Home
"user manual"
Contents
1. er Tee eee eee errr reer ee eer er eee errr reer rere tere ee ere er ere reer eee Pere eee errr errr Ter er ee Pere ee errr ee eer etree eee erry eee er ee rrr errr errr errr rere rere ree POOGE Data to read 4 00040 POOO F 00080 P0011F Cancel Read error code 1 95 00000 Analog Input Module CH Output Device for saving Internal memory address Slot no Program in case of S type or H type 2 35 Chapter 2 Analog Input Module Program in case of IEC type Chapter 2 Analog Input Module b Program example of PUT GET instruction used U01 00 F 0000 ian Channel assignment odule Ch0 1 2 Module Ready PUTP 0 1 Input type Voltage 1 1 Output type 0 4000 a Filter process L Iw 0T 01x 13x31 Filter constant Ch0 Average process 2 Channel Run signal UD0
2. CLOSED a E ge f f XBF ADO4A i gt RUN f A 7 AL 7 2 2 j A j j 2 7 AAA 7 Zug 7 B7 f 2 A 1 7 lt gt WA v A ZU 6 CHO an 2 CH3 2 ep 2 2 7 7 7 2 7 2 2 2 9 J 2 7 4 4 A VA AAA LS nn A A AREA Au 4 DEQNSSOREA 2 VA VA VZ j M H Ub uU 19 N J 7 20 4 dici 2 Dimension of XBF DV04A Unit mm
3. Appendix 3 3 Warranty and Environmental Policy 1 Warranty Period The product you purchased will be guaranteed for 18 months from the date of manufacturing 2 Scope of Warranty Any trouble or defect occurring for the above mentioned period will be partially replaced or repaired However please note the following cases will be excluded from the scope of warranty 1 Anytrouble attributable to unreasonable condition environment or handling otherwise specified in the manual Any trouble attributable to others products ae 3 Ifthe product is modified or repaired in any other place not designated by the company 4 Due to unintended purposes b Owing to the reasons unexpected at the level of the contemporary science and technology when delivered 6 Notattributable to the company for instance natural disasters or fire Co Since the above warranty is limited to PLC unit only make sure to use the product considering the safety for system configuration or applications Environmental Policy LS Industrial Systems Co Lid supports and observes the environmental policy as below Environmental Management About Disposal LS Industrial Systems considers the LS Industrial Systems PLC unit is designed to environmental preservation as the preferential protect the environment For the disposal management subject and every staff of LS separate aluminum iron and synthetic resin Indu
4. 7 mE 6 MM MK MEME MEM MEM MM re NUR MAMMA MUR ME MMM MM MEM qe a qe a quem a Figure 7 8 Built in PID function parameters setting window 7 11 Chapter 7 PID Function Built in function c Input items The items to set in the built in PID function parameter window and the available scope of them are summarized in below table RUN mode Set the operation mode of PID control Auto manual operation RUN direction Set the operation direction of PID control Set whether to allow dual integral accumulation Disabled enabled integral accumulation PWM output Set whether to allow PWM output of maneuver Dissbled enabled value Operation eyele time operation cycle time of PID control 100 65535 Proportional gain Real number Limiting change of Set the limited change of present value per 32 768 32 767 present value operation cycle Limiting change of Set the limited change of maneuver value per 32 768 32 767 maneuver value operation cycle Set the max maneuver value for control 32 768 32 767 Set the min maneuver value for control 32 768 32 767 Set the manual maneuver value for control 32 768 32 767 DeadBand setting Set the deadband width of the set value 0 65 535 Differential filter value Set the filter coefficient o
5. Fh REO cay fi fi ey RUN e 7 um 7 VA 7 f 2 4 Uu E f Gag 7 m 7 7 A A A vA VA A A vu n 7 A V 2 2 A D 7 Pi 7 A KA J A A CHO f f Tr a 7 V 2 E 77 20 LN a 7 viam 7 Ree CHS 2 7 TER 07 A VA IN Ae em mm A o In KOREA VA KA VA E IN KORE 2 A CA KZ pera i 15 H L BF DVO4A U U T J T J Appendix 3 1 Appendix 3 3 Dimension of XBF DC04A yc E 2 LA 2 mu v 12 y 7 RA 7 en 7 T n xx Au Y j j P AVA YA NAA NZ A 2 J 7 V VA V v A YI NAVAL A Zug 1 7 T 7
6. 2 5 2 5 Conversion Characteristic according to Input Range 2 2 6 ZO PCC ACY ENTERO NOTTE 2 9 2 7 Functions of Analog Input Module 2 10 2 2 13 2 9 Operation Parameter SENING 2 17 2 10 Special Module Monitoring Functions 2 004 220 0 2 20 2 11 e ccce 2 25 2 12 Configuration and Function of Internal Memory 2 2 28 2 19 Example Progra 2 34 2 14 TROUDISSMOOUNG ae 2 40 Chapter 3 Analog Onput Module 3 1 Setting Sequence before Operation 3 1 9 2 ete uin 3 2 3 0 WESIGNALONS FUNCIONS E 3 4 3 4 Characteristic of Conversion 3 5 3 5 Gharacteristic Or 0 1 3 6 Se OMACCULAGCY MM rc I c 3 7 3 7 Functions of Analog Output Module 2 3 8 9 9 VVIHDG 3 9 3 9 Operation Parameter Seting ees 3 10 3 10 Special Module Monitoring Function 3 12
7. Parameter Setting 2 x Module list 5 Base 00 Default gg 00 Default g DT Default eee es re Default Digital Module List Bek 5 8 Special Module List eg 04 efault H f Analog Input Module em 05 Default g Analog Output Module Default _ B XBF DCO4A Current 4 CH Temp Measuring Module Communication Module List i Prnt OK I O Parameter Setting kd x Module list ES XBF DVO4A Voltage 4 CH Base 00 Default Ux reg 00 Default 04 Voltage 4 CH amp 01 0 04 Voltage 00010 POOOIF 2 i Default 03 Default Channel status Enable Enabe Enable Enable 04 Defaut 00 ae 2 2 4000 06 Default 074000 _ 0400 i 0400 074000 E es 07 Default Former value Former value Former value Former value 24 Cancel Delete Slot Module ready Delete Base Base Setting Delete All Details Print v OK Cancel MOV 01 02 Enable channels BEEN U01 01 D digital input UOT 01 1 Write a digital input U01 01 2 Erite digital input 101 01 3 ha digital input CH Run information Digital input data Chapter 3 Analog Output Module 2 Program
8. XBF DV04A RUN 4 Dimension of XBF RD04A 2 2 7 m 7 aa n 7 ae P4 m Op 7 m 7 n ma 7 7 AVY fy 7 7 7 p p 7 2 5 f VA f 7 A 7 e f EJ 7 5 XBF RDO4A RUN ALM 7 2 A p 2 2 Zag H LA 4 DE IN KOREA a Sa M
9. gud Run fear un mov uozo 00000 Moving channel 0 temp value to Temp Temp Temp Temp DO area Measuring Measuring Measuring Measuring Module Module Module Module Module CHO CHO Input Temp Ready Running Disconnecti Value on eee MOV 402 05 00001 Moving channel 1 temp value to Temp Temp Temp D1 area Measuring Measuring Measuring Module Module Module CH1 CH1 Input CH1 Temp Running Disconnecti Value on Moving channel 0 disconnection 1 information to 1 Moving channel 1 disconnection information to M1 Chapter 4 RTD Input Module 2 Program example using PUT GET command CH Enable UTF 2 1 ee aM ES RM 102002 ua2 a a ua2014 Moving channel O 7 temp value to Madule Module CHO input Ruming Diezcoannecs an 192 01 1 0201 5 Moving channel 1 temp value to Temp Moving channel 0 disconnection information to MO Moving channel 1 disconnection information to M 01_CHO_AC 01 CHO T UT 4 Temp Temp Temp Measuring Measuring Measuring Module Module Module Module CHO CHO Input Ready Running Disconnect ion _01_CHO_TE CHOTempDat MP Temp Measuring Module
10. 39 Average processing Sampling Sampling Sampling Sampling Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 045 4 CH 045 4 Disable Disable Disable Disable K K Celsius Celsius Celsius Celsius Filter constant 0 0 0 0 Average processing Sampling Sampling Sampling Sampling Average 0 0 0 Time vr a data type Bipolar Bipolar Bipolar Moving Avr 32768 32768 32768 32767 32767 32767 C Channel status Disable Disable Disable Disable Sensor status K K K K Celsius Celsius Celsius Celsius Sampling Sampling Sampling Sampling 0 0 0 0 Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 vawe Uripa 32767 32767 32767 Chapter 5 Thermocouple Input Module 7 Scaling min value scaling max value XBF TCO4S TC 4 CH 045 TC 4 CH Disable Disable Disable Disable K Celsius Celsius Celsius Celsius 0 0 0 0 Sampling Sampling Sampling Sampling Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32767 32767 32767 32767 Scaling data type Scaling min value Scaling max value With sign 32768 scaling max value 1 scaling min value 1 32767 Without sign 0 scaling max value 1 scaling min value 1 65535 h Constant input 1 In case the user inputs numbers directly like filter
11. 4 RUM B RUN LED Displays the operation status of XBF ADO4A On Operation normal Flickering Error occurs page 12 30 Off Module error Terminal block Analog input terminal whose respective channels can be connected with external devices Voltage Current selection switch Switch for voltage and current selection of analog input Chapter 2 Analog Input Module 2 4 Characteristic of conversion Characteristics of I O conversion are the inclination connected in a straight line between Offset and Gain values when converting analog signal voltage or current input from PLC s external device to digital value I O conversion characteristics of A D conversion modules as described below Analog input applicable range 1011 2047 4047 1000 2000 4000 W Gain value 750 1000 3000 Digital output 500 0 2000 value 250 1000 1000 0 2000 0 Offset value Analog input g DCO 10V OV 5V 10V value Chapter 2 Analog Input Module 2 5 Conversion Characteristic according to Input Range Voltage input range can be set through user program or special module package for respective channels Output formats of digital data are as specified below A Unsigned Value B Signed Value C Precise Value D Percentile Value 2 5 1 If the range is DC 0 10V 1011 1011 2047 4047 1000 1000 2000 4000 750 7
12. 5 55 5 5 gt 2 gt 55 gt 5 Input channel average value setting Time average 4 16000 ms Cycle average 2 64000 Cycle Moving average 2 100 samples Chap 6 Analog Combo Module 7 Output Status Setting a This sets up the analog output status when the XGB base unit is changed from run to stop Default setting is the Previous Value output Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 5 Bit4 Bit3 Bit2 Bito Address8 Output Ch 1 Output Ch 0 Output channel status setting 4 bit per Ch 0 Previous value output 1 Min value output 2 Median value output 3 Max value output 8 Error Code Address 9 a Saves the error code detected by the analog mix module The types and descriptions of the error are as follows Bit15 Bit14 Bit12 Bit11 Bit10 Bit9 Bit8 Bit Bit6 Bit5 Bit4 Bit3 Bit2 BitO Address9 Set up error information Input Ch range setting error Input Error INPUT Input Ch data type setting error NN LED Input Ch filter cons PEU error output 70 OUTPUT Output Ch data type setting enor 8 c In case of plural errors the code with higher priority order will be saved 9 System Area after Address 10 a System area after address 10 is read write protected Modifying this area can cause malfunction of failure of product Chap 6 Analog Combo Module 6 12 Example Program
13. e EE EO E DE 3 15 3 19 a 3 24 LE 3 27 Chapter 4 RTD Input Module 4 1 Setting Sequence before Operation 2 02 0 00000 0 100 4 1 4 2 SDeCIIIGAtIOD pu eae G ee 4 2 4 3 Part Names and PUNGUONS ciiieedensn cas Peine 4 4 4 4 Temperature Conversion Characteristic 4 5 4 5 Conversion Speed 4 6 1 C 4 6 4 temperature Display ctu bore 4 6 1 oes 4 7 4 9 DISCONNECTION Detection Function nennen nennen nnne nnne nnn nnns 4 8 SOR Mec erc Hn 4 9 4 1 1 RRENO FUNCUOI 4 11 4 12 Operator Parameter Se UNG dut ondas a onda ate ed aep tod unos e duode 4 12 4 13 Special Module Monitoring 4 15 4 14 Register HJ deviGOS
14. 10 e D gt Cancel Figure 7 18 Auto tuning parameter setting window b Set each parameter and click OK In the example Loop 0 is set as follows e RUN direction forward Since in the system water level is going up as MV increases and pump s rotation velocity increases it should be set as forward operation e PWM output disabled In the example auto tuning using PWM is not executed Therefore PWM output is set as disabled e SV 1000 2 5V It shows an example in which XBF ADO4A is set as the voltage input of 0 10 Chapter 7 PID Function Built in function e Max MV 4000 Max MV is set as 4000 If MV is 4000 XBF DVO4A outputs 10V Min MV 0 Min MV is set as If MV is 0 XBF DVO4A outputs OV e PWM junction PWM output cycle It is not necessary to set it because the example does not use PWM output e Hysterisis setting 10 2 A D input module parameter setting a double clicking Parameter I O parameter it opens up the setting window as illustrated figur ure 7 19 ting 1 xl EA Base 00 Default Uem Default D main eq Ul Default Sa 02 Default 3 Default 04 Default Default UB Default eg OF Default a Tree baad bated baled Fated Baad Usted LE kaei haoa Lied
15. 2 TEMP 00002 UH3 AE T M TEMP 00009 Select View gt Devices Variables Devices and variables are both displayed 02 00 01 0 MOV 002 04 00000 02 02 RADY e l2 T 01 1 ur 05 00001 _02_CH1_AC 02 CHI T MP 01 2 02 06 0000 2 _02_ _ 01 3 uge 07 00005 H2 CH3 AE TE T MP Select View gt Device Comments Devices and comments are both displayed U02 00 F 102010 MOV 10204 D0000 Temp Temp Temp Measuring Measuring Measuring Module Module Module Module CHO CHO Temp Ready Running Value U02 01 1 OV 002 05 00001 Measuring Measuring Module Module CH1 CH1 Temp Running Value U02 01 2 MOV U02 06 00002 Module Module CH2 CH2 Temp Running Value MOV 102 07 00003 Measuring Measuring Module Module CH3 CH3 Temp Running Value Chapter 4 RTD Input Module 4 15 Configuration and Function of Internal Memory Here describes configuration and function of internal memory 4 15 1 Data area of RTD input module Data 1 0 area of RTD input module is as shown below Area Area coment W UOx 00 0 UX0 x 0 Module ERROR 0 Bit On 1 module error UOx 00 F UX0
16. suono esusessoneseomsseonsessomeseseussesonseesues te Test 48 4047 Close f Close is used to escape from the monitoring test screen Chapter 3 Analog Output Module 3 11 Register U devices Special module variable Register the variables for each module referring to the special module information that is set the I O parameter The user can modify the variables and comments 1 Registration sequence a Select a special module type in I O Parameter Setting window Parameter Setting xl Module list Base 00 Default 00 Default 01 XBF DV04A Voltage 02 Default 03 Default 04 Default 05 Default 06 Default 01 Default Sb Module Comment inputFiter Emergency Output 4 Voltage 4 CH v Delete Base Base Setting Delete Slot Delete All Details Prnt b Double click from the project window 5000 Variable Comment Project Edit Find Replace View Online Monitor Debug Tools Window Help amp mem D CKAK AAW RE Be COS af de p CA BEBOP E memajak B m apo eee UU E Comment Sample rp 53 mera variable Comment EA Parameter Basic Paramet
17. 0 0 22 CH 2 disconnection UX0 x 23 CH 3 disconnection oe 24 CH 0 setting error 0 0 25 CH 1 setting error e setting n setting error WORD UX0 x 26 CH 2 setting error Off setting normal JoUXO x 27 CH 3 setting error 7o UWO x 4 7o UWO x 5 CH 1 temp conversion value 7o UWO x 6 CH 2 temp conversion value 7o UWO x 7 CH 3 temp conversion value 7o UWO x 8 CH 0 scaling operation value WORD D Jo UWO x 9 WORD CH 1 scaling operation value D D CH 0 temp conversion value Temp conversion value Measured 10 TC CPU Range with sign 32768 32767 Range without sign 0 65535 TC CPU JoUWO x 10 WORD 2 scaling operation value NM 7o UWO x 11 CH 3 scaling operation value 7oUWO x 12 CH 0 min temp conversion value 7oUWO x 13 CH 0 max temp conversion value 7oUWO x 14 CH 1 min temp conversion value 7oUWO x 15 CH 1 max temp conversion value 7oUWO x 16 CH 2 min temp conversion value 7o UWO x 17 CH 2 max temp conversion value 7oUWO x 18 CH 3 min temp conversion value 7oUWO x 19 CH 3 max temp conversion value means slot no where module is installed Ex UW0 2 4 no 2 slot channel 0 temp conversion value word Temp conversion min max accumulation TC CPU Chapter 5 Thermocouple Input Module 4 Command sent from XGB main unit IEC type to module XGB PLC output area read write available penis Type Comment Content R W
18. Teed deed led ba Delete Base Base Setting Delete All Details Print Cancel Figure 7 19 I O parameter setting window b If selecting A D module for a slot in A D input module it opens up the setting window as in n figure 7 20 A x Module list cif Base 00 Default egg 00 Default B 01 XBF ADOSA i s oem 02 Default BF AE Current 4 CH i ogg 03 Default mx nd XBF ADI a bodes Dement Bese cit ax egg Default egg 09 Default Default egg OF Default Channelstatus Disable Disable Disable is co TE Ew udi TETTE jaooo 01 4000 iui Filterprocess Disable Disable Es Disable oF Disable E TM a Average processing Average value Disable Disable gt Disable Disable Count amp w CountAw CountAw CountAw 2 2 2 2 Cancel Figure 7 20 A D input mode setting window c Check A D Module operation parameter and click OK The example is set as follows e RUN CH CHO RUN The example receives the water level sensor input as CHO Chapter 7 PID Function Built in function Input scope 0 10V Set XBF ADO4A input scope as 0 10V so that it should be identical with the output scope of water level sensor e Output data type 0 40
19. Chapter 4 RTD Input Module 4 10 Wiring 3 types of sensor connecting methods are available 2 3 and 4 wired The standard wiring method for XGF RD4A module is 3 wired wiring Use an identical type of wire thickness length etc for each 3 wire when extended lead wire is used The resistance of each conductor is to be less than 10Q If larger than this it will cause an error Resistance difference of each conductor 1 to be less than 10 If larger than this it will cause error Length of wire is to be as short as possible and it is recommended to connect the wire directly to the terminal block of module without connection terminal unit If a connection terminal is to be used compensating wire shall be connected as shown below 4 10 1 If 2 wired sensor is used connection terminal unit is used Terminal block 1 If sensor and compensating wire are shielded shield line can be connected to FG terminal of the module 2 Let the terminals B and b short on the terminal block of the module if 2 wired sensor is to be connected 3 DC 24V external supply terminal to supply the analog power to module 4 10 2 3 wired sensor is used connection terminal unit is used Terminal block 1 If sensor and compensating wire are shielded shield line can be connected to FG terminal of the module FG 2 DC 24V external supply terminal to supply the analog power to module Chapt
20. Pausing Conditions mm Ext F3 Fa JE E Project Window Items c9 Sample NewPLCCXGB XBMS Stop ul Variable Comment i Trend Monitoring 21 55 Parameter Basic Parameters e SUROM ENAMA Ed Parameters Data Traces A H E Internal Parameters Scan Program NewProgram 2 How to use Special Module Monitoring a Connecting XG5000 with PLC basic unit Special Module List window will show base slot information and types of special module by click Monitor gt Special Module Monitoring Special Module List wiil display the modules that are installed in PLC now Special Module List Internal HSC Module Open Collector 4 Eb Internal Position Module Open Collector 2 501 04 Voltage 4 BF D v04A Voltage 4 Chapter 3 Analog Output Module b Select a special module then click Module Info button to display the information as described below Special Module Infomation 2 TE Displays the informations of special module Mem 4 v oltage 4 Click Monitor button in the Special Module List window to display the Special Module Monitor window as below Special Module Monitor xl BF DVOdA Voltage 4 O Die mam f 074000 h
21. TI I Cem m e o9 os poe mem L 9 919 o o v m om m m oes aise m rer om om oe oues m o omm ome m oe ome we wm ose mm m Eo om oem m R unit u V ee oo oo ae nr s eu va e s voe en rna e or me un on er n n oe rn oc os s re rers C on v sm s m nv oe no vos s m mne e ren o a oor m s ao e e s o c rea er ne re sa e mx n ao me s ro rns zm e s me C ax oe ur nm o ser ss e mos rw ses n s pom Ce om am s er rn n m ren m m m e s es an ov o ne su m ven m m rane or _ Ce es eno an ex se es ro o n ee no c me ems Cs eo n sn an o en es m evr m em rino e Appendix 2 2 Appendix 2 Thermo electromotive force and compensating force 2 2 Thermocouple 2 2 1 Common limit and overheat limit Former symbols Nominal diameter Common limit 1 Overheat limit 2 Symbol of materials r cf mm C o m m Remarks 1 common limit refers to the temperature limit that continuously use in the air 2 overheat limit refers to the temperature limit that may inev
22. _O1_CH3_AC T UOT 00 F MOY 001 04 00000 _O1_CHO_AC _01_CHO_TE T MOV UOT 05 00000 CHI AC T MP Um 01 2 MOV 101 06 00000 _O1_Ch2_aAC _01_ 2_ MP 01 01 3 MOV Un 07 00000 _01_CH3_TE T MP Chapter 5 Thermocouple Input Module d Select View gt Device Comments Devices and comments are both displayed 01 01 0 MoV 04 00000 uai m 2 M EE Uo1 01 3 Chapter 5 Thermocouple Input Module 5 6 Configuration and Function of Internal Memory describes the configuration and function of internal memory 5 6 1 Data 1 0 area U device 1 Data sent from module to XGB main unit XGB PLC input area read only assignment direction 0 00 0 CH 0 offset gain adjustment error CH 1 offset gain adjustment error 0 00 2 CH 2 offset gain adjustment error On error Off U0x 00 3 CH 3 offset gain adjustment error normal Module offset gain backup error 0 00 Module H W error UOx 00 F Module Ready Channel running CH 0 disconnection Thermocouple sensor CH 2 disconnection On disconnection CH 3 disconnection Off normal na value E Range with sign CH 1 scaling operation value 32768 32767 3 scaling operation value 0 65535 x x means slot no where module is installed Ex U02 04 2 slot channe
23. 2000 Digital output value OV 5V 10 V Analog input voltage Accuracy 1 Accuracy when using 5V input 4000 x 0 5 20 Therefore the range of the accuracy will become 2000 20 2000 20 1980 2020 when using 5V input 2 Accuracy when using 10V input 4000 x 0 5 20 Therefore the range of the accuracy will become 4000 20 4000 20 3980 4020 when using 10V input Chapter 2 Analog Input Module 2 7 Functions of Analog Input Module Functions of XBF ADOAA conversion module are as described below Function Description Channel Run Stop 1 Specify Run Stop of the channel to execute A D conversion setting 2 If the unused channel is set to Stop whole Run time can be reduced Input voltage Current 1 Specify analog input range to be used range setting 2 Select range in parameter setting after select Voltage Current switch Output data format 1 Specify digital output type setting 2 4 output data formats are provided in this module 1 Sampling processing sampling process will be performed if A D conversion type is not specified A D conversion 2 Filter processing methods Used to delay the sudden change of input value 3 Average processing Outputs average A D conversion value based on frequency or time There are three A D conversion methods sampling processing filter processing and average processing Sampling Processing A D Conversion Methods Filter P
24. STAT SLUT DATA H CHUEr ror CH2Er ror GET WORD REQ DONE STAT SLUT DATA H INSTT GET REU STAT SLUT DATA H Errar L H3Errar In case setting error occurs setting error representation flag U0x 01 8 UO0x 01 B in case of IEC type UX0 x 24 UX0 x 27 will be on and it will act as default value If setting error representation flag 00 01 8 00 01 in case of IEC type UX0 x 24 UX0 x 27 is on check above setting error information 1By 1Fy address 27 30 area check related memory address 014 address 1 26 and cancel error Chap 6 Analog Combo Module Chapter 6 Analog Combo Module 6 1 Pre operation Setting Procedure Please proceed as follows before operating analog combo module XBF AH04A Check Performance Specifications Specification 6 2 Performance Specifications Operating Environment Type and Range Digital Output Range Analog Output Range Wiring Wiring Power supply ext DC24V Analog wiring Eternal Voltage Current S W Setting Switch Setting V A VO Type Setting Analog Data Read Write Analog I O Test XG5000 Special Module Monitor Test Mode o Parameter Setting Parameter e XG5000 I O Parameter Programming Programming Analog Data Read Write Program U Device In case of error or abnormal analog
25. Voltage current selection switch M 4 Supply For analog device AH AA A Pi 2 Exemplary analog current output wiring Same wiring scheme is applied to voltage and current outputs except that voltage current setting switch must be set up accordingly E XBF AHO4A INPUT OUTPUT Voltage current selection switch INPUT 5 le DC power supply For analog device Chap 6 Analog Combo Module 6 8 Operation Parameter Setting The operation parameters of analog mix module can be set up with XG5000 I O Parameter 1 Setting Items For user convenience 55000 provides GUI graphic user interface for analog mix module parameter setting The items which can be set up in the I O Parameter in the XG5000 project window are as follows a Input parameter setting Sets up following items required for module operation 1 Operation channel Stop Run 2 Input voltage current range 3 Output data type 4 Filter constant 5 averaging process 6 Average value Parameter b Output parameter setting Sets up following items required for module operation 1 Operation channel Stop Run 2 Output voltage current range 3 Input data type 4 Channel output status c The parameters set up in XG5000 when downloaded are stored in the flash memory of the XGB base unit 2 Usage of I O Parameter a Create a project with
26. conversion module 0 5 Mv _02 CHO 14 er minimum value of AT loop 0 to OA conversion module 0 when auta tuning has been finished successfully or error has been occured 19590 5 NN _ATOO_ERROR 080 STATUS lt Figure 7 21 Auto tuning example program gt a Devices used Program explanation 1 Since FOO99 always is ON if PLC is converted form STOP to RUN CHO of A D and D A starts operating 2 At the moment PV entered to CHO is moved to K1875 the input device of PV and saved accordingly 3 Once 0000 junction is on the auto tuning of loop 0 starts 7 46 Chapter 7 PID Function Built in function 4 The auto tuning MV of loop 0 that is output by PIDAT command is output to D A output module by line 14 MOV command 5 If auto tuning is complete or there is any error during auto tuning 0001 junction is set blocking operation of PIDAT command and it outputs min MV set in parameter to D A output module c Monitoring and changing PID control variables using K area In XGB series built in auto tuning it can monitor and change RUN status of auto tuning by using K area allocated as fixed area by loops 1 Variable registration If selecting Register in Variable Description by right clicking in the variable monitor window Variable Device Selection window appears Select Item as PID deselect View All and ente
27. 1 179 0 1 0 T1 178 AR Ana log Analog Ana 09 Input Input Input Madule Modu e Modu e Error Modu e Error Clear Error Clear Request Request How to use the flag to request error clear IEC type Chapter 2 Analog Input Module 2 12 2 Operation parameters setting area Setting area of A D conversion module s Run parameters is as described in Table Memory address Details Remark Dec Channel enable disable setting 1 1 Setting ranges of input voltage current R W PUT Output data format setting Filter processing enable disable SH 3 setting CHO filter constant CH1 filter constant R W PUT 6 6 CH2 filter constant filter constant Average processing 3 setting Average processing method sad 2 average value CH1 average value CH2 average value CH3 average value 16 22 GET Error code x EU is to denote Read Write if available from Ter program 1 Setting operation channels If the channel to use is not specified all the channels will be set to Prohibited bit15 bit14 bit13 bit12 bit11 bit1O bit9 bit8 bit bits bit4 bit3 bit2 Address 0 2 Setting input range Setting channel to use bit Bit On 1 Run Bit Off 0 Stop The range of analog voltage input is
28. 2 2 7 7 AA V 7 V 7 A V7 V YA A Z JA b Appendix 3 2 Unit mm Unit mm Appendix 3 5 Dimension of 04 Unit mm IR 100 6 XBF AHO4A 9 T e i YOLOANNOD a NOISNV dX 3 LLL 06 i 5 qp gii Ei a 9 53
29. Setting Del Delete All Details Print v Cancel Ascreen will be displayed for you to specify parameters for respective channels as shown below Click a desired item to display parameters to set for respective items XBF ADD4A voly Current 4 ixi XBF ADUAA 4 Average setting Average processing Average value Chapter 2 Analog Input Module 2 10 Special Module Monitoring Functions Functions of Special Module Monitoring are as described below 1 Monitor Test Through applicable XG5000 menu of Monitor gt Special Module Monitoring A D converted value can be monitored and the operation of A D conversion module can be tested 2 Monitoring the max min value The max min value of the channel can be monitored during Run However the max min value displayed here is based on the present value shown on the screen Accordingly when Monitoring Test screen is closed the max min value will not be saved parameters specified for the test of A D conversion module on the Special Module Monitoring screen of Special Module Monitoring will be deleted the moment the Special Module Monitoring screen is closed In other words the parameters of A D conversion module specified on the Special Module Monitoring screen will not be saved in parameters located Special Module Monitor E 21 xi XBF ADOSA Volt Current 4 i 0
30. Temperature 2 Thermocouple J JIS C1602 1995 200 7890 1200 69553 Electromotive force Temperature Chapter 5 Thermocouple Input Module 3 Thermocouple JIS C1602 1995 200 5603 V 400 20872 25000 20000 15000 O g 10000 2 2 5000 O 400 300 200 100 100 200 300 400 500 5000 10000 Temperature 4 Thermocouple JIS C1602 1995 0 C 0 N 1700 20222 W 25000 Electromotive force 200 200 400 600 800 1000 1200 1400 1600 1800 2000 5000 Temperature Thermocouple characteristics thermocouple sensor measures temperature by using fine voltage electromotive force which occurs when applying temperature gradient to a junction between two different metals The temperature electromotive force relation specification of normal thermocouple sensor provides the electromotive force which is measured when a sensor s measuring point is at OC On that account when measuring temperature by using thermocouple sensor cold junction compensation reference junction compensation RJC is used built in function of temperature measuring module Chapter 5 Thermocouple Input Module 5 Temperature conversion characteristic Thermocouple input module converts the thermocouple input with non linear characteristics into A D and outputs the temperature conversion that is linearly treated Tempe
31. Input resistance 1 MO min Input range shall be specified in user program or parameters by channel and selected with external voltage current switches 12 bit binary data rage eh 2000 2000 100 500 DC 1 5V 400 2000 DC 4 20mA 0 500 DC 0 5V 0 2000 DC 0 20mA Value Precise Range Value 0 1000 DC 0 10V Percentile 1000 1 4000 Max Resolution 1 25 V DC 1 5V 0 5V DC4 20mA 0 20 2 5mV DC 0 10 Time average 4 16 000ms Value Additional Averaging Cycle average 2 64 000 cycles Functions Moving average 2 100 values Open line detection DC 1 5V DC4 20mA Chap 6 Analog Combo Module 2 Output Performance Specification Classification Output Performance Specification Voltage DC 1 5V DC 4 20mA 0 5 0 20 DC 0 10V Load resistance 510 O max Load resistance 2kO min Output range shall be specified in user program or parameters by channel selected with external voltage current switches Type 12 bit binary data 0 4000 2000 2000 Digital 100 500 DC 1 5V 400 2000 DC 4 207 Value Precise Input 0 500 DC 0 5V 0 2000 DC 0 20m4 Range Value 0 1000 DC 0 10V Percentile 1000 1 4000 Max Resolution 1 25 nV DC 1 5V 0 5V DC4 20mA 0 20 2 51 DC 0 10 pen Max Conversion Rate 1ms channel Max Absolute Output DC x15V DC 25mA
32. MON 000102 DIL ACT END 23 Select View gt Devices Variables Devices and variables are both displayed 0000 0 3 0010 NE TUNI ania DILRDY DI CHO ACT OLA DAT UOT OU F 01 01 1 MOV 101 03 000101 01 DI ACT MOV 101 04 D00102 DLRDV _O1_CH2_ACT EO MOV 101 05 000108 DILRDY _O1_CH3_ACT TIED END 23 U01 00 F Analog Input Module Module Ready U01 00 F Analog Input Module Module Ready U01 00 F Analog Input Module Module Ready U01 00 F Analog Input Module Module Ready UD1 00 F Analog Input Module Module Ready Chapter 2 Analog Input Module U01 01 0 Analog Input Module CHO Active U01 01 1 Analog Input Module CH1 Active U0O1 01 2 Analog Input Module CH2 Active 1101 01 0 Analog Input Module CHO Active 1101 01 3 Analog Input Module CH3 Active d Select View gt Device Comments Devices and comments are both displayed 0010 5 MOV 1101 02 00100 Analog Input Module CHO Output MOV 101 03 00100 Analog Input Module CH1 Output 1101 04 00100 Analog Input Module CH2 Output 101 02 00100 Analog Input Module CHO Output 1101 05 00100 Analog Input Module CH3 Output In case of IEC you can see variables with diverse option at View me
33. MV 1500 101 03 MOY 2500 101 05 UOT n 3 MOV 4000 101 06 Select View gt Variables The devices are changed into variables MOY HOOF Q1 OUTEN MV O _O1_OUTEN CHI T 01 EH T MOV 1500 ith _O1_CHO_AC T T 2500 CH3 AC T 0 4000 m c Select View Devices Variables Device and variable both are displayed MOV 0 01 01 0 0 001 02 01 CHO Ac _O1_DUTE M 01 01 1 MON 1500 001 03 Dt _O1_CHO_ T DATA UB Dn z 2500 101 05 Dt CH AC O1_CH2_ Um nn 3 HOY 4000 101 06 Bt _O1_CH3_ T DATA Chapter 3 Analog Output Module d Select View gt Devices Comments Device and comment both are displayed UOT Dn F MOV 0 001 Ana 09 Djutput Module Module Module Output Ready status sett ing UOT iu 0 0 Analog Analog Output Out put Module Module CHO Active Out put status setting 001 01 1 1500 101 03 Analog Analog ut put Module Act ive 01 2 MOV 2500 Un ns des Ana 09 ut put Module CH Active Um nn a MOV 4000 UOT 06 Analog Analog Output Module CH3 Active Chapter 3 Analog Output Module 3 12 Internal memor Describes configuration and function of internal memory 3 12 1 Data area Describes da
34. WCA H and nickel ETE 150 heat resistance Common for NOY o WCA G Copper copper 20 90 20 100 EAUS and nickel J IC c lron copper Yellow White JX H WICH d 0 150 heat resistance generaus 20 90 20 m CC Copper copper Brown White TX H WCC H and nickel heat resistance Pr 0 150 TX HS ecise or heat resistance for Lr e us Alloy of Lr Copper Copper 0 150 Black White RX H Common for and nickel 0 150 heat resistance Remark 1 The thermocouple electromotive force of thermocouple R and 5 is non linear so it does not indicate the actual temperature measurement error 2 applicable to nominal cross sectional area of 1 25 and more Appendix 2 5 Appendix 3 Appendix 3 Dimension 1 Dimension of XBF AD04A Unit mm
35. XBF AD04A Volt Current 4 ltem MaxMin value Current value 0 0 00000000 Jr 0 0 Setting Value Current Value CHO Disable Disable 0 10 0 10 0 4000 7 0 4000 Disable Disable Average setting Disable Disable Average processing Count Avr Count Avr Aempewhe 2 2 Reset max min value Test Close Execution screen of Start Monitoring e Test Test is used to change the presently specified parameters of A D conversion module Click the setting value at the bottom field of the screen to change parameters Below screen will be displayed after Test is executed with channels 05 input voltage range changed to 0 20 mA in the state of input not wired Special Module Monitor xi 04 Volt Current 4 CHO A D value CH1 A D value 0 0 0 CH2 value 0 0 0 CH3 A D value 0 0 0 litem Setting Value Current Value Disable Disable putrane MM 0 0 0 4000 0 4000 Enable Enable 1222271 Disable Disable CountAv Count Avr Reset max min value Stop Monitoring Test Execution screen of Test f Reset max min value The max min value field at the upper screen shows the max value and the min value of A D converted value Click Reset max min value to initialize the max min value Below screen is after Reset max min value button 1 clicked in the screen of Special Module Monit
36. dunt mate iae DRE aves 4 18 4 15 Configuration and Function of Internal Memory 4 21 4 16 Example Prora arb ates 4 25 Ai 8 meae qo M DE 4 28 Chapter 5 Thermocouple Input Module m 5 1 2 SOS 2 3 5 3 OFUN O 5 11 5 4 Installation and 5 16 6 5 Operation Selling and Monitor ud 5 18 5 6 Configuration and Function of Internal Memory 2 5 32 5 47 5 0 5 52 Chapter 6 Analog Combo Module 6 1 Pre operation Setting Procedure 6 1 6 2 6 5 6 4 Conversion Characteristics by 6 6 Procion Mee Ner Uc EC 6 10 6 6 Functions of Analog Combo Module 6 12 SA Scere osc won Aaa taser a pest
37. 0 5 0 3sec 0 7sec P20 output QX0 0 0 output Output cycle 15 Output cycle 1sec Figure 7 10 Relation between PWM output cycle and MV e Set value It sets the target of a loop in question that is the target status a user wishes to control In case of the PID control built in XGB physical values temperature flow rate pressure and etc of an object to control is not meaningful and instead it should use the physical amount of an object to control after converting them into numerals For instance in order to control a system using a sensor that the output is OV when its heating device temperature is 0 while it is 10V when the temperature is 100 as much as 50 it is necessary to set SV as 2000 as long as it uses AD input module XBE ADO4A f Operation cycle sets the cycle to yield control output by executing the built in PID operation The setting cycle is 0 1ms and available between 10ms 6553 5ms setting value 100 65 535 while it is set at a unit of integer per 0 1ms For instance to set PID operation per 100ms set the operation cycle as 1000 g Proportional gain It is intended to set the proportional coefficient of a PID loop in question Kp As larger Kp the proportional control operation is getting stronger The scope is real number h Integral time It sets the integral time of PID loop in question Ti As larger the integral time the integral operation is getti
38. Error code Dec Error Details Action Change filter constant setting value within 1 99 range exceeded 604 Time average setting Change time average setting value within 4 range exceeded 16000 708 Frequency average Change frequency average setting value within 2 setting range exceeded 64000 indicates channel number Chapter 2 Analog Input Module 2 14 2 RUN LED is off RUN LED is off 1L A D conversion module is installed on the base correctly pM P Correctly install A D conversion module on the base T I O information can be seen at the XG5000 Contact the nearest agency A S center Normally operated if A D conversion module with error is changed to another module Contact the nearest agency or A S center Chapter 2 Analog Input Module 2 14 3 A D conversion value is not normal A D conversion value is Channel status is set as Enable Check and correct the channel status on the I O parameter External power DC 24 is supplied Ne j Supply external power DC 24 Refer to 2 8 2 and wire properly Input voltage current of external terminal block is normal Check the status of the external input sensor Chapter 2 Analog Input Module 2 14 4 Status check of A D conversion module through XG5000 system monitor Module type module information OS version and module status of A D conversion module can be
39. RTD input wiring Reading temperature data e RTD input test XG5000 special module monitor test mode Setting parameter L4 XG5000 I O parameter Program for writing digital data If there is error or RTD input value is abnormal refer to the trouble shooting U device Chapter 4 RTD Input Module 4 2 Specification 4 2 1 General Specifications Here describes general specifications of RTD input module No items Specification Reference 5 95 RH Non condensing 5 95 RH Non condensing Occasional vibration Pulse width f lt 57Hz S eee 0 075mm 150Hz 9 8m s 1G ts 10 times Vibration Continuous vibration 0000000 vibration each direction Frequency Acceleration Pulse width irecti IECG1131 2 10 lt f lt 57Hz 003mm XYandZ 57 lt f lt 150Hz 49ms Q5G _ e Peak acceleration 147 m s 15G Shocks e Duration 11ms e Pulse wave type Half sine 3 times each direction per each axis Radiated electromagnetic 27 500 MHz 10V m field noise Classifi Power Digital Analog Input Output Fast transient 1 61131 2 oy Pa 2 Interface 61000 4 4 Burst noise 1 61131 2 61000 4 3 Square wave 1 500 V LSIS standard impulse noise Electrostatic IEC61131 2 Voltage 4kV Contact discharge discharge 61000 4 2 Impulse noise Voltage Opera
