW O1 c do 0 nm ajojo j o m ajojojo m O1 c co Co IN Oil CO co Co o alolafolololofojololofolololofofololofolololofofololofolololofofololofolololofolololofolololofofoolofo o FN FN A4 m o 3 E o ead FC 3 egister 30369 Most Recent Record 16 Type 0370 Most Recent Record 16 Date Most Recent Record 16 Time Unt Notes Years Integer 1 Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer 1 Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Second
16. Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer fafa af af af af af e o k ojojojojojojojojojojojojojojojojojojojojojojojojojojojojo ares are Pere Pere Bere Pere Pere Pere Pere ere Pere Pere Pere Pere ere ere rg erg ere re Pre erg re re ere erg rg re perd re re re eG rg re re Brg re re eG rd rg re re bre Pre re eG Pere rg re re ere Pere o A9 Index Addr Register Field cr 696 2B8 30697 699 2BB 30700 30701 30702 30703 30704 30705 30708 30709 30710 30711 30712 30713 30714 30717 30718 30719 30720 30721 30722 30725 30726 30727 30728 30729 30730 30733 30734 30735 30736 30737 30738 30741 30742 30743 30744 30745 30746 30749 30750 30751 30752 Max Mel Unit 1231 Mo Day Integer 1231 Mo Day Integer i Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Inte
17. and we welcome any questions and suggestions you may have Please feel free to contact us at the following address Valquest Systems 351 S Sherman Suite 100 Richardson Texas 75081 Phone 972 234 2954 Fax 972 238 9501 2 Smart Switching Smart Switching is incorporated in the VAr Min Automatic Capacitor Control It involves the combination of six separate revolutionary features 2 1 2 2 2 3 2 4 2 5 2 6 Absolute Knowledge of Switch Position The VAr Min knows the position of the cap bank switches at all times regardless of any or lack of any previous operating history It accomplishes this using Close and Trip Circuit Monitoring The result is that switching decisions are always made based on accurate information regarding the energized status of the capacitor bank The switch position detection possibilities are e All switches open e All switches closed Switches not all in the same position possibly cause by switch malfunction e Control cable unplugged or damaged cable Anticipated Voltage Switching The VAr Min continuously learns with each close operation and with each trip operation how much the line voltage increases when the capacitor bank is switched on and how much the voltage decreases when the bank is switched off This is advantageous in that the user does not need to try to predict how much voltage variation to program into the control algorithm Also the control will modify its settings
18. are the operator s window to the VAr Min The operation of the knob is very intuitive In general the knob is rotated to move back and forth between information screens or modify parameters in settings screens The knob is pressed to move to the next menu item 7 3 USB port This communication port is used with a laptop or other computer running the VAr Min Companion Software Use of this software is detailed in a different document entitled VAr Min Companion Software Manual 7 4 Test Jacks 7 4 1 Line Neutral Connect a voltmeter to test the control measured voltage 7 4 2 Current Neutral Connect a voltmeter to test the LPCS signal voltage 7 5 Fuses 7 5 1 10A Control power use a 10 amp fuse 7 5 2 1A Electronics power use a 1 amp fuse 2 or 3 will work 7 6 SCADA Communications Access Panel 7 6 1 This panel provides access to various SCADA communications devices 7 6 2 t can be removed using the two thumb screws in the left hand corners 7 6 3 Communications Devices e Ethernet RJ45 Connection mounts to the Access Panel e Fiber Optic ST Connectors mounts to the bottom board e RS 232 Optically isolated DB 9 mounts to bottom board 8 Capacitor Switch Control There are three types of control Operator Control Manual or Remote Automatic Control and Fast Voltage and Frequency Relaying The first two of these types of control have certain applicable delays overrides and inhibits 8 1 Manual Control M
19. be programmed to act on o Over voltage o Under voltage Over frequency o Under frequency Fast Relaying can act in as quickly as 6 cycles 8 4 Control Algorithm The VAr Min uses a Control Algorithm to make decisions about operating the capacitor switches There are two sets of algorithm steps one for the conditions when the switches are open and the other for conditions when the switches are closed One set of these steps is evaluated once per second The Open Steps are used to form an internal flow chart when the switches are open while the Closed Steps are used when the switches are closed Up to ten steps may be programmed for each condition although as few as one is adequate Each step is basically a statement which can be either true or false and any given time The VAr Min will take one of three actions depending on the directive for the appropriate case true or false e Leave the capacitor switches as they are Further steps will not be evaluated during this pass e Start or continue the process of toggling the capacitor switches This involves timeout of the Transient Delay timer Further steps will not be evaluated during this pass e Evaluate subsequent step s for additional condition information and directives There are five fields in these steps They are e Parameter o Voltage with Correction anticipates the voltage after switches are toggled Voltage Current kW kVAr Frequency Temperature Time Date o Dayofth
20. o 2 Failedto Close for Cause 12 15 gt 3 aleed to Open for Cause 12 15 gt 4 Cose Measured Value gt Parameter x 5 Open Measured Value gt Parameter 6 6 FaiedtoCiose Value gt Parameter_ 7 Failed to Open Value gt Parameter Jx 8 gt 9 1 L x 10 EEN BO n 1 EE IE 12 Jo j a i s BX En c N o cO X8 8 Close Measured Value Parameter X9 XB XD XE 14 Failed to Close Value Parameter_ Failed to Open Value Parameter i 2 3 A 5 7 10 11 12 13 14 5 Valguest Systems Inc 351 S Sherman Ste 100 Richardson Texas 75081 972 234 2954 972 238 9501 Fax Www valquest net A18 sindino 041002 pue sinduj Areuig ul oiny oj uunjed peppy LA 8007 9 G 2011 se 1 Jelu L 1002 2 8 011 uonduoseq seqeleq ejeq jueunooq 03 161 SI NOILVOISIGOW HO NOILINGOYd 7H 43214 1 ONI SIN31SAS 1S3n0 VA dO ALH3dOHd JHL SI 1 SIHL NI GANIVLNOO NOLEV NHOAN SHL VA eseqejeg COLA 8002 S e apuonolq eq llloid 99IA9g 1090 01d 0 ANG EHS VIW JEA sindu Aieuig TT C TT T o oo EECHER TT lt i rr mises o s O Tenue uols jenue ony s E EE ARIS KK E Buruies uonoeuuoo yum Son SUD peso usus usa deo so seo xeu uonduoseq 2
21. o o o oJo u mnp jo o u n o jco N O N N o 2 m co LS 2 lt Variable NA Integer NA Integer Pp N no UJ d mi w o o No O o lt Y Oo A g no rm o 5 o 5 9 o A c o o 5 2 o o o E no nm 2 al NA Integer NA Integer NA Integer NA Integer Variable NA Integer NA Integer 5 5 o ko lt v c lt Z lt lt w c co o jo o oje olofloioliois 5 o 0 o o y m e a o m lt xi w w w GO INID rN O N 2 o Kel o 5 H o ko o zl c o 5 5 o 2 E o ko o lt m c o m m NO N N N o Q Q 00 00 00 m NO N N el lo el lo IPE N9 2 o o N im Ee os A12 2 Q o 3 o z o o o o o o o o Bs Addr Register Field o 140 40322 142 40323 40324 144 40325 147 149 154 C C C C C C C C C C C C C C C C j ba co u o o N o 69 N N N N o NO N o m N N co N O w w w a ja C2 o Co ojoon C
22. 0397 Most Recent Record 20 Type w a cO cO cO ce O cO 00 co ojojo Co l ol co u ojo S05 KOO cO cO Years Minutes c co A co m 30899 040 0401 Most Recent Record 20 Time Most Recent Record 21 Type Most Recent Record 21 Date c A co TI 0398 Most Recent Record 20 Date o o _ Co B A o N o o o _ c o 040 A En Cua SA 0408 Most Recent Record 21 Time 0411 Most Recent Record 22 Type 0412 Most Recent Record 22 Date 0413 0414 0415 Most Recent Record 22 Time 0416 Uu SYN 0418 Most Recent Record 23 Type 0419 Most Recent Record 23 Date 042 alalalalalalalalala alal al al a 1 1 l lololololo co Jo u o o e gt o rn o o o u o o 0422 Most Recent Record 23 Time B B NIN alo alalalalalalalialalalalalulauliziala PIBIB BS B B B O O O O O O 0 0 0 0 o o 2 o m 2 o m m o Oo u do oo 1 O O g g g g g c g oo co g oo co g c oo olo o olo olo olo SIE E SIE SIE SIE N m N o o o olo Blo o Sl elo sln E o IN e S N N gt gt 00 oil c olm c LOLE KOLE rS lc lo KOSA iln c
23. 2 False Op 0275 Open Step 3 Parameter 0276 Open Step 3 Condition lt NA Integer NA Integer NA Integer NA Integer 0 Variable NA Integer NA Integer Pp WEE lt o 2 NG N0 i i o o e o Az aa o s o m o m 0277 Open Step 3 Value 9 Open Step 3 True Op N J o 00 m EN o o Y Y o o o o A OD N N E D O N N W W 5 4 0280 0281 0282 40283 0285 40286 0287 0288 0289 0291 0292 0293 0294 029 0297 0298 40299 0300 0301 0303 Open Step 40304 030 0306 0307 _ Open Step 8 Value 0309 0310 0311 Open Step 9 Parameter 40312 Open Step 9 Condition 0313 Open Step9Valie_____________ 0315 Open Step9TrueOp 0316 lt N Co o 2 alalalalalalalalala NO N ill mi lt N co N N Y o Y No v lleg eg Ed Wan rg pea ara o gt e o N i N o t el lt NA Integer NA Integer p O Ai O RH zz no 0o ca co J badi Koy zx NO m m gt ES NS m m co m m N N o Q 00 00 m o 2 m co m i c 2 NA Integer NA Integer 1 i lt lt Toll cO cO cO O N al pera N o al N J o 00 m o gt E lt Y Y o
