Home

CD120 Series Servo

image

Contents

1. cvi A 52 2 1 TIE act uas outta asume deep odd Conus uan 52 6 2 2 Auto Adjustment Only for Velocity 56 6 9 0scillation u uu uuu BR AB RS 58 64 Debugging Example u ua kumaha sei be Od Y 59 59 6 4 2 Procedure for Parameter 61 Chapter 7 Troubleshooting eet a Yn aa atau Y 67 7 AIarmMlessadeS mL 67 Te loubleshopling uu uuu uuu u ka EET 67 Chapter S Appendix 69 STROMA NOGE u uuu UR Y NF FN FARI 69 8 2 Servo Drivers and Motors Selection Table rr 74 8 3 Technical Specifications of Servo 75 8 4 Technical Specifications of Servo 76 A 76 77 8 5 Dimensions Of Servo Driver Units MM sba d cot s asit A WE AA OA GA 78 8 6 Brake Resistor Selection Table 79 Chapter 1 Product Acceptance amp Model Descri
2. Error Control Error History Control Panel k Initialize Save Driver Porperty Saye motor parameters Initialize control parameters Rebont driver 5 2 2 Speed Mode Mode 3 and 3 3 Speed mode without acceleration and deceleration Speed mode with acceleration and deceleration 1 Control by PC software 1 1 Enter F003 window roto T a File Computer Driver Motor Extend View Help Basic Control Loop Port Operation Mode Data Dictionary Driver Config Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty 1 2 Change the 16th parameter FO03 Din Mode 0 DinS Function Function Din Function Dio Polarity Dio Simulate Switch Un Auto Dout1 Function Dout Function Dout3 Function Dout Function DoutS Function 17 Din Hode1 18 Din Speed RPH 19 Din Speedi RPH 1 3 Simulate the drive enable function then the actual operation mode Operation Mode Buff will be changed into 3 51 2 File Computer Driver Motor Extend View Help s Function SimulatePolarityReal Uirtual pIN1 driver enable E ea pimo fauit reset mode DIN4 NULL LI p INS NULL DIN6 NULL Dum NULL Function Simulate Polar puri ready 00 F J pour2 error 1
3. uif required offset voltage 3 Internal Multi velocity mode 3 1 Mode description This model uses DIN signal to control motor running at preset target velocity Note 1 Multiple velocity control can only work in mode 3 and 3 2 he parameter d3 28 Analog Speed Con must set as O 3 At least one of the DIN function DinX Function is set as Internal speed O Internal speed 1 or Internal speed 2 Parameters for internal multi speed control mode 0 0 0 Dn Speed 1 0 Spee Internal speed 0 _ 2 x 3 1 0 Din 61 BOR 3 2 Example 5 4 Set DIN4 to control 2 internal speeds Speed 1 is 100rpm and speed 2 is 500rpm Select speed 1 when DIN4 is OFF and select speed 2 when DIN4 is ON 1 Select Multi Velocity m File Computer Motor Extend View Help Basic Operate Control Loop VO Fort Operation Mode Pulse Mode Data Dictionary Analog Velocity Mode Driver Config Analog Torque Mode ECAN Multi Position Mode Oscilloscope Multi Velocity Mode Error Control Homing Mode Error History Auto Tuning Control Panel Auto Reverse Initialize Save Driver Porperty 2 Set Din Speed as following figure Multi Velocity Mode Din Speed6 188 668 A Din Speed 000 rpm 4 Din Speed3 RT rpm 5 Din Speed 0 008 rpm 6 Din Speed
4. S3 3353 130D 0200 20AAK 2HS SA 3453 130D 0235 15AAK 2HS F8 3846 855 0045 05AAK FLFx 0 3045 5 0020 30 E1 3145 SME60S 0040 30Axx 3LKx E2 3245 SME80S 0075 30Axx 3LKx Below types are used only in CD120 L0 304C SMH605S 0020 30AAK 3DKH L1 314C SMH605S 0040 30AAK 3DKH L2 324C 575 0008 08AAK FDFH L3 334C 575 0015 08AAK FDFH L4 344C SME60S 0020 30AAK 3DKH L5 354C 575 0100 10AAK FDFH 3 When changing the motor model it should be Capital letters and numbers Commu Delay Motor IIt I p Hotor IIt Filter Hotor p L Hotor mH 11 R_Hotor Ohm 12 Ke Motor Urms krpm 13 Kt Motor Hn firms 14 Jr Motor 15 Brake Duty Cycle 16 Brake Delau 17 Inuert Dir Hotor 18 Motor Using 4 changing it needs to restart driver KicoSeno a O Computer Motor Extend View Help Basic Operate Control Loop Port Operation Mode Data Dictionary wan a Save control parameters sque motor parameters Initialize control paraneters Driver Config ECAM Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty 5 Click the icon ro in toolbar then popup control window nono gt ING File Computer Driver Motor Extend View Help 18 Function SimulatePolarity Real Uirtual DINifdriver
5. V max speed complies with 92 24 Max Speed parameter settings Max Speed Limits the max rotation speed of the M In the analog torque mode external analog command signals are directly inputted to the current loops in the driver thus directly controlling target current through the internal current loop Analog signal is processed in the same way as that in the analog speed mode In the analog torque mode is calculated according to the specified 7 with the demand emand formula of 7 is a torque constant demand t 1 demand K 42 Factor 1 calculated according to demand Factor U demand 2048 2048 and U filter with formula of Mer Ipeak indicates the peak current of driver In summary the calculation procedure for analog torque mode is as following table Method psp Calculate U according to the offset voltage and dead zone voltage that require settings 2 Calculate according to the required torque Tenana Step 3 Calculate Factor according to ner and 1 demand Calculate Analog_ Dead according to the required dead zone voltage Calculate Analog_ Offset according to the required offset voltage 3 Operate by PC software 2047 m U filter 10v 10v U T demand Factor U demand 2048 2048 shift dead I K demand 1 2 filter sk Ipeak 8191 10v Analog_ Dead
6. 123 Ap 6 Operation 3 DEC 7 CHD_g 0 000 ap 8 Pos Target 0 inc 9 SpeedDemand RPH 100 rpm 18 Control Word 2 11 Switch_On_ uto 0 im IH im At this moment the motor will run at 100RPM The trial operation is finished EAM Chapter 5 Operation Mode 5 1 IO Function CD120 series servo driver supports 7 digital inputs and 2 digital outputs 4 channels of these digital inputs can be user defined The 2 digital outputs can be user defined There are two ways to open port 1 Select in toolbar 2 Select in menu Kincsevo EN File Computer Driver Motor Extend View Help Kincosevo 1 Driver Motor Extend View Help Basic Operate Control Loop Port Operation Mode Data Dictionary Driver Config ECAN Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty sIla Then popup window as following figure s Function SimulatePolarity Real Uirtual DIN1 driver enable Fault reset mode control DINGS positive limit limit 63 dii pIN homing signal Function Simulate Polarity Real DDUT1 ready DOUT error position reache
7. E C 5 Speed Fb 240 8088 Hz 6 Speed Hode NULL 21 E Function Simulate Polarity Real DOUT4 ready ACE m Operation Hode Buff 2 Status Word 4457 NULL m m 3 fictual 50000 inc hx Real Speed RPH 0 rpm DOUT3 position reached vel EI En 08 0 121 i 7 CHD 9 909 pouta zere verec tg E 8 58888 TT DOUTS NULL EI 9 SpeedDemand RPH 8 rpm 18 Control Word 3f HEN NULL 11 Switch Auto 8 DEC SAS E CHD q Hax 16 691 DOUT7 motor brake m 508 808 ee Im p p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LI I ita 2 Y 1 n mmi 1 1 1 I 1 414 112 5000 m 12 9000 Scanrate n 250 lus Scale Offset Unit Auto Cursor v Pos Demand B 48319 H fine Cursor Time us Data inc Pointer offset 208 G x 1 Cursor Humber of value 588 6 H 4 Cursor Trigger on signal _ Pos Denand m 3 Pos Error H 19 inc Id D 1 B ap 58888 inc Speed Bac 1e 6 4 ecrease value continue S
8. m E 11 Switch On Auto 0 DEC CHD q homing signal E C Function Simulate Polarity Real DOUT4 ready E e D0UT2 error E e DOUT3 position reached uvel DOUT4 zero velocity 4 m DOUT5 notor brake 4 m C 3 4 Save parameters Note Start homing is triggered by rising edge signal 50 Chapter 6 Control Performance 6 1 Auto Reverse In this mode motor will run forward and reverse continuously according to the setting mode User can set parameters in velocity loop and position loop in this mode Please make sure auto forward reverse Is allowed in the machine before using this mode and make sure the power of driver can be cut off anytime to advoid accident Operation procedure for auto reverse 1 Use JD PC software to online according to chapter 5 2 Set speed mode control according to 5 4 1 3 Click the menu Driver Operation mode Auto Reverse and set the parameter for auto reverse Set Auto Reverse as 0 for no control Set Auto Reverse as 1 for position control The motor will run between the position Auto Rev Pos and Auto_Rev_Neg The unit is inc The speed depends on target velocity Set Auto Reverse as 3 for time control The motor will run between time Auto Rev Pos and Auto_Rev_Neg The unit is ms The speed depends on target velocity Following figure shows the parameters need to set In this figure the servo will run between 10000 inc and 10000 at
9. 5780010 10AAKFDFH 2 Explain in detail Kinco servo does not configure motor in default setting 1 Customers have the data file Configure motor by downloading data file Use the CD PC software to download data file to servo driver then driver and motor can work normally Please contact us if there is any problem after downloading In CD PC click the Extend gt Write Driver Config Then open the data file For example name cdi write it to driver Note You should download the new version software from our website http www kinco cn en s KincoServo 4 LIS As E File Computer Driver Motor Extend View Help GGH s Write driver Config Open data file The name is user defined Download the data file to driver Write process Start export data Save parameter process lt Choosing load data file Date modified 2011 2 22 13 52 4 File name name Files of type FiesC cd Cancel Comm Status Open COMI 38400 ie 2 Customers do not have data file They need configure motor model in servo Customers can configure the motor s model according to driver and motor configuration table mentioned above then set the parameters according to the application If the motor s model do not configure properly the driver and motor may not work normally You can configure motor model via keys on servo
