Home
Newport Models 8016/9008/9016 User`s Manual
Contents
1. B A A uA LOD f ABH a Rsr 16ABAka Ei eios Bema P28 Tarz SOPE Figure 4 Master Display Expanded Display Figure 5 shows the master display in Condensed mode Instead of displaying a combo or dual module as two separate elements on the master display they are combined into a single element Notice that each combo and dual element has two ON OFF soft keys one active and the other disabled In this mode the MASTER button toggles the active ON OFF button for the combo dual modules Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation Im 282 5 U0 U 2BU Mie senserr SETE 2 Im 2888 W 5 888 Io aame BUN i 6 08 T error Tarz Z5 00C B 66 T error n 25 806 J I 8 08 T 25 00 T 25 00 C Figure 5 Master Display Condensed Mode The Master Display can be accessed from any screen in the system by pressing MASTER For slots not containing a module the text Not installed is displayed next to the slot number Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 26 Chapter 2 System Operation 2 4 4 Main Menu The Main Menu is shown in Figure 6 This is the second highest menu and is used to access four general system functions Main Hernu L OES l Figure 6 Main Menu 1 Modules Pressing the adj
2. Guaranteed 888 88 SOURCE www artisantg com 3 6 3 Set Point DAC 3 6 4 A D Converter 3 6 5 Current Source Voltage 3 6 6 Output Shorting 3 6 7 Modulation Voltage Control Input Port 3 6 8 Photodiode Feedback Amplifier 3 6 9 Constant Current High Bandwidth Mode 3 6 10 Constant Current Low Bandwidth Mode 3 6 11 Constant Power Mode 3 6 12 Laser Interlock Operation 4 TEMPERATURE CONTROLLER MODULE OPERATION 4 1 Temperature Controller TEC Module 4 1 1 Introduction 4 1 2 Installation 4 2 TEC Safety Features 4 2 1 Conditions That Will Automatically Shut Off the TEC Output 4 3 The TEC Connectors 4 3 1 TEC Grounding Consideration 4 4 TEC Module Operation 4 4 1 Quick Start 4 4 2 TEC Main Screen 4 4 3 TEC Setup Screen 4 4 4 Link Conditions 4 5 Sensors 4 5 1 Thermistor and Thermistor Current Selection 4 5 2 AD590 and LM335 4 5 3 RTD Sensors 4 6 TEC Module Theory of Operation 4 6 1 TEC Interface 4 6 2 Limit DAC 4 6 3 Set Point DAC 4 6 4 A D Converter 4 6 5 Sensor Select 4 6 6 Difference Amplifier 4 6 7 Proportional Amplifier and Integrator 4 6 8 Bipolar Output Stage 4 6 9 TEC Control Modes vii Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 57 57 57 57 58 58 5 MAINTENANCE 5 1 Introduction 5 2 Fuse Replacement 5 3 Cleaning 6 CALIBRATION 6 1 Calibration Overview 6 1 1 6 1 2 Environmental Conditions Warm Up 6 2 Laser Mo
3. Guaranteed 888 88 SOURCE www artisantg com an Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisan Service Form Telephone in the United States FAX GYD 800 222 6440 949 253 1680 Telephone Internet Newport 949 863 3144 www newport com Name RMA Number Company NOTE Please obtain Return Materials Address Authorization RMA number prior to return of item Country Date P O Number Phone Number Item s Being Returned Model Number Description Serial Number Reason for return of goods please list any specific problems List all control settings and describe problem System Diagram Attach additional sheets as necessary Show a block diagram of your measurement system including all instruments connected whether power is turned on or not Describe signal source If source is laser describe output mode peak power pulse width and repetition rate Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Where is measurement being performed factory controlled laboratory out of doors etc What input power line voltage is used Variation Input Power Frequency Ambient Temperature Any Additional Information i e If any special modifications were made by the user please describe below Artisan Technology Group Quality Instrumentation Guaranteed 888 88 S
4. A rtisan Artisan Technology Group is your source for quality TecmoogyGroup new and certified used pre owned equipment FAST SHIPPING AND SERVICE CENTER REPAIRS WE BUY USED EQUIPMENT DELIVERY Experienced engineers and technicians on staff Sell your excess underutilized and idle used equipment TENS OF THOUSANDS OF at our full service in house repair center We also offer credit for buy backs and trade ins IN STOCK ITEMS www artisantg com WeBuyEquipment 7 EQUIPMENT DEMOS HUNDREDS OF InstraV ea REMOTE INSPECTION LOOKING FOR MORE INFORMATION MANUFACTURERS Remotely inspect equipment before purchasing with Visit us on the web at www artisantg com 7 for more our interactive website at www instraview com information on price quotations drivers technical LEASING MONTHLY specifications manuals and documentation RENTALS ITAR CERTIFIED D a gaa tia Contact us 888 88 SOURCE sales artisantg com www artisantg com Model 8016 9008 9016 Modular Controller User s Manual Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Newport Corporation Irvine California has been certified compliant with ISO 9002 by the Certificate No FM 27207 British Standards Institution CY Newport Corporate Headquarters Newport Corporation 1791 Deere Avenue Irvine CA 92606 Telephone 714 863 3144 Facsimile 714 253 1800 Belgium Telephone 016 402927 Facsimil
5. Calibrate soft key then the soft key s that correspond to the module to be calibrated g Press the Im soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration Remote Operation Ipp Current Calibration Use the following procedure to calibrate the feedback circuits remotely for constant Ipp and constant Ppp modes a With the laser output off connect a calibrated ammeter to the photodiode anode output of the module and connect the circuit of Figure 28 to the laser and photodiode outputs If a calibrated ammeter with 0 1 uA resolution is not available place a calibrated DMM with 0 1 mV resolution to measure the voltage across the resistor R3 as shown in Figure 28 b Calculate the current in the following steps by using Ohm s Law 1 V R where V is the measured voltage across the resistor and R is the measured load resistance c Select the channel subchannel via the LAS CHAN command Set the laser current limit to full scale via the LAS LIM LDI command Set the photodiode current set point to half of full scale via the LAS MDI command Place the unit into constant photodiode current mode via the LAS MODE MDI command Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 88 Chapter 6 Calibration 6
6. E 915 Auxiliary temperature exceeds limit output shutdown E 916 Module init bit reset E 9999 Error condition remains from last user E 10000 No parameter Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 108 Chapter 8 Error Messages Error Code Explanation E 10001 Parameter blank E 10002 Delay in effect E 10003 Remote command too long exceeded command depth Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com C HAPTER Specifications Mainframe and General Specifications Model 8016 9008 9016 Modular Controller Specifications Display Type Back Lighting Controls Channel Active Output Connectors Chassis Ground GPIB Connector RS 232 Connector Power Requirements Size H x W x D Mainframe Weight Modules Weight Operating Temperature Storage Temperature Operating Altitude Instrument Use Laser Safety Features LCD graphics display 240 W x 128 H pixels Green LED Brightness and Contrast contrast optimizes viewing angle Green LASER ACTIVE LED indicates that at least one Laser Diode output is on and the LCD graphics shows details of active channels 4 mm Banana Jack 24 pin IEEE 488 One 9 pin male D sub 100 to 240 volts 5 Amp Max 50 to 60 Hz 5 25 in x 19 00 in x 17 40 in 13 3mm x 48 26cm x 44 20cm 40 Ibs 18 kg 2 5 lbs 1 1 kg typical weight each 0 to 40 C lt
7. Im or Po When these fields are editable such as the Io field in the figure above they indicate the corresponding set point Non editable fields such as the Im and V fields above indicate measured values such as laser current or voltage photodiode current or photodiode power OFF ON Indicates the state of the laser s output Pushing the adjacent soft key toggles the state Mod This button will be available only on certain combo modules while in Io mode Pushing the adjacent soft key activates the modulation setup screen Setup Pushing the adjacent soft key activates the setup screen Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 47 3 5 3 The bottom line on the display has six LED enunciators each indicating a particular state of the laser They are defined as ILIMIT When illuminated indicates the unit is current limiting ImLIMIT When illuminated indicates the unit has exceeded the monitor photodiode current limit PLIMIT When illuminated indicates the unit has exceeded the monitor photodiode power limit Open When illuminated indicates the system has detected an open circuit Only detected when the unit is on Short When illuminated indicates the system has detected a short circuit Only detected when the unit is on Out of Tol When illuminated indicates the unit is out of tolerance as def
8. Sensors Thermistor and Thermistor Current Selection Introduction Choosing the right sensing current depends on the temperature range you want to measure and the resolution required at the highest measured temperature To correctly set the thermistor current you must understand how the thermistor and the Model 9016 interact and how temperature range and resolution values are inherent in the nature of thermistors Thermistor Range Thermistors can span a wide temperature range but their practical range is limited by their non linear resistance properties As the sensed temperature increases the resistance of the thermistor decreases significantly and the thermistor resistance changes less for an equivalent temperature change Consider the temperature and sensitivity figures in the table below Temperature Sensitivity 20 C 5600 ohms C 25 C 439 ohms C 50 C 137 ohms C Table 8 Temperature and Corresponding Sensitivity The practical upper temperature limit in the Model 9016 is the temperature at which the thermistor becomes insensitive to temperature changes The lower end of the temperature range is limited by the maximum A D input voltage of the Model 9016 Thermistor resistance and voltage are related through Ohm s Law V I x R The Model 9016 supplies current to the thermistor either 10 uA or 100 uA and as the resistance changes a changing voltage signal is available to the thermistor inputs of t
9. This interlock is a safety feature for laser protection It requires that the connecting cable be secure before the laser output is enabled A secure connection significantly reduces the possibility of an intermittent open circuit to the laser drive current NOTE There may be two interlocks used on a Model 8016 9008 9016 laser module One interlock may be on the laser connector Another interlock may be found on the rear panel of the Model 8016 9008 9016 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com C HAPTER 4 4 Temperature Controller Module Operation 4 1 Temperature Controller TEC Module 4 1 1 Introduction The Temperature Control Modules are precision thermoelectric cooler control modules for use in the Model 9016 Modular Controller It may be installed in any of the channel slots on the rear of the Model 9016 and may be interchanged with any other Features of the modules include Service free modularity calibration information is stored on the module Close case calibration Operational with most thermistors AD590 LM335 and RTD temperature sensors Flexible setup with Model 9016 save recall front panel functions High temperature stability Current limit VVVVVV 4 1 2 Installation This section describes the procedures for installing and removing a module from the Model 9016 NOTE The save recall bin information will be lost upon detecting any change
10. 2 7 d Enter the LAS OUTPUT ON command to turn the laser output on Enter the LAS CAL MDI command to place the Model 9016 in its laser photodiode current calibration mode After a few seconds the Model 9016 will be ready for the actual photodiode current to be entered via the LAS MDI command The measured value of the current should not be entered until the Model 9016 is ready to receive it The Model 9016 will be ready to receive the current value when after a LAS CAL MDI query is sent the response from the Model 9016 is 1 Once the actual photodiode current value is entered via the LAS MDI command the Model 9016 will apply a new photodiode current equal to approximately one fourth 34 the previous set point The Model 9016 will be ready to receive the second current value when after a LAS CAL MDI query is sent the response from the Model 9016 is 1 Input the second actual measured photodiode current as in Step f Once the actual photodiode current value is entered via the second LAS MDI command the Model 9016 leaves the current calibration mode If at any time prior to the second LAS MDI a command other than LAS MDI or LAS CAL MDI is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s The OPC query may be used to determine when the calibration is completed The operation complete flag bit 0 of the Standard Event Status Register may be used to trigger
11. C over the range 20 C to 50 C 50 00 40 00 30 00 kOhm 20 00 10 00 Degrees Celsius Figure 25 Thermistor Resistance Versus Temperature Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 71 T Actual Third Order Fit Eq 1 ssa 1000S E 32650000 009 12492 ne 1 nn ca 10000 25 00 8087 20 a9 Table 11 Comparison of Curve Fitting Equations The constants C1 C2 and C3 may all be expressed in the form n nnn thus simplifying entry into the Model 9016 4 5 1 7 Table of Constants We have listed some common thermistors and included the appropriate calibration constants for the temperature range 20 C to 50 C in Table 12 The Model 9016 by default uses the BetaTHERM 10K3 thermistor values Manufacturer BetaTHERM 1K7 Table 12 Thermistor Constants Resistance of a 10K Fenwal UUA41J1 thermistor Constants C1 1 125 10 C2 2 347 104 C3 0 855 107 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 72 Chapter 4 Temperature Controller Module Operation 4 5 2 4 5 2 1 4 5 2 2 AD590 and LM335 AD590 and LM335 sensors are not supported on dual or combination TECs General The Model 9016 uses two constants C1 and C2 for calibrating the two linear thermal sensing d
12. Hart conversion equation The resistance is determined by measuring the voltage across the thermistor with a known current of 1OUA or 100A The ITE current is also measured and saved The TEC s output current is sensed across a resistor and the voltage is converted to an ITE current value Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 80 Chapter 4 Temperature Controller Module Operation When an LM335 sensor is used a two point conversion equation is used to determine the temperature Its voltage is measured as well as the ITE current When an AD590 sensor is used another two point conversion equation is used to determine the temperature Its reference current is sensed across a resistor and this voltage is measured The ITE current is also measured 4 6 9 2 R Mode In constant R mode the TEC is driven to the set point resistance voltage or current This resistance voltage or current is measured and converted to a temperature The ITE current is also measured 4 6 9 3 ITE Mode In constant ITE mode the TEC is driven with a constant current at the ITE set point value The ITE current is sensed across a resistor and the voltage is converted to ITE current Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 5 1 5 2 5 3 C HAPTER 5 Maintenance Introduction Module specific calibration can be found in the module s
13. Input Port H Current Set Point Laser Diode Current Sense Figure 19 Constant Current High Bandwidth Mode Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 55 Unregulated DC Voltage Regulator Pass Transistor Modulation Input Current Set Point Laser Diode Current Sense Figure 20 Constant Current Low Bandwidth Mode 3 6 11 Constant Power Mode In constant P mode the laser circuit is configured as shown in Figure 21 Photodiode feedback is used to control the laser output and the bandwidth is held low Unregulated DC Voltage Regulator Pass Transistor Modulation Input Output aS r Shorting Laser Diode Photodiode Input Amp Current Sense Figure 21 Constant Power Mode Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 56 Chapter 3 Laser Diode Driver Module Operation 3 6 12 Laser Interlock Operation The back panel laser input output connector has interlock connections that must be connected before the laser output will be enabled If there is not a connection between these pins the laser output will not be enabled When this path is broken the laser Interlock Error condition event will be reported in the laser Condition Status Register and the Laser Event Status Register
14. LCD display Brightness Adjust the brightness to adjust the backlighting intensity on the LCD display Invert Selecting Yes inverts the screen to be white text on a black background rather than black text on a white background No Lockout dial Selecting Yes disables the dial to avoid accidental changes in active data fields when the dial is bumped Lockout pad Selecting Yes locks out the data entry portion on the keypad Navigation keys such as up and down MENU and MASTER continue to work Note that both the Lockout dial and Lockout pad settings are temporarily suspended while in the Configure System Screen allowing the dial and keypad lockout settings to be changed while in this screen Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 28 Chapter 2 System Operation 6 10 Audible Beep Controls the system s audible beeper The beeper indicates errors invalid data entry and other situations where the Model 9016 needs to alert the user On Delay Controls the delay time from the moment a Laser Diode Driver is turned on by the user to the actual time the output is energized The delay time is programmable from 0 seconds to 30 seconds The default setting is three 3 seconds Key Rate Controls the speed at which when a key is held down it repeats Settings are Slow Medium and Fast Dial Rate similar to the Key Rate setting
15. SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 77 4 6 4 6 1 4 6 2 TEC Module Theory of Operation Figure 27 shows the functionality of the TEC module The following sections detail the theory of operation for each of the blocks in Figure 27 Limit DAC To Microprocessor Optically Isolated Serial Bus Set Point DAC R Sensor Select and Amps Bipolar Output Stage A D Converter Integral Amp PI Loop Sensor Lines Heat Cool Lines Figure 27 TEC Board Module Diagram TEC Interface The TEC interface provides optically isolated serial communications between the TEC board and the microprocessor Control signals are passed to the TEC board to set the TEC board status current limit and temperature set points Instructions and data are sent over the serial interface to the optical barrier Status and data are serially passed back to the microprocessor Limit DAC The microprocessor loads the digitally stored current limit value into the current limit 12 bit DAC The Limit DAC converts the digital limit signal from the microprocessor to a voltage that becomes the limit voltage for the Bipolar Output Stage The current limit value is updated at power up at a bin recall and whenever the LIM ITE value is changed Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 78 Cha