40. This area shows the same results with Scaling min max value setting in parameter setting window XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH Disable Enable Enable Enable K K K Celsius Celsius Celsius Celsius ing Sampling Sampling Sampling Bipolar Bipolar Bipolar 32768 32768 32768 32767 32767 32767 Scaling data type Scaling min value Scaling max value 32768 Scaling max value 1 Scaling min value 1 32767 0 Scaling max value 1 Scaling min value 1 65535 9 Setting error information area address 27 30 a If there is error when setting parameter address 1 26 error information is displayed at address 27 30 per channel b In case of GET instruction setting error information address is as follows B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO CHO setting error information CH1 setting error information 2 setting error information setting error information Related memory Description address 04 1 Filter constant Off normal On error 0647 094 Off Average processing method Off normal On error sensor type Off normal On error 0 Time average value Off normal On error Count average value Off normal On 11 Moving average value Off normal On error scaling range Off normal On error 13 1 In case there is error setting error representation flag U0x
41. 6 18 6 9 Operator Faramielter Seting 6 22 6 9 Special Module Monitor FUNGUO rusisht innein o b deron cite eer eren denier 6 24 6 10 Auto registration of U Device Special Module 6 28 6 11 Constitution and Function of Internal 6 33 EXampled rog alti obe eds Qe 6 40 9 m t e 6 46 Chapter 7 PID Function Built in function S St Iu 7 1 1 2 PID IGOnFol a a a duod MUR LU etait aed 7 3 IPSI eit AT 7 27 c 7 33 7 5 Programs seris 7 42 CodeS sonreir cat hae eee 7 54 Appendix Appendix 1 Standard Resistor of PERTD wcities eee neces App 1 1 Appendix 2 Thermo Electromotive Force and Compensating Cable App 2 1 Appendix 2 DIMENSION App 3 1 Chapter 1 General Chapter 1 General Here describes about analog module and built in PID function of XGB series 1 1 Analog Product List No of Classification Range Resolution Characteristic channel 1 Range selection by external swit
42. CHO Temp Value DI CHI AC 01 CHI BO T UT ey Temp Temp Measuring Measuring Module Module CHI 1 Input Running Disconnect ion 01 TE CHI TempDat MP Temp Measuring Module Temp Value INST INSTI GET WORD GET WORD REQ DONE REQ DONE CHOD i sconn ect ionInfo SLOT DATA ectionlnfo Chapter 4 RTD Input Module 4 Program example using PUT GET function block inn case of IEC TUN scan ON PUT _ WORD BASE STAT 1 SLOT 01 start Temp Temp Measuring Measuring Module Module Modu e CHO Ready Running 01_CH1_AL T UT al Temp Measuring Module 0 Input Disconnect ion _O1_CHO_TE MP Temp Measuring Module CHO Temp V ue _01_ 1_ UT Temp Measuring Module Running Temp Measuring odule Input Disconnect ion J EH Ve Temp Measuring Module Temp V ue ISTA WORD REL STAT SLOT DATA MADE R WORD DONE 0 1 z 1 RET WORT DONE STAT sconn SLOT DATAE ect start PUT _WORD INST PIT WORD HEU DONE Chapter 4 RTD Input Module 4 17 Trouble Shooting 4 17 1 RUN LED fli
43. Double click I O Parameters the project window Project Edit Find Replace View Online Monitor E asa Bm 2 Ce gt Se 4115 sie sss Ae Esc F3 F4 sF2 Fe F sF3 s EE Sample a g MewPLCCRGK CPUH Uf 29 Variable Camment 4 Parameter m SKIT ete 4 T8 Parameters ES Scan Program NewProgram c Click the slot of the base that contains analog output module in the I O Parameter Setting window In the example the anolog output module is contained in the slot 1 I O Parameter Setting Variable allocation 21 x Module list El Base 00 Default inputFiter Emergency Output Allocation 1 Base 01 Default 7 Base 02 Default C3 Base 03 Default eb Print v Cancel Chapter 3 Analog Output Module d Click the arrow button then you can see the menu to choose the applicable module Select the applicable module Parameter Setting 222 2 Module list Base 00 Default Slot _ Comment InputFite Emergency Output 00 Default gg 01 Default a 02 Default a 03 Default eg 04 Default eg 05 Default g 06 Default eg OF Default m Digital Module List all Special Module List Analog Input Module E Al Analog Output Module Voltage 4 B XBF DCO44 Cu
44. TO VDL Tg Y Averaging section Averaging section Averaging section Setting range of average frequency 2 64000 times Average process interval of channel used can be calculated as follows Average process interval ms Average frequency x No or channel used x 50 ms 5 14 Chapter 5 Thermocouple Input Module 3 Moving average accumulates temperature conversion values of a selected channel as many as set and displays the average of the total sum in digital data In case of the moving average it outputs average per scan Setting range of average number 2 100 1 2 3 4 3 4 9 6 Average Average 2 3 4 5 Channel scan interval Remark 1 time frequency average characteristically does not output temperature data every conversion time and instead it keeps a feature to maintain the previous status until it reaches time average frequency 2 In case of moving average it outputs the converted temperature as taking temperature history and average which are entered previously every conversion time so it can obtain relatively faster data response than time frequency average 3 Filtering can be processed with one of the foresaid averaging functions simultaneously If simultaneous process is selected filtering would be processed first and it averages and output temperature value in digital value At the moment the digital data output temper
45. gt Connect and Monitor gt Special Module Monitoring If the status is not On Line Special Module Monitoring menu will not be activated Remark 1 If the program is not displayed normally because of insufficient system resource you may start XG5000 again after close the program and other applications 2 I O parameters those are specified in the state of Special Module Monitoring menu are temporarily set up for the test They will be disappeared when the Special Module Monitoring is finished 3 Testing of Special Module Monitoring is the way to test the analog output module It can test the module without a sequence program 4 13 1 How to use special module monitoring 1 Start of Special Module Monitoring Go through Online gt Connect and Monitor gt Special module Monitoring to start If the status is not online Special Module Monitoring menu will not be activated XG5000 NewProgram Project Edit Find Replace View Online Monitor Debug Tools Window Hel lea S im Start Monitoring m oa m mu sum R 4 3E Pausing Conditions F4 sF F5 F sF8 sF9 F9 G SE system Monitoring Device Monitoring 1 9 Example_XGB lf MewPLC XGB XBMS Stop Special Module Monitoring Trend Monitoring Varable Comment Basic Parameter Data Trace
46. mw V ariable Lomment Parameter TE Basic Parameters i 120 Parameters E E Internal Parameters E High Speed Counter Position PID E 01 Loop E 02 Auto Tuning 15 Loop 5 8 Scan Program m NewProgram Project lt Figure 7 16 Built in parameter setting window gt Chapter 7 PID Function Built in function b If selecting auto tuning it shows the parameter setting window as seen in figure 7 17 Embedded PID Auto Tuning 15 Loop Parameter teo woe2 Operational Direction Forward Forward Forward For Enable PWM Output Disabe Disable Disabe 1 2 Dis HysteissBand Cancel lt Figure 7 17 Built in auto tuning function parameter setting window gt c Input items Table shows the items to set in auto tuning parameter window and the available scopes RUN direction Set the run direction of auto tuning PWM enable Disable enable SV 32 768 32 767 768 32 67 um time Set auto tuning operation time 100 65535 Set the max MV in control 32 768 32 767 Set the min MV in control 32 768 32 767 PWM EE Designate the junction to which PWM output is P20 P3F B rc PWM output PWM output cycle Set the output Set the output cycle of PWM output of PWM output 100 65 535 65 535 Hysterisi
47. 045 bit14 02 bit 040 09 8 06 05 03 002 bit 50 Channel 0 disconnection information 0 normal 1 sensor A disconnection 2 sensor disconnection Channel 1 disconnection information 0 normal 1 sensor A disconnection 2 sensor disconnection Address 68 Address 69 Channel 2 disconnection information 0 normal 1 sensor A disconnection 2 sensor disconnection Channel 3 disconnection information 0 normal 1 sensor A disconnection 2 sensor disconnection Address 70 Address 71 Chapter 4 RTD Input Module 4 16 Example Program Here describes how to specify the operation condition of RTD input module RTD input module is installed on slot 2 Initial setting condition is that with one input initial setting value is saved in internal memory of module The following program is an example to read temperature value and disconnection information 1 Program example using I O Parameter Setting I O Parameter Setting 21 xl Module list Base 00 Default 00 DC 24V INPUT TRC 8 01 TR OUTPUT 32poin B 02 XBF RDO4A RTD 4 03 Default 04 Default 05 Default 06 Default 7 Default Input Filter Emergency Qut Allocation 3 Standard ms Default 00000 Default 00040 POOO F 00080 DC 24V INPUT TR TR OUTPUT 32points 4 RTD 4
48. 1 AT_REV auto tuning run direction setting REV PID RUN direction setting K1896Nn 29696 Available It determines the run direction of auto tuning of n th loop If the bit is off it is forward operation if on it is reverse operation 2 AT PWM EN PWM output enable a E K857n 29713 Available It sets whether to output the auto tuning MV of n th loop as PWM output If the bit is off it is disabled if on it is enabled 3 AT ERROR Auto tuning error occurrence en It indicates error in case an error that discontinues operation during auto tuning of n th loop occurs If an error occurs it is on if normal it is off Once an error occurs auto tuning stops and the MV is output as the min output set in the parameter Also if an error occurs it indicates the error code in the error code area of a loop For more information about error code types and measures refer to 7 5 The area as a dedicated monitor area is updated although a user directly enters it B Auto tuning flag area by loops The auto tuning flag areas by loops are K1860 K2179 and each 20 words per loop are allocated to totally 16 loops Therefore individual data area of n th loop is between K 1860 16 n 1879 16 1 ATxx SV auto tuning xx Loop SV setting _ATXx_SV XS AT xx Loop SV setting K1860 16 xx KW1860 16 xx 32 768 32 767 sets indicate
49. 1 This sample program sets up operating parameters of analog mix module 2 Initial settings are saved in the internal memory of the module by input by once 3 The sample program below controls the I O data of the analog mix module at slot 1 and check open wire 6 12 1 Example of I O Parameter Usage 1 I O Parameter Setting Window Parameter Setting All Base Set Base 00 Default AL 00 amp 01 03 Default 04 Default 07 CE 09 Default 10 Default DC 24V INPUT 3 Standard ma Default 01 0 Default Default Default Default Default XBF AHOAA 2 2 CH ABF AHUAA 222 CH Enable Disable 1 20 ruv amm ran Sampling Sampling Enable Disable Former value Former value Cancel a Input Channel 0 is set to operating channel and input range is set to 4 20mA b Output Channel 0 is set to operating channel and output range is set to 4 20mA Chap 6 Analog Combo Module 2 Sample Input Program Input CHO program 00 0 101 01 0 8 BODO m mH Ii ERR 01 FON 01 0 ki 01 03 000100 2 D1 00 18 td ana _01_ 00_10 ke 0 When the module is in normal operation 0000 is turned U01 00 0 Module Error Off U01 00 F Module Ready U01 0
50. 7 2 5 PID control operation expressions of XGB series are more complicate than expression 7 2 1 7 2 5 mathematically but those are base on the above expression The followings describe the characteristics of control process with an example that controls the output temperature of heating system in figure 7 1 At this example the system and PID parameters imaginary to help the comprehension and those may be different with real heating system If the heating system in figure 7 1 is expressed as second order system with transfer function like expression 7 2 6 in frequency domain it is expressed as differential equation like expression 7 2 6 in the time domain Transfer function 7 2 6 25 1 35 5 2 t 9 E 32 dt 32 dt That is x t is Manipulated value and y t is Process value Chapter 7 PID Function Built in function At this system we assume that the PID parameter is specified as shown below to describe the PID control operation Output temperature of Proportional coefficient heating system PV Kp Target temperature SV Cycle of operation Derivative time lt Table 7 1 example of control of heating system gt Integral time T 38 At this system if we assume that target value of output temperature is 50 and initial value of output temperature is 0 SV and PV becomes 50 and 0 respectively In case of this PID controller acts as follows 3 Proportional contro
51. All channges run K type sensor Celsius Enable time Avr value 400ms Bipolar Ch scaling min value Ch 0 scaling max value END Remark How to use PUT instruction nur re Saal indicates PUT instruction Area setting Chapter 5 Thermocouple Input Module 3 Writing operation parameters at setting area of thermocouple input module through program IEC type PUT function block is used 1 15 Channe sstop AL Channel sRun CHORun perat i anT 16 0001 CH1Run CH2Run CH3Run perat i onT 1680008 PUT ORD REQ DUNE 1 perat ianT INST PUT_ WORD REQ DUNE 1 INSTI2 PUT WORT DUNE 150001 150004 INST PUT_WORD REQ DONE STAT PUT WORT REQ DONE BASE STAT SLOT 145113 PUT_WORD REQ perat ianT perat ianT 1680002 IN OUT perat i anT IM OUT 5 PUT_WORD REQ IMSTTI PUT WORT Chapter 5 Thermocouple Input Module 5 6 3 Operation parameter setting area describes operation parameter setting area of thermocouple input module PEL a channel to PUT 0 bitO bit3 0 stop 1 run GET B
52. KW1866 16 xx WORD 0 65 535 It sets the hysterisis of th loop For more information about hysterisis function refer to 6 3 3 Auto Tuning Parameter Setting If it is set as 0 it does not work 7 ATxx STATUS Auto tuning status Troes lat K1867 16 xx KW1867 16 xx WORD Unavailable It indicates the auto tuning status of xx th loop If auto tuning is in operation it is 1 if completed it is 128 In any other cases it shows O Chapter 7 PID Function Built in function 8 ATxx_ERR_CODE Error code ATxx ERR CODE K1868 16 xx KW1868 16 xx WORD Unavailable Error code It indicates error code in case an error occurs during the auto tuning of xx th loop The flag as a dedicated monitor is updated although a user directly enters it For more information about error code refer to 7 5 9 ATxx ATxx_T_d AT result proportional coefficient integral time differential time type address 1869 16 KD934 20 xx proportional coefficient _ATXx_T_I 1871 16 KD1004 20 xx integral time K1873 16 xx K1005 20 xx differential time The area indicates proportional coefficient integral time and differential time calculated after the auto tuning of th loop is normally completed The flag as a dedicated monitoring updated although a user directly enters it 10 ATxx PV PV _ATxx_PV PV 1875 16 KW18
53. PERIOD ERR loop is set under 100 10ms Make sure to set output period more than 100 occurs when SV is larger than PV at the start time of auto tuning if auto tuning is forward or when SV is larger ne gt than PV at the start time of auto tuning if auto tuning is reverse It occurs when the junction designated as PWM output junction is beyond between P20 P3F 0006 SET ERR occurs when proportional constant is set lower than 0 0007 TIME SET ERR occurs when integral time is set lower than 0 0008 D TIME SET ERR It occurs when differential time is set lower than O H 0009 CONTROL MODE ERR It occurs when control mode is not P PI PD or PID It occurs when operation direction is changed during auto TUNE DIR CHG ERR tuning Never attempt to change operation direction during auto tuning It occurs when period of operation is smaller than 100 HOOOB PID PERIOD ERR 10ms at Auto tuning or PID operation Make sure to set period of operation larger than 100 In mixed operation It occurs when the direction parameter of forward operation set to reverse operation or the HOO0C HBD WRONG DIR direction parameter of reverse operation set to forward operation Make sure set to appropriate direction each loop In mixed operation it occurs when the Set value of each HOOOD HBD SV NOT MATCH loop is not concurrent Make sure set to Set value concurrently
54. XGB D A A D RS 232C 05000 0 10 Figure 7 17 Example of water level control system 7 5 1 System structure The example system in figure is an example of a system to control a pail s water level to a desired level The pail s water level is sensed by a water level sensor and entered to A D input module while PID control operation result MV is output to a pump through D A output module controlling a pump s rotation velocity regulating the water amount flowing into a pail and regulating the water level as desired Each mechanism is explained as follows 1 XGB basic unit The XGB basic unit operates by PID control operating PID control operation It receives PV from A D input module XBF ADO4A executes the built in PID control operation output the MV to D A XBF DV04A and executes PID control 2 A D input module XBF ADO04A It functions as receiving PV of an object to control from a water level sensor and delivering it to basic unit XBF ADO4A is a 4CH analog input module and settings of analog input types and scopes can be changed in the I O parameter setting window appeared when selecting I O parameter in the parameter item of project window For more information refer to Analog I O Module 3 D A output module XBF DV04A It functions as delivering control MV from basic unit to a drive pump XBF DVO4A is a 4CH analog voltage output module and ranges 0 10V For detail setting refer to Ana
55. sets the PV follow up SV of xx th loop For more information about PV follow up refer to 7 2 3 PID control parameter setting If it is set as 0 the function does not work 20 PIDxx MIN PIDxx MAX Min PV input Max PV input MV pro T T onent INT 32 768 32 767 IN 1 K1247 16 xx KW1247 16 xx MV integral control component It sets min max PV of xx th loop 21 PIDxx ALM CODE Warning code gn E 1248 16 KW1248 16 xx WORD Unavailable Warning code indicates warning code if a warning occurs during xx th loop run The flag as a dedicated monitoring is updated although a user directly enters it For more information about warning code refer to 7 5 Chapter 7 PID Function Built in function 22 PIDxx ERR CODE Error code ERR CODE 1249 16 KW1249 16 xx WORD Unavailable error code It indicates error code if an error occurs during xx th loop run The flag as a dedicated monitoring is updated although a user directly enters it For more information about warning code refer to 7 5 23 PIDxx CUR SV SV of the present cycle PIDxx CUR SV K1250 16 xx KW1250 16 xx Unavailable SV of the present cycle It indicates SV currently running of th loop If SV is changing due to SV ramp or PV follow up function it shows the currently changing PV The flag as a dedicated monitoring is
56. Absolute max input DC 15V DC 25mA Photo coupler insulation between input terminal and PLC power Insulation method No insulation between channels Connection Terminal 11 point terminal block points occupied Fixed type 64 points 7 when using XBM DxxxS 5 ne using XB E C DxxxH H type Inner 5V 120 Consumption t Additional function Filter processing average processing time count Chapter 1 General 1 2 2 output XBF DV04A 4 Analog output DC 0 10V 4 20mA mange Load resistance 2kQ or more eee Load resistance 5100 or less Unsigned value 0 4000 0 4000 Digital input Signed value 2000 2000 2000 2000 Range 0 1000 400 2000 0 2000 Percentile 1000 1000 value Absolute max output DC 15V DC 25mA Photo coupler insulation between output terminal and PLC power Insulation method no insulation between channel Connection Terminal 11 point terminal block I O points occupied 64 points 7 when using XBM DxxxS S type 5 using XB E C DxxxH H type Inner DC 5V 11 110 Consumption current Additional function Designates output in case of error and CPU STOP Chapter 1 General 1 2 3 RTD input 100 JIS 1604 1997 JPT100 JIS 1604 1981 KS C1603 1991 Input temp range PT100 200 600 JPT100 200 600 C 2000 6000 Digital out
57. Coment Moves present value P coming from module to Auto tuning 0 current value input devie ar ASS 5 1 2 S5 r Comment f Auto tuning bit is on auto tuning af Loop starts Ee utaTuning r q STAT Lit iff Comment Moves output of auto tuning to digital input value of module Chl 113 iig G76 2 3 _ATOO_MY ifs Chapter 7 PID Function Built in function 5 Observing RUN status by using trend monitor function Since it is possible to monitor the operation status of XGB series built in auto tuning graphically it is useful to monitor the operation status of auto tuning clearly a If selecting Monitor Trend monitor menu it shows the trend monitor widow as illustrated in figure 7 24 Figure 7 24 Trend Monitor window b If right clicking trend setting a user can select a variable to monitor as illustrated in figure 7 25 m Sample setting sample to display 1 000 Sample Time 1000 ZEC sample to keep 1000 Sample Time 1000 Frequency gt Device setting Bit Graph Trend Graph Cece Apply ancel Figure 7 25 window to register trend monitor variable For more information about trend monitor refer to
58. DINT Unavailable present error he areas shows the current error of xx th PID control loop It is also used as an indicator about how much gap the present status has with a desired status and if an error is O it means the control system reaches a desired status exactly Therefore if control starts error is quickly reduced at transient state and it reaches normal state maintaining remaining drift as O it could be an ideal control system The flag as a dedicated monitoring is updated although a user directly enters it 13 PIDxx MV p PIDxx MV i PIDxx MV P I D control components of MV PIDxx MV p MV proportional control component K1254 16 xx kD616 20 XX 1236 16 KD617 20 xx REAL Unavailable MV integral control component _PIDxx_MV_d i MV differential control component 1238 16 0618 20 It indicates n th loop MV by classifying proportional control MV integral control max MV and differential control MV The entire MV consists of the sum of these three components The flag as a dedicated monitoring is updated although a user directly enters it 14 PIDxx DB W DeadBand setting DB 1240 16 KW1232 16 xx WORD 0 65 535 DeadBand setting It sets the deadband of xx th loop For more information about Deadband function refer to 7 2 3 PID control parameter setting If it is set as 0 the function does not work 1
59. Emergency Out Allocation 3 Standard ms Default 00000 200040 POOO F fmain DC 24V INPUT TR 0 4 4 Delete Slot Delete Base Base Setting Delete All Details Pit Cancel b Double click Variable Comment from the project window 1015 Project Edit Find Replace View Online Monitor Debug Tools Window Help x Dc Ee m BEEP Net EE X CK X Lee Se CDE U3 i UN icm D oc m m m m amp eapo Project Window z 3 V View Variable Device tt I Variable Tye Example XGB E NewPLC XGB XBMS Offline Variable Comment Parameter Basic Parameter TS 1 0 Parameter H E Embedded Parameter m n NewProgram Variable Comment Message Window ui Lr Dots Result Check Program Use Cross Reference c Select Edit Register U Device In case of IEC select Edit Register special module variable Project Edit Eind Replace View Online Monitor Debug Tools Window Help igi iB Me dep 2 ee Cut Ctrl x 268004 Ctr
60. I Parameter NM mar Embedded Parameter a Scan Program NewProgram Chapter 4 RTD Input Module 2 How to use Special Module Monitoring a Special Module List window will show base slot information and types of special module by click Monitor gt Special Module Monitoring In this list box the modules that are now installed in PLC system will be displayed x Module Base 0 HSC Module Open Collector 4 Gi Base 0 B Intemal Position Module Open Collector 2 CH fil Base 0 B8 Slot 1 ABF RDO4A RTD 4 CH Module Info Monitor Close 5 Select a special module then click Module Info button to display information as described below Special Module Infomation Displays the informations of special module Mem Information XBF RDDAA 4 CH c Select a special module then click Start Monitoring button to display the information as described below Special Module Monitor gt XBF RDOASA RTD 4 Setting value Channel status Disable 100 unit Celsius mE Filter constant constant D D isable M Reset max min value Start Monitoring Test Chapter 4 RTD Input Module d Start Monitoring Start Monitoring button will show you digital input data of the operating channel The figure below is monitoring screen when all c
61. LEN input 1 Accuracy in case of 5V output 4000 x 0 5 20 So in case of 5V output accuracy range is 5V 20x0 0025V 5V 20x0 0025V 1980 2020 2 Accuracy in case of 10V 4000 x 0 5 20 So in case of 10V output accuracy range is 4000 20 4000 20 3980 4020 Chapter 3 Analog Output Module 3 Functions of Analog Output Module Here describes functions of XBF DVOAA DCOA4A module Operation 1 It sets up Run Stop of a channel that will operate an analog output channel 2 You can save the time of whole operation by stopping unused channels 1 It sets up the range of an analog output Th f 2 Analog voltage output module offers one range of output DC 0 10 and tput TARS analog current output module offers two DC 4 20mA DC 0 20 The range of 1 It sets up the range of a digital input input data 2 It offers four ranges of a digital input The status of 1 It sets up the output status of a channel when it switches Run to Stop channel output 2 It offers four types of output status Chapter 3 Analog Output Module 3 8 1 Precautions for wiring 1 Use separate cable of an A C power line and an external output signal of an analog output module to prevent a surge or inductive noise from the A C side 2 Select the cable with consideration of an ambient temperature and a permitted current limit It is recommended over AWG22 0 3mm 3 Don t let the cable at close range to
62. Parameter NM Basic Parameters E Parameters BT Internal Parameters Eg Scan Program MewProgram Project c Select Edit Register U Device Edit Find Replace View 0 EN Cut Ctrl Copy Ctrl C Delete Del select All a Insert Line Ctrl L Delete Line Ctrl D Export to File Register U Device Chapter 2 Analog Input Module d Click Yes 3995 9 Automatically register comments in Ehe LI Devices according to Ehe special module set in the parameter e The previous comment will be deleted Continue 0000 BIT UO1 00 0 Analog Input Module Module Error BIT UO1 00 Analog Input Module Module Ready BIT UO1 01 Analog Input Module CHO Active Analog Input Module Active BIT 001 01 Analog Input Module CH2 Active BIT 001 01 Analog Input Module CHS Active 01 CHO 100 i 10 Analog Input Module CHO Input Disconnection Flag _01_ 1_100 i 10 Analog Input Module Input Disconnection Flag _01_CH2_ 100 i 10 Analog Input Module CH2 Input Disconnection Flag _01_ _100 i 10 Analog Input Module Input Disconnection Flag _01_ERR_CLR i ae Analog Input Module Error Clear Request _02_CHO_ERR i UD Analog Output Module CHO Error _02_CH1_ERR i 00 Analog Output Module Error Analog Output Module CH2 Error Analog Output Module CH3 Error Analog Output Module Module Ready Analog O
63. UX0 1 0 CH 0 offset gain adjustment error Off UX0 1 14 Module H W error Off UX0 1 16 0 running On UX0 1 24 setting error Off Operation start bit is on moves CH 0 temp conversion value UW0O 1 4 into CH temp data Disconnection error occurs at 0 UX0 1 20 CH 0 disconnection is on and 0 disconnection error bit is set Chapter 5 Thermocouple Input Module 5 7 3 Example when error occurs 1 Program example PUT 0 _1 UDI DO D UOl 00 E UDI DI B MODOD E 3 m_m Qi poy 01 CHOAD O1 ER _O1_CHO_AC _01_CHO_SE a JERR R T TERR 2700 2700 a MON 001 04 00000 _01_ _ MP 101 01 4 MOD ayo 01 CHO BD UT 0 29 00001 END a If disconnection error occurs at CHO U01 01 4 CHO disconnection is and M0001 bit is set b If disconnection error occurs at CHO min value within the range of K type temperature senor is displayed at U01 04 c It is monitored as follows according to monitor display type When monitoring the temp conversion value select Unsigned Decimal Monitor display type Display content Unsigned Decimal 62836 Signed Decimal 2700 270 0 hF574 As Instruction 62836 Chapter 5 Thermocouple Input Module 5 8 Troubleshooting The chapter describes diagnostics and measures in case any trouble occurs during use of thermocouple input module 5 8 1
64. Using PUT command to write h0005 in the address 0 slot 1 to operate Input Channel 0 and Output Channel O b Using PUT command to write 10000 in the address 1 slot 1 to set the input range of Input Channel 0 to DC 4 20mA and the output range of the Output Channel 0 to DC 4 20mA c When the module is in normal operation 000 is turned ON U01 00 0 Module Error Off U01 00 F Module Ready On U01 01 0 Input Channel 0 in operation ON U01 01 8 Input Channel 0 Error Off d When 0000 is ON Input Channel 0 Converted Value U01 04 is transferred to 000100 e If open wire error occurs at Channel 0 U01 01 4 ChannelOopen is ON and M0001 bit is set 2 Sample Output Program Output CHO Program 11 Z v m o 111 i 01 00 0 UDI OD F 0 2 UDI OT A MOO D ee et ry 14 MODO 01 06 0 4 Di 15 8 0 m 20020 0107 Di DAD 917 520 a Using PUT command to write 0005 the address 0 slot 1 to operate Input Channel 0 Output Channel 0 b Using PUT command to write 0000 in the address 1 slot 1 to set the input range of Input Channel 0 to DC 4 20mA and the output range of the Output Channel 0 to DC 4 20mA When the module is in normal operation 0010 is turned ON U01 00 0 Module Error Off U01 00 F Module Ready On U01 01 2 Output Channel 0 in operation ON U01 01 A Output Channel 0 E
65. during operation and convenience of monitoring 6 Freely selectable operation direction Forward reverse and mixed forward reverse operations are available 7 Cascade operation realizing quick and precise PID control can increase quickness of response to disturbance through cascade loop 8 Various additional functions PID control can be achieved by various methods a user wishes because set value ramp the present value follow up limiting change of values and types of alarm functions are provided Chapter 7 PID Function Built in function 7 2 PID Control 7 2 1 Basic theory of PID control Here describes basic theory of PID control and how to configure PID control 1 Terms Terms used in this user manual are as follows PV status of plant detected by sensor Process value SV Target value Set Value to control plant if control is done normally PV should follow the SV E error between SV and It can be expressed as SV PV Kp proportional coefficient Ti Integral time constant Sometimes called integral time d Derivative time constant Sometimes called derivative time MV Control input or control device output The input to plant to make PV follow the V 15 Sampling time a cycle of operation to execute PID control 2 PID operation expression Basic PID operation expressions are as follows E SV PV oh _ Kp MV 7 2 3 x D 7 2 4 MV MV MV
66. 0 220 0 0 O Oi eS Disable Disable iw iw 0 4000 0 4000 Disable Disable Not saved in parameters Disable Disable Count Avr Count Avr Reset max min value Test function of Special Module Monitoring is provided for user to check the normal operation of A D conversion module even without sequence programming If A D conversion module is to be used for other purposes than a test use parameters setting function in I O parameters Chapter 2 Analog Input Module 2 10 1 How to use special module monitoring Monitoring special module will be based on XBF ADO4A 1 Start of Special Module Monitoring Go through OnLine gt Connect and Monitor gt Special Module Monitoring to start the status is not OnLine Special Module Monitoring menu will not be active otart stop Monitoring Fausing Canditians Device Monitoring 11 Special Module Monitoring Trend Monitoring Custom Events Data Traces 2 How to use Special Module Monitoring a With XG5000 connected to PLC CPU on line status click Monitor gt Special Module Monitoring to display Special Module Select screen as in Fig 5 1 showing base slot information in addition to special module type The module installed on the present PLC system will be displayed on the list dialog box special Module List E X Module Internal HSC Module Open Collector 4 Internal APM
67. 0 10V of voltage I O e Specify digital types data type setting e This module provides 4 output data types Unsigned Signed Precision Percentile Values e Sampling Process If A D conversion method has not been specified the module processes sampling A D input conversion Filter process method Filters rapid changes in input value by external noise Averaging process Outputs A D converted value averaged by time cycle and moving output status Sets up channel output state at transition from run to stop setting Provides 4 output selections Previous Minimum Mean Maximum Values 6 6 1 Sampling Process In popular A D conversion process analog input signals are collected at constant time intervals and A D converted The time elapsed for the analog signals converted into digital signals and saved in memory device depends upon the number of channels used Process Time z No of Channels Used x Conversion Rate Ex Process time when using of 4 I O channels 3x1 ms 3 0 ms The term sampling means taking analog signal values at certain time intervals Chap 6 Analog Combo Module 6 6 2 Filtering Function The input value of the designated channel is calculated with previously filtered input value using preset filter constant time constant 63 2 by the formula below Pr eviouslyFilteredInput x FilterCons tan t Pr esentInput x Ims x No ofChannels Used Pr esentlyFilte
68. 01 8 U0x 01 B in case of IEC type UX0 x 24 UX0 x 27 will be on it acts as default value If setting error representation U0x 01 8 UOx 01 B is on check error information 1By 1 27 30 area and solve the error Chapter 5 Thermocouple Input Module 10 Cold junction compensation temp area Address 31 34 a Cold junction compensation temp can be seen per channel b In case of GET instruction cold junction compensation temp area is as follows Address 31 Address 32 Address 33 Address 34 B15 B14 B13 12 11 10 9 8 7 B6 BS B4 B3 B2 1 BO 11 System area offset gain storage area address 35 55 a In the system area Read Write is unavailable If the user changes this area it may cause malfunction or breakdown Caution So do not handle this area Chapter 5 Thermocouple Input Module 5 Example Program 1 It describes how to set operation parameter in the internal memory of thermocouple module 2 Regarding the initial condition the initial settings are saved in the internal memory of thermocouple module if saved once 3 The following is program example that reads the temp value of thermocouple input module of slot 1 and check whether disconnection occurs or not 5 7 1 Example using I O Parameter 1 parameter setting window Parameter Setting Module list Base 00 Default Module Input Filter Emergency Qut Allocat
69. 1200 0 2000 250 800 1000 1000 0 400 2000 0 381 2048 48 8mA 1 2mA 16mA 20mA Analog input value voltage Digital output value for current input characteristic is as specified below Resolution Based on 1 4000 5 Digital Analog input current mA Output range 8 12 16 20 2023 U d val ed 1000 2000 3000 4000 4047 48 4047 value 2048 2000 1000 1000 2000 2047 2048 2047 2000 1000 1000 2000 zs Preci 381 2023 p ile val ercentile value 42 250 500 750 1000 1011 12 1011 1 If analog input value exceeding digital output range is input the digital output value will be kept to be the max or the min value applicable to the output range specified For example if the digital output range is set to unsigned value 0 4000 and the digital output value exceeding 4047 or analog value exceeding 0 15 input the digital output value will be fixed as 0 4047 Voltage and current input shall not exceed 15 V and 25 MA respectively Rising heat may cause defects Chapter 2 Analog Input Module 2 6 Accuracy Accuracy of digital output value does not changed even if input range is changed Figure below shows the range of the accuracy with analog input range of 0 10 V and digital output type of unsigned value selected Accuracy of XBF ADO4A is 0 5 4020 3980 4000
70. 2 Input resistance of the voltage input circuit is 1 min 3 Set only the channels to be used up for operation 4 Analog mix module does not provide power supply to external input device Use external power supply 5 Exemplary analog input wiring Same wiring scheme is applied to voltage and current inputs except that voltage current setting switch must be set up accordingly 4 INPUT OUTPUT Voltage Current Selection Switch Vel e em JI amp cH1 IL 1 S lt i CH UH cw E ceno T 1 IT z CHO 3 c 21 91 49 wruT INPUT DC power Supply DC24V for analog device DC24V Chap 6 Analog Combo Module 6 Exemplary Wiring for Analog Input 2 Wire Sensor Transmission Same wiring scheme is applied to voltage and current inputs except that voltage current setting switch must be set up accordingly XBF AHO4A INPUT OUTPUT Voltage Current selection switch EL DC Transmitter 2 HS 0 M oO 2 2 Wire DC Transmitter ae INPUT DC power supply DC24V For analog device DC24V 7 Exemplary Wiring for Analog Input 4 Wire Sensor Transmission Same wiring scheme is applied to voltage and current inputs except that vol
71. 3 Digital Output Values is for IEC types x slot No a A D converted digital values are outputted to buffer memory address UOx 04 U0x 05 V6UWO x 4 UWO x 5 by channel basis b Digital output values are saved in 16 bit binary figures The base No of the XGB PLC is 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 BitO E Chap 6 Analog Combo Module 4 Output Permit Setting is for IEC types x slot No a Output permit prohibit can be set up for each channel b The default setting is Output Prohibited The base No of the XGB PLC is 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit Bit6 Bit5 Bit4 Bit3 Bit2 UWO x 6 S O O x gt Output status setting BitOn 1 Output permitted BitOff 0 Output prohibited 5 Digital Input Values is for IEC types x slot No a Digital inputs can be set up as unsigned 48 4047 signed 2048 2047 precision or percentile 12 1011 values b When digital input value is not set up they are processed as zero The base No of the XGB PLC is 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 BitO Ju mm Chap 6 Analog Combo Module 6 11 2 Operation Parameter Setting Area The operation parameter setting area of the analog mix module is as follows Memory m ting nw
72. 8 9 om 100 500 0 1000 4 DC 0 5V Range Input Analog Input Voltage V Output Range _ 0 06 0 1 25 25 375 x 39 me 0 4000 3949 9 0 2000 2000 9 9 48 m ow 0 500 0 1000 5 DC 0 10V Range Input Digital Analog Input Voltage V Output Range 0 12 0 25 5 75 Unsigned Value 48 1000 2000 3000 0 4000 Signed Value 2048 2000 1000 1000 2000 2000 Value 0 1000 Percentile Value O 1000 Chap 6 Analog Combo Module 6 4 2 Output Characteristics The graph below shows the data conversion characteristics by output range Practical analog output w range 1011 2047 4047 1000 2000 4000 Gain value 750 1000 3000 Digital input 500 0 2000 250 1000 1000 0 2000 0 12 2048 48 value DC 4 20 mA 4mA 12 20 output DC1 5V 1V 5 DCO 5V OV 2 5 5V DC O 10V OV 5V 10V 1 DC 4 20mA Range Output Digital Input Analog Output Current 4mA less 200 2000 over Oiee 0 20 99 70 100 2 DC 0 20mA Range Output Digital Input Analog TET Current Wr n Unsigned Value 0 4000 1000 2000 3000 4000 over Signed Value 2000 2000 2000 less 2000 1000 1000 2000 E i 0