10. DOUTS 2x Status Word 4437 HEX m El 3 Pos Actual 4510 inc DOUTA 4 Real Speed RPH 500 rpm ue 4 d DOUTS El 6 Operation Mode 3 DEC 7 q 9 000 00 6 8 Pos Target B inc 9 speedDemand 508 rpm LIS 18 Control Word 11 Switch Un Ruto 12 q 16 691 The oscilloscope is shown as follows actual speed response is 10 00ms 260 mE J 2 600 000000 222600 000000 3T 5000 a r 5000 112 5000 Stanrate 250 Dus Channel Scale ffset Unit Auto Cursor 4 5 eed Demand 2e2 H 8 dr m B C Time us Data rpm Pointer offset 58 aig Peet p a LL EUN C 1 Cursor 1 10 88 504 0000 Humber of ualue 58B ESI EZ 8 H Trigger on signal E 2 20 88 528 00000 Speed QEI Back 1 Speed Bac 9 rpm Ch Id B 10 00 1032 0000 Decrease value iN 9 80008 rpm fte6 a continue Start Reread Export Import i 2 Position Loop Adjustment 1 Adjust Kpp 2 Adjust CK Velocity Adjust Vif parameter according to the allowable position error and coupling performance of machine Normally is 100 If system doesn t need high response for position then this parameter can be decreased to reduce overshoot 3 Use oscilloscope to observe curve Set motor running at Auto Reverse mode by time Operation mode 3 set
11. In the auto tuning mode the data of numeric display is automatically switched to the real time display mode of K Load data When K Load data gradually becomes stable the driver automatically adjusts Kvp and Kvi data of a velocity loop so that the actual bandwidth of the velocity loop is 50Hz When K Load data becomes stable the driver automatically stops auto tuning operation then you need to customize Vc Loop BW representing the desired bandwidth of the velocity ring Finally run the test system in the actual environment and save the parameters Precautions Auto tuning applies when both forward rotation and reverse rotation of a motor are allowable and the loadings do not change much during the operation When forward rotation or reverse rotation of the motor 57 Is not allowable on a device it is recommended to adjust the parameters manually During auto tuning operation pulse signals digital input signals and analog signals of the external controller are temporarily unavailable so safety must be ensured Before auto tuning operation it is recommended to properly adjust the and Speed Fb feedback filter parameter values of the velocity loop to prevent visible oscillations when the system works in the speed mode If necessary adjust the data of notch filter to inhibit resonance The time for different load tuning varies and generally a few seconds is required The auto tuning time can be reduced by pres
12. U 8191 10v Analog Offset U shift 3 1 Set Din 0 as 4 in Driver gt Control panel gt F003 as shown in following figure xm 6 Din Function Din Function HEX 8 Dio Polarity Hex 9 Dio Simulate Hex E 10 Switch On_ uto DEC 11 Douti1 Function 1 HEX 12 Dout2 Function 2 HEX 13 Dout3 Function HEX Dout4s Function a HEX DoutS Function Din Din Speed T 19 Din Speed1 RPH 598 rpm 28 Din Speed RPH B rpm 47 3 2 Set related parameters for analog channel 1 in Analog Torque Mode see _ File Computer Driver Motor Extend View Help Basic Operate Control Loop Port Operation Mode Pulse Mode Data Dictionary Analog Velocity Mode Driver Contig Analog Torque Mode Multi Position Mode Oscilloscope Multi Velocity Mode Error Control Homing Mode Error History Auto Tuning Control Panel Auto Reverse Initialize Save Driver Porperty ADC1 Buff 1 2819 2x out 0 89 dx ADC Buff 1 Hx Analog out 5 nalog1_Filter 5 Analogi Dead 7 Offset 8 Analog Filter 5 9 Analog Dead 1B Analog Offset 11 Analog Torque Factor 1HBB En Rn 13 Analog Con 14 Analog HaxT Factor 5 15 Speed Limit Factor 18 DEC 3 3 Save parameters 48 5 2 5 Homing Mode Mode 6 1 Pr
13. 4 pOUT3 position reached uel 1 4 zero velocity m DOUT5 motor brake Operation_Hode_Buff 2 Status Word 4437 HEX 3x Pos fictual 3 inc hx Real Speed RPH 0 rpm 5 4 0 009 6 Operation_Hode 3 DEC 7 4 0 000 8 Pos Target 0 1 9 Prorile_Speed 0 rpm 18 SpeedDemand 0 rpm 11 Control Word 2f HEX 42 Switch Auto 0 DEC 13 CHD_q_Hax 13 096 imi im ma IN md ma 8 TA 1 4 Simulate the operation mode function then the actual operation mode will be changed into 3 Rs KincoSer File Computer Driver Motor Extend View Help T Function Simulate Polarity Real Virtual driver enable m m E 1 Operation_Mode_Buff 2 Status Word 4457 HEN fault reset 4 3x Pos Actual 3 inc m yx Real Speed RPH 0 rpm m E 5x I q 0 009 6 Operation Hode 3 DIN4 NULL m m e 7 CHD_g 0 000 Ap 8 Pos Target 0 inc DIN5 NULL 4 EI e e 9 Profile Speed 0 rpm 18 SpeedDemand_RPH 0 rpm DIN6 NULL E 11 Control Word 2f HEX 12 Switch 0 DIN7 NULL 4 13 13 096 Function Simulate Polaritu Real pouta ready ed E e pour2 error ee E e pours position reached uel E e DOUTA zero velocity m E e DOUTS motor br
14. 9808 internal position 1 1000 quick stop 2006 Start homing 4006 active command 8001 internal speed 2 8002 internal position 2 3664 Multi Din B 8888 Hulti Din 1 30180 Hulti Din 2 OK Cancel 3 Enter Basic Operate window then set Switch On Auto as 1 OOOOOOOOOOOOOOOO0O000 05 Basic Operate Operation Hode Buff 2 status Word dx Pos Actual yx Real Speed RPH Dx 14 6 Operation Hode CHD 8 Target 9 Profile Speed 1H SpeedDemand RPH 11 Control Word 12 Switch a 13 CHD 4 4 Enter Pulse Mode TT T KincoServo File Computer Motor Extend View Help al Basic Operate Control Loop Port Operation Mode Pulse Mode Data Dictionary Analog Velocity Mode Driver Config Analog Torque Mode Oscilloscope Multi Position Mode Error Control Multi Velocity Mode Error History Homing Mode Control Panel Auto Tuning Initialize Save Auto Reverse Driver Porperty 5 Set electronic gear Gear_Factor as 1000 Gear_Divider as 2000 and others as default Haster Speed hear Master Gear Slave H Rear Factor PD Filter 8 Frequency Check 6 Enter Initialize Save window Koo 8 MEME SN File Computer Motor Extend View Help Basic Operate Control Loop h VO Port Operation Mode Data Dictionary Driver Config Oscilloscope
15. COM Driver X3 9 pin female 9 pin male 2 Software 1 Open folder double click icon to open the software as shown in following figure KincoServo File Computer Driver Motor Extend View Help Gus j ro e n UC I a Title bar b Menu bar Tool bar Comm Status Close 2 Create new project lt KincoServo u File Computer Driver Motor Extend View em ALO jr Create new document Comm Status Closei y 15 3 Popup window Communication Way then choose RS232C and click Next C RS485 USB C CAN RS232C Line Hext Cancel 4 Enter Property window set the parameters like COM Baudrate and Driver ID Then click button ett 1512 lt com 33400 W ww NE 5 If there is message Comm Status Open COM1 38400 in the Down right corner of the software it means online successfully KincoServo k Eile Computer Drive Motor Extend View Help i 4 ol e em COM Baudrate Driver ID 7 EI Comm Status Comm Status Open COM1 38400 16 4 3 Trial Operation 1 Enter Group F004 as shown in following figure Commu Delay Motor IIt I Motor IIt Filter Imax L Motor R_Hotor Motor Kt _Hotor Jr Hatar Brake Duty Cycle Brake Delay Inuert Dir Hotor
16. D120 Series Servo User Manual 2013 1 15 Content Chapter 1 Product Acceptance amp Model Description 4 g Eu o r TEE EET 4 1 2 DESChDUONS m yu y ae uu OO as 4 1 2 1 Nameplate Descrpitions a 4 1 2 2 Model FHS 5 1 3 Servo Drivers and Motors Selection n S 6 1 4 Components Descriptions of Servo Driver 7 Chapter 2 Precautions and Installation Requirements J 8 2 NPE C aru amupa ukata 8 2 2 Environmental GOMGMONS 8 2 MOUNTING Directions SOACING ee ny tea tects Roe 8 Chapter Interfaces and Wirings of CD120 Driver 10 o Nu ld lace DIagri Gli OY i UIS 10 IMC D IEEE 11 XL RS252 and Encod
17. In this case the initial direction of motion is dependent on the edge being sought The home position is at the index pulse on either side of the rising or falling edges of the home switch as shown in the following two diagrams If the initial direction of movement leads away from the home switch the drive must reverse on encountering the relevant limit 70 switch index signal home switch A ees positive limit 7 index signal E ______________ Methods 15 and 16 Reserved These methods are reserved for future expansion of the homing mode Methods 17 to 30 Homing without an index pulse These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse it is dependent only on the relevant home or limit switch transitions For example methods 19 and 20 are similar to methods 3 and 4 as shown in the following diagram Ud negative limit St home switch signal 275 positive liit 3 home switch signal negative signal i 7 Methods 31 and 32 Reserved These methods are reserved for future expansion of the homing mode Methods 33 and 34 Homing on the index zu index signal Method 35 Homing on the current position In this method the current position is taken to be the home position Methods 17 and 18 Use the mechanical terminal as r
18. M E CHD_g 8 000 p 8 Pos_Target 56666 inc DOUTS NULL mE E 9 SpeedDemand RPH 8 10 Control Word DOUT6 NULL m 11 Switch Auto 8 DEC CHD q Hax 16 691 DOUT7 notor brake NL E Profile 5 588 888 LIN 12 5000 9 E 8T 5000 112 5000 Channel Scale Offset Unit Auto Cursor 1 F Pos Demand e3 38319 H fine B Cursor Time us Data inc 29 HD Cursor Scanrate 4 250 Pointer offset 200 Number of value 588 m Error zet H fs chia T P 5090 gt 6 Fe HH Decrease continue Start Reread Export Import 64 Fig 2 lt 30 100 M Ty i i File Computer Driver Motor Extend View Help mm Position Loop le Simulate Polarity Real Virtual name data unit enable E e 1 30 009 HZ 2 K Velocity FF 166 666 pIN2 Fault reset EI e 3 K Rcc FF 32767 DEC Pos Filter_N 1 DEC pIN3 operation node E EI 7 5 Folloving Error 18888 inc Beta camau e Velocity Loop 5 command data unit DINS NULL E 1 150 DEC 2 Kui 4 DEC DIN6 NULL e E C 3 Notch 558 000 Hz 4 Notch_On 6 DEC DIN7 homing signal