16. SPECIAL DIRECT INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THIS PRODUCT OR CAUSED BY THE DEFECT FAILURE OR MALFUNCTION OF THIS PRODUCT NOR ANY OTHER LOSSES OR INJURIES WHETHER A CLAIM FOR SUCH DAMAGES LOSSES OR INJURIES IS BASED UPON WARRANTY CONTRACT NEGLIGENCE OR OTHERWISE BY ACCEPTING DELIVERY OF THIS PRODUCT THE PURCHASER EXPRESSLY WAIVES ALL OTHER SUCH POSSIBLE WARRANTIES LIABILITIES AND REMEDIES NEWPORT AND PURCHASER EXPRESSLY AGREE THAT THE SALE HEREUNDER IS FOR COMMERCIAL OR INDUSTRIAL USE ONLY AND NOT FOR CONSUMER USES AS DEFINED BY THE MAGNUSOM MOSS WARRANTY ACT OR SIMILAR STATE CONSUMER WARRANTY STATUTE 2000 Newport Corporation Irvine California USA Part No 8800801600 IN 06001 Printed 06 Sep 00 Rev C Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com EC DECLARATION OF CONFORMITY Model 9008 Model 9016 Modular Controllers We declare that the accompanying product identified with the C mark meets all relevant requirements of Directive 89 336 EEC and Low Voltage Directive 73 23 EEC Compliance was demonstrated to the following specifications EN50081 1 EMISSIONS Radiated and conducted emissions per EN55011 Group 1 Class A EN50082 1 IMMUNITY Electrostatic Discharge per IEC 1000 4 2 severity level 3 Rated Emission Immunity per IEC 1000 4 3 severity level 2 Fast Burst Transients per IEC 1000 4 4 severity level 3 Su
17. an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Local Operation Laser Voltage Measurement Calibration Use the following procedure to calibrate the laser voltage measurement locally a b With the output off connect a calibrated voltmeter in parallel with a load resistor as selected Table 15 Drive Current Load Resistor Selection to the laser output terminals Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 89 6 2 8 C Press the Setup soft key and set the laser current limit Io Lim to 80 of the maximum current plus 100 mA and the laser voltage compliance limit Vcomp to maximum Press the Prev soft key to return to the single display Press the OFF soft key to turn the laser output on if it is not on already Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated Press the V soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prio
18. calibrated ammeter in series across the laser output terminals If an ammeter with the appropriate current ratings is unavailable connect a calibrated DMM across the laser output terminals to measure the voltage across the resistor b Calculate the current in the following steps by using Ohm s Law l V R where V is the measured voltage across the resistor and R is the measured load resistance c Go to the single module display by first pressing the MENU button then the Modules soft key then the soft key s that correspond to the module to be calibrated d Press the Setup soft key and set the laser current limit Io Lim to one half scale plus 100 mA and output bandwidth as desired Press the Prev soft key to return to the single display e Press the OFF soft key to turn the laser output ON if it is not on already f Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated g Press the Io soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point before completing the calibration Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 85 6 2 4 Remote Operation Current Source Io Calibration Use the
19. calibration is completed The operation complete flag bit 0 of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Local Operation RTD Calibration Use the following procedure to calibrate the RTD sensor locally a Measure and record the exact resistance of your 100 Q metal film resistor With the TEC output OFF connect the metal film resistor to the sensor input of the TEC Module Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated Press the Setup soft key and select the RTD as the Sensor Type Press the Prev soft key to return to the single display Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated Enter the TEC sensor calibration mode by pressing the Sensor soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 95 6 3 9 6 3 10 Remote Operation RTD Calib
20. current that occurs when the output circuit is opened Experience indicates that should an open circuit occur during laser operation the laser may be damaged Therefore secure cabling is important NOTE Although the Intermittent Contact circuitry works well in helping to protect the laser diode there is still a danger in having poor connections as no circuit can protect completely Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 43 3 4 2 NOTE It is possible with some modes of modulation especially square wave to trigger the intermittent contact circuit and cause a shutdown If this is the case for you the intermittent contact feature may be disabled in the laser set up menu with reduced laser protection in the case of poor connections It is recommended that the connections to the module output be made using twisted wire pairs with an earth grounded shield The output terminals of the module are left floating relative to earth ground to suppress AC power on power off transients that may occur through an earth ground path If the output circuit is earth grounded at some point such as through the laser package and mount the user must be careful to avoid multiple earth grounds in the circuit Multiple earth grounds may provide circuit paths that short the driver and may damage the laser Photodiode Feedback Connec
21. in the module configuration such as installing a new module To install the module into the Model 9016 follow these steps 1 Turn the Model 9016 power OFF Installing a module with the power ON can damage the module and the Model 9016 57 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 58 Chapter 4 Temperature Controller Module Operation 2 Place the module into an open bay on the back of the Model 9016 and slide the module into place There are tracks at the top and bottom of the bay that guide the module into place Screw the Module Locking Screws into the back panel to secure the module To remove the module from the Model 9016 follow these steps 1 Turn the Model 9016 power OFF Removing a module with the power ON can damage the module and the Model 9016 2 Unscrew the Module Locking Screws that secure the module to the Model 9016 back panel 3 Grasp the module by handle that extends from the bottom of the back panel Gently but firmly pull the module out of the Model 9016 4 2 TEC Safety Features 4 2 1 Conditions That Will Automatically Shut Off the TEC Output High Temperature Limit Low Temperature Limit R Limit Sensor Open TEC Module Open Sensor Select changed Sensor Shorted Any Linked Functions VVVVVVVV With the exception of the linked functions clearing the appropriate bits in the TEC OUTOFF register can disable each of these conditions See the Ne
22. manual No calibration is necessary on the main frame Do not attempt to remove the cover Fuse Replacement The fuses are accessible on the back panel of the Model 9016 Before replacing a fuse turn power off and disconnect the line cord Use only the fuse indicated below Line Voltage Fuse Replacement 100 240 VAC 5 00 Amp T 5x20mm 250V Cleaning Disconnect AC power before cleaning Use mild soap solution on a damp but not wet cloth to wipe down the exterior of the instrument Do NOT remove the instrument s top cover 81 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com an Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisan 6 1 6 2 6 2 1 C HAPTER 6 Calibration Calibration Overview The Model 9016 performs an automatic DAC calibration on power up This removes the majority of calibration error However if it is desired to completely calibrate the system the following procedures will do so All calibrations are done with the case closed The instrument is calibrated by changing the internally stored digital calibration constants All calibrations may be performed locally or remotely However depending on the sensor configuration some procedures may not apply to all instruments Environmental Conditions Calibrate this instrument under laboratory conditions We recommend calibration at 25 C 1 0 C Wh
23. present the more current will be driven through the TEC with the maximum current being determined by the current limit The speed at which the integrator s outp1 lut increases is the integration time which can be Slow or Fast Some TEC modules do not support the Slow setting and therefore omit the Fast designator in the range of settings The available Gain values are 0 2 Slow 0 6 Slow 1 Slow 1 Fast 2 Slow 3 Fast 5 Fast 6 Slow 10 Slow 10 Fast 20 Slow 30 Fast 50 Fast 60 Slow 100 Fast or 300 Fast The number actually defines the proportional loop gain The slow fast suffix indicates the speed at which the integrator s output increases The slow setting allows for larger masses or greater distance between the sensor and the thermo electric cooler by slowing the speed of the integrator Both the proportional gain and the integration time must be matched to the thermal characteristics of the TE cooler and sensor If the settings are incorrect the temperature set point will take an excessive amount of time to settle or it will oscillate around the set point and never settle The Gain setting depends on the thermal time constants in your setup but we can suggest guidelines for selecting the proper gain Set the gain to fast and increase it until the actual temperature oscillates around the set temperature Then reduce the gain to the next lower value To read the Gain setting go to the setup The display will show the value of th
24. 109 Tables Table L Laser Connector Pinus ovis cicicesscsissavcesestascasseeleriests iescsyacuannasentebavese EEEE ENEE AE EEANN 39 Table 2 Combo Single DB15 Connector Pinout ccsccescceseceseeneenseeeseesecesecusecaeceseecaeeeaeeseeeseecaecnaeceesusecaeesaeens 39 Table 3 Dual LDD Single HD26 Connector Pinout 0 csccescceseesseeseeeseeeseeeecesecusecaaecaceeeceeeeeeeeeeaeeeaeensesnaecaeeaaeeas 40 LGDIE 4 Laser Link CONGIIONS sossssdiesass sxe edcusstius costs EE E E sds ebeubegsegstieosobseeideeted ine sdeesstens tee 51 Table 3 TEC Connector PINOS eisereen ciie i na E NE AN E EN NEE E EAE 59 Table 6 Combo Single DB15 Connector Pinout c csccescceseceseenseenseeeseseecesecusecuseceseeeseeeaeeceeeseecaecaeceesuaesaeesaeens 59 Table 7 LEC Link Conditions icy svescesctbesenvespaciassianapanhsaoeanedgessapsayndsads E EAE E E EEEE EEEE sess agerseapectencians 66 Table 8 Temperature and Corresponding Sensitivity cccccecccsccesscesscesecesecesecusecceeseeeseeeeeeeeeeeeeeeeseseseeesnaesnaeesaeens 67 Table 9 Practical Temperature Ranges for a Typical 10 K Therimistor c cccccsccesscessessseesseesseeeeeeeeeesecnaessaesaaeeas 67 Table 10 Resolution Figures for a Typical 10 K TherimistOr c cccccccccccescesecesecssecnseereeeseeeneeseeeeeeeseecaecsaeesecsaeeaeens 69 Table 11 Comparison of Curve Fitting Equations cccccccscessseesseesseesceesceseeceecaeeeaeeeaeseaeeeeeeeeseeeeseeesessa
25. 3335 Sensor Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 74 Chapter 4 Temperature Controller Module Operation 4 5 2 4 4 5 2 4 1 The temperature Ta which is displayed by the Model 9016 is calculated as follows Tyg C1 C2 T Where C1 and C2 are the constants stored in the Model 9016 for the LM335 Equation 6 Display Temperature Ta Equation LM335 Sensor When the LM335 is calibrated to 25 C C1 0 and C2 1 and the temperature accuracy is typically 0 5 C over the rated operating range However the LM335 is not perfectly linear and even with C1 accurately known there is a non linear absolute temperature error associated with the device This non linearity caused error is typically 0 3 C with the error associated with Cl assumed to be zero If a maximum absolute error of 0 3 C can be tolerated the one point calibration of C1 should be used If a greater accuracy is desired the two point method of determining C1 and C2 should be used However note that the absolute error associated with the constant C2 may vary over different temperature ranges Determining C1 and C2 for the AD590 and LM335 The nominal values of C1 and C2 are 0 and 1 respectively for both types of devices These values should be used initially for determining C1 and C2 in the methods described below The One Point method is easiest but it ignores the non linearity of the
26. 5V Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 41 3 3 3 3 3 4 Photodiode A BNC connector is provided for photodiode connections It is the same input as the PD Anode PD Cathode pins in the D connector with the anode on the shell Combo and dual modules do not have this BNC connector Interlock The laser can be interlocked using one of the options listed below with the proper setup Normal The interlock connector is the typical method for interlocking the laser involves connecting the interlock pins together to complete the circuit and allow the laser operation Two pins typically 1 and 2 are shorted out on the LDD connector to enable the activation of the LDD On Off Shorting and not shorting the enable pins will turn the LDD ON or OFF Fixture The laser diode drivers are grouped The first LDD s interlock pin in the group interlocks the remaining laser diode drivers The fixture size number of modules is set by the FIXTURESIZE command or through the UI at the configure system menu Fix ture Ser ial Two connector pins RXD and TXD of the RS 232 port are used to interlock fixture 1 and 2 respectively Using this interlock requires a modification to the hardware Fix ture amp LED This has the same functionality as the Fixture interlock described above with an additional LED indicator feature T
27. 6 power OFF Removing a module with the power ON can damage the module and the Model 9016 2 Unfasten the module locking screws that secure the module to the Model 9016 back panel 3 Grasp the module by the handle that extends from the bottom of the back panel Gently but firmly pull the module out 3 1 3 Laser Diode Protection Requirements Laser diodes are extremely sensitive to electrostatic discharge and current spikes transients Damage can result in reduced output power shift in threshold current changes in beam divergence and ultimately failure to lase LED like output only Newport precision current sources and controllers offer the most advanced laser protection features available including power line filters clamping current limits and slow start up circuits However no instrument can protect against all conditions especially ESD at the laser In order to optimize immunity from radiated or conducted electromagnetic energy e g static discharge the following guidelines for the laser diode must be adhered to gt ESD is the primary cause of premature laser failure As a minimum use anti static wrist straps grounded with 1 MQ resistor anti static floor coverings grounded soldering irons and grounded work areas Ionized air blowers are also recommended gt Laser diode leads should be shorted whenever the laser is transported or stored gt Select a driver module with the lowest possible current rating that still exce
28. 70 relative humidity non condensing 20 C to 60 C lt 90 relative humidity non condensing lt 2000 meters 6562 feet The Model 8016 9008 9016 is intended for indoor use only Interlock Output Delay meets CDRH US21 CFR 1040 10 In accordance with ongoing efforts to continuously improve our products Newport Corporation reserves the right to modify product specifications without notice and without liability for such changes 109 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com A rtisan Artisan Technology Group is your source for quality TecmoogyGroup new and certified used pre owned equipment FAST SHIPPING AND SERVICE CENTER REPAIRS WE BUY USED EQUIPMENT DELIVERY Experienced engineers and technicians on staff Sell your excess underutilized and idle used equipment TENS OF THOUSANDS OF at our full service in house repair center We also offer credit for buy backs and trade ins IN STOCK ITEMS www artisantg com WeBuyEquipment 7 EQUIPMENT DEMOS HUNDREDS OF InstraV ea REMOTE INSPECTION LOOKING FOR MORE INFORMATION MANUFACTURERS Remotely inspect equipment before purchasing with Visit us on the web at www artisantg com 7 for more our interactive website at www instraview com information on price quotations drivers technical LEASING MONTHLY specifications manuals and documentation RENTALS ITAR CERTIFIED D a gaa tia Contact us 888 88 SOURCE sal
29. Controls the acceleration of the dial as it is turned Settings are Slow Medium and Fast When set to Yes Dial Tick will produce a tick sound for each increment or decrement of the dial Master Controls the format of dual and combo modules on the master display see Section 2 4 3 Settings are Expanded and Condensed Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 29 2 4 7 Save Recall Screen pawe Recall Contig Save Recall Bin 1 Figure 8 Save Recall Screen The Save and Recall functions are used to store and retrieve Model 9016 setup configurations for future use For example a specific test setup may be saved for later use and then another setup may be used presently Then when the user desires to perform the specific test its setup is simply recalled Non volatile memory is used for saving the instrument parameters When a save operation is performed all of the parameters that are currently in effect on the Model 9016 are stored The user selects a bin number for saving the parameters Then when that bin number is recalled the Model 9016 is restarted and the parameters are reconfigured to the previously stored values A special bin 0 is reserved for the reset state Recalling bin 0 will reset all modules in the system to factory defaults Artisan Technology Group Quality Instrumentation Guaranteed 888 88 S
30. Current High Bandwidth Mode u c cccccccescceseceseeneeeseeeseeseceseceseecaaecaeeeaeeesseseeseseeseeeseneeaes 54 Figure 20 Constant Current Low Bandwidth Mode c cccccccssceseceseeeseesseeseeeeeeeeccesecesecuaeeeaeeeseeeaseeseneeseeeeeeenaes 55 Figure 21 Constant Power Mode iissa eaea ee a aden E A E E EEEE Toes 55 Figure 22 TEC Main Screener iE E E E E N ATECA E E EEEO E ER 61 Fig re 23 TEC Setup SCHCM ssseciss sasessusssissacesssitsss sna scsetons uieseibey easicoaced stulsdy tub chuapu nda snpsddgboabets sdstveut Mosestiedvivgstesneutedtiies 62 Figure 24 Thermistor Temperature Range ccccccsssseessceseceecssecnsecaeeeseeeseeeaecusecnaecuaecaaecaeecaeeeaeeeaeeeseeeeeseneeeeseaeenaes 68 Figure 25 Thermistor Resistance Versus Temperature ccccccsscessesssesscesscesecesecusecusecaaecaeeeseeeseesaseseeeeeseeeseeenaes 70 Figure 26 ADS5S9O Nonlinearity cessoseciesiacisiessnstaeaateps aE EE e EEEN EE E EAE 73 Figure 27 TEC Board Module DiGgramiice sceecseatves ccosneasatecnsincescusiaecososnveusebenban sto nvine E EEEE EE EA 77 Figure 28 Ipp Calibration Circuit uscirono ea i EER E E EE EE A E 86 x Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 1 1 1 2 1 2 1 1 2 2 C HAPTER 1 General Information Introduction This chapter describes the features options accessories and specifications of the Model 8016 9008 9016 Mod
