Home

Manual - Universidad Politécnica de Valencia

image

Contents

1. Manual del Usuario de SIMGES 76 PO to 51 Nx12 th Registers max 300 items Mean value for the simulation period of the final volumes for each month in the year from October Register 40 Nx12 th to September Register 51 Nx12 th EVAPO PRN Contains the reservoir evaporation results and is structured as follows Ist and 2nd Registers Similar to those in EMBALSE PRN 3rd to 2 Nx12 th Registers max 300 items Monthly evaporation values in the reservoir corresponding to each column EMBFILT PRN Contains reservoir infiltration results and is structured as follows Ist Register Similar to that in EMBALSE PRN 2nd Register 1 item Title of the problem 3rd to Sth Registers Free 6th Register Names of the reservoirs in the order in which the data will appear 7th to 6 Nx12 th Registers max 300 items Infiltration inflow from each reservoir for each simulated month CONDUCI PRN Contains the type 1 channel results selected to appear in this file and is structured as follows Ist and 2nd Registers 1 item Similar to those in EMBALSE PRN 3rd to 14th Registers max 300 items In each row monthly minimum flow values declared for months 1 Register 3 to 12 Register 14 15th to 26th Register max 300 items Manual del Usuario de SIMGES 77 In each row monthly maximum flow values declared for months 1 Register 15 to 12 Register 26 27th to 26 Nx12 th Regist
2. Wnt 71 2n VDS LX 2L 4L O29 Manual del Usuario de SIMGES 23 Since only two control parameters are considered matrix A in this case has two rows The first corresponds to the aquifer stored volume control parameter r _ 4VLDS 1 in a 5 34 and the second refers to outflows from the side x L r _ 4VLDS 1 Aaa 5 35 The Eigenvalues are obtained by 2 2 al 1 2n an s rs 5 36 5 9 7 Rectangular aquifer connected on two contiguous sides with a fully penetrating river This model is similar to that described in Section 5 9 6 but with the modifications corresponding to the presence of a fully penetrating river at y D The figure below shows the positions of the coordinate axes The analytical solution to this case was given by Ramos et al 1983 Here it is adapted to obtain the elements of the matrices yw Jand Ar described in Section 5 9 6 Y RIO JA Manual del Usuario de SIMGES 24 The data required are the same as in the case described in Section 5 9 6 However in this case the initial state vector is obtained by po 13 Ax yyeos QUE y cos 1420 q y dx dy 5 37 The components must be given in the order corresponding to the following n m pairs 0 0 0 1 1 0 0 2 1 1 2 0 0 3 1 2 2 1 3 0 0 4 1 3 2 2 G D 4 0 0 5 1 4 2 3 3 2 4 1 5 0 0 6 1 5 2 4 3 3 4 2 5 1 and
3. sth Register 12 monthly intermediate inflow values and mean annual value 12 upstream mean monthly inflow values and mean annual value 12 mean monthly final volume values 12 mean monthly controlled release values and mean annual value 12 mean monthly spill values and mean annual value 12 mean monthly evaporation values and mean annual value 12 mean monthly infiltration values and mean annual value Number of months in which final volume is null and number of months in which max value is reached One register for each of the type 1 river reaches each containing 12 mean monthly circulating flow values their mean annual values and the number of months in which minimum flow has been violated Two registers for each of the type 2 river reaches containing Ist Register 2nd Register 12 mean monthly outflow values their mean annual value and the number of months in which minimum flow has not been reached 12 mean monthly seepage values and mean annual value Two registers for each of the type 3 river reaches containing Ist Register 2nd Register 12 mean monthly outflow values their mean annual value and the number of months in which minimum flow has not been reached 12 mean monthly river aquifer relationship values and mean annual value Manual del Usuario de SIMGES 90 Two registers for each of the type 4 river reaches containing Ist Register 12 mean monthly outflow values their mean an
4. x L J which considered in the order given by n form the initial state vector and must be entered as data input S 1 2n x LD H x y eos 420 x dx dy n 0 14 5 28 0 d Basic stresses Two types of basic stress are considered Manual del Usuario de SIMGES 21 d 1 A set of individual stresses each of which is defined by its location Xx yx and weight px The sum of the weights for a set of individual stresses must have a value of one and all must be positive d 2 An action distributed throughout a rectangle whose sides are parallel to the coordinate axes This is defined by the coordinates of the centre of the rectangle XG YG and the lengths of its sides LX for the side parallel to the X axis and LY for the side parallel to the Y axis e Control parameters the simplicity of this analytical model approach leads us to consider the two following e 1 Volume stored in the aquifer e 2 River aquifer relationship along the x L side Since the SIMGES model works by superposition the above parameters in fact refer to variations on the system s natural state Thus if the historical situation involves drainage into the river this is included in system inflows and would be altered by outflows variations of the natural regime All the necessary calculations are carried out by the simulation model e i Manual del Usuario de SIMGES 22 Aquifer simulation is
5. Din Homogeneous rectangular aquifer connected on one side with a totally penetrating LIVE A la 19 5E OT Rectangular aquifer connected on two contiguous sides with a fully PENEETAEING Iver at ti hyd A E E E dai E andes 23 5 9 8 Three Level Aqui Ler comme a a ee eh eed ares 25 Di Summary of basic stresses for different types of aquifer 28 5 9 10 Summary of control parameters for different types of aquifer 30 5 10 ARTIFICIAL RECHARGES AND ADDITIONAL PUMPING o oooooo o o 31 5 LL ARARM INDICATORS Jaata ii dr AA E a ne a 31 6 WATER RESOURCES SYSTEM MANAGEMENT ooooooooooooooooooooooooooo o o 34 601 TARGET FUNCTION oepa sai aa e a Aa Be aaa 34 LL Contribution to the target function from the reservoir elements 35 6 1 2 Contribution to the target function from Type 1 channels 35 O 3 Contribution to the target function from Type 2 channels 36 6 134 Contribution to the target function from Type 3 channels 37 6 1 5 Contribution to the target function from Type 4 channels 37 6 1 6 Contribution to the target function from Type 5 channels 38 6347 Contribution to the target function from consumptive demands 39 6 1 8 Contribution to the target function from non consumptive demands 40 TRESS PS given DY ere es a ted sak een po A SA A ek di ace 40 Bid Contribution to the target function from recharge elements 41 6 1 10 Contribution to the target function from additional e
6. Number of type 5 channels Number of intermediate inflows Number of consumptive demands Manual del Usuario de SIMGES 50 10 Numbers of hydropower plants 11 Number of artificial recharges 12 Number of aquifers 13 Number of additional extractions 14 Number of return elements 15 Number of isopriority groups 16 Number of alarm indicators 17 Number of water importation elements 7 2 1 RESERVOIR cards These are composed of 13 registers with the following contents 1st Register 1 item Name up to 15 characters 2nd Register 4 items Number of corresponding node Number of spillover node 0 may indicate end of the system Inflow data column if there are no inflows 0 is selected Evaporation data column if evaporation is not considered O is selected in which case the averages given below are used 3rd Register 1 item Priority number Ath Register 5 items the last statistic refers to the type of aquifer with infiltration Coefficient of infiltration formula A see Section 5 5 Coefficient of infiltration formula B Coefficient of infiltration formula C Number of aquifer with infiltration if 0 infiltration is presumed to be lost outside the system although it is subtracted from stored volume Number of basic infiltration action 5th Register 1 item Initial volume of reservoir Hm 6th Register 1 item Maximum flow of controlled releases including intakes H