73. CH2 setting error available setting error XBF DC04A Address 7 Bit On 1 Run Set up the run channel Bit Off 0 Stop Bit 00 4 20mA Set up the output voltage range Bit 01 0 20mA Bit 00 0 4000 B ET 2000 2000 it 2 Set up the input data type Bit 10 400 2000 0 2000 Read Write Bit 11 0 1000 available Set up the output type of CHO 0 outputs the previous value Set up the output type of CH1 1 outputs the min value of output range Set up the output type of CH2 2 outputs the mid value of output range 3 outputs the max value of output range 6 Set the output type of CH3 CHO setting error 1 setting error Read Error code CH2 setting error avaliable CH3 setting error 1 Setting up the run channel If the run channel is not specified all the channels will be set to Stop B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO 1 Cale H H Run channel bit gt 1 Run 3 21 gt 0 Stop Chapter 3 Analog Output Module 2 Setting up the output voltage current range The range of analog output voltage is DC 0 10V and analog output current is DC 4 20mA DC 0 20mA B15 B14 B13 B12 B11 B10 B9 BA B3 B2 B1 Output range bit 00 0 10V 4 20mA gt 01 0 20mA 3 Setting up the input data type a Input type can be specified for respective channels b If input da
74. Chapter 7 PID Function Built in function Chapter 7 PID Function Built in function 7 1 General 7 1 1 General Here describes built in PID Proportional Integral Derivative function When there is plant target of control Control means that the user changes the status such as velocity temperature position voltage current etc as the user wishes Here describes PID control that is most frequently used among diverse control methods Basic concept of PID control is as follows First it detects the PV Process Value through sensor and calculates what the difference with SV Set value is Then it outputs MV Manipulated Value for PV to be same with SV At this time 3 types of operation such as Proportion Integration Derivation is executed according to the requirement of the user PID control has high compatibility flexibility affordability in comparison with Robust control and Linear optimal control In case of other control methods since control device can be applied to the system after mathematical analysis of system if system or the requirement of the user changes the analysis of system is done again But in case of PID control PID device copes with change of system or requirement of the user with simple auto tunings without analysis of system rapidly The figure 6 1 is example indicating system configuration of temperature control of heating system Furnace 7 d Flow Out Flow In lt Figure 7 1 PID
75. Device Continue Er a Scan Program E NewProgram e As shown below the variables are registered XG5000 Variable Comment 1 Project Edit Find Replace View Online Monitor Debug Tools Window Help ui CBE CL X CANA SS AS BB OS BR C3 Ap UN ES E IMAP 4g 91 RH 100 Ela Sample B MewPLC GB xBMS Off bis Variable Comment B 5 Parameter B Basic Parameters Be E Parameters ae 4B Internal Device E E Scan Program NewProgram de 0 OUTEN 1 2 2____ Output Module 2 Output Status Setting 13 0 CH3 QUTEN 001 02 359 Analog Output Module CH3 Output Status Setting UTE sy UOT Ue 1 Analog Module Output status setting 15 101 DATA 0080 001 035 Analog Output Module CHO Input d6 0080 101 04 Analog Output Module CHI Input TUNIS Analog Gutput Module CHS input Chapter 3 Analog Output Module 2 Save variables The contents of View Variables can be saved as a text file b Click Edit gt Export to File c The contents of View Variable are saved as a text file 3 View variables in a program a The example of XG5000 is shown below UOT 00 F hOUOF 101 02 Uc ut MV 0 001 02
76. For instance a heater is a kind of forward direction system because PV temperature increases when output heating increases A refrigerator is a kind of reverse direction system in which PV temperature decreases when output increases c Prevention of dual integral accumulation It makes dual integral accumulation function enabled disabled To understand integral accumulation prevention function it is necessary to explain the phenomenon of integral accumulation first of all Every drive has a limit That is a motor is limited to the speed and a valve can become status overcoming the complete open close If it happens that MV output from a control is beyond the output limit of a drive its output is maintained as saturated which may deteriorate the control performance of a system and shorten the life of a drive Formula 7 2 3 shows that the integral control among PID control output components accumulates errors as time goes on from which it may take more time to return the normal status after the actuator is saturated in a system of which response characteristically is slow It is so called integral accumulation phenomenon as illustrated in Fig 7 9 which shows that if the initial error is very large the error is continuously accumulated by integral control Accordingly a drive is saturated within its output upper limit while the control signal is getting larger keeping being saturated for a long while until the drift becomes negative and the
77. Input voltage current of external terminal block is normal Set U0x 02 to enable the output referring to p3 19 Chapter 3 Analog Output Module 3 14 4 Status check of D A conversion module through XG5000 system monitor Module type module information O S version and module status of D A conversion module can be checked through XG5000 system monitoring function 1 Execution sequence Two routes are available for the execution a Monitor gt System Monitoring gt And on the module screen click the right mouse button to display Module Information Monitor gt System Monitoring gt And Double click the module screen 2 Module information a Module type shows the information of the module presently installed b Module information shows the O S version information of A D conversion module c O S version shows the O S prepared date of A D conversion module d Module status shows the present error code Refer to 3 23 for detailed error codes Chapter 4 RTD Input Module Chapter 4 RTD Input Module 4 1 Setting Sequence before Operation Before using the RTD input module follow steps below XBF RDO4A XBF RDO1A Checking performance specification Specification Operating environment Digital input range System configuration and selection System configuration e Max No equip able Selecting the external power Wiring Wiring Wiring external DC24V
78. LED Indication by Errors Thermocouple input module has two LEDs and it is possible to check whether it had any error with the indication of RUN LED and ALM LED Abnormal module Disconnection H W error Flicker every 0 2 RUN LED ON ON second ALM LED Flicker every second Normal operation Every function works Module function Operation function works Min temp is displayed stops 0 Checking sensor wiring Customer service 5 8 2 Stats check of module through XG5000 system monitor Module type module information O S version and module status of thermocouple input module can be checked through XG5000 system monitoring function 1 Execution sequence Two routes are available for the execution a Monitor gt System Monitoring gt And on the module screen click the right mouse button to display Module Information Monitor gt System Monitoring gt And Double click the module screen 2 Module information a Module type shows the information of the module presently installed Module information shows the O S version information of module c O S version shows the O S prepared date of module Chapter 5 Thermocouple Input Module 5 8 3 Troubleshooting RUN LED flickers RUN LED flickers every 0 2 sec TI o D d Contact the nearest agency or LS branch office RUN LED is off Thermocouple input module is installed cor
79. Load resistor 2 or above Input range can be set through external voltage current selector switch after setting at user program or I O parameter per input channel Type 12 bit binary data Unsigned value Signed value 2000 2000 100 500 DC 1 5V 400 2000 DC 4 20mA Digital input Precise 0 500 DC 0 5V 0 2000 DC 0 20m value 0 1000 DC 0 10V Percentile 0 1000 1 4000 Max resolution 1 25 DC 1 5V 0 5V DC4 20mA 0 20 2 51 0 10 10 5 or less Absolute max output DC 15V DC 25mA Function setting channel output status value Additional function Can select one among Previous Minimum median maximum 3 common performance specification Photo coupler insulation between I O terminal and PLC power Insulation method insulated between channels I O terminal block 11 points terminal block No of I O occupation point Fixed type 64 points 7 when using XBM DxxxS S type Max number of equipment 10 when using XB E C DxxxH H type Consumption Internal DC 5V 120mA current External DC 24V 130mA Weight 73g Chapter 2 Analog Input Module Chapter 2 Analog Input Module 2 1 Setting Sequence before operation Before using the analog input module follow steps below XBF AD04A Checking performance specification Specification 2 2 performance specification Operating environment Input type a
80. MV It sets the output when the operation mode is manual The available scope is between 32 768 32 767 DeadBand setting It sets deadband between set value and present value Although it may be important to reduce normal status reply of PV for its set value even when MV fluctuates heavily depending on control system it may be more important to reduce the frequent change of MV although the normal status reply is somewhat getting larger DeadBand may be useful in the case Below figure shows an example of DeadBand setting Chapter 7 PID Function Built in function DeadBand Figure 7 11 Example of DeadBand setting setting deadband as in the figure the PID control built in XGB may regard the error between PV and set value as 0 as long as PV is within the available scope of deadband from set value That is in this case the change of MV is reduced The available scope of setting is between 0 65 535 and if it is set as 0 it does not work p Differential Filter Value Setting It sets the coefficient of differential filter Since differential control outputs in proportion to gradient of error and gradient of PV change it may suddenly change MV as it generates a large response to instantaneous noise or disturbance To prevent it XGB series uses a value to which PV is filtered mathematically for differential control Differential filter value is the coefficient to determine the filter degree for differential contro
81. MV of external loop is automatically entered as the SV of internal loop so it is not necessary to enter it through program Chapter 7 PID Function Built in function 3 PIDHBD PIDHBD is a command to execute the mixed forward reverse E control PIDHBU F R Operand F and R represent forward operation loop and reverse operation loop and available only for constant 0 15 If start junction is on it starts the mixed forward reverse operation from the designated forward reverse loops n case of IEC type combined operation is executed by using PIDHBD function block F DHED DONE STAT STAT REV STAT REV STAT The mixed forward reverse control is called a control method to control forward operation control output and reverse operation control operation alternatively to a single control process The XGB built in PID control enables the mixed forward reverse control by connecting two PID control loops set as forward reverse operations At the moment it uses PIDHBD command For more information about the command refer to 7 2 5 The mixed forward reverse run is executed as follows in the XGB built in PID control a Commencement of mixed run lf PIDHBC command starts first it starts reverse run when PV is higher than SV it starts forward run if PV is lower than SV b Conversion of RUN direction The conversion of run direction is executed according to the following principles In case of forward
82. Module Module Module Module Module CHO Module HI CHO CHO Ready Of f set Error Running sett ing Error Error start 110 1 4 Temp Measuring Module CHO Temp V CHOD i ect jonErro SUK0 1 20 r Ammo Temp Measuring Module CHO Input Disconnect ion 1 a If module is running normally operation start bit is on UX0 1 15 Module Ready On UX0 1 0 CH 0 offset gain adjustment error Off UX0 1 14 Module H W error Off UX0 1 16 CH 0 running UX0 1 24 Setting error Off b If operation start bit is on it moves CH 0 temp conversion value UW0 1 4 into CH 0 temp data If CH O disconnection error occurs UX0 1 20 CHO disconnection is on and CH 0 disconnection error bit is set Chapter 5 Thermocouple Input Module 5 7 2 Program example using PUT GET instruction 1 Program example PUT 0 _1 UO1 00 0 UOl 00 E 11 010 UDI DI B MODOD s L _ Qi poy 01 CHOAD O1 ER _O1_CHO_AC 01 SE a JERR R T TERR 278 278 MON 001 04 00000 01 UOT O1 4 pu 1 CHO BO UT 0 EL 29 00001 END a It writes 10001 at address 0 of slot 1 in order to enable CHO If module is under normal operation 0000 1 on U01 00 F module Ready On U01 00 0 CHO offset gain adjustm
83. Parameter setting for a test a Digital value 0 Output enable Disable Chapter 3 Analog Output Module d Start Monitoring button will show you digital input data of the operating channel Special Module Monitor 3 ABF D vU4A Voltage 4 Monitoring screen Disable Enable sussmsssussesasussuussnesnussnsensensenssenseenseessea 070 Nivea ves REY mE meme 4 Details of channel 0 Former value Mid value 0 3000 Disable Disable otop Monitoring Test Test is used to change the parameters of the voltage output module You can change the parameters when you click the values at the bottom of the screen It is only available when XGB CPU unit s status is in Stop Monitoring Special Module Monitor 2 ABF D v04A Voltage 4 Setting value ome ome 2 E Gees somescmenencenascsmarescomssssueseseemcreomessanessscnnscerenersssorssonessensnerrenersssossssenssensans Suen eames eemenencenaneenareesmeesamescenensrcomor enol suono esuusessemeseumuseononessoneseseusseeonseesnes te
84. Setting range 2 64000 times he time required for average value to be saved on memory when frequency average used depends on the number of channels used Process time setting frequency X number of channels used X conversion speed If setting value of count average is not specified within 2 64000 RUN LED blinks at an interval of 1 second In order to set RUN LED to On status reset the setting value of frequency average within 2 64000 and then convert PLC CPU from STOP to RUN Be sure to use request flag of error clear UXY 11 0 to clear the error through modification during RUN Ex If the number of channels used is 4 and average processing frequency is 50 50 X 4 X 1 5 ms 300 ms Chapter 2 Analog Input Module 2 8 1 Precaution for wiring 1 Don t let AC power line near to A D conversion module s external input sign line With an enough distance kept away between it will be free from surge or inductive noise 2 Cable shall be selected in due consideration of ambient temperature and allowable current whose size is not less than the max cable standard of AWG22 0 3mm 3 Don t let the cable too close to hot device and material or in direct contact with oil for long which will cause damage or abnormal operation due to short circuit 4 Check the polarity when wiring the terminal 5 Wiring with high voltage line or power line may produce inductive hindrance causing abnormal operation or defect 2 8 2 Wirin
85. So PID control is expressed as expression 7 2 12 K dE MV MV MV ExKp Edt KT 7 2 12 c The figure 7 6 is simulation result when PID control is applied to above heating system Chapter 7 PID Function Built in function Proportional Integral Derivative PID temp coefficient time time Control Control o 9 zs e 9 50 2 5 1 5 0 3 ve sw 2s 1s 03 sons sh s sw 2s 1s os soot 49 99 50 00 lt Table 7 5 comparison of PI control and PID control gt Temp C Comparison of PI control and PID control 40 50 20 lt Figure 7 6 comparison of PI control and PID control gt d Considering table 7 5 in case PID control is used max overshoot decreases from 16 5 to 8 5 At this time coefficient integral time derivative time are not optimal values just one of the examples Actually P coefficient integral time derivative time values vary according to PID control system Chapter 7 PID Function Built in function 7 2 2 Functional specifications of PID control 1 Functional Specifications The performance specifications of the built in PID control function in XGB series are summarized in the below table Cem Specifications No of loops 16 Loop Proportional Scope of constant P Real number 0 3 7 Pn Integral constant l Real number 0 3 Real number 0 3 40282347e 38 unit second 02
86. Table 7 13 PID error codes Chapter 7 PID Function Built in function 7 6 2 Warning codes Error Mesmieb _ 0001 PV MIN It occurs when the set PV is It occurs when the set PV is beyond the min max PV 0 the min It occurs when the set PV is beyond the min max PV 0 PV occurs when PID operation cycle is too short It is H 0002 PID SCANTIME ALM desirable to set PID operation cycle longer than PLC scan time H O003 PID dPV WARN It occurs when the PV change of PID cycle exceeds PV bu change limit H O004 PID dMV WARN It occurs when the PV cycle MV change exceeds MV change limit H 0005 PID WARN 7 when the calculated MV of PID cycle exceeds the H 0006 PID MV MIN WARN It occurs when the calculated MV of PID cycle is smaller than the min MV Table 7 14 PID error codes Appendix 1 Appendix 1 Standard Resistor of Pt RTD Pt1000 Eme J o e o l1 l1 HE wo wo _ ma Appendix 1 1 Appendix 2 Thermo electromotive force and compensa
87. Temperature control system with PLC gt At this time PLC becomes control device for this system output temperature of heating system becomes target for control And temperature sensor and valve becomes devices to detect and manipulate the status of system respectively If temperature sensor detects the output temperature and inputs that to PLC PLC manipulate the valve status through PID operation and control the quantity of gas that goes into heating system So temperature of heating system changes This process is called control loop and PID control is executed by repeating the control loop The control loop is repeated with a cycle of ms s Chapter 7 PID Function Built in function 7 1 2 Features The built in PID control functions of XGB series feature as follows 1 Since operations are executed within CPU part it can be controlled by PID parameters and PLC program without PID module 2 A variety of controls can be selected That is a user can easily select P operation Pl operation and PID operation 3 Precise control operation It can make precise PID control operations possible through floating point operations 4 PWM Pulse Width Modulation output available It outputs control operation results to the output contact point designated by a user through PWM 5 Improving convenience of control settings and monitoring Through parameter setting method and area flag it maximizes control parameter settings
88. XG5000 See XG5000 Program Manual for project creation b In the Project window double click I O Parameter Items 5 2 NewPLC CXGB BCH Offline Variable Comment 4 Parameter Basic Parameter Parameter H E Embedded E Scan Program NewPragram Project Chap 6 Analog Combo Module c In the I O Parameter Setting window find out the slot of the base where the analog mix module is installed and click it Parameter Setting Default Default Default Default Default Default Default Default Default Default Default d In the above window click the arrow button to call the window where the module can be selected Find out the module and select it Parameter Seting eee Base 00 Default St _ Comment Input Fiter_ Emergency Out Allocation Default Default Default Default Analog ID Module E XBF AHO4A 1 0 2 2 Communication Module List Default Default Default 2 6 Digital Module List 4 Default 3 88 Special Module List Default 4 Al Analog Input Module Default 5 Al Analog Output Module Default Al Temp Measuring Module 7 8 9 To set up parameter double click with respective slot being selected or click Detail button Parameter Setting 00040 POOO F Default Default Default Default D
89. XG5000 Use s Manual Chapter 7 PID Function Built in function 7 5 3 Stand along operation after PID Auto Tuning Here with example it explains how to execute PID control followed by PID auto tuning 1 PID auto tuning parameter setting PID auto tuning parameters set as same as examples of 7 4 2 Example of PID Auto tuning 2 Setting parameters of A D input module and D A output module Set the parameters of A D input module and D A output module as same as the example 7 4 2 Example of PID Auto tuning 3 PID parameter setting a If double clicking Parameter Built in Parameter PID PID Parameter it shows the built in PID parameter setting window as seen in figure 7 26 Auto Auto Auto ic wei ep e ds i pna c E pae desee Seana ME uw Es Med By Enor 1 Meu Ei c M ME By EnalePwMOupu wenp rh mmm i i T 4 787 DewaweTme 0 0 0002 0 EUM MGR gt 4000 4000 4000 401 a 00 Le 7 e E M o1 o 0 D eee ux og ee a 1 poma ee adn pem M MM Ge i Es DTE Am DIES DE DEI
90. battery again Moreover skilled workers are needed when exchanging batteries Safety Instructions Safety Instructions for waste disposal Product or battery waste shall be processed as industrial waste The waste may discharge toxic materials or explode itself Revision History Version Data Important change Page 1 Adding contents VID d 1 Setting Sequence before operation 2 1 2 Accuracy calculation example 2 9 2 Changing contents 1 Wiring examples AD 2 Configuration and Function of Internal 2 13 3 9 4 9 2 25 8 10 4 20 3 Example Program 9 3 4 245 1 Adding model 1 Thermocouple input module XBF TCO4S Chapter 5 2 Adding contents V 1 1 2008 1 1 Thermo electromotive force and Appendix 2 compensating cable 1 5 2 Performance Specification APP 3 3 3 Dimension 3 Changing chapter number CH 5 gt CH 6 1 CH 6 PID Function App 2 gt App 3 2 Appendix 3 Dimension V1 2 2008 4 1 Adding XGB compact H type Chapter 1 V1 3 2009 7 1 Adding contents about XGB IEC 2 Adding model Chapter 6 1 Analog combo module XBF AH04A 3 Adding changing contents 1 Adding contents at chapter 1 1 1 1 6 1 7 2 Adding dimension Appendix3 3 The number of User s manual is indicated right part of the back cover O LS Industrial Systems Co Ltd 2007 All Rights Reserved About User s Manual About User s Manual Thank
91. commas 0 Appoint operating channel Bit Off 0 stop Bit ON 1 run I O range setting 4 bit per Ch 0 4 20 mA 1 0 20 mA 2 1 5V 3 0 5V 4 0 10V I O data type setting 4 bit per Ch 0 0 4000 1 2000 2000 2 Precision value 3 0 1000 I O data type setting for precision values 4 20 m 400 2000 0 20 m 0 2000 1 7 5V 100 500 0 5V 0 500 0 10 V 0 1000 Input Ch 0 filter value sould 0 or 4 64000 Averaging method setting 4 bit per Ch Input Ch 1 filter value setting 0 Sampling Averaging method setting 1 Time average 2 Cycle average 3 Moving average range setting EM Valve Time average 4 16000 ms setting input Ch 1 Cycle average 2 64000 cycles sete Moving average 2 100 samples previous value Channel output status 1 min value setting 2 median Input Ch range setting error Input Ch data type setting error Input Ch filter value setting error Input Ch averaging setting error Input Ch average value setting error Output Ch range setting error Output Ch data type setting error Ch output status setting error 902 Output Ch input value range over error channel number Set up error information output area 1 If the memory address 0 8 area is entered with values different from the setting U0x 01 8 UO0x 01 B setting error representative flag for IEC type UX0 x 24 UX0 x 27 is ON and runs with default v
92. compensation temp 214 33 compensation temp of i Cold junction 22 4 34 compensation temp of CH3 23 35 System area Offset gain storage area Read Write unavailable unavailable N Caution 1 If input value of memory address 00 1 0 26 is out of range of setting value U0x 01 8 U0x 01 B setting error representation flag in case of IEC type 0 0 24 0 0 27 are on and it acts as default setting value Error information is displayed in 1Bu 1F4 27 30 area 2 System area Offset gain storage area is area where Read Write is unavailable If this area changes malfunction or breakdown may occur Chapter 5 Thermocouple Input Module 1 Designating Channel Address 0 a Temperature conversion module Enable Disable can be set to each channel By prohibiting a channel not to use from conversion conversion interval by channels can be shortened channel to use is not designated every channel can not be used d In case of using PUT instruction temperature conversion module Enable Disable are as follows B15 B14 B13 B12 B11 B10 B9 B8 7 B5 B3 B2 B1 BO Address 0 oC e Vales set in B4 B15 are ignored f This area shows the same results with operation channel designation I O parameter setting window XBF TCO4S TC 4 ABF TCO4S 4 CH HO Sensor status Diable 0 K Celsius Celsius Celsius Sampling Sampling Sampling Sam
93. diagnostic function which can detect and indicate open input line when voltage input range of DC 1 5V or current input range of DC 4 20mA is selected as its analog input range If the module indicates open input line check the wiring 1 If the wiring to the module is open the Input LED flashes at 1 second intervals and the respective error code is generated 2 Line open detection is available for each channel However open indication is provided only for the channel selected for the operation The Input LED is common for the input channels 0 and 1 and flashes if 1 or more channels are open Channel Input LED Input Connection Operation State Working Normal Open Line E Stopped NC NEM Input wire open or Flash 1s disconnected 3 At line open the line open flag of the channel turns On and turns Off at correction UOx 01 4 Ch 0 open U0x 01 5 Ch 1 open 4 At line open the least of all input values is indicated Chap 6 Analog Combo Module 6 6 5 Channel Output Status Setting Function This function sets up the output in response to PLC shutdown or failure 1 Function This function is used to obtain preset output value of the analog mix module when the PLC system is transferred from run to stop 2 Type Channel output can be one of the followings a Previous value maintains the last output from normal operation Minimum outputs the least values of the respective output
94. hot devices or materials And don t bring it into contact with oil for a long time These are the factors of a short circuit occurs unusual operation or damages devices 4 Check the polarity before external power is supplied to the terminal 5 It may produce inductive hindrance that is a cause of unusual operations or defects if you wire the cable with a high voltage line or a power line 3 8 2 Wiring example 1 Wiring example for analog voltage output module Motor driver etc XBF DV04A Conversion circuit Motor driver etc Conversion circuit 1 Use a 2 core twisted shielded wire Chapter 3 Analog Output Module 3 9 Operation Parameter Settinc You can specify operation parameters of the analog output module through parameters menu in XG5000 1 Setting items For the user s convenience XG5000 provides GUI Graphical User Interface for parameters setting of analog voltage current output module Followings are available through parameters on the XG5000 project window 1 It specifies the following items for the module operation Channel Enable Disable Analog output range Input type Channel output type After the parameters that user specified in XG5000 are downloaded they will be saved to a flash memory in the CPU unit 2 How to use I O Parameters menu a Run XG5000 to create a project Refer to XG5000 program manual for details on how to create the project
95. normal Terminal Texinal block for connecting external RTD temperature sensor gt Terminal block for connecting external RTD temperature sensor External power supply Terminal for supplying external DC24V terminal f ae gt Connection connector for Connection connector for connecting extension module 0000 extension module extension Chapter 4 RTD Input Module 4 4 Temperature Conversion Characteristic Since RTD sensor has non linear characteristic RTD input module linearizes the relationship between input and output in each section The graph below is an example to describe the linearization process and is different with graph about sensor temperature input 1 PT100 JIS1604 1997 Temperature O00 O0 0 Coretta 7 7 7 7 7 4 25 2 2 Ag 18 52 25 0 0 22 i 7A 100 313 71 Measured temperature EP id Resistance LL eee Linearized sensor characteristics Real Sensor characteristics 2 JPT100 JIS C1604 1981 KS C1603 1991 Temperature Ce ed 4 600 0 17 14 317 28 Measured temperature Resistance Linearized sensor characteristics Natacha Slee Pg ee Real sensor characteristics Remark Non linear characteristics The resistance temperature characteristics for RTD sensor are presented with table JIS C1604 1997 This
96. output Voltage Current of each channel to external machinery and tools External power input terminal is an external DC 24V input terminal that supplies power for an analog output voltage current Chapter 3 Analog Output Module 3 4 Characteristic of I O Conversion Characteristic of I O conversion converts a digital input into an analog output voltage current and displays a straight line with the gradient as shown below The range of digital input is shown with Unsigned Value Signed Value Precise Value and Percentile Value such as the graph below Digital input range gt 20 20mA 10V E Analog 10 12mA 5V ee ud output eBueij indjno 6 4 4 lt 4mA v d Offset value Unsigned value 48 0 2000 4000 4047 Singed value 2048 2000 0 2000 2047 Digital 12 0 1000 1011 input Precise value 381400 2000 2018 24 0 2000 2023 Percentile value 12 0 500 1000 1011 Chapter 3 Analog Output Module 3 5 Characteristic of Input Output The range of a voltage output is DC 0 10V and a current output is DC 4 20mA DC 0 20mA XBF DVOUA Voltage ax 2x 04 Voltage 4 XBF DCO4A Current 4 Disable Disable Disable Outputrange 0710 0710 0710 0104 Inputtype 07
97. screen exit other applications and rerun 55000 2 The I O parameters set up in Special Module Monitor condition are temporarily set up for testing purpose Therefore these I O parameters are deleted after exit from Special Module Monitor 3 the test function of the Special Module Monitor enables testing analog mix modules without sequence programming Chap 6 Analog Combo Module 2 Usage of Special Module Monitor a With the XG5000 in connection online with the base unit of PLC select Monitor gt Special Module Monitor The Select Special Module window shown below will appear showing the type of the special modules and base slot information In the list dialog the modules present in the PLC system are displayed Special Module List Base Slot Module Base 0 B Internal High Speed Counter Module Open Collector 8 CH Base D B Internal Position Module 2 CH e Slot XBF AHUAA 2 2 Module Info Monitor b In the above window select the special module and click Module Info to see the information window below Special Module Infomation Displays the informations of special module Mem Information 4 1 0 2 2 CH 9 01 2009 3 23 Normal 0 Click the Monitor button in the Special Module window The Special Module Monitor window will appear as shown below Special Module Moni
98. the Thermocouple input module You can change the parameters when you click the values at the bottom of the screen It is only available when XGB CPU unit s status is in Stop Special Module Monitor 045 TC 4 CH Temperature value ten Caner vale Enable Enable Celsius Celsius Sampling Sampling Bipolar Bipolar 32768 32768 32767 32767 Close Test execution screen Chapter 5 Thermocouple Input Module 6 If Flag Monitor is selected on the Special Module Monitor window Temp Measuring Module Command screen can be monitored Special Module Monitor XBF TCO4S TC 4 CH Temperature value Scaling value Min temp value Temp Measuring Module Command Temperature value XBF TCO4S TC 4 CH Scaling value e eU o o Channel status Stop FLAG Monitor FLAG Monitor Seting vale Curent vale cH 3 Channel status Stop Stop Enable Enable K Celsius Cake 0 0 0 0 RJC Active ENABLE ENABLE T 33707 Max Min ace DISABLE DISABLE RJC Active ENABLE ENABLE Temp Measuring Module Command execution screen 7 Temp Measuring Module Command screen On the monitoring screen Channel status Run Stop and Sensor status Normal Disconnection can be monitored On the flag command screen Max Min active ENABLE DISABLE and cold junction
99. up I O data type by Ch 4bit For precision values 0 0 4000 4 20 mA 400 2000 1 2000 2000 O 20 m 0 2000 2 Precision value 1 5V 100 500 3 0 1000 0 5 0 500 0 10 V 0 1000 Chap 6 Analog Combo Module 4 Filter Constant Setting a If set to 0 no filtration is processed Default setting is 0 no filtration process Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bito Address3 Input channel 0 filter constant 0 or 4 64000 ms Address4 Input channel 1 filter constant 0 or 4 64000 ms 5 Averaging Method Setting a Averaging method can be one of time average cycle average moving average Default setting is no averaging throughout the channels Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit3 Bit2 Address5 Input CH 1 Input CH O r Set up averaging method 4bit per Ch 0 Sampling 1 Time average 2 Cycle average 3 Moving average 6 Average Value Setting a Set up average values in accordance with the setting area of the averaging method b If the average value is out of setting range averaging is not applied H amp 15 14 13 12 11 10 H 9 HIE6 5 4 Address6 Input channel 0 average value Address Input channel 1 average value gt gt gt gt 5 gt 5 5 5
100. value will be output to buffer memory addresses UXY 02 UXY 05 Y UWO x 2 UWO x 5 for respective channels Digital output value will be saved in 16 bit binary XGB PLC s base number is 0 B15 14 B13 B12 11 B10 B9 B8 7 B6 B5 BA B3 2 B1 BO Channel 0 digital output value UWO x 2 Channel 1 digital output value 3 Channel 2 digital output value UWO x 4 Channel 3 digital output value 4UWO x 5 Chapter 2 Analog Input Module 4 Flag to request error clear means the case of IEC type x slot number a If a parameters setting error occurs address No 22 s error code will not be automatically erased even if parameters are changed correctly At this time turn the error clear request bit ON to delete address No 22 s error code and the error displayed XG5000 s System Monitor In addition RUN LED which blinks will be back to On status b The flag to request error clear shall be used surely together with UXY 00 0 attached thereon for guaranteed Normal operation XGB PLC base number 1 0 UXY 11 0 UX0 x 11 B5 BA B3 B2 B1 BO B15 B14 B13 B12 B11 B10 B9 B8 B7 Flag to request error clear UXY 11 0 Bit ON 1 Error clear request Bit Off 0 Error clear standing by L 1100 11 0 1100 00 0 1100 11 0 R Error Clear Error Flag Error Clear 50 Request Request How to use the flag to request error clear S type or H
101. 0 01 F P0000 0001 0 0001 1101 01 0 4 1 01 02 3000 0080 Analog Input Analog Input Module Module 4 CHO Active CHO Output 01 01 1 0001 03 3200 0082 Analog Input Analog Input Module Module CH1 Active CH1 Output U01 01 2 1001 04 3000 MOO02 Analog Input Analog Input Module Module 2 Active 2 Output 201 04 3200 0086 Analog Input Module 2 Output mE GET 1 22 00000 1 001 04 3200 Analog Input Module 2 Output Program in case of S type or H type Chapter 2 Analog Input Module PUT _WORD P 0 1 5 4 _ WORD 1 d 1 INST PUT WORT 1 13 150100 PUT WORD STAT PLT WORD REC STAT SLOT PLT WORD STAT PUT WORD 1 0 REN DONE 0 1 12 1B 0006 DONE 1 200 Chapter 2 Analog Input Module Program in case of IEC type Chapter 2 Analog Input Module 2 14 Troubleshooting 2 14 1 RUN LED flickers RUN LED flickers RUN LED flickers every 0 2 sec It seems to be a module defect Yes qu gt gt contact the nearest agency or LS branch office RUN LED flickers every 1 sec It is Run parameters setting error Check the error code to take action against as follows in the table below
102. 0 F Analog Input Module Module Ready _02 CHO ACT BIT 102 01 0 Analog Output Module CHO Active _02 CHO DATA WORD 102 03 Analog Output Module CHO Input _02_CHO_ERR BIT 102 00 0 Analog Output Module CHO Error 19 02 CHO OUTEN 102 02 0 Analog Output Module CHO Output Status Setting _02_CH1_ACT BIT 102 01 1 Analog Output Module CH1 Active _02 WORD 102 04 Analog Output Module CH1 Input _02_CH1_ERR BIT 102 00 1 Analog Output Module CH1 Error _02_CH1_OUTEN 102 02 1 Analog Output Module CH1 Output Status Setting _02_CH2_ACT BIT 102 01 2 Analog Output Module CH2 Active amp OK Cancel Figure 7 22 Variable registration window Comment 4 FID Output Se 2000 _PIDOO_MAN 1 Man PID PAUSE 2 2010 600 PALISE 0 5 AL Pause Loo PID Operate Direction 3 BIT 12020 _PIDOO_REW Forvard 1 Reverse Loop 5 E FID Anti Wind up2 54 HewPLL BIT 12030 FIDOD AD D Enable l Disable 4 4 PE EW Figure 7 23 Auto tuning variables registered Chapter 7 PID Function Built in function d In case of IEC type example program In case of IEC type the following program is used Comment Operates input module of slot 1 and of output module of slot 2 i AUXO 1 16 OH _ AURO 2 32 00
103. 00 It converts the input 0 10V to digital value from 0 4000 and delivers it to basic unit In the case the resolving power of digital value 1 is 10 4000 2 5mV e Filter process averaging disabled The example sets the input values in order that filter process and averaging are not available For more information about each function refer to 12 Analog I O Module 3 D A Output Module Parameter setting Set the parameter of D A output module XBF DVO044A that output MV to a drive How to set them is as same as A D input module In the example it is set as follows Channelstatus Disable Disable Disable Disable Output range 10v 10v TON TO OD CH Output type Cancel e RUN CH CHO RUN In the example MV is output as CHO of D A output module e Output scope 0 10V Input data 0 4000 Chapter 7 PID Function Built in function 4 Example of PID Auto tuning program The example of PID auto tuning program is illustrated as figure 7 21 Enables of OA conversion module and Add Conversion module 0099 UO1 01 0 O1_CHO_ACT 102 02 0 eR omen los current input value of conversion module to PY Device area of AT Loop 0 N bari 001 02 K185 ON UCTHIDATA ON comment auto tuning af AT loop 0 during bit is UM PIDAT 0 2 current WY value of loop D ta
104. 000 074000 074000 Former value Former value Former value Former value Channel status Disable Disable Disable Disable Output range 4720 4720 4720 Inputtype E 07 000 04000 04000 E IUE o Former value Cancel Cancel Digital input value toward analog voltage output is shown below Resolution 2 5mV 1 4000 Accuracy within 0 5 The range of Analog voltage PE digital input wnderov ov 25 5 era 2000 1000 o rman o se m en o ame m EN Digital input value toward analog current output is shown below Resolution 1 4000 Accuracy within 0 5 Analog current output 8mA over 20mA _5 _ The range of digital input under 4mA under OmA Unsigned value 48 4047 under 0 over 4000 value 2048 2047 under 2000 2000 1000 1000 2000 over 2000 over 20mA under 400 400 800 0 1600 2000 over 2000 Precise value 381 2018 24 2023 P til MP o Chapter 3 Analog Output Module 3 6 Accuracy Though the range of input is changed the accuracy for the analog output values doesn t change The range of accuracy is displayed at the ambient temperature of 25 5 if you select unsigned value as your range of the digital input The accuracy is satisfied 0 5 20 1mA 19 9mA gt 5 D P 5