31. Input the actual current measured in pA by the external ammeter as an lt nrf value gt via the TEC R lt nrf value gt command If at any time prior to TEC R a command other than TEC R or TEC R is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 93 6 3 6 6 3 7 Once the TEC R value is sent the OPC query may be used to determine when the calibration is completed The operation complete flag bit 0 of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Local Operation LM335 Sensor Calibration Use the following procedure to calibrate the LM335 sensor locally a With the TEC output off connect a 3 kQ metal film resistor and a precision voltmeter in parallel at the sensor input of the TEC module Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated Press the Setup soft key and select the LM335 as the Sensor Type Press the Prev soft key to return to the single display Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft k
32. NC keys access saved system configurations and repetitive procedures All controls are clearly marked and instructions easily understood for simple operation GPIB IEEE 488 2 and RS 232 Interfaces Gives Power to Remotely Control and Collect Data For ultimate control a GPIB IEEE 488 2 interface is available All control and measurement functions are accessible via the GPIB interface In addition standard serial RS 232C input and output ports allow several of the mainframes to be connected together to build large test and characterization stations As your instrumentation needs change the Model 9016 Modular Controller will adapt to all your new laser diode applications giving you the ultimate in flexible laboratory equipment Safety Terms and Symbols Terms The following safety terms are used in this manual The WARNING heading in this manual explains dangers that could result in personal injury or death The CAUTION heading in this manual explains hazards that could damage the instrument The NOTE heading gives information to the user that may be beneficial in the use of this instrument Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 14 Chapter 1 General Information 1 3 2 Symbols The following symbols are used in this manual and on the instrument gt i Refer to the documentation for proper operating instructions gt Protective earth ground connection 1 4 General Wa
33. OLDER PROGRAM DATA gt identifier not valid E 116 Parser syntax error character was not expected E 126 Too few or too many program data elements 105 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 106 Chapter 8 Error Messages Error Code E 201 E 214 E 217 E 218 E 301 E 302 E 303 E 304 E 305 E 306 E 510 E 514 E 517 Explanation lt PROGRAM DATA gt value out of range lt PROGRAM DATAs gt length exceeds maximum Attempted to recall a bin from a unsaved position Link table full A lt RESPONSE MESSAGES was ready but controller failed to read it Query error Instrument is talking but controller didn t read entire message Input buffer overflow Output buffer overflow Parser buffer overflow Parser IEEE received Sensor open disabled output TEC module open disabled output TEC Current limit disabled output TEC Voltage limit disabled output TEC resistance reference limit disabled output TEC high temperature limit disabled output TEC sensor type changed TEC output shutdown TEC out of tolerance disabled output TEC sensor short TEC output shutdown Incorrect TEC configuration to enter Calibration mode TEC output must be on to begin calibration TEC C1 C2 or C3 constants are bad all set to default values TEC mode change disabled output TEC interlock disabled output TEC link condition forced output on TEC link conditio
34. OURCE www artisantg com 30 Chapter 2 System Operation 2 4 8 Linking Screen Sec Condition Action Tat Dut Tol Turndff ib_ Hone Clr All Hone Hone Hone Hone linai Palin Hone 1 2 a 4 J T 3 Figure 9 Link Screen The linking screen allows the condition of one module to affect one or more other modules in the system The Clr All soft key allows clearing of all defined links To clear a single link simply change the Src field to None The system supports up to 32 links As an example of linking consider a system containing a laser and TEC module in slots and 2 respectively The TEC module cannot operate when the laser is off because condensation will form on the laser and may damage it However the TEC must be turned on whenever the laser is on to protect it from overheating First program the TEC high and low temperature limits to the operating range of the laser The following three links will then ensure that these conditions are met Link SRC Condition Action Tgt 1 1 On Turn On 2 2 1 Off Turn Off2 3 2 T Lim Turn Off1 Link function explanations Link 1 turns ON the TEC whenever the laser is ON Link 2 turns OFF the TEC whenever the laser is OFF Link 3 turns OFF the laser if the TEC exceeds its temperature limits There is no need to define a fourth link to turn off the TEC on a T Lim condition because if Link 3 turns off the laser Link 2 will automa
35. OURCE www artisantg com 8 1 8 2 C HAPTER Error Messages Introduction Error messages may appear on the display when error conditions occur in the respective functions of the Model 9016 In remote operation the current error list can be read by issuing the ERR query When this is done a string will be returned containing all of the error messages that are currently in the error message queue Error Codes The errors codes are numerically divided into areas of operation as shown below Error Code Range Area of Operation E 001 to E 099 Internal Program Errors E 100 to E 199 Parser Errors E 200 to E 299 Execution Control Errors E 300 to E 399 GPIB RS 232 Errors E 400 to E 499 E 500 to E 599 TEC Control Errors Laser Control Errors E 900 to E 999 System Errors E 1000 to E 9999 Miscellaneous Errors E 10000 to E 19999 Internal Program Errors Table 17 contains all of the error messages that may be generated by the Model 9016 Not all of these messages may be displayed Some refer to GPIB activities only for example Table 17 Error Codes Error Code Explanation E 001 Memory allocation failure E 002 Floating point error element in error set to default value E 104 lt NON DECIMAL NUMERIC PROGRAM DATA gt type not defined E 106 lt DECIMAL PROGRAM DATAs digit expected E 107 lt DECIMAL PROGRAM DATA digit not expected E 115 lt PLACEH
36. acent soft key gives access to each of the four slot positions for setup and control of each module 2 Config Pressing the adjacent soft key gives access to the general configuration menu with soft keys to access system configure save recall and linking screens 3 Comm Pressing the adjacent soft key gives access to the GPIB and RS 232 parameters 4 Local When the unit is in remote mode either through GPIB or RS 232C communications the Local soft key will be available Pressing it returns the Model 9016 to a local state When in local mode this key does not appear on the display The Model 9016 is placed in remote mode through GPIB or RS 232 communication or during the execution of a macro or special function Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 27 2 4 5 2 4 6 Configure Menu The configure menu provides access to the system configuration save recall linking and calibration screens System Configure Screen Configure Sustem Ontelay 3 8 sec Brightness 168 Key Rate Slow Invert Ho Dial Fate Slow Lockout dial Mo Dial Tick No Lockout pad Ho Master Expanded Audible beeps Yes Figure 7 Configure System Screen The System Configure screen controls basic operation of the Model 9016 system 1 2 Contrast Adjust the contrast to optimize the viewing angle on the
37. aid Newport shall pay for the return of the product to the customer if the shipment is within the continental United States otherwise the customer shall be responsible for all shipping charges insurance duties and taxes if the product is returned to any other location This warranty shall not apply to any defect failure or damage caused by improper use or failure to observe proper operating procedures per the product specification or operators manual or improper or inadequate maintenance and care Newport shall not be obligated to furnish service under this warranty 1 to repair damage resulting from attempts by personnel other than Newport s representatives to repair or service the product 2 to repair damage resulting from improper use or connection to incompatible equipment 3 to repair damage resulting from operation outside of the operating or environmental specifications of the product NEWPORT S LIABILITY FOR THE MERCHANTABILITY AND USE OF THE PRODUCT IS EXPRESSLY LIMITED TO ITS WARRANTY SET OUT ABOVE THIS DISCLAIMER AND LIMITED WARRANTY IS EXPRESSLY IN LIEU OF ANY AND ALL REPRESENTATIONS AND WARRANTIES EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR PARTICULAR PURPOSE WHETHER ARISING FROM STATUTE COMMON LAW CUSTOM OR OTHERWISE THE REMEDY SET FORTH IN THIS DISCLAIMER AND LIMITED WARRANTY SHALL BE THE EXCLUSIVE REMEDIES AVAILABLE TO ANY PERSON NEWPORT SHALL NOT BE LIABLE FOR ANY
38. ain Menu sosie sirensis anioi R EER E vinci ss a E E EER 26 Figure Configure System Sereen siemersi saia A Ea EEA EE EA AE EAEE ES aes 27 Figure Save Recall SCre eM eiiiai e E EE E E E E E EE 29 Figure 9 Link SCreeM iirinn ne E EAE E EOE ATA 30 ix Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Figure 11 Laser Diode Protection Circuit cccesccesccesccssecsseenseeseeeseeeseesseesccesecesecuaecuaecaaecaaeesaeeseeeaeceaeeseeeeeseeeeeeeeaes 37 Figure 12 Common Laser Cathode Photodiode Cathode c cccsccsssssseesseesseeeeesecesecesecusecaecsaeceeeesseneeeeseeesenaes 43 Figure 13 Common Laser Cathode Photodiode Anode cccccccscesecsseesseesseesseesecesecusecusecuaeceseeseeeseeeeeseseeeeenaes 43 Figure 14 Common Laser Anode Photodiode Cathode cccccccsscsssecsseeseesseeseeesecesecnsecesecseceaeeeeeeeseneesenseesenaes 44 Figure 15 Common Laser Anode Photodiode Anode 0 ccccccccccceseceseeuseenseesseeeeceeecesecusecseseaaeeseeeaeesseeeeeeneeeaeenaes 44 Figure 16 Laser Main SCreeM sescesscvvsvssieisteciscebeceineiatesteevenvouieatevsine st eyed ANE EE E EEE ASEE NERES 46 Figure 17 Laser Setup Sereenarsensirinianenii nia ii e R E E EA E O E AESA 47 Figure 18 Laser Module Block Did graiticss ccecscessedeteescosstansnescescanesbensisasnegutansanivensapaseassunetbepserestogscagunesaaeseasces aces 52 Figure 19 Constant
39. an 7 1 7 2 C HAPTER 7 Factory Service Introduction This section contains information regarding obtaining factory service for the Model 9016 The user should not attempt any maintenance or service of this instrument and or accessories beyond the procedures given in Chapters 5 and 6 Any problems that cannot be resolved using the guidelines listed in Chapters 5 and 6 should be referred to Newport Corporation factory service personnel Contact Newport Corporation or your Newport representative for assistance Obtaining Service To obtain information concerning factory service contact Newport Corporation at 800 222 6440 within the U S or your Newport representative Please have the following information available 1 Instrument model number on front panel 2 Instrument serial number on rear panel 3 Description of the problem If the instrument is to be returned to Newport Corporation you will be given a Return Materials Authorization RMA number which you should reference in your shipping documents as well as clearly marked on the outside of the shipping container Please fill out the service form located on the following page and have the information ready when contacting Newport Corporation Return the completed service form with the instrument Additional service information may be obtained from the Newport Corporation website http www newport com 101 Artisan Technology Group Quality Instrumentation
40. ant temperature offset The lead resistance may be taken out of the RTD reading as follows a With the TEC output OFF short the sensor wires as close to the RTD sensor as possible b Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated c Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated d Enter the TEC sensor calibration mode by pushing pressing the RTD Null soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 96 Chapter 6 Calibration 6 3 11 Local Operation Ite Current Calibration The following procedure is for calibrating the ITE constant current source locally for both polarities of current a With the output off connect a 1 Q 50 W resistor and a calibrated ammeter in series across the laser output terminals If an ammeter with the appropriate current ratings is unavailable connect a 1 Q 50 W resistor across the laser output terminals and use a calibrated DMM to measure the voltage across the resistor b Calculat
41. ation 49 3 5 3 4 3 5 3 5 3 5 3 6 3 5 3 7 3 5 3 8 3 5 3 9 Vcomp The voltage compliance setting controls the shutdown of the laser module output when the forward voltage of the laser exceeds the compliance setting Like the current limit described above the voltage compliance is monitored in circuitry on the module itself allowing for shutdown within microseconds of the condition Im Lim The photodiode current limit is a software monitored limit on the current delivered from the photodiode Because this limit is a software monitored limit shutdown can occur up to a second after the condition is true Po Lim Like the Im Lim the photodiode power limit is a software monitored limit on the power delivered from the photodiode For this limit to function the user must set a PD Resp value other than zero Because this limit is a software monitored limit shutdown can occur up to a second after the condition is true Tol Time and Tol lop The Tol Time and Tol Iop elements are used for determining when the laser is in tolerance The Tol Time value is expressed in seconds and can range from 0 001 seconds to 50 seconds The Tol Iop value is displayed in mA and can range from 0 1 mA to 100 mA When operating in Im or Po modes the Tol Iop setting is ignored and fixed values of 50 pA and 50 mW respectively are used The laser is considered in tolerance after it has been within the tolerance setting for the set number of se
42. below 3 5 4 4 Mod Type Mod Type selects the type of waveform generated by the modulation circuit square wave sine wave or on some modules triangle wave Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 51 3 5 4 5 3 5 5 lo Min and lo Max To min and Io max can be used in place of the Io set point and Mod Amplitude to set the top and bottom Io levels for the modulation output Because these values are calculated based on the Io set point and Mod Amplitude and not stored they are displayed as a Modulation Calculator Changing either of these values will change the set point and amplitude settings accordingly Link Conditions The Laser module supports the following link conditions Condition Description Oon Tlaserouiputison of Laser outputis of O S O In Tol Laser is in tolerance Interlock _ Laserinterlockisnotclosed O o oOo ooo Open Laser module is open circuit SSCS Short Laser module is shorted Table 4 Laser Link Conditions See the Section 2 4 8 for a complete description of the linking process Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 52 Chapter 3 Laser Diode Driver Module Operation 3 6 Laser Module Theory of Operation Figure 18 shows the functionality of the Laser Module The following sections detail the theory o
43. ces Tol Time and Tol Temp The Tol Time and Tol Temp elements are used for determining when the 8300 is in tolerance where the actual temperature has stayed within Tol Temp of the set point for at least Tol Time seconds The Tol Time value is expressed in seconds and can range from 0 001 seconds to 50 seconds The Tol Temp value is displayed in C the most common usage and can range from 0 01 to 10 00 If at any time it goes outside the tolerance range the time restarts at zero As an example if the Tol Time is set to 5 seconds the Tol Temp is set to 0 2 C and the temperature set point was 25 0 C the TEC module would have to stay within 24 8 C and 25 2 C to be within tolerance Out of tolerance is indicated by an Out Of Tol status field on the bottom of the TEC Main Screen The out of tolerance condition is most often used to shutdown laser outputs when a TEC is not operating within tolerance This can be done in one of two ways The first and simplest would be to define a link condition with the TEC module as the source Out of Tol as the condition Turn Off as the action and the laser module as the target Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 66 Chapter 4 Temperature Controller Module Operation 4 4 3 7 4 4 4 The second method can be used if the system was being operated over IEEE 488 or RS 232 Once the TEC was within tolerance its OUTOFF registe
44. cision 16 kQ metal film resistor and a precision ammeter in series at the sensor input of the TEC Module b Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated c Press the Setup soft key and select the AD590 as the Sensor Type Press the Prev soft key to return to the single display d Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated e Enter the TEC sensor calibration mode by pressing the Sensor soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration 6 3 5 Remote Operation AD590 Sensor Calibration Use the following procedure to calibrate the AD590 sensor remotely a With the TEC output off connect a precision 16 kQ metal film resistor and a precision ammeter in series at the sensor input of the TEC Module b Enter the TEC CHAN command to select the channel subchannel to be calibrated Enter the TEC SEN 4 and TEC CAL SEN to select the AD590 sensor and enter sensor calibration mode The Model 9016 will be ready to receive the current value when after a TEC CAL SEN query is sent the response from the Model 9016 is 1 c
45. conds If at any time it goes outside the tolerance range the time restarts at zero As an example if the Tol Time is set to 5 seconds the Tol Iop is set to 2 mA and the current set point was 1000 mA the laser module would have to stay within 998 mA and 1002 mA to be within tolerance Out of tolerance is indicated by an Out Of Tol status field on the bottom of the Laser Main Screen Intermittent Contact Int Contact The Int Contact setting controls the detection of intermittent contacts caused by faults cables or connectors If enabled an intermittent contact will shutdown the laser with an open error The system allows the user to disable the circuit when working in an electrically noisy environment that might cause a false detection The circuit is automatically disabled in the High Bandwidth Mode PD Resp The PD Resp element is the conversion factor between photodiode current and photodiode power and is expressed in pA per mW If this value is zero the system will not operate in Po mode Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 50 Chapter 3 Laser Diode Driver Module Operation 3 5 3 10 PD Zero The PD Zero element is the photodiode offset that is removed from the photodiode read back before any values are displayed and conversely is added to any photodiode set point The photodiode offset is a combination of any dark current or stray light picked up while the laser