7. only active if the preceding item is 2 3rd Register 13 items 12 min flow values Hm month Acceptable Qmin failure level This defines as a percentage of Qm n the acceptable Qmin deficit before a failure If this flow is O due to rounding off problems a failure may be declared when it does not in fact exist It is recommended to use as the minimum value Ath Register 12 items 12 max flow values Hm month Sth Register 2 items Elevation at the start of the channel m If the entry node corresponds to a reservoir this item has no effect on the calculation Elevation at the end of the channel m If the end node corresponds to a reservoir this item has no effect on the calculation The 3 registers below make up the height instantaneous flow table 6th Register 1 item Number of values n for elevation flow relationship 2 lt n lt 10 7th Register n items Height values m for elevation flow curve 8th Register n items Instantaneous flow values Hm month for the elevation flow curve 7 2 6 TYPE 5 CHANNEL cards These consist of 6 registers containing 1st Register 1 item Name up to 5 characters 2nd Register 2 items Initial node Final node 3rd Register 2 items Manual del Usuario de SIMGES 55 Elevation at the start of the channel m If the entry node corresponds to a reservoir this item has no effect on the calculation Elevation at th
8. DEMANDAS Xx SSUPC surface supply to demands x DEFC supply deficit to demands x SSUBC groundwater supply to demands x TOMAS x SSUPTC surface supply by intakes ordered by demand numeration x APINT intermediate inflows x EMBALSES x APEMB intermediate inflows to reservoirs x ENTEB inflows to reservoirs by river reaches x VFIN final volume x CFIN end of month elevation x Manual del Usuario de SIMGES 86 Labels Description 3 SUELTE controlled releases Xx VERTE uncontrolled releases x EVAPE evaporation x FILTE infiltration Xx QTI type 1 river flow x RIOT2 x QT2 type 2 river flow x PERTR2 infiltration x RIOT3 x QT3 type 3 river flow x RT3 connection to aquifer x RIOT4 x QXT4 maximum flow x QT4 type 4 river flow x QTS type 5 river flow x RETOR surface return x CENTRALES x QOBJN target flow x QTUR flow to turbines x HTUR elevation x PROD production x BOMBAD additional extraction x QREC artificial recharge x ACUIFEROS x RECNET net aquifer recharge x BACU total aquifer pumping x PARAMCONT x PCONT control parameters x ALARMREST x VEBIR volume in alarm indicators x CRIR restriction coefficient applied x RESUMEN x GARANTIAS x DEMANDA Includes number of the demand and contains the following guarantee calculations repeated for each consumptive demand x XFALL Number of failures x GAR Monthly guarantee x GARV Volumetric guarantee x XDFMX Maximum one month deficit
9. SIMGES gt 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 1 3800 6 5500 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 30 0000 30 0000 1 3800 md 5500 0 0000 o 0000 28 6200 23 4500 1 3800 D 5500 000 lt XFALL gt 000 lt GAR gt 978 lt GARV gt 560 lt XDEMX gt 120 lt XDFMX2 gt 000 lt XFALPH gt 000 lt GARPH gt 022 lt XFAV1 gt 000 lt XFAV2 gt 022 lt XFAV10 gt o a o N o o o o N o N 0000 0000 0000 2100 0000 0000 0000 0000 0000 2100 0000 7900 2100 o o o 0000 0000 0000 0300 0000 0000 0000 0000 0000 0300 0000 9700 0300 o o o o o o o o 0000 0000 0000 4300 0000 0000 0000 0000 0000 4300 0000 5700 4300 o o o o o o o o a 0000 0000 0000 7200 0000 0000 0000 0000 0000 7200 0000 2800 7200 0000 0000 0000 4400 0000 0000 0000 0000 0000 4400 0000 5600 4400 o o o w o o o o w o w 0000 0000 0000 8100 0000 0000 0000 0000 0000 8100 0000 1900 8100 0000 0000 0000 1200 0000 0000 0000 0000 0000 1200 0000 8800 1200 0000 00
10. and flow network are solved with the corresponding inflows demands and management parameters aquifers are simulated iteration is performed between these last two steps due to non linearities and river aquifer interactions and values are stored for annual writing and statistics Finally after completing the simulation period the relevant statistics are generated and guarantees are calculated Manual del Usuario de SIMGES 6 5 DEFINITIONS OF THE DIFFERENT ELEMENTS This section describes the different elements included in the basin scheme the physical data required for their definition the role of the element in the scheme and the management parameters required for simulation 5 1 Nodes Even though nodes are not strictly speaking elements it is important to realise their role in simulation Due to one or more circumstances a node is a significant point in the scheme at which different flows or channels join together or separate areservoir is located an inflow return or additional extraction is incorporated an artificial recharge outflow or a demand intake occurs river or channel characteristics change The user must number the different nodes for identification This can be done randomly or at the discretion of the user The only requisite is that one node from which flows leave the system i e those not incorporated in the system should be assigned the number 0 It should be remembered that neither demand
11. aquifer Single cell aquifer Spring aquifer Multicellular aquifer Aquifer hydraulically connected to a river with distributed modelling by the Eigenvalue method Homogeneous rectangular aquifer connected on one of its sides to a fully penetrating river Homogeneous rectangular aquifer connected on two contiguous sides to fully penetrating rivers Aquifer with three different outlet levels this is a simplified model that makes it possible to consider connections with two different surface water levels and variable annual evapotranspiration Aquifer modelled by Eigenvalues with no geometrical limits or hydrodynamic parameters Manual del Usuario de SIMGES 4 3 USER SCHEME To use the model the user must first create a scheme of the basin or system using the pattern elements described above For this he must define a series of nodes in the surface hydraulic system located at the following points Reservoirs Points where two or more channels merge Points where a channel branches or receives an inflow Demand intake and return points Possible intermediate inflow points or additional pumping points Points where channel characteristics change The next step is to define and classify according to type the connections channels between nodes Intermediate inflows into nodes or reservoirs are then located if not already associated with the reservoir Demands with their intake and return nodes elemen
12. artificial recharges OR is the flow recharged by installation i CR is a fictitious cost associated with artificial recharge CR 5 6 1 10 Contribution to the target function from additional extraction This is given by nba T s4 gt 0B CB 6 27 i l where nba is the number of additional extractions OB is the flow extracted by installation i CB is the fictitious cost associated with installation i and is given by CB CTC CK NP 0 5 xCDC 6 28 where CTC CK and CDC have the same values as in consumptive demands and NP is the priority number of the isopriority group we wish to supply e g if NP is 4 BAD will supply groups 1 to 4 6 2 Explanation of the system management as a consequence of the target function Manual del Usuario de SIMGES 42 Since the target function is a minimization type function and since the contributions to it are the costs corresponding to the variables explained by Eqs 6 2 to 6 8 the algorithm will try to increase the value of the variables with the lowest cost Therefore from a review of Eqs 6 2 6 4 6 9 6 11 6 13 6 16 6 20 6 23 6 26 and 6 27 and of the costs included in them the following conclusions can be drawn From an analysis of Eqs 6 18 and 6 19 to 6 22 it can be concluded that a unit of water that is not supplied to demand i through intake t involves an increase in the target function whose value is F CK CT CUK CTC NP CDC CDC 1 6 29 which
13. e g TITLE and each register is a line of the file The data of each register are separated by blank spaces commas or tabulations and a point is used to define decimals A description of the organisation of each file is given below Manual del Usuario de SIMGES 48 As has already been indicated the number of cards pertaining to an element included in this file must coincide with the number of elements of this type declared in the general data file There is a limit to the number of elements of each type that can be included which in principle for the 2 00 version model is as follows Nodes excluding final node 0 0oooooncnncnnnnnccnoconaccnnncnnos RESCIVOTES ii sn MON eee deena Typ I chanh eS cite Type 2 channels des Type 3 channels vista aiii Type Hechas ds td le is Type St Nannie Ss ii a Intermediate iO WS iii Consumptive dema aten Hydropower plants veinticinco Inst artificial TEC HAL SEs cosas AGUTS il a a Additional pumping EVeNtS ocoonccnocononcconcconncconnnonononnnanns Reid at da ESOPO SOUPS 00d A ee Eigenvalues in an aquifer cooooonccnncnnocnonnnoncnnncnnnnnncnnncnnos Basic stresses in an aquifer including distributed stresses and groups of occasional Stresses ce eeeeeeceeeereeeeees Maximum no of occasional stresses in the definition of a basic stress in a type 5 or 6 aquifer eee eeeeeeeeeeees Control parameters in an aquifer 0 eee eeeeeeeeeee Alarm indicators ia Inflow file c