105. 00101 Un t 2 Urn nb n SSS Sr UD 00 F 101 01 3 06 1 FE oo aa UD 00 F 001 01 2 000200 101 07 b In the View menu click View Variables The devices are changed into variables OV LOUPE Mw OV D00201 01 08 MOY aa HOODOO shes 01 00 000100 al 01 ADT 000101 DL 00 00001 _01_RDY oll ig DAT 00 _01_RDY ko WOOO pm E DAC D eis MOY 000200 L 4 AT Di DAI D gue MOV 000201 S1 c In the View menu click View Device Variables to look up the devices variables at the same time ig UO1 O0 F U01 01 0 MON 04 01 RDY _O1_ADO_AC DT ADI 50 T if MOY 101 05 000101 01 RDY I ADI AC DT ADT T T z 0001 UO1 00 F 01 2 1 06 0 4 01 RDY D DAD AC 1 DO 00 e T TEN 12 UO1 00 F 2 TIRDA DAT AC 00 18 400002 UO1 00 F 01 2 MV 000200 UD Or FDY DI DAC AC 01 370 T 15 3 MV 000201 08 01 RDY 01 AC 01 DAT ig END S1 Chap 6 Analog Combo Module d In the View menu click View Device Description to look up the devices and desc
106. 1 0 Input Channel 0 in operation U01 01 8 Input Channel 0 Error Off When 1 ON Input Channel 0 Converted Value U01 04 is moved to 000100 c If open wire error occurs in channel 0 U01 01 4 channel 0 open wire is ON and M0001 bit is set 3 Sample Output Program Output CHO program 0 00 0 0 01 01 72 00010 uL m m i _O1_ERR Joi FON 01 DD AC 01 DAD ER L MDOOT0 Unt 05 0 r t 201 DAD OU i3 MON 000200 01 07 201 DAD 58 1 When the module is normal operation 00010 is turned ON U01 00 0 Module Error Off U01 00 F Module Ready On U01 01 2 Output Channel 0 in operation On U01 01 A Output Channel 0 Error Off When 00010 is On channel output status setting U01 06 0 is turned ON and output is permitted When 00010 1 On the data 000200 is transmitted to Output Channel 0 input value U01 07 and outputted Chap 6 Analog Combo Module 4 Sample Input Program for IEC type ie SUAQ 1 0 SURD 1 15 SURO 1 16 SIRO T 24 p 4 IIT ERR Dt RIIV DN CHOInput Value 10 1 4 01 1 20 DT ADO When the module is normal operation is turned ON UX0 1 0 Module Error Off UX0 1 15 Module Ready On UX0 1 16 Input Channel 0 in operation On
107. 101702 5 UDIDIA nM eacunmo Module Measuring Module Offset Measuring Module 1 Measuring Module CH3 Offsetit np Measuring Module Measuring Module Module HIV me Module CHO Runnir CH Runnir f CH2 Runnir CH3F Runnir CHO Input CH1 Input CH2 1 Input 1p Measuring Module Measuring Module Measuring Module Measuring Module Measuring Module 1p Measuring Module Meme Module Measuring i Measuring Module Module Measuring Module Variable Monitoring Wir xn KIK Honitor Monitor t AGheck Program A Find 1 Message Window Find 2 Communication CHO Offset Offset Offset Gain Module Re CH3 Input CHO Setting CH1 Setting CH2 Setting gt Cross Reference View Variable Chapter 5 Thermocouple Input Module 2 Save variables a The contents of View Variable can be saved as a text file Select Edit gt Export to File c The contents of View variable are saved as a text file 3 View variables a The example program of XG5000 is as shown below NewProgram Seles 01 01 0 Eek MV A y AE T _O1_Ch2_aC T D1 CH2 TEMP 00000 O1_CHS_TEMP 00000
108. 1230 00 PV old I PID PV of previous cycle K1231 1231 _PIDOO MV EE eer PID MV K1232 KD616 PIDO ERR ERR DINT PI PID control error error K1234 KD617 00 REAL PID MV proportional value Oe Ay K1236 KD618 _PIDOO_Mv i REAL ER integral control sence _ 7 3 wwa _ uws Won _ pomru wr o 1249 KW 1249 _PIDOO ERR CODE Word o PID error code K1250 KW 1250 PIDOO CUR SV INT PID SVofcurrent cycle 1251 1255 KW1251 1258 WORD Reservedarea K1256 K1295 KW1256 KW1295 ae i PID Loop1 control parameter Loop16 K1816 K1855 KW1816 KW1855 PID Loop16 control parameter lt Table 7 8 K area flags for PID control continued gt K1200 K1211 areas are the common bit areas of PID loops while each bit represents the status of each PID control loop Therefore each 16 bits the max number of loops of XGB PID control represents loop status and setting respectively K1216 K1255 areas are areas for PID control loop 0 and save the loop 0 setting and status It also contains parameters such as SV operation cycle proportional coefficient integral time and differential time set in the built in parameter
109. 1700 0 Type of input sensor Range of input temperature Displaying down to one decimal place note Temp display o J T type 0 1 R type 0 5 Digital output Scaling display Unsigned scaling 0 65535 user defined scaling Signed scaling 32768 32767 Ambient temperature 25 C Within 0 2 note 2 Accuracy Temp coefficient 100 ppm range of operating temp Conversion velocity 50ms channel Terminal inner circuit Photo coupler insulation Terminal operating power DC DC converter insulation method Between channels Photo moth relay insulation Insulation 400 V AC 50 60 Hz 1min Insulation pressure leakage current 10m or below Insulation resistance 500 V DC 10 MQ or below Insulation Standard contact Auto compensation by RJC sensing Thermistor point 5 Compensation amount 1 0 compensation Warming up time 15 min or above note 3 Terminal block 11 point terminal occupied points 64 points 7 when using XBM DxxxS 5 Max number of equipment po 10 when using XB E C DxxxH H Filter process Digital filter 200 64 000ms Time average 400 64 000ms Average process Count average 2 64 000 times Additional function Moving average 2 100 Disconnection detection Display Max Min Signed scaling Unsigned scaling 100m current 100m 63g 5 4 Chapter 5 Thermocouple Input Module Note1 Note2 For mo
110. 201n KX19216 n Available changes PID control of n loop to pause status If PID control is paused the control MV is fixed as the output at the time of pause At the moment PID operation is continued internally with output fixed If changing pause status to operation status again it resumes control so it may take a longer time until the PV is going to SV once system status is largely changed during pause If the bit is off it cancels pause if on it operates as paused 3 PID REV PID RUN direction setting Flag name Address Setting address _PID_REV PID RUN direction setting K1202n KX19232 Available t sets the RUN direction of PID control of n th loop For more information about run direction refer to 7 2 3 PID control parameter setting If the bit is off it operates normally if on it operates reversely 4 PID AW2D Dual Integral accumulation prevention setting address AW2D dual integral accumulation K1203n KX19248 n Available prevention setting t sets enable disable of dual integral accumulation prevention of n th loop For more information about dual integral accumulation prevention refer to 7 2 3 PID control parameter setting If the bit is off it is enabled if on it is disabled Chapter 7 PID Function Built in function 5 PID PID remote operation setting Flag name Address 0100 Unit Setting address REM RUN K1204n KX192
111. 21008 assignment direction CH 0 max min searching 0 9 464 BIT Enable Disable 0 465 x 466 0 467 UXO x 472 B CH 1 cold junction 0 473 compensation Enable Disable 2 cold junction 2 3 cold junction x means slot no where module is installed Ex UX0 3 466 no 3 slot CH 2 max min searching Enable Disable bit Min max search On enable Off disable CPU TC Cold junction compensation On enable Off disable 5 6 2 How to set operation parameter Operation parameter of thermocouple input module can be set by two methods 1 Setting operation parameters through I O parameter setting window XBF TCO4S TC 4 CH 045 4 CH Project Window C Channel status Enable Enable Enable tens k Example XGB Celsius Celsius Celsius Celsius NewPLC XGB XBMS Offline 0 0 0 0 Varable Comment sampling sampling sampling sampling eo Basic Parameter Scaling data type Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 9 Ta Embedded Parameter Scaling max value Scan Program NewProgram Chapter 5 Thermocouple Input Module 2 Writing operation parameters through program PUT instruction is used U01 00 F 001 Ch running 20002 Ch1 running 20003 Ch running 004 running All channels stop
112. 32 5 b From Fahrenheit to Celsius degree nu 32 Chapter 5 Thermocouple Input Module 5 2 6 Accuracy Resolution Accuracy Resolution are as follows according to ambient temperature Accuracy note1 Indication temperature Normal temperature Pere ure note2 25 C 0C 55 C Measurement temperature type range Thermocouple 270 0 200 0 200 0 200 0C 0 0 1300 0 0 0C 1300 0 1300 0 1372 0 mE 100 0 C 1200 0 2 8 7 0 0 1C 270 0C 200 0C note3 200 0 400 0C i120 3 0 0 1 C 50 0 0 0C 0 0 1700 0C 1700 0 1768 0 0 0 1700 0 Note1 Total accuracy normal temp accuracy normal temp cold junction compensation accuracy full scale X 0 2 1 0 C Cold junction compensation accuracy 1 0 Note2 Temp coefficient 100 Note3 Measuring the temp is available but accuracy and resolution is not guaranteed 1 When ambient temp is normal 25 5 within the 0 2 range of measurement temp 2 When ambient temp is operating temp 0 55 within 0 5 range of measurement temp Ex When K type thermocouple is used and ambient temperature is normal In case of measuring 1000 C temperature output range of conversion data is 1000 1300 200 x 0 2 1 1000 1300 200 x 0 2 96 1 namely 996 0 1004 0 C 1 For stabi
113. 5 PIDxx Td lag Differential filter coefficient ag 1241 16 KW1241 16 xx WORD 0 65 535 differential filter coefficient It sets the differential filter coefficient of xx th loop For more information about differential filter coefficient refer to 7 2 3 PID control parameter setting If it is set as O the function does not Work Chapter 7 PID Function Built in function 16 PIDxx PWM PWM output junction setting PIDOO _ mm PWM output junction setting K1242 16 xx KW1242 16 xx WORD H 20 H 3F It sets the junction to which PWM output of xx th loop is output PWM output junction is valid only between H 20 H 3F If any other value is entered PWM output does not work 17 PIDxx PWM Prd PWM Output cycle setting PIDxx Prd 5 5 PWM output cycle setting K1243 16 xx KW1243 16 xx WORD 100 65 535 It sets the PWM output cycle of xx th loop The available scope is between 100 65 535 at the unit of 0 1ms 18 PIDxx SV RAMP SV ramp setting E La E K1244 16 xx KW1244 16 xx WORD 0 65 535 SV ramp setting It sets the SV ramp value of xx th loop For more information about SV ramp of refer to 7 2 3 PID control parameter setting If it is set as 0 the function does not work 19 PIDxx Track PV follow up setting _PIDxx_PV_Track 1245 16 KW1245 16 xx WORD 0 65 535 PV follow up setting
114. 50 1000 3000 gt 2 500 500 0 2000 5 4 5 250 250 1000 1000 D Q 0 0 2000 0 OV 25V 5V 7 5V 10V Analog input value voltage Digital output value for voltage input characteristic is as specified below Resolution based on 1 4000 2 5 mV Digital output input A range Unsigned value 4000 2000 3000 4000 0 4047 Signed value 2000 1000 1000 2000 2000 2047 jon value 1000 1011 eere P value 1000 1011 Chapter 2 Analog Input Module 2 5 2 If the range is DC 0 20mA 1011 1000 500 Digital output value 2023 2000 1500 1000 2047 2000 1000 1000 2000 4047 4000 3000 2000 1000 5 10mA 15mA 20mA Analog input value current Digital output value for current input characteristic is as specified below Resolution based on 1 4000 5 4A Digital output range Unsigned value 1000 2000 3000 4000 4047 0 4047 Signed value 2000 2047 Precise value 1000 1500 2000 2023 0 2023 Percentile value 250 500 750 1000 1011 0 1011 250 so 1000 Analog input current Ta an Chapter 2 Analog Input Module 2 5 3 If range is DC4 20mA 1011 2023 2047 4047 1000 2000 2000 4000 750 1600 1000 3000 gt gt zi 5 500
115. 64 n Available PID remote run setting GB series built in PID function can be started by both run from command s start junction and remote run bit setting That is XGB starts PID control if PIDRUN command s start junction is on or remote run setting bit is on Namely if one of them is on it executed PID control 6 PID PWM PWM output enable IEC type K1208n KX19328 n Available t determines whether to output the MV of PID control of n th loop as PWM output For more information about PWM output refer to 7 2 3 PID control parameter setting If the bit is off it is disabled if on it is enabled 7 PID STD PID RUN status indication IEC type PID Ritus Indication iN wares Unavailable t indicates the PID control RUN status of n th loop If a loop is running or paused it is on while if it stops or has an error during RUN it is off In the area as monitoring area it is changed to the current run status by PLC although a user enters any value temporarily 8 PID ALARM PID Warning occurrence IEC type Flag name Address Unit Setting K1210n 19360 BIT Unavailable PID Warning occurrence t indicates warning if any warning occurs during PID control of n th loop Once a warning occurs during PID control operation of a loop it is on while if it is normal it is off At the moment despite of warning PID control continues without interrupti
116. 75 16 xx 32 768 32 767 It is the area to receive PV of xx th auto tuning loop PV is the present status of a system to control and in case of PID control the entry from a sensor is saved into U device through input devices such as A D input module and it moves the value to by using commands such as MOV every scanning executing auto tuning 11 ATxx MV Auto tuning MV _ATxx_MV auto tuning MV K1876 16 xx KW1876 16 xx Unavailable It is the area to output MV of xx th auto tuning loop Every auto tuning cycle it saves XGB auto tuning and it delivers the value in the area by using commands like MOV in a program and operates a drive every scanning Chapter 7 PID Function Built in function 7 4 5 Auto tuning instructions The commands used XGB series auto tuning are as follows 1 PIDAT PIDAT is a command to execute auto tuning by loops 5 Operand S means the loop no to execute auto tuning and avaiable only for constant 0 15 If start junction is on the PID control of a loop starts In case of IEC type the following PIDAT function block is used for start of auto tuning AT_STAT Chapter 7 PID Function Built in function 7 5 Example Programs The paragraph explains example programs regarding the directions of XGB built in PID function The example programs are explained with water level system as illustrated in 7 17 Water level sensor Pump
117. C I e I Cancel Figure 7 26 Auto tuning parameter setting window b Set each parameter and click OK In the example Loop 0 is set as follows e RUN mode automatic Set as automatic in order that PID control is executed as the built in PID operation outputs MV e RUN direction forward Since in the system water level is going up as MV increases and pump s rotation velocity increases it should be set as forward operation 7 50 Chapter 7 PID Function Built in function e PWM Output disabled In the example auto tuning using PWM is not executed Therefore PWM output is set as disabled e SV 1000 2 5V It shows an example in which XBF ADO4A is set as the voltage input of 0 10 e Operation cycle 1000 In the example it is set that PID control is executed every 100ms e Proportional gain integral time and differential time It should be initially set as 1 0 0 because PID auto tuning results is used with PID constant e Max MV 4000 Max MV is set as 4000 MV is 4000 XBF DVO4A outputs 10V e DeadBand 0 15 set as 0 because the example does not use DeadBand function e Differential filter setting 0 itis also set as 0 because the example does not use differential filter Min MV 0 Min MV is set as 0 If MV is 0 XBF DVO4A outputs OV e PWM junction PWM output cycle Itis not necessary to set them because the example does not use PWM ou
118. Channel output status setting function selectable from previous Value Additional Functions min mean max value outputs 3 Common Performance Specification Classification Common Performance Specification Photo coupler isolation between terminal and PLC power Insulation Type source no insulation between channels I O Terminals 11 point terminal block I O Points Fixed type 64 points 7 units XBM DxxxS S type Max No of Installation 10 units XB E C DxxxH H type Internal DC 5V 120 Current External DC 24V 130mA Weight Chap 6 Analog Combo Module 6 3 Major Components Major components are as follows 4 INPUT OUTPUT OUTPUT INPUT o o M Indicate operation of input part On normal operation Flashing in error 1 sec flashing Off power off or module failure Indicate operation of output On normal operation OUTPUT LED Flashing in error 1 sec flashing Off power off or module failure Select Switch Ch 0 and Ch 1 Select Switch output Ch 0 and Ch 1 Block devices Cte la A AT Block devices Ext Power too 9 Connector for DC24V external power supply Ext Connector Connector for extension modules Chap 6 Analog Combo Module 6 4 Conversion Characteristics by I O Range The input output ranges of voltage and current can be set up per channel with
119. DC 0 10 the range of analog current input is DC 4 20mA bit15 bit14 bit13 bit12 bit11 bit1O bit9 bit8 bit bits bit4 bits bit2 Address 1 Setting input range bit gt 00 0 10V 4 20mA gt 01 0 20mA gt 11 4 20mA Chapter 2 Analog Input Module 3 Setting output data type a The range of digital output data for analog input can be specified for respective channels b If the output data range is not specified the range of all the channels will be set to 0 4000 bit5 bit14 bit13 bit12 bit11 bit1O bit9 bits bit bits bit4 bits bit2 Address 2 Setting output data type bit gt 00 0 4000 gt 01 2000 2000 gt 10 0 1000 400 2000 0 2000 gt 11 0 1000 4 Setting filter process If the filter process is not specified the filter process of all channels will not be executed Address 3 bit15 bit14 bit13 bit12 bit11 bit1O bit9 bits bit bits bit4 bits bit2 CH S Setting filter process bit Bit On 1 used bit Off 0 not used 5 Setting filter constant When using the filter process specify the filter constant bit1S bit14 bit13 bit12 bit11 bit1O bit9 bits bits bit4 bit3 bit2 Address 4 filter constant Address 5 CH 1 filter constant Address 6 2 filter constant Address 7 CH 3 filter constant 6 Setting average process If the average process is not specified the average proces
120. District Beijing China Tel 86 10 5825 6025 m LS Industrial Systems Guangzhou Office gt gt China Address Room 1403 14F New Poly Tower 2 Zhongshan Liu Address LSIS VINA Congty che tao may dien Viet Hung Rad Guangzhou China e mail zhangch lgis com cn Dong Anh Hanoi Vietnam e mail srjo hn vnn vn Tel 86 20 8326 6754 86 20 8326 6287 LS Industrial Systems Chengdu Office gt gt China aco Indusirialsysiems Hangi ORICE se vistham Address Room 2907 Zhong Yin B D No 35 Renminzhong 2 Address Room C21 5th Floor Horison Hotel 40 Cat Linh Road Chengdu China e mail hongkonk vip 163 com piano vienam Tel 86 28 8612 9151 Fax 86 28 8612 9236 TEESE TIR REATO let erator ee LS Industrial Systems Qingdao Office gt gt China a Dalian Es industrial Systems coy erie Address 12th Floor Guodong building No52 Jindun Road Address No 15 Liaohexi 3 Road economic and technical Chengdu China e mail bellkuk hanmail net development zone Dalian China e mail lixk Igis com cn Tel 86 411 8273 7777 Fax 86 411 8730 7560 Tel 86 532 580 2539 Fax 86 532 583 3793 LS Industrial Systems constantly endeavors to improve its product so that 2009 7 Information in this manual is subject to change without notice LS Industrial systems Co Ltd 2006 All Rights Reserved
121. Module Qpen Collectar 2 CH Slot 1 XBF ADDAA Volt Current 4 Slote SBF DVOdA Voltage 4 gt Monitor Close Select Special module and click Module information to display information as below Chapter 2 Analog Input Module opecial Module Infamatian Displays the informations of special module Wem c Click Monitor on the Special Module screen in Special Module List to display Special Module Monitoring screen as below where 4 options are available such as Reset max min value start Monitoring Test and Close A D conversion module s output value and max min value are displayed on the monitoring screen at the top of the screen and parameters items of respective modules are displayed for individual setting on the test screen at the bottom of the screen special Module Monitor 2 x ABF ADIMA Vot Current 4 ET m uc EETA m I a EE oy Start Menterne Test Close Start Monitoring Click Start Monitoring to display A D converted value of the presently operated channel Below screen is the monitoring screen displayed when the whole channels are in Stop status In the present value field at the screen bottom presently specified parameters of A D conversion module are displayed Chapter 2 Analog Input Module Special Module Monitor 1 2 x
122. N if STATI D EE 16 0005 16 0000 iz SUXD 1 15 0 1 18 0 1 26 ri OLER DI 201 00 AC 01 _D40_ER 7 m_n lt id ig CHOOutnput SUMO 1 77 Value D1 D O BEEN T LIO cu NEN a Using PUT command to write h0005 in the address O slot 1 to operate Input Channel 0 and Output Channel O b Using PUT command to write 10000 in the address 1 slot 1 to set the input range of Input Channel 0 to DC 4 20mA and the output range of the Output Channel 0 to DC 4 20mA c When the module is in normal operation MX10 is turned UX0 1 0 Module Error Off UX0 1 15 Module Ready UX0 1 18 Output Channel 0 in operation On UX0 1 26 Output Channel 0 Error Off d When MX10 is on Channel 0 Output Status setting UX0 1 96 is turned on and output is permitted When 10 15 on data of the Channel Ooutput variable is transferred to Output Channel 0 Input Value 0 0 1 7 and outputted 96 DT DAD OLI TEM Chap 6 Analog Combo Module 6 13 Troubleshooting This section describes methods for identifying the troubles which may occur during the operation of analog mix module and their solutions 6 13 1 LED Indication for Error An analog mix module has INPUT LED and OUTPUT LED to indicate error status of the module Module H W Normal Channel Open Parameter Setting Classification F
123. NIO o IO 0 1 Fahrenheit c Vales set in B4 B15 are ignored d This area shows the same results with temp unit setting in parameter setting window XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH C Channel status Disable Enable Enable Enable K K K Temp unit Celsius Celsius Celsius Celsius Filter constant Celsius 0 0 0 Sampling Sampling Sampling o Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 4 Filter constant setting area Address 6 9 a Filter constant can be set per channel b Filter constant ranges 0 or 200 64000 If filter constant is set as 0 filtering process is not executed d When input is 1 199 or larger than 6400 0 filter disable is selected by force But U0x 01 8 U0x 01 B setting error representation in case of IEC type UX0 x 24 0 0 27 are on error information is displayed at bit 1 of address 27 30 e In case of PUT instruction filter constant setting address is as follows Chapter 5 Thermocouple Input Module B15 B14 2 B11 B10 9 8 B7 B6 B5 B4 B3 B2 B1 BO Address 6 CHO filter constant setting 0 200 64000 Address 7 CH1 filter constant setting 0 200 64000 Address 8 CH2 filter constant setting 0 200 64000 Address 9 CH3 filter constant setting 0 200 64000 f This area shows the same results with filter constant setting in paramete
124. O 1 Analog Module Output CHO DATA 11 VAR BLOBAL 01 BOOL SUKO 1 26 Analog 10 Module Output CHO Error 12 MAR_GLOBAL _O1_040_OUTEN BOOL SUXO 1 96 Analog Module Output Status setti 13 BL BAL _01_081_ BOOL AUD 1 19 Analog Module Output Active 14 AR_GLOBAL _ 1_ 1_ WORD 1 8 Analog Module Output DATA VAR BL BAL 01 ERR BOOL 1 27 Analog Module Output Error 16 BL BAL 01 BOOL amp 1 97 3 Analog Module Output Status setti BL BAL BOOL AUR 1 0 Analog Module Module Error VAR BL BAL Li RN BOOL AUD 1 15 n Analog 10 Module Module Ready Cs 2 Saving Variables a The contents in the View Variables tab can be saved in a text file b In the Edit menu select Save as Text File c The contents in the View Variables tab are saved in a text file Chap 6 Analog Combo Module 3 Viewing Variables in Program The figures below present examples of use in XGB 5 and types a Below is an exemplary program for XG5000 io ig ig 5 E 911 _ Sel UD 00 F Sal On F UD On F ptr Moy 001 04 000100 50 ii Ut 00 F EE M 401 05 0
125. OOL amp UX 1 26 Analog 10 Module Output CHO Error 112 AR_GLOBAL 01 040 OUTEN BOOL amp UXD 1 96 Analog 10 Module Qutput CHO Status Setti 13 GLOBAL 01 DAT ACT BODL amp UXD 1 19 Analog 10 Module Output Active 14 GLOBAL _01_041_ WORD SUWO 1 8 Analog 10 Module Output CHI DATA 15 GLOBAL 01 DAT ERR BOOL 8UX0 1 27 Analog 10 Module Output Error 16 GLOBAL _01_DA1_OUTEN BOOL 1 97 Analog 10 Module Output CHI Status Setti VAR GLOBAL _01_ BOOL SUX0 1 0 Analog 10 Module Module Error 18 VAR GLOBAL _O1_RDY BOOL 1 15 Analog 10 Module Module Ready 2 Save variables a The contents of View Variable can be saved as a text file Select Edit gt Export to File c The contents of View variable are saved as a text file Chapter 2 Analog Input Module 3 View variables The example of XGB S type and H type is as follows a The example program of XG5000 is as shown below 010 0 001 02 00100 MOV 001 03 00101 101 00 UOT Ole T 101 04 00102 101 05 00103 101 00 1 3 23 b Select View gt Variables The devices are changed into variables 00000 00010 0 00010 UI RDY _01_CHO_ACT MOV 000100 2 RD DIL ACT MOV ds ul 000101 RD 01
126. OU T D 1000 2000 D1 CH3 T T D 01 CH3 3000 4000 Chapter 3 Analog Output Module 3 14 Troubleshootinc 3 14 1 RUN LED flickers RUN LED flickers RUN LED flickers every 0 2 sec seems to be a module defect Contact the nearest agency or LS branch office RUN LED flickers every 1 sec is Run parameters setting error Check the error code to take action against as follows in the table below Error Code Digital input value range Adjust digital input value range error indicates channel number 3 14 2 RUN LED is off RUN LED is Off D A conversion module is installed on the base correctly Ro SSS Correctly install D A conversion module on the base information be seen at the XG5000 gt Contact the nearest agency or A S center Normally operated if D A conversion module with T T error is changed to another module Contact the nearest agency or A S center Chapter 3 Analog Output Module 3 14 3 Analog output value is not normal D A conversion value is 0 Channel status is set as Enable Check and correct the channel status on the I O parameter External power DC 24 is supplied Ne j Supply external power DC 24 Refer to 2 8 2 and wire properly
127. Right choice for ultimate yield LSIS strives to maximize customers profit in gratitude of choosing us for your partner Programmable Logic Controller XGB Analog Series __ User s Manual Voltage Current input XBF AD04A Voltage Current output XBF DV04A 4 Temperature input XBF RDO4A XBF TC04S Analog Combo XBF AH04A Built in PID IC OOOO is Sunes Safety Instructions eRead this manual carefully before installing wiring operating servicing or inspecting this equipment eKeep this manual within easy reach for quick reference LS Industrial Systems Safety Instructions Before using product For your safety and effective operation please read the safety instructions thoroughly before using the product gt Safety Instructions should always be observed in order to prevent accident or risk with the safe and proper use the product gt Instructions are divided into Warning and Caution and the meaning of the terms is as follows This symbol indicates the possibility of serious injur Warning Ak ee or death if some applicable instruction is violated This symbol indicates the possibility of Severe or N Caution slight injury and property damages if some applicable instruction is violated Moreover even classified events under its caution category may develop into serious accidents relying on sit
128. Should ground in the environment where is not interrupted from noise f Install not to contact with cooling pan in the panel 3 Cautions in handling It describes caution in handling from unpacking module to installation a Do not fall or apply excessive impact on it b Never attempt to separate PCB from the case c Make sure that any impurities including wiring dregs should not go into the upper part of module during wiring work d Never attempt to attach or detach the module when it is turned on 5 4 2 Wiring 1 Cautions in wiring a Do not place AC power line close to the AUX signal line of the module To avoid surge or induced noise occurring from AC make sure to leave a proper space b Cable should be selected by considering ambient temperature and allowable current and the specification of cable should be as follows Cable specification Upper limit 0 18mm AWG24 c If cable is placed too close to any heating device or materials or if it directly contacts oil and similar materials for a long time it may cause short circuit resulting in breakdown and malfunction d Check the polarities during terminal strip wiring e Wiring with high voltage cable or power line may cause induction problem causing malfunction or trouble f External DC24V power should be same with power of XGB If external DC24 V power of thermocouple input module is turned on off while power of XGB main unit is on temperature input val
129. UX0 1 24 Input Channel 0 Error Off b When is ON Input Channel 0 Converted Value UW0 1 4 is transferred to Channel Olnput variable c If open wire error occurs at Channel 0 UX0 1 20 ChannelOopen turns ON and 1 bit is set 5 Sample Output Program for IEC type e 0 1 0 00 1 15 1 18 SUED T 2b AMAT 2 4 ses i SENS 1 96 _01_080_00 CHOOutput Value _ 1_ _ a When the module is in normal operation MX10 is turned ON UX0 1 0 Module Error Off UX0 1 15 Module Ready On UX0 1 18 Output Channel 0 in operation On UX0 1 26 Output Channel 0 Error Off b When MX10 is ON ChannelO output status setting UX0 1 96 is turned ON and output is permitted When 10 is ON the data of the Channel Ooutput variable is transferred to Output Channel 0 Input Value 0 0 1 7 and outputted Chap 6 Analog Combo Module 6 12 2 Exemplary Usage of PUT GET Command 1 Sample Input Program Input CHO Program ii ig sl 0 5 10H L2 PUT i 01 00 0 un OD F 101 01 01 8 LL LII 01 510 T R 44 000100 _ 1_ 315 T L5 01 4 s nn s d 7 i 10 S8 x EE e a
130. _ deos Pri WORD ATPWMoutputeycle xkwiess HYS val WoRD arnystersisseting 5 amer kwige7 ATO STATUS word AT auto tuning status indication Kinos swiss ERR CODE WORD ATemorcode _____ ako atookp REAL AT result proportional coefficient _ K1871 _ATOO REAL AT result integral time irs Amor _ REA O ATresutdiferentaitime a i WE B Kw MV oo aM MV 9oKW 1877 K1877 1879 Reserved Word Reserved area KW1879 Table 7 12 K area flags for auto tuning K1856 K1859 areas In case of IEC type KW1856 KW1859 the common bit areas for auto tuning and each bit represents auto tuning loop status respectively K1860 K1879 areas save the setting and status of loop O as the K area for auto tuning loop O In the area the parameters such as PV operation cycle and etc set in the built in parameter window are saved and the XGB built in auto tuning function executes auto tuning by the device values and saves the results into the K areas Chapter 7 PID Function Built in function 2 Auto tuning flag function Each function of K area flags for XGB series auto tuning is summarized as follows A Common bit area The area is a flag collecting operation setting and information consisting of bits to each 16 loop Each bit of each word device represents the information of each loop
131. act Auto compensation by RJC sensing Thermistor point Compensation amount 1 0 compensation 20 min or above 11 point terminal Se Average process Count average 2 64 000 times Additional function current Note1 Note2 For more detail specification refer to 5 2 6 accuracy resolution 1 5 Chapter 1 General 1 2 5 Analog combo 1 Input performance specification No of input channel Voltage DC 1 5V DC 4 20mA DC 0 5V DC 0 20mA DC 0 10V input resistor 250 Q Range input resistor 1 MO or above Input range can be set through external voltage current selector switch after setting at user program or I O parameter per input channel 12bit binary dat Unsigned 0 4000 value Signed value 2000 2000 Digital 100 500 DC 1 5V 400 2000 DC 4 20m output Range Precise 0 500 DC 0 5V 0 2000 DC 0 20m value 0 1000 DC 0 10V Percentile 0 1000 1 4000 1 25 DC 1 5V 0 5 0 4 20 0 20mA value Max resolution 2 5mV DC 0 10 10 5 or less Time averaging 4 16 000 5 Additional Averaging Cyclic averaging 2 64 000cycle function function Moving averaging 2 100samples Alarm function Disconnection detection DC 1 5V DC4 20m Chapter 1 General 2 Output performance specification DC 1 5V DC 4 20mA DC 0 5V DC 0 20mA DC 0 10V Load resistor 510 O or less
132. ailure State Input Error Serious Failure Flash at 15 intervals Flash at 0 25 INPUT LED Flash at 1s intervals input parameter setting intervals error Flash at 15 intervals Flash at 0 2s OUTPUT LED output parameter setting intervals error Al functions Module All functions functions work at Module cannot performed Indicates Behavior are normal default parameter setting function min input value In D Check input wire Check parameter setting Request for A S 6 13 2 Checking Module Condition XG5000 s system monitor enables verification of the analog mix module conditions module type module information OS version 1 Procedure The verification can be done in 2 ways a Monitor gt System Monitor gt mouse right click on module icon gt Module Information b Monitor gt System Monitor gt double click module icon 2 Module Information a Module type shows the information on the present module Module information shows the OS version of the module c OS version shows release date of Module OS Chap 6 Analog Combo Module 6 13 3 Troubleshooting 1 INPUT LED or OUTPUT LED is off INPUT LED or OUTPUT LED is off Analog combo module is correctly installed Install the module correctly XG5000 software shows I O information Contact nearest dealer or A S center System resumes normal function if the module is replaced Contact
133. alue 1680100 MV MIN MAX ERR Maximum manipulated value is set to be smaller than minimum manipulated value 1680200 PV MIN MAX ERR Maximum current value is set to be smaller than current eas manipulated value 16 0300 PWM PERIOD ERR PWM output cycle is set to be smaller than 100 10ms In case of forward operation set value at start of auto 1640400 SV RANGE ERR tuning 15 smaller than current value In case of reverse E operation set value at start of auto tuning is larger than current value output is set as contact point other RR than QX0 0 0 0 0 31 ERROR 16 0600 P_GAIN_SET_ERR Proportional constant is set to be smaller than 0 16 0700 TIME SET ERR Integral constant is set to be smaller than 0 16 0800 D TIME SET ERR Differential constant is set to be smaller than 0 16 0900 CONTROL_MODE_E Control mode is other than P PI PD and PID 16 0B00 PIC operation cycle is to be smaller than 100 10ms RR In combined operation directional parameter of forward 16 0C00 HBD WRONG DIR operation loop is set as reverse operation or directional parameter of reverse operation loop is set as forward operation 16 0D00 pen tee combined operation set values of two loops are different 16 0E00 LOOP_EXCEED PID LOOP number is larger 15 16 0002 Pa Operation cycle is too short Chapter 7 PID Function Built in function 2 PIDCAS PIDCAS is a command to execute CASCADE
134. alues The error information is displayed in the setting error information are No 9 CAUTION 2 System areas after 10 are read write protected Changing these areas may cause malfunction or failure of the product Chap 6 Analog Combo Module 1 Operating Channel Setting The default setting for operating channel is Stop Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 0 L HO yndu O Appoint Using CH bit Bit On 1 Operate Bit Off 0 Stop 2 Range Setting The analog I O voltage range is DC 1 5V DC 0 5V 0 10 and analog current I O range is DC 4 20mA DC 0 20mA b Default range is DC 4 20mA Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 5 Bit4 Bit3 Bit2 Bito Address1 Output CH 1 Output CH O Input CH 1 Input CH O y Input ch Set up I O range by ch 4bit 0 4 20 mA 1 0 20 mA 2 1 5V 3 4 0 5 0 10V 3 Data Type Setting a data type can be set up for each channel b If the I O data type is not set up all the channels are processed in 0 4000 range bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit1 Address2 Output CH 1 Output CH 0 Input CH 1 Input CH 0 7 Set
135. apter 5 Thermocouple Input Module 6 Average value setting area Address 14 17 a Average value can be set per channel b In case average processing method is sampling values of this area are ignored c In case of using PUT instruction average value setting address 15 as follows B15 814 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO Address 14 Address 15 CH average value setting Time average 400 64000 ms Count average 2 64000 times Moving average 2 100 Address 16 Address 17 d When input is out of range the min value of each address is selected by force But U0x 01 8 UOx 01 B setting error representation in case of IEC type UX0 x 24 0 0 27 on error information is displayed at bit 3 5 of address 27 30 Bit 3 time average bit 4 count average bit 5 moving average Ex When selecting the Time average and setting average value as 200 400ms is selected in address 14 by force This area shows the same results with average value setting in I O parameter setting window In the I O parameter setting window prohibition function is provided not to set value that is out of range In case of setting value that is out of range that values are displayed with red color and error message is displayed 1 Time Avr XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH Parameter Disable Enable Enable Enable K K K Celsius Celsius Celsius Celsius
136. ar Bipolar 32768 32768 32768 32767 32757 32767 32767 Cancel 00040 POOO F g The initial values of each item are as figure shown below 1 Channel status Disable Enable 045 4 CH 045 4 Disable Disable Disable Disable Disable Enable Celsius Celsius Celsius 0 0 0 0 Sampling Sampling Sampling Sampling 0 0 0 0 Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 2 Sensor status K J T R XBF TCO4S TC 4 045 TC 4 CH Disable Disable Disable Disable K Celsius Celsius Celsius Filter constant d 0 0 0 C Average processing Sampling Sampling Sampling j 8 0 C Scaling data type Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 Scaling max value 32767 32767 32767 32767 Chapter 5 Thermocouple Input Module 3 Temp unit Celsius Fahrenheit XBF TCO4S TC 4 CH 045 TC 4 CH Disable Disable Disable Disable Celsius Celsius Celsius Celsius 0 0 0 Sampling Sampling Sampling 0 0 0 Bipolar Bipolar i Bipolar Bipolar 32768 32768 32768 32768 Scaling max value 32767 32767 32767 32767 4 Filter constant 0 200 64000 XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH C Channel status Disable Disable Disable Disable Sensor status K K K K C Temp unit Celsius Celsius Celsius Celsius
137. ature is displayed as the value gained after the final process 5 3 5 Max Min display It displays maximum minimum value of temperature conversion value of a selected channel for a selected section a section allowed for max min search Status of command allowing prohibiting max min search Maintaining previous Display max min value Maintaining previous Display max min value max min value max min value Initializing max min value Initializing max min value Chapter 5 Thermocouple Input Module 5 4 Installation and Wiring 5 4 1 Installation environment Although the device can be installed with high reliance regardless of installation environment attention should be paid to the followings in order to secure the reliance and stability of the system 1 Environmental Conditions a Install on a water proof and dust proof control board b Place free of continuous impact or vibration c Place not directly exposed to direct sunrays d Place where dew does not form due to rapid temperature change e Place where ambient temperature is maintained between 0 55 A N 2 Installation Construction a In case of screw hole processing or wiring construction wiring dregs should not go into PLC b Install on a position easy to access c Should not install on the same panel which high voltage device is installed on d It should be 50mm and longer distant from duct and modules e