46. ctor is used as shown below DB15 Connector in Description 13 14 LDD V Sense 15 LDD V Sense Table 2 Combo Single DB15 Connector Pinouts Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 40 Chapter 3 Laser Diode Driver Module Operation 3 3 1 3 3 2 For single connector dual LDD modules a high density 26 pin male D connector is used as shown below HD26 Connector Pin Description Pin Description 4 Vpow 17 Vpow ss m Ground _ 18_ Digital Ground_ A BOT B PD 2 Cathode EE E a0 Pe Anode 8 Vpow 21 BPD1Cathode 9 Interlock 22 BPD 1 Anode Analog Ground A PD 2 Cathode B LD Cathode A PD 2 Anode 12 B LD Anode 25 APD 1 Cathode A PD 1 Anode Table 3 Dual LDD Single HD26 Connector Pinouts Modulation A BNC connector is provided on some modules for an external modulation signal See Section 3 5 3 2 for a description of modulation bandwidth Each 100 mV change in the modulation input is equal to 1 of the maximum drive current of the module For example 100 mV input on a 6560 module 6 A driver would equate to 60 mA of drive current However regardless of the input voltage the current cannot exceed the current limit Photodiode Bias Control An adjustment is provided for OV to 5V reverse bias adjust on single channel modules Dual and Combo modules do not have a photodiode bias control and have fixed bias at either OV or
47. cursor keys the numerical keypad knob and ENTER select the desired functions and set the parameter values 6 When finished return to TEC display by selecting the Prev previous soft key 7 Using the knob or the numerical keypad and ENTER button enter the desired set point value 8 Press the OFF soft key to operate the TEC The OFF soft key changes to ON 9 Press the ON soft key to turn the TEC OFF Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 61 4 4 2 TEC Main Screen The TEC main screen is shown Figure 22 and described below 8358 3888mA 46h TEC Sens err ItE AHAHA Linit Tu 56 00 C Linit IteE 2 560A Linit T 16 06 C Tudit unit Tunt EunTtHeatina Out of Tol Figure 22 TEC Main Screen ISET TSET RSET iSET and vSET Indicates the set point value of current temperature resistance AD590 sensor current or LM335 sensor voltage In the screen shown above the TSET is shown ISET RSET iSET and vSET appear when operating in those respective modes The set point can be changed using the numeric keys or the knob I T R i and v Indicates the measured value of current temperature or resistance A Sens err indicates a sensor error usually caused by the sensor not hooked up or the wrong sensor selected In the screen shown above the T is shown I R i and v would be seen
48. device It is most useful when a high degree of temperature accuracy is not required The Two Point method can achieve a high degree of accuracy over a narrower operating temperature range but requires two accurate temperature measurements One Point Calibration Method The calibration described in this section is independent of the calibration procedure described in Section 6 3 4 and Section 6 3 6 These sections deal with the internal calibration of the 8300 module while the following calibration procedure should be used to calibrate the external AD590 or LM335 sensor For the most accurate possible results both calibration procedures should be performed The accuracy of this procedure depends on the accuracy of the externally measured temperature It is used to determine the zero offset of the device and it assumes that the gain slope is known 1 Allow the Model 9016 to warm up for at least one hour 2 Select the desired sensor type in the setup menu 3 Set the Cl parameter to zero Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 75 4 5 2 4 2 4 Set the C2 parameter to 1 5 Place the sensor at an accurately known and stable temperature T 6 Connect the sensor to the Model 9016 for normal Constant temperature operation Allow the Model 9016 to stabilize at the known temperature T and read the displayed temperat
49. ds Static fields are elements on the display that do not change from moment to moment These can include help text screen titles and error messages 2 4 1 2 Non Editable Data Fields Non editable data fields are used mainly to display read back information such as temperature laser current etc These fields can have a prefix or suffix label such as Io or mA and are periodically updated by the system 2 4 1 3 Editable Data Fields Editable data fields are used for module and system settings such as current set point temperature set point display contrast etc An editable field has four distinct display states focused focused and editing non focused and read only Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 21 2 4 1 3 1 The focused state indicates that the field has the input focus When the a field has the focus it is shown in reverse color white text on black background if the display is not inverted Any keyboard entry or knob adjustment will be applied to the field and only one field at a time on the display can have focus Move between fields using the up and down arrow keys When the user starts to make changes to the data field using the numeric or left right arrows the field enters the focused and editing state In this state a box is drawn around the data field to indicate changes are being made to the value See Secti
50. dule Calibration 6 2 1 6 2 2 6 2 3 6 2 4 6 2 5 6 2 6 6 2 7 6 2 8 Recommended Equipment Drive Current Load Resistor Selection Local Operation Current Source Io Calibration Remote Operation Current Source Io Calibration Local Operation Ipp Current Calibration Remote Operation Ipp Current Calibration Local Operation Laser Voltage Measurement Calibration Remote Operation Laser Voltage Measurement Calibration 6 3 TEC Calibration 6 3 1 6 3 2 6 3 3 6 3 4 6 3 5 6 3 6 6 3 7 6 3 8 6 3 9 6 3 10 6 3 11 6 3 12 6 3 13 Recommended Equipment Local Operation Thermistor Calibration Remote Operation Thermistor Calibration Local Operation AD590 Sensor Calibration Remote Operation AD590 Sensor Calibration Local Operation LM335 Sensor Calibration Remote Operation LM335 Sensor Calibration Local Operation RTD Calibration Remote Operation RTD Calibration RTD Lead Resistance Calibration Offset Null Local Operation ITE Current Calibration Remote Operation ITE Current Calibration Single Channel TEC Modules Remote Operation ITE Current Readback Calibration Dual and Combo TEC Modules 7 FACTORY SERVICE 7 1 Introduction 7 2 Obtaining Service viii 81 81 81 81 101 101 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 8 ERROR MESSAGES 105 8 1 Introduction 105 8 2 Error Codes 105 9 SPECIFICATIONS 109 9 1 Mainframe and General Specifications
51. e 016 402227 Canada Telephone 905 567 0390 Facsimile 905 567 0392 France Telephone 1 60 91 68 68 Facsimile 1 60 91 68 69 Germany Telephone 06151 36 21 0 Facsimile 06151 36 21 50 Italy Telephone 02 924 5518 Facsimile 02 923 2448 Japan Telephone 03 5379 0261 Facsimile 03 5379 0155 Netherlands Telephone 030 6592111 Facsimile 030 6570242 Switzerland Telephone 01 740 2283 Facsimile 01 740 2503 Taiwan R O C Telephone 886 2 506 2366 Facsimile 886 2 507 9268 United Kingdom Telephone 01635 521757 Facsimile 01635 521348 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Limited Warranty Newport warrants that the products it manufactures and sells will be free from defects and materials and workmanship for a period of one year from the date of shipment If any such product proves defective during the applicable warranty period Newport at its option either will repair the defective product with charge for parts and labor or will provide a replacement in exchange for the defective product In order to obtain service under this warranty the customer must notify Newport of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service In all cases the customer will be responsible for packaging and shipping the defective product back to the service center specified by Newport with shipping charges prep
52. e Gain setting In Constant I mode the Gain setting has no effect C1 C2 C3 and Ro See the section of each of the sensors for a description of how C1 C2 C3 and Ro are used Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 64 Chapter 4 Temperature Controller Module Operation 4 4 3 4 4 4 3 4 1 4 4 3 4 2 4 4 3 4 3 4 4 3 4 4 Mode Constant Temperature Mode Const T This mode holds the TEC at a constant temperature based on feedback from the sensor in the TEC mount using TSET and T variables In this mode the Model 9016 uses a control loop comparing the sensor input to the temperature set point driving the ITE current positive or negative to reach and maintain that set point The sensor s input is converted to temperature for display of actual TEC temperature The ITE current is also displayed in this mode Constant Resistance Reference Mode Const R Const v Const i This mode operates identically to the Const T mode but the sensor input is not converted to temperature but is displayed in unconverted form Likewise the set point is used directly not converted from temperature Thermistor and RTD sensors use resistance Const R mode RSET and R variables LM335 sensors use millivolts Const v mode VSET and v variables and AD590 sensors use microamps Const i mode iSET and i variables Const R Const v and Const i are primaril
53. e for the Output Stage The current limit value is updated at power up at a bin recall and whenever a LIM I value is changed Set Point DAC The microprocessor loads the current set point value into the DAC The Set Point DAC converts a set point value from the microprocessor to a voltage that becomes the current or Ipp set point input to the laser output stage The laser current set point value is updated at power up at a bin recall and whenever a laser set point value is changed A D Converter The A D converter measures the limit current actual current and photodiode current Current Source Voltage A regulated DC power supply forms the current source voltage Output Shorting A relay shorts the LD ANODE and LD CATHODE terminals whenever the laser output is turned off At the same time an FET is switched on to shunt any current that may appear at the output When the laser output is turned on the shunt circuit and short are removed in two stages This ensures transient protection of the laser output Modulation Voltage Control Input Port The rear panel MOD input connector drives a precision wide band instrumentation amplifier allowing the differential control signal applied to this port to use a different ground than the laser output terminals However due to the input common mode voltage restrictions the MOD input should be within 10 volts of the laser output terminals Each 100 mV change in the modulation input is equa
54. e maximum drive current of the laser diode module 9 Pin D Sub LD Cathode eg ee eee ee ee LD Anode PD Cathode PD Anode gt Ipd Current Figure 28 Ipp Calibration Circuit a With the laser output off connect a calibrated ammeter to the PD Anode output of the module and connect the circuit of Figure 28 to the laser and PD outputs If a calibrated ammeter with 0 1 uA resolution is not available place a calibrated DMM with 0 1 mV resolution to measure the voltage across the resistor R3 as shown in Figure 28 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 87 6 2 6 b Calculate the current in the following steps by using Ohm s Law 1 V R where V is the measured voltage across the resistor and R is the measured load resistance c Go to the single module display by first pressing the MENU button then the Modules soft key then the soft key s that corresponds to the module to be calibrated d Press the Setup soft key change the Mode to Im Photodiode constant current mode and set the laser current limit Io Lim to maximum Press the Prev soft key to return to the single display e Press the OFF soft key to turn the laser output ON If a laser on delay has been set wait that amount of time to allow the laser output to engage f Go to the Calibration Screen This is done by pressing the Menu button Config soft key
55. e temperature sensor type used in your TEC mount If the None type not available in some modules is selected only the ITE mode is allowed This type is intended for applications running without a temperature sensor After selecting desired sensor See the following sections for discussions of the various sensor types All TEC modules support the thermistor sensors 10HA and 100uA range Some TEC modules add support for the AD590 LM335 and RTD sensors Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 63 4 4 3 2 4 4 3 3 Gain The Gain function controls two parameters of the hybrid PI control loop proportional gain and integration time When the actual temperature and the set point are different an error voltage is generated This error voltage is directly related to the difference in the actual and set point temperatures The error voltage is then amplified by the proportional gain and used to control the amount of current driven through the TEC The higher the gain the more current will be driven for any given temperature difference with the maximum current being determined by the current limit The error voltage also drives an integrator The integrator s output also controls the amount of current being driven through the TEC The integrator is an amplifier whose gain is proportional to time The longer a given error voltage is
56. e the current in the following steps by using Ohm s Law l V R where V is the measured voltage across the resistor and R is the measured load resistance For dual and combination modules also connect a 10 KQ resistor across the sensor input c Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated d Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated e Enter the TEC ITE calibration mode by pushing the ITE soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration 6 3 12 Remote Operation Ite Current Calibration Single Channel TEC Modules Use the following procedure to calibrate the ITE current for single channel TEC modules remotely a With the output off connect a 1 Q 50 W resistor and a calibrated ammeter in series across the laser output terminals If an ammeter with the appropriate current ratings is unavailable connect a 1 Q 50 W resistor across the laser output terminals and use a calibrated DMM to measure the voltage across the resistor Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE ww
57. e to change to 100A If you need high resolution over a narrow range for a very accurate measurement you can set the current setting for the maximum resolution For example at a high temperature of 15 C you require a measurement resolution of at least 0 05 C This resolution is within the range of either setting but at the 104A setting the resolution is only 0 2 C while at the 100 uA setting the resolution is better than 0 05 C Generally it is best to use the 100uA setting for all measurements of 10 C or greater with a 10 K thermistor Selecting Thermistors The type of thermistor you choose will depend primarily on the operating temperature range These guidelines for selecting the range and resolution will apply to any thermistor 10 K thermistors are generally a good choice for most laser diode applications where high stability is required near room temperatures Similarly 10 K thermistors are often a good choice for cooling applications where you want to operate at temperatures from 40 C to room temperature If you require a different temperature range or the accuracy you need can t be achieved with either current setting select another thermistor Thermistor temperature curves supplied by the manufacturer show the resistance verses temperature range for many other thermistors Newport will also offer help for your specific application Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE w
58. ed 888 88 SOURCE www artisantg com Chapter 2 System Operation 23 2 4 2 Menu Structure Master Display Main Menu Modules Configure Menu Communications Local Slot 1 aa Setup Slot 2 Sub Slot 2a Setup Sub Slot 2b System Save Recall Linking Calibration Figure 3 Model 8016 9008 9016 Menu Structure Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 24 Chapter 2 System Operation 2 4 3 Master Display The Master Display is shown in Figure 4 and Figure 5 This is the highest level display and indicates the general status of up to four modules or sub modules in the system at a time The master display has two modes of operation Expanded and Condensed Figure 4 shows the master display as it would be viewed in Expanded mode Each channel is displayed in one fourth of the display When the system has modules with multiple sub modules such as the dual TEC or Combo module each sub module is displayed separately and the module ID box on the left shows the slot number with an a b etc after the module number to indicate the sub module When the total number of modules and sub modules exceeds four pressing the MASTER key repeatedly pages down though the list of modules
59. eds the laser s maximum operating current For example the Model 6505 500mA laser driver module should drive a laser with a maximum operating current of 150 mA gt Recess the laser diode inside a metal shielded enclosure such as a Model 700C laser diode mount recessed at least 0 25 in with the minimum aperture necessary to allow beam exit less than 0 125 in gt If industrial loads are switched in or near your laboratory use isolation transformers and or surge suppresser power strip with your laser current source gt Isolate your laser current driver with a surge suppresser when using a common line with laboratory power supplies soldering irons or other electronic instruments Avoid using such devices on the same surge suppresser as your laser source Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 37 gt Make sure the all cables to the laser diode are securely fastened Avoid bundling current source cables with other cables in your laboratory gt Set current and voltage limits to appropriate levels following the laser manufacturer s recommendations or to just above the expected operating current Suggestions include setting the compliance voltage no more than 10 above V and setting the current limit at or below the maximum operating current of the laser diode gt Avoid ground loops Do not ground the LDD cable shi