24. 2 o e N bi Read FC 3 Unt Notes 08 WA Integer 1 KVAr Integer Military Integer Mitary Integer Pp 2 m c doj nm nm C5 0 a o eojo e dvojdwojojojo A11 2 3 o o o o s o o o o E o 3 ead FC3 Write FC 6 or FC 16 M egister Feld _ o 40257 Open Step 0 Parameter 0258 0259 0262 40263 0264 40265 OpenStepiVae 0267 40268 0269 40270 0271 0273 Open Step 2 True Op Unt Notes NA Integer NA Integer NA Integer Pp pj o Q 5 o 2 02 o Ki o y m o 3 o 2 NO NO N0 e ojo NIO 5 CD 02 o lo o 2 o o 2 NO 4 o 00 ejojojo O1 Ami N o o B B B B o NO o O NO Y o w o i ro N gt lt N o n A e lt Variable NA Integer NA Integer Pp A o A IN o i 5 o Y o ko 2 2 o 2 B N o lt m 4 00 m 3 o M Q 5 2 o o Ki lt 2 N o 9 lt N Oo o la olo o o o Ol gt o i N o 00 i NA Integer NA Integer Pp lt N o o o U lt N 4 N J o 00 m N N o 2 o o m c o 5 lt 0274 Open Step
25. 212 Unt Notes NA Integer Integer 0 NA Integer NA Integer NA Integer 5 NA Integer NA Integer Pp NA Integer NA Integer 0 NA Integer NA Integer Pp NA Integer 08008 NA Integer NA Integer Integer NA Integer NA Integer NA Integer 000 Variable NA Integer 1 1 Variable NA Integer Pp 50070 Integer Variable NA Integer p O Ai O RH NA Integer Variable NA Integer OU NA Integer 0 rite FC 6 or FC 16 z initions Holiday Def 1 0 c r oj o o w LO cO co ojo NO st LO ojojo lc LO oO o o o Njoj N e e e e LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO olololololololo o o o o o o o o o o o o ic sE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SF SF Si o wleisxiuol doj r eoljol jmjiojajujrjoj eaw eo s1 uo o r olj olj mjojajuujr oi lemwl colsxioloi rjoloja lmiolajulrLio D O O 2 O OS O 2 O O H 0 2 O r r rIrIrIYIFIHIFIFIHIFIFHIFIFIFIN N N N N N N N N NININ N N N N 9 D NA N N N N N N AIAI IAI a a aa A auf
26. 7 27 Splash Screen Electrical Voltage 125 8 Current 87 1 Power Factor 96 Basic Electrical Rotate knob to move between these Electrical kU P N 7 55 Frequency 68 82 Phase angle 16 Other Electrical Power Flow kW kU r kU Power at the Sensor Source Load Comparison Capacitor Bank kU r 668 Current 29 ea Neutral 1 Capacitor Bank Electrica Temperature mbient 77 F Indoor 73 F Temperatures Status Closed Hanual Hode Dischrge Inhibit pen in 64 17 Status Information Configuration Menu Press knob to do selected configuration Rotate knob to move cursor up down 36 36 3636 Config XEHE Hardware Wizard SCADA XEHE Config XEHE Hardware Wizard SCADA HEE Config 36 36 36 36 Hardware Wizard SCADA 36 36 3636 Config XEHE x Date Time Algorithm Operations XEHE Config XEHE Date Time Algorithm Operations 3333 Config CHEK Date Time Algorithm Operations XEHE Config XEHE Algorithm Operations RealTime S2 To Hardware Config Page S3 Configures rack components To Wizard Config Page S5 Configures control parameters To SCADA Config Page S12 Configures Address and Baud To Date Time Set Page S13 To Algorithm View Page P14 Shows Control Algorithm steps To Operations View Page 15 Shows Operations Events Back to Current Conditions Page S1 Configuration Screens Hardware S3 Press knob to move to the next screen
27. 9600 19200 Modbus Baud Rate 1200 115200 DNP Address DNP Baud Rate 48808 9600 DNP Clock Source DNP 3 0 Clock Source Internal RTC uses VAr Min clock 4 Internal RTC SCADA Haster Back to Configuration Menu 512 Configuration Screens Set Date and Time S13 Press amp Hold knob to set date and time Press knob to move the cursor Rotate knob to modify values Back to Configuration Menu Configuration Screens Algorithm View S14 Press knob to move to the next screen Rotate knob to roll steps Open Steps If more than 3 steps rotate knob Closed Closed Steps B Uolt If more than 3 steps rotate knob 1 UCor 2 kUfir Back to Configuration Menu Configuration Screens Operations Events Rotate knob to see different events Press knob to return to Config Menu Events start with most recent Open External 11 20 14 09 15 51 Close Hi kUAr 11 18 14 09 10 23 Open Hanual 11 17 14 08 33 33 Back to Configuration Menu S15 10 Communications The VAr Min has three completely independent communications ports Port 1 USB on the front panel for use with a laptop or other device Ports 2 and 3 are reached through the Communications Access Panel Various communications modules are optional devices e Ethernet module Fiber Optics with ST connections Fiber Optics with V Pin connections Fiber Optics with plastic 1000 micron duplex Serial with opto coupled DB9 Ser
28. Bank Switch Trip Sequence Cap Bank Switch Close Sequence Operating Mode Voltage w ith Correction Learning 00005 Discharge delay Anti Oscillate Inhibit Return to Auto DNP Clock 0 Clear Memory Reset Binary Inputs Index Addr Register o 0 10001 Cap Bank Switch Status 1 1 10002 Cap Bank Switch Last Commanded 2 2 10003 Pending Operation 3 3 10004 Auto Manual Sw itch 4 4 10005 Sw itch Malfunction Capacitor Neutral Current nstantaneous Readings Read FC 4 VAr Min firmw are version VAr Min firmw are revision Secondary voltage 1 phase Voltage w ith correction 1 phase urrent 1 phase W 1 phase x3 VAr 1 phase x3 VA 1 phase x3 Pow er factor 1 phase Phase angle 1 phase Neutral Current Frequency 30023 Primary Voltage Ambient temperature 30026 Indoor temperature Number of switch operations 30029 Anti Oscillate pending timer Discharge pending timer Op Delay pending timer Reset Set Notes Remote Binary Binary Enable Disable Binary Binary res Non SCADA Register Q Binary Wr Only Non SCADA Register Timers Wr Only Non SCADA Register ala o o o ES O N OK Binary Unt Notes 8 NA Integer NA nteri 08 1 W r o 2 1 c c N c e co o c c cO co c c ojojo 18 x d t c a co c co do co o k kVAr F jhegr F megr Seconds Int
29. NA Stat Temp Byte 12 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 12 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte 12 Voltage Integer NA Stat Temp Byte 121 Voltage Integer NA Stat Temp Byte NA Cur Angle Byte NA Cur Angle Byte NA Cu Ange Byte NA Cur Angle Byte NA Cur Anglel Byte NA Cu Ange Byte N Cu Ange Byte NA Cur Angle Byte NA Cur Anglel Byte N Cu Ange Byte NA Cu Ange Bye 1 88 NA Cur Angle Byte NA Cur Angle Byte NA Cu Ange Byte N Cu Ange Byte 12 Voltage Integer NA Cur Angle Byte N A Stat Temp 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 255 999 255 999 255 255 Read FC 3 15 Minute Demand 22 15 Minute Demand 23 15 Minute Demand 24 3058 l 30589 15 Minute Demand 25 3090180800 0 30591 05 0 30592 115 Minute Demand 26 Minute Demand 20 Minute Demand 21
30. NG N o LL 1 D a M F O O N O O LU cN co e j o s i do r eo oj m o ao uj mr o e o sxr to o LO LO LO LO LO A AU jaja ec e olo m N 00 o o olo LO to olo ojo 0 0 0 0 BA Lo Nayar ar ad aa A a AJafajajaja eo sx o ol riojo e r elolol iwlio olololololele NININIRN R R 00 co Lo 19 69 LO o 0 LO LO to LO to to LO Lo to to LO LO LO LO LO LO NINININ N N NIMI orn D D D DO ODO O LO LO LO LO LO LO e ie LO 8 Holiday Definitions A15 DNP Deadbands Index Addr Register Field 40644 40645 40646 40647 40648 0649 40652 40653 Number of sw itch operations Mpy unit Volts NO N o x A Notes Pp Pp Integer Integer Integer 50082 Pp 07 082 hoe Pp Pp ct DNP Analog Input Map Register A 40673 DNP Analog Input Index 0 A1 40675 2A4 40679 40683 40685 AE BO 40689 B B 40693 40696 DNP Binary Input Map Index Addr Register Feld 708 204 40709 DNPBinary input index4 709 205 40710 DNPBinary input index5 SH Y N m o Unt Notes NA Integer NA Integer NA Integer 08080 NA Integer NA Integer NA Integer NA Integer NA Integer
31. O N IO wo RB o E E 40342 Closed Step 4 Condition 40343 osed Step 4 Value o bi 156 co E 40345 Closed Step 4 True Op co 159 40346 osed Step 4 False Op 40347 Closed Step 5 Parameter 40348 Closed Step 5 Condition 40349 Closed Step 5 Value 40351 Closed Step 5 True Op 40352 Closed Step 5 False Op 40353 Closed Step 6 Parameter 40354 Closed Step 6 Condition w g g c g alallala SARIE Blo m o o s o 164 166 168 40361 40363 40364 o a N 00 al o o o NO o 16B 40365 C C C C o 6 co co co c G o O O o eco ol Jo ob gt 4 40371 71 40372 7 40373 374 40375 375 3 N Ds m NO NO NO NO NO NO NO NO N N N N N N N N N N o Q Q Q Q Q Q Q Q Q 00 00 00 00 00 00 00 00 00 00 NO NO N N el lo el lo o s i nm a gt o s s m gt o e ead FC3 M m N o o o s i n o A b Y o A m NO N N el lo el Jo ce s5 s1m 5 o st m 3 o e A Y o Nj NO NO N N el lo o c o s ui n a gt o s m gt o e o A d Y o b i A13 Write FC 6 or FC 16 2212 2222 lt lt lt lt 2 2 2 2 lt lt lt lt lt lt lt lt eziz lt lt lt lt 2