138. ay output module installed on Slot No 2 will be On c If CH 2 s digital value is greater than or equal to 3000 and less than or equal to 3200 Contact No 4 P00086 of relay output module installed on Slot No 2 will be On d If CH 2 s digital value is equal to 3200 Contact No 5 P00085 of relay output module installed on Slot No 2 will be On Chapter 2 Analog Input Module 4 Program a Program example using Parameters IZO Parameter Setting Module list 03 Default 04 Default 05 Default 06 Default Default c Base 00 Default 01 04 Volt Curre 8 02 XBF DV04A Voltage 4 Channel status Input range Average processing Average value WIOO 01 F MODO AXBF ADO4A Volt Current 4 2 AXBF DV044 Voltage 4 a Module Comment input Fiter Emergency Output Allocation Details Prnt POOOO 1101 01 0 Analog Input Module CHO Active 1101 01 1 Analog Input Module CH1 Active 101 01 2 Analog Input Module CHZ Active 101 02 Analog Input Module CHO Output 01 03 Analog Input Module Output 1101 04 Analog Input Module CH Output 11071 04 Analog Input Module CH Output 3000
139. ble Comment ji Project Edit Find Heplace View Online Monitor Debug Tools Window Help gt Bm x TEETER Cut 6 a Ctrl C Project Windo Delete Del 5 8 select All gre Insert Line Delete Line Ctrl D Export Variables to File Remser Dede Chap 6 Analog Combo Module d Click Yes o Automatically register comments in the U Devices according to the special module set in the parameter 2 The previous commient will be deleted Continue e Variables are registered as shown below view Device vewn Comment 1 1 01 ERR BIT UOT 00 0 m Analog Module Module Error UO1 00 Analog 10 Module Module Ready 9 01 00 01 0 Analog Module Input CHO Active 4 Ul ADT ACT BIT UD O11 Analog Module Input Active 5 01 DAD ACT BIT 01 Analog Module Output CHO Active 01 ACT BIT 01 01 53 ia Analog Module Output Active mo t ADO 100 BIT 1 4 Analog Module Input CHO Disconnection Flag DI ADI 100 BIT Unt 01 5 Analog Module Input Disconnection Flag 9 ERR 01 01 8 E Analog 10 Module Input CHO Error 01 01 01 9 Analog Module Input Error 11 Ul DAD ERR BIT A
140. ce View Online Monitor Debug Tools Window Help gt 22 me B of TY V View Variable Device View Fiag Varabe Y Device Project Windows tems 8 Example XGB E mm me Comment XG5000 Automatically register comments in the U Devices according to the special module set in the I O parameter 4 The previous comment will be deleted Continue Variable Comment NewProgram 4 Result Check Program Find 1 Find 2 Communicat ion Cross Reference Us NewPLC Offline Edit DURER View Online Monitor m Tools Window Help a amp a c BH 2 BOE BED BARES EEEn wa V View 5 view Device ew Flag 01 CHO ADJE 1 M n BIT 001001 01 2 ADJE BIT _ _01_CH3 ADJE B _O1_EEPROME 01 ERR BT u 01 ACT 01 CHI ACT _ 01 011 _01_ 2 1001012 01 CH3 ACT 01 CHO BOUT BIT 01 CH1 BOUT 01 2 TT Example XGB MewPLC XGB XBMS Dffline F Variable Comment 59 Parameter 0 qp Basic Parameter E Parameter 85 11 Embedded Parameter Scan Program NewProgram UD1003 8101 00 D 901 002 01 01 0 001 014 00101500 1001 016 001 018 1001 019 101002 Ter 001 00 4 T U01013 Tem 0
141. ch and O 10V 2 5 mV Voltage Current parameter setting input j 20mA 2 External DC24V used 5 0 pA 20mA Voltage output XBF DV04A 0 10V 1 External DC24V used 0 20mA 2 Designates output in case of Error and CPU Current output 4 4 5 0 uA E 20mA H STOP XBF RDOAA PT100 1 External DC24V used RTD input 0 1C 2 Filter function Thermocouple XBF 1 External DC24V used K J T R Note1 Input module 045 2 filter process average process 4 20mA 1 Range selection by external switch and 0 20 9 0 parameter setting Analog combo 2 input 1 5V 2 Filter function averaging function V voltage current 2 output E 5V veo 3 Specifies output when error or CPU STOP 10V ETA 5 mV asw 4 Uses external DC24V Note1 for more detail refer to Ch 5 2 6 accuracy resolution Note2 To use analog combo module the following version of basic unit is necessary XGB S type XGB H type XGB IEC type Chapter 1 General 1 2 Specification of Analog Module Here describes about specification of analog module of XGB series 1 2 1 Analog input 04 Analog input DC 4 20mA range B nn g DC 0 10V DC 0 20mA Input resistance 1 min Input resistance 250 Type 12 bit binary data Unsigned 0 4000 value Digital output Signed value 2000 2000 Range Precise value 0 1000 400 2000 0 2000 Percentile value
142. characteristics table displays resistance value of the sensor to temperature namely the change of the resistance value per increment of 1 When the temperature is changed by 1 the change of resistance is not in constant width but in different width per section which is called the non linear characteristics Chapter 4 RTD Input Module 4 5 Conversion Speed The conversion speed of XGF RD4A is 40 ms per channel and each channel is converted sequentially that is one channel is converted and then the next channel is converted Run stop can be specified independently for each channel The conversion speed includes the time to convert input temperature resistance value to digital value and to save the converted digital data into the internal memory Processing time 40ms X Number of the using channels Example 3 channels are used Processing time 40ms X 3 120ms The accuracy of RTD module is described below e When the ambient temperature is 25 5 within 0 3 of available input range e When the ambient temperature is 0 to 55 within 0 596 of available input range Example PT100 is used and the ambient temperature is normal To measure 100 the conversion data output range 100 C 600 200 x0 3 100 600 200 x 0 3 96 Namely 97 6 102 4 C 4 7 Temperature Displa 1 The input temperature is converted to digital value down to the one decimal place Ex If the detected te
143. checked through XG5000 system monitoring function 1 Execution sequence Two routes are available for the execution 1 Monitor gt System Monitoring gt And on the module screen click the right mouse button to display Module Information 2 Monitor gt System Monitoring gt And Double click the module screen 2 Module information 1 Module type shows the information of the module presently installed 2 Module information shows the OS version information of A D conversion module 3 O S version shows the OS prepared date of A D conversion module 4 Module status shows the present error code Refer to 7 1 for detailed error codes Module Info XBF ADO4A Volt X Module Mame 4 4 Molt Curent 4 5 Ver Ver 1 10 05 Update Date 2008 56 25 Module Status 0 Chapter 3 Analog Output Module Chapter 3 Analog Output Module 3 1 Setting Sequence before Operation Before using the analog output module follow steps below XBF DV04A 4 Checking performance specification Specification Operating environment Digital input range Analog output range System configuration and selection system configuration e Max No equip able Selecting the external power Wiring external DC24V Analog output wiring Checking analog output data e Analog output test XG5000 special module
144. ck the right mouse button to display Module Information b Monitor gt System Monitoring gt And Double click the module screen 2 Module information a Module type shows the information of the module presently installed b Module information shows the O S version information of module c O S version shows the O S prepared date of module d Module status shows the present error code Chapter 5 Thermocouple Input Module Chapter 5 Thermocouple Input Module Here describes specification handling programming of XGB thermocouple input module XBF 045 Thermocouple input module is used to convert the temperature data detected from thermocouple to signed 16 bit data 5 1 1 Characteristic 1 Module selection according to purpose 045 4 channel input Insulation between channels by photo moth relay 2 Four kinds of thermocouple available K J T R Available to select the different thermocouple according to each channel 3 Disconnection detection If thermocouple is disconnected it is detected and indicated 4 Celsius C Fahrenheit F type available Temperature conversion data of Celsius C Fahrenheit F is indicated down to one decimal place 5 Temperature data scaling function Available to use it as additional data than temperature indication Scaling conversion of temperature data is available within 32 768 32 767 0 65 535 6 Various additional funct
145. ckers RUN LED flickers RUN LED flickers every 0 2 sec Contact the nearest agency or LS branch office 4 17 2 RUN LED is off RUN LED is off RTD input module is installed on the base correctly I O information can be seen at the XG5000 Correctly install A D conversion module on base Contact the nearest agency or LS branch office Normally operated if RTD input module with error is changed to another module Contact the nearest agency LS branch office 4 28 Chapter 4 RTD Input Module 4 17 3 ALM Alarm LED flickers ALM LED flickers 3 wired wiring is normal Wire properly referring to 4 10 Wiring to sensor is normal Wire properly referring to 4 10 Contact the nearest agency or A S center 4 17 4 Temperature conversion value is not normal Temperature conversion value is not normal External DC 24V input power is normal Supply external power DC 24V FG ground is normal Execute FG ground properly referring to 4 10 Contact the nearest agency or A S center Chapter 4 RTD Input Module 4 17 5 Stats check of RTD input module through XG5000 system monitor Module type module information O S version and module status of RID input module can be checked through XG5000 system monitoring function 1 Execution sequence Two routes are available for the execution a Monitor gt System Monitoring gt And on the module screen cli
146. compensation ENABLE DISABLE can be specified Temp Measuring Module Command XBF TCO4S TC 4 CH Channel status Channel status Stop Stop Monitoring screen 5 DISABLE Active ENABLE ENABLE DISABLE DISABLE Max Min active Active ENABLE ENABLE Flag command screen 8 Close Close is used to escape from the monitoring test screen When the monitoring test screen is closed the max value the min value and the present value will not be saved any more Remark Test function is only available when XGB CPU unit s status is in Stop Chapter 5 Thermocouple Input Module 5 5 3 Register U devices Special module variable Register the variables for each module referring to the special module information that is set in the parameter The user can modify the variables and comments 1 Procedure a Select the special module type in the Parameter Setting window Parameter Setting Module list amp Base 00 Defaut Comment Input Fiter Emergency Qui Allocation DC 24V INPUT TR C i DC 24 INPUT TR O 3 Standard ms Default 00000 POOOSF ABF TCO4S 4C 045 TC 4 00040 Delete Slot Delete Base Base Setting Delete All Details Pant OK Cancel b Double click Variable Comment from the project window XG5000 NewProgram Pr
147. constant if the relevant parameter is selected available range is displayed in the bottom XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH Disable Disable Disable Disable K K K Celsius Celsius Celsius Celsius p 0 0 0 Sampling Sampling Sampling Sampling 0 0 0 0 Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 2 If the number is out of range error message is displayed If error information shows it returns to previous status Set again XBF TCO04S 4 CH 045 4 Channel status Disable k na Sampling 0 Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 Chapter 5 Thermocouple Input Module 3 If the wrong number is specified it is displayed with red color When Average value or scaling min max value is out of range XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH Disable Disable Disable Disable K K K Celsius Celsius Celsius Celsius Time Avr Sampling Sampling Sampling 0 o Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 ares 5 5 2 Special module monitoring function While XG5000 is connected with PLC through Monitor gt Special Module Monitoring the user can test the operation of the analog output module Remark 1 If system resource is short the screen may not be displayed properly In case of this shut down other applicatio
148. control 1 3 Operand M and S mean master loop and slave loop respecively and available only for constant 0 15 f start junction is on cascade control is executed through master loop and slave loop In case of IEC type PIDCAS function block is used for cascade control P IDs HEU MST STAT STAT aLvV EF SLY STAT STAT Cascade control is called a control method which is intended to increase control stability through quick removal of disturbance by connecting two PID control loops in series and is structured as follows hat water Hot water outlet outlet Master Loap Master Loop Controller Slave Loop Controller Steam Valve Steam Valve Figure 7 13 Comparison of single loop control and cascade control Looking at the figure it is found that cascade control contains slave loop control within external control loop That is the control output of external loop PID control is entered as SV of the internal loop control Therefore if steam valve suffers from disturbance in the figure single loop PID control may not be modified until PV y s appears while cascade control is structured to remove any disturbance by the internal PID loop control before any disturbance that occurs in its internal loop affects the PV y s so it can early remove the influence from disturbance XGB internal PID control connects two PID control loops each other making cascade control possible At the moment
149. crews get tighten securely under vibrating environments Fail to do so will put the product under direct vibrations which will cause electric shock fire and abnormal operation Do not come in contact with conducting parts in each module which may cause electric shock malfunctions or abnormal operation Safety Instructions Safety Instructions for wiring process Prior to wiring works make sure that every power is turned off If not electric shock or damage on the product may be caused After wiring process is done make sure that terminal covers are installed properly before its use Fail to install the cover may cause electric shocks Check rated voltages and terminal arrangements in each product prior to its wiring process Applying incorrect voltages other than rated voltages and misarrangement among terminals may cause fire or malfunctions Secure terminal screws tightly applying with specified torque If the screws get loose short circuit fire or abnormal operation may be caused Securing screws too tightly will cause damages to the module or malfunctions short circuit and dropping Be sure to earth to the ground using Class 3 wires for FG terminals which is exclusively used for PLC If the terminals not grounded correctly abnormal operation or electric shock may be caused Don t let any foreign materials such as wiring waste inside the module while wiring which may cause fire damage on the product or ab
150. ction Thermocouple input module has a function to detect the disconnection and display it That the module detects and displays disconnection means that the following cabling path would have partially bad connection which requires taking measures 1 Disconnection occurs between a sensor used compensating cable and module LED ALM flickers every second and generates error code 2 Disconnection can be detected by channels However it is available for the only channel s designated for operation LED ALM is commonly used for every channel It flickers in case even only one channel is disconnected Thermocouple connection ALM LED Disconnection status status ome T a Thermocouple 1 disconnection Stop 3 In case disconnection occurs disconnection flag of each channel will be turned on and in case disconnection is canceled it will be turned off Normal Disconnection flag Contents UOx 01 4 Ch 0 disconnection U0x 01 5 Ch 1 disconnection U0x 01 6 Ch 2 disconnection UOx 01 7 Ch 3 disconnection 4 When disconnection occurs the min value among range is displayed K type 270 0 C J type 210 0 C T type 270 0 R type Chapter 5 Thermocouple Input Module 5 3 2 Scaling function Thermocouple input module has a function to scale value in user defined range besides temperature display The scope is classified into two types 16 bits data type 32768 32767 and 16 bit
151. ction Section Section Setting Range 2 64000 Cycle For cycle averaging averaging interval is calculated with the No of channels used Averaginghterval ms AveragingGyclex No of ChannelsUsed x Ims Chap 6 Analog Combo Module 3 Moving Average The inputs into the designated channel are accumulated for the presser number and its average is calculated and outputted in digital data However in moving average method each scan provides its average value DO CO 47 32 4 9 4 5 LE mM MI Averaging No Averaging No 2 4 3 4 4 9 Averaging No Channel Scanning Intervals ms Cn Used 1 In case of time cycle averages The input value is not outputted at every conversion but the previous value is maintained until the average time or cycle is reached 2 In case of moving averages the converted input is averaged with the previously entered value and the result is outputted at every conversion Therefore data response is faster than time cycle averaging methods 3 The three averaging methods can be processed simultaneously with the filter function described earlier In such case the filter function is executed first and averaging function is processed to output the average value in digital data which is expressed with the finally processed value Chap 6 Analog Combo Module 6 6 4 Line Open Detection Function The analog mix module has a
152. e 07 Default 4 4 CH H XBF RDO1A 1 Communication Module List 6 After the module selected click Details or double click relevant slot Base 00 Default 00 Default B 01 XBF RDO4A RTD 4 02 Default 03 Default 04 Default 05 Default ez 06 Default 07 Default Sit Commen Fiter XBF ADO4A ATD 4 00040 POOO7F Delete Slot Delete Base Delete Al Dess OK ce 7 Ascreen will be displayed to specify parameters for respective channels as shown below Click a desired item to display parameters to set for respective items i 1 0 Parameter Setting 3 xl Base 00 Defaut Atocaton 00 Default XBF RDO4A RTD 4 us 8 01 XBF RD044 00040 gt 0007 _ 2 Deft Disable Disable Disable 05 E 100 100 06 Default Celsius Celsius Celsius Celsius 07 Default 0 0 0 0 Disable Disable Disable Delete Slot Delete Base Delete AI 8 The initial values of respective items are as follows a Channel status setting screen 1 XBF RD04A RTD 4 CH Channel status Disable Disable Disable Sensor type Disable PT100 PT100 PT100 Celsius Celsius Celsius Disable Disable Disab
153. e Close The screen executing Start Monitoring e Test this function is used to change the current parameter settings of the analog mix module Click the settings in the fields in the bottom screen to change the parameters Test can be set up only when the operation status of the XGB base unit is STOP Special Module Monitor 70 2 2 Max Min value CHO value CH1 A D value CHO Digital value CH1 Digital value Setting Value Current Value Enable Enable Input range 47 20m 4720 4 7400 400 i Sampling Sampling o i Seting ake 120m 074000 074000 Former value Former value Disable Disable Reset max min value Stop Monitoring The screen executing Test Chap 6 Analog Combo Module f Minimum Maximum Value Monitoring The minimum and maximum values of the input channels in operation can be monitored However the Max Min values in the window are based on the current value Therefore the Max Min values are not saved when exiting from the Monitoring Testing Screen Special Module Monitor 120 272 Max Min value Curent value 0 0 Monitors Max Min value 0 0 Seng vali CHO Digital value CH1 Digital value 22 dmpultem Setting Value Current Value Disable Disable 4720m 8200 04000 04000 Sampling Sampling Disable Disable 420
154. e 7 9 Ziegler amp Nichols tuning table to specify the PID coefficient This Relay tuning is relatively simple to configure and easy to know the boundary gain and period so it is used frequently and XGB built in PID auto tuning uses this method Proportional gain Differential Kp time Td m 95K RH we ee lt Table 7 9 Ziegler amp Nichols tuning table gt Chapter 7 PID Function Built in function 7 4 2 PID Auto Tuning function specifications The specifications of the XGB series built in PID auto tuning function are summarized as in Table _ Normal error flag off Error indication Error error flag off error code occurs Control cycle 100 65 536 0 1msUnit Additional PWM output Supportable Table 7 10 Spec of built in PID auto tuning function 7 4 3 Auto tuning parameter setting To use the XGB series auto tuning function it is necessary to start it by using a command after setting auto tuning parameters by loops in the parameter window It explains the parameters to use auto tuning function and how to set them 1 Auto tuning parameter setting To set the parameters of XGB series auto tuning function follow the steps a If selecting parameter in project window and the built in parameter it shows the built in parameter setting window as seen in below figure Project Window EE PID SETTING MewPLC GB XBMS ffline
155. e Former value Former value Delete Slot De Cancel Chapter 3 Analog Output Module 3 10 Special Module Monitoring Function You can start to test the analog output module connecting by Online gt Connect and then click Monitor gt Special Module Monitoring menu 55000 Remark 1 If the program is not displayed normally because of insufficient system resource you may start XG5000 again after close the program and other applications 2 I O parameters those are specified in the state of Special Module Monitoring menu are temporarily set up for the test They will be disappeared when the Special Module Monitoring is finished 3 Testing of Special Module Monitoring is the way to test the analog output module It can test the module without a sequence program 3 10 1 How to use special module monitoring Special module monitoring function is described below based on the analog voltage output module XGF 0 04 1 Start of Special Module Monitoring Go through Online gt Connect and Monitor gt Special module Monitoring to start If the status is not online Special Module Monitoring menu will not be activated XGS5000 NewProgram 5 Project Edit Find Replace View Online Monitor Debug Tools Window Help amp amp gt Start Stop Monitoring oo X 8 sev m un APH INE 4
156. e error fpg gt Read _Oy_RDY UOy 00 F 0 0 15 Module ready CPU _Oy_ADO_ACT UOy 01 0 0 0 16 Input Ch 0 operating Oy AD1 UOy 01 1 UX0 y 17 Input Ch 1 operating gt _Oy_DAO_ACT 00 01 2 0 0 18 Output Ch 0 operating CPU _Oy_DA1_ACT UOy 01 3 0 0 19 Output Ch 1 operating Input Ch 0 open wire 0 Oy ADO IDD ra UOy 01 4 J amp UXO y 20 Jetected Read AERA Input Ch 1 open wire CPU 0 _Oy_AD1_IDD UOy 01 5 oUXO y 21 detected ChOerror ME CPU Input Ch 0 converted 0 _Oy_ADO DATA WORD 00 04 oUWO y 4 gale Read Input 1 converted AHO4A 0 _Oy_AD1_DATA WORD U0y 05 oUWO y 5 Read _Oy_DAO_OUTEN Udy 06 0 0 0 96 Ch 0 output state setting _Oy_DA1_OUTEN UOy 06 1 0 0 97 Ch 1 output state setting CPU _ DATA WORD UOy 07 YUWO y 7 Output Ch 0 input value _ DA1 DATA WORD U0y 08 ZUWO y 8 Output Ch 1 input value BE U In the device allocation the small letter y is the No of the slot where the module is installed For example to read the Input Ch 1 Converted Value of the analog mix module installed in the 4 slot write 004 05 0 4 5 for IEC types Word classifier Base No 04 05 0 0 4 5 Device t Word Device Type 4 adu S or type IEC type To read the Output Ch 1 Output Status Setting of the analog mix module installed in
157. e next PID control cycle 1 PIDxx_SV PID xx Loop SV setting _PIDxx_SV _ PID xx Loop SV setting 1216 16 KW1216 16 xx 32 68 32 767 It sets indicates the SV of PID control of xx th loop For more information about SV refer to 7 2 3 PID control parameter setting The available scope is between 32 768 32 767 2 PIDxx s PID xx Loop operation cycle PIDxx T s 1217 16 KW1217 16 xx WORD 100 65 535 PID xx Loop operation cycle sets indicates the operation cycle of PID control of xx th loop For more information about operation cycle refer to 7 2 3 PID control parameter setting The available scope is between 100 65 535 3 PIDxx PID xx Loop proportional constant 1218 16 KD609 20 xx REAL PID xx Loop proportional constant sets indicates the proportional constant of PID control of th loop For more information about proportional constant refer to 7 2 3 PID Control Parameter Setting The available scope is real number 3 40282347e 38 1 17549435e 38 0 1 17549435e 38 3 40282347 38 If it is however set as 0 and lower the PID control of a loop generates an error and does not Work 4 PIDxx T i PID xx Loop Integral time T K1220 16 xx KD610 20 xx REAL Real number PID xx Loop integral time It sets indicates integral time of PID control of xx th loop The available sc
158. ed as 004 03 in case of IEC 0 0 4 3 S or H type Base No IEC type Base No Word Sorter 104 0 8 0 4 3 Word Device Type Word Slot No Slot No In order to read Flag to detect CH4 disconnection of A D conversion module installed on Base No 0 Slot No 5 it shall be displayed as U05 10 4 or IEC type No Base No Word Sorter Bit Sorter 4 4 0 0 5 19 UO5 110 4 7 Device Type Bit Device Type Word Bit Slot No Slot No Chapter 2 Analog Input Module 1 Module Ready Error flag 00 00 x slot number UOx 00 F It will be ON when PLC CPU is powered or reset with A D conversion ready to process A D conversion b UOx 00 0 It is a flag to display the error status of A D conversion module 5 Bit14 Bit12 Bit9 Bits Bit Bits Bits EU lt Module READY Error status Bit On 1 normal Bit Off 0 error Bit On 1 error Bit Off 0 normal 2 Run channel flag UXY 01 X Base No Y Slot No The area where Run information of respective channels is saved XGB series base number is 0 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 2 B1 BO Y UWO x 1 Run channel information Bit ON 1 During Run Bit Off 0 Operation Stop 3 Digital output value UXY 02 UXY 09 X Base No Y Slot No a A D converted digital output
159. efault Default Default Default Default Chap 6 Analog Combo Module f The window below where parameters can be set up by channel appears Click the item to set up The parameters which can be set up appear by item 2 2 ABF AHUMA 170 222 CH 20 400 ran 5 ampling Sampling Disable Disable 120m 2008 Former value Former value 6 9 Special Module Monitor Function The functions of the special module monitor are as follows 1 Start up of Special Module Monitor Select Online gt Connect and Monitor gt Special Module Monitor to start up Special Module Monitor menu is enabled only in the Online condition AA XG5000 NewProgram Program 5 Project Edit Find Replace View Online Monitor Debug Tools Window Help q m Stop Monitoring i 21 Pause an 23 43 Pausing Conditions 2 Esc Project Window C3 Change Current Value Items System Monitoring Device Monitoring NewPLC xGB xECH Aun Warning Global Direct Variables TA Trend Monitorin G4 Parameter 9 Basic Parameter Parameter Custom Events Embedded Parameter E Data Traces Scan Program 5 NewProgram User Function Function Block User Data Type 1 The screen may not function properly if the system resources are not sufficient In this case close the
160. ent error Off U01 00 E module H W error Off 01 00 running On c If MOOOO is on temp conversion value of CHO moves to 00000 Current temp conversion value 278 27 8 C2 is saving 001 04 d If disconnection error occurs at CHO U01 01 4 CHO disconnection is and M0001 bit is set e If MOOOO is on setting error address 27 of CHO moves to D0001 Since setting error address 27 of CHO is 0 there is no setting error 5 49 Chapter 5 Thermocouple Input Module 2 Program example in case of IEC type ar ASS PUT _WORD scan start BET MORBI DUHE BASE STAT 1 CHOEr ror In 1 SLOT ej 1 R 1 156 SUK0 1 0 0U80 1 14 0 1 16 0 1 24 start E Temp Temp Temp Temp Temp Measuring Measuring Measuring Measuring Measuring Module Module Module Module Module Module CHO Module CHO CHO Ready Of f set Gai Error Running Setting Error Error start CHOTempUat 1 4 Temp Measuring Madule CHO Temp Value EHUD sconn ectionErra 1 20 PAA Temp Measuring Module CHO Input Disconnect ion a Writes 1 at address 0 of slot 1 and operates CH 0 by using PUT WORD function block If operation start bit is on reads CH 0 setting error address 27 and movies it into 00001 c If module is running normally operation start bit is on UX0 1 15 module Ready
161. er 4 RTD Input Module 4 10 3 4 wired sensor is used connection terminal unit is used Terminal block 1 If sensor and compensating wire are shielded shield line can be connected to FG terminal of the module 2 DC 24V external supply terminal to supply the analog power to module Chapter 4 RTD Input Module 4 11 Filtering Function Based on the filter value time constant which defines the temperature converted value of the specified channel it performs and outputs calculation as below Previously filtered temp x Filter value Presently input temp x40 x Channels used Filtered temperature Filter value 40 x Channels used Filtered Temperature Actual temperature Time ms 4 4 Filtering Constant ms Filtering constant setting range 160 64000 ms Chapter 4 RTD Input Module 4 12 Operation Parameter Setting Operation parameters of RTD module can be specified through I O parameters of XG5000 4 12 1 Setting items For the user s convenience XG5000 provides GUI Graphical User Interface for parameters setting of module Setting items available through I O parameters of the XG5000 project window are described below 1 Specify the following setting items necessary for the module operation Channel Run Stop Sensor type Parameter Filter setting Scaling setting 2 The data specified by
162. er 7 PID Function Built in function 7 2 3 PID control parameter setting To use the built in PID control function of XGB series it is necessary to set PID control parameters by loops in the parameter window and operate it though the commands Here it explains parameters to use PID control functions and how to set them 1 PID parameter settings Follow the steps below to set the PID control function parameters of XGB series a If selecting the built in parameters in Parameter of the project window it shows the built in parameter setting window as in below figure Project Window x rp PID SETTIMG Eg MewPLE XGB XBMS Offline Wanable Comment Parameter Basic Parameters Fe 120 Parameters E Taf Internal Parameters ew fai High Speed Counter 1 Position Ep PID Scan Program NewProgram lt Figure 7 7 Parameters setting window gt b If selecting PID Control it shows the PID control parameter setting window as in below figure Embedded Loop Auto Opr Auto Opr Auto Opr E P ds lt lt T a MOM RERO ee pasan p E ce Bib Enable Fw T tem EARNER las po MA E MA MUN ae ia ui IAM c EE p vete Ta Ei uen dmm MA 3 HANE UN e
163. ers E Parameters 89 1 Internal Device Efl Scan Program NewProgram c Select Edit gt Register U Device In case of IEC select Edit gt Register special module variable XG5000 Variable Comment Project Edit Eind Replace View Online Monitor Debug Tools Window Help ES unde Uc BD 2G Rex CKAY ae Cy cx PF id gt P Delete V View Variable Device S view 2 58 Sam See EE Insert Line Ctrl L EBX DeleteLine Ctrl D E L Export to File Register U Device Internal Device Chapter 3 Analog Output Module d Click Yes 5000 Variable Comment E Project Edit Find Replace View Online Monitor Debug Tools Window Help Dum Ee gt MARE eo ORC uis B ie m Em a oo RP s mh iS m S View Variable 5 view Device 8 view Flay Ela Sample El NewPLC lt GB ABMS Off ete p Variable Comrnent xG5000 B E Parameter p Bl Basic Parameters 7 Automatically register comments in the U Devices according to the special module set in the parameter fe 9 Parameters The previous comment will be deleted E Internal
164. example with PUT GET instruction Internal memory address Data No to write Module ready Slot No Data Run channel 0 1 2 3 The range of output 0 10 Input data type Q 4000 CHO output status previous value output status min value CH2 output status mid value CHS output status max value Enable run all channels 1 Write a dital input at CHO 001 01 0 Write dital input at CH U01 01 1 2000 01 04 01 01 2 3000 01 05 UO1 01 3 I MN UN O6 dital input Write a dital input at CH2 Run information Digital input data 3 Program example using parameter in case of IEC type CHE 00 5 D1 CHI 00 TEN 3 01 CH2 00 TEN 5 _01_CH3_0U TEN 5 D1 CHI AE T CHI AC D 1000 2000 AE AC 2 D 3000 4000 Chapter 3 Analog Output Module 4 Program example using PUT GET instruction in case of IEC type 7 7 7 01 RDN PUT WORD PUT_WORD PUT _WORD 0 0 0 B sE STAT 1 1 1 SLOT 1 2 16 000f 0 0 INST IMTS PUT_WORD PUT WORD DUME 0 0 0 BASE STAT 1 1 1 d 4 5 0 1 2 PUT WORD 0 1 J _O1_CHO_OU _O1_CHI_OU _01_CHe_OU 3 _01_CH5_
165. f differential operation 0 65 535 20 PWM junction Set the junction to which PWM output is out 0 0 0 0 0 31 PWM output cycle Set the output cycle of PWM output 100 65 535 Set value ramp Set the frequency of set value ramp 0 65 535 Present value follow Set the follow up frequency of the present value 0 65 535 follow up function Min present value Set the min value of the input present value 32 68 32 767 Max present value Set the max value of input present value 32 68 32 767 lt Table 7 7 PID function parameter setting items gt Chapter 7 PID Function Built in function 2 Description of Setting of PID Parameters a Operation mode It is the mode to set the operation for PID control of a loop in question The available scope is automatic operation or manual operation If automatic operation is selected it outputs the PID control result internally operated by input PID control parameter as the maneuver value while if manual operation is selected it outputs the value input to the manual maneuver value parameter without PID operation modified The default is automatic operation b Operation direction It is designed to set the operation direction for PID control of a loop in question The available scope is forward or reverse direction At the moment forward direction means increase of PV when MV increases reverse direction means decrease PV when MV increases
166. follows 5 Parameter Setting Module list Base 00 Defaut UO Default 01 Default Digital Module List Default Special Module List Default Al Analog Input Module Al Analog Output Module Al Temp Measuring Module E BF RDD4A 4 Al BF ADO1A 1 045 4 H E Communication Module List Default 07 Default 1 3 5 Default 4 5 Delete Slot De etails Print OK Cancel e Select a module registered and click Details or double click a module Parameter Setting Madule list 5 Base 00 Defaut xg 00 Default 01 XBF TCO4S TC 4 45 4 CH POOO40 POOO F xg U2 Default 03 Default xg 4 Default 05 Default 06 Default 07 Default Delete Slot Delete Base Hase Setting Delete All Details Pint OK Cancel ok Chapter 5 Thermocouple Input Module f Select the required settings in Parameter Settings and click OK i Parameter Setting Module list amp Base 00 Default XBF TCO4S 4 CH 00 Default 8 01 4 XBF TCO4S 4 02 Deft i Default Disable Disable Disable pite Ar K 06 Default Celsius Celsius Celsius Celsius 07 Defaut Sampling Sampling Sampling Sampling o Bipolar Bipolar Bipol
167. funcion block is used SLUT HotUsed Parameter 7 32 Chapter 7 PID Function Built in function 7 4 PID Auto tuning 7 4 1 Basic theory of PID auto tuning describes the function of PID auto tuning The performance of PID controller is very different according to P D coefficient Generally It is very difficult and takes long time to predict the system and set 1 D coefficient because of non periodical disturbance interference of other control loop dynamic characteristic of control system though the engineer is good at handling the PID controller So auto tuning that sets the PID coefficient automatically is very useful Generally there are many methods in setting the PID coefficient Here it will describe Relay Auto tuning 1 PID coefficient setting by Relay auto tuning It makes critical oscillation by force and uses the width and period of oscillation to specify the PID coefficient It applies max output and min output to control system for auto tuning Then oscillation with steady period and steady width occurs around the Set value like figure 6 15 and it can calculate the boundary gain by using it like expression 7 3 1 Max output Set value Min output lt Figure 7 15 Relay auto tuning gt 4 Max output Min output 7 3 1 z x width At this time oscillation period is called boundary period If boundary gain and period is specified use tabl
168. g examples 1 Example of voltage wiring n case of voltage current input wiring is same Adjust the voltage current setting switch according to the case A BF ADUAA RUM pes ia he DC24V DC24V DC power For analog supply Input resistance of current input circuit is 250 typ b Input resistance of voltage input circuit is 1 MO min c Enable the necessary channel only d Analog input module doesn t support power for input device Use the external power supplier Chapter 2 Analog Input Module 2 Wiring example of 2 Wire sensor transmitter current input In case of voltage current input wiring is same Adjust the voltage current setting switch according to the case 2 Wire So j 3 Tansmitter dg m D us fg om Transmitter 2 Wire D Transmitter DC power for analog supply N J a Input resistance of current input circuit is 250 Q typ b Input resistance of voltage input circuit is 1 MQ min c Enable the necessary channel only 5 e Wire ara Transmitter E DC24V A BF ADUAA RUN CHO CH1 ale CH1 E CH2 CH2 CH2 3E CH3 CH3 B i d Analog input module doesn t support power for input device Use the external power supplier Chapter 2 Analog Input Module 3 Wi
169. ge DC 0 10 V Digital output range 0 4000 e If analog input value changes 0 V gt 10 V 0 4000 filter output value based on a value is as specified below avalue Filter output value a value 2 scan 001 o 3600 3960 3997 1 inclined toward previous value 2257 80 o 7 2850 50 inclined toward previous value Sow o 4 1 4000 output after about 4 scans 99 inclined toward previous value 2 4000 output after about 18 scans 3 4000 output after about 950 scans 1 19 s for 1 channel Run If filter process function is not used present A D converted value will be output as it is The filter process function takes value added data between Present A D converted value and Previous A D converted value And the value added data can be decided with filter constant If output data shakes too much set a big filter constant value 3 Average processing This process is used to execute A D conversion of the channel designated for specified frequency or for specified time and save the average of the accumulated sum on memory Average processing option and time frequency value can be defined through user program or parameters setting for respective channels a What is the average process used for This process is used for A D conversion of abnormal analog input signal such as noise to a value near to normal analog input signal b Average processing type Average processing type is of ti