19. Slaue hear Factor Gear Divider PD CU PD Filter Frequency Check 1 2 3 5 6 T 8 2 1 Parameters for electronic gear ratio Gear Factor Indicates the numerator to 1000 32767 32767 set electronic gears in the 4 operation mode Gear Divider Indicates the denominator 1000 1 32767 to set electronic gears in the 4 operation mode Parameters for electronic gear ratio are used to set the numerator and denominator of electronic gears when the driver operates in the 4 mode Command pulse output Gear _ Factor P gt P Gear _ Divider Command pulse input F1 G Fact Namely 2 Z TAT yg Gear _ Divider If the electronic gear ratio is 1 1 10000 pulses are inputted externally the resolution of encoders is 2500 PPR quadruple and the motor turns a circle If the electronic gear ratio is 2 1 5000 pulses are inputted externally and the motor turns a circle 2 2 Parameters for pulse mode selection Variable Name Default Range Value 0 Double pulse CW CCW mode 1 Pulse direction P D mode Note To change this parameter you need to save it with d3 00 and restarts it later Note AB phase signals are not supported Double pulse CW CCW mode 93 36 0 Effective on the rising edge N Forward rotation Heverse rotation Pulse direction P D mode d3 36 1 Effective on rising edge Forward rotation Reverse rotation 2 3 Parameters for pulse fil
20. SpeedDemand 8 rpm 16 Control Word DIN6 NULL m 11 Suitch On Auto DEC 12 CHD_q_ Max NULL E Function Simulate Polaritu Real DOUT1 ready T E e DOUT2 error E DOUT3 position reached uel E C Din Speed8 166 666 Din Speed1 566 666 DOUTA zero velocity m m EI Din 5 2 8 888 m O Din_Speed3 6 666 DOUT5 motor brake i E Din Speedh 8 000 O Din_Speed5 8 888 Din 5 8 888 Din Speed 8 888 2 6 Simulate DIN3 as ON then simulate Activate command as ON and observe Actual File Driver Motor Extend View Help Port 53 Basic Operate Function Simulate Polarity Real Virtual DIN1 driver enable 1 4 E EI C Operation Mode Buff 1 DEC Status Word 55437 HEX pin2 operation mode J e Real _Speed_RPH positioi EI Ci I q m Operation 1 DIN4 active command m EI m 7 Ci CHD_q 8 000 Ap Pos Target 8 inc DINS NULL dix m 2 SpeedDemand_RPH 8 rpm 16 Control Word HEN NULL 422 EI 2 e 11 Switch_0On_ uto 9 12 4 np DIN7NULL ee EI Function Polaritu Real DOUT4 ready 5 m DOUT2 error E 7 DOUT3 position reached vel m m e Din Speed8 100 008 Din Speed1 588 6088 DOUTA zero velocity ae E e Din Speed 8 000 Din_Speed3 6 666 DOUT5 mot
21. enable reset mode E pef control pINs positive limit pinelnegetive Tinie signal Function Simulate Polarity Real pours ready E pouT error pours position reached vel pour zero velocity pours notor brake E El El El El El m m i 6 Cancel positive limit and negative limit Then enable driver Function te Polarity Real Virtual E mi WE m m m m drFriuer enable pIH2 Fault reset Operation mode ui DIHh P control DIHS NULL DING MULL Hi DIN signal Function Simulate Polaritu Real ready DOUT Prror position reached vel zero velocity DDUTE motor brake 105 7 Click Driver in menu bar and select Basic Operate Basic Operate Control Loop DINT driver Data Dictionary C Driver Config Fault rt Oscilloscope Error Control P contre onm Error History DINS NULL Control Panel Initialize Save DING Driver m i ge pe 9 9 signal m qo risa File Computer Driver Motor Extend View Help VO Port 839 5
22. external voltage 2047 when no offset or dead zone voltage exists external U Offset voltage 0 10 V corresponds to shift Analog_ Offset 0 8191 U Dead zone voltage 0 10 V corresponds to dead Analog_ Dead 0 8191 obtains U ine after passing through a first order low pass filter and The obtained analog signal U internal is applied by the internal programs again In the analog speed mode if the analog signal U sre that passes through the filter is multiplied by a factor this signal will be regarded as the internal target speed V emand KPJ lt lt Mathematical formula demand Factor EU gu 2048 lt siter lt 2047 ea mM V 512 Encoder demand Formula for conversion Note The resolution unit of an is inc r In summary the calculation procedure for analog speed mode is as following table Procedure Method Formula Calculate U according to the offset voltage U 0v U filter Ov shift U dos and dead zone voltage that require settings E m Calculate V demand according to the required 512 Encoder F p 1875 speed V rpm Calculate Factor according to U sre and Factor V demand U filter V demand Calculate Analog Dead according to the Analog _ Dead FU required dead zone voltage 8191 Calculate Analog Offset according to the Analog _ Offset T
23. home switch and index pulse Using methods 3 or 4 the initial direction of movement is dependent on the state of the home switch The home position is at the index pulse to either the left or right of the pint where the home switch changes state If the initial position is sited so that the direction of movement must reverse during homing the point at which the reversal takes place is anywhere after a change of state of the home switch 69 index signal home switch Methods 5 and 6 Homing on the negative home switch and index pulse Using methods 5 or 6 the initial direction of movement is dependent on the state of the home switch The home position is at the index pulse to either the left or the right of the point where the home switch changes state If the initial position is sited so that the direction of movement must reverse during homing the point at which the reversal takes place is anywhere after a change of state of the home switch 1 home switch signal Methods 7 to 14 Homing on the home switch and index pulse These methods use a home switch that is active over only a portion of the travel in effect the switch has a momentary action as the axle position sweeps past the switch Using methods 7 to 10 the initial direction of movement is to the right and using methods 11 to 14 the initial direction of movement is to the left except if the home switch is active at the start of motion
24. loop Variable Name Meaning Default Range Indicates the proportional gain of the 1000 0 16384 LIEBE K Velocity_FF O indicates no feedforward and 256 256 The value is inversely proportional to 7FF F 32767 10 Pc Loop BW Sets the bandwidth of the position 0 A loops in Hz Pos Filter Set the average filter 1 1 255 Proportional gain of the position loop Kpp If the proportional gain of the position loop increases the bandwidth of the position loop is improved thus reducing both the positioning time and following errors However too great bandwidth may cause noise or even oscillation Therefore this parameter must be set properly according to loading conditions In the formula Kpp 103 Pc Loop BW BW indicates the bandwidth of the position loop The bandwidth of a position loop is less than or equal to that of a velocity loop It is recommended that Pc_Loop BW be less than Vc_Loop BW 4 Vc_Loop BW indicates the bandwidth of a velocity loop Velocity feedforward of the position loop K Velocity FF the velocity feedforward of a position loop can be increased to reduce position following errors When position signals are not smooth if the velocity feedforward of a position loop is reduced motor oscillation during running can be reduced Acceleration feedback of the position loop K_Acc_FF adjustment is not recommended for this parameter If great gains of position rings are
25. preset target position Note 1 Internal Multi position control can only work in mode 1 2 At least one of the DIN is set as Internal position O Internal position 1 or Internal position 2 Internal Multi position Control Mode Parameter Table Internal Internal Internal position position position 0 1 2 Corresponding Corresponding position Cinc speed Din PosO Din 0 RPM 1 Din Pos1 Din Speed RPM Din _Speed3 RPM Din Speed5 RPM Din Speed RP Note Din PosX can be set as positive and negative but Din SpeedX RPM must be set as positive 2 Operation for Internal Multi position mode 2 1 Enter Multi Position Mode KincoServo File Computer Driver Motor Extend View Help Basic Operate Control Loop k Port Operation Mode Pulse Mode Data Dictionary Analoq Velocity Driver Config Analoq Torque Mode ECAN Multi Position Mode Oscilloscope Multi Velocity Mode Error Control Homing Mode Error History Auto Tuning Control Panel Auto Reverse Initialize Save Driver Porperty 2 2 Set Din_Pos as following figure Profile cce 616 352 Profile Dece 618 352 Din 56666 Din Post Din Pos Din Pos3 Din Pas 9 Din 55 18 Din Pos6 11 Din Pos 12 Din SpeedB 200 rpm 13 Din Speedi 1 Din Speed2 rpm 15 Din Speed3 B rpm 16 Din Speed4 rpm E 2 3 Change the functions of I O port as follo
26. speed 100RPM Ex Basic Operate name 1 Operation Buff 2 status Word Pos Actual Real Speed RPH Operation Hode q Pos Target speedDemand RPH Control Word Auto Reverse Lo Imm 1 Auto Reu Pos 10000 Auto Reu Heg 0000 DEL d uto Reverse 1 DEC _ 51 6 2 Driver Performance Tuning Speed Demand CMD q Analog l Analogi Analog Analog rafile Ceemerator k p Maior Feedback Current Teedhuck Position command clocity loop mi Fig 6 1 Schematic diagram for control loop adjustment As shown in Fig 6 1 a typical servo system contains three control loops namely position loop velocity loop and current loop Current loop are related to motor parameters optimal parameters of the selected motor are default for the driver and no adjusting is required Parameters for velocity loop and position loop should be adjusted properly according to load conditions During adjustment of the control loop ensure that the bandwidth of the velocity loop is at least twice of that of the position loop otherwise oscillation may occur 6 2 1 Manual Adjustment 1 Parameters for velocity loop Table 6 1 Parameters for velocity loop Numeric Variable Name Meaning Default Display Value d2 01 Kvp Sets the response speed of a velocity loop 0 32767 d2 02 Kvi Adjusts speed control so that the time of minor 2 0 716384 errors is compensated d2 05 opeed