14. gross supply calculated by the model So that net supply to the intake is SNi Si DSii 6 19 The terms S and DS have a different value in the iterations but in the last one we have DS 0 and SN S so that the definitive formula for the inflow to the target function is ndc nto Toc So CK SN cr 6 20 i t 1 where Manual del Usuario de SIMGES 40 CT i CT 1 6 21 and CT CTC NP 1 CDC 6 22 when CTC is a constant value like CDC CTC 750 CDC S by default NP is the priority number of intake t of demand i 6 1 8 Contribution to the target function from non consumptive demands This is given by ndnc Ton Y DO CN SO CS 6 23 i where ndnc 1s the number of non consumptive demands DO is the deficit of target flow QO SO is the surplus of target flow given by Eq 6 24 SO st Q gt Q0 0 0 QO Q DO si Q lt Q0 6 24 It should be noted that SO and DO cannot both be different from O at the same time CN 1s the fictitious cost associated with the deficit given by CN CKN Np 1 x CON 6 25 where NP is the priority number assigned to non consumptive demand CKN and CDN are constant values CKN 1500 CDN 5 CS is the fictitious cost associated with the surplus CS 5 Manual del Usuario de SIMGES 41 6 1 9 Contribution to the target function from recharge elements This is given by Tra _ OR CR 6 26 i where nra is the number of
15. gt lt NOMBRES gt lt RED gt lt APINT gt dr EL 2 lt APINT gt lt TR1 gt 2 0 lt TR1 gt lt TDC gt 1 2 ak lt TDC gt lt RED gt lt IANY gt 1980 1981 lt APINT gt 1 1 1500 1 3800 6 5500 2 2100 9 0300 13 4300 24 7200 18 4400 3 8100 1 1200 0 4400 0 4400 lt APINT gt lt EMBALSES gt lt APEMB gt 1 1 1500 1 3800 6 5500 2 2100 9 0300 13 4300 24 7200 18 4400 3 8100 1 1200 0 4400 0 4400 lt APEMB gt lt ENTEB gt Manual del Usuario de SIMGES 88 1 0 0000 lt ENTEB gt lt VFIN gt 1 0 0000 lt VFIN gt lt CFIN gt 1 0 0000 lt CFIN gt lt SUELTE gt 1 1 1500 lt SUELTE gt lt VERTE gt 1 0 0000 lt VERTE gt lt EVAPE gt 1 0 0000 lt EVAPE gt lt FILTE gt 1 0 0000 lt FILTE gt lt EMBALSES gt lt QT1 gt 1 0 0000 lt QT1 gt lt DEMANDAS gt lt DEMC gt 1 30 0000 lt DEMC gt lt SSUPC gt 1 1 1500 lt SSUPC gt lt SSUBC gt 1 0 0000 lt SSUBC gt lt DEFC gt 1 28 8500 lt DEFC gt lt TOMAS gt lt SSUPTC gt 1 1 1500 lt SSUPTC gt lt TOMAS gt lt DEMANDAS gt lt IANY gt lt RESUMEN gt lt GARANTIAS gt lt DEMANDA gt 1 lt XFALL gt lt GAR gt lt GARV gt lt XDFMX gt lt XDFMX2 gt lt XFALPH gt lt GARPH gt lt XFAV1 gt lt XFAV2 gt lt XFAV10 gt lt DEMANDA gt 12 77 lt GARANTIAS gt lt RESUMEN gt lt
16. in Hm if the preceding value is 1 and in Hm month if 2 Manual del Usuario de SIMGES 60 4th Register 2 items Value of a month Value of initial volume Him 0 if working by superposition Sth Register 12 items 12 measured flow values Hm month If aquifer type is equal to 4 TANK MODEL the rest of the card includes 3 registers 3rd Register 2 items Number of control parameter for extraction test must be equal to 1 If 0 no test 1s carried out Control parameter threshold below which extraction is not carried out Him 4trh Register 1 item Initial Volume Hm Sth Register 12 items 12 rain recharge values Hm month If aquifer type is equal to 5 RECTANGULAR HOMOGENEOUS WITH A RIVER the rest of the card contains the following registers 3rd Register 1 item Number of basic stresses Ath Register 2 items Number of control parameter for extraction test O always permitted 1 volume 2 discharge into river Threshold of control parameter below which extraction is not permitted units depend on the preceding statistic but are always m and days Sth Register 5 items Transmissivity Tx in the direction of the X axis m day Transmissivity Ty in the direction of the Y axis m day Coefficient of storage S Length m Length D m 6th Register 15 items Components of the initial state vector as defined in 5 9 5 all null if superp
17. level This defines as a percentage of Qm n the acceptable Qmin deficit before a failure If this flow is O due to rounding off problems a failure may be declared when it does not in fact exist It is recommended to use l as the minimum value Ath Register 12 items 12 max flow values Hm month 7 2 3 TYPE 2 CHANNEL cards These are composed of 5 registers containing Ist Register 1 item Name up to 15 characters 2nd Register 3 items Initial node Final node Priority of minimum flow 3 Register 13 items 12 minimum flow values Hm month Acceptable Qm failure level This defines as a percentage of Qmin the acceptable Qmin deficit before a failure If this flow is O due to rounding off problems a failure may be declared when it does not in fact exist It is recommended to use as the minimum value Ath Register 12 items 12 max flow values Hm month Sth Register 5 items the second statistic depends on the type of aquifer with infiltration Number of aquifer receiving infiltration 0 if it leaves the system Number of basic action 0 if the preceding statistic is 0 Coefficient of infiltration law A Coefficient of infiltration law B Coefficient of infiltration law C 7 2 4 TYPE 3 CHANNEL cards These are composed of 5 registers containing Manual del Usuario de SIMGES 53 1st Register 1 item Name up to 15 characters 2nd Register 3 items I
18. line specified The file must be checked EVAPORATION SERIES READING ERROR IN LINE Reading error has occurred in the evaporation line specified The file must be checked ERROR END OF INFLOWS FILE End of the inflows file has been reached sooner than expected The error may be in the file itself or in the initial year and number of years given in the physical data file ERROR END OF EVAPORATION SERIES FILE End of the evaporation file has been reached sooner than expected The error may be in the file itself or in the initial year and number of years given in the physical data file ERROR INFLOWS N OF COLUMNS EXCEEDS MAX Number of columns in the inflows file exceeds the maximum permitted by the model EVAPORATION ERROR N OF COLUMNS EXCEEDS MAX Number of columns in the evaporation file exceeds the maximum permitted by the model READING ERROR IN FICTITIOUS COSTS FILE An error has occurred in the reading of the fictitious costs file The file must be checked NO FEASIBLE SOLUTION IN SCHEME Manual del Usuario de SIMGES 94 In this case no feasible solution can be found to solve monthly optimisation The cause is probably due to an error in the user scheme e g maximum channel limits that do not allow flood flow to be drained away The model then lists the year month and iteration in which the error occurred ERROR ON WRITING IN ECHO FILE OR RESULTS FILE CHECK THAT NO OTHER APPLICATION H
19. management data presented in order There are a large number of columns which as described in Section 7 6 can be reduced to 132 where label2 ext is the name of the file declared in the reading and writing data file corresponding to annual output e g SALANU SAL this file contains the size of the network generated the iterations carried out in each month of each year of the simulation period If 0 is the option chosen for the summarised list item in the physical data file it also gives the values of all the relevant variables for each month of the simulated hydrological years Thus for each month we have Firstly the values of intermediate inflows with their annual total Intermediate inflows for all reservoirs inflow from the preceding section of the system end of month volume and elevation of the water surface controlled and uncontrolled releases evaporation and infiltration monthly values and annual total For all type 1 river reaches it draws up a table with circulating flow outflow and the annual total For type 2 river reaches as well as outflow it also gives monthly seepage volumes and annual total For type 3 river reaches besides outflow it also gives the values of the river aquifer relationship losses if positive and gains if negative Manual del Usuario de SIMGES 73 label3 ext For type 4 channels it gives circulating flows annual total and maximum monthly flows under the conditions exist