32. Open All switches open Switch Malfunction Switches not in same position e Control Cable Broken Switch position not detected Some switches do not have this type of micro switch setup In this case auxiliary switches can be used to provide position feedback to the VAr Min Usually in these cases only the first two conditions are detectable In order to cover all possible scenarios the VAr Min has four status sensing alternatives e NoSensing Uses the last commanded position as the current status Trip Wire Uses the trip wire for status sensing Close Wire Uses the close wire for status sensing e Both Wires Uses both wires for status and malfunction sensing In some rare cases no position information is available so the last command issued No Sensing scenario must be used Capacitor Switch Operation Time This allows modification of the amount of time then the VAr Min will apply a close or trip command to the switches Capacitor Switch Open Control This selects whether the VAr Min will use normal AC tripping or the faster DC tripping DC tripping can only be used with solenoid operated vacuum switches See the section on Fast Relaying above 8 6 Control Configuration Wizard This Wizard is essentially a questionnaire which when completed will produce settings and a control algorithm that will cause the VAr Min to behave in the desired way It can be found either in the Config Menu of the front panel display or in the VAr Min Companion Softw
33. Settings 8 7 1 Modbus Address e This is the address for Modbus protocol e The range is 1 to 253 8 7 2 Modbus Baud Rate e This is the baud rate for Modbus protocol Selectable baud rates are o 2400 4800 N o 115 2K 8 7 3 DNP Address e This is the DNP 3 0 protocol address e The range is 1 to 65532 8 7 4 DNP Baud Rate e This is the baud rate for DNP 3 0 protocol e Baud rate selection is the same as for Modbus 8 7 5 DNP Clock Source The DNP 3 0 protocol requires a clock source for keeping track of time stamped events e The VAr Min allows two options for this o Internal RTC Uses the VAr Min s Real Time Clock When the DNP master issues a command to set the clock the VAR Min s RTC will be set o SCADA Master This option will keep the DNP Clock and the VAr Min clock isolated from each other The DNP server will get its time only from the SCADA master With any firmware reset the DNP server will raise the Time Sync IIN bit 8 8 Date amp Time Set e Accurate time is important for event and trend data storage as well as for some of the control algorithm parameters to operate properly e Date and Time can be set from the front panel or using the VAr Min Companion Software It can also be set from either Modbus or DNP3 0 protocols e When setting date 8 time the front panel o Access the Date and Time screen from the Config Menu Hold the knob in a pressed in position until a flashing cursor appea
34. Switch Position A total of 320 days can be stored The VAr Min Companion Software can calculate any electrical value from the three values stored This data can be displayed in either graphs or in an Excel spreadsheet 5 3 Delta Voltage Each time a switch operation occurs the VAr Min measures the difference between the voltage before the operation and the voltage after This difference is averaged and maintained for use with the control algorithm This allows the VAr Min to learn how to anticipate what the voltage will be after an operation so as to make more intelligent control decisions Both the closing and opening delta voltages are stored as separate values These values can be observed and changed in the VAr Min Companion Software The Learning feature can also be defeated in the VAr Min Companion Software 6 Operating Modes The VAr Min has three operating modes These allow a variety of control scenarios to take place 6 1 Autom 6 2 Remot e atic Control Operations are done based on the user configured Control Algorithm This mode is indicated on the front panel by a solid amber LED in the Auto Manual position The VAr Min will not respond to Close Trip front panel switch operations The VAr Min will not close or open the capacitor switches under SCADA or Laptop control This mode can be entered from the Front Panel This mode can be changed to Remote from SCADA or a Laptop e Control Operations are do
35. VAr Min Intelligent Capacitor Control Operating Manual Valquest Systems Inc Copyright Copyright 2015 Valquest Systems Inc All rights reserved No part of this publication may be reproduced stored in a retrieval system or transmitted in any form or by any means electronic mechanical photocopying recording or otherwise without prior written permission of Valquest Systems Inc Valquest Systems Inc provides this manual as is without warranty of any kind either expressed or implied Valquest Systems Inc may make changes and or improvements in this manual at any time and without notice Although Valquest Systems Inc has gone to great effort to verify the integrity of the information herein this publication could contain technical inaccuracies or typographical errors Changes are periodically made to the information contained herein These changes will be incorporated in new editions of this publication Table of Contents 1 Introduction 2 Smart Switching 2 1 Absolute Knowledge of Switch Position 2 2 Anticipated Voltage Switching 2 3 Delta Voltage based Op Delay 2 4 Blown Capacitor Fuse Detection 2 5 Voltage and Frequency Relaying 2 6 Fast DC Tripping 3 Installation 3 1 Capacitor Rack 3 2 Line Post Current Sensor 3 3 Fuses 3 4 Cable Connections 3 5 Grounding 3 6 Dos and Don ts 4 Electrical Measurements 4 1 Voltage 4 2 Current 4 3 Frequency 4 4 Calculations 4 5 Switch Position 5 Data Stora
36. allows adjustment of the front end gain in the current amplifier circuit In the majority of cases the default setting 0 180 amps is adequate But occasionally a higher range is required This can be determined by using a voltmeter to read the signal from the LPCS It is best to keep the range as low as possible while insuring that the measured current will always be within the indicated limits The higher the range the lower the resolution is on the current reading Neutral Sensor Type Capacitor Neutral Sensing is used to detect one or more blown capacitor fuses This sensing can only be used when the capacitors are in a wye configuration because a delta has no neutral point Two types of sensors are used e CT Used with a grounded wye e PT Used with an ungrounded wye Neutral Sensor Ratio This allows setting the primary to secondary current or voltage ratio of the sensor 8 5 10 8 5 11 8 5 12 Status Sensing The VAr Min is able to sense status of the three capacitor switches through the Close and Trip wires in the control cable Most capacitor switches have internal micro switches that disconnect the close pin when the switch is closed and that disconnect the trip pin when the switch is open The VAr Min takes advantage of this by measuring the resistance from the close and trip switch connector pins to the common pins of each switch This allows the detection of four possible conditions e Closed All switches closed
37. alse is to go to the Next step Step 1 under Switches Closed heading If the voltage had been greater than 128 0 volts the logic for Step 0 would have evaluated True In which case the action initiated under True would be to Open the capacitor bank if this condition persisted for the Open Operation Delay Time Switches Closed Step 1 The capacitor control unit having taken a Next action in Step 0 now begins evaluation of Step 1 Notice logic states the kVAr must be less than cutoff point of 400 to be evaluated True Since the present kVAr is 422 which is less than 400 The step is evaluated True and the step taken is Open If the kVAr had not been less than 400 Step 1 would have evaluated False The action taken under False would have been to stay Closed and evaluation would terminate One second later Switches Closed Step 0 would be evaluated again Algorithm Steps in the Front Panel The currently operational Control Algorithm can be viewed not changed through the front panel display They will appear something like this Open Steps 0 volt 118 5 1 vcor 130 0 2 kvar 400 Closed Steps 0 volt 130 0 1 vcor 118 5 2 kVAr lt 400 8 5 Hardware Configuration Settings In most cases this group settings will describe the parameters of the line the load and the capacitor bank rack that are necessary for the VAr Min to do its job A questionnaire can be found in the Config Menu in the front panel display that facilitat