27. the input pulses 3 Filter frequency f 1000 2 PD Filter Time constant T PD Filter 1000 Unit S Note If you adjust this filter parameter during the operation some pulses may be lost When a driver operates in the pulse control mode if the electronic gear ratio is set too high this parameter must be adjusted to reduce motor oscillation however if the parameter adjustment is too great motor running instructions will become slower 6 2 2 Auto Adjustment Only for Velocity Loops Auto adjustment is only available for velocity loops see Section 6 21 for manual adjustment of position loops when both forward rotation and reverse rotation of a motor are allowable and the loadings do not change much during the operation You can determine the total inertia of motor loadings through gain auto tuning and then manually enter the desired bandwidth The driver will automatically calculate appropriate Kvp and Kvi values The motion curve is in the shape of a sine curve as shown in Fig 6 3 Speed curve Fig 6 3 Speed curve K Load represents the internal data that displays the actual inertia of the system I K Encoder _ K _ Load 62500 2z J In the above formula Ip represents the maximum peak output current in units of A Kt represents the torque constant of the motor in units of Nm Arms Encoder R represents the resolution of a motor encoder in units of inc r Jt represents the total inert
28. 0 N o o o I gt o o o 800 0 Encoder Counting Encoder Error Interferences are suppressed Encoder cable problem ABZ and UVW signals of the encoders Incur error simultaneously Check encoder cable Remove interference Such as connect the motor cable to SHIELD terminal etc Check the cable Over Temperature The driver temperature Check whether the selected driver exceeds 83 C has enough power Over Voltage Low Voltage Chop Resistor Following Error The bus voltage of the driver exceeds the allowable range The voltage of the driver bus is below the allowable range The power tube in the driver is faulty or short circuit occurs on the phase line of the motor The actual power of brake resistor is larger than rated power Control loop parameters setting problem Overload or block Encoder signal problem Check the input voltage or determine whether a_ braking resistor is connected Check the input power Power on AC first then power DC Reduce deceleration Check motor wires the motor works properly it can be judged that faults occur on the power tube in the driver Change brake resistor Set VFF d2 08 as 100 increase 92 07 and kvp d2 01 Choose bigger power motor or check whether the load is blocked Check the encoder cable Logic Voltage The logic voltage is lower than 18 9 9 Check the logic power supply 24V llt Error Over Frequ
29. 00V DC Weight Kg ze 8 5 Dimensions of Servo Driver Unit r Heusing ami may hel B Fri ER NE E Give the right power supply FERRE v Mus eknruct earth Lur rmirml r BBs Sela rurar LE ReLs ex T 1008 AWCH H HH H H 78 8 6 Brake Resistor Selection Table CD120 AA 000 57S 0015 08AAK FDFH SME60S 0020 30AAK 3DKH 79
30. 5 8 nng rpm 7 Din Speed6 8 608 rpm 8 Din Speed7 8 608 rpm 3 Set the function of as Internal speed 0 39 VO Port m 52 Function Simulate Polaritu Real Uirtual DIN1 driver enable m pin2 Fault reset E C1 mode E B8 Hee vins 1 4 E E OO pinzu 4 e e Function Simulate Polarity Real DOUT2 pror DOUT3 position reached vel DOUTA zero velocity DOUTE motor brake E 4 Operate the I O simulation then observe the Real Speed in Basic Operate as shown in following figure move _ EN sm File Computer Driver Motor Extend View Help S VO Port amp gt z Function Simulate Polarity Real Virtual DIN1 driver enable 7 m EI Ci e Operation Buff Status Word pIN2 fault reset TP EI 7 Ci Pos_ ctual inc Real Speed RPN ET rpm DIN3 operation mode m E E C I q 8 115 Operation Mode 3 internal speed 9 m EI C C CHD q 8 688 Ap Pos_Target 9 inc DINS NULL E 7 7 SpeedDemand RPM 9 rpm Control Word 2 DIN6 NULL 4 EI Switch Auto DEC CHD q Hax NULL 7 E Function Simulate Polaritu Real DOUT1 ready is E C DOUT2 error m C DOUT3 position reached vel m m e Din Speed8 108 008 rpm i Din_Speed1 566 666 rpm DOUTA zero m m 3 Din Sp
31. Basic Functit Operation Mode llaritu Real Virtual Function Simulate Polarity Real pours ready 00 e pour2 error position reached vel pours zero velocity pours motor brake im im im im m mi im Im e Operation Mode Buff Status Word Pos Actual Real Speed RPH I_g Operation CHD_g Pos Target SpeedDemand RPH Control Word Switch fiuto CHD q Hax 8 Set Speeddemand RPM as 100RPM in Basic Operate window Operation Mode Buff status Word Pos Actual Real Speed RPH Iq peration Hode CHD Pos Target rpm Ap 4 0 000 inc 9 SpeedDemand RPH pm 10 Control Word 11 Switch Auto 12 CHD Hax 1 2 0 16 691 90 2 9 Enter window then simulate operatio mode Rg KincoServo File Computer Driver Motor Extend View Help Function Simulate Polarity Real Virtual DINidriver enable IE ea piwo fault reset mode control EJ ed signal Function Simulate Polaritu Real pouta ready ti ferror pours position reached vel zero velocity pours motor brake 1 Operation Buff 3 DEC Status Word 437 3 Pos_ ctual 8078 hx Real Speed RPH 100 rpm 5 4
32. Fb N Reduces the noise during motor operation by _ 52 reducing the feedback bandwidth of velocity lopps smoothing feedback signals of encoders When the set bandwidth becomes smaller the motor responds slower The formula is F Speed_Fb_N 20 100 For example to set the filter bandwidth to F 900 Hz you need to set the parameter to 20 Proportional gain of velocity loop If the proportional gain of the velocity loop increases the responsive bandwidth of the velocity loop also increases The bandwidth of the velocity loop is directly proportional to the speed of response Motor noise also increases when the velocity loop gain increases If the gain is too great system oscillation may occur Integral gain of velocity loop Kvi If the integral gain of the velocity loop increases the low freguency Intensity is improved and the time for steady state adjustment is reduced however if the integral gain is too great system oscillation may occur Adjustment steps Step 1 Adjust the gain of velocity loop to calculate the bandwidth of velocity loop Convert the load inertia of the motor into the inertia Jl of the motor shaft and then add the inertia Jr of the motor itself to obtain Jt Jr Jl Put the result into the formula I K Encoder Loop BW E J 204800000 52 27 calculate the bandwidth of the velocity loop Vc Loop BW according to the adjusted the gain of velocity
33. Motor Using Hotor Hum Motor Basic Operate Computer D E Control Loop VO Port Operation Mode Data Dictionary Driver Config ECAN Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty ap mH Ohm Urms krpm Nn r ms ms ASCII ds RETE Extend View Help P Index 0 641014 7 Name Motor Num Data Type Unsignedl6 RWL Operator Help motor type select PC pannel motor type KO 304B SMH60S 0020 30 Axx 3LKx K1 314B SMH60S 0040 30 Axx 3LKx K2 324B SMH805S 0075 30Axx 3LKx K3 334B SMH805S 0100 30Axx 3LKx K4 344B SMH110D 0105 20Axx 4LKx K5 354B SMH110D 0125 30Axx 4LKx K6 364B SMH110D 0126 20Axx 4LKx K7 3714B SMH110D 0126 30Axx 4HKx K8 384B SMH110D 0157 30Axx 4HKx K9 394B SMH110D 0188 30Axx 4HKx KB 424B SMH130D 0105 20Axx 4HKx 434 5 1300 0157 20 4 444 5 1300 0210 20 4 4548 5 1500 0230 20 4 464 5 1500 0300 20 4 474 5 1500 0380 20 4 484 5 1800 0350 15 4 KI 494B SMH180D 0440 15Axx 4HKx 50 3053 1300 0105 20 215 S1 3153 130D 0157 20AAK 2LS S2 3253 130D 0157 15AAK 2LS
34. R L OUT 1 1 mU anos Wr 1 Control cower I lO0UmA GND power supply A1 2 S 7 m Ts m 3 a A y y 4 1 45 2 Parameters Decriptions Numeric Variable Name Meaning Default Range Display Value d3 22 Analog1_Filter Used to smooth the input analog 5 17127 signals Filter frequency f24000 21r Analog1 Filter Constant Analog 1_Filter 4000 93 23 Analog1_Dead E dead zone data for external analog 0 8192 signal 1 93 24 Analog1_Offset Sets offset data for external analog 8192 8192 signal 1 93 25 Analog2_ Filter Used to smooth the input analog 5 1 127 signals Filter frequency f24000 21r Analog1 Filter Time Constant T Analog2 Filter 4000 S d3 26 Analog2 Dead Sets dead zone data E external analog 0 8192 signal 2 93 27 Analog2 Offset Sets offset data for external analog 8192 8192 signal 2 93 30 Analog Torque Selects analog torque channels 0 Invalid analog channel 1 Valid analog channel 1 AIN1 2 Valid analog channel 2 AIN2 Valid mode 4 d3 31 Analog_Torque_ Sets the proportion between analog 1000 N A Factor signals and output torque current d2 15 Speed Limit Fa The factor that limits the maximum 10 0 1000 ctor speed in the torque mode LAWN oes pl yl uw deae Cu MET
35. ake E e 1 5 Set SpeedDemand RPM as 100 then the motor will run at 100RPM 895 Function Simulate Polarity Real Virtual DIN1 driver enable m EI E peration Mode Buff 2x Status Word 4437 DIN Fault reset m mi EI Ci 71 3 Pos_ ctual 376937 inc Real Speed RPH 100 rpm operation mode m E Ci e 0 105 6 Operation_Mode 3 DEC NULL 4 000 ap Pos Target 0 inc NULL m E Ci Profile Speed 0 rpm p ING NULL m E Ci 11 Control Word 2f HEX 12 Switch_On_ uto 0 NULL m m 13 CHD q Hax 13 096 Ap Function Simulate Polarity Real pour1 ready 4 pouT2 error m DOUT3 position reached uel m zero velocity 4 DOUTS motor brake 1 6 Save parameters 1 Enter Initial save window c oh a Basic Operate Control Loop h Port Operation Mode Data Dictionary Driver Config Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty 2 Click Save control parameters 209 save motor parameters Initialize control paraneters Reboot driver 2 Control by analog input 2 1 Wiring diagram x3 COMP x4 Main power supplv DG DC18V 70V M m Reco 60V PUL I eco
36. c pressure 75 8 4 Technical Specifications of Servo Motor 8 4 1 SME Series Motor Series Small Inertia Flange Size 60mm Motor model SME60S5 0020 30A AK 3DKH CD120 AA 000 54 0 snonumuo 0 Rated speed Nmirpm 300 Rated current Max torque current Standstill torque Ts Nm Standstill current 0 7 Resistance line line Inductance line line 1 55 Mechanical time constant rm ms Reverse voltage constant KWN 3 ximum voltage sss soFTs Axial foree Weight G Kg 1 3 Length of motor L mm 120 1 5 Wholly enclosed self cooling Altitude altitude 4000m Rated power at 1000m or below Power decreases 1 5 100m when altitude rise 2 dx i 76 8 4 2 F Series F Series Motor Small Inertia Flange Size 57mm Motor model 575 0008 578 0015 08AAK FDFH Compatible driver CD120 AA 000 CD120 A A 000 Phase current A Rated torque Mm Damping torque Mm Phase resistance O Phase inductance mH Motor inertia Length of motor L mm 90 1 5 113 1 5 Lead number Insulation class Withstand voltage class 600V AC 15 5mA AC 15 5mA Radial force N 15 2 Axial force N Operation temperature Surface temperature Maximum 800 Maximum B0 C Insulation impedance Minmum 100M Q 500V DC Minmum 100M Q 5