60. eld to the laser diode body Added protection from electrostatic discharge ESD can be obtained by inserting ferrite beads and capacitors near the laser diode as shown below 3 5 uH Ferrite Beads LDD Connector Mouser P N 542 FB73 287 D Sub 9 PD Anode pin7 O LD Anode pin 8 9 O LD Cathode pin 4 5 pin 6 PD Cathode EGND pin 3 Figure 11 Laser Diode Protection Circuit NOTES 1 When applying high speed modulation to the laser diode this circuit may reduce the maximum modulation frequency 2 The temperature controlled mount is earth grounded through pins 5 and 6 of the TEC D sub connector 3 On all 700 series mounts the temperature control cable must be connected for maximum protection 4 For maximum laser diode protection the diode should be recessed as in the 700 C mount Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 38 Chapter 3 Laser Diode Driver Module Operation 3 2 3 2 1 3 2 2 3 2 3 Laser Safety Features Conditions That Can Automatically Shut Off the Laser Output Laser Open Circuit Laser Compliance Voltage Limit Laser Hard Current Limit Laser Interlock State Changed Laser Photodiode High Current Limit Laser Photodiode High Power Limit Laser Intermittent Contact if enabled default disabled A Linked Function VVVVVVVV With the exception of the linked functions some of these cond
61. en necessary however the Model 9016 may be calibrated at its intended use temperature if this is within the specified operating temperature range of 0 C to 40 C Warm Up The Model 9016 should be allowed to warm up for at least one 1 hour before calibration Laser Module Calibration Recommended Equipment Recommended test equipment for calibrating the module is listed in Table 14 Recommended Test Equipment Equipment other than that shown in the table may be used if the specifications meet or exceed those listed Description Mfg Model Specification HP 34401A DC Amps 1 0 A 1 Resistance 10 ohms 0 02 Resistor High Power 19 50 W 2Q0 25W 5 0 10 W Low Temperature 10 9 5 W 30 9 2 W Coefficient Optical Isolator NEC PS2501 1 or equivalent 6 pin Table 14 Recommended Test Equipment 83 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 84 Chapter 6 Calibration 6 2 2 Drive Current Load Resistor Selection Maximum Module Current Resistor 200 mA 30 0 2W 500 mA 10 0 5 W 1 000 mA 5 Q 10 W 3 000 mA 2 Q 25 W 6 000 mA 10 50 W Table 15 Drive Current Load Resistor Selection 6 2 3 Local Operation Current Source Io Calibration Use the following procedure to calibrate the current source for the unit locally a With the output off connect a load resistor as selected from Table 15 Drive Current Load Resistor Selection and a
62. er side may be grounded On common type outputs only the common side may be earth grounded Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 45 3 5 3 5 1 Laser Module Operation Quick Start After the power on sequence is complete the Model 9016 goes to the Master display To set up a laser module 1 2 Press the MENU button then the Modules soft key Select the slot that the module resides in Select the Setup soft key At this point the display shows all laser parameters Using the cursor keys numerical keypad knob and ENTER select the desired functions and set the parameter values When finished return to the laser display by selecting the Prev previous soft key Using the numerical key pad and ENTER or using the knob enter the desired set point value Press the OFF soft key to operate the laser the OFF changes to ON Press the ON soft key to turn the laser OFF Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 46 Chapter 3 Laser Diode Driver Module Operation 3 5 2 Laser Main Screen The laser main screen in shown in Figure 16 and described in detail below Certain features are not available on some modules GL LinitIo ShbGmMA Vconmp 5 8861 Iunit Imunt Funt Deen Short Out of Tol Figure 16 Laser Main Screen Io
63. es artisantg com www artisantg com
64. esnaesaeeas 71 T ble12 Thermistor CONStAIUS sisi 5 8 2 ccssebeaecistinduouy E a AE Eo a ae A RE EA EREE sods ins EREE SEE e 7I Table 13 RID Constant CUTVES asirieni oe GENREEN EEEE E E ANEN 76 Table 14 Recommended Test Equipment ccccscccsccesecssecsseesseeseesseeseeeeeeeecesecusuecaaeesaeeaeeeaeeeeeseesueseseseseseaeenaeeaaeens 83 Table 15 Drive Current Load Resistor Selection nooneseseseeeeeeereererrsrrerreresrssrrrreresrrerrnserrreresrreresresrssrrrreresrent 84 Table 16 Recommended Test Equipment ccccsccesccesecssecsseesseeseeeseeeseeseeeecesecesuecaaeeaaeeaeeeaeeseeseeeseeseseseaeseaessaeesaeens 90 Table 17 Error COGS viiniin e N ETENE REEERE 105 Table of Figures Figure 1 Model 8016 Front Panel cciccsscccscssnsbcvperiancosedesecestveseeveeuvetoaneveerebtcvseve sieuvevesteveeventeanezestestevseveraeuvesesueveas 19 Figure 2 Various Data Fields Found on the Master Screen ccccccsccesccesecesecsseeeseeeseeseceecusecuseceseeeseesseeeseeeseneenaes 22 Figure 3 Model 8016 9008 9016 Menu Structure csccecccssceesseessesscessecesecneecaeecaceeseceecsseceaeccsaeeseeseeeneeeeeeesneeeenaes 23 Figure 4 Master Display Expanded Display ccccccccccesccessceseceecnsecseeaeeeseesseeeseeseeeseessecaecaeceseeeaeeeaeeeneeeeenaeenaes 24 Figure 5 Master Display Condensed Mode sccccccesseesseesccesecesecssecaseeaceeseeeeeeeeeeeeuseesaeecsaecaeeeseeseaeeeaeeeseeeeseenaes 25 Fig re 6 M
65. evices the AD590 and the LM335 C1 is used as the zero offset value and C2 is used as the slope or gain adjustment Therefore C1 has a nominal value of 0 and C2 has a nominal value of 1 when using the AD590 or LM335 In order to calibrate a linear sensor device the sensor must be operated at an accurately known stable temperature For example the sensor may be calibrated at 0 C if the sensor is placed in ice water until its temperature is stable A highly accurate temperature probe thermometer environmental chamber etc may also be to determine the known temperature for calibration AD590 Sensor The AD590 is a linear thermal sensor that acts as a current source It produces a current i which is directly proportional to absolute temperature over its useful range 50 C to 150 C This nominal value can be expressed as i 1pA K Where i is the nominal current produced by the AD590 and K is in Kelvin Equation 2 Linear Thermal Sensor Current Equation The Model 9016 uses i to determine the nominal temperature Tp by the formula Th i 1 pA K 273 15 Where T is in C Equation 3 Nominal Instrument Temperature T Equation AD590 Sensor The displayed temperature Ty C1 C2 T is then computed where C1 and C2 are the constants stored in the Model 9016 for the AD590 The AD590 grades of tolerance vary but typically without adjusting C1 and C2 the temperature accuracy is 1 C over its rated o
66. ey s that correspond to the module to be calibrated Enter the TEC sensor calibration mode by pressing the Sensor soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration Remote Operation LM335 Sensor Calibration Use the following procedure to calibrate the LM335 sensor remotely a With the TEC output off connect a 3 kQ metal film resistor and a precision voltmeter in parallel at the sensor input of the TEC module Enter the TEC CHAN command to select the channel subchannel to be calibrated Enter the TEC SEN 3 and TEC CAL SEN to select the LM335 sensor and enter sensor calibration mode The Model 9016 will be ready to receive the voltage value when after a TEC CAL SEN query is sent the response from the Model 9016 is 1 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 94 Chapter 6 Calibration 6 3 8 c Input the actual voltage in mV measured by the external voltmeter as an lt nrf value gt via the TEC R lt nrf value gt command If at any time prior to TEC R a command other than TEC R or TEC R is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s Once the TEC R value is sent the OPC query may be used to determine when the
67. f operation for each of the blocks in Figure 18 The circuit block diagrams for each laser mode of operation are shown in Figure 19 Figure 20 and Figure 21 The theory of operation for each mode of operation is discussed in Sections 3 6 9 3 6 11 Note that some modules may not contain all features shown Limit DAC A D Converter DC Power Supply regulated Optically Isolated Serial Bus Microprocessor Output On Off Diode i and Output z7 Slow Turn On Modulation Input Port Current Sensing Current Feedback Photodiode Figure 18 Laser Module Block Diagram 3 6 1 Laser Interface The laser interface provides optically isolated serial communications between the laser board and the microprocessor Control signals are passed to the laser board to set the laser board status current limit current set points and photodiode feedback functions Instructions and data are sent over the serial interface to the optical barrier Status and data are serially passed back to the microprocessor Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 53 3 6 2 3 6 3 3 6 4 3 6 5 3 6 6 3 6 7 Limit DAC The microprocessor loads the current limit value into the DAC The Limit DAC converts a digital limit signal from the microprocessor to a voltage that becomes the Limit Set Point voltag
68. following procedure to calibrate the current source for the unit remotely a With the output off connect a load resistor as selected from Table 15 Drive Current Load Resistor Selection and a calibrated ammeter in series across the laser output terminals If an ammeter with the appropriate current ratings is unavailable connect a calibrated DMM across the laser output terminals to measure the voltage across the resistor b Calculate the current in the following steps by using Ohm s Law l V R where V is the measured voltage across the resistor and R is the measured load resistance c Select the channel subchannel via the LAS CHAN command Set the current limit to one half scale plus 100 mA via the LAS LIM LDI command output bandwidth as desired via the LAS MODE I LAS MODE ICW or LAS MODE ILBW command and current set point to one half scale via the LAS LDI command d Enter the LAS OUTPUT ON command to turn the laser output on e Enter the laser LDI calibration mode by issuing the LAS CAL LDI command f Input the actual measured laser output current as an lt nrf value gt via the LAS LDI lt nrf value gt command The Model 9016 will be ready to receive the current value when after a LAS CAL LDI query is sent the response from the Model 9016 is 1 g Once the actual current value is entered via the LAS LDI command the Model 9016 will apply a new current equal to approximately one fourth 1 the previous set
69. he Model 9016 The Model 9016 will over range when the input voltage exceeds about 5 Volts Figure 24 graphically shows the lower temperature and upper voltage limits for a typical 10 K Ohm thermistor The practical temperature ranges for a typical 10 K thermistor a 10 K thermistor has a resistance of 10 K Ohms at 25 C are given in the table below Sensing Current Temperature Range 10 pA 51 to 40 C 100 uA 10 to 100 C Table 9 Practical Temperature Ranges for a Typical 10 K Thermistor Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 68 Chapter 4 Temperature Controller Module Operation USING TYPICAL 10 25 C THERMISTOR 3 00 THERMISTOR VOLTAGE 2 00 1 00 0 00 60 40 20 ie 20 40 60 80 100 DEGREES C 104A 100A HE Denotes practical range with typical 10K thermistor Wj Denotes measurable range with typical 10K thermistor Figure 24 Thermistor Temperature Range 4 5 1 3 Temperature Resolution You must also consider measurement resolution since the resolution decreases as the thermistor temperature increases The Model 9016 uses an A D converter that has a maximum resolution of about 76 uV The microprocessor converts this digital number to resistance stores the resistance then converts the resistance to a temperature using the Steinhart Hart equation and stores this temperature A temperature change of one degree centigrade will be
70. he RS 232 port has modified hardware that controls two LEDs that reflect the LDD ON state Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 42 Chapter 3 Laser Diode Driver Module Operation 3 4 Connecting to Your Laser When connecting laser diodes and other sensitive devices to the module we recommend that the Model 9016 be powered up and the laser output be off In this condition a low impedance shunt is active across the output terminals When disconnecting devices it is only necessary to turn the laser output OFF On connectors with multiple pins assigned to the same function these pins are tied together to provide greater contact area for the output connection NOTE Whenever external connections are made to multi pin outputs these connector leads should be tied together to ensure the greatest laser diode safety We also recommend the use of a D connector for your interface rather than binding posts or loose wires This will insure the best connection 3 4 1 Laser Diode Connections and Shielding NOTE The cable connections to the laser must be secure to avoid an open circuit should they be jostled or bumped Should an open circuit occur during laser operations the laser output will normally be turned off automatically Special circuits in the laser module are present for detecting intermittent contacts and connections These circuits detect the abrupt change in
71. ined by the Tol Time and Tol Iop settings in the Laser Setup Screen Laser Setup Screen The laser setup screen is shown in Figure 17 and described in detail below Certain features are not available on some modules S5 6q s6aeana LOD Mode Int Contact Disable Bandwidth Low PU Resp _BB uA mhH To Limit S8BEMA FI 2ero HAUA Uzomp JAHH Im Limit pS 5 5 A Fo Limit pAAmh Tol Time LAHS Tol Top 16 6m4 Figure 17 Laser Setup Screen Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 48 Chapter 3 Laser Diode Driver Module Operation 3 5 3 1 3 5 3 2 3 5 3 3 Mode The Mode setting controls how the laser driver current is controlled There are three modes Io Im and Po In the Io mode the active set point is the actual drive current A set point of 1000 mA will cause the module to drive 1000 mA through the laser diode assuming the Io Lim is set at or above 1000 mA In Im mode the set point is the desired amount of photodiode current in pA Unlike the Io mode Im mode will drive whatever current is necessary though the laser diode up to the limit to achieve the set point photodiode current Po mode is simply an extension on the Im mode allowing the user to operate the system in milliwatts of power The photodiode power set point in mW is converted to photodiode current using the PD Resp value from the setup screen Bandwidth This set
72. is off Pressing the PD Zero soft key sets this element to the photodiode current that is present on the photodiode input To clear it simply press the PD Zero soft key a second time 3 5 3 11 Prev Soft Key Pushing the Prev soft key returns to the previous screen 3 5 4 Laser Modulation Setup Screen Newer modules have onboard modulation circuits The modulation setup screen has six variables Mod Enable Mod Frequency Mod Amplitude Mod Type Io min and Io max Mod Amplitude Io min and Io max are interrelated see below 3 5 4 1 Mod Enable Mod Enable turns the modulation circuit on or off 3 5 4 2 Mod Frequency The modulation circuit is capable of a frequency between 200 Hz to 300 kHz Below 2 kHz the frequency is displayed in Hz while above 2 kHz the frequency is displayed in kHz 3 5 4 3 Mod Amplitude Modulation amplitude is entered in milliamps The amplitude is the positive and negative amplitude of the sine or square wave around the Io set point The actual Mod Amplitude set point has a resolution of 1 of the full scale output When changing Mod Amplitude Io min and Io max are recalculated using the Io set point and the new modulation amplitude to derive Io min and To max For example if the set point was 50 mA and the amplitude was 15 mA Io min would be recalculated at 35 and Io max would be recalculated at 65 Changing Io min or Io max has a similar effect on Mod Amplitude and the Io set point but in reverse See Section 3 5 4 5
73. is required the Combination LDD TEC module gives you full control of your laser diodes The TEC section temperature stabilizes your laser diode On the LDD section an internal function generator provides modulation Comprehensive Safety Features Protect Your Laser Diode Time tested laser diode protection safety features are incorporated into every Laser Diode Driver offered Input power module filters provide first stage protection against transients Additional filtering and power regulation stages coupled with high speed transient detection circuits let you operate your laser diode worry free from transients A slow turn on sequence multiple output shorting circuits and an independent current limiting feature provide the superior protection you demand from all your laser diode instrumentation Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 1 General Information 13 1 2 6 1 2 7 1 3 1 3 1 Intuitive Controls and Large Graphics Display Simplify Control and Test Procedures Improved data presentation and system control are achieved using an LCD graphics display A MASTER display shows the entire system configuration as well as each module s status Soft Keys guide you through initial system setup routines and the operation of each module Real time control of an output is accomplished either by entering the set point on the keypad or via the control knob MENU and FU
74. itions can be disabled by clearing the appropriate bits in the LASer ENABle OUTOFF register See the Newport Computer Interfacing Manual for additional information Key Switch Interlock The LASER ENABLE key switch on the front panel will shutoff or not allow to be turned on any laser outputs while in the OFF position per CDRH requirements Turn On Delay The Model 9016 is CDRH Compliant with a user programmable turn on delay The default turn on delay is three seconds but is user programmable from 0 to 30 seconds The delay setting is in the system configure screen which can be reached by pressing the MENU button followed by the Config soft key then the System soft key The field is labeled On Delay This condition will always shutdown the laser output and cannot be disabled Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Operation 39 3 3 The Laser Connectors On standard LDD connectors a 9 pin female D connector is used for input and output connections as shown by the pin out diagram below A 15 pin female D connector is used on single connector combo LDD TEC modules Pin Description Interlock Chassis Ground 4 5 Laser Cathode 6 Photodiode Cathode Photodiode Anode 8 9 Laser Anode Table 1 Laser Connector Pinouts For single connector combo LDD TEC modules a 15 pin male D conne