20. of the demands for which data is required The next 3 registers are for non consumptive demands 16th Register No data 18th Register Number of demands for which data is required max 300 19th Register Numbers of the demands for which data is required The next 3 registers are for additional extraction 20th Register No data 21st Register Number of additional extractions for which data is required max 300 22nd Register Numbers of the events The next 3 registers are for artificial recharges 23rd Register No data 24th Register Number of artificial recharges for which data is required max 300 25th Register Numbers of the recharges The next 3 registers are for control parameters 26th Register No data 27th Register Number of control parameters to be represented max 300 28th Register Two numbers for each control parameter in the 27th Register Each pair formed by number of aquifer and number of control parameter The next 3 registers are for net recharges of aquifers 29th Register No data 30th Register Number of aquifers for which net recharge data is required max number is determined by the sum of this number and that given in the q Register which cannot exceed 300 31st Register Numbers of the aquifers The 3 final registers are for water extracted from aquifers 32nd Register No data 33rd Register Number of aquifers for which extraction data is required same conditions ap
21. performed in a similar way to the Eigenvalues method described in Section 5 9 5 The state vector is re calculated in each simulated time interval according to the expression lisad E 1 y B 5 29 with w aJ PE yw B 5 30 and control parameters are obtained in the form of vectors by Ca A I lora 5 31 where 11 is the state vector at time t a is the 15x15 matrix whose diagonal contains the Eigenvalues of the problem a E 1s the matrix whose diagonal contains the elements id y is the state modification matrix which converts the intensities of basic actions to modifications of the state vector Each of its columns corresponds to a basic action B is the basic stress intensities vector A is the reduced A matrix connecting the state vector with the control parameters vector Each row corresponds to a control parameter The B vector is obtained in each simulated time step and includes extractions and recharges The y matrix is obtained by the model in the early stages of simulation Each column corresponding to a basic action k is composed of a set of individual actions and has the elements Ea a 0 a 2n x aT cos x 5 32 Yu Tos 2 2b on taking these elements in the given order for n in the initial state vector of the expression 5 35 The column corresponding to a basic stress k distributed in a rectangle is given by 5 33 y 4VL cos 2n x xa cen 2 20 y
22. restriction indicator in the physical data file Line 2 12 items Number of alarm restriction data n to be read for each month 1st month October 4th month January etc Then follow 12 pairs of lines one pair for each month beginning with October total of 24 lines Line 1 n items Volume data in hm for the definition of restrictions in order of size from smallest to largest Line 2 n items Restriction coefficient data between 0 and 1 for each of the preceding volumes Variable demand data file This file can be used to input a series of variable demand data for an entire historical period Variable demands are defined and identified for the whole period and these values are then entered in a second file with a format similar to those described in the inflows and evaporation sections It should be remembered that these files only accept variable data for demand elements while the supply elements will continue with the data entered in the physical data file This means that in the variable demand data file the data on supply capacity must be defined with a monthly value higher than the defined maximum monthly demand as otherwise artificial supply deficits could be generated The file contents are as follows Register 1 Label Text VARIABLE DEMAND Register 2 1 item Number of variable demands ndv Manual del Usuario de SIMGES 71 Register 3 1 item Name of the file wi
23. results and to alarm indicators They are described below In the descriptions below N is the number of years in which results have been provided for graphs The last file described contains all the simulation results regardless of the graphic options selected RESERVOIRS PRN Contains reservoir results and are structured as follows Ist Register 1 item number of simulation years label of simulation In the following registers each contains as many items as the number of reservoirs specified for graphs output max 300 2nd Register max 300 items Column headings Contains the names of the reservoirs in the respective columns 3rd to 14th Registers max 300 items In each row the minimum volume values corresponding to the reservoirs of the respective columns for months 1 Register 3 to 12 Register 14 15th to 26th Registers max 300 items In each row the maximum volume values corresponding to the reservoirs of the respective columns for months 1 Register 15 to 12 Register 26 27th to 38th Registers max 300 items In each row the target volume values corresponding to the reservoirs of the respective columns for months Register 27 to 12 Register 38 39th Register max 300 items Initial volume values for the respective reservoirs 40th to 39 Nx12 th Registers max 300 items Final reservoir volumes for all simulation months from 1 Register 40 to Nx12 Register 39 Nx12 th
24. than those permitted for the type in question in Section 7 2 READING ERROR IN PHYSICAL DATA FILE LINE The program stops when it detects an error in the physical data and management file The number of the line containing the error is indicated The error is due to an incorrect file either from omission of data incorrect data type reaching the end of the file etc The solution is to check the file following the instructions given in Section 7 2 beginning with the lines close to that indicated by the model ERROR RETURN 1 OF DEMAND 2 INCORRECT The model has detected an incorrect return number which could be either negative or higher than the declared number of returns Manual del Usuario de SIMGES 93 READING ERROR IN AQUIFER FILE N Error has been detected in aquifer data The existence and location of the file must be checked If these are correct check contents GRAPH DIMENSIONS HAVE BEEN EXCEEDED Graphic dimensions have been exceeded due to incorrect data in the graph specifications file Graph information has been entered in excess of the permitted maximum see restrictions in Section 7 3 file INCORRECT HEADING OF INFLOWS FILE On reading the inflows file incorrect heading structure has been detected INCORRECT HEADING OF EVAPORATION FILE On reading the evaporation file incorrect heading structure has been detected INFLOW READING ERROR IN LINE Reading error has occurred in the inflows
25. the number of type 5 channels is the possible deficit of minimum channel flow given by DF QINT QENT 6 17 Manual del Usuario de SIMGES 39 QINT is the flow that must pass through the channel obtained by adding instantaneous flows for the month under study as a function of the height difference between the beginning and the end of the channel OENT 1s the flow at the start of the channel CFS is the cost associated with DF default CF 1800 In this type of channel flow can be in either direction and is determined by the total of instantaneous monthly flows When QINT has been obtained the direction of flow is determined QENT is therefore always in the same direction as QINT The inflow from this type of channel to the target function reaches zero as monthly iterations are repeated Its purpose is simply to satisfy a physical condition of the system 6 1 7 Contribution to the target function from consumptive demands Given the configuration of the internal network generated by consumptive demand elements the strict formula is ndc nto T pc p cx D su cre 1 sic 6 18 i t l where ndc is the number of consumptive demands D is the deficit of total demand of zone i for the month under study CK is a constant fictitious cost associated with the deficits of the demand zones CK 750 by default nto is the number of intakes of demand i Sti is gross supply to intake t of demand i DSi is the deficit of minimum