37. d zone data for external analog 0 8192 signal 2 Analog2 Offset Sets offset data for external analog signal 8192 8192 2 Analog Speed Con Selects analog speed channels N A 0 Invalid analog channel 1 Valid analog channel 1 AIN1 2 Valid analog channel 2 AIN2 Valid mode 3 and mode 3 signals and output speed 0 control N A 1 Max torque that Ain1 can control 2 Max torque that Ain2 can control Analog MaxT Factor Indicates the max torque factor for 8192 N A analog signal control 204 external external 26 Electrical control on internal variables is available only after ADC conversion and offset of external analog signals and judgment of dead zone signals For offset processing see the left part in the figure above for dead zone processing see the right part in the figure above Uw on Mathematical equation for offset processing me external 7 shift este 0 O U dead lt DY U dead U U U Bi U rad gt U internal external dead U U dead lt external Mathematical equation for dead zone processing Mathematical equation for integrated processing offset and dead zone U ena 0 Y zs U aq lt oun m U snif lt U aad U _ U U U U dedi gt P U snif internal Y external shit ded 7777 U lt U U dead external shift U Internal data corresponding to 10 V 10 V corresponds to 2048 the
38. druel DOUT zero velocity ed notor brake ed Above are the default settings users can define the functions of I O ports according to the requirement Example 5 1 Define the function of DIN1 as Start 1 Click icon m of DIN1 then popup window List 0 File Computer Driver Motor Extend View Help GW So ree jn Function Simulate Polarity Real Uirtual DIN1 driver enable E driuer enable Fault reset DIN2 fault reset m operation mode P control DIN3 operation mode positiue limit negetiue limit control pu homing signal DIN5 positive limit limit DIN7 homing signal reverse command internal speed B internal speed 1 internal position internal position 1 quick stop Start homing Function Simulate Polarity Real actiue command internal speed 2 internal position 2 Hulti Din Multi Din 1 OK DOUT1 ready ti DOUT error pours position reachedsuel DOUTA zero velocity pours mator brake n d 2 In the window List cancel the function driver enable and select function Start homing then click OK 2 093 driver enable Fault reset operation mode P control positive limit negetive limit homing signal reverse command internal speed B internal speed 1 internal position i
39. e8 sesto H fine Time us Data inc Pointer offset 288 1 Cursor 1 34 00 230 Humber of value 588 2 e 6 8 Zl Cursor Trigger on signal 2 Pos Demand Pos Error inc Ch Id a 58008 inc Speed 4 Decrease ualue continue Start Reread 5000 112 5000 fm 66 Chapter 7 Troubleshooting 7 1 Alarm Messages Digital flickering on the display indicates that an alarm occurs indicating that the driver is faulty The meanings of fault codes are as following table LED Alarm Information Display intemal _ 5 E AN 0 orom 09 Chop Resor _ M tay m _ 776 EEPROM Eon When more than one alarms happen the LED display will flicking the alarms alternately For example if the encoder cable is not connected then LED display will flicking between 02 and 03 alternately 7 2 Troubleshooting code 000 1 Internal problem Please contact manufacturer E ABZ Th ABZ si bl 000 2 is M Check the cable disconnected E VW The UVW si 000 4 MEER a AE Check the cable disconnected 000 8 000 6 001 0 002 0 004 0 008 0 010 0 020 0 040 0 080 0 100
40. ee DOUT3 position reached vel DOUTA zero velocity DDUT5 motor brake pet 49 m Im m m im Is Im tu tu Im 0890 IN N 3 2 Set parameters of homing mode as following figure Sea ss D G File Computer Motor Extend View Help 2 L Lt Basic Operate EH 4 ic Control Loop Port Operation Mode Pulse Mode Data Dictionary Analog Velocity Mode Driver Config Analog Torque Mode ECAN Multi Position Mode Oscilloscope Multi Velocity Mode Error Control Homing Mode mE Error History Auto Tuning Control Panel Auto Reverse Initialize 5ave Driver Porperty 1 Home Offset 0 2 Homing Method O O O OO Homing Speed Switch 300 008 Homing Speed 100 00 Homing Power On B Homing Accelaration 58 Homing Current 15 979 Home Offset 3 3 Simulate DIN4 Start homing as ON to start homing function File Computer Driver Motor Extend View Help Function SimulatePolarityReal Uirtual pINi driuer enable 1 E E e Operation Mode Buff 2 Status Word 4637 HEX operation mode E 3x Pos fictual 171579 inc e e yx Real Speed RPH 388 rpm positioi m E e 5 4 6 114 Ap 6 Operation_Mode 4 DEC DIN4 Start homing m E e 4 8 000 Ap 8 Pos Target 9 inc m E 9 SpeedDemand 9 000 rpm 18 Control Word 2f HEX
41. eed2 8 888 rpm o h Din Speed3 8 888 rpm DOUT5 motor brake E BE 5 Din Speedh 8 888 rpm O 6 Din_Speed5 6 666 rpm 7 Speed6 8 888 rpm 8 Din Speed7 6 666 rpm 5 Change the simulate of DIN4 and observe Real Speed RPM as shown in following figure 40 ncoServc E a aa File Computer Driver Motor Extend View Help Port amp lt Basic Operate Simulate Polarity Real Virtual i i Function DIN1 driver enable 1 4 zi E Ci Operation_Mode_Buff 3 Status Word 4437 HEX DIN2 fault reset m C Pos_ ctual 376286 inc Real Speed RPM WEST Y p1N3 operation node 1 4 E Ci I q 8 158 fip Operation Hode 3 DIN4 internal speed EI CHD q 8 868 Ap Pos Target 9 inc DINS NULL m E C SpeedDemand_RPH 9 rpm Control Word 2f HEN DIN6 NULL 1 4 E 7 Switch 9 4 NULL 4 C Function Simulate Polar pouri ready red DOUT2 peor ne DOUT3 position reached uel 1 4 zero velocity DOUT5 motor brake 7 tu Multi Velocity Mode fo Ex Din Speed8 188 888 Din_Speed1 566 666 Din_Speed2 6 666 Din_Speed3 888 Din Speedh 666 Speed5 888 Din Speed6 888 Din Speed7 888 9 05000 6 Save parameters 5 2 3 Internal Multi position mode Mode 1 1 Mode decriptions This mode uses DIN signal to control motor running at
42. eference point negative limit limit 8 2 Servo Drivers and Motors Selection Table Power Encoder Servo Driver Servo Motor Description Cable Cable 800rpm 575 0008 08AAK FDFH 1Nm 5 6A Standard Small 800rpm direct MOT 005 ENCCF inertia CD120 AA 000 57S 0015 08AAK FDFH cable LL KL D LL FH 1 5Nm DC60V A 5 8A 3000rpm SME60S 0020 30AAK 3DKH 0 64Nm 4 8A Rated speed Rated torgue Rated current 8 3 Technical Specifications of Servo Driver Model Parameters CD120 AA 000 Main power Power Supply 18 7DV DC 60V DC recommended Power supply Logic power DC24V 1A Current Peak current PEAK 18A Feedback signal 25D0PPR incremental 5V difference encoder Brake chopper Use an external brake resistor if necessary in the high speed start and stop application Brake chepper threshold Over voltage alarming threshold DC90V 45V r 8 _ Under voltage alarming threshold Coolin method Weight Max frequency of input pluse Pluse command mode Pluse direction CCW CW 5V If signal is 24V 2K resistor is needed Do not support A B phase signal Command smoothing Low pass filtering Adjustable by internal parameter setting Postion Mode Feedforward gain Gear ratio Setting range Gear factor 32768 32767 Gear divider 1 32767 1 5U lt 1Gear factor Gear divider1 50 position lop samping frequency Input Analog input sampling frequency C
43. ency STO Error EEPROM Error Control loop parameters setting problem Overload or block The input pulse frequency exceeds the allowable maximum value STO Error UVW signal of encoder cable problem Because of updating firmware Driver internal problem 68 Increase kvp d2 01 Choose bigger power motor or check whether the load is blocked Check the input pulse frequency and the maximum permissible value of the frequency 93 38 Check the wiring according to Chapter 3 4 Check encoder cable Initialize all control parameters and save then restart driver Contact manufacturer Chapter 8 Appendix 8 1 Homing Mode Method 1 Homing on the negative limit switch and index pulse Using this method the initial direction of movement is leftward if the negative limit switch is inactive here shown as low The home position is at the first index pulse to the right of the position where the negative limit switch becomes inactive index signal negative lit Method 2 Homing on the positive limit switch and index pulse Using this method the initial direction of movement is rightward if the positive limit switch is inactive here shown as low The position of home is at the first index pulse to the left of the position where the positive limit switch becomes inactive index signal _ l2 positive Methods 3 and 4 Homing the positive
44. er um a umu co e eee etat va tcc co ob eta YY YG 11 3 22 AZENCO ee mc ER 11 SP ior I T 12 3 2 4 X4 Main Power Interfag6 u eet tes sek 12 Chapter 4 Motor Selection and Trial Operation J J nnne nana J 13 Motor Selecion Nn 13 ONN FFEFRYN EF HNN 15 4 9 Opera UOM areenan 17 Chapter 5 Operation uu aa Ud Ona dan DR 22 1 E 22 3 2 Operation ModE Na a 25 9 2 IPulse Mode Model 25 2 2 5 arid ausis desto a botte Seen 31 5 2 3 Internal Multi position 1 41 5 2 9 HOMNE onera cis Fauno ductae dias Roo ios FARN HN YN AN FA RI TR awe dus YN 49 Chapter 6 Control PerformaiCe aiu uu u LEN cou 51 Auto HeVerSQ uoto adeb m ta Catus e a Cres supr Do CM uv 51 6 2 Driver Performance TUNING ET u uuu YR