170. h memory by using WRT command In case of IEC APM_WRT 1 PID Flag Configuration K area flags for XGB series built in PID control function are summarized in the below table K12000 F KX19200 15 PID designation 0 auto K12010 F 19216 31 PAUSE PID pause 0 RUN 1 pause K12020 F KX19232 47 PID REV onard 2 1 reverse operation control K12030 F KX19248 63 AW2D Bi prevention O enabled 1 disabled K12040 F KX19264 79 PID REM RUN Disabled 5 Sper avon abieg common 1205 1207 K1205 K1207 K1207 KW1205 KW1207 Reewed WORD Reserved area K12080 F KX19328 43 _PID PWM Disabled PWM output enable 0 disabled 1 enabled K12090 F KX19344 59 PID STD indication 0 stop K12100 F KX19360 75 15 PIDALARM _ ALARM Bt PID warning O normal 1 warning KT MN NET NENNEN TN E em wwen purs woro Po oman 5 REAL coat REA won pers Posee _ wms Teow oaro _ um _ xum wr _ lt Table 7 8 area flags for PID control gt 7 18 Chapter 7 PID Function Built in function K1230 KW
171. han rated current of output module nor allow to have a short circuit Over current for a long period time may cause a fire ww Never let the external power of the output circuit to be on earlier than PLC power which may cause accidents from abnormal output or operation Please install interlock circuits in the sequence program for safe operations in the system when exchange data with PLC or modify operation modes using a computer or other external equipments Head specific instructions thoroughly when conducting control operations with PLC Safety Instructions Safety Instructions for design process I O signal or communication line shall be wired at least 100mm away from a high voltage cable or power line Fail to follow this instruction may cause malfunctions from noise Safety Instructions on installation process Use PLC only in the environment specified in PLC manual or general standard of data sheet If not electric shock fire abnormal operation of the product may be caused Before install or remove the module be sure PLC power is off not electric shock or damage on the product may be caused Be sure that every module is securely attached after adding a module or an extension connector the product is installed loosely or incorrectly abnormal operation error or dropping may be caused In addition contact failures under poor cable installation will be causing malfunctions as well Be sure that s
172. hannels are Run status XBF RDO4A RTD 4 CH em Disable PT100 Celsius 0 Disable Disable PT100 Celsius 0 Start Monitoring execution screen e Test Test is used to change the parameters of the RTD input module You can change the parameters when you click the values at the bottom of the screen It is only available when XGB CPU unit s status is in Stop Special Module z XBF RDO4A RTD 4 CH tem Curent vate Disable Disable 100 100 Celsius Celsius 00000000 Disable Disable Test execution screen g Close Close is used to escape from the monitoring test screen When the monitoring test screen is closed the max value the min value and the present value will not be saved any more Test function is only available when XGB CPU unit s status is in Stop 4 17 Chapter 4 RTD Input Module 4 14 Register U devices Special module variable Register the variables for each module referring to the special module information that is set in the I O parameter The user can modify the variables and comments 1 Procedure a Select the special module type in the I O Parameter Setting window I O Parameter Setting xl Base 00 Default 00 DC 24V INPUT TR 01 XBF RDO4A RTD 4 Input Filter
173. hoot is larger Generally as integral time increases overshoot decrease About this refer to the figure 7 5 Temp Comparison of P control and control 40 30 4 P control 20 1 Fr te ty ty E c yy gy 27 Time s 1 2 J 4 H b i B lt Figure 7 4 Temp time graph gt Chapter 7 PID Function Built in function Temp C Response according to Ti lt Figure 7 5 overshoot according to integral time gt f Like this if control is used overshoot is larger According to system large overshoot can be problem In order to solve this PID control is used 5 Proportional integral derivative control PID control In D control when status of system changes rapidly D control yields the output to reduce the error Namely D control yields the output proportional to change velocity of current status So if D control is used response speed of controller about status change of system increases and overshoot decreases Output of controller by D control is as shown in expression 7 2 11 dE a In the expression 7 2 11 Td means the time takes for MV output by control to be added into real output b Generally D control is not used solely but with PD control
174. input module can be set through I O Parameter of XG5000 1 Setting items For user convenience parameter setting of thermocouple input module is provided by GUI Graphical User Interface method in the XG5000 The items which can be set through I O Parameter in the project window are as follows Content a Sets the following items for operation of module 1 Channel status Disable Enable 2 Sensor status J T R 3 Filter constant O Parameter 4 Average processing Sampling Time Avr Count Avr Moving Avr 5 Scaling data type Bipolar Unipolar 6 Scaling min max value b The parameter set by the user is saved in the flash memory of XGB main unit after download 2 How to use I O Parameter a Execute the XG5000 and make the project For how to make the project refer to the XG5000 user manual b Double click I O Parameter on the project window Praject Window x Items 3 Example XGB El fay MewPLC XGB XBMS Offline rae Variable Comment B L Parameter Scan Program New Program Project Chapter 5 Thermocouple Input Module C If O Parameter Setting window shows find slot of base where module is installed and click it Parameter Setting Default Default Default Default Default Default Default Default Default Default Default d Register the module on a slot where module is installed on as
175. input o digital output see Diagnosis Chap 6 Analog Combo Module 6 2 Specification 6 2 1 General Specification This section describes general specifications of the analog mix module NT Applicable Working 0 55 C Temperature storage 25 70 Temperature 5 95 RH no condensate Humidity 4 Storage 5 95 RH no condensate Humidity Intermittent Vibration 10 lt f lt 57Hz lt f lt 57 2 Omm 57 Vibration E 9 8 19 ae IEC61131 2 Continuous Vibration 10 cycles 57 lt f e Max impact acceleration 147 m s 15G e Duration 11ms IEC61131 2 e Pulse Shape sinusoidal half wave pulse 3 cycles in X Y Z Rectangular LS Self Test Impulse Noise Standard Static Electricity 1 61131 2 Voltage 4kV contact discharge IEC61000 4 2 Impact Resistance Radiation Noise IEC61131 2 Resistance Electromagnetic 27 500 MHz 10V m 61000 4 3 Field Noise Classific Power Digital Analog Past Transient ation Module Communication Interface IEC61131 2 Burst Noise 61000 4 4 Voltage ze mum E 2 or less Chap 6 Analog Combo Module 6 2 2 Performance Specification This section specified the performance of analog mix module 1 Input Performance Specification Classification Input Performance Specification Tye 1 5 4 20mA 0 5V 0 20mA DC 0 10V Input resistance 250
176. integral term turns small enough Due to the operation the PV may have a large over shoot as seen in the figure Such a wind up phenomenon may occur if the initial drift is large or by a large disturbance or due to malfunction of a device The PID function of XGB series is basically with the integral accumulation prevention function cutting off any integral accumulation phenomenon In addition it can detect a time when SV is suddenly decreased providing a more strong dual integral accumulation prevention function Drive saturation Upper limit of drive output Target i value Integral accumulation phenomenon Time lt Figure 7 9 Integral accumulation phenomenon gt Chapter 7 PID Function Built in function d PWM Output Enabled PWM output means an output method to turn a junction on off with a duty proportional to control output calculated by a uniform output cycle If PWM output is enabled it realizes PWM output in accordance with PWM output cycle set in the parameter of PWM output junction P20 P3F designated in the parameter At the moment the PWM output cycle follows the PWM output cycle separately set in PID operation cycle figure shows the relation between PID control output and PWM output i e if PWM output cycle 1 second PWM output junction P20 max output 10000 min output 0 Output P40 junction operation 5000 0 5 sec On 0 5 sec Off 3000 0 3 sec On 0 7 sec Off MV 5000 MV 7000 5
177. ion 8 00 DC 24V INPUT TR DC 24v INPUT TR 3 Standard ms Default 00000 8 01 XBF TCO4S TC 4 046 4 CH 00040 0007 02 Default 03 Default 04 Default 05 Default 06 Default 07 Default XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH Enable Disable Disable K K K Celsius Celsius Celsius Celsius o o o Sampling Sampling Sampling Sampling o 0 o 0 Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 Scaling max value 32767 32767 32767 32767 2 Program example 8 d poy 01 CHO AD O1 WDT ER 01 AC _01 SE JERR R T TERR 0000 MOV 101 04 00000 01 01 4 dee ee ee _O1_CHO_BO END a If module is under normal operation 0000 is on U01 00 F module Ready On U01 00 0 CHO offset gain adjustment error Off U01 00 E module H W error Off U01 00 E CHO running On b If is on temp conversion value 001 04 of CHO moves to 00000 c disconnection error occurs at CHO U01 01 4 CHO disconnection is on and M0001 bit is set Chapter 5 Thermocouple Input Module 3 Program example in case of IEC type SUKO 1 15 UKO 1 0 0 1 14 0 1 16 0 1 24 start SSS Temp Temp Temp Temp Temp Measuring Measuring Measuring Measuring Measuring Module
178. ion Filter process Average process time count moving Max Min detection process 7 Parameter setting Monitoring by GUI Graphical user interface method It enhanced user friendly features by changing to parameter settings intensify user interface from parameter settings by previous instructions By Parameter the sequence program can be reduced and by Special Module Monitoring itis easy to monitor the temperature conversion value 5 1 2 Required version When making the system the version below is required Basic unit type Classification XGB basic unit Ver 1 8 or above S H type XG5000 Ver 2 2 or above XG5000 Ver 3 0 or above XGB basic unit IEC type Ver 1 0 or above IEC type Chapter 5 Thermocouple Input Module 5 1 3 Setting sequence before operation Before using the thermocouple input module follow steps below 045 Checking performance specification System configuration and selection Wiring Reading temp data Setting parameter o If there is error or thermocouple input data is abnormal refer to the trouble shooting Specification Operating environment Thermocouple sensor type and temperature range Digital output range System configuration Equip able number External power selection Wiring Power wiring External DC24V Thermocouple input wiring Thermocouple input test XG5000 special module monitor Para
179. itably use for a short time Appendix 2 3 Appendix 2 Thermo electromotive force and compensating force 2 2 2 Allowance by temperature 2 J 0 C lower than 750 C 2 5 C or 0 75 of temperature measured C lower than 350 0 5 C or 0 4 of temperature measured 0 C C 0 lower than 350 C 0 75 1 C or 0 75 of temperature measured 2 C 1 0 00 lower than 0 1 5 1 C or 1 5 of temperature measured o 0 lower than 1600 1 5 or 0 25 of temperature measured Remark Allowance refers to the allowable max limit subtracting the actual temperature of junction from the converted temperature based on thermo electromotive force table In addition the allowance will be bigger one of C or CA IC C Appendix 2 4 Appendix 2 Thermo electromotive force and compensating force 2 3 Compensating Cable 2 3 1 Type and specifications of compensating cable Type of compound Type of Materials compensating type Temp Electric Electric resistan Sectional ratio by ce of temp ceof Sheath oe range return colors jue C junction 9 cable cable point point C c 20 90 KX GS WCA GS ommon for Alloy of general use Alloy of nickel and Common for Se es thermocouple Operating Symbol Former symbol symbol Former symbol c lron copper 3 0
180. l As smaller differential value set as stronger differential operation is The available scope is between 0 65 535 and if it is set as 0 the differential filter does not work q Setting set value ramp Since the drift is suddenly large if SV is heavily changed during PID control MV is also changed heavily to correct it Such an operation may cause excessive operation of a system to control and a drive To prevent it SV ramp is used changing SV gradually step by step when modifying SV during operation If using the function SV is gradually changed by SV ramp when SV is changed during PID control At the moment SV ramp setting represents the frequency of PID operation cycle taken from when SV starts changing to when it reaches to the final SV For instance if SV is to be changed from 1000 to 2000 during operation as PID operation cycle is 10ms and its SV ramp is 500 SV may reach to 2000 after 500X10ms 5 seconds that is as it increases each 2 per operation cycle and after the 500th operation scans The available scope of setting is between 0 65 535 and it is set as O it does not work If SV Ramp is not used Modified SV SV Ramp is used SV operation cycle Existing SV Figure 7 12 SV Ramp function Chapter 7 PID Function Built in function r PV Follow up setting It is intended to prevent any excessive operation of a drive resulting from sudden change of output at the initial control and changes SV gradua
181. l P control In the proportional control the controller yields output that is proportional to error Manipulated value of controller by Proportional control is as follows a If P control starts output of controller by initial P operation is as follows 50 4 200 If P control is executed for 10 seconds output temperature will be as table 7 2 If this is expressed with graph it will be as figure 7 2 DT PE a CN lt Table 7 2 example of Proportional control gt i QI Chapter 7 PID Function Built in function Temp C Example of P control 80 70 evershoct a a MEG m Offset ___ _ AN Mur wm LVL SP ee ME Time 5 lt Figure 7 2 simulation of proportional control gt Concerning the result of simulation it has the maximum overshoot of about 23 4 at 0 625 and after 75 it converges at 48 49 with offset of 1 51 about 3 c Offset is an unavoidable error when only P control is executed Offset decreases proportional to P coefficient but overshoot increases proportional to P coefficient Table 6 3 and figure 6 3 is simulation of offset and overshoot according to P coefficient lt Table 7 3 Temperature time table according to P coefficient gt Chapter 7 PID Function Built in functio
182. l 0 temp conversion value word TC CPU On ready Off not ready TC CPU TC CPU TC CPU TC CPU Chapter 5 Thermocouple Input Module 2 Command sent from XGB main unit to module XGB PLC output area read write available 28065 Comment Content R W 1008 assignment direction B R W CH 0 max min searching U0x 29 0 Enable Disable CH 1 max min searching m Dp M UOx 29 2 CH 2 max min searching x 2 did Enable Disable disable CH 3 max min searching Rw U0x 29 8 CH 0 cold junction compensation EN CPUTC Enable Disable CH 1 cold junction compensation Cold junction ene zu Enable Disable compensation CH 2 cold junction compensation On enable CH 3 cold junction compensation x x means slot no where module is installed Ex U03 29 02 no 3 slot CH 2 max min searching Enable Disable bit Chapter 5 Thermocouple Input Module 3 Data sent from module to XGB main unit IEC type XGB PLC input area read only assignment direction UX0 x 0 CH 0 offset gain adjustment error Jo UXO x 1 BIT CH 1 offset gain adjustment error R JoUXO x 2 CH 2 offset gain adjustment error On error OR 0 0 3 CH 3 offset gain adjustment error Off normal JoUXO x 13 BIT Module offset gain backup error R Lo omnira R Channel running On run Off stop CH 3 running
183. l C m m Del View Variable 5 view Devi 55 Ban Select All E 5 Insert Line Ctrl Delete Line Ctrl D El Export Variables to File Most Recently Used Chapter 4 RTD Input Module d Click Yes E XG5000 Variable Comment B La gag 1 x D amp amp Hus D MABE mnm amp ims Project Window ax 5 9 Example XGB B NewPLC XGB XBMS Offine e As shown below the variables are registered Project Edit Find Replace View Online Monitor Debug Tools Window Help MARE i2 B m ES E UE BHAT Bas m a epo 51 99 Example XGB E NewPLC XGB XBMS Offline 11 BT 00 i Module i 2 Save variables a The contents of View Variable can be saved as a text file b Select Edit gt Export to File c The contents of View variable are saved as a text file Chapter 4 RTD Input Module 3 View variables a The example program of XG5000 is as shown below 102 00 102 01 0 e ae END b Select View gt Variables The devices are changed into variables MOY 3 V a DHT T
184. le 2 13 Example Program 2 13 1 Program to sort A D converted value in size 1 System configuration System information Assigns Information Fixed Location Comment fi Base 0 Main Base 8 Slots CPU XGB XBMS Standard Madule L O Maximum 1 024 Points 0 Slot 0 Intemal Cnet Intemal Cnet Module RS 232C R5 485 Slot 0 XBM 04325 0000 POO3F DC 24V Input Transistor Output 32 Contacts Slot 1 XBF_ADOAA 20040 POQ7F A D Voltage Input 4 Channels Slot 2 Empty slot 0080 PO11F Slot 3 Empty slot P0120 PMSF 4 Slot 4 Empty slot P0160 PMSF 5 Slot 5 Empty slot 0200 2 6 Slot 6 Empty slot 0240 PO27F 7 Slot 7 Empty slot 0280 2 Initial setting Internal memory The value to write in No ltem Details address internal memory _1 Channel Ch1 Ch2 0 0007 2 Inputvoltagerange O 10V 1 0000 3 Output data range T 4000 PD h0000 4 Fiterpoces 0 939 h0001 5 Ch0 filter constant 50 __ O 6 Average process Ch1 Ch2 722 06 Dg a method Time average Ch2 Frequency average value 100 times Time mo oe value 200 ms Average value 3 Program a If Ch 05 digital value is less than 3000 Contact No O P00080 of relay output module installed on Slot No 2 will be On b If CH 15 digital value is greater than 3200 Contact No 2 P00082 of rel
185. le Disable Chapter 4 RTD Input Module Input sensor type setting screen XBF RDO4A RTD 4 CH Disable Disable Disable Disable Sensor type PT100 PT100 PT100 IPOD 1 Celsius Celsius Celsus Fite constant KAALMA NN Disable Disable Disable Disable c Temp unit setting screen 4 RTD 4 Disable Disable Disable Disable PT100 PT100 PT100 PT100 Temp unit Celsius Celsius Celsius Celsius 0 0 0 Disable Disabe Lok Scaling setting screen 3 xl XBF RD04A RTD 4 CH Disable Disable Disable Disable PT100 PT100 PT100 100 Celsius Celius Celsius Celsius 00000 0 0 Scaling Disable Disable Disable Disable Disable 9 If necessary setting is complete press OK 10 Check the check box on the parameter menu to select and change setting of a channel then the setting value of all the channels will be identical to changed setting value The figure below shows an example with this function that channel status is changed to Enable of all the channels XBF RDO4A RTD 4 CH on Channel status Disable Disable Disable PTI00 100 Temp unit Enable Celsius Celsius Celsius Filter constant 0 0 0 Scaling Disable Disable Disable Chapter 4 RTD Input Module 4 13 Special Module Monitoring Run Special Module Monitoring by selecting On Line
186. less 2000 over o f ae 0 less 1000 over Value 0 1000 Chap 6 Analog Combo Module 3 DC 1 5V Range Output Digital Input V 1Vles 1 2 3 4 5 5Vover 2 Signed var 2000 2000 2000 less 2000 1000 NES 1000 dise Pow 4 DC 0 5V Range Output Digital Input Analog Output Voltage V Range eS ee 5 5V over Unsigned Value 9 less 1000 2000 3000 4000 4000 over 0 4000 signed Value less 2000 1000 1000 2000 2000 over 2000 2000 0 500 Percentile 0 less 1000 1000 over Value O 1000 5 DC 0 10V Range Output Digital Input Analog pue c Rage O0Vless 0 25 5 75 10 10 Unsigned Value 1000 2000 3000 4000 over 0 4000 Signed Value 2000 less 2000 1000 mE 1000 2000 over 2000 2000 om gt oe 0 1000 Percentile ieee 4000 over 0 1000 Chap 6 Analog Combo Module 6 5 Precision 6 5 1 Input Precision The precision of digital output is not dependent upon the input range The graph below shows the variation of precision when the analog input range is O 10 V for unsigned value for digital output The input precision of the XBF AHO4A is 0 5 2000 en eA indino 5V 10 V Analog input voltage 1 Precision at 5V input 4000 x 0 5 20 The
187. list dialog box The modules currently equipped at the PLC are displayed Special Module List Slot Intemal Module HSC Module Open Collector 4 Position Module Open Collector 2 CH Slot 1 045 TC 4 2 Clicking Module Info shows the information of special module Special Module Infomation Displays the informations of special module Information 045 4 Ver 1 0 2008 2 25 Normal 0 3 Clicking Monitor shows the following screen Special Module Monitor XBF TCO4S TC 4 CH Temperature value Temperature value Scaling value Min temp value Max temp value Monitor Channel Channel status Sensor type Scaling max value FLAG Monitor Sating vue Disable K Celsius 0 Sampling 0 Bipolar 32768 32767 Chapter 5 Thermocouple Input Module 4 Start Monitoring Start Monitoring button will show you digital input data of the operating channel The figure below is monitoring screen when all channels are Run status Special Module Monitor XBF TCO4S TC 4 CH Temperate ve uerus N Disable Enable K K Celsius Celsius i Sampling Sampling Bipolar Bipolar 32768 32768 32767 32767 Stop Monitoring Detail of channel 0 Start Monitoring execution screen 5 Test Test is used to change the parameters of
188. lization of measurement temperature warming up time more than 15 min is necessary after restart 2 If ambient temperature changes rapidly measurement temperature may change temporally Keep the ambient temperature steady for stabilization of measuring temperature 3 If wind of the cooling pan contacts with module directly in the panel accuracy decreases Do not contact with wind directly Chapter 5 Thermocouple Input Module 5 2 7 Conversion velocity 1 Conversion velocity per channel 50ms channel 2 Sequential process method The next channel is converted after conversion of one channel is completed Run Stop of the respective channels can be set independenily 3 Concept of conversion time The conversion velocity of XGF TC4S module is a cycle that the temperature electromotive force entered into terminal strip is converted into digital value and stored in internal memory Conversion time increase by a multiple of the no of used channels lt Conversion time 50ms X no of used channels Ex In case 3 channels is used conversion time 50ms X 3 150ms Conversion Conversion Channel O Channel 1 Conversion Repetition Channel 2 Conversion channel1 channel2 A Conversion Conversion ChannelO Conversion channel WV Conversion 50ms o0ms i 30ms 3 150ms Chapter 5 Thermocouple Input Module 5 3 Function 5 3 1 Disconnection detection fun
189. llution degree Less than 2 Cooling method Chapter 3 Analog Output Module 3 2 2 Performance specifications Here describes specification of analog output module Specification XBF DV04A 4 Voltage Analog output DC 0 40V DC 4 20mA Se Load resistance 2kO or more ee Load resistance 5100 or less Type 12 bit binary data Signed value 0 4000 0 4000 Digital Unsigned value 2000 2000 2000 2000 input Range 0 1000 400 2000 0 2000 Percentile value 0 1000 0 1000 Absolute maximum output DC 15V DC 25mA Photo coupler insulation between input terminal and PLC power Insulation method no insulation between Terminal connected 11 T point terminal block terminal block points occupied Fixed type 64 points Current Internal DC 5V 110mA 110mA gt External i TOMA 120 n DC 21 6 26 4V n 709 Weight Remark Offset and gain about analog output range have been set at the factory and the user can change them Chapter 3 Analog Output Module 3 3 Designations and Functions Here describes designation and functions No scription 3 RUN LED It displays the operation status of D A conversion module On Normal operation status Flickering Error occurred Off Power off or abnormal status of the module Analog output terminal Voltage Current is an output terminal to connect an analog
190. lly from PV at the time when PID operation starts not directly to SV in case control just turns from stop to operation mode or it changes from manual to automatic operation At the moment SV represents the frequency of PID operation cycles taken from when control starts to when it reaches to the set SV other operations are same as SV ramp function The available scope is between 0 65 535 If SV is changed again while PV follow up is in operation the SV would be also changed according to SV ramp 5 Min max PV It sets the min max value entered as the present value of PID control The available scope is between 32 768 32 767 Chapter 7 PID Function Built in function 7 2 4 PID flag The parameter set by the XGB series built in PID control function is saved into the flash memory of the basic unit Such parameters are moved to K area for the built in PID function as soon as PLC turns from STOP to RUN mode PID control operation by PID control command is executed through K area data for PID functions Therefore if a user changes the value in the trend monitor window or variable monitor window during operation PID operation is executed by the changed value At the moment if PLC is changed to RUN again after being changed to STOP it loads the parameters in flash memory to K area so the data changed in K area is lost Thus to keep applying the parameters adjusted in K area it is necessary to write the parameter set in K area to flas
191. log Module 7 42 Chapter 7 PID Function Built in function 4 Water Level Sensor A water level sensor plays a role to deliver the PV of an object to control to XGB by measuring the water level of a pail and outputting it within 0 10V Since the types and output scope of water level sensors varies the output scope of a sensor should be identical with that of A D input module s input scope The example uses a water level sensor outputting between 0 10V 5 Drive pump A drive uses a pump that receives control output of XGF DVO04A and of which rotation velocity is variable For accurate PID control the output scope of XBF DV04A 0 10V should be same with that of a pump s control input The example uses a pump that receives its control input between 0 10V 7 5 2 Example of PID Auto tuning Here with examples it explains how to calculate proportional constant integral time and differential time by using PID auto tuning function 1 PID auto tuning parameter setting a If double clicking Parameter Built in Parameter PID Auto tuning parameter in the project window it opens up the auto tuning parameter setting window as illustrated in figure 6 18 Embedded PID Auto TuninarTe Loop Parameter Operational Direction Forward Forward Forward Enebe PWM Dupa TR P sees 4m O 0 0 0 0
192. m 2 NewProgram Project On the I O parameters setting screen find and click the slot of the base A D conversion module is installed on 8 channel voltage type of A D conversion module is installed on Base No 0 Slot No 4 in this description Chapter 2 Analog Input Module IZO Parameter Setting Module list Base 00 Default 00 Default 01 Default 02 Default 03 Default 04 Default 05 Default 06 Default Default gt Delete All Details d Click the arrow button on the screen above to display the screen where an applicable module can be selected Search for the applicable module to select Parameter Setting 21 xl Module list Base 00 Default 00 Default 01 Default 02 Default 03 Default 04 Default 05 Default 06 Default 0 Default Digital Module List E Special Module List E Analog Input Module Al 4 Volt Current 4 Al Analog Output Module 8 8 Communication Module List Print v OK Cancel Al xl 7 Base 00 Default 00 Default 01 Default 02 Default 03 Default 04 XBF AD04A 05 Default 06 Default Default P00160 9 ete Base
193. m 420m 04000 04000 Former value Former value Disable Disable Stop Monitor Resets Max Min value The screen executing Max Min Value Monitoring g Close Close button is for ending closing the monitoring testing screen Maximum minimum and current values are not saved at exit Chap 6 Analog Combo Module 6 10 Auto registration of U Device Special Module Variable The variables for each module are automatically registered by referring to the information of the special modules set up in the I O Parameter User can modify variables and descriptions 1 Registration Procedure a In Parameter set up special module in slot Parameter Setting Base 00 Default 00 Default amp 01 00040 PO007F 02 Default 03 Default 04 Default 05 Default 06 Default 0 Default 08 Default 09 Default 10 Default b Double click Variables Comment AH XG5000 Variable Comment UR Project Edit Find Replace View Online Monitor Debug Tools Window Help Hg Dp y BBX AMR H GS a Window Items 5 8 f MewPLCUOSGB SBCH Offline 4 Variable Comment GL Parameter Basic Parameter Fd Parameter fe Embedded Parameter Scan Program MewPragram c In the Edit menu select U Device Auto Registration special module variable auto registration AH 5000 Varia
194. me average and count average 1 Time average processing Setting range 4 16000 ms Average processing count within specified time is decided based on the number of channels used Setting time Average processing count 9 WW _ Number of Channels used x Conversion Speed 2 11 Chapter 2 Analog Input Module Ex 1 Channels used 1 setting time 16000 ms 16000 ms Average processing count 10667 times 1 1 5 ms Ex 2 Channels used 4 setting time 4 ms i 4 ms Average processing count 4x1 5 ms setting value of time average is not specified within 4 16000 RUN LED blinks at an interval of 1 second In order to set RUN LED to On status reset the setting value of time average within 4 16000 and then convert PLC CPU from STOP to RUN Be sure to use request flag of error clear UXY 11 0 to clear the error through modification during RUN Time average is processed after converted to average of the times inside the A D conversion module In this case a remainder may be produced when setting time is divided by number of channels used X conversion speed which will be disregarded Thus the average processing frequency will be the quotient of setting time number of channels used x conversion Ex the number of channels used is 5 and setting time is 151 ms 151 ms 4 X 1 5 ms 26 times Remainder of 2 26 times 2 Count average process e
195. meter XG5000 parameter Programming Program to read analog data U device Chapter 5 Thermocouple Input Module 5 2 Specification 5 2 1 General specification General specifications are as follows Specification RG nied standards temp ee 25 70 C temp 5 95 RH Non condensing humidity 5 95 RH Non condensing humidity For discontinuous vibration Th lt lt d ed E 9 8m s 1G 5 Vibration For continuous vibration 57 lt f Max impact acceleration 147 m s 15G Authorized time 11ms Pulse wave Sign half wave pulse Each 3 times in X Y Z directions impulse noise Radiated Noise Each 10 times in IEC61131 2 X Y Z directions Electrostatic IEC61131 2 Voltage 4kV contact discharging IEC61000 4 2 IEC61131 2 electromagnetic 27 500 MHz 10V m IEC61000 4 3 field noise Digital Fast Glass Power Analog Transient module OR M IEC61131 2 communication interface burst 1 61000 4 4 Ambient No corrosive gas or dust conditions eee 2000m or less height Pollution 2 or less degree E3 Cooling type Natural air cooling 5 3 Chapter 5 Thermocouple Input Module 5 2 2 Performance Specification Performance specifications are as follows Number of input channel 4 channels Thermocouple K J T R type JIS C1602 1995 K 200 0 C 1300 0 J 200 0 1200 0 T 200 0 400 0 0 0C
196. monitor test mode Setting parameter Parameter XG5000 I O parameter Program for writing digital data U device If there is error or analog output is abnormal refer to the trouble shooting Chapter 3 Analog Output Module 3 2 Specification 3 2 1 General specifications Here describes general specification of analog output module No tems Specification Reference 5 95 RH Non condensing 5 95 RH Non condensing Occasional vibration pe Pulse width f lt 57Hz S eee 0 075mm 150Hz 9 8m s 1G ts 10 times Vibration Continuous vibration 0000000 vibration each direction Frequency Acceleration Pulse width irecti IECG1131 2 10 lt f lt 57Hz 003mm XYandZ 57 lt f lt 150Hz 49ms Q5G _ e Peak acceleration 147 m s 15G Shocks e Duration 11ms e Pulse wave type Half sine 3 times each direction per each axis Radiated electromagnetic 27 500 MHz 10V m field noise Classifi Power Digital Analog Input Output Fast transient 1 61131 2 ey Pa 2 Interface 61000 4 4 Burst noise 1 61131 2 61000 4 3 Square wave 1 500 V LSIS standard impulse noise Electrostatic IEC61131 2 Voltage 4kV Contact discharge discharge 61000 4 2 Impulse noise Voltage Operation Free from corrosive gases and excessive dust E m Atitude o desthan200m 00000000000 than 2 000m Po
197. mperature is 123 4 its converted value to be saved to the internal memory will be 1234 2 Temperature can be converted to Celsius or Fahrenheit scale temperature value as desired Ex If Pt100 sensor is used the temperature of 100 0 be converted to 2120 when Fahrenheit scale is used e Conversion C 32 e Conversion F to C F 32 3 Maximum temperature input range is higher lower within 10 C than regular temperature input range However the precision will not be guaranteed for any temperature out of regular temperature input range Maximum temperature input ranges of sensor are as follows e PT100 210 0 610 0 JPT100 210 0 610 0 Chapter 4 RTD Input Module 4 8 Scaling Function It is used to scale and output the range specified by the user other than temperature range Temperature x 10 2000 Scaling expression 5 Ex When scaling is allowed and sensor input is 200 C with PT100 sensor scaling value is as follows 200 x 10 2000 Scaling value 2000 2 The figure below displays the relation between temperature input and scaling value Scaling conversion value 200 0 600 0 Temperature Conversion value Chapter 4 RTD Input Module 4 9 Disconnection Detection Function 1 As a module used to measure the temperature with the RTD temperature sensor directly connected it detects and displays disconnection of the sensor con
198. n Offset according to Kp Time s c J 4 lt Figure 7 3 Temperature time graph according to coefficient gt c Considering table 7 3 as P coefficient decreases offset increases but overshoot decreases d Generally offset can t be solved with only P control In order to remove the offset P control and control is used together 4 Proportional Integral Control Control In control it yields the output proportional to error accumulated according to time And the expression is as follows 22 7 2 9 In the expression 7 2 9 Ti means the time takes for MV output by control to be added into real output Generally control is used with control So the expression of PI control is as follows K MV MV ExKp Eat 7 2 10 c In the above heating system the simulation results are as shown in the table 6 4 when proportional coefficient is 2 5 and integral time is 1 5s temp coefficient time po 5 25 9 9 Chapter 7 PID Function Built in function 25 15 s 9 25 15 ww SM lt Table 7 4 Temp time table gt d Considering table 7 4 and figure 7 4 if P and control is used together offset is removed and temp converges at 50 target temp after 12s e But in this case convergence time is longer than that of P control and overs
199. n about max MV min MV and manual MV refer to 7 2 3 PID control parameter setting If the max MV is set lower than the min MV the PID control loop generates an error and does not work 9 PIDxx PV prevent value Feds 1229 16 KW1229 16 xx 32 768 32 767 It is the area that receives the present value of xx th PID control loop PV is the present status of the system to control and is normally saved into U device via input devices such as A D input module if it is entered from a sensor The value is used to execute PID operation by moving to _PIDxx_PV by means of commands like MOV 10 PIDxx PV OLD PV of previous control cycle PIDxx OLD K1230 16 xx KW1230 16 xx INT Unavailable PV of previous control cycle The area indicates the PV just before the xx th PID control loop The flag as a dedicated monitoring flag would be updated by PLC although a user directly enters it 7 23 Chapter 7 PID Function Built in function 11 PIDxx MV Control MV PIDxx MV control MV 1231 16 KW1231 16 xx INT Unavailable The area shows the MV of xx th PID control loop As the area in which XGB built in PID operation result is output every PID control cycle it delivers the value in the area to U device every scanning by using commands like MOV in the program and outputs to D A output module operating a drive 12 PIDOO ERR Present error bein id 1232 16 KW1232 16 xx
200. n program and restart the XG5000 2 On the Special Module Monitoring status I O parameter is set temporarily to execute the test So if Special Module Monitoring status ends I O parameter is not saved 3 By test function of Special Module Monitoring the user can check if analog module operates properly or not without any sequence program 1 How to use special module monitoring a Start of Special Module Monitoring While XG5000 is connected with PLC start Monitor gt Special Module Monitoring If that is not online status Special Module Monitoring is not activated XG5000 NewProgram Project Edit Find Replace View Online Monitor Debug Tools Window Help stop Monitoring Pause Pausing Conditions B rasno Project Window 1 Change Current Value Items System Monitoring 5 95 Example XGB Device Monitoring MewPLC XGB XBMS Stop 25 Variable Comment 4 Parameter Basic Parameter Custom Events Parameter Data Traces H E Embedded Parameter Scan Program New Program special Module Monitoring Trend Monitoring Chapter 5 Thermocouple Input Module How to use Special Module Monitoring 1 Click Monitor gt Special Module Monitoring while XG5000 is connected with PLC basic unit Special Module List screen is displayed as shown below and displays information of base slot with special module type On the
201. nalog 10 Module Output CHO Error 01 ERR t B Analog 10 Module Output Error 01 Dan 06 0 Analog Module Output Status setting 0 BIT 1 Analog 10 Module Output Status Setting _O1_ADO_DATA WORD 04 Analog Module Input CHO Data 16 _O1_AD1_DATA WORD n5 Analog Module Input Data 17 _O1_DAQ_DATA WORD 07 Analog Module Output CHO 18 01 WORD 101 08 Analog Module Output DATA f In IEC types the variables are registered as shown below ies Bes vorat Coen BL BAL _01_ amp 00_ WORD 1 T Analog 10 Module Input CHO Data 3 VAR BL BAL _O1_ADO_ERR BOOL SURO 1 E Analog Module Input CHO Error 4 WAR_GLOBAL _01_800_100 BOOL 1 20 Analog Module Input CHO Disconnection i BL BAL 01 01 BOOL AUD T 17 ps Analog Module Input CHI Active BL BAL _O1_A01_DATA WORD 1 5 Analog Module Input CHI Data VAR BL BAL 01 ADI ERR BOOL SUKO 1 25 Analog Module Input Error VAR BL BAL Di ADI 100 BOOL amp LSD 1 21 Analog Module Input CHI Disconnection MAR_GLOBAL _01_080_ BOOL UK0 1 18 Analog Module Output CHO Active AR_GLOBAL _01_080_ WORD SUM
202. nd range Digital output range Wiring Wiring Wiring power External DC24V e Wiring analog input Setting external voltage current switch Setting switch Setting voltage current input type Reading analog input data 9 Analog input test XG5000 special module monitor test mode Setting parameter 9 Parameter XG5000 I O parameter Programming Programming Programming for reading analog data Refer to trouble shooting when there is error or analog data is not normal U device 2 1 Chapter 2 Analog Input Module 2 2 Specifications 2 2 1 General specifications General specifications are as follows temp Storage 95 70 Operating 5 9596RH Non condensing humidity 4 5 95 RH Non condensing humidity For discontinuous vibration of f 2 Vibration Each 10 For continuous vibration times in Frequency Acceleration Amplitude A Ie directions 57 e Max impact acceleration 147 m s 15G 1 61131 2 Authorized time 11ms Bree Pulse wave Sign half wave pulse Each 3 times in X Y Z E IS directions EE pan 1 500 V LSIS standard Electrostatic l IEC61131 2 discharging Voltage 4kV contact discharging IEC61000 4 2 Radiated IEC61131 2 7 Noise 27 500 MHz 10V m IEC61000 4 3 Digital Fast Power Transient Class module IEC61131 2 communication interface bur