26. x XDFMX2 Maximum two month deficit x XFALPH Number of failures according to Hydrological Plans x GARPH Guarantee according to Hydrological Plans x XFAV1 Max failure in one year As of annual demand x XFAV2 Max failure in two years As of annual demand x XFAV10 Max failure in ten years As of annual demand x 1 simges 2 optiges 3 simrisk Manual del Usuario de SIMGES 87 Example The following table shows the results file of a scheme with one reservoir one demand one type 1 channel and a one year simulation lt xml version 1 0 encoding ISO 8859 1 gt lt SIMGES gt lt DATGEN gt lt TITRE gt ejemplo lt TITRE gt lt TITULO gt demo lt TITULO gt lt NANY gt 1 lt NANY gt lt NANI gt 1980 lt NANI gt lt NNOD gt 1 lt NNOD gt lt NEMB gt 1 lt NEMB gt lt NTR1 gt 1 lt NTR1 gt lt NAPINT gt 1 lt NAPINT gt lt NDC gt 1 lt NDC gt lt NUMTO gt 1 lt NUMTO gt lt NISOP gt 1 lt NISOP gt lt DATGEN gt lt NOMBRES gt lt ICollTabla gt 4 lt ICollTabla gt lt NOMAPI gt 1 Aportaci n n 1 lt NOMAP I gt lt ICollTabla gt 5 lt ICollTabla gt lt NOMEMB gt 1 Embalse 1 lt NOMEMB gt lt ICollTabla gt 13 lt ICollTabla gt lt NOMTR1 gt 1 Conducci n 1 lt NOMTR1 gt lt ICollTabla gt 14 lt ICollTabla gt lt NOMDC gt 1 Demanda n 1 lt NOMDC gt lt NOMTC gt 1 Toma ne 1 lt NOMTC
27. 00 0000 4400 0000 0000 0000 0000 0000 4400 0000 5600 4400 o o o o o o o o o o o 0000 0000 0000 4400 0000 0000 0000 0000 0000 4400 0000 5600 4400 8 4 Balance calculation file To facilitate the calculation of balances by basin zones the model can produce a file in ASCII format which stores all the information from the final summary file but without text or labels The data in this file together with the contents of the physical data and management file e g DATFIS DAT can be used to obtain the balances of the basin zones All the written results are 4 byte floating point numbers separated by a semi colon so that they can be opened with the values divided into cells from a spreadsheet The structure of the file whose name is indicated in the reading and writing data file DATOS DAT is as follows An identifying label is written before each type of result The order number and name of the element are written before the results of each element Manual del Usuario de SIMGES 89 In addition the following values are written for each element One register line for each intermediate inflow each containing 12 mean monthly values and mean annual value Seven registers for each reservoir containing Ist Register 2nd Register 3rd Register 4th Register Sth Register 6th Register 7th Register
28. 2n 5 43 In fact Eq 5 49 can be obtained from 5 47 and 5 48 since total outflows are the sum of those corresponding to both sides x L and y D at a constant level Eigenvalues are obtained from the expression al 1 2nY Q n m 4S Tx L 5 44 The pairs of values n m are always taken in the order defined for Eq 5 37 It should be pointed out that two type 3 channels are associated with each side of the aquifer or one with both sides of the aquifer 5 9 8 Three level aquifer This three level aquifer model is designed to simulate the case in which an aquifer e g the aquifers at the mid and low lowlands of the river Segura can lose water through evaporation intermediate drainage from drainage channels and the hydraulic connection with a river The resulting equations are explained as follows Manual del Usuario de SIMGES 26 D 3V3 v B L Vo A La il av dv Rdt a V dt a V dt a V dt 5 45 dV a R a a a V a A B a A 5 46 whose solution is y ESCAPE As a a a A V t V 0 Jett aera 5 47 If V gt A B hereinafter designated for the sake of clarity as Vx eliminating the subindex 1 Vaa V arta rada R At a A B Q o p artas a 4 a a a 5 48 AV V k V 5 49 R At a A B a A a a a a a3 M 0 0 03 4t VE HVE eee LONE OB 5 50 A Ve AV e tened B 5 51
29. 6 0 The four control parameters considered in this case are the following 1 Volume stored in aquifer 2 Total outflows to river by sides x L and y D 3 Outflows to river by side x L 4 Outflows to river by side y D Aquifer simulation is performed in a way similar to the case described in Section 5 8 5 but the calculation of the elements in matrices y and A is different Each column in Y corresponds to a basic stress k composed of a set of basic stresses whose elements are given by 5 44 y noaces 1 2n x G42 T x cos _ _ y D W nmk N LDS ye p cos gt 4D y D 5 38 r 1 The columns corresponding to a basic stress k distributed in a rectangle y n m k PAPIR cos pene x6 sen EE py x 1 2n 1 2m LX LY VS 2L 4L 1 2m x a _ D A A 05 2D D YG sen sp PY 5 39 In expressions 5 38 and 5 39 the order of n and m is as specified in 5 37 The 4 matrix in this case has four rows referring to the control parameters given above 1 The first corresponds to aquifer stored volume Manual del Usuario de SIMGES 25 8 1 V2LDS R An a 1 2n 1 2m Gay 2 The second to total outflows from sides x L and y D a 8 1 2LDS s a E Om Ce 3 The third to outflows from side x L 2 D 1 2n op bie At 2T 1 F EN VLDS L 2m 5 42 4 The fourth to outflows from side y D 1 2 L 1 2m acm R nm 1 Asun STV EDS DA
30. AS OPENED THE FILE The problem happens when the model is initiated and the user is writing in the data echo file when it has been opened by another application or by the interface May also occur if any of these files are blocked by the reading only property as happens when a copy is made directly from a CD Other errors The running of the program may be interrupted and an error message may appear on the screen due to reasons such as uncontrolled releases error in opening files error in reading files lack of space for writing results insufficient memory to run the program In general these will be due to improper configuration of the hardware used or to defects in the construction of the data files Tf all these possibilities can be excluded after a thorough check the user should then get in touch with the authors of the program Manual del Usuario de SIMGES 95 10 INSTALLATION OF THE MODEL The program can be executed by the Microsoft Windows 98 NT or 2000 operating systems Other versions are available for running on MSDOS or UNIX The installation requires a hard disk capacity of 30 Mb Since large scale files may be stored on the hard disk over 100 Mb during simulations if space is limited special care must be taken with the results options To install the program simply copy it into the chosen hard disk directory Operations are then similar to any other program in the Windows environment 11 REFERENCES
31. Andreu J Modelos agregados y distribuidos Modelos unicelulares Modelos Glover Jenkins en Utilizaci n conjunta de aguas superficiales y subterr neas ed por M Varela S G O P Madrid 1983 Andreu J y J Marco El modelo USOCON de simulaci n de utilizaci n conjunta de una cuenca En Utiliz aci n conjunta de aguas superficiales y subterr neas Servicio Geol gico de Obras P blicas y Universidad Polit cnica de Valencia Spain 1983 Andreu J y A Sahuquillo Efficient Aquifer Simulation in Complex Systems Journal Water Plann and Manag Vol 113 No 1 1987 Estrada F Criterios e Indicadores para Evaluar el Funcionamiento de un Sistema de Recursos H dricos en Curso sobre Modelos de Gesti n de Sistemas de Recursos H dricos CEDEX Madrid 1991 Hisch R M J L Cohon and C S Revelle Gains from joint operation of multiple reservoir systems Water Resources Bulletin Vol 13 No 2 pp 239 245 1977 IPH 2008 BOE n 229 de 22 de septiembre de 2008 ORDEN ARM 2656 2008 de 10 de septiembre por la que se aprueba la instrucci n de planificaci n hidrol gica Manual del Usuario de SIMGES 96 Loucks D P and O T Sigvaldason Multiple reservoir operation in North America en The Operation of Multiple Reservoir Systems Z Kaazmarek and J Kindler eds International Institute for Applied Systems Analysis Laxenburg Austria 1982 Ramos F J Ferrer y A Sahuquillo Determinaci n de a