45. es are set too low the load inertia is too great Load data will be less than 20 if the load inertia is too little Load data will be greater than 15000 6 3 Oscillation Inhibition If resonance occurs during machine operation you can adjust a notch filter to inhibit resonance If resonance frequency is known you can directly set Notch_N to BW 100 10 Note that you need to set Notch_On to 1 to enable the notch filter If you do not know exactly the resonance frequency you can firstly set the max value of current instruction to a low one so that the oscillation amplitude is within the acceptable range then try to adjust Notch_N to check whether resonance disappears If machine resonance occurs you can calculate the resonance freguency by observing the waveform of the target current with the oscilloscope function of the driver Table 6 5 Parameters for oscillation inhibition Variable Name Meaning Default Rang Value e Notch Notch filtering frequency setting for velocity 45 0 90 loop used to set the frequency of the internal notch filter so as to eliminate the mechanical 58 resonance produced when the motor drives the machine The formula is F Notch_N 10 100 For example if the mechanical resonance frequency is F 500 Hz the parameter should be set to 40 Notch On Enable or disable the notch filter 0 Disable the notch filter 1 Enable the notch filter 6 4 Debugging Example 6 4 1 Osc
46. etting the K_Load value to a predicted value that is close to the actual value Vc_Loop BW can be written only after successful auto tuning otherwise the driver may work improperly After you write the desired bandwidth of the velocity loop in Vc_Loop BW the driver automatically calculates the corresponding values of Kvp Kvi and Speed_Fb_N If you are dissatisfied with low speed smoothness you can manually adjust Kvi Note that auto tuning does not automatically adjust the data of a notch filter In the following circumstances auto tuning parameters should be adjusted 1 When the friction in a rotation circle of the motor is uneven it is required to increase Sine_Amplitude to reduce the impacts caused by uneven friction Note it will increase the oscillation amplitude of the loadings when increase Sine_Amplitude 2 1 auto tuning lasts for a long time initial evaluation of the total inertia is available It is recommended to set K_Load to an evaluation value before auto tuning auto tuning is unstable the stability of auto tuning increases when Tuning Scae increases properly but the time for auto tuning slightly increases In the following conditions auto adjustment goes wrong In this case you can only set parameters manually 1 The load inertia is featured by great fluctuation 2 Mechanical connection rigidity is low 3 Clearances exist in the connection between mechanical elements 4 The load inertia is too great while Kvp valu
47. his parameter is used to reduce system noise But the bigger value of this parameter the slower response of system In Auto Reverse mode Kvp 40 NEN am Computer Driver Motor Extend View Help Sid 9 210 i i AM Auto Reverse as E Simulate Polarity Real Virtual data unit 1 Auto Reu Pos 58688 DEC DIN1 driver enable IE e 2 Auto Reu Heg 5 0000 DEC operation mode name data unit 1 18 Hz DING P control 55 Ci 2 K Uelocity FF 166 68 3 32767 DEL DINS NULL zin Pos Filter_H 1 DEC da D ir DIH6 MULL o Velocity Loop a DIN7 homing signal signal e data unit 1 Kup 88 DIN NULL m 2 Kui 1 DEC 3 Hotch_W 556 66 Hz Function Simulate Polarity Real 4 Hotch DEC 5 Speed Fb H 246 6608 Hz pours ready m E Basic Operate la pour NULL dis Operation Mode Buff position reachedruel _ 2x status Word 4037 HEX d Pos fictual inc pouty zero velocity es Real Speed RPH 500 rpm 5 Iq 11 ap HULL DOUTS Operation Mode o DEC 7 CHD q B agg NULL cu DDUT6 8 Pos Target B inc 9 SpeedDemand RPH 566 rpm DOUT motor brake 18 Control Word 2f HEX 11 Switch DEC 12 CHD 16 694 Ap The oscilloscope is shown as follows actual speed respon
48. ia of the motor and loadings in units of kg m 2 _56 Table 6 4 Parameters for controlling gain auto tuning Variable Name Meaning Default Range Value Tuning_ Start Auto tuning starts after the variable is set to 11 All input signals are ignored during auto tuning The variable is automatically changed to O after auto tuning is completed Sets the variable to other values to end auto tuning Vc Loop BW Sets the bandwidth of the velocity loop in 0 600 Hz The variable can only be set after auto tuning is performed properly otherwise the actual bandwidth goes wrong which causes abnormal working of the driver If the auto tuning result is abnormal setting this parameter may also cause abnormal working of the driver Note This parameter cannot be applied when auto tuning is unavailable Indicates loading parameters 20 1500 0 Sine Amplitude Proper increase in this data will reduce the 64 07 1000 tuning error but machine vibration will become severer This data can be adjusted properly according to actual conditions of machines If the data is too small the auto tuning error becomes greater or even causes a mistake Tuning Scale It is helpful to reduce the auto tuning time by 128 0716384 reducing the data but the result may be unstable Tuning_Filter Indicates filter parameters during Vil NN Auto tuning is a process where the suitable and stable K Load value is automatically calculated
49. illoscope 1 Enter oscilloscope File Computer Bus Basic Operate Control Loop h Port Operation Mode Data Dictionary Driver Config ECAN Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty KincoServo 59 Click here to change the sampling object Offset Adjust this value to Choose the unit for sampline Tick it to use the channel move the curve up and l e data down ZRERESRRAEETARE Cycle time of sampling In pe Oscilloscope this pictureat mean every 62 Sus it will sampling one data 23 679138 2508 000000 Pointer ofFset To set How many Data will be save before the condition trigger In this picture it means that it vall show 250 data before the actual current reach 100 dec 9 The difference between when the actual current q i uapa Number of value To the 6 320863 cursor 1 and cursor 2 In this number of sampling In this 492 000000 picture the difference 15 picture it means it will 1250 9 315 25 21 815 28 125 1651A sampling 500 da canrate 1 8 us Channel a Scale Off 9Px Cursor Thetume difference between 1I II 15 0 8 r919 n 8 Cursor ett Data fip cursor 1 and cursor 2 In this Trigger In this mur Pointer offset 250 wd dE 4 n DE C 1 Cursor 1 15 59 9 641602 picture the difference
50. is di a data Humber of value 500 2 iv Speed QEI Bac 5 2 1668 Mm iv z 0 69ms nn signal reach 100 dec dec is intemal 60 unit user can change into Select which channel to 3 J r 7e zl gt cn Id 1 gt pe alr 9 69 16 514648 m El 1e 6 H Decrease een finish Export Ff sampling Reread 2 Parameters for Oscilloscope continie Click here to change into triggered by falling edge Tick here to sampling data continuously Click here to start sampling by manual Reread the sampling data Click here to change the triggered condition User can select the object the window To expart the sampling data Inport the data to show the curve as csv file 6 4 2 Procedure for Parameter Adjustment 1 Velocity Loop Adjustment 1 Adjust Kvp according to the load 1 Set motor running at Auto Reverse mode by position Operation mode 3 then open oscilloscope and set the parameters to observe the curve As shown in following figures 2 Adjust Kvp and observe the speed curve Following figures show the different curve in different Kvp According to the curve it shows that the bigger value of Kvp the faster response of speed 2 Adjust Kvi according to load 3 Adjust Soeed_Fb_N to reduce system noise Speed N T
51. loop only adjust according to actual reguirements Adjust the impact of Kvp and Kvi as shown in Fig 6 2 For the effect of Kvp adjustment see the first to the fourth from left of Fig 6 2 Kvp gradually increases from the first to the fourth from left The value of Kvi is 0 For the effect of Kvi adjustment see the first to the fourth from right of Fig 6 2 Kvi gradually increases from the first to the fourth from right The value of Kvp remains unchanged Left 1 Right 1 _53 Right 2 AA Aa AMAN Right 3 A TION s e eer rg gyll e y f c J Ww Right 4 Fig 6 2 Schematic diagram of gain adjustment of velocity loop Step 2 Adjust parameters for feedback filter of velocity loop Speed_Fb_N 20 100 Hz During gain adjustment of a velocity loop if the motor noise is too great you can properly reduce the parameter Speed_Fb_N for feedback filter of the velocity loop however the bandwidth F of the feedback filter of velocity loop must be at least three times of the bandwidth of velocity loop otherwise oscillation may occur The formula for calculating the bandwidth of feedback filter of velocity loop is F 54 2 Parameters for position loop Table 6 2 Parameters for position
52. mmended Brake Rexistor DIR i UN Speed command FUE CD120 rr 4452 sas i OUTS Relay or Motor brake ws 1 ENCODER 24 Control power supply 31 2 2 Parameters setting Control Loop VO Port a Operation Mode Pulse Mode Data Dictionary Analog Velocity Mode Driver Config Analog Torque Mode Multi Position Mode Multi Velocity Mode Homing Mode Oscilloscope Error Control Error History Control Panel Initialize Save Driver Porperty Auto Tuning Auto Reverse 2 Parameters description RD Burr 1 Analog out ADC Burr 1 Analog out Analogi Filter Analog Dead Analog Offset Analog Filter Analog Dead 0 Analog Offset 1 Analog Speed Factor 12 Speed Con i Pom O o o ocu 226 Variable Name Meaning Default Range Value Analog1_Filter Used to smooth the input analog signals 17127 Filter frequency f24000 21r Analog1 Filter Time Constant T Analog Filter 4000 S Analog1 Dead Sets dead zone data for external analog m 8192 signal 1 1 Offset Sets offset data for external analog signal m 8192 8192 1 Analog2_ Filter Used to smooth the input analog signals 1 127 Filter frequency f24000 21r Analog1 Filter Constant T Analog2 Filter 4000 Analog2 Dead E dea
53. motor running at target speed acceleration deceleration 4 1 Wiring Diagram comp Ad Main power supply 3V 5v F DC18V 70V Pulse S S lt oc Recommended 60V PUL 3y 5y E i f NN DL BR Brale Resistor Pr u 2 AIN 1 Fi GNDA hector Ii o CD120 DIN 2 WE OUTS 7 ONS Ralav or Motor bralke oe DUTs DIN 4 1 edy ENCODER OUT 1 L 24V aij eas OUT 100mA GND Control power supply X1 y ds 7 T ae B x a m 4 z 4 TX i Rx GND R5232 228 Common anode connection For controllers that support low level output Use 24VDC for pulse input 2 Parameters Setting Enter pulse mode window Basic Operate Control Loop VO Port Operation Mode Pulse Mode Data Dictionary Analog Velocity Mode Driver Config Analog Torque Mode Oscilloscope Multi Position Mode Error Control Multi Velocity Mode Error History Homing Mode Control Panel Aute Tuning Initialize Save Auto Reverse Driver Porperty Follows are the descriptions of parameters in pulse mode tsKincosevo iii _ File Computer Driver Motor Extend View Help ii s i A Haster Speed Gear _ Master hear