203. nearest dealer or A S center 2 INPUT LED flashes INPUT LED flashes INPUT LED flashes at 0 2s intervals Contact nearest dealer or A S center INPUT LED flashes at 1s intervals Input wire is correct Correct wiring according to user manual Check line open Parameter setting is normal Check with PUT command Operation parameter setting error Correct the error according to user manual Check error code 6 47 Chap 6 Analog Combo Module 3 OUTPUT LED flashes OUTPUT LED flashes OUTPUT LED flashes at 0 2s intervals Contact nearest dealer or A S center OUTPUT LED flashes at 1 intervals Output channel input exceeds data range Enter correctly according to the output range in the user manual Parameter setting is normal Check with PUT command Operation parameter setting error Correct the error according to user manual Check error code 4 Analog I O value is abnormal Analog I O value is abnormal External DC24V input power is OK Supply DC 24 power FG ground is OK Correct FG grounding according to the wiring in the user manual TN Parameter setting is OK Operation channel permit I O range setting Set up the parameters correctly according to the user manual External voltage current selector switch setting is correct Set the switch according to the user manual Contact nearest dealer or A S center Thi i 6 48
204. nected If any disconnection occurs in the sensor used and extended lead wire LED ALM will flicker in a cycle of 1 second and produce an error code 2 Disconnection can be detected per channel however only for the channel specified to run LED ALM is used in common for all the channels It will flicker if one or more channels are disconnected 3 The figure below shows the temperature sensor s appearance of the 3 wired RTD The appearance depends on sensor type A terminal e A disconnection if disconnected between terminal terminal board of the module in the sensor figure disconnection if disconnected between terminal two for 3 wired sensor and terminal board of the module in the sensor figure or if A and B lines are all disconnected oi 4 The basic connection between RTD module and RTD Sensor is based on 3 wired RTD sensor 2 wired or 4 wired sensor is used the connection between the sensor and the module shall be kept as 3 wired Disconnection will be detected on the basis of 3 wired wiring 5 In case of disconnection status of ALD LED and operation of disconnection flag are as follows For disconnection flag refer to 12 3 14 internal memory Channel ALM LED Disconnection Connection status status status flag Normal Run Flicker 1s On A line disconnected or B line disconnected Stop Off Off Any sensor is not 4 connected Stop Off Off
205. ng weaker The scope is real number at the unit of second Chapter 7 PID Function Built in function i Differential time It sets the differential time of PID loop in question Td As larger the differential time the differential operation is getting stronger The scope is real number at the unit of second j Limiting change of present value It sets the limit of change in present value of PID loop in question If PV suddenly changes due to signal components such as sensor s malfunction noise or disturbance during control of PID it may cause sudden change of PID control output To prevent the phenomenon a user can set the max limit of change in present value that is allowed per PID operation cycle If the change of present value is limited accordingly it may calculate the present value as much as the limit although the present value is changed more than the limit once the limit of change in present value is set If using the PV change limit function it may prevent against sudden change of control output owing to noise or etc If it is however set too small it may reduce the response speed to the PV change of an actual system not to sudden change by noise or etc so it is necessary to set the value appropriately according to the environment of a system to control in order that the PV toward the set value does not take a longer time The available scope is between 32 768 32 767 If setting the PV change limit as 0 the function is n
206. normal operation Make sure that pressed terminals get tighten following the specified torque External connector type shall be pressed or soldered using proper equipments Safety Instructions Safety Instructions for test operation and maintenance Don t touch the terminal when powered Electric shock or abnormal operation may occur Prior to cleaning or tightening the terminal screws let all the external power off including PLC power If not electric shock abnormal operation may occur Don t let the battery recharged disassembled heated short or soldered Heat explosion or ignition may cause injuries or fire Do not make modifications or disassemble each module Fire electric shock or abnormal operation may occur Prior to installing or disassembling the module let all the external power off including PLC power If not electric shock abnormal operation may occur Keep any wireless equipment such as walkie talkie or cell phones at least 30cm away from PLC If not abnormal operation may be caused When making a modification on programs or using run to modify functions under PLC operations read and comprehend all contents in the manual fully Mismanagement will cause damages to products and accidents Avoid any physical impact to the battery and prevent it from dropping as well Damages to battery may cause leakage from its fluid When battery was dropped or exposed under strong impact never reuse the
207. nu like b d The following is example selecting View Variable Comment at IEC type Movebhanne Variable Dn ROV 4 CHI Convers ue _OT_CHe_ AC T CH Lonvers Lana ue _O1_CHS_AC T LH3bonvers D EH3 T bona Chapter 2 Analog Input Module 2 12 Configuration and Function of Internal Memory A D conversion module has the internal memory to transmit receive data to from PLC CPU 2 12 1 I O area of A D converted data I O area of A D converted data is as displayed in table Device assigned Device assigned Sian direction S or type IEC type 9 UXY 00 0 UX0 x 0 Module ERROR flag AID CPU UXY 00 F 0 15 Module READY flag 0 16 CHO Run flag 0 17 1 flag 0 0 18 CH2 Run flag UX0 x 19 CH3 Run flag Tuxvo2 xuwox2 output value R Luxos Chidgtaloupuvaue R AD gt CPU wuwoxa digital output value R Uxvos wuwoxs _Ch3 digital output value R In the device assigned X stands for the Base No and Y for the Slot No on which module is installed In order to read CH1 digital output value of A D conversion module installed on Base No 0 Slot No 4 it shall be display
208. o 0 o o Time Avr Sampling Sampling Sampling 0 i Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 2 Count Avr 045 4 045 4 C Channel status Disable Enable Enable Enable Sensor status K K K K Celsius Celsius Celsius Celsius Count Avr Sampling Sampling Sampling 407 0 Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 Scaling max value 32767 32767 32767 32767 3 Moving Avr XBF TCO4S TC 4 CH 045 TC 4 C Average processing C Scaling data type Scaling min value Scaling max value Disable K Celsius 0 Moving Avr Bipolar 32768 32767 Enable K Celsius 0 Sampling 0 Bipolar 32768 32767 Enable K Celsius 0 Sampling 0 Bipolar 32768 32767 Enable K Celsius 0 Sampling 0 Bipolar 32768 32767 Chapter 5 Thermocouple Input Module 7 Scaling data type setting area address 18 a Scaling data type can set per channel b There are two type of scaling operation output unsigned 16 bit 0 65535 or signed 16 bit 32768 32768 In case of using PUT instruction scaling data type setting address 1 as follows B15 814 Bi2 B10 Bg B8 B7 B6 B5 B4 B3 B2 B1 B0 lt E EREEEEFEH EE Bit Description 0 Signed integer d Values set in B4 15 are ignored This area shows the same results with Scaling data type
209. odule Module Ready AM Analog 0 Module Module Ready RDN Analog 0 odule Module Ready alse 01 _RDY Analog 10 Module Module Ready Analog 10 Module Madule Ready D1 ADU AC 1 Analog 10 Module Input CHO Act ive _O1_A01 AC T Convers iona ue Analog 10 Module Input Act ive _O1_A00_DA CHO Input a Analog 10 Module Input CHO Data Ut DAC OU 1 Re __ Analog 10 Analog 0 Module Module Output Output CHO Act ve status setting nil Analog 10 Analog 10 Module Module Output Output CHI Act ive status sett ing i Analog 10 Module Output CHO Act ive DAT AC CHi Output Analog 10 Module Output CHI Analog 10 Module Uutput CHI Act ve CHOOut put sl _01_ _ Analog Module Output CHO Chap 6 Analog Combo Module 6 11 Constitution and Function of Internal Memory An analog mix module has internal memory for data communication with XGB base unit 6 11 1 Analog Data I O Area The table below presents the analog data 1 area Device Allocation 2 Read Signal Variable Type S or H IEC Type Description Write Direction Type ERR BIT Udy 00 0 UXOy 0 Modul
210. of an object to control after converting them into numerals For instance in order to control a system using a sensor that the output is OV when its heating device temperature is 0 while it is 10V when the temperature is 100 as much as 50 it is necessary to set SV as 2000 as long as it uses AD input module XBE ADO4A d Operation time sets the cycle to execute operation for auto tuning The setting cycle is 0 1ms and available between 10ms 6553 5ms setting value 100 65 535 while it is set at a unit of integer per 0 1ms e Max min MV It sets the max min value of output for auto tuning The available scope is between 32 768 32 767 If the max MV is set lower than min MV the auto tuning function of a loop generates an error and does not work f Hysterisis setting Looking at relay tuning in figure 7 15 it shows it outputs the max MV as auto tuning starts but it converts to min output as PV is over SV and then it converts to the max output as PV is lower than SV However if input PV contains noise components or reply components auto tuning ends by a slight vibration of PV around SV yielding incorrect tuning result To prevent it hysterisis may be set XGB auto tuning converts output at SV Hysterisis when PV increases or at SV Hysterisis when it decreases once hysterisis is set With it it may prevent incorrect tuning by a slight vibration around SV SV Hysteresis Figure 7 16 Example of Hy
211. oject Edit Find Replace View Online Monitor Debug Tools Window Help Coal amp 2 MS B RUE RE AARANMBRLRR m Qe Project Window tems Example XGB NewPLOXGBR YPM ag ge Basic Parameter Ed Parameter E Embedded Parameter Scan Program NewProgram NewProgram Message Window Resuit Check Program Find 1 Find 2 Communication Cross Reference Us NewPLC Offline Row 0 Column 9 Ove Chapter 5 Thermocouple Input Module c Select Edit Register U Device In case of XEC select Edit Register special module variable XG5000 Variable Comment Seles Project Edit Find Replace Online Monitor Debug Tools Window Help 3 m 3 8 ER f O 49 Ba Copy et IBI BE 2B a mi MBM 100 15 Delete V View Variable Device view Flag Select All i Type 7 Device Comment Items 1 i c a Insert Line SX Delete Line NewProgram Motoring Wr a x Window 414 Monitor 2 41 4 DI Result Check Program A Find 2 Communicat ion Cross Reference Us registers comments in the U Devices a NewPLC i View Variable Chapter 5 Thermocouple Input Module d Click Yes The previous comment will be deleted XG5000 Variable Comment th Project Edit Find Repla
212. on but it is desirable to check warning information and take a proper measure Once a warning occurs the warning code is also indicated in warning code area of a loop For more information about the types of warning codes and measures refer to 7 5 In the area as monitoring area it is changed to the current run status by PLC although a user enters any value temporarily 9 PID ERROR PID Error occurrence IEC type br asd oi cua f an error that discontinues running during PID control of n th loop occurs it indicates the error s occurrence If an error generates warning it is on if normal it is off When an error occurs PID control stops and MV is output as the min output set in parameter Also if an error 7 21 Chapter 7 PID Function Built in function occurs the error code 15 indicated in the error code area of a loop For more information about type of error codes and measures refer to 7 5 In the area as monitoring area it is changed to the current run status by PLC although a user enters any value temporarily PID Flag area by loops PID flag areas by loops are allocated between K1216 K1855 and for totally 16 loops each 40 words is allocated per loop Therefore the individual data areas of n th loop are between K 1216 16 1255 16 n Every setting of the PID flag areas by loops may be changed during PID control operation Once the settings are changed they are applied from th
213. ope is real number If itis set as O and lower it does not execute integral control Chapter 7 PID Function Built in function 5 PIDxx PID xx Loop differential time _PIDxx_T_d 4 PID xx Loop differential time sets indicates differential time of PID control of xx th loop The available scope is real number If it is set as 0 and lower it does not execute differential control 6 PIDxx PV max PV change limit d max K1224 16 xx KD612 20 xx WORD 0 65 535 PV change limit It sets the PV change limit of xx th loop For more information about PV change limit refer to 7 2 3 PID control parameter setting If it is set as 0 the PV change limit function does not work 7 PIDxx d MV max MV change limit PIDxx d MV max K1225 16 xx KD610 20 xx WORD 0 65 535 MV change limit It sets the MV change limit of xx th loop For more information about MV change limit refer to 7 2 3 PID control parameter setting If it is set as 0 the MV change limit function does not work 8 PIDxx MV max PIDxx MV min PIDxx MV man max MV min MV manual MV PIDxx max MV K1226 16 xx KW1226 16 xx INT 32 68 32 767 _PIDxx_MV_min min MV 1227 16 KW 1227 16 PIDxx MV man manual 1228 16 KW 1228 16 It sets the max MV min MV and manual MV of xx th loop For more informatio
214. operation run it keeps running by converting to reverse operation once PV is over SV DeadBand value At the moment the DeadBand setting value uses the deadband of a loop set for forward operation If PV is below SV DeadBand value during reverse operation it also keeps running by converting to forward operation In the case the DeadBand setting uses the deadband of a loop set for reverse loop It may be illustrated as 7 14 Chapter 7 PID Function Built in function 100 s Forward Reverse ay Figure 7 14 Conversion of RUN direction in the mixed forward reverse control c Atthe moment every control parameter uses the parameter of a loop set for forward operation while MV is output to MV output area of a loop of forward operation Reversely every control parameter uses the parameter of a loop set for reverse operation during reverse operation run while MV is also output to MV output area of reverse operation loop 9 WRT WRT is a command to save K area flags changed during operation to the internal flash memory of PLC MUDUU IRT 0 0 0 Once start juction is on it writes area values to flash memory Each operand description is summarized as follows Available device Remark Slot Designating basic uit as 0 P M L K D Z R Not sed constant Parameter type P M L K D Z R constant 7 31 Chapter 7 PID Function Built in function In case of IEC type WRT
215. or where channel 0 s A D converted value can be checked as reset Chapter 2 Analog Input Module special Module Monitor Yolt Current 4 HO value CH1 AID value 0 0 0 CH3 AD value m BE LEE EIE IS E NE m B ae a Cmm stop Monitoring Test Close Execution screen of Reset max min value g Close Close is used to escape from the monitoring test screen When the monitoring test screen is closed the max value the min value and the present value will not be saved any more Chapter 2 Analog Input Module 2 11 Register U devices Register the variables for each module referring to the special module information that is set in the I O parameter The user can modify the variables and comments 1 Procedure a Select the special module type in the I O Parameter Setting window 1 0 Parameter Setting 2x Module list 11 Base 00 Default 00 Default amp 01 XBF ADO4A Volt Curre 02 XBF DVO4A Voltage 4 03 Default 04 Default 05 Default 06 Default Default 4 Volt Current 4 00040 POOO F 4 Voltage 4 00080 Same meg MewPLCOIGB XBMS Stap moat variable Comment 4
216. ot available k Limiting change of MV AMV function It limits the max size that control output which is output by PID operation is changed at a time The output MV in this operation cycle is not changed more than the max change limit set in the previous operation cycle The function has an effect to prevent a drive from operating excessively due to sudden change of output by preventing sudden change of output resulting from instantaneous change of set value If it is however set too small it may cause taking a longer time until PV reaches to its target so it is necessary to adjust it appropriately The available scope is between 32 768 32 767 If setting it as 0 the function does not work MV It sets the max value of control output that may be output the result of PID operation The available scope is between 32 768 32 767 if it exceeds the max output designated by PID operation result it outputs the set max output and alerts the max output excess warning For the types and description of warnings refer to Error Warning Codes m Min MV It sets the min value of control output that may be output by the result of PID operation The available scope is between 32 768 32 767 If it is smaller than the min output value designated by PID operation result it outputs the set min MV and alerts the min output shortage warning For the types and description of warnings refer to Error Warning Codes n Manual
217. perates and outputs as follows previously filtered temp value x fileter value presen input temp value x 50 x No of channel used 1 Filter value 50 x No of channels used Filter constant setting range 200 64000 ms Temperature Temperature chanae after filterina process Actual temperature chanae lt gt Time ms Filter constant ms Chapter 5 Thermocouple Input Module 5 3 4 Average function 1 Time average accumulates temperature conversion values of a selected channel and displays the average of the total sum in digital data Temperature change after averaging process Actual temperature change eere rererere f Channel scan interval OO Averaging section Averaging section Averaging section Setting range of average time 400 64000 ms Frequency of average process for a preset time can be calculated as follows Average time Average Process Frequency times 2 No of channel used x 50 2 Averaged frequency accumulates temperature conversion values of a selected channel as many as frequency and average of the total sum in digital data m A ARA A 1 Temperature change after averaging process temperature change lt gt Channel scan interval
218. pling Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 2 Sensor Type Setting Area Address 1 4 a Thermocouple sensor type can be set per channel b In case of using PUT instruction Sensor Type Setting Area is as follows B15 B14 B13 B12 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO Address 1 Address 2 Address 3 Address 4 CH3 sensor type setting __ Wod Description 2 T type R type When input value is larger than 4 0 K type is selected by force But U0x 01 8 0 01 setting error representation in case of IEC UX0 x 24 0 0 27 are on error information is displayed at bit 0 of address 27 30 5 40 Chapter 5 Thermocouple Input Module d This area shows the same results with sensor type designation in I O parameter setting window XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH C Channel status Disable Enable Enable Enable J K Celsius Celsius Celsius i i Sampling Sampling Sampling 7 0 0 o Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 32767 32767 32767 32767 3 Temp unit setting area Address 5 a Temp unit Celsius Fahrenheit of thermocouple input module can be set per channel b In case of PUT instruction Temp unit setting area is as follows B15 B14 B12 B10 Bg B8 B7 B6 B5 B4 B3 B2 m FFEFEFERER Bit Description
219. put JPT100 2000 6000 Scaling display 0 4000 Normal temp 25 Full temp 0 55 Between channels Insulation terminal PLC power Consumption Additional function 1 0 3 or less 0 5 or less 40ms channel No insulation Insulation Photo Coupler 15 point terminal 64 points 7 when using XBM DxxxS S type 0 when using XB E C DxxxH H type 3 line Digital filter 160 64000ms Disconnection detection 100 100 63g Chapter 1 General 1 2 4 Thermocouple input Number of input channel Thermocouple K J T R type JIS C1602 1995 K 200 0 1300 0 Range of input 2200 00 1200 00 temperature 200 12 400 00 0 00 170000 T T Displaying down to one decimal place note emp displa J T type 0 1 0 5 Digital output Scaling display Unsigned scaling 0 65535 user defined scaling Signed scaling 32768 32767 Type of input sensor Accuracy Temp coefficient 100 range of operating temp Conversion velocity 50ms channel Photo coupler insulation Insulation Terminal operating power DC DC converter insulation method Between channels Photo moss relay insulation Insulation 400 V AC 50 60 Hz 1min Insulation pressure leakage current 107A or below Ambient temperature 25 Within 0 2 note 2 Insulation resistance 500 V DC 10 MQ or above Standard cont
220. put of all the channels will be disabled B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO UWO x 2 Output status setting bit gt Bit On 1 Allowed gt Bit Off 0 Forbidden 4 Digital input a Digital input value can be selected and used within the range of 48 4047 2048 2047 12 1011 381 2018 24 2023 and 12 1011 based on input type b If the digital input value is not specified it will be set to 0 B15 814 813 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO of CHO UWO x 3 Digital input Data UWO x 4 Digital input Data of CH1 Digital input Data of CH2 UWO x 5 CAC 0e Digital input Data of CH3 Address Address 5 type type U0x 03 Digital input value of CHO UOx 04 Digital input value of CH1 UOx 05 Digital input value of CH2 Digital input value of CH3 Chapter 3 Analog Output Module 3 12 2 Setting area of operation parameters XBF DV04A Address ipti Remarks Bit On 1 Run mE Set up the run channel Bit Off 0 Stop 3 Set up the output voltage range Bit 00 0 10V Bit 00 0 4000 Bit 01 2000 2000 Bit 10 0 1000 Read Write Bit 11 0 1000 available 0 outputs the previous value 1 outputs the min value of output range 2 outputs the mid value of output range 3 outputs the max value of output range Setup tne output ype of CHS _ CHO setting error 12 1 setting error
221. r O means loop number in Parameter No K area device list to save every setting and status of loop 0 appears as shown figure 7 22 Then if selecting a variable to monitor and clicking OK a selected device is registered to variable monitor window as illustrated in figure 7 23 Through the monitor window a user can monitor auto tuning run status or change the settings 2 xl Variable D List Variable Corr Al Parameter number 1 Block index 0 Device Comment 1 01 CHO U01 01 0 Analog Input Module CHO Active _01_ DATA UT 101 02 Analog Input Module CHO Output _01_CHO_IDD BIT U01 10 0 Analog Input Module CHO Input Disconnection Flag 4 01 ACT BIT 01 01 1 Analog Input Module CH1 Active 5 01 CHI DATA WORD 101 03 Analog Input Module CH1 Output 6 01 00 BIT 01 10 1 Analog Input Module CH1 Input Disconnection _01_ 2_ BIT U01 01 2 Analog Input Module CH2 Active 01 CH2 DATA WORD 101 04 Analog Input Module CH2 Output 9 01 CH2 IDD BIT U01 10 2 Analog Input Module CH2 Input Disconnection Flag _01_ BIT U01 01 3 Analog Input Module CH3 Active 01 CH3 DATA WORD 101 05 Analog Input Module CH3 Output _01 100 01 10 3 Analog Input Module CH3 Input Disconnection Flag 1 ERR BIT 101 00 0 Analog Input Module Module Error 01 ERR CLR BIT U01 11 2 Analog Input Module Error Clear Request 1 RDY BIT U01 0
222. r setting window XBF TCO4S 4 CH XBF TCO4S TC 4 CH Disable Enable Enable Enable K K Celsius Celsius Celsius Celsius 9 o Sampling Sampling Sampling Sampling 0 0 0 Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32768 Scaling max value 32767 3276 3276 32767 5 Average processing setting area Address 10 13 a Average processing method can be set per channel b Average processing method Sampling 0 time avr 1 count avr 2 moving avr 3 When input is larger than 4 0 sampling is set by force But U0x 01 8 UO0x 01 B setting error representation in case of IEC type UX0 x 24 UX0 x 27 are on error information is displayed at bit 2 of address 27 30 d In case of PUT instruction average processing setting method is as follows B15 814 B13 B12 B11 B10 9 8 7 6 5 4 B3 B2 1 BO Address 10 CH average processing method setting Address 11 0 Sampling Address 12 1 Time average 2 Count average Address 13 3 Moving average This area shows the same results with average processing method setting in I O parameter setting window XBF TCO4S TC 4 CH XBF TCO4S TC 4 CH Disable Enable Enable Enable K Celsius Celsius Celsius Celsius 00000 Sampling Sampling Sampling Sampling 0 Bipolar Bipolar Bipolar Moving Avr 32768 32768 32768 32767 32767 32767 Ch
223. ranges c Median outputs the median values of the respective output ranges d Maximum outputs the largest values of the respective output ranges 3 Example Assume that the output channel range is set to 4 20mA and the output level is 10mA If the PLC system is switched from run to stop status the output will be one of followings according to the setting a Previous value maintains 10mA which is the previous normal operation value Minimum outputs 4mA which is the minimum of the output range setting Median outputs 12 which is the median of the output range setting d Maximum outputs 20mA which is the maximum of the output range setting Chap 6 Analog Combo Module 6 7 Wiring 6 7 1 Precautions for Wiring 1 Keep the I O signal lines of the analog mix module away from AC power line Otherwise the surge or induction noise of the AC line may affect the module 2 The cable should be selected taking ambient temperature and allowable current into consideration Recommended cable is AWG22 0 3mm or higher grade 3 Keep the cables away from heat source or oil Otherwise short circuit damage or malfunction of the module may occur 4 Check polarity at terminal block connection 5 Keep the cables away from high voltage line or power line to avoid malfunction or failure of the module by induction 6 7 2 Exemplary Analog Input Wiring 1 Input resistance of the current input circuit is 250 typ
224. rature conversion to thermocouple input has non linear characteristics Remark Non linear characteristics regarding the relation of temperature C and electromotive force V of a thermocouple sensor electromotive force is different by sections even though temperature changes by a certain amount which is called non linear characteristics As seen in the above graph it is shown that the relation of temperature and electromotive force is a curve by temperature sections The module processes the non linear characteristics table as linear 5 2 5 Temperature display 1 Temperature is displayed down to one decimal place In the XG5000 when monitoring the temperature conversion value select Signed decimal According to monitor indication type temperature is monitored like figure below Ex if displaying 123 0 by converting the value stored in the internal memory would be 1230 1230 1230 MOY 101 04 00000 _O1_CHO_TE Temperature indication value indicati Inner memory ndication Unsigned decimal 64306 Temperature 1230 value Signed decimal 123 0 C hFB32 Hexadecimal 0 00 1230 2 Temperature display unit J T type 0 1 b R type 0 5 3 Temperature may be displayed by Celsius or Fahrenheit depending on the settings Ex if displaying 100 in Fahrenheit it would be 212 by using the following formula 9 a From Celsius to Fahrenheit degree F a
225. re detail specification refer to 5 2 6 accuracy resolution Note 3 Warming up time for stability of measured temperature 15 min is necessary after power is on 5 2 3 Name of part and function Respective designations of the parts are as described below f m 3 1 045 RUN 0 ALM 4 8 5 No Nam OO Displays the status of thermocouple input module On operation normal D RUN LED Flickering Error occurs 0 2s flickering Off power Off or module error Displays the disconnection status of thermocouple input module Alarm indication LED o Flickering Disconnection error occurs 15 flickering Off operation normal 9 Terminal gt Terminal block for wiring to connect the thermocouple block K J T R type External 4 power supply Terminal for supply of external DC24V terminal gt Connection connector for connecting the extension module extension Reference 6 junction Thermistor for reference junction compensation RJC compensator 5 f Chapter 5 Thermocouple Input Module 5 2 4 Characteristic of thermocouple temperature conversion Thermocouple input module connect 4 kinds of thermocouple directly input characteristic are as described below 1 Thermocouple JIS C1602 1995 200 5891 1300 52410 ge gt T E 5 O LLI
226. rectly Correctly install this module I O information can be seen at the XG5000 Contact the nearest agency or LS branch office Normally operated if thermocouple input module with error is changed to another module Contact the nearest agency or LS branch office Chapter 5 Thermocouple Input Module 3 ALM LED flickers ALM LED flickers Sensor wiring is normal Wire properly referring to wiring method of user manual Contact the nearest agency LS branch office 4 Temperature conversion value is not normal Temperature conversion value is not normal External DC 24V input power is normal Supply external power DC 24V FG ground is normal Execute FG ground properly referring to use manual T Parameter setting is normal Channel status sensor type Set parameter properly referring to user manual Contact the nearest agency or LS branch office Chapter 5 Thermocouple Input Module 5 8 4 Error code and measure 1 Measure when error flag of data I O area U device occurs Device Device assignment assignment Description Content 5 type IEC type UOx 00 0 CHO offset gain adjustment error UOx 00 1 Jo UXO x 1 If repeated when restarting error the power contact custom U0x 00 2 UX0 x 2 offset gain adjustment service center goxoa error error Off normal If repeated when resta
227. redInput FilterCons tan ms x No ofChannelsUsed Filter Constant setting range 4 64000 ms Input Input after filtration Actual input Filter Constant ms Time ms In the above graph if the input value changes rapidly from O to 100 the input value is filtered Filter time constant is the time required for input values to vary by 63 2 of the actual input value Chap 6 Analog Combo Module 6 6 3 Averaging Function 1 Average by Time The input values of the designated channel are accumulated for the preset time and the average value of the total sum is outputted in digital data Averaged input value Actual input value lt gt Channel Scanning Intervals 1ms Ch Used Averaging Averaging sampling Section Section Section Setting Range 4 16000 ms For time averaging No of averaging cycles are calculated with the No of channels used as below AverageTime No Averaging Cycles No of Channels Used x lms 2 Average by Cycles The input values of the designated channel are accumulated for the preset cycles and the average value of the total sum is outputted in digital data Averaged input value Actual input value OMA Used gt Averaging Averaging Sampling Se
228. refore precision range at 5V input is 2000 20 2000 20 1980 2020 2 Precision at 10V input 4000 x 0 5 20 Therefore precision range at 10V input is 4000 20 4000 20 3980 4020 Chap 6 Analog Combo Module 6 5 2 Output Precision The precision of analog output is not dependent upon the output range The graph below shows the variation of precision when the analog output range 1 0 10 for unsigned value for digital output The output precision of the XBF AHO4A is 0 5 20 1mA gt 5 fo P Digital input 1 Precision at 5V output 4000 x 0 5 20 therefore precision range at 5V output is 5V 20x0 0025V 5 20 0 0025 4 95 5 05V 2 Precision at 10V output 4000 x 0 5 20 therefore precision range at 10V output is 10 20 0 0025 5 20 0 0025 9 95 10 05V Chap 6 Analog Combo Module 6 6 Functions of Analog Combo Module The functions of 4 Module as follows Channel e Specify operation stop of the channel which will perform A D and D A conversion operation stop setting Specifying unused channels as Stop can shorted overall operation time e Specify desired range of analog I O I O Voltage current Select voltage current with external switch and set up range with parameter range setting Analog Mix Module provides 2 ranges 4 20mA 0 20 of current I O and 3 ranges 1 5V 0 5V
229. ring example of 4 Wire sensor transmitter Voltage Current input In case of voltage current input wiring is same Adjust the voltage current setting switch according to the case BF ADU4A 5 4 Wire Rn CHO Transmitter 73 E 51 CH2 t 4 Wire c Eee Transmitter REDEEM S CH3 ad DC24V DC24V 4 Wire Transmitter DC power For analog supply 2 a Input resistance of current input circuit is 250 typ b Input resistance of voltage input circuit is 1 MO min c Enable the necessary channel only d Analog input module doesn t support power for input device Use the external power supplier Chapter 2 Analog Input Module 4 Relationship between voltage input accuracy and wiring length In voltage input the wiring cable length between transmitter or sensor and module has an effect on digital converted values of the module as specified below i M Analog input Voltage Where Rc Resistance value due to line resistance of cable Rs Internal resistance value of transmitter or sensor Ri Internal resistance value 1M2 of voltage input module Vin Voltage allowed to analog input module 9o Vi Tolerance of converted value due to source and cable length in voltage input Ri xVs Vin 4 Rs 2 Rc a
230. riptions at the same time 0000 0002 101 LOC Analog 10 Module Module Ready UO 00 F Analog 10 Modu e Module Ready 00 Analog 10 Module Modu e Ready 00 Analog 10 Modu e Module Ready LOC F Analog 10 Modu e Module Ready 00 Analog 10 Modu e Module Ready Analog 10 Module Input CHO Active UD n1 1 Analog 10 Module Input Act ive Urn t z MV 000100 Analog 10 Module Input CHO Data MV 101 05 000101 Analog 10 Module Input CH Data 101 06 0 ss et Analog 10 Module Output CHO Active Un t a Analog 10 Module Output CHO status setting 101 06 1 SSH Analog 10 Module Output Act ve Urn t z Analog 10 Madule Output Act Un ut Analog 10 Module Output Active Analog 10 Module Output status agtt ing MV 000200 101 0 109 0 Module Output MOY 000201 101 08 Analog 10 Module Output END Chap 6 Analog Combo Module e For IEC type also as shown in Fig d you can look up variables with diversified options in the View menu The figure below is the case of an IEC type with which the View Variables Descriptions option Analog 10 Module Module Ready 01 Analog 0 M
231. rocessing Average Processing T Average Count Average 1 Sampling processing It collects analog input sign through general A D conversion processing at a specific interval so to convert to digital The time required for A D conversion of analog input sign till saved on the memory depends on the number of channels used Processing time Number of channels used X Conversion speed Ex If the number of channels used is 3 its process time will be 3 1 5 ms 4 5 ms Sampling is to calculate the sampling value of continuous analog sign at a specific interval Chapter 2 Analog Input Module 2 Filter processing Filter process function is used to obtain stable digital output value by filtering delaying noise or sudden change of input value Filter constant can be specified for respective channels through user program or I O parameters setting e Setting range 1 99 90 F n 1 a x A n a x F n 1 F n Present filter output value A n Present A D converted value F n 1 Previous filter output value A Filter constant 0 01 0 99 previous value added L1 If filter setting value is not specified within 1 99 RUN LED blinks at an interval of 1 second In order to set RUN LED to On status reset the filter setting value within 1 99 and then convert PLC CPU from STOP to RUN Be sure to use request flag of error clear UXY 11 0 to clear the error through modification during RUN Analog input ran
232. rrent 4 f Temp Measuring Module e B Communication Module List Li Print v OK Double click the applicable slot that is selected for parameters setting or click Details I O Parameter Setting 2 xl Module list Base 00 Default Sb Commet Input Filter Emergency Output Allocation 00 Default 01 XBF DV04A Voltage 02 Default 03 Default 04 Default 05 Default 06 Default 0 Default XBF DV04A Voltage 4 CH Delete Base Base Setting Delete Slot Delete All Details Prnt f A screen will be displayed for you to specify parameters for respective channels as shown below Click a desired item to display parameters to set for respective items EET Module list 4 Base 00 Default Sb Module Comment Input Filter Emergency Output Allocation e 00 Default _ 01 Voltage 02 Default 03 Default 2 3 am 04 Default 4 0 04 Voltage 4 5 6 4 Voltage 4 00010 XBF DVO4A Voltage 4 isi egg 05 Default 06 Default 07 Default Disable Disable Disable Disable 0710 00v 01 010v 074000 84010 074000 074000 Former value Former valu
233. rror Off When 00010 15 ON Channel 0 Output Status setting 001 06 0 is turned ON and output is permitted When M00010 is ON data of 000200 is transferred to Output Channel 0 Input Value 001 07 and outputted Chap 6 Analog Combo Module 3 Sample Input Program for IEC type ig Mes Mest ar e155 STAT SLOT R 16 0005 150000 AUD 1 0 SUK0 1 15 0 1 16 00 11 24 _01_ _01 aic _ PTT CHOInput _01_ 00_ Value xUXD 1 20 ZW J eg a Using PUT command to write 10005 in the address 0 slot 1 to operate Input Channel 0 and Output Channel 0 Using PUT command to write 0000 in the address 1 slot 1 to set the input range of Input Channel 0 to DC 4 20mA and the output range of the Output Channel 0 to DC 4 20mA When the module is in normal operation is turned UX0 1 0 Module Error Off UX0 1 15 Module Ready UX0 1 16 Input Channel 0 in operation On UX0 1 24 Input Channel 0 Error Off d When is on Input Channel 0 Converted Value 0 0 1 4 is transferred to Channel Olnput variable e If open wire error occurs at Channel 0 UX0 1 20 ChannelOopen is turned on and 1 bit is set Chap 6 Analog Combo Module 4 Sample Output Program for IEC type io INST INSTI XFXI55 PUT WORD PUT WORD 10
234. rting U0x 00 D UX0 x 13 Module offset gain backup error the power contact custom service center If repeated when restarting 00 00 UX0 x 14 Module H W error the power contact custom service center U0x 01 8 JoUXO x 24 CHO setting error Parameter setting Check the parameter setting UOx 01 9 UX0 x 25 CH1 setting error On setting error area address 27 30 by GET U0x 01 A UX0 x 26 CH2 setting error Off setting instruction solve the setting UOx 01 B 0 0 27 CH3 setting error normal error contents 2 Checking error information area address 27 30 of operation parameter area a Setting error information area address 27 30 Related memory Description address Hex Dec Sensor type setting Off normal On error Filter constant setting Off normal On error 064 09 6 9 0 Average processing method settin 11 14 17 6 Checking setting error information Check the setting error information address 27 30 area by GET instruction Ex 1 case thermocouple input module is mounted at slot 1 GET 00000 a EE MEME MEN GET e 00001 GET 29 00002 un NEN ME GET atl Chapter 5 Thermocouple Input Module Ex 2 In case thermocouple input module is mounted at slot 1 In case of IEC Reader ror HET WORD HEU STAT SLUT DATA H INST16 GET _WORD HEU