38. ank capacitor control 4 1 Voltage e Voltage is measured from the secondary winding of the single phase control transformer on the capacitor rack e The RMS value is calculated directly from the voltage waveform using proprietary algorithms embedded in the microprocessor An onboard jumper allows selection of either 120 or 240 VAC as the voltage source A front panel setting allows configuration of the primary voltage 4 2 Current e Current is measured from the Line Post Current Sensor LPCS e The RMS value is calculated directly from the current waveform using proprietary algorithms embedded in the microprocessor e A front end gain setting is accessible from the front panel which allows adjustment of current range 4 3 Frequency e Line frequency is measured from the secondary winding of the single phase control transformer on the capacitor rack 4 4 Calculations e KW is calculated from the current and voltage waveforms proprietary algorithms embedded in the microprocessor e KVAr is calculated from the current and voltage waveforms proprietary algorithms embedded in the microprocessor e KW and kVAr calculations are single phase calculations multiplied by three so as to estimate three phase values KVA is calculated directly from kW and kVAr e Phase Angle is calculated from kW and kVAr Power Factor is calculated from kW and kVA 4 5 Switch Position Switch position is monitored through both the Close and Open con
39. anual control operations are the direct result of operator intervention Manual control is only and always done with the Front Panel Auto Manual switch in the down position Manual close is done by momentarily operating the Close Trip switch to the up position Manual open is done by momentarily operating the Close Trip switch to the down position e Theonly inhibit in Manual mode is the 5 minute Discharge Inhibit to close after any open operation Before closing this inhibit allows the capacitors to discharge any residual voltage that was left on them when the switches opened Before closing from a manual close initiation there is a 20 second delay This delay allows the operators to step away from the pole so that they are not directly underneath the rack when the capacitors are energized 8 2 Automatic Control Automatic control operations are the result of a change in conditions that are defined in the Control Algorithm and the Hardware Configuration Operation Delays The 5 minute Discharge Inhibit is active in Automatic Control just as in Manual The Anti Oscillate inhibit if active will stop frequent operations The Transient Delay value requires that a switching condition must be valid for the defined time period before initiating the close or open operation The Hardware Configuration can be set in two ways 1 Through the Front Panel Hardware Config 2 Using a laptop running the VAr Min Companion Software The Control Algo
40. are Parameters 1 7 and 13 below will directly affect the control algorithm The rest will not Here are the basic components of the questionnaire 8 6 1 8 6 2 8 6 3 8 6 4 8 6 5 8 6 6 Primary Control Type This is main parameter that the VAr Min will use to control the capacitor bank switching The possible entries are e kVAr e Time e Temperature e Time amp Temp e Voltage Secondary Control Override This is an override parameter which the VAr Min will evaluate first before acting on the Primary Control parameter Its function is to allow normal control activity only when favorable conditions exist This control parameter will appear in the algorithm before the Primary Control An example would be kVAr with Voltage Override This would mean that the VAr Min would control on kVAr but only within a safe voltage range Control when outside this voltage range would be governed by the Voltage Override values see below The possible entries are e None e Day of the Week e Voltage e DOW 8 Voltage Switching Hysteresis This parameter is only active and will only appear when using kVAr as the Primary Control It allows varying the Close and Open kVAr settings Voltage Override This parameter is only active and will only appear when using Voltage as the Primary Control or Voltage or DOW amp Voltage as the Secondary Control The value set here will be the highest voltage that the VAr Min will allow the capacitor ba
41. as line and load conditions change This feature can be disabled Delta Voltage based Op Delay With the information from the Anticipated Voltage Switching feature the Operation Delay Timing can be modified based on the absolute value of the change in voltage after switching This allows the controls on a feeder with more delta voltage to operate faster Blown Capacitor Fuse Detection Utilizing either a CT in the neutral connection of a grounded wye cap bank or a transformer from common to ground of an un grounded wye bank the VAr Min can sense a blown fuse condition At the users discretion a blown fuse can e Be reported via SCADA e Open the capacitor switches Voltage and Frequency Relaying The VAr Min has a special Fast Trip feature for when voltage or frequency go out of tolerance This Fast Trip function will take the capacitors off line much faster than the Normal Open function which is usually based on kVAr Temperature Time Voltage etc This is intended to protect both the capacitors and load equipment from dangerous electrical conditions which can occur when an up line breaker opens on a reactively loaded circuit Fast DC Tripping This is a VAr Min feature which allows extremely fast de energization of the capacitor bank It also allows opening the switches after loss of AC voltage For up to 30 seconds after loss of AC voltage the control remains active and the bank can still be opened Solenoid operated switches are require
42. d for the feature 3 Installation Proper Installation is important for reliable and accurate performance Please especially observe the Dos and Don ts section 3 1 Capacitor Rack The Capacitor Rack usually holds the following components Capacitors 3 or 6 depending on bank size Switches 3 Transformer Junction Box Neutral CT PT Optional These should all be mounted before energizing the bank 3 2 Line Post Current Sensor The LPCS provides current information to the VAr Min It is mounted in place of one of the pin insulators It should be mounted on the phase that the transformer is connected to 3 3 Fuses Each capacitor switch should have its own fuse Fuses should be sized appropriately for the bank kVAr and line voltage In addition the transformer should have its own fuse This fuse can be quite low amperage since the load on the transformer is very small 3 4 Cable Connections The Junction Box will have cables coming out of it that connect to each of the switches to the transformer to the LPCS to the Neutral sensing CT or PT if used and down to the VAr Min control 3 5 Grounding 3 5 1 The following components should be grounded at rack level The distribution Neutral conductor The rack itself The transformer The ground pin in the junction box The base of the LPCS The capacitor neutral if it is a grounded wye The Ground Rod wire 3 5 2 Ground Rod Wire e The Ground Rod wire usually 46 gauge come
43. e Week Includes a specific Holiday list I VA o Open In the Closed Steps Starts continues an Open Operation In the Open Steps Leaves switches open Terminates evaluation o Close In the Open Steps Starts continues a Close Operation In the Closed Steps Leaves switches closed Terminates evaluation o FastTrip Initiates an Open Operation Used only in Closed Steps Terminates evaluation o Next Moves evaluation to the next step o Skip Moves evaluation to the step following the next step These define the logical decision steps in the flow chart The first three form the equation or statement that will be true or false The True and False fields determine what to do in either case Algorithm Example The following example is a set of switching logic that form an algorithm upon which all actions will be decided This is a typical algorithm known as switching on VArs with Voltage Override Switches Open Switches Closed Step T F Step TE 0 VCor lt 127 0 N O 0 volt gt 128 0 O N 1 KVAr 400 C O 1 KVAr lt 400 O C Assume the following conditions A 600 kVAr Capacitor bank has switches Open Voltage is 122 9 and KVAr is 422 positive kVAr is lagging Learned delta V for Close is 1 8 Volts At this point only the switching logic under the Switches Open heading will be evaluated Switches Open Step 0 The capacitor control will begin evaluation at Switches Open Step 0 Observing Step 0 we find that the pr
44. eger Seconds Integer Seconds Integer 1 c c ce cO zu o o A o o a to c c c c BNG m NG AG TG TG HIN AININININ NININ ml ojojo AINO ol AINO SIN em cO co A2 FventLog 41 egister 30257 Most Recent Record Type ead FC4 Unt Notes Years Integer 1 Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer 1 Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Pp be AAA Zz AA 0 Pp Pp Pp Pp 500 Pp ps 50 Pp pes Pp 50 Pp E e o 0258 0291075822 O AN 0261 Most Recent Record 0202 0263 026 026 oo EH 0268 Most Recent Record 1 Time 026 nai N N NO NN ajajaja co co ujo N o o Most Recent Record Time m o A lt a