75. l 9016 hardware and software are communicating If the Model 9016 cannot successfully complete this test an error message will be displayed After this test the Model 9016 is configured to the state it was in when the power was last shut off and displays the master display Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 19 2 3 2 3 1 Introduction to the Model 9016 Front Panel Front Panel Familiarization Described below are the functions of each feature on the front panel Model 8016 shown Actual front panel layout and labeling for each of the different controllers Model 8016 9008 9016 may vary slightly Figure 1 Model 8016 Front Panel 1 Laser Enable Key Lock Safety key lock to enable and disable the laser Not available on all controllers 2 Power Switch ON OFF rocker switch turns the unit power on or off 3 LCD Display LCD graphics display 128 H x 240 W pixels that displays the settings and readings 4 Display Soft Keys These are the four dark keys located to the right of the display The function of these four keys varies depending on what menu is displayed See Section 2 4 1 4 for a complete description of soft keys 5 Laser Active LED Indicates one or more laser outputs are on 6 MASTER Key Switches to the master display from any screen in the system see Section 2 4 2 Artisan Technol
76. l to 1 of the maximum drive current of the module For example 100 mV input on a 6560 module 6 A driver would equate to 60 mA of drive current However regardless of the input voltage the current cannot exceed the current limit Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 54 Chapter 3 Laser Diode Driver Module Operation 3 6 8 3 6 9 3 6 10 Photodiode Feedback Amplifier Photodiode feedback is amplified by a precision instrumentation amplifier or a transimpedance amplifier When constant Power mode is selected the photodiode feedback signal is used to control the laser output Constant Current High Bandwidth Mode This mode of laser operation is shown in Figure 19 In this mode current feedback is used to control the laser output The bandwidth is between 50 kHz and 500 kHz depending on the model Constant Current Low Bandwidth Mode This mode of laser operation is shown in Figure 20 In this mode current feedback is used to control the laser output In this mode capacitors are switched into the circuit These capacitors act as a filter and therefore prevent the laser output from changing too rapidly This gives added laser diode protection This also limits the laser output bandwidth to about 10 kHz In the Low Bandwidth CW mode the bandwidth is further limited to 30 Hz Unregulated DC Voltage Regulator Pass Transistor RA Modulation
77. lay 2 4 4 Main Menu 2 4 5 Configure Menu 2 4 6 System Configure Screen 2 4 7 Save Recall Screen Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 17 17 17 17 18 18 19 19 20 23 24 26 27 27 29 2 4 8 Linking Screen 2 4 9 Calibration Screen 2 4 10 Configure Communications Screen 2 5 Rear Panel Familiarization 2 5 1 GPIB Connector 2 5 2 RS 232 Connector 2 5 3 Input Power Connector 2 6 Warm Up and Environmental Consideration 3 LASER DIODE DRIVER MODULE OPERATION 3 1 Laser Diode Driver Module 3 1 1 Introduction 3 1 2 Installation 3 1 3 Laser Diode Protection Requirements 3 2 Laser Safety Features 3 2 1 Conditions That Can Automatically Shut Off the Laser Output 3 2 2 Key Switch Interlock 3 2 3 Turn On Delay 3 3 The Laser Connectors 3 3 1 Modulation 3 3 2 Photodiode Bias Control 3 3 3 Photodiode 3 3 4 Interlock 3 4 Connecting to Your Laser 3 4 1 Laser Diode Connections and Shielding 3 4 2 Photodiode Feedback Connections 3 4 3 Sync Out Option 3 4 4 Grounding Consideration 3 5 Laser Module Operation 3 5 1 Quick Start 3 5 2 Laser Main Screen 3 5 3 Laser Setup Screen 3 5 4 Laser Modulation Setup Screen 3 5 5 Link Conditions 3 6 Laser Module Theory of Operation 3 6 1 Laser Interface 3 6 2 Limit DAC vi 39 40 40 41 41 42 42 43 44 44 45 45 46 47 50 51 52 53 Artisan Technology Group Quality Instrumentation
78. lity Instrumentation Guaranteed 888 88 SOURCE www artisantg com 90 Chapter 6 Calibration 6 3 6 3 1 6 3 2 h Once the actual voltage value is entered via the LAS LDV command the Model 9016 leaves the current calibration mode If at any time prior to the second LAS LDV a command other than LAS LDV or LAS CAL LDV is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s The OPC query may be used to determine when the calibration is completed The operation complete flag bit 0 of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command TEC Calibration Recommended Equipment Recommended test equipment for calibrating the module is listed in Table 16 Recommended Test Equipment Equipment other than that shown in the table may be used if the specifications meet or exceed those listed Description Mfg Model Specification DMM HP34401A DC Amps 1 0 A 1 Resistance 10 ohms 0 02 Resistors Metal Film 10 ko for ITE calibration dual combo only 1 kQ for 100uA calibration 100 ko for 10uA calibration 3 kQ for LM335 sensor calibration 16 ko for AD590 sensor calibration 100 Q for RTD sensor calibration High Power 1 Q 50 W for current calibration 15 pin male Table 16 Recommended Test Equipment Local Operatio
79. lue of the initial set point The Model 9016 will be ready to receive the third measured current value when after a TEC CAL ITE query is sent a 1 is returned Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 99 f Input the third actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command The Model 9016 will then drive the current to 25 of the negative current value of the initial set point The Model 9016 will be ready to receive the fourth measured current value when after a TEC CAL ITE query is sent a 1 is returned Input the fourth actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command If at any time prior to the last TEC ITE a command other than TEC ITE or TEC ITE is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s Once the TEC ITE value is sent the OPC query may be used to determine when the calibration is completed The operation complete flag bit O of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com an Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artis
80. mmand and the actual time the command is processed When this setting is Yes the Model 9016 will switch to a remote screen when entering remote mode although the MENU and MASTER buttons can be used to switch out of this screen When leaving remote mode the Model 9016 will switch to the master display unless the user has left the remote screen Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 32 Chapter 2 System Operation 3 GPIB Address Sets the IEEE 488 device address assigned to the Model 9016 Valid addresses are to 31 4 Speed Sets the baud rate of the RS 232 serial port 5 Terminal Mode Enhances the interface with the Model 9016 when communicating via the RS 232 in a ANSI VT100 compatible serial terminal See the Newport Computer Interfacing Manual for additional information on Terminal Mode and Speed 2 4 10 1 Error Message Conirol Error messages may appear on the display when error conditions occur which force the output off or reflect hardware errors in the Model 9016 Chapter 8 contains an explanation of the error message which may be reported by the Model 9016 NOTE Setting Display Errors While Remote to No may disable display of error messages on the Model 9016 screen while in remote mode Errors will continue to accumulate in the error queue but will not be displayed on screen Artisan Technology Group Quality Instrumentation Guara
81. n Thermistor Calibration Use the following procedure to calibrate the thermistor locally a Measure and record the exact resistance of your metal film resistor Use nominal values of 1 KQ for the 100A setting and 100 KQ for the 10A setting With the TEC output off connect the metal film resistor to the sensor input of the TEC Module Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 6 Calibration 91 6 3 3 b Go to the single module display by first pressing the MENU button then the Modules soft key then the slot soft key that corresponds to the module to be calibrated c Press the Setup soft key and select the appropriate thermistor 10uA or 1004A as the Sensor Type Press the Prev soft key to return to the single display d Go to the Calibration Screen This is done by pressing the Menu button Config soft key Calibrate soft key then the soft key s that correspond to the module to be calibrated e Enter the TEC sensor calibration mode by pressing the Sensor soft key Follow the on screen instructions to complete the calibration The calibration can be canceled without affecting the stored constants if the Cancel soft key is pressed at any point prior to completing the calibration Remote Operation Thermistor Calibration Use the following procedure to calibrate the thermistor sensor for remote operation a Measure and record the exact resistance of your me
82. n forced output off Attempt to select non TEC channel for TEC mode Laser interlock disabled output Laser hard current limit disabled output Laser open circuit disabled output Laser current limit disabled output Laser voltage limit disabled output Laser photodiode current limit disabled output Laser photodiode power limit disabled output Condition from linked module laser output shutdown Laser short circuit disabled output Laser out of tolerance disabled output Laser mode change disabled output Laser bandwidth change disabled output Incorrect Configuration for Calibration Sequence to start Calibration for Laser Diode current must have the output on to start Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 8 Error Messages 107 Error Code Explanation E 518 Calibration for the Monitor Diode must have the output on and the sensitivity set to zero to start E 519 Setting a measurement is only valid during the calibration phase for that measurement User has tried to calibrate a measurement without first entering the required calibration mode E 520 User cannot change the Laser Current set point while operating in a calibration mode for another measurement E 521 Cannot change photodiode input while output is on E 522 Critical failure current flow while output is off Power supply shutdown E 523 Critical failure laser power supply indicating Vlas is n
83. nce signal to the PI control This signal is the difference between set temperature and actual temperature voltage 4 6 7 Proportional Amplifier and Integrator The proportional amplifier is part of a digitally controlled gain stage consisting of the analog switches and their associated resistors The analog switches vary the ratio of resistance in the feedback circuit to change the gain The signal from the difference amplifier is sent to an integrator that reduces the difference between the set point temperature and the actual temperature to zero regardless of the gain setting An analog switch discharges the integrating capacitor whenever integration is not required to prevent unnecessary difference signal integration Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 79 4 6 8 4 6 8 1 4 6 8 2 4 6 8 3 4 6 8 4 4 6 9 4 6 9 1 Bipolar Output Stage The Bipolar Output Stage consists of circuits that limit the TEC output sense the TEC output polarity sense voltage and current limit conditions as well as supply the bipolar TEC output The following sections discuss these functions of the Bipolar Output Stage Current Limiting The output of the proportional amplifier and integrator together form the control signal Output current limiting is effected by bounding the control signal so that it is always less than the limi
84. nteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 33 2 5 2 5 1 2 5 2 2 5 3 2 6 Rear Panel Familiarization GPIB Connector The GPIB connector located on the back of the microprocessor module allows full remote control as described in the Newport Computer Interfacing Manual The connector accepts a standard IEEE 488 cable for remote control and uses Metric lock screws RS 232 Connector The Model 9016 has one RS 232 connector located on the back of the microprocessor module for remote control via the serial port See the Newport Computer Interfacing Manual for a more complete description of the RS 232 interface Input Power Connector Accepts a standard line cord for AC input Warm Up and Environmental Consideration Operate the Model 9016 at an ambient temperature in the range of 0 to 40 C Storage temperatures should be in the range of 20 to 60 C To achieve rated accuracy let the Model 9016 warm up for 1 hour For greatest accuracy recalibrate when ambient temperature changes more than a few degrees Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com an Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisan C HAPTER 3 Laser Diode Driver Module Operation Laser Diode Driver Module Introduction The 8500 and 8600 Series laser modules are precision current source modules for use in the M
85. odel 9016 Modular Controller It may be installed in any of the bays at the rear of the Model 9016 and may be interchanged with any other module Features of the 8500 and 8600 series include Service free modularity calibration information is stored on the module Closed case calibration High stability low noise design Flexible setup with Model 9016 save recall front panel functions Photodiode feedback control mode Modulation input on some models Fault detection Current and voltage limiting VVVVVVVV Installation This section describes the procedures for installing and removing a module from the Model 9016 NOTE The save recall bin information will be lost upon detecting any change in the module configuration such as installing a new module To install the module into the Model 9016 follow these steps 1 Turn the Model 9016 power OFF Installing a module with the power ON can damage the module and the Model 9016 35 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 36 Chapter 3 Laser Diode Driver Module Operation 2 Place the module into an open bay on the back of the Model 9016 and slide the module into place There are tracks at the top and bottom of the bay that guide the module into place Screw the module locking screws into the back panel to secure the module To remove the module from the Model 9016 follow these steps 1 Turn the Model 901
86. oduction This chapter describes how to operate the Model 9016 mainframe Module specific details can be found in the appropriate module section in this User s Manual 2 2 Installation 2 2 1 AC Power Considerations The Model 9016 has an auto sensing power supply that operates from 86V to 240V 17 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 2 2 2 2 2 3 2 2 4 Rack Mounting The Model 8016 Model 9008 and Model 9016 are typically mounted in a rack system cabinet unless otherwise specified Rack mounting tabs are integrated into the instrument s front panel for a seamless and sturdy instrument chassis mount Ventilation Requirements The rear and side panel areas require two 2 to four 4 inches of clearance for adequate air circulation Ensure that the fan area on the side of the unit and the air ventilation holes on the rear of the unit are unobstructed to allow for proper airflow through the unit Power Up Sequence With the Model 9016 connected to an AC power source set the power switch to I or ON to supply power to the instrument and start the power up sequence During the power up sequence the following takes place An initialization screen is displayed for between 15 to 20 seconds The software version is displayed in the lower left corner of the screen During this time a self test is performed to ensure that the Mode
87. ogy Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 20 Chapter 2 System Operation 7 Numerical Keys Used to set parameter values of numerical entry fields in various screens 8 Cursor Control Keys Moves cursor up or down between editable data fields The left arrow functions as a backspace in numerical entry fields or as a previous choice in a multi choice entry field The right arrow functions as a next choice in multi choice entry fields See Section 2 4 1 3 for a description of data fields 9 MENU Key Switches to the main menu from any screen in the system see Section 2 4 2 10 FUNCTION Key Used to execute user macros and special functions see Section 2 4 2 11 ENTER Key Used to enter parameter values set with the numerical or left right arrow keys 12 CLEAR Key Clears numeric data typed but not yet entered in an edit field 13 Knob Used to continuously vary certain parameters The knob has an acceleration factor that causes the rate of change to increase as the knob is turned faster Turning slowly allows for a fine adjustment at the smallest displayed decimal place 2 4 General Operation 2 4 1 Display Elements The Model 9016 uses a graphical display to depict information about the current state of the system The display can be broken down into four basic elements static fields non editable data fields editable data fields and soft key labels 2 4 1 1 Static Fiel
88. on 2 4 1 3 1 below for a description of how the keyboard operates while in this state The box will remain around the field until Enter or Clear is pressed or the user moves focus to another field using the up or down arrows The non focused state indicates that the field is editable but does not currently have the focus These fields are drawn with a solid underline Using the up and down arrows focus can be moved to these fields When the editable data field is in the read only state it looks and acts exactly like a non editable data field Like the non editable data field it cannot have focus and the up or down arrow keys will skip over the field This state is used primarily to lockout specific data elements from front panel change when the Model 9016 is in remote mode Any IEEE 488 or RS 232 communication will place the unit in remote mode and editable fields that are protected during remote operations change to the read only state Changing Data Fields A data field can only be changed from the front panel when the field has the focus Some fields are numeric based such as current set point or temperature limits Other fields are multi choice fields such as Yes No fields Both types are changed with the left and right arrows or the knob Below is a description of each of the keys used for front panel input NOTE If functions are not setup supported for a particular key the Model 9016 will beep Perhaps the most important key i
89. ot good E 524 Critical failure internal laser heat sink temperature too high Output shutdown E 525 Module initialization error typically caused by open laser circuit E 526 Laser PD response value changed while on Cannot change PD response value while output is on E 527 lo setpoint below modulation level Cannot energize output E 528 Laser setpoint below modulation level Laser limit was adjusted E 529 Laser modulation must be enabled to adjust this value E 530 Laser pulse change shutdown laser output E 531 Laser link condition forced output on E 532 Laser link condition forced output off E 533 Attempted to select non laser channel for laser operation E 534 Modulation not viable with thermopile E 900 Calculation Error shutdown output E 901 System over temperature shutdown all outputs E 902 Front laser enable panel key lock in off position shutdown all laser outputs E 903 Loading of a saved bin shutdown module output E 904 Module communications hardware error E 905 Recoverable EEPROM error module values set to factory defaults E 906 System over temperature all outputs shutdown E 907 System interlock open all outputs shutdown E 908 ADC ready line failed E 910 Power supply failed supply shutdown E 911 Excessive internal power dissipation output shutdown E 912 Inadequate power supplied E 913 Device over temperature output shutdown E 914 Fixture interlock key switch open all fixture outputs shutdown