54. nsulation Grade Protection Class Kinco Electric Shenzhen Ltd MADE IN CHINA S N L2NLK00XXXXXXXXX NCC sequence No 1 2 2 Model Description 1 CD120 Series Driver CD120 AA 000 Power Supply 18 70V DC 60V DC recommended 2 SME Series Motor SME60S 0020 30AAK 3DKH SME 5 series 3 F Series Motor 57S 0008 08AAK FDFH 1 3 Servo Drivers and Motors Selection Table 800rpm 575 0008 1Nm 5 6A Standard 800rpm direct MOT 005 ENCCF CD120 AA 000 575 0015 08AAK FDFH cable LLL KL D LL FH Td motor 3000rpm SME60S 0020 30AAK 3DKH 0 64Nm 4 1 4 Components Descriptions of Servo Driver Display 2 LED display error infromation of servo X1 Encoder output and RS232 communication port X3 COMP Com portof pulse input PUL Pulse CW PUL Pulse CW DIR Drirection CCW DIR Drirection CCW AIN1 GNDA Analog signal input DIN1 DIN4 OUT1 OUT2 GND Digital input and output Base of Heat Sink Shell of Heat Sink X4 DC DC Power Supply 18 70V DC 60V recommended RB RB External brake resistor U V W PE Motor power connector OUT5 OUT5 Brake device 24VS GNDS 24V logic power supply Chapter 2 Precautions and Installation Requirements 2 1 Precautions Tightly fasten the screws that fix the motor Make sure to tightly fasten all fixed p
55. nternal position 1 quick stop Start homing active command internal speed 2 internal position 2 Multi Din Multi Din 1 DR 3 The the function in DIN1 has changed as Start homing Function DIN1 Start homing DIH2 Fault reset mode DIHh P control 1 limit limit tdt signal Function Simulate Polaritu Real pours readu DOUT PFFDF position reached uel 4 zero velocity DOUTS motor brake El Set DIN1 4 and DOUT1 2 by the same way 24 5 2 Operation Mode CD120 supports 6 kinds of operation modes as shown in following table Operation mode Driver receives pulse command to Pulse mode control motor running to target position Driver receives digital input signal to control motor running to target position Driver receives analog signal to Torque mode control motor s target torque Driver receives digital input signal To control motor to start homing Homing mode There are 35 types of homing method 5 2 1Pulse Mode Mode 4 Internal position mode With 3 Driver receives signal from digital acceleration deceleration Speed mode input or analog input to control Without 3
56. ocedure of homing Use the following steps to homing 1 Set the external I O parameters and then save 2 Set the data for homing and then save 3 Execute homing 2 Parameters descriptions Here are simple descriptions of the data for executing homing 0x607C0020 Home Offset Home offset In Homing mode set the offset relative to the zero point 0x60980008 Homing Method Homing method Select the homing method 0x60990120 Homing Speed Switch Speed for searching Set the speed for searching the limit the limit switch switch which defined as homing signal 0x60990220 Homing Speed Zero opeed for searching Only valid when find Index signal the Zero point 0x60990308 Homing Power On Homing when power Every time after power on it will start on homing once 0x609A0020 Homing Accelaration Homing acceleration Control the acceleration of homing CD120 has 27 methods for homing referring the CANopen s definition of DSP402 1st 14th methods use Z signal as homing signal 17th 30th methods use external signal as homing signal More details please refer to Appendix 3 Operate by PC software 3 1 Set I O port as following figure Port 53 Function Simulate Polaritu Real Uirtual pini driver enable DIN operation mode pins internal positio m pina start m DIN7 noning signal Function Simulate Po DDUT1 4 DOUT error
57. oints when fixing the driver Do not tighten the cables between the driver and the motor encoder Use a coupling shaft or expansion sleeve to ensure that both the motor shaft and equipment shaft are properly centered 5 _ Do not mix conductive materials such as screws and metal filings or combustible materials such as oil into the servo driver 6 Avoid the servo driver and servo motor from dropping or striking because they are precision eguipment 7 For safety not use any damaged servo driver or any driver with damaged parts ee ss 2 2 Environmental Conditions The product must be placed in the box before installing If the drive is in use In order to make the products to conform to the warranty and maintenance please pay attention to following precautions when storing it 1 Must be placed in grime dry location 2 The ambient temperature of the storage location must be in the range of 20 C 40 C 4 F 129 F 3 The relative humidity of the storage location must be in the range of 0 to 90 and non condensing 4 Do not store in location with corrosive gases and liquids 5 Correctly packaged and placed on a shelf or countertop Note To ensure the reliability of the product prolonged operation is proposed below the ambient temperature at 45 C 2 3 Mounting Direction amp Spacing Precautions 1 To prevent possible faults install a servo driver in a proper direction 2 To prevent p
58. ommand source Command smoothing Low pass filtering Adjustable by internal parameter setting Speed Mode Input voltage dead zone setting Input voltage offset setting Speed imit Torque lini Speed sampling frequency Analog voltage input range Input impedance 200K Input sampling frequency Command source Torque Mode Command smoothing Low pass filtering Adjustable by internal parameter setting Speed limit Internal parameters setting external analog command control Input voltage dead zone setting Adjustable by internal parameter setting Input voltage offset setting Current sampling frequency Input specification 4 digital input high level effective if voltage is above 12V Digital Input IEEE Define the following functions freely driver enable driver fault reset driver mode control speed loop Kp control positive limit negative limit home signal emergency stop and so on Output specification Digital Output Define the following functions freely driver ready driver fault position reached Wanction motor at zero speed speed reached index signal Z appears home found and so on Protection function Over voltage protection under voltage protection motor over heat short circuit protection and so on Communication port Operation temperature Storage temperature 10 C AC Humidty non condensing Operation Protection dass Environment Installation environment Installation method Altitude Atmospheri
59. or CD PC software Software Servo Connection Cable Operation PC DB9 Male CD120 AA 000 Configure Motor CD PC Software Operation Servo DB9 Female Connect the servo to PC open the CD PC then Menu Driver Control Panel F004 the F004 in the F004 set d4 19 Motor Num Please refer to the servo and motor configuration table after that press Enter to confirm then restart servo Please configure the right Motor s model before restart If the customers want to reset the motor model they should set d4 19 Motor Num in F004 to 00 ENTER to confirm then enter the Initialize Save page click the Save motor parameters After restart the servo they can reset the motor model and set servo parameters LJ d Basic Operate Control Loop Port Operation Mode Data Dictionary Driver Config Commu Delay Oscilloscope Motor IIt I Error Control Motor IIt Filter Inax Hotor L Hotor Control Panel R Hotor Initialize Save Ke Hotor Kt Hotor Jr Hotor Brake Duty Cycle Brake Delay Invert Dir Hotor Motor Using Error History Driver Porperty 1888 158 888 76 888 16 788 7 600 1 488 48 382 8 668 9 000 89 964 158 1 Urms krpm Nm Arms kgm 2 mS DEC ASCII Hotor_Nun Ka ASCII 14 Comm Status Open COM1 38400 4 2 Online 1 Wiring Diagram The wiring diagram for connecting PC and CD120 driver is as following figure PC
60. or brake DE3ER E e Din Speedh 8 088 Din Speed5 8 888 Din Speed6 8 888 Din Speed 8 888 7 Save parameters 44 Note In internal position mode there are absolute positioning and relatived positioning Change parameter Control Word in Driver gt Control Panel gt F003 as shown in following figure 31 Analog Torque Factor 1888 DEL Analog HaxT Con DEL 39 Analog HaxT Factor 8192 3H Gear Factor 1888 35 Gear DiuiderB 1000 DEC 36 PD CW 1 DEC 3 PD Filter d 38 Frequency Check 6 B DEL 39 Target Reach Time Window 18 ms 4 Din Position Select L 41 Din Position H 5 J 42 Din Position H 1 FEE Din Speeds RPH TT E E Din Speed5 RPH 5 rpm Y Set as F for absolute positioning lf it needs to update the command immediately then set 2F Set as for relative positioning If it needs to update the command immediately then set as Save parameters and reboot servo 5 2 4 Torgue Mode Mode 4 1 Wiring diagram X3 x4 Main power supply Ds DC18V 70V a Recommended 60V PUL rr HE a E Brake Resistor DIR Torque command U AIN 1 il i ELD T ab FT it DWN 1 C D 1 20 Hi Ar a DIM 2 ma OUTS ONS Relay or Motor brake DIN 4 _ OUTS edu ENCODE
61. ossible faults ensure that the space between a servo driver and the inner wall of the control cabinet as well as that between the servo driver and the neighboring driver are the same as specified space 3 To prevent possible faults the suction vent of servo driver can t be sealed when installating and can t be install in horizontal Servo Driver Installation CD series servo drive must be mounted vertically in a dry and rugged NEMA standards platform In order to ensure good Ventilation and heat dissipation there must be enough space between a servo driver and the inner wall of a control cabinet Recommend 50mm In order to prevent overheating of platform and driver the racket or platform for installing driver can t be made by the material of poor thermal conductivity Motor Installation The servo motor must be properly installed in a dry and sturdy platform please maintain good ventilation and heat dissipation and good grounding when installing Installation Diagram Installation Diagram Chapter 3 Interfaces and Wirings of CD120 Driver 3 1 Wiring Diagram Power Supply Single phase 3 phase 200V 230V Non fuse Braker Communication Interface 1 Use RS232 communication 2 Use Kinco Servo software for debugging EMI Filter Encoder Interface Connect the encoder of servo motor to servo driver Kinco PLC Connect pulse direction and signal to servo driver Switching Power Supply Supply DC60V fo