45. es entering these values 8 5 1 8 5 2 8 5 3 8 5 4 Transformer Phasing The transformer primary on the rack may be connected Phase Neutral more common or Phase Phase When it is Phase Neutral the VAr Min will assume that the LPCS is on the same phase as the transformer and will use an internal phase angle offset of 0 When it is Phase Phase the VAr Min will assume that the LPCS is on the phase that is not connected to the transformer primary and will use an internal angle offset of 90 The internal angle offset can be changed to any value through the VAr Min Companion Software Current Sensor Type Each LPCS type has different characteristics They all send a voltage signal that indicates approximately 60 amps volt But the current phase shift is different for each e Lindsey Multi Core 0 e Fisher Pierce x7A 90 e Fisher Pierce x1A 104 Based on the LPCS selection the internal angle offset will be adjusted by the indicated amount Current Sensor Position The LPCS can only measure current that is flowing from the source to loads that are downline from it When the LPCS is on the Source side of the bank the VAr Min can see the capacitor bank as well as the downline load When the LPCS is on the Load side of the bank the VAr Min cannot see the capacitor bank It can only see the downline load It is preferable to have the LPCS on the Source side of the bank since the VAr Min can then measure the effects of energizin
46. esent voltage of 122 9 plus the delta V of 1 8 volts is less than the stated cutoff condition voltage of 127 0 volts shown in Step 0 Therefore the logic evaluates True The step taken under True is Next indicating that Switches Open Step 1 will now be evaluated If the voltage sum were higher than 127 0 then Step 0 would have evaluated False The action under False would have been to stay Open and evaluation would terminate One second later this same step would be evaluated again Switches Open Step 1 The capacitor control has now advanced from Step 0 by the Next action We see that the present kVAr of 422 is greater than 400 which evaluates True The action initiated would then be to Close the capacitor bank after this condition exists for the Close Operation Delay Time Once the bank is closed the steps under the Switches Closed heading are evaluated If the present kVAr were less than 401 the logic would have evaluated False The action under False would have been to stay Open and evaluation would terminate One second later Switches Open Step 0 would be evaluated again Assume the following conditions The 600 kVAr Capacitor bank is Closed Voltage is 122 9 and kVAr is 422 negative kVAr is leading Switches Closed Step 0 The capacitor control now begins evaluation at Switches Closed Step 0 Observing Step 0 we find the present voltage of 122 9 is less than 128 0 which evaluates False The action taken under Step 0 for F
47. g the bank This setting allows for both conditions When the LCPS is on the Source side the Algorithm Wizard will use a kVAr hysteresis of 4 3 the bank size since the measured kVAr will change after an operation by the approximate size of the capacitor bank When the LCPS is on the Load side the Algorithm Wizard will use a kVAr hysteresis of 1 3 the bank size since the measured kVAr will not change appreciably after an operation Current Sensor Orientation Changing the orientation of the LPCS changes the phase angle relative to the voltage by 1807 Mathematically this reverses the sigh of kW and kVAr The VAr Min can compensate for incorrect LPCS orientation It has three possible orientation settings Auto Correct LPCS orientation does not matter Standard LPCS is correctly installed e Reversed LPCS is installed with reverse orientation 8 5 5 8 5 6 8 5 7 8 5 8 8 5 9 Capacitor Bank Size This is the three phase size of the bank in units of kVAr The bank size is important when using Switching on kVAr as part of the control algorithm The Algorithm Wizard will use a kVAr hysteresis of 4 3 the capacitor bank size when the LPCS is on the source side of the bank and 1 3 the bank size when the LPCS is on the load side See the section on Current Sensor Position above Primary Voltage This is the nominal primary Phase Neutral voltage in volts It is necessary for accurate kVAr and kW calculations Current Range This parameter
48. ge 5 1 Operation History 5 2 Trending 5 3 Delta Voltages 6 Operating Modes 6 1 Automatic 6 2 Remote 6 3 Manual 7 Front Panel 7 1 Switches and LEDs 7 2 Display and Knob 7 3 USB Port 7 4 Test Jacks 7 5 Fuses 7 6 SCADA Communications Access Panel 8 Capacitor Switch Control 8 1 8 2 8 3 8 4 8 5 8 6 9 9 1 9 2 9 3 9 4 10 10 1 10 2 10 3 11 11 1 11 2 11 3 11 4 11 5 Manual Automatic Fast Voltage and Frequency Tripping Control Algorithm Hardware Configuration Settings Control Configuration Wizard Front Panel Display Description Splash Screen Real Time Information Config Menu Display Screen Flow Diagrams Communications RS232 Optically Isolated Fiber Optic Ethernet Appendix Meter Base Configurations Figure 1 VAr Min Pole Configuration Figure 2 VAr Min Pole Grounding Modbus Registers DNP 3 0 Data Dictionary Introduction Valguest Systems Inc offers the newest state of the art capacitor control VAr Min This capacitor control model incorporates proven microcontroller technology USB Serial Fiber and Ethernet ports for communication and industry standard meter base connectors encased in durable polycarbonate enclosures By implementing efficient hardware design techniques combined with user defined or wizard generated control algorithms real time monitoring and capacitor bank switching capabilities are possible Each capacitor control samples analog current and voltage wa
49. ger Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer Mo Day Integer lt k a lh All af e o aja olo olololololololololololololo aja o alo para Para Para hard Bara Para Bara Bara Mara Mara Bara Dara Para Hard Para Para Para ara ara Kara Para ara Hard Kard Hara hard Para Bara Parad Para Bara ara Kara af af Para ara Para Para Bara kard ara Hard kard Para ara Hard hard Bara Bara ara Pari Bart o A10 Index Addr Register 40001 CurrentDate bi 1400 2 2 40003 3 3 40004 CurrentTime 4 4 laos o 15 5 1400078080 6 6 40007 DayoftheWeek onfiguration Settings Addr Register o 40025 0028 oo o 9 B B 40030 Trip
50. ial with opto coupled Phoenix connector Port 2 Modbus Protocol e Modbus TCP if Ethernet module is installed e Modbus RTU over Ethernet e Modbus RTU over serial e Modbus RTU over fiber Port 3 DNP 3 0 e DNP over Ethernet e DNP over serial e DNP over fiber Modbus and DNP 3 0 can be used simultaneously 11 Appendix The Appendix Includes Meter Base Configurations Figure 1 VAr Min Pole Configuration Figure 2 VAr Min Pole Grounding Modbus Register Description DNP 3 0 Data Directory Meter Base Configurations LINE NEUT M E E CURRENT NEUT CURRENT TRIP close 22 NEUT CURRENT NEUT Diagrams are shown looking into the wired meter base not looking at back of VAr Min Components Line Post Current Sensor LPCS Junction Box Service Transformer Capacitor Switches Main Junction Box Neutral Support Connector Capacitor Bank VAr Min Control Unit Meter Base J Ground Rod rommoou Notes 1 All Components should be star grounded at the Neutral Support Point 2 Earth ground should be a rod set at least 8 feet deep 3 TheLPCS junction box is necessary for a Fisher Pierce sensor which does not have a connector Other Line Post Sensors or CTs may not need this WARNING Never make any connection from the Gound Rod wire to the VAr Min or its Meter Base
51. imary Control Temperature Override Day of Week Primary Control Temperature Override Voltage Voltage Override Primary Control Temperature Override DOW Voltage Day of the Week and Voltage Override Turn on Temp 85 Degrees F Includes Turn on and Turn off temps Degrees F Turn off Temp 75 Degrees F Indoor Temp Lag 60 Hinutes Voltage Override and Underrides Only seen with Overrides that include voltage Voltage uerride 138 8 Volts Time constant For calculating Indoor Temp Voltage Underide 118 8 Volts To Wizard Common Functions Page 11 Configuration Screens Wizard Time amp Temp S9 Primary Control Rotate knob to modify the Override Time amp Temp Press knob to move to the next screen Duerride Hone Day of the Week Override Primaru Control Time amp Temp Override Day of Week Primary Control Time amp Temp Override Voltage Voltage Override Primary Control Time amp Temp Override DOW amp Voltage Day of the Week and Voltage Override Turn on Time Turn on Temp Hil 9 38 85 Degrees F Turn on and Turn off Times Turn on and turn off Temps Indoor Temp time constant R Turn off Time Turn on Temp Hil 22 88 85 Degrees F Voltage Override and Underrides Only seen with Overrides that R include voltage Voltage Override Indoor Temp Lag 138 8 Uolts 68 Hinutes Uoltage Underide 118 8 Volts To Wizard Common Functions Page 11 Configu