90. perating range However the AD590 is not perfectly linear and even with C1 accurately known there is a non linear absolute temperature error associated with the device This non linearity is shown in Figure 26 reprinted from Analog Devices specifications where the error associated with C1 is assumed to be zero Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 73 0 8 ABSOLUTE ERROR 55 150 DEGREES C Figure 26 AD590 Nonlinearity If a maximum absolute error of 0 8 C is tolerable the one point calibration of C1 should be used If a greater accuracy is desired the two point method of determining C1 and C2 should be used However note that the absolute error curve is non linear Therefore the constant C2 will vary for different measurement points 4 5 2 3 LM335 Sensor The LM335 is a linear thermal sensor that acts as a voltage source It produces a voltage v which is directly proportional to absolute temperature over its useful range 40 C to 100 C This nominal value can be expressed as v 10mV K Where v is the voltage produced by the LM335 and K is Kelvin Equation 4 Linear Thermal Sensor Voltage Equation The Model 9016 uses v to determine the nominal temperature T by the formula Tn v 10mV K 273 15 Where T is in C Equation 5 Nominal Instrument Temperature T Equation LM
91. point The Model 9016 will be ready to receive the second current value when after a LAS CAL LDI query is sent the response from the Model 9016 is 1 h Input the second actual measured laser output current as in Step f Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 86 Chapter 6 Calibration 6 2 5 i Once the actual current value is entered via the second LAS LDI command the Model 9016 leaves the current calibration mode If at any time prior to the second LAS LDI a command other than LAS LDI or LAS CAL LDI is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s The OPC query may be used to determine when the calibration is completed The operation complete flag bit 0 of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Local Operation Ipp Current Calibration This procedure calibrates the feedback circuits locally for constant Ipp and constant Ppp modes The user enters the actual value of the current as measured by an external DMM The Model 9016 then automatically calibrates the laser feedback circuits The Ipp calibration circuit is diagrammed below Use Table 15 Drive Current Load Resistor Selection above to select a value for the R2 resistor that matches th
92. pter 4 Temperature Controller Module Operation 4 6 3 Set Point DAC The microprocessor loads the digitally stored current set point value into the set point 16 bit DAC The Set Point DAC converts a digital set point signal from the microprocessor to a voltage that becomes the set temperature input to the PI control loop The TEC current set point value is updated at power up at a bin recall and whenever a TEC set point value is changed 4 6 4 A D Converter The 16 bit A D converter measures the sensor voltage and the current of the bipolar output stage The sensor measurement is used by the microprocessor in the calculation of temperature or thermistor resistance The current measurement is used for the ITE value 4 6 5 Sensor Select Sensor selection is accomplished in the Sensor Select block of the TEC board Precision 100HA and 10uA current sources may be selected for thermistor control RTD LM335 and AD590 IC temperature sensors may also be selected The AD590 has a 5 VDC bias voltage the LM335 has a 1 mA bias current and the RTD has a precision 1 mA current source The output of the Sensor Select block of the TEC board is a voltage that is proportional to the actual temperature This voltage is fed to the A D converter that provides a digital measurement to the microprocessor and to the PI control loop to close the feedback loop when temperature is being controlled 4 6 6 Difference Amplifier Differential amp provides a proportional differe
93. r could be set to turn the TEC off when out of tolerance and then enable the TEC OFF bit in the laser s OUTOFF register This will cause the TEC to shutdown when it goes out of tolerance and then cause the laser to shutdown because the TEC is OFF The disadvantage of this second method is that the laser would shutdown if any TEC were off which might not be the desired operation Also you would have to disable the Out of Tolerance bit in the TEC s OUTOFF register before you could turn the TEC back on Prev Soft Key Pushing the Prev soft key returns to the previous screen Link Conditions The Laser module supports the following link conditions Condition Description On TEC output is on Off TEC output is off Out Tol TEC is out of tolerance In Tol TEC is in tolerance Lim TEC is current limiting V Lim TEC has reached its voltage limit T Lim TEC has exceeded temperature limit low or high Th Lim TEC has exceeded high temperature limit TI Lim TEC has exceeded low temperature limit R Lim TEC has exceeded R limits high or low Open TEC module is open Table 7 TEC Link Conditions See the section in the main Model 9016 manual of linking for a complete description of the linking process Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 67 4 5 4 5 1 4 5 1 1 4 5 1 2
94. r to completing the calibration Remote Operation Laser Voltage Measurement Calibration Use the following procedure to calibrate the laser voltage measurement remotely a With the output off connect a calibrated voltmeter in parallel a load resistor as selected to the laser output terminals Select the channel subchannel via the LAS CHAN command Set the voltage limit to full scale via the LAS LIM LDV command and the current set point necessary to read approximately 80 of full scale voltage For example with an 8560 module with a resistance of 1 Q set the current to 4 800 mA Place the unit into constant current mode via the LAS MODE LDI command Enter the LAS OUTPUT ON command to turn the laser output on Enter the laser voltage calibration mode by issuing the LAS CAL LDV command Input the actual measured laser voltage as an lt nrf value gt via the LAS LDV lt nrf value gt command The Model 9016 will be ready to receive the value when after a LAS CAL LDV query is sent the response from the Model 9016 is 1 Once the actual voltage value is entered via the LAS LDV command the Model 9016 will apply a new current equal to approximately one fourth 4 the previous set point The Model 9016 will be ready to receive the second voltage value when after a LAS CAL LDV query is sent the response from the Model 9016 is 1 Input the second actual measured voltage as in Step e Artisan Technology Group Qua
95. ration Use the following procedure to calibrate the RTD sensor remotely a Measure and record the exact resistance of your 100 Q metal film resistor With the TEC output OFF connect the metal film resistor to the sensor input of the TEC Module b Enter the TEC CHAN command to select the channel subchannel to be calibrated Send TEC SENS 5 to select the RTD sensor followed by the TEC CAL SEN to enter sensor calibration mode The Model 9016 will be ready to receive the resistance when after a TEC CAL SEN query is sent a 1 is returned c Input the actual resistance in ohms of the metal film resistor as an lt nrf value gt via the TEC R lt nrf value gt command If at any time prior to TEC R a command other than TEC R or TEC R is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s Once the TEC R value is sent the OPC query may be used to determine when the calibration is completed The operation complete flag bit O of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command RTD Lead Resistance Calibration Offset Null Because the RTD sensor reflects changes in temperature with small changes in resistance even a small lead resistance resistance caused by the wire running between the TEC module and the RTD sensor can cause signific
96. represented by a greater resistance increase and therefore more A D counts at a lower temperature than at a higher temperature because of the non linear resistance of the thermistor Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 69 4 5 1 4 4 5 1 5 Resolution figures for a typical 10 k Ohm thermistor are given in the table below Temperature Voltage at 10 pA Resolution 20 C 56 0 mV C 0 018 C mV 25 C 4 4 mV C 0 230 C mV 50 C 1 4 mV C 0 700 C mV Table 10 Resolution Figures for a Typical 10 K Thermistor For this thermistor a temperature change from 20 C to 19 C will be represented by 737 A D counts if supplied with 104A The same thermistor will only change about 18 A D counts from 49 C to 50 C Selecting Thermistor Current To select the current setting for a typical 10 K thermistor determine the lowest temperature you will need to sample and select the current according to the range limits given above If the temperature you want to sample is below 10 C you should use the 104A setting With the current set to 10UA the best resolution you will see will be a 1 0 C temperature change For example if the lower limit is 0 C you can choose either setting but there is a tradeoff in terms of resolution If you need better than 0 1 C measurement resolution you will hav
97. rge Immunity per IEC 1000 4 5 severity level 3 IEC SAFETY Safety requirements for electrical equipment specified in IEC 1010 1 on a Canim Alain Danielo Jeff Cannon VP European Operations General Manager Precision Systems Zone Industrielle 1791 Deere Avenue 45340 Beaune la Rolande France Irvine Ca USA Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Table of Contents 1 GENERAL INFORMATION 1 1 Introduction 1 2 Product Overview 1 2 1 Product Features 1 2 2 High Power Temperature Controller Fulfills All Your Thermoelectric TE Cooling Needs 1 2 3 Full Feature LDD Modules Offer Complete Test and Characterization Capabilities 1 2 4 Combination LDD TEC Modules Offer Full Laser Control In A Single Package 1 2 5 Comprehensive Safety Features Protect Your Laser Diode 1 2 6 Intuitive Controls and Large Graphics Display Simplify Control and Test Procedures 1 2 7 GPIB ITEEE 488 2 and RS 232 Interfaces Gives Power to Remotely Control and Collect Data 1 3 Safety Terms and Symbols 1 3 1 Terms 1 3 2 Symbols 1 4 General Warnings and Cautions 2 SYSTEM OPERATION 2 1 Introduction 2 2 Installation 2 2 1 AC Power Considerations 22 2 Rack Mounting 2 2 3 Ventilation Requirements 2 2 4 Power Up Sequence 2 3 Introduction to the Model 9016 Front Panel 2 3 1 Front Panel Familiarization 2 4 General Operation 2 4 1 Display Elements 2 4 2 Menu Structure 2 4 3 Master Disp
98. rnings and Cautions The following general warning and cautions are applicable to this instrument Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 1 General Information 15 CAUTION Although ESD protection is designed into the Model 9016 operation in a static free work area is recommended CAUTION Do not plug in or unplug a module with the AC power on CAUTION There are no serviceable parts inside the Model 9016 Work performed by persons not authorized by Newport Corporation may void the warranty For instructions on obtaining warranty repair or service please refer to Chapter 7 of this manual CAUTION Operating above 40 C can cause excessive heating and possible component failures CAUTION Do not connect or disconnect a signal to the modulation input with the laser on CAUTION Do not disconnect the photodiode with the laser on CAUTION Before connecting the laser diode to the module be sure that the LASER ENABLE is in the OFF position Before turning on the laser output be sure that the current limit and voltage compliance limit have been correctly set Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com an Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisan CHAPTER 2 2 System Operation 2 1 Intr
99. s function as previous and next choice respectively 2 4 1 4 Soft Key Labels Soft key labels are labels for the buttons located to the immediate right of the display Each label either indicates the action that is performed when the corresponding key is pressed such as changing screens or the state of a data element in the system such as laser output OFF ON In the first case pressing the corresponding soft key will cause the action to happen such as changing to the setup screen when the Setup soft key is pressed from a module s main screen In the second case pressing the soft key will change the associated state such as turning a laser output ON Like the editable data fields above certain soft keys are programmed to enter a read only mode when the unit enters remote mode Read only soft keys are displayed as an outline rather than a solid block NOTE If functions are not setup supported for a particular key the Model 9016 will beep Static Field Non Editable Focused Editable Soft Key K P Data Field ra Data Field y Im 2H27 5uA Lon u lo mA adi Ma ITE HAHHA fas Ea Sens err TSiT yo c Im z0b WR 3 688 Io B AmA ombo A Irt 4 668 T error Tst 25 00 C Modules Ir 6 88 T erron Tms 25 880 Tre 88 T 25 88 2B Non Focused Editable Data Field Figure 2 Various Data Fields Found on the Master Screen Artisan Technology Group Quality Instrumentation Guarante
100. s the Enter key Any changes to a data field made with the numeric pad or left right arrows are not put into effect until the enter key is pressed Itis a common mistake to type in a number and press the up or down arrow to move to the next field or change to another screen without first pressing Enter to store the new value If focus is removed from the field before the Enter key is pressed it reverts to its previous value discarding the user s input The Clear button is used to revert a value being changed back to the previous value before Enter is pressed When changing values with the knob if the focused field is not currently being edited changes made with the knob take effect immediately There is no need to press Enter after making changes with the knob If a field is being edited then the knob acts as a simple up down adjustment to the edited value and these changes do not take affect until the Enter key is pressed Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 22 Chapter 2 System Operation There are a few other keys the operator can use during input The button is used to change the sign of a numerical input such as 45 0 to 45 0 but does not otherwise affect the value If the field is a numeric field the left arrow functions as a backspace key allowing correction of a mistyped digit If the field is a multi choice field such as a Yes No field the left and right arrow
101. t The Model 9016 will be ready to receive the fourth measured current value when after a TEC CAL ITE query is sent a 1 is returned g Input the fourth actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command If at any time prior to the last TEC ITE a command other than TEC ITE or TEC ITE is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s Once the TEC ITE value is sent the OPC query may be used to determine when the calibration is completed The operation complete flag bit O of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 98 Chapter 6 Calibration 6 3 13 Remote Operation Ite Current Readback Calibration Dual and Combo TEC Modules Because the dual and combo modules only support constant temperature mode calibration of the ITE read back is done using the limit circuit By loading a 10 KQ resistor across the sensor input and selecting the Thermistor sensor the system will read the temperature as a constant 25 C Setting a temperature of 20 C and 30 C with the output on will force it to go to the positive and negative limit respectively allowing the limit set point to simulate an ITE curren
102. t current The limit current is set with the front panel controls or through the GPIB The bipolar current limit levels are established by the output of the current Limit DAC Current Limit Condition Sensing Comparators sense the output to determine when output current limiting is occurring When this condition occurs the I Limit signal is sent to the microprocessor Voltage Controlled Current Source The bounded output control signal is applied to an amplifier This amplifier and the current sensing amplifier form the output voltage controlled current source The output of this stage directly drives the externally connected TE cooler module Voltage Limit Condition Sensing Comparators sense the output to determine when the TEC output compliance voltage limiting is occurring This condition occurs whenever the TEC output is open or connected to a high resistance If this condition occurs the V Limit error signal is passed to the microprocessor TEC Control Modes The Model 9016 provides three control modes for operation constant T temperature constant R resistance voltage or current and constant ITE current modes Each of these modes is discussed in the following sections T Mode In constant T mode the TEC is driven to the set point temperature This temperature is monitored by the sensor in the TEC In the case of a thermistor sensor the thermistor s resistance is used to determine TEC s temperature by using the Steinhart
103. t set point a Connect a 10 KQ resistor across the sensor input With the output off connect a 1 Q 50 W resistor and a calibrated ammeter in series across the output terminals If an ammeter with the appropriate current ratings is unavailable connect a 1 Q 50 W resistor across the output terminals and use a calibrated DMM to measure the voltage across the resistor b Calculate the current in the following steps by using Ohm s Law 1 V R where V is the measured voltage across the resistor and R is the measured load resistance c Enter the TEC CHAN command to select the channel subchannel to be calibrated Send TEC CAL ITE to enter ITE calibration mode The Model 9016 will select the Thermistor sensor and place the system in constant temperature mode The ITE current limit is set to 50 of full scale and the output turned on The Model 9016 will be ready to receive the first measured current value when after a TEC CAL ITE query is sent a 1 is returned d Input the actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command The Model 9016 will then drive the current to 25 of the initial set point The Model 9016 will be ready to receive the second measured current value when after a TEC CAL ITE query is sent a 1 is returned e Input the second actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command The Model 9016 will then drive the current to the negative current va