62. parameters of oscilloscope as following figure In Fig 1 and Fig 2 Vff is 100 When Kpp is 30 the response of position loop is faster than the one when Kpp is 10 Meanwhile the following error is also less but overshoot is bigger Fig 3 Kpp 1 30 Vff is 50 with Fig 2 the following error is bigger but response becomes slower and there is almost no overshoot 253 Internal position mode target position is 50000 inc Fig 1 Kop 10 Vff 100 Srvc File Driver Motor Extend View Help Pot P miS Poaition Loop Function Simulate Polarity Real Virtual name data DIN1 driver enable m E ei 1 Kpp 18 888 2 K Uelocity FF 188 888 t pIN2 Fault reset E 3 K_ cc_FF 32767 DEC Pos Filter_N 1 DEC mode m E m B 5 Hax_Following_Error 16666 inc VER J re DINA active command fed E m 3 name data unit DIN5 NULL m m C 1 Kup 158 DEC 2 Kui DIN6 NULL E C 3 Motch N 558 888 Hz 4 Notch_On 8 DEC homing signal m EI C 5 Speed Fb 240 888 Hz 6 Speed_Mode 6 DEC DINS NULL Tr E 3 2 Function Simulate Polaritu Real name data unit DOUT4 ready E 1 Operation Hode Buff 1 DEC 2x Status Word 5037 HEX NULL E 3x Pos Actual 14224 inc yx Real Speed 474 rpm DOUT3 position 5 I q 0 134 fp 6 Operation Hode 1 DEC pour zero velocity
63. ption 1 1 Product Acceptance for Acceptance Whether the model of a delivered CD series Check the nameplate of a servo motor and servo system is consistent with the that of a servo driver specified model Whether the motor shaft rotates smoothly Rotate the motor shaft by hand if it can rotate smoothly means normal For the motor with brake it can t rotate by hand Whether any breakage occurs Check the external appearance completely for any losses that are caused by transportation Whether any screws are loose Check for loose screws with a screwdriver 1 2 Model Descriptions 1 2 1 Nameplate Descrpitions 1 Nameplate of Servo Driver AC SERVO DRIVER Kinco CD120 AA 000 Input Qutput Specification DC INPUT AC OUTPUT Specification DC18V DC70V 0 Uin 8 400W 0 400Hz Kinco Electric Shenzhen Ltd MADE IN CHINA Sequence gt S N iC 301 OOXX kW AW o 2 Nameplate of SME Series Motor Model Rated Voltage AC SERVO MOTOR Ki nco SME 605 0020 304AK Rated Power W 200 70 a Rated Current gt g Rated Torque Rated Speed a ich M MN Protccion Cla ated RPM 3000 InsF 1965 u Kinco Electric Shenzhen Ltd amp Grade Sequence No MADE IN CHINA smcLANHK OTYDDDNNN 3 Nameplate of F Series Motor ACSERVO MOTOR 575 0008 08AAK FDFH Kinco Rated Voltage I
64. r servo driver Servo Motor 10 3 2 Interface of Driver 3 2 1 X1 RS232 and Encoder Output RS232 communication X3 output phase A 9 pin signal of encoder ram utpu female 3 B To output phase B connector signal xa n output index tor signal Z signal of encoder 3 2 2 X2 Encoder Input output 5 V voltage input signals of input signals interface of M To input phase Z signals sender m connector a EW motor To input phase U signals of encoder V To input phase V signals of encoder To input phase W signals of encoder Input o G cas o 11 3 2 3 Interface iterace Terminal Function _ Pulse signal DR Direction signa GND Common terminal for digital signal COV for logic power 3 2 4 X4 Main Power Interface tu Terminal Function DC DC Main power interface DC60V RB RB Braking resistor interface 12 Chapter 4 Motor Selection and Trial Operation 4 1 Motor Selection 1 Driver and motor configuration The motor s model should be Capital letters in software Motor Model CD120 Blinking FF when servo is not enable K 404 b No motor selected Display 16 when servo is enable 12 324 578 0008 08AAK FDFH NO 18 334 576 0015 14 344 SME60S 0020 30AAK 3DKH VS _ 18 354c
65. required the acceleration feedback K_Acc_FF can be properly adjusted I K Encoder R YN Note FF is inversely proportional 250000 2 z to improve performance to the acceleration feedforward Pos Filter is used for average filter of the speed produced by target position Setting this parameter as N means to average N data Adjustment procedure Step 1 Adjust the proportional gain of a position loop After adjusting the bandwidth of the velocity loop it is recommended to adjust Kpp according to actual requirements or directly fill in the required bandwidth in and the driver will automatically calculate the corresponding Kpp In the formula Kpp 103 Loop BW the bandwidth of the position loop is less than or equal to that of the velocity loop For a common system Pc_Loop_BW is less than Vc_Loop BW 2 for the CNC system it is recommended that Pc_Loop_BW is less than Vc_Loop_BW 74 Step 2 Adjust velocity feedforward parameters of the position loop Velocity feedforward parameters such as K_Velocity_FF of the position loop are adjusted according to position errors and coupling intensities accepted by the machine The number 0 represents 0 feedforward and 256 represents 100 feedforward 3 Parameters for pulse filtering coefficient Table 6 3 Parameters for pulse filtering coefficient Variable Meaning Default Range Name Value 1 32767 PD Filter Used to smooth
66. se is 33 88ms 61 SSS Se ee a k ee Sr 7800 000000 112 5000 5 37 5000 Scanrate 250 Dus Channel Scale Offset unit fiuto des so 1 F Speed_Demand_ 2 B nii Time us Data rpm a Cursor 1 63 504 0000 of 2 6 H YPZ oe ee i cl continue Start Reread In Auto Reverse mode Kvp 110 Kincosevo 2 File Computer Driver Motor Extend View Help rn EN Er m Fm Auto Reverse Function Simulate Polaritu Real Uirtual nang data unit 1 Auto Reu Pos 5 B8HB8H DEL DIN1 driver enable e 2 uto Reu Heg 5 9008 DEC H 1 7 Bl e oo operation mode m 1 name data unit 1 Hpp 18 88 Hz control m C 2 K Uelocity FF 188 88 K FF a2f67 DEE DINS NULL ds m Pos_Filter_H 1 DEC Following in NULL El Velocity Loop a DIN7 homing signal E E unit 1 Kup 118 NULL C 2 Kui 1 DEC 3 Hotch 558 68 Hz lat ity Real 4 Hotch_ n DEL 5 Speed Fb H 246 668 Hz pours m Basic Operate a DOUTZ E peration Buff
67. tart Reread Export Import Fig 3 Kpp 30 Vff 50 3000 65 File Computer Driver Motor Extend View Help Poaition Loop Function Simulate Polarity Real Virtual ml driver enable ea C 1 Kpp 38 888 Hz 2 K Uelocity FF 5 DIN2 Fault reset 3 32767 4 Pos Filter 1 DEC operation node mE CI 5 Following Error 18888 inc DINh actiue command Ed E C eae DINS NULL oe e 1 Kup 158 DEC 2 Kui 4 DEC NULL e 3 Notch N 550 000 Hz 4 Hotch On B DEL DIN homing Signal 5 Speed Fb 210 008 Hz 6 Speed Mode DINS NULL Function Simulate Polarity Real Operation Mode Buff 2x Status Word 5037 Js Pos fictual BOOB inc yx Heal Speed RPH e rpm 19 0 000 6 Dperation 1 CMD 000 8 Pos Target 56668 inc 9 speedDemand rpm 18 Control Word at HEX 11 Switch Ruto DEC CHD Hax Profile Speed 566 668 D UT1 paura D UT3 DDUTH DOUTS DOUT DOUTZ im im im im im im im 128 sch anm mm barcassa MOM li 1 4 A s ee s CHW 12 3000 Stanrate 250 Dus Scale Offset Unit Auto 2 v t
68. tering coefficient Variable Default Range Name Value 1 32767 PD Filter Used to smooth the input pulses 3 Filter frequency f 1000 2Tr PD Filter Time constant T PD Filter 1000 Unit S Note If you adjust this parameter during the operation some pulses may be lost When a driver operates in the pulse control mode if the electronic gear ratio is set too high it is required to adjust this parameter to reduce motor oscillation however if the parameter adjustment is too great motor running instructions will become slower 3 Example for pulse control mode Example 5 2 Require driver enable automatically after power on Use pulse direction mode and 20000 pulse for running a cycle Procedure 1 Click icon 1 0 then click icon in DIN1 VO Port wu Function Simulate Polarity Real Virtual DIN1 driver enable mI pin2 Fault reset mode p el pins 1 4 ee DIN7 NULL E Function Simulate Polar DOUTA re me DOUT errors DDUT3 position reached vel DOUTH zero velocity DDUT5 motor brake 8 8 8 tu mm Im Im m 2 Cancel function driver enable W 0001 driver enable 0002 Faull reset 000 nperation mode 9008 P control BB1B positiue limit 9928 negetive limit Bang homing signal 0888 reverse command 0100 internal speed B 9208 internal speed 1 pann internal position B
69. wing figure VO Port Function Simulate Polaritu Real Uirtual DIN1 driver enable mode pins internal positior command ee Function Simulate Polar DOUTA reap ned DOUT emo nn DDUT3 position reached vel DOUTA zero velocity DDUT5 motor brake A meu E N H UN IH tu IH Im mm 2 4 Set operation mode as following figure 6 01 6 Function HEX Din Function B HEX 8 Dio Polarity B Hex Dio Simulate Hex 18 Switch Dn Auto 11 Dout1 Function 1 HEX 12 Dout Function 2 HEX 13 Dout3 Function HEN 14 Douth Function a 15 Dout5 Function 17 Din Mode1 18 Din Speed RPH TT 19 Din Speedi RPH 5 BB rpm 20 Din Speed RPH B rpm M 2 5 After driver enable simulate Activate command as ON and obseve Real Speed RPM and Pos Actual Fike Computer Driver Motor Extend View Help VO Port Basic Operate p Function Simulate Polarity Real Virtual DIN1 driver enable m EI Operation_Mode_Buff 1 DEC Status Word 5h37 HEN mode El Pos Actual Fr Iq Real _Speed_RPH pIN3 internal positioi m C 2 Operation Hode 1 DEC DIN4 active command m m e CHD q 8 888 ap Pos Target 8 inc DINS NULL E

Download Pdf Manuals

image

Related Search

Related Contents

Exercise 0  User`s Manual  EVX-LINK - Vertex Standard  JUILLET - H2O  Rode MICON 1  UU066-DE-rev06 Maxi Display user guide.qxp  PF7S USER MANUAL    Toshiba MK4006GAH Computer Drive User Manual  Drive Wizard 100 online manual  

Copyright © All rights reserved.
Failed to retrieve file