52. ne based on SCADA or Laptop commands This mode is indicated on the front panel by a blinking amber LED in the Auto Manual position The VAr Min will not respond to Close Trip front panel switch operations The VAr Min will not perform any Control Algorithm Operations This mode can be entered or changed to Automatic from SCADA Laptop or Special Operation on the Front Panel This mode will be entered if it is in Automatic mode and the Anti Oscillate function determines that the Control Algorithm is in an oscillating state The mode will be entered if it is in Automatic mode and a Switch Malfunction or Broken Control Cable condition persists for more than 60 seconds 6 3 Manual Control Operations are done based on Close Trip front panel switch operations This mode is indicated on the front panel by the LED in the Automatic Manual position being off The VAr Min will not perform any Control Algorithm Operations The VAr Min will not close or open the capacitor switches under SCADA or Laptop control 7 Front Panel The front panel of the VAr Min is both simple and elegant It is very intuitive and user friendly It allows complete local control as well as modification of virtually all configuration settings It also presents Real Time information about electrical conditions and status 7 1 Switches and LEDs 7 1 1 Auto Manual Switch e Place this switch in the up position to put the VAr Min in Automatic or Remote mode e Place this swi
53. nes The Ground Rod wire should be isolated from the Capacitor Control and its meter base except at the Neutral Conductor Terminal F Valquest Systems Inc Pictorial Diagram Figure 2 VAr Min Pole Grounding 0126 06 02 12 31 91 T Landes Valquest Systems Inc VAr Min SR2 Modbus with Float Parameters Supported Modbus Function Codes Force Single Coil 6 Preset Single Register Loopback Diagnostic Command Preset Multiple Registers Read Modbus Address Modbus Exception Responses legal Function Code llegal Data Address Data Types Integer 16 bit signed quantity Register contains bits 15 0 of 16 bit integer Byte Tw o 8 bit unsigned quantities Bits 15 8 of register contain bits 7 0 of first 8 bit byte Bits 7 0 of register contain bits 7 0 of second 8 bit byte Floating Point Quantity Format Intel single precision real Least significant w ord first First register contains bits 15 0 of 32 bit number bits 15 0 of significand Second register contains bits 31 16 of 32 bit number exponent and bits 23 16 of significand Long Integer Quantity Format 32 bit unsigned quantity Least significant vv ord first Bits 15 0 of first register bits 15 0 of Long Integer Bits 15 0 of second register bits 31 16 of Long Integer A1 Valquest Systems Inc VAr Min SR2 Modbus Registers Discrete Controls Coils Read FC1 Write FC5 Cap
54. nk to be energized with Voltage Underride This parameter is only active and will only appear when using Voltage as the Primary Control or Voltage or DOW amp Voltage as the Secondary Control The value set here will be the lowest voltage that the VAr Min will allow the capacitor bank to be de energized with On Off Times These parameters are only active and will only appear when using Time or Time amp Temp as the Primary Control They specify the times of day when the bank will be switched on and then when it will be switched off 8 6 7 8 6 8 8 6 9 8 6 10 8 6 11 8 6 12 8 6 13 On Off Temperatures These parameters are only active and will only appear when using Temperature or Time amp Temp as the Primary Control They specify the estimated indoor temperatures at which the bank will be switched on and at which it will be switched off Indoor Temperature Time Constant This parameter sets the time constant in minutes for estimating the average indoor temperature in the local area Naturally this will vary by general climate and density of air conditioning equipment When this value is set to zero the Indoor Temp is always the same as the measured Ambient Temp The temperature sensor is an optional feature of the VAr Min Transient Delay This delay sets the amount of time that the control algorithm must continually evaluate to switching before actually initiating the close or trip This eliminates transient condition
55. nt Record 25 Date o 0441882828 0435 0436 Most Recent Record 25 Time 3043 AAA B gt gt gt gt gt gt gt gt gt gt gt wlj c0 C0 Co NO T0 N0 TO NO e amp 6o m o o cdc o o o 4 mig s gt gt gt gt gt gt gt gt GO N S T mM U O W gt 0 o c c g o g g o eo oo oo o o E R o no o 6 0 A co o E N A co N o co co S co 00 z UJ o 30439 Most Recent Record 26 Type 0440 Most Recent Record 26 Date 0942 077771 0443 Most Recent Record 26 Time HA 0446 Most Recent Record 27 Type 30447 Most Recent Record 27 Date 098 A de UJ N co o A o co co ES a 2 T S zi UJ co N A T N gt co B T o co A O co o on amp T UJ el co o A o m E AR N UJ TI co co A 00 E 8 co 0449 0450 Most Recent Record 27 Time 30453 Most Recent Record 28 Type plala Gilli o mco SER gla jju olo SIS ooi s A al o co 5 Years Minutes 055 cl 045 al al co o 0454 Most Recent Record 28 Date al o co X kd Most Recent Record 28 Time Most Recent Record 29 Type Most Recent Rec
56. nterfaces 9 2 2 Electrical Basic This screen displays information measured from the transformer and LPCS e Voltage nominal 120 or 240 VAC Current e Power Factor in percent 9 2 3 Electrical Primary This screen displays information calculated from transformer and LPCS measurements e Primary Voltage Phase Neutral in kilovolts e Line Frequency e Phase Angle in degrees 9 2 4 Calculated Power Flow Displayed here are estimated three phase power values calculated from single phase transformer and LPCS measurements kW kVAr e kVA 9 2 5 Source Load Comparison This screen displays a side by side comparison of pertinent source and load parameters Of course when the capacitors are de energized both sides will be the same e kVAr three phase estimate Current Power Factor in percent 9 2 6 Electrical Capacitor Bank This shows capacitor bank electrical values based on the transformer reading the configured capacitor bank size and the neutral sensor configuration kVAr This varies by the square of the voltage e Current Source will be less than Load if the bank is sized properly e Neutral Displays actual capacitor neutral current or voltage difference 9 2 7 Temperatures Temperatures are shown if an optional Temp Probe is installed Otherwise values will be zero and the bottom line will show No Temp Sensor Ambient Temperature is the instantaneous measured temperature Indoor Temperature is
57. o N A o c l ol c l c l co c l Co c G0 Co Co c Co Co CO c G0 G0 CO C0 CB e e o jo n NIN NIN o e olo Ce cO cO cO cO cO O Oi 3I nm o cdco oo 1 Oo O1 P o hv CO o NO N E N 69 0292 Toll cO cO cO AJOJN NG EA E TG HIN NI NO NO NO N NN eA o B PIN OO 0304 0 0 0306 Most Recent Record 7 Type 0307 Most Recent Record 7 Date 030 A Co Co Io o IO IO IO olololololflolololololololoieo co i ojo e gt o n lo o o u o oi 0310 Most Recent Record 7 Time 0311827272 o o BEN ades E n a e o oa s o m le mm o A o co I 0312 QO 00 oil c olm c LOLE KOLE rS lc lo KOSA iln c KOLE KOLE DASE LOSA Fani KOLE KOLE DASE LOS dojco nm Oil Of Of OW P Oil CO OW O1 c do 0 nm ajojo j o m ajojojo m O1 c co Co IN Oil CO co Co o alolafolololofojololofolololofofololofolololofofololofolololofofololofolololofolololofolololofofoolofo o FN FN A3 m o 3 E o ead FC 3 egister Field 30313 0314 0315 044611 0317 0348150 8 1 0319 0320 0321 Most Recent Record 9 Date
58. o N o N N N 2 o N o O1 O1 O1 O1 O1 O1 O1 O1 A OININ N N N PB O Ol OO Ilo OI o o N al N A al al A o al N A N o o alalalalalalala AIRISA R o m c o o N NO no o m m on R d R o a R N R 00 a R a o al o O1 O1 O1 01 CQ O1 On o ajajajaja jaj Oa O1 colo Ilo OI C N N N TI X oy or al o o o 00 560 0 0 0 o olo R c m N e al N 0 0 0 0 0B 0 0 0 0 10 11 N N N N N N nimo NIN N A N N A N N A o N A co NO A o N N WIT N N DIO 1 1 1 2 21 2 N NINMIN MIM N NO N olo CO IN No m N NI N lolulrioloo 22 m 230 egister 30513 30514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0559 3 Bs ead Historical Third of Day 1 nute Demand 0 1 nute Demand 1 1 nute Demand 2 re AU E AA AS Kasel 4 A 5 5 5 5 5 5 5 5 Ea z A sel EAS A AA A 15M A j Nc ee OO Ok T M M M