104. tal film resistor Use nominal values of 1 KQ for the 100A setting and 100 KQ for the 10A setting With the TEC output off connect the metal film resistor to the sensor input of the TEC Module b Enter the TEC CHAN command to select the channel subchannel to be calibrated Send TEC SENS 1 100pA thermistor or TEC SENS 2 for the 104A thermistor followed by the TEC CAL SEN to enter sensor calibration mode The Model 9016 will be ready to receive the resistance when after a TEC CAL SEN query is sent a 1 is returned c Input the actual resistance of the metal film resistor in kQ as an lt nrf value gt via the TEC R lt nrf value gt command If at any time prior to TEC R a command other than TEC R or TEC R is sent to the Model 9016 the Model 9016 will cancel the calibration mode and then process the command s Once the TEC R value is sent the OPC query may be used to determine when the calibration is completed The operation complete flag bit 0 of the Standard Event Status Register may be used to trigger an interrupt This type of interrupt is enabled by setting bit 0 of the Service Request Enable register and using the OPC command Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 92 Chapter 6 Calibration 6 3 4 Local Operation AD590 Sensor Calibration Use the following procedure to calibrate the AD590 sensor remotely a With the TEC output off connect a pre
105. tant temperature mode While the current set point calibration has no effect in Const T mode the read back calibration is used to more accurately display the actual current Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 65 4 4 3 5 4 4 3 5 1 4 4 3 5 2 4 4 3 5 3 4 4 3 6 Limits TE Current Limit Limit ITE This sets the maximum drive current the module will allow This maximum applies to all modes constant ITE R T Temperature Limits Limit TH and Limit TLO The TEC module supports both a low and high temperature limit and can be programmed to turn the TEC output off in the event those limits are exceeded default state The temperature limits are monitored regardless of the mode of the module This has the added safety feature of shutting down the module in Const ITE or Const R mode when the temperature limit is exceeded if the output off bits are enabled for this condition NOTE These limits do not apply if the sensor type is set to None Resistance Reference Limits Limit RHI VHI iHI and Limit RLO VLO iLO Like the temperature limits the 8300 8600 also supports both a low and high resistance reference limit and can be programmed to turn the TEC output off in the event those limits are exceeded although this is disabled by default These limits are monitored only while in Const R v i mode Toleran
106. tically turn off the TEC VVVV Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 2 System Operation 31 2 4 9 2 4 10 As shown in the example above it is possible to setup a level of control that would normally only be possible with a computer based monitoring system When the unit enters remote mode the linking screen is not accessible Calibration Screen See the calibration chapter for detailed information Configure Communications Screen onfiaure Communications Tisplay Errors While Femote Uze remote screen Configure GPIB GPIB Address 4 Configure R5232 Speed F648Bsud Terminal Mode Ho Figure 10 Configure Communications Screen Display Errors While Remote Controls the announcement of errors on the Model 9016 s screen When this setting is set to Yes then all errors will pop up on the Model 9016 screen even in remote mode When the setting is No errors are not displayed on the Model 9016 screen while in remote mode but will be displayed in local mode This does not affect the error list which is queried via the GPIB ERR query It is intended to keep the Model 9016 screen free of error messages while operating in remote mode Use remote screen Used to improve throughput on fully loaded Model 9016 systems Although throughput improvement is not significant it may slightly reduce the latency time between the sending of a GPIB co
107. ting is used to control noise and laser current modulation rates on certain modules Allowable settings are Low Low CW and High Low CW allows a maximum modulation rate of 30 Hz and operates with the least noise Low allows up to 10 kHz modulation while High allows full bandwidth modulation Modulation is disabled in Im and Po modes lo Lim As one of the safety features of the Laser modules the Io Lim sets a maximum allowable current drive for the laser diode The system will also limit current set points to this value when operating in the Io mode Two conditions can be generated when the driver reaches this limit the soft current limit and a hard current limit The less critical of the two is the soft current limit The soft limit indicated by ILIMIT on the status line of the Laser Main Screen indicates that the laser module is limiting the current drive to the laser diode but otherwise operating as normal The second condition is a hard limit which indicates that the current drive attempted to exceed the current limit faster than the circuitry could limit it This condition causes the laser module s output to be shutdown Both of these conditions are monitored in circuitry on the module itself and in the case of the hard limit shutdown is within microseconds of the condition being detected Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 3 Laser Diode Driver Module Oper
108. tions The photodiode signal is input on the D connector and or the photodiode BNC if available Many laser diode modules contain an internal photodiode that monitors the back facet emission of the laser Usually one side of the photodiode is internally connected to either the laser anode or cathode Figure 12 through Figure 15 show the recommended connections and shielding for the various configurations of laser diode modules and photodiode feedback schemes The photodiode circuit is isolated from ground and the laser circuit Output 8500 Module Earth Ground Figure 12 Common Laser Cathode Photodiode Cathode Output 8500 Module Earth Ground Figure 13 Common Laser Cathode Photodiode Anode Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 44 Chapter 3 Laser Diode Driver Module Operation Output 8500 Module Earth Ground Figure 14 Common Laser Anode Photodiode Cathode Output 8500 Module See i ee Fae a F V Bias ASN 8 9 z I LD Left P D Earth Ground Figure 15 Common Laser Anode Photodiode Anode 3 4 3 Sync Out Option The Sync Out connector on the back of the 8600 series is a custom option Normally the connector will not be loaded 3 4 4 Grounding Consideration Some laser outputs may be floating but most are either common anode or common cathode On floating laser outputs neith
109. tisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 76 Chapter 4 Temperature Controller Module Operation 4 5 3 4 5 3 1 9 Determine the new value of C1 and C2 from the following calculations First determine the intermediate values U and V where C2 Tai Taz Tat Tag and C1 Tar Ta1 C2 Equation 8 Constant C1 and Constant C2 Equations 10 Enter the new C1 and C2 values RTD Sensors RTD sensors are not supported on dual or combination TECs The following equation is used in temperature to resistance conversions R Ro 1 C1 x t C2 x t C3 t 100 t for t lt 0 C Ri Ro 1 C1 x t C2 x t fort gt 0 C Where R is the resistance in Q at temperature t and t is the temperature in C Equation 9 Resistance at Temperature t Equation RTD Constants The constants entered for an RTD depend on the type of curve it has Table 13 shows three standard types TCR Ro 0 003926 3 9848x10 0 58700x10 4 0000x10 100 00 Curve Q Q C C1 c2 c3 0 003910 3 9692x10 0 58495x10 4 2325x10 100 00 0 003850 3 9080x10 0 58019x10 4 2735x10 100 00 Table 13 RTD Constant Curves The Ro constant also applies for RTD sensors It is the RTD s value at 0 C and is nominally 100 00 Q but can be varied from 95 00 Q to 105 00 Q Artisan Technology Group Quality Instrumentation Guaranteed 888 88
110. ular Controller This manual will use Model 9016 to refer to the Model 8016 Model 9008 and Model 9016 controllers unless individual differences need to be specified The Model 8016 can be ordered as an 8 12 or 16 channel controller The Model 9008 is an 8 channel controller using the same chassis as the Model 9016 a 16 channel controller with the same command and functional properties Product Overview Product Features gt 8or 16 module slots gt GPIB IEEE 488 2 and RS 232C interface gt Link feature allows inter module programming control not found in any other products The Model 9016 Modular Controller is a result of Newport s continuing commitment to provide advanced laser diode instrumentation at affordable prices Advanced designs guarantee that the Model 9016 will accommodate future modules making this controller the most complete instrument for laser diode control characterization and testing far into the future High Power Temperature Controller Fulfills All Your Thermoelectric TE Cooling Needs The 40 Watt Model 8350 Temperature Controller module is offered to meet your most demanding TE cooling needs It may be operated in one of three modes gt Constant Temperature gt Constant Resistance gt Constant TE Current 11 Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 1 General Information 1 2 3 1 2 4 1 2 5 Short term stabilit
111. ure Ta 7 Determine the new value of C1 from the formula C1 Ta Ta Equation 7 C1 Constant Equation 8 Enter the new C1 value Two Point Calibration Method The calibration described in this section is independent of the calibration procedure described in Section 6 3 4 and Section 6 3 6 Those sections deal with the internal calibration of the 8300 module while the following calibration procedure is for calibrating the external AD590 or LM335 sensor For the most accurate possible results both calibration procedures should be performed The accuracy of this procedure depends on the accuracy of the externally measured temperature It is used to determine the zero offset of the device and the gain slope 1 Allow the Model 9016 to warm up for at least one hour 2 Select the desired sensor type in the setup menu 3 Set the C1 parameter to zero 4 Set the C2 parameter to 1 5 Place the sensor at an accurately known and stable temperature T 6 Connect the sensor to the Model 9016 for normal Constant temperature operation Allow the Model 9016 to stabilize at the known temperature T and read the displayed temperature Tar 7 Record these values 8 Repeat Steps 5 and 6 for another known temperature T and the corresponding displayed temperature Taz The two known temperatures should be at the bounds of the intended operating range For best results make the range between T and T as narrow as possible Ar
112. w artisantg com Chapter 6 Calibration 97 b Calculate the current in the following steps by using Ohm s Law 1 V R where V is the measured voltage across the resistor and R is the measured load resistance c Enter the TEC CHAN command to select the channel subchannel to be calibrated Send TEC CAL ITE to enter ITE calibration mode The module will be placed in ITE mode limit set to 50 of full scale plus 100 mA and the ITE set point set to 50 of full scale The Model 9016 will be ready to receive the first measured current value when after a TEC CAL ITE query is sent a 1 is returned d Input the actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command The Model 9016 will then drive the current to 25 of the initial set point The Model 9016 will be ready to receive the second measured current value when after a TEC CAL ITE query is sent a 1 is returned e Input the second actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command The Model 9016 will then drive the current to the negative current value of the initial set point The Model 9016 will be ready to receive the third measured current value when after a TEC CAL ITE query is sent a 1 is returned f Input the third actual current as an lt nrf value gt via the TEC ITE lt nrf value gt command The Model 9016 will then drive the current to 25 of the negative current value of the initial set poin
113. when operating in those modes OFF ON Indicates the state of the TEC output Pushing the adjacent soft key toggles the state Setup Pushing the adjacent soft key activates the setup screen Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 62 Chapter 4 Temperature Controller Module Operation The bottom line on the display has six LED enunciators each indicating a particular state of the laser They are defined as ILIMIT When illuminated indicates the TEC module is in current limit VLIMIT When illuminated indicates the TEC module has reached its voltage limit TLIMIT When illuminated indicates the TEC module is outside the temperature limits defined by THI and TLO in the setup screen RLIMIT When illuminated indicates the TEC module is outside the reference limits defined by RHI VHI iHI and RLO vLO iLO in the setup screen Heating Cooling When illuminated indicates that the TEC is heating or cooling Out of Tol When illuminated indicates that the TEC is out of tolerance as defined by Tol Time and Tol Temp in the setup screen 4 4 3 TEC Setup Screen The TEC Setup screen is shown in Figure 23 Each section is described below in detail S308 J0 mA 48H TEC Therm 1 G8 AS Mode Const T J Limit Ite 2 JHA 1 1297 x 16 3 Limit THi JAHH E 2 3411 x 1 4 Limit To 16 6 E HAr x 1 7 Tol Time HAAS Tol Temp re i Figure 23 TEC Setup Screen 4 4 3 1 Sensor Selects th
114. wport Computer Interfacing Manual for additional information Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com Chapter 4 Temperature Controller Module Operation 59 4 3 4 3 1 The TEC Connectors On the TEC Module a 15 pin D connector is used for input and output connections as shown by the pin out diagram below DB15 Connector Pin Description 8 Sensor Table 5 TEC Connector Pinouts For single connector combo LDD TEC modules a 15 pin male D connector is used as shown below DB15 Connector Pin Description 7 5 6 PD Cathode 8 LD Cathode _ _ 9 TECVSenses Table 6 Combo Single DB15 Connector Pinouts TEC Grounding Consideration The TEC should remain isolated from any ground or laser connection Do not ground either side of the TEC output Artisan Technology Group Quality Instrumentation Guaranteed 888 88 SOURCE www artisantg com 60 Chapter 4 Temperature Controller Module Operation 4 4 TEC Module Operation 4 4 1 Quick Start Use the following Quick Start procedure to set up a TEC module for the Model 9016 1 Once the Model 9016 LCD display goes to the Master Screen after the power on sequence is complete press the MENU button 2 Press the Modules soft key 3 Select the slot in which the module resides 4 Select the Setup soft key At this point the display shows all TEC parameters 5 Using the
115. ww artisantg com 70 Chapter 4 Temperature Controller Module Operation 4 5 1 6 The Steinhart Hart Equation The Steinhart Hart equation is used to derive temperature from the non linear resistance of an NTC Negative Temperature Coefficient thermistor The following section contains an explanation of the Steinhart Hart equation and the values of these constants for some common thermistors Two terminal thermistors have a non linear relationship between temperature and resistance The resistance verses temperature characteristics for a family of similar thermistors is shown in Figure 25 It has been found empirically that the resistance verses temperature relationship for most common negative temperature coefficient NTC thermistors can be accurately modeled by a polynomial expansion relating the logarithm of resistance to inverse temperature The Steinhart Hart equation is one such expression and is given as follows 1 T C1 C2 Ln R C3 Ln R Where T is in KELVIN To convert T to C subtract 273 15 Equation 1 Steinhart Hart Equation Once the three constants C1 C2 and C3 are accurately determined only small errors in the calculation of temperature over wide temperature ranges exist Table 11 shows the results of using the equation to fit the resistance verses temperature characteristic of a common 10 K Ohm at room temperature thermistor The equation will produce temperature calculation errors of less than 0 01
116. y intended for users who know a sensor set point in sensor units not in C ITE current is also displayed in these modes Const v and Const i modes are not supported on dual or combination TECs as the sensors required for these modes are not supported Constant Current Mode Const ITE Unlike the modes above the Const ITE mode allows the operator to explicitly set the amount and direction of current flow through the TEC using ISET and ITE variables If a sensor has been selected the TEC temperature will be displayed Although temperature is not a factor in the amount or direction or current flow the high and low temperature limits are observed and will shutdown the output if exceeded in Const ITE mode if a sensor is selected For no temperature limits set the sensor type to None Const ITE mode is not supported on dual or combination TECs NOTE Use caution when limits are not active as the temperature may exceed your TEC or laser s thermal limits Effects of Calibration on TEC Modes On startup the TEC module performs an auto calibration to eliminate most of the error in ADC and DAC values After this auto calibration each sensor type supported by the module has an offset calibration while the ITE set point and read back has a two point calibration These calibration constants are then used to calibration a set point or read back value This includes cross mode values such as displaying actual current while in cons
117. y is better than 0 004 C while long term stability is better than 0 01 C Four sensor types are compatible with this TEC module Thermistors AD590 series LM335 series 100Q Platinum RTDs VVVV With the sensor s calibration constants the actual laser diode temperature can be displayed in C on the front panel Full Feature LDD Modules Offer Complete Test and Characterization Capabilities The flexible design of the laser diode driver modules offers the users many options to complete their desired testing Advanced circuit designs and careful layout of laser diode driver modules provide users with an extremely low noise highly stable output current Current outputs can range from 25 milliamps to 10 Amps An external analog modulation input allows precision control of the laser output for a variety of applications including power level control and wavelength tuning on some models A monitor photodiode may be zero biased for CW low noise applications or reversed biased up to 5 volts for high frequency modulation on some models All laser diode parameters are accessible with 16 bit resolution including the laser diode s forward voltage for full characterization using any of the 8500 series modules Dual modules have all the same features except for external modulation and offer two independent channels in one module on some models Combination LDD TEC Modules Offer Full Laser Control In A Single Package When temperature stabilization
Download Pdf Manuals
Related Search
Related Contents
JOY HD - Smart Electronic Der Weiße Raum – eine Sinnesreise 見る/開く KOHLER K-4199-47 Installation Guide User Manual: DiskOnChip Software Utilities for TrueFFS 6.x Samsung S27D391H Užívateľská príručka Electro-Voice S60T User's Manual UK220-TR Copyright © All rights reserved.
Failed to retrieve file