32. MGES ERR work directory file The following error messages may cause the program to stop NON CONNECTED NETWORK n errors This is due to an error in the user scheme The number n may give an idea of the number of errors involved It will be necessary to check that all the necessary requisites have been complied with in defining the user scheme especially in defining the initial and final channel nodes Initial nodes must have a preceding element such as another channel inflow etc Final nodes must either have a following element or be the final system node 999 INSUFFICIENT DIMENSIONS OF INTERNAL NETWORK In theory this error cannot occur if all the restrictions included in the manual have been complied with Check that all the restrictions in Section 7 2 have been fulfilled PROBLEMS WITH UPPER AND LOWER LIMITS IN SCHEME In this case there is no feasible solution when solving monthly optimisation as the error is in the upper and lower limits of the internal network The model will give the year month and iteration in which the error occurred It is generally due to the incorrect definition of maximum and minimum flows in channels or to incorrect zoning of a reservoir MAXIMUM PERMITTED NUMBER OF ELEMENTS HAS BEEN EXCEEDED If the maximum number of elements is exceeded check that the restrictions specified in Section 7 2 are complied with ERROR MAX type of element HAS BEEN EXCEEDED The model has detected more elements
33. Manual del Usuario de SIMGES 27 If Vi lt A B y Vj gt A R At a A Ves V gl ertazjat a a 1 _ e atra2dda a B 5 52 R Mt a A AV V peta A HY p A A Aa 0 5 53 R a A B a A a a a Lae DI 1 e alra2 a3 8 _ B 5 54 If aj 0Q2 aQ3 is sufficiently small AV 4V e O 4 a Mt V Je 092000 gy A B A B 5 55 IfVi lt A Ve V e 7 R B 5 56 AV V e A y Jett _ a A a At B At B 5 57 AV AV e 0t V I e AENA gE NEA a A a A B At B 5 58 As in the case of unicellular aquifers with only one outlet when a non linearity exists to calculate the volume V 4 in the next time step the non influenced volume Vz or the volume drained from the aquifer during this time must be known It can also be calculated by using the recharge Ry for the time step However this figure is not usually available for longer periods Manual del Usuario de SIMGES 28 The data necessary for simulation are The values of the drainage coefficients a1 corresponding to the river aquifer connection and a2 corresponding to intermediate drainage from drainage channels The monthly drainage coefficient values a3 by potential evapotranspiration Volumes between the river aquifer connection level and intermediate drainage A between this last and the level at the end of evaporation A between this last and the level at the end of evaporation B and total i
34. OMAPI Name of intermediate inflow 1 x NOMEMB Name of reservoir 1 x NOMTR1 Name of river reach type 11 x NOMTR2 Name of river reach type 2 I x NOMTR3 Name of river reach type 3 I x NOMTR4 Name of river reach type 4 I x NOMTRS Name of river reach type 5 I x NOMRET Name of return flow I x NOMDN Name of non consumptive demand 1 x NOMBAD Name of additional extraction 1 x NOMRAR Name of artificial recharge 1 x NOMACU Name of aquifer 1 x NOMAE Name of basic stress K of aquifer 1 x NOMPC Name of control parameter J of aquifer 1 x NOMINR Name of alarm indicator 1 X RED Definition of simulation graph x TRI 61 One line for each element For dependent elements i e intakes TDC the lines are in the same order as demands TR2 rio 2 In each line 3 items refer to an element x TR3 rio 3 1st number of arc x 2nd number of element of origin TRA noa 3rd number of destination element TRS rio 5 For elements that have no node of origin or destination node the value is x APINT aportac vl 7 ade x The numeration of elements is that pertaining to the type of element to TDC tomas which it belongs and is determined by the type of arc x DNC centrales x RAR recargas x RET retornos BAD bombeos x EMB One item for each reservoir Each item is the number of the node assigned to the x reservoir Items are in the same order as the reservoir numeration IANY x Number of the year which data refer to Repeated for each simulated year
35. SIMGES Simulation Model of Water Resource Management including Conjunctive Use Version 3 02 User Manual J Andreu Alvarez A Solera Solera J Capilla Rom J Ferrer Polo POLYTECHNIC UNIVERSITY OF VALENCIA SIMGES MODEL V 3 00 USER MANUAL CONTENTS 1 INTRODUCTION iio a o dao ls ade 1 2 ELEMENTS CONSIDERED 2 reni ccc ee cece cc cece ee eee ee ee eect eee eee eee eee 2 Sie USER SCHEME 00 ao a a ia 4 4 BRIEF DESCRIPTION OF INTERNAL OPERATION OF MODEL oooooooooooooo o 5 5 DEFINITIONS OF THE DIFFERENT ELEMENTS oooooooooooooooooooooooooo 6 sa DA NODES Ct a EIA DEN EE ET et at LATA tee Say dt ale A A NI Sade AENA 6 Dees CONNECTIONS e ia Silay acre tate ale aa aia ath A oe Mh AE Side gh Sete Marat Fert 6 5 3 INFLOWS oi Soie bags RR Ware cele 8 DA WATER DMPORTSS cd re ds vole dt a a md als 8 Die 5 RESERVOLRS aa a A cote SC voce acts Gove eal E ES Ey eii GES as 8 567 CONSUMPT IVE DEMANDS aayan eee rar EATE E a aE ee alle bate N Ea e a a aca the BATE Sada 10 Di 7 RETURN ELEMENTS vos ia a si ira aa a Woe Saat 12 5 84 HYDROPOWER PLANTS ee iS a LA A a aie Ter AAA a AEREE 12 DL AQUTFER S Peu o o se y e a aaa aaa ot aa T3 Di Od TANK AQU L AS A died 14 DUO SINOLE COL AQUEL a en aa Gah a E 14 Dl SPRING aguii x sed ee geese ti a a E ace 15 Bio ay Mule Cellar gia rd aq if r o 2 cc tee A ea le seg SR we sexe BES Gob a Shan Sides 16 Did Aquifer connected to a river modeled by the Eigenvalue method 18
36. alue default KD 2000 and is the priority number assigned to minimum flow in river reach i is the fictitious cost associated with flow in reach Z CQ 0 by default If it is declared in another way it can have the value CQ I or can be defined by the user 6 1 3 Contribution to the target function from Type 2 channels For type 2 river reaches we have where ntr2 D and CD DF where FILC QENT CF ntr2 Tm Y D CD DFiCF 1 6 7 i is the number f type 2 reaches have the same meaning as in type channels and are given by Eqs 6 5 and 6 6 respectively is the possible infiltration deficit given by FILC QENT si FILC gt QENT 6 8 0 si FILC lt QENT is the infiltration obtained from Eq 5 3 is the initial flow into the reach is the cost associated with DF default CF 2100 Manual del Usuario de SIMGES 37 The second term of the expression in brackets in Eq 6 7 is merely functional in order to avoid non feasible solutions in the algorithm In the final iteration of the month under study it is eliminated since DF 0 Therefore the actual inflow from type 2 reaches is ntr2 Tr2 X D CD 6 9 i 6 1 4 Contribution to the target function from Type 3 channels Similarly given the scheme generated in the internal network the strict formula is ntr3 Tr3 Y D CD DFiCF 1 6 10 i where ntr3 1s the number of type 3 reaches but their contribution in th
37. annual demand Values of 50 75 and 100 for D E and F will meet the IPH 2008 reliability criteria for agricultural demands It also gives the value of the yearly deficit in each of the three preceding criteria as a percentage of annual demand The criterion fixed by the IPH 2008 for urban demands is SATISFIED if the deficit does not exceed 8 of demand in one month nor 10 of annual demand in 10 years In the program these thresholds are optional and are included in the demands file It also provides the number of failures according to each criterion To analyse a demand that has been entered with different values for each year the guarantee criteria are computed in the same way for periods of less than 1 year bearing in mind the real value of the demand for each month and year For periods longer than 1 year the reference value will be the mean demand for the entire period Manual del Usuario de SIMGES 75 8 2 Results files arranged for spreadsheets The ASCII files produced by SIMGES and described below can be imported for spreadsheets Lotus 123 Excel Quatro Pro They have the PRN extension and the alphanumerics are put between inverted commas They are created as long as they have been requested in the graphics data file and the corresponding indicator in the physical data file is greater than 0 There are 13 different types of files corresponding to the different types of elements to aquifer recharge and extraction