59. ord 29 Date aeaa al N S 00 O gt al E E U 046 S o o o O 0463 0464 Most Recent Record 29 Time deg jr s og o 0467 Most Recent Record 30 Type 0468 Most Recent Record 30 Date 0469 02011 O I O 0471 Most Recent Record 30 Time 0472 ASAS Digi 0474 Most Recent Record 31 Type 0475 Most Recent Record 31 Date 0478 Most Recent Record 31 Time s s B B S B B SB B nB B 4 0 alojolojxlo ja Ajo B B YIN o nm o l c l c l CO o oon Co Oo c Co C2 c G0 C0 CO CO CO CO olo e olo olo BIB s SIE BIB NIN o o o o Q Oo Q amp Oo Po ojo o Oi P CO rN cO n n n olo A N N g Co A M o a M co A EI ITI G O olo BIB co Y Oojo 00 oil c olm c LOLE KOLE rS lc lo KOSA iln c KOLE KOLE DASE LOSA Fani KOLE KOLE DASE LOS dojco nm Oil Of Of OW P Oil CO OW O1 c do 0 nm ajojo j o m ajojojo m O1 c co Co IN Oil CO co Co o alolafolololofojololofolololofofololofolololofofololofolololofofololofolololofolololofolololofofoolofo o FN FN A6 Historical Page One Third Day aaa apa AJOJN o A o o A o o E A co No e 8 o A o N o ye o
60. ration Screens Wizard Voltage S10 Primary Control Rotate knob to modify the Override Uoltage Press knob to move to the next screen Duerride None Day of the Week Override Primary Control Voltage Override Day of Week Voltage Override 138 8 Volts Voltage Override and Underrides Voltage Underide 118 8 Volts To Wizard Common Functions Page S10 Configuration Screens Wizard Common Functions Press knob to move to the next screen Rotate knob to modify values Delay for Operation Time the condition must remain to initiate a close or open operation Transient Delay Modifier This number times the delta voltage Is subtracted from the Transient Delay at operation time Threshold for blown fuse indication Seen only if Neutral Sensing CT was selected in Hardware Menu items Threshold for blown fuse indication Seen only if Neutral Sensing PT was selected in Hardware Menu items Anti Oscillation Shutoff See section on Anti Oscillate feature Voltage and Frequency Relaying enable Transient Delay 18 Seconds dU Hultiplier 15 Sec Volt Neutral Thrshold 38 mps Neutral Thrshold 28 Unlts nti scillation Inhibit Active Inactive Use Volts amp Freg for DC Trip No Yes Back to Configuration Menu S11 Configuration Screens SCADA Press knob to move to the next screen Rotate knob to modify values Modbus Address 52 Modbus Address 1 254 Hodbus Baud Rate 4800
61. rip with solenoid switches only Never with motor switches Cap Fuse Sensing No Sensing CT Gnd Y PT UnGnd Y Neutral Sensing CT Ratio 28 5 Neutral Sensing PT Uoltage 128 Status Sensing Trip Wire Close Wire Both Wires Switch Operation Time 2 sec Solenoid Switch Switch Operation Open Control AC Trip DC Trip Back to Configuration Menu Configuration Screens Wizard Press knob to move to the next screen Rotate knob to modify values Rotate knob to select Primary Control Line Post Current Sensor Type Sensor Position When possible the Current Sensor should be on the Source side of the switches Current Phase adjust 0 or 180 deg Use Auto Correct in most cases Bank Size 50 kVAr increments S5 XEHE Config XEHE Wizard SCADA Date Time Primary Control gt kUAr To Wizard kVAr Page S6 Time Temperature Primary Control To Wizard Time of Day Page S7 kUfir Time Temperature Primary Control kU r Time Temperature To VVizard Temperature Page S8 Primary Control Time Temperature x Time amp Temp To Wizard Time Temp Page S9 Primary Control Temperature To Wizard Voltage Page S10 Time amp Temp Voltage Configuration Screens Wizard kVAr Rotate knob to modify the Override Press knob to move to the next screen Day of the Week Override Voltage Override Day of the Week and Voltage Override S
62. rithm can be configured in three ways 1 Front Panel Control Configuration Wizard 2 VAr Min Companion Software Control Configuration Wizard 3 VAr Min Companion Software Algorithm Step Programmer The Hardware Configuration consists of Transformer Phasing Current Sensor Type Current Sensor Position Current Sensor Orientation Capacitor Bank Size Primary Voltage Current Range Neutral Sensor Type Neutral Sensor Ratio 10 Status Sensing 11 Capacitor Switch Operation Time 12 Capacitor Switch Open Control The Control Configuration Wizard includes Primary Control Type Secondary Control With Switching Hysteresis Voltage Override Voltage Underride On Off Times On Off Temperatures Indoor Temperature Time Constant Transient Delays 10 Delta Voltage Multiplier 11 Neutral Sensing Threshold 12 Anti Oscillation 13 Voltage Frequency Relaying eg Al GUD CO NY OD ID Qi P CO IS 8 3 Fast Voltage and Frequency Relaying Fast Relaying allows the VAr Min to react quickly to potentially damaging electrical scenarios o Self exciting condition o Feeder breaker closing in to a field full of capacitors o Re strike after taking a shot for a down line fault Fast Relaying works only when the VAr Min is in Automatic mode Fast Relaying usually involves but is not limited to using DC Trip DC Trip requires solenoid operated vacuum switches to be installed DC Trip allows disconnection of the capacitor bank during a power outage Fast Relaying can
63. rs on the screen Rotate the knob to modify each time parameter Press the knob to move the cursor to the next parameter DOW Day of Week is 1 for Monday through 7 for Sunday 9 Front Panel Display Description The Front Panel Display is the operator s easiest way for setting the VAr Min up in the field It is very intuitive and user friendly Getting through the various screens requires only the use of the knob to the right of the display The knob can both be rotated and pressed 9 1 Splash Screen e This screen comes up when the unit is powered or a reset occurs t shows the firmware version number e After 3 seconds the screen will change to display the Real Time Information e This screen can be re entered by holding down the knob from any of the Electrical screens in the Real Time Information 9 2 Real Time Information This information is derived from immediately measured data or status e Rotating the know will move between screens e Pressing the knob will bring up the Config Menu See below 9 2 1 General This screen will show e Unit ID o The Unit ID can be set using the VAr Min Companion Software e Operations Count o Operations count is incremented each time status changes from closed to open o This count can be cleared in the VAr Min Companion Software e Date Time o Date and Time can be set from the front panel or using the VAr Min Companion Software It can also be set from either Modbus or DNP3 0 protocol i
64. s Integer Event Integer Years Integer Months Integer Days Integer Hours Integer Minutes Integer Seconds Integer Event Integer Pp be AAA Zz AA 0 Pp Pp Pp Pp 500 Pp ps 50 Pp pes Pp 50 Pp E alololo ANM o m o o E u IN 037 0374 HE 037 Most Recent Record 17 Date 69 E N Y ar alo SIN o 0378 0379 0380 Most Recent Record 17 Time co c c co co co sil NNN NINO o o i o o e o m gt o e o d 5 a aja M WIT o w w w w co eo co oo o wo eo o o olo o o elo 00 N NO Solo N CA Co o a DIO co A A N co N A N 30383 Most Recent Record 18 Type 0384 Most Recent Record 18 Date 0385 038 Most Recent Record 18 Time 0390 Most Recent Record 19 Type 0391 Most Recent Record 19 Date 0392 po 0382 w g co 00 co co Go lo lolo 90 c0 a 6 00 o 0 A 038 co 00 00 Qo co e co CO o cO cO OO o co alala 00 Co 116101 no o N A co o 0393 0394 Most Recent Record 19 Time
65. s down the pole from the Neutral to a ground rod e Never connect anything to this wire except the distribution Neutral Conductor and the ground rod Do not connect any part of the VAr Min or its meter base to this wire 3 6 Dos and Don ts 3 6 1 VAr Min Neutral connection Use the Neutral conductor in the control cable to connect the VAr Min to Neutral and Ground the Neutral should be connected to the Ground Rod wire at pole top DO NOT connect any part of the VAr Min or its meter base to this wire to the Ground Rod wire 3 6 2 Capacitor Switches Use capacitor switches that have voltage ratings appropriate for the line voltage DO NOT use 15kV switches on a 25kV 14 4kV system even if it is a grounded wye Various fault conditions can cause over voltage conditions which will damage the switches 3 6 3 Fuses Use a separate fuse for the transformer DO NOT connect the transformer to one of the fused capacitor switch wires 3 6 4 Phasing Put the LPCS on the same phase as the transformer if the transformer has a phase to neutral primary Put the LPCS on the phase that the transformer is not connected to if the transformer has a phase to phase primary DO NOT put the LPCS on some other randomly picked or convenient phase 4 Electrical Measurements The VAr Min uses state of the art circuitry and firmware to make precise electrical measurements These electrical quantities are necessary for effective switched b