235. s data type without mark 0 65535 If a user selects one of these two types and sets the range it displays the temperature through scaling operation Scaling data type Scaling min value Scaling max value Signed value 32768 Scaling max value 1 Scaling min value 1 32767 Unsigned value 0 Scaling max value 1 Scaling min value 1 65535 The following graph indicates relation between scaled value and temperature input scaling Conversion value 3000 1300 0 Temperature 1 value YO 1 0 X1 X Temperature value XO Thermocouple measurement min temperature value X1 Thermocouple measurement max temperature value YO Scaling min value Y1 Scaling max value Y Scaling Scaling operation Y X X0 YO Ex If scaling with mark is set with 2000 13000 and the temperature measured K type sensor is 500 0 C the value scaled is as follows 13000 2000 1300 200 Scaling conversion value 500 200 200 5000 Chapter 5 Thermocouple Input Module 5 3 3 Filter function By means of filter value time constant 63 2 setting temperature conversion of a designated channel it o
236. s of all channels will not be executed Address 12 bit15 614 bit13 bit12 bit11 bit1O bit9 bits bit bits bit4 bit2 1 CH a Setting average process bit Bit On 1 used Bit Off 0 not used Chapter 2 Analog Input Module 7 Setting average process method This area is used to specify average processing method where count average and time average are available bit5 bit14 bit13 bit12 bit11 bit1O bit9 bit8 bit bits bit4 bits bit2 Address 13 Setting average process method bit gt 00 count average gt 01 time average 8 Error code address 22 a It saves the error code detected from A D conversion module Error type and details is as below bit5 bit14 bit13 bit12 bit11 bit1O bit9 bit8 bit bits bit4 bits bit2 Normal operation RUN LED flickering Exceeding of filter constant setting range Exceeding of time average setting range Flickering RUN LED pe Exceeding of Frequency average setting 1 second range Setting error of analog input range of the error codes stands for the channel with error found c If 2 or more errors occur the module sill not save other error codes than the first error code found d If an error found is corrected use the flag to request error clear or let power OFF gt ON in order to stop LED blinking and to delete the error code Chapter 2 Analog Input Modu
237. s setting Set the hysteris of auto tuning MV 0 65 535 lt Table 7 11 Auto tuning function parameter setting items gt 2 Description of auto tuning parameters and how to set them a RUN direction RUN direction is to set the direction of auto tuning run of a loop The available option is forward or reverse The former forward means that PV increase when MV increases while the latter reverse means PV decreases when MV increases For instance a heater is a kind of forward direction system because PV temperature increases when output heating increases A refrigerator is a kind of reverse direction system in which PV temperature decreases when output increases PWM output enable PWM output means an output method to turn a junction on off with a duty proportional to control 7 35 Chapter 7 PID Function Built in function output calculated by a uniform output cycle If PWM output is enabled it realizes PWM output in accordance with PWM output cycle set in the parameter of PWM output junction P20 P3F case of IEC QX0 0 0 QxX0 0 15 designated in the parameter At the moment the PWM output cycle follows the PWM output cycle separately set in auto tuning operation cycle c SV It sets the auto tuning SV of a loop in question Similar to PID control physical values temperature flow rate pressure and etc of an object to control is not meaningful and instead it should use the physical amount
238. s the auto tuning SV of xx th loop The available scope is between 32 768 32 767 Chapter 7 PID Function Built in function 2 ATxx Auto tuning xx Loop operation cycle K1861 16 xx KW18614 16 xx WORD 100 65 535 Auto tuning xx Loop operation cycle sets indicates the operation cycle of xx th loop auto tuning The available scope is 100 65 535 3 ATxx MV max ATxx MV min max MV min MV PIDxx MV max Max MV K1862 16 xx KW1862 16 xx INT 32 68 32 767 _PIDxx_MV_min Min MV K1863 16 xx KW1863 16 xx It sets max MV and min MV of xx th loop respectively If the max MV is set lower than min MV the auto tuning loop generates an error and does not work 4 ATxx PWM AT output junction setting Flag name Address IEC type address Unit Scope S RE AL K1864 16 xx KW1864 16 xx WORD H 20 H 3F AT output junction setting It sets the junction that PWM output of xx th loop is output The PWM output junction is valid only between H 20 H 3F hex If any other value is entered PWM output does not work 5 ATxx Prd PWM output cycle setting _ATXx_PWM_Prd 5 _ PWM output cycle setting K1865 16 xx KW1865 16 xx WORD 100 65 535 It sets the PWM output cycle of xx th loop The available scope is between 100 65 535 at the unit of 0 1105 6 HYS val Hysterisis setting _ATXx_HYS_val Hysterisis setting K1866 16 xx
239. sensor type of CH 0 02 2 Set sensor type of CH 1 2a 2 K 0 J 1 2 R 3 R W Set sensor type of CH 2 Set sensor type of CH 3 T Designate temperature bitO bit3 0 Celsius metric sytem Fahrenheit E NMEL WEE 1 1 oet averaging method EXER of CH 1 1 time average Set averaging method 2 count average oet averaging method 13 0 22 ds Count average 2 64000 times Moving average 2 100 NOM 57 71 05 Set mean value of CH 3 mean value of CH 3 om ow Designate scaling type bitO bit3 E 0 signed 1 unsigned Set min value of CH 0 Min value signed 32768 1 Scaling range unsigned 0 max 1 m Set value of CH 0 i scaling range Max value signed Min 1 32767 Set min value of CH 1 Unsigned Min 1 655535 scaling range Set max value of CH 1 scaling range Set min value of CH 2 scaling range Set max value of CH 2 scaling range Set min value of CH 3 194 25 scaling range 38 Chapter 5 Thermocouple Input Module address Description Setting value R W Instruction Set max value of CH 3 scaling range Set error inf Of CHO Set error inf Of CH1 Set error inf Of CH2 Setting error information Flag Set error inf Of CH3 Cold junction compensation temp of CHO Cold junction compensation temp of CH1 Measured value of cold junction GET Cold junction
240. setting in parameter setting window XBF TCO4S TC 4 CH N IO gt XBF TCO4S 4 CH Disable Enable Enable Enable K K K K Celsius Celsius Celsius Celsius o 0 i ing Sampling Sampling Sampling Bipolar Bipolar Bipolar Bipolar 32768 32768 32768 32767 32767 32767 8 Scaling min max value setting area Address 19 26 a Scaling min max value can be set per channel b There are two type of scaling operation output unsigned 16 bit 0 65535 or signed 16 bit 32768 32767 In case of using PUT instruction scaling min max value setting address 1 as follows B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO Address 19 T AR scaling min max value Address 20 1 with sign Min 32768 Scaling max value 1 Address 21 Max Scaling min value 1 32767 2 without sign Min 0 Scaling max value 1 0001688 526 Max Scaling min value 1 65535 Address 23 CHO min address 19 max address 20 Address 24 CH1 min address 21 max address 22 CH2 min address 23 max address 24 Address 25 CH3 min address 25 max address 26 Address 26 d If input is out of range it keeps previous value But U0x 01 8 UO0x 01 B setting error representation in case of IEC type UX0 x 24 UX0 x 27 are on error information is displayed at bit 6 of address 27 30 Chapter 5 Thermocouple Input Module
241. specification and system 10310000693 configuration built in high soeed counter of XGB main unit It describes power IO extension specification and system 10310000983 XGB hardware IEC EN mu configuration built in high speed counter of XGB IEC main unit It describes how to use the specification of analog input analog SERIE tin 10310000920 output temperature input module system configuration and built in user s manual PID control for XGB basic unit i It describes how to use the specification of analog input analog XGB Position 10310000927 output temperature module system configuration and built in User s manual PID control for XGB basic unit is user s manual about XGB Cnet I F that describes built in XGB Cnet I F communication function and external Cnet I F module of XGB 10310000816 basic unit FEnet I F It describes how to use XGB FEnet module 10310000873 Table of Contents Chapter 1 General a M PIE 1 1 1 2 SPECICATION oFAniog MOodUule Doo ode Eee eoo 1 2 Chapter 2 Analog Input Module 2 1 Setting Sequence before 2 1 222 2 2 23 Name or parta TUDOHUOE sermi N uti ede Ta Uum 2 4 2 4 Characteristic of O GOlVelf
242. st 1 61000 4 4 Voltage 1kV Ambient No corrosive gas or dust conditions 2000m or less neigh 2 or less degree E Cooling type Natural air cooling uM Chapter 2 Analog Input Module 2 2 2 Performance specifications Performance specifications are as follows Analog input 4 20mA range i g 10y DC 0 20mA Input resistance 1 MQ min Input resistance 250 Q 12 bit binary data Signed value 0 4000 Unsigned 2000 2000 value 0 1000 400 2000 0 2000 value Percentile value Absolute max output DC 15V DC 25mA Photo coupler insulation between input terminal and PLC power Insulation method No insulation between channels Connection terminal 11 point terminal block points occupied Fixed type 64 points Consumption Inner DC 5V 120mA current Additional function Filter processing average processing time count Digital output 1 When A D conversion module is released from the factory Offset Gain value is as adjusted for respective analog input ranges which is unavailable for user to change Offset Value Analog input value where digital output value is 0 when digital output format is set to Unsigned Value Gain Value Analog input value where digital output value is 16000 when digital output format is set to Unsigned Value Chapter 2 Analog Input Module 2 3 Name of part and function Respective designations of the parts are as described below
243. sterisis setting Chapter 7 PID Function Built in function 7 4 4 Auto tuning flag The parameters set in the XGB series auto tuning function are saved to the flash memory of basic unit Such parameters are moved to K area for auto tuning function as soon as PLC enters to RUN mode from STOP Auto tuning operation using auto tuning command is achieved by data in K area At the moment if PLC is changed to RUN again after being changed to STOP it takes the parameters in flash memory to K area so the data changed in K area is lost Therefore to continuously apply the parameters adjusted in K area it is necessary to write the parameters set in K area into flash memory by using WRT command In case of IEC type APM_WRT function block 1 Auto tuning flag configuration The K area flags of XGB series auto tuning function are summarized in Table 7 12 0 1 Forward a direction 0 forward 0 mn n 29712 Bit Disable PWM output enable 0 disable es 29727 1 enable 29728 Auto tuning a ECCE QNS ECCE NEN error O normal 1 Reewed WORD word 0 Reserved area K1860 KW1860 SV AT SV loop 00 AT operation K1861 KW1861 WORD 100 _ATOO T s T s 0 1msec ines AT Mv mm ONT O AT MV min value mit inei wkwises Aro worn ATPwm junction setting _
244. strial Systems use the reasonable cover from the product as they are reusable endeavors for the pleasurably environmental preservation of the earth LS values every single customer Quality and service come first at LSIS Always at your service standing for our customers www Isis biz LS Industrial Systems 10310000920 BEAD OFFICE LS Industrial Systems Shanghai Co Ltd gt gt China Ex towel mogye cong Dongan guy Anyang st Gyeonggi do Address Room E G 12th Floor Huamin Empire Plaza 1026 6 Korea hilp reng lsis biz No 726 West Yan an Road Shanghai China Tel 82 2 2034 4689 4888 Fax 82 2 2034 4648 Tel 86 21 5237 9977 ES systems TOKYO LS Industrial Systems Wuxi Co Ltd gt gt China yee UM ceca Address 102 A National High amp New Tech Industrial lial TOYA Development Area Wuxi Jiangsu China e mail Xugh Igis com cn a Tel 86 510 534 6666 Fax 86 510 522 4078 Ischuna sis LS Industrial Systems Beijing Office gt gt China LS Industrial Systems Dubai Rep Office gt gt UAE Address P O BOX 114216 API World Tower 303B Sheikh Zayed road Dubai UAE e mail hwyim lsis biz Tel 971 4 3328289 Fax 971 4 3329444 m LS VINA Industrial Systems Co Ltd gt gt Vietnam Address B tower 17th Floor Beijing Global Trade Center building No 36 BeisanHuanDong Lu DongCheng
245. t specified manually all channels will be specified as Pt100 045 5814 02 bit 040 09 8 06 05 03 bit 00 ChO sensor type setting Ch1 sensor type setting Address 1 2 Address 3 Ch2 sensor type setting Ch3 sensor type setting Address 4 Specified 100 Specified as JPT100 Chapter 4 RTD Input Module 3 Setting temperature display unit Unit of temperature conversion value can be specified as Celsius Fahrenheit 045 0414 02 0441 09 bit 6 bits bits bit2 bitt m w I O N IO C H 1 oOo I O __ Bt Description 0 situs Fahrenheit 4 Setting filter constant If filter constant is not specified or specified as 0 relevant channel is not filtered 045 04 02 041 040 09 8 bit 06 05 03 50 Setting filter constant 1 99 Setting Chi filter constant 1 99 Setting Ch2 filter constant 1 99 Setting Ch3 filter constant 1 99 5 Setting scaling It specifies whether scaling function is used or not Address 6 Address 7 Address 8 Address 9 bito 4 bit13 02 0441 09 X bit 6 5 bit4 03 0020 Address 10 H H H 3 110 Bt Description D x 3 Scaling function is not used Scaling function is used 6 Disconnection information It outputs disconnection information of each channel N I
246. ta I O area of analog output module Address Address S h IEC type type F 15 Bit On 1 Module Ready 0 3 Bit On 1 Channel Error Bit 1 Channel Run PU Bit Off 0 Channel Stop Bit On 1 Output Allow Bit Off 0 Output Forbid UOx 04 CH1 digital input value uu 12 bit binary data U0x 05 2 digital input value UOx 06 CH3 digital input value n the device assignment x stands for a slot number that the module is installed 1 Module Ready Channel Error information means deice name of IEC type a U0x 00 F UX0 x 15 It will be ON when XGB CPU unit is powered or reset with the condition that an analog output module has prepared to convert b U0x 00 0 U0x 00 3 V6SUWO x 0 96 UWO x 3 It is the flags those display error status of each channel in the analog output module B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 BS B4 B3 B2 B1 BO 738 10 890 Module Ready Error information bit 2 Bit On 1 Ready 2 Bit On 1 Error 2 Bit Off 0 Not Ready gt Bit Off 0 Normal 2 Channel operation information a This area is used to display the channel being used B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 BS B4 B3 B2 B1 BO 96UWO x 1 Run channel information bit 2 Bit On 1 During Run 2 Bit Off 0 Operation Stop Chapter 3 Analog Output Module 3 Output setting a Each channel can be specified enable disable the analog output b If the output is not specified out
247. ta type is not specified all the channels will be set to the range of 0 4000 B15 B14 B13 B12 B11 B10 B9 BA B3 B2 B1 Address 2 2 CH 2 CH 1 CHO Input data type bit gt 00 0 4000 gt 01 2000 2000 gt 10 0 1000 400 2000 0 2000 gt 11 0 1000 4 Setting up the output type a It defines an analog output status when XGB CPU unit is stopped b The range is 0 3 and used devices are regarded as Words PE B15 B14 B12 B11 B10 B9 B7 B6 B5 B4 B2 B1 BO Address 3 ws Address 6 Input data type bit Address Details 00 Previous value Set up the output type of CHO gt 01 Min value 10 Mid value Set up the output type of CH1 gt 11 Max value Set up the output type of CH2 E Set up the output type of CH3 Chapter 3 Analog Output Module 5 Error code It displays error codes of each channel B15 B14 12 B11 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 BO Address 11 Address 14 Error code Decimal Address Details error ree Error code Offet Gain setting error Blinks every 2 sec Exceed the range of parameter Blinks every 1sec Exceed the range of digital input stands for the channel with error found Chapter 3 Analog Output Module 3 13 Example Program 3 13 1 Analog output program 1 Program example using Parameter Setting
248. tage current setting switch must be set up accordingly INFUT OUTPUT Voltage Current selection switch V gt c 4 Wire CHO CL Transmitter J E ies on 123 I T 4 Wire N CHI i DC Transmitter y 2 power supply DC24V For analog device DC24V Chap 6 Analog Combo Module 8 Relation between voltage input precision and cable length In voltage input system the cable length between the module and transmitter or sensor influences on the converted digital value of the module The value is as follows Rc Nu LE CUM MC QM II RE 2 ee d Analog input Voltage Where Rc line resistance of the wire Rs internal resistance of the transmitter or sensor Ri internal resistance of voltage input module 1 M9 Vin voltage applied to the analog input Vi error in the converted value caused by source and cable length in voltage RixVs Vin Rs F 2 x Rc Vi 100 Vs Chap 6 Analog Combo Module 6 7 3 Exemplary Analog Output Wiring 1 Exemplary analog voltage output wiring Same wiring scheme is applied to voltage and current outputs except that voltage current setting switch must be set up accordingly XBF amp H04A 1
249. the 5 slot write in U05 06 1 UX0 5 97 for IEC types Word classifier classifier Base No vos toet UX0 5 97 No ho hs Device Type Y NN S or H type IEC type 6 33 Chap 6 Analog Combo Module 1 Module Ready Error Flag is for IEC types x slot No 00 00 0 0 15 at power on or reset of PLC CPU turns on when the analog I O conversion is ready and analog conversion is performed 00 00 0 0 0 0 the flag indicating the error status of A D conversion module bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 U0x 00 UWO x 0 Module READY Error occurrence Bit On 1 Normal Bit Off 0 error Bit On 1 error Bit Off 0 Normal 2 Operation channel information open wire detection information channel error information flags is for IEC types x slot No This is the area for storing the operation information input wire open detection and channel error information by channel x The base No of the XGB PLC is 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 1 9 ss 3 s2l89 8 si s cM o 0 S zt f 9 g zz cm Channel Error Info Open wire detection info Operation Ch Info Bit On 1 error Bit On 1 open wire Bit On 1 in operation Bit Off 0 normal Bit Off 0 normal Bit Off 0 Stop operation
250. ting force Appendix 2 Thermo Electromotive Force and Compensating Cable 2 1 Table of Thermo Electromotive Force Type unit u v 200 100 o PEP t o 200 300 400 soo 600 700 800 900 1000 100 120 E pepe o C pes m e oe ox se oe es n ine em pen ws we ee v on sre ro ec xn e C es em e e pe s e oma m mo em vs n use ee ue o ms er en amo C sema se re we oe mue s re ess oso pss n sex se s e on ma me mms e rr meme ee am or msn m as nn gt unit u V ALe Frew ame o sns ur ss rne arn snos C eme c om ws mer me sem ses ee os eso ver me Lese ue use ne rene sm zs sr as Lene e ner s ss ses con no ero ur e cem came n o sns so news s ore ri em ener nn m ers ze sn ne oo es ner ars ave ver aer s os s ar es ane o rs s o Appendix 2 1 Appendix 2 Thermo electromotive force and compensating force T unit
251. tion Free from corrosive gases and excessive dust E m Atitude o desthan200m 00000000000 than 2 000m Pollution degree Less than 2 Cooling method Chapter 4 RTD Input Module 4 2 2 Performance specifications Here describes general specifications of RTD input module Specifications XBF RD04A 01 No of input channel 4 channels One channel Aputsendor PT100 JIS C1604 1997 type JPT100 JIS C1604 1981 KS C1603 1991 Temperaire PT100 200 600 C input range JPT100 200 6000 PT100 2000 6000 Digital output JPT100 2000 6000 Scaling display 0 4000 Normal Within 0 3 __ Wa Full temp 0 55 Within 0 5 Channel to Non insulation Channel Insulation Photo Coupler Power 15 point terminal block Fixed type 64 points 7 when using XBM DxxxS S type 10 when using XB E C DxxxH H type Filtering Digital filter 160 64000ms Function Disconnection detection Item Max number of equipment Chapter 4 RTD Input Module 4 3 Part Names and Functions Here describes part names and functions ABF REDOSA RUM Name Pesciplons gt Displays the hardware operation status of 4 On Normal D RUN LED Flickering Error 0 2s flickering Off power disconnected hardware error gt Displays the disconnection status of XBF RDO4A Alarm indication LED 2 Flickering Disconnection is detected 1sec flickering Off
252. tion information bit Run channel information Bit On 1 Disconnection Bit On 1 Run Bit Off 0 Normal Bit Off 0 Stop 3 Temperature value It displays current temperature value Its form is temperature value x10 045 04 02 bit 040 09 8 06 05 03 bit 00 CHO temperature conversion value 0 4 temperature conversion value UWO0 x 5 CH2 temperature conversion value UWO x 6 CH3 temperature conversion value 96 7 Chapter 4 RTD Input Module 4 15 2 Operation parameter setting area Operation parameter setting areas of RTD input module are as follows Memory address Details R W Remark Hex eg in or CH1 sensor type setting ee 4 4 CHB sensortype setting RW PUT 9 6 CHO iter constant setting RW PUT __ _ 7 fiterconstant setting RW PUT 8 che fiter constant setting RW PUT DO gt num Noted 1848 o oo fA 68 CHO disconnection information code RW GET 48 69 CH1 disconnection information code RW GET 1 Run channel setting If Run channel is not specified all channels will be stop status bit1S 014 bit13 02 0441 09 6 5 bit4 0020000 Setting channel to use bit Bit On 1 Run Bit Off 0 Stop o IO NIO 2 Sensor type setting If it is no
253. tor 70 2 2 Max Min value CHO value CH1 A D value CHO Digital value CH1 Digital value Seti vau npultem Setting Value Current Value Disable o Sampin 0 Disable Former value Disable Reset max min value Start Monitoring Chap 6 Analog Combo Module d Start Monitoring click Start Monitoring to look up the digital input data of the channel currently in operation The screen shot below is a monitoring window when all the channels are in operation status Special Module Monitor 120 272 MawMinvale Curent value CHAD f 0 0 0 Input Monitoring CHiADvaue 0 0 0 Outputitem f Seting vale Curent value CHODigtal value tari CH1 Digtal value Output Monitoring Impultem Setting Value CurentVaue Channel Disable Disable 420m 7 Ouputpe 07400 074000 Detail information of input CHO Sampling Sampling Average vate SetingVaue CurentVaus Channels Channel status Disable Disable 4720 4720m Detail information 040 of output CHO Former value Former value 7 i Disable Disable Reset max min valu
254. tput e SV ramp PV follow up 0 It is not necessary to set SV ramp and PV follow up because the example does not use them e Min PV Max PV 0 Set them as 0 and 4000 respectively so that it could be identical with A D input module s input scope 7 51 Chapter 7 PID Function Built in function Example of PID control program after PID auto tuning The program example for PID auto tuning is illustrated as figure 7 27 FOOS9 07 0 _ON U1 CHO AC 102 02 0 B2 CHO nu TEN 0099 Un 0z 1815 _4T_EN O1_CHO_04 amp 00 PV 000 MOOT PIDAT n 0099 0 K1876 102 03 _AT_EN MV 02 K18B53 K1218 _AT_OONE ATOO K p _PIOOO_K_p 220 ATOO_T_i X PIDOO T i Klara MODO d E ir K1231 102 03 ON CPIDOG MV _02 240 D a ad P DRUM el FOOS9 HOO01 uot 02 1229 _O1_CHO_O4 1000 2B T Figure 7 27 Example program of PID control after auto tuning 1 Devices used 7 5 Chapter 7 PID Function Built in function 2 Program explanation a Since 0099 always on is ON if PLC is converted form STOP to RUN CHO of A D and D A starts operating b Once 0000 junction is on the auto tuning of loop 0 starts At the moment PV entered to CHO is moved to K1875 the PV input device of loop 0 and saved accordingly The auto tuning MV of Loop 0 output b
255. uations Therefore we strongly advise users to observe all precautions properly just like warnings gt The marks displayed on the product and in the user s manual have the following meanings Be careful Danger may be expected JIN Be careful Electric shock may occur The users manual even after read shall be kept available and accessible to any user of the product Safety Instructions Safety Instructions for design process Please install a protection circuit on the exterior of PLC so that the whole system may operate safely regardless of failures from external power or PLC Any abnormal output or operation from PLC may cause serious problems to safety in whole system Install protection units on the exterior of PLC like an interlock circuit that deals with opposite operations such as emergency stop protection circuit and forward reverse rotation or install an interlock circuit that deals with high low limit under its position controls lf any system error watch dog timer error module installation error etc is detected during CPU operation in PLC all output signals are designed to be turned off and stopped for safety However there are cases when output signals remain active due to device failures in Relay and TR which cant be detected Thus you are recommended to install an addition circuit to monitor the output status for those critical outputs which may cause significant problems Never overload more t
256. ue may have an error g Thermocouple input module may use 4 types of thermocouple sensors K J T R Chapter 5 Thermocouple Input Module 2 Terminal array Terminal array of thermocouple input module is as follows 1 045 RUN ALM Signal HS Purpose CHO CHo CHo Channel 0 thermocouple input CH1 Channel 1 thermocouple input 1 CH2 Channel 2 thermocouple input CR Channel 3 thermocouple input DC24V DC24V For external DC24V power 3 Wiring example Thermocouple can be connected with module directly If point where temperature is measured is far from the module use the compensating cable to connect The compensating cables are different according to thermocouple type For more information about the compensating cable contact the producer of thermocouple Terminal block for compensating cable extension Module terminal 2s Compensation Sensor cable 3 Sensor 1 In case sensor and compensating cable are shielded shield connection is possible to PLC FG terminal 2 It is necessary to use extension terminal block of which material is kept at uniform temperature in order to reduce error 3 Compensating cable should use the same type of sensor which was used for measuring Chapter 5 Thermocouple Input Module 5 5 Operation Setting and Monitor 5 5 1 Operation Parameter Setting Operation parameter of thermocouple
257. unit second PID constants Differential Real number 0 3 40282347 38 unit second constant D Scope of set value 32768 3276 0000000000 32 768 32 32768 3276 0000000000 Scope of present value INT 32 768 32 767 Scope of maneuver value INT 32 768 32 767 Scope of manual maneuver value INT 32 768 32 767 Operation PID RUN Flag On by loops Stop PID RUN Flag Off by loops Normal PID Error Flag Off by loops Indication Error Error PID Error Flag On Error code occurrence by loops Normal PID Warning Flag Off by loops Warning Error PID Warning Flag On Warnig code occurrence by loops Control of P PL PD and PID control of forward reverse Control operation operation Control interval 10 0ms 6 553 6ms 0 1msUnit PWM output Supportable Mixed forward reverse Supportable output Limiting change of INT 32 768 32 767 present value Limiting change of INT 32 768 32 767 maneuver value set 0 65 536 frequency of control cycle time Additional functions db pns 0 65 536 frequency of control cycle time Cascade control Supportable Min max present 32 768 32 767 value Differential filter 0 01 655 35 x 100 Scaled Up Dead band setting 0 65 535 Prevention of dual Supportable integral accumulation PID operation pause PID operation pause pause Supportable lt Table 7 6 built in PID control performance specification gt Chapt
258. updated although a user directly enters it Chapter 7 PID Function Built in function 7 3 PID Instructions describes PID control commands used in XGB series The command type of PID control used in XGB series built in PID control is 4 1 PIDRUN PIDRUN is used to execute PID control by loops F IDRUH 5 Operand S means the loop no to execute PID control and avaiable only for constant 0 15 f start signal is on the PID control of a loop starts n case of IEC type PID control is conducted by PIDRUN function block In case of XGB IEC type inputs 0 at BLOCK P HEU BLUC STAT LOOF PID_STAT only supported on IEC type indicates status of PID operation For meaning of inidcation data refer to indication contents of PID STATE Chapter 7 PID Function Built in function Indication contents of PID STATE n 1680001 PV MIN ALM E value exceeds range of maximum minimum 1640003 PID dPV WARN Variation of current value of this PID cycle exceeds the current value variation limit f ipulated val f this PID d 1640004 PID dMV WARN ariation of manipulated value of this cycle exceeds the manipulated value variation limit PID MV MAX WAR Manipulated value of this PID cycle exceeds maximum 1680005 manipulated value 16 0006 PID MV MIN WARN Manipulated value of this PID cycle is smaller than minimum manipulated v
259. user program or parameters The I O types of digital data are defined as follows 1 Unsigned Value 2 Signed Value 3 Precise Value 4 Percentile Value 6 4 1 Input Characteristics The graph below shows the data conversion characteristics by input range Practical analog input range 1011 2047 4047 1000 2000 4000 ee rea M value 750 1000 3000 _ Digital 500 0 2000 f output 250 1000 1000 IE NEA UP n 0 2000 E 12 2048 48 Offset value DC 4 20 mA 4 mA 12 mA 20 mA DC 0 20 mA 0 mA 10 mA 20 mA Analog DC1 5V 1V 5V Input DC0 5V 25V 5V DCO0 10V OV 5V 10 V 1 DC 4 20mA Range Input Digital gur ent Output Range 20 Value Sioned Value 2000 2000 2048 2000 1000 x 1000 jw 09 SETS Value O 1000 Chap 6 Analog Combo Module 2 DC 0 20mA Range Input Digital Analog Input current a Output Range 024 o 5 w0 20 20 Unsigned Value o Signed Value 2000 2000 2048 2000 1000 NS 1000 Precise Value oe Percentile Value O 1000 3 DC 1 5V Range Input Digital Analog Input eS V Output Range L fs Value Signed Value 2000 2000
260. user through S W package will be saved on the flash memory of RTD module when I O Parameters are downloaded 4 12 2 How to use I O Parameter 1 Run XG5000 to create a project Refer to XG5000 programming manual for details on how to create the project 2 Double click I O Parameter on the project window Project Window a x Example NewPLC XGB XBMS Offline FM Variable Comment D E Parameter Basic Parameter H fa Embedded Parameter A S Scan Program T New Program 3 If I O Parameter Setting screen appears click Module part at relevant slot and select relevant module 4 On the I O parameters setting screen find and click the slot of the base where RTD module is installed on 2 xi Module list j Base 00 Defaut Sot Comment InputFiter_ Emergency Ouf Allocation 00 Default 01 Default 02 Default 03 Default 04 Default 05 Default 06 Default 07 Default Chapter 4 RTD Input Module 5 Click the arrow button on the screen to display the screen where an applicable module can be Base 00 Default 00 Default 01 Default a 02 Default m f Digital Module List 03 Default 52 8 Special Module List 04 Default Analog Input Module 05 Default Fl Analog Output Module 06 Default Temp Measuring Modul
261. utput Module CHO Active Analog Output Module CHI Active 41 2 Analog Output Module CH2 Active i 002 01 3 Analog Output Module CH3 Active 02_CHO_OUTEN _ 02 02 0 Analog Output Module CHO Output Status Setting 02 02 02 1 Analog Output Module Output Status Setting CH Analog Nutout Module CH Status Sertina f For IEC type as shown below the variables are registered V Global Variable Drect variatie Comment Variable Kind Variable Type Address nit Retain Comment e e 12 VAR GLOBAL _01_ADO_ACT BOOL amp UXD 1 1 Analog 10 Module Input CHO Active 2 _01_ 00_ WORD ZUNO 1 Analog 10 Module Input CHO Data 3 GLOBAL D1 ADO ERR BOOL SUX0 1 24 Analog 10 Module Input CHO Error VAR BL BAL 01 00 100 BOOL SUX0 1 20 Analog 10 Module Input CHO Disconnect ion 5 VAR_GLOBAL _01_AD1_ACT BOOL XUXO 1 17 Analog 10 Module Input Active GLOBAL _01_4 01_ WORD SUWO 1 5 Analog 10 Module Input Data 7 GLOBAL D1 ADT ERR BOOL BUXO 1 25 Analog 10 Module Input Error BL BAL _01_401_100 BOOL amp UXD 1 21 Analog 10 Module Input Disconnection 9 VAR GLOBAL D1 DAO ACT BOOL SUX0 1 16 Analog 10 Module Output CHO Active 10 VAR GLOBAL D1 040 WORD SUID 1 7 Analog 10 Module Output CHO DATA 11 VAR GLOBAL 01 040 ERR B
262. vi 1 2 100 5 Chapter 2 Analog Input Module 2 9 Operation Parameter Setting A D conversion module s operation parameters can be specified through XG5000 s I O parameters 1 Settings For the user s convenience of A D conversion module XG5000 provides GUI Graphical User Interface for parameters setting of A D conversion module Setting items available through I O parameters on the XG5000 project window are as described below in the table p UU O parameter 1 Specify the following setting items necessary for the module operation Channel Enable Disable setting Setting ranges of input voltage current Output data format setting Filter processing Enable Disable setting Filter constant setting Average processing Enable Disable setting Average processing method setting Average value setting The data specified by user through S W package will be saved on A D conversion module when Special Module Parameters downloaded In other words the point of time when Special Module Parameters are saved on A D conversion module has nothing to do with PLC CPU s status RUN or STOP 2 Parameter setting a Run XG5000 to create a project Refer to XG5000 program manual for details on how to create the project b Double click I O parameters the project window Em a NewPLC XGB XBMS Stop 424 Variable Comment B E Parameter Parameters 3g TT Parameters a Scan Progra
263. window and the XGB built in PID function executes PID control by each device value in question In addition the output data such as MV calculated and output while PID control is executed is also saved into the K areas By changing the values in K areas control setting may be changed any time during PID control By changing value of area you can change control setting whenever you want during the PID control 1 PID control flag expression PID n xxx gt n loop number gt xxx flag function i e PID10 K p means K p of loop 10 1 Occupies 40 words per loop Chapter 7 PID Function Built in function 2 PID flag function Each function of K area flags for XGB series built in PID control function is summarized as follows a Common bit area The area is a flag collecting operation setting and information consisting of bits to each 16 loop Each bit of each word device represents the information of each loop That is n th bit represents the information about PID loop n 1 PID MAN PID RUN mode setting IEC type MAN PID RUN mode setting K1200n 19200 n Available t determines whether to operate the PID control of n loop automatically or manually For more information about RUN mode refer to 6 2 3 PID control parameter setting If the bit is off it operates automatically if on it runs manually 2 PID PAUSE PID Pause setting address _PID_ PAUSE PID pause setting K1
264. x 15 Module READY flag F 15 Bit On 1 module normal U0x 01 0 UX0 x 16 CHO Run flag UOx 01 1 9o UXO x 17 CH1 Run flag Bit On 1 channel run U0x 01 2 UX0 x 18 CH2 Run flag Bit Off 0 channel stop U0x 01 3 UX0 x 19 CH3 Run flag U0x 01 4 UX0 x 20 CHO Disconnection flag UOx 01 5 UX0 x 21 CH1 Disconnection flag Bit On 1 Disconnection U0x 01 6 UX0 x 22 CH2 Disconnection flag Bit Off 0 Normal UOx 01 7 UX0 x 23 CH3 Disconnection flag value value value value 009 UWOx 9 CHiscalngvalue UOx10 UWO x 10 CH2scalingvalue UOxk11 UWO x 11 CH3scalingvalue n the device assigned x stands for the slot no on which module is installed 1 Module ready channel error information means device name of IEC type a U0x 00 F UX0 x 15 It will be ON when PLC CPU is powered or reset with A D conversion ready to process A D conversion b U0x 00 0 U0x 00 3 UWO0 x 0 UWO x 3 It is a flag to display the error status of A D conversion module Bit Bit14 Bit13 Bit12 Bit11 Bit10 Bits Bit Bit Bits Bit2 EU 2 5 96UWO x 0 Module READY Error status Bit On 1 normal Bit Off 0 error Bit On 1 error Bit Off 0 normal Chapter 4 RTD Input Module 2 Channel run stop information a It displays which channel is being used bit1S 4 bit13 02 0441 09 X bit 6 5 UWO x 1 Disconnec
265. y PIDAT command is output to D A output module by line 11 MOV command d Once auto tuning is complete it moves P 1 D coefficients generated from auto tuning to the input devices of P and D K1218 K1220 and K1222 sets 001 and starts the operation of PID loop O 3 In case of IEC type program example is as shown below SFX153 SUXO 1 15 _ON 01 GHO_AC SUX0 2 32 _02_CHO_OU TEN amp FX153 _ON TuningComp AutoTuning leted SUWO 1 2 1 875 01 CHO 00 PV 0 AT_STAT 0 SKX29879 876 SUW0 2 3 _ATOO_MY _02_CHO_DA TA 2 0934 9 _ATOO_K_p 1000 0935 amp KD610 T i PIDOO T i 2 0936 1 1 _ATOO_T_d 1000 TuningComp leted 5 Chapter 7 PID Function Built in function 7 6 Error Warning Codes describes error codes and warning codes of the XGB built in PID function The error codes and warning codes that may occur during use of the XGB built in PID function are summarized as table If any error or warning occurs remove potential causes of the error by referring to the tables 7 6 1 Error codes Error TE sodes Memes H O001 MV MIN MAX ERR It occurs when max MV is set lower than min MV Make adii sure to set max MV larger than min MV H O002 PV MIN MAX ERR It occurs when max PV IS set lower min Pv Make sure to bm set max PV larger than min PV occurs when the period of auto tuning or PID operation 0003
266. you for purchasing PLC of LS Industrial System Co Ltd Before use make sure to carefully read and understand the Users Manual about the functions performances installation and programming of the product you purchased in order for correct use and importantly let the end user and maintenance administrator to be provided with the User s Manual The User s Manual describes the product If necessary you may refer to the following description and order accordingly In addition you may connect our website http eng lsis biz and download the information as a PDF file Helevant User s Manuals No of User s Description Manual It describes how to use XG5000 software about online functions XG5000 user s 10310000512 such as programming printing monitoring and debugging by manua using XGB series products XG5000 user s It describes how to use XG5000 software about online functions manual for such as programming printing monitoring and debugging by 10310000834 XGI XGR XEC using XGB IEC language It is th f ing t lain how t is the user s manual for programming to explain how to use Instructions amp adi li i 10310000510 commands that are used PLC system with XGB CPU Programming XGI XGR XEC ie a T n is the users manual for programming to explain how to use Instructions amp ibis j 10310000833 commands that are used IEC language Programming Wen haus It describes power IO extension
Download Pdf Manuals
Related Search
Related Contents
Sony DAV-DZ850M User's Manual 国囲を回す ー`固を押しなから、 囲を回す。 VitalSim 第 20 連結送水管 1 機器点検 点 検 項 目 点検方法(留意事項は※で hinq v4.0 technical manual manual caladora - KNOVA Rapport - Les anciens sites web de la DGE Lecture en période estivale avec Motmot le robot Flowcon SH User Manual Copyright © All rights reserved.
Failed to retrieve file