38. at each one could be used by one or more intakes from the same or different zones To define the return elements it is only necessary to supply the model with the number of the node at which the related inflows enter the system Various return elements connected to the same node or reservoir can be defined 5 8 Hydropower plants These are practically the only demands that use but do not consume considerable quantities of water The intake and return nodes must be defined also maximum flow maximum power for power stations below a dam and target monthly flow variable from month to month and a priority number The model will always try to satisfy target flow without infringing on the priorities of other demands with lower priority numbers Energy production is calculated by using the gross head and a global efficiency coefficient If the power station is at the base of a dam gross head is calculated previously using the reservoir elevation volume curves Monthly energy generation is given as E Hn HVr 5 9 where H is average total fall In the case of a station at the base of a dam Manual del Usuario de SIMGES 13 z H V 1 H V i H m 2 H 5 10 where H V is the elevation of the reservoir for a volume V m 4 is the global efficiency coefficient Gw h Hm 3 m calculated as the non dimensional global efficiency coefficient multiplied by 0 0027222 Vr total volume of water used Hm 3 Hc height deduc
39. ates This aquifer model only admits one basic action which is net recharge basic action n 1 and supplies two control parameters The n 1 control parameter is volume and control parameter n 2 is the flow into or out of the river If this is positive it goes from aquifer to river and if negative from river to aquifer 5 9 3 Spring aquifer This is the name for an aquifer whose relationship with the surface system is such that the surface system receives the drainage from the aquifer normally in the form of a spring To simulate this type of aquifer an aggregate model is used which must be supplied with the drainage coefficient value a the historic natural flows from the spring Qa and the aquifer initial volume V 7 see Sahuquillo 1983 Total monthly spring volume is given by RL Vin Wn 1 V vere 5 1 e 5 14 where RL is the recharge value or extraction value if negative far from the spring and Vper is the outflow that could not be extracted in the preceding month Total monthly alteration of natural river flow is given by On Vn 1 VDET Va Rl RC 5 15 as a consequence of integrating the instantaneous flow formulas from time 7 to ta 1 month and RC is the recharge near the spring Total monthly volume drained from the spring would be Qn Qat Qn 5 16 If Qnm is negative the values are modified accordingly Vn ViatQm 5 17 On 0 5 18 On Qu 5 19 Manual del Usuario d
40. ber of aquifer Number of basic stress Max recharge flow Hm month 7 2 11 INTERMEDIATE INFLOW cards These consist of 2 registers containing 1st Register 1 item Name up to 15 characters 2nd Register 2 items Node at which they enter Column of corresponding inflow data in Inflows file 7 2 12 AQUIFER cards The first two registers are the following Ist Register 1 item Name up to 15 characters 2nd Register 1 item Indicator of aquifer type If the aquifer type indicator is over 100 e g 101 this means that the readings of aquifer data are taken from another file and the aquifer type is TYPE 100 For example if the indicator is 101 the type of aquifer is equal to 1 The second line will contain the aquifer data file name The 1 and 2 registers of the general data file are repeated in this file and continue in the 3rd register with the structure described below If the type of aquifer is equal to 1 GENERAL EIGENVALUE MODEL the units are m and days and the rest of the card includes firstly four more registers containing 3rd Register 3 items Number of Eigenvalues Number of basic stresses Number of control parameters Ath Register 2 items Manual del Usuario de SIMGES 59 Number of control parameter for pumping test If 0 no test is carried out Threshold of control parameter at which pumping may not be performed Sth Register na items Eigenvalues a
41. ccording to the failure level defined for each channel and monthly guarantee calculated as G aes 100 8 1 Months Where the number of failures is the sum of the number of months with failure a failure being when the deficit of the minimum flow exceeds the acceptable Qin failure level Manual del Usuario de SIMGES 74 For consumptive demands various guarantee results are given the number of months with a failure as in the case of channels a failure being a month with a deficit higher than A of monthly demand A being the value declared in the demand guarantee line the monthly guarantee calculated as in Section 8 1 the volumetric guarantee calculated as sup plied _ volume e 100 8 2 demanded _ volume maximum deficit in one month and maximum deficit in two consecutive months Number of failures is also given according to an annual criterion Hydrological Plans as well as the corresponding guarantee which counts as failures a year in which one of the following circumstances occurs The deficit exceeds B of monthly demand in any month Yearly deficit exceeds C of annual demand A guarantee is also determined according to a criterion similar to the Utah DWR F Estrada 1991 which considers a failure to be one of the three following conditions Yearly deficit exceeds D of annual demand The deficit in two consecutive years exceeds E of annual demand The deficit in ten consecutive years exceeds F of
42. come apparent that involved the intervention of the creators of the model users can request the inclusion of additional options to study internal network flows or to modify convergence criteria 7 7 Modification basic data file This file is not essential for running the model However it can be useful when it is necessary to define model data without actually including them in the physical data file This occurs mainly when working with the SIMWIN graphic interface and the user has to include information which this system does not accept It is included in the model directory under the name Simges avz Special care must be taken when filling in these data in order to avoid design errors in the simulation schemes The file must also be deleted from the work directory as a precautionary measure when the data are no longer needed since otherwise one could possibly be working with false data Data can only be entered as described below This file is structured by the identifying labels given to the data that will activate the corresponding readings Only the data related to the labels that appear in this file will be required Alarm restriction indicator data Manual del Usuario de SIMGES 70 Line 1 text ALARM RESTRICTION Line 2 1 item Number of restrictions modified Then follows a data group 2 24 26 lines for every restriction modified in the preceding item Line 1 1 item Number of the position occupied by the alarm
43. e SIMGES 16 Qn thus being the effect on river flow It should be noted that we are working by superposition of the impaired regime and therefore the flow series used in the surface model will be the natural ones which will be modified during the simulation by the value of Qn Two basic actions are thus used n 1 is the recharge far from the spring and n 2 is recharge near the spring As in the case of the unicellular aquifer there are two control parameters 5 9 4 Multicellularl aquifer This is an aquifer whose relationship with the surface system depends on a law represented by different discharge coefficients identified as cells To simulate these aquifers a global multicell model is used A Sahuquillo 1983 which must be provided with the drainage coefficient value q in each cell the coefficient of distribution of each basic action on each of the cells by and the initial aquifer volume y in each cell The month end volume of each cell is given by vk yi ant 5 Pu Ria z paint i V e a e 5 20 j e where R is the basic stress j recharge if positive or extraction if negative For the flows we have K E 9 ets gt b R Mt 5 21 i The impaired spring flow at month end is given by Qu 2 aN 5 22 The monthly impaired spring volume for each cell is given by n n 1 n n A V V 2 bR 5 23 The total impaired spring volume is the sum of the impaired volumes of all the cells Manual del Usuar