66. s erroneously causing an operation It also allows staging when there are more than one bank on a feeder It is prudent to have downline banks operate before banks closer to the source This is because the upline VAr Mins can see the downline banks but the converse does not hold Delta Voltage Multiplier When this value is non zero the Transient delay is modified by the Switching Delta Voltage times this multiplier The modification is to subtract this product from the Transient Delay On multiple bank feeders this has the effect of causing the banks where the voltage changes the most at switching to operate quickest This feature is sometimes used in voltage control applications Neutral Sensing Threshold This parameter is only active and will only appear when a Neutral Sensor has been selected in the Hardware Configuration It sets the current or voltage threshold for detection of a blown capacitor fuse Anti Oscillation This entry will enable or disable the Anti Oscillation feature Voltage Frequency Relaying Setting this entry to Yes will add Voltage and Frequency Fast Tripping steps to the control algorithm These steps will appear before the Secondary and Primary Control steps By default the steps added are Fast Trip if 1 Frequency goes above 61 00 Hz 2 Frequency goes below 59 00 Hz 3 Voltage goes above 140 0 VAC 4 Voltage goes below 95 0 VAC They can be changed using the VAr Min Companion Software 8 7 SCADA Configuration
67. tch in the down position to put the VAr Min in Manual mode 7 1 2 Auto Manual LED Solid Amber Automatic mode e Blinking Amber Remote mode Off Manual Mode 7 1 3 Close Trip Switch e Only used in Manual mode e Operate this switch up momentarily to initiate a Close operation 20 second delay e Operate the switch uown momentarily to initiate an Open operation 3 second delay 7 1 4 Close Trip LED Solid Red Switches are closed e Solid Green Switches are open e Red blinking Green Switches are closed but Open operation is pending Green blinking Red Switches are open but Close operation is pending e Blinking Orange Switch Malfunction or Broken Control Cable 7 1 5 Special Operations e Change from Remote Mode to Automatic o While pressing the knob to the right of the display move the Auto Manual switch to the down position o Move the Auto Manual switch back to the up position o After blinking three times the Auto Manual LED should go solid amber indicating Automatic mode e Stop a Close command in Manual Mode o While the Close Trip LED is blinking operate the Close Trip switch down momentarily o TheLED should stop blinking indicating that the operation is no longer pending e Stopa Trip command in Manual Mode o While the Close Trip LED is blinking operate the Close Trip switch up momentarily o TheLED should stop blinking indicating that the operation is no longer pending 7 2 Display and Knob The front panel display and knob
68. the estimated indoor temp based on the ambient history and a time constant that can be modified in the hardware settings 9 2 8 Control Status This screen displays several items of information Cap bank status o Open o Closed e Operating Mode See the section on Operating Modes o Manual o Automatic o Remote Operation Delays See Operation Delays under Automatic Control o Discharge Inhibit o Transient Delay o Anti Oscillate Inhibit o Stable e Delay Status o Pending operation with time till initiation o Nothing Pending 9 3 Config Menu This screen gives access to all front panel configurable settings and operation history It is entered by pressing the knob from any of the Real Time Information screens e Back Returns to the Real Time Information screens e Hardware Refer to the Hardware Configuration Settings section e Wizard Refer to the Control Configuration Wizard section e Date Time Refer to the Date 6 Time Set section e SCADA Refer to the SCADA Configuration section e Algorithm Refer to the Control Algorithm section e Operations Refer to the Operation History section Real Time Returns to the Real Time Information screens 9 4 Display Screen Flow Diagrams The following is a detailed description of the VAr Min Front Panel Display Screens Current Conditions Screens S1 Press knob to go to Configuration Menu Page S2 V r Hin Unit ID 2958 Version 8 08 Operations 382 Date 96 21 14 Ualquest Systems Time 89 5
69. trol wires in the umbilical cable Switch position is important for safety reasons and for reliable capacitor control e The following switch positions are possible Closed all three switches closed Open all three switches open Switch Malfunction both open and closed switch positions detected o o o o Broken Cable neither open nor closed switch position detected 5 Data Storage Several types of data are stored in non volatile memory These can help the operator as well as the unit itself make better decisions about operating parameters and even capacitor bank placement 5 1 Operation History An operation event is added any time the VAr Min detects a switch position change An operation event is added when the VAr Min has initiated a control operation and the switch position does not change within 10 seconds after the end of the operation Each event contains the following information o Event o Cause o Date o Time The VAr Min maintains records of the last 32 events Operation events can be viewed through the Front Panel in a most recent first order They will appear as one event per screen similar to this Opr27 Close Cause Hi kVAr Date 11 18 14 Time 09 10 23 When events are viewed through the VAr Min Companion Software they are stored on the computer s hard drive will be available indefinitely 5 2 Trending The VAr Min stores 15 minute demands for the following values kV kW kVAr Temperature o
70. veforms and converts each signal into digital format An embedded software algorithm calculates in real time the voltage current watts VARs phase angle and power factor A capacitor switching algorithm pre programmed by the user uses these calculations and other variables to control the on off capacitor bank switching capabilities This design also allows for historical data recording up to 320 days The VAr Min Companion Software furnished with each capacitor control system is easy to use yet powerful enough to provide detailed information in report or graphical formats This information can be directed to your computer screen printed or stored in standard spreadsheet formats Both recording parameters and the report generators can be configured for short term or long term data recording modes Multiple data files are supported for long term historical data analysis The data analyzed is presented as tabular records or graphical waveforms Thank you for your purchase of this capacitor control unit It is an investment which will pay for itself in a short time by reducing power delivery costs and giving you the information you need to make your system more efficient This manual is intended to give you the information you need to install and operate each type of capacitor control unit and the reporting software However there may be times that you need to contact us to discuss a unique monitoring environment We are a service oriented company
71. witching Hysteresis Based on Cap Bank Size And Sensor Position Voltage Override and Underrides Only seen with Overrides that include voltage Primary Control kUfir Duerride None Primary Control kUfir Dverride Day of Week Primary Control kUfir Override Voltage Primary Control kUfir Dverride DOW Voltage uto Hysteresis Source Side LPCS Close HBD kU r Dpen h kUAr Uoltage uerride 138 8 Volts Voltage Underide 118 8 Volts S6 Includes Voltage To Wizard Common Functions Page S11 Configuration Screens Wizard Time of Day Rotate knob to modify the Override Press knob to move to the next screen Day of the Week Override Voltage Override Day of the Week and Voltage Override Turn on and Turn off Times Military Time Voltage Override and Underrides Only seen with Overrides that include voltage Primary Control Time Override None Primary Control Time Override Day of Week Primary Control Time Override Voltage Primary Control Time Override DOW Voltage Turn on Time Hil 9 38 Turn off Time Hil 22 88 Uoltage uerride 138 8 Volts Uoltage Underide 118 8 Volts S7 Includes Voltage To Wizard Common Functions Page 11 Configuration Screens Wizard Temperature S8 Primary Control Rotate knob to modify the Override Temperature Press knob to move to the next screen Duerride None Day of the Week Override Pr

Download Pdf Manuals

image

Related Search

Related Contents

USER MANUAL - ENGLISH  Guía de Uso - Almacen de Balanzas  TRIPP TRAPP®  FICHE TECHNIQUE : CONVERSIONS  User Manual - IMS B012 User Guide and Reference  簡易取扱説明書 MODEL3910  Imagine Le Photolangage  EPSON EB-410W セットアップガイド  ダウンロード(PDF 0.5MB)  LANTUS® (insulina glargina) Sanofi-Aventis Farmacêutica  

Copyright © All rights reserved.
Failed to retrieve file