44. e end of the channel m If the end node corresponds to a reservoir this item has no effect on the calculation The next 3 registers make up the elevation flow table 4th Register 1 item Number of values n for elevation flow relationship 2 lt n lt 10 5th Register n items n elevation increase values m 6th Register n items n instantaneous flow values corresponding to elevation differences Hm month 7 2 7 CONSUMPTIVE DEMAND cards These consist of 11 or more registers according to the number of intakes and contain Ist Register 1 item Name up to 15 characters 2nd Register 12 items 12 total monthly demand values Hm 3rd Register 7 statistics the 2nd 3rd and 5th items depend on aquifer type Number of aquifer recharged Number of basic recharge stress Number of aquifer from which water is extracted Number of basic extraction stress Number of control parameter for extraction authorisation test if O extraction is always authorised Threshold value of preceding control parameter below which extraction is not authorised Max extraction flow Hm month 4th Register 6 items Corresponding to percentage of demands used to calculate guarantees These are in order Coefficient A for the monthly guarantee Coefficients B and C for Hydrological Plan type guarantees Coefficient D E and F for Utah DWR type guarantees F Estrada 1991 as establis
45. e last iteration is ntr3 Te3 D CD 1 6 11 i since DF is eliminated DF is in this case the difference between the possible extraction DET calculated by the simulation of the aquifer connected to the river and the flow at the entrance to the reach in case this is not enough for DET QENT si DET gt QENT F i 6 12 0 si DET lt QENT where CF has the assigned value CF 2100 6 1 5 Contribution to the target function from Type 4 channels Given the configuration for type 4 channels in the internal network their contribution is the same as for type 1 channels ntr4 Tr Y D CD 0 C0 6 13 i where Manual del Usuario de SIMGES 38 ntr4 Qi CD where is the number of type 4 channels is flow i through the type 4 channel is the deficit of the monthly minimum flow po A Q si Q gt Q 6 14 0 si Q lt 0Q is the fictitious cost associated with the minimum flow deficit and is given by CD KD NP 6 15 KD isa constant value default KD 2000 and NP is the priority number assigned to minimum flow in type 4 channel i CO is the fictitious cost associated with flow passing through channel i CQ 0 by default If it is declared in another way it can have the value CQ 1 or can be defined by the user 6 1 6 Contribution to the target function from Type 5 channels For type 5 channels we have where ntr5 DF where ntr5 Trs Y DFiCF5 6 16 i is
46. e reservoirs for which data are required This is left blank if the value of the preceding register is 0 The next 3 registers are for type 1 channels 4th Register No data 5th Register Number of river reaches for which data is required max 300 6 Register Numbers of the type 1 river reaches for which data is required The next 3 registers are for type 2 channels 7th Register No data 8th Register Number of type 2 river reaches for which data is required max 300 9th Register Numbers of the type 2 river reaches for which data is required The next registers are for type 3 channels 10th Register No data 11th Register Number of type 3 river reaches for which data is required max 300 12th Register Numbers of the type 3 river reaches for which data is required The next registers are for type 4 channels 10th Register No data 11th Register Number of type 4 channels for which data is required max 300 12th Register Numbers of the type 4 channels for which data is required The next registers are for type 5 channels 10th Register No data 11th Register Number of type 5 channels for which data is required max 300 12th Register Numbers of the type 5 channels for which data is required The next 3 registers are for consumptive demands 13th Register No data Manual del Usuario de SIMGES 66 14th Register Number of demands for which data is required max 300 15th Register Numbers
47. ear flows such as reservoir evaporation and operating rules such as alarm indicators and the sharing of the deficit between isopriority groups Section 6 3 6 1 Target Function Strictly speaking when solving flow network optimization the model uses the following target function for each month Minimize Te Tri Tro Tr3 Tra Trs Toc Ton Tra TBA 6 1 where Tg is a term for reservoirs Tr is a term for type 1 river reaches Tra is a term for type 2 river reaches Tr is a term for type 3 river reaches Tra is a term for type 4 river reaches Tps is a term for type 5 river reaches Tpc is a term for consumptive demands Tpn is a term for non consumptive demands Tra is a term referring to artificial recharges Tga is a term referring to additional extraction The terms are subject to mass conservation constraints continuity and to the physical transport limits imposed by channels and the capacities of reservoirs and other elements The following section deals with the mathematical expression of the terms and an explanation of how the target function obtained contrives to supply the demand while at the same time fully meeting the requirements of reservoir management strategies Manual del Usuario de SIMGES 35 6 1 1 Contribution to the target function from the reservoir elements Given the configuration of the internal network created for a reservoir element its contribution to the target function is whe
48. echarge flow During management simulation the model will initiate artificial recharge when there is excess water available in the surface system upstream of the recharge intake Additional extraction consists of water extracted from an aquifer and pumped into the surface system for use downstream The model will resort to additional extraction when surface supplies are insufficient for zones with a priority number equal to that designated when the additional pumping was defined and when the deficit exceeds a certain percentage of the demand 5 11 Alarm indicators These are management criteria or operating rules whose purpose is to reduce water consumption when the system reserves or part of the reserves fall below the limits specified by the user Each indicator is defined by the system state variables and a function by which the operating rule is deduced The system state indicator may consist of an evaluation of the reserve volume in one or several reservoirs or in the calculation of the total volume of natural resources supplied by a part of the basin in recent months Each alarm indicator is associated with a group of reservoirs or inflows and a volume restriction coefficient table Some reservoirs may be connected to different indicators and different indicators may be defined as associated to the same group of reservoirs The volume restriction coefficient table can be different each month Another option is to base it on the ca
49. ed in determining the monthly maximum Type 5 Hydraulic connections between nodes and reservoirs Circulating flow is a function of the different elevations of entrance and exit Water can flow in both directions and variations in reservoir levels throughout the month are considered Consumptive demands Consist of elements that use water part of which is consumed and therefore lost to the system This type includes irrigation zones and industrial and urban demands They are defined by their demand curves consumption parameters intakes and any connection to a return element Individual demands can be supplied from different sources Return elements Definitions of points at which water returns to the system from consumptive demands Non consumptive demands These are elements that use water but do not consume it e g hydroelectric demands They are defined by their physical and production data and by target monthly flow Manual del Usuario de SIMGES 3 Artificial recharge These are elements used to recharge aquifers with excess water from other sources and are defined by their physical characteristics Additional extraction facilities These elements collect water from aquifers for incorporation into surface systems for use in a zone other than the pumping zone Aquifers Defined by their physical parameters and certain operating parameters Extraction ceases when the limits are reached Types of aquifer include Tank
50. ed type 5 channels 1st and 2nd Registers Similar to those in EMBALSE PRN 3rd to 2 Nx12 th Registers Contain the circulating flows for each month of the simulation en to 14 Nx12 th Registers Contain mean monthly flow values DEMANDAS PRN Contains the results of the consumptive use demands that have been selected to appear in this file and has the following structure 1st and 2nd Registers Similar to those in EMBALSE PRN 3rd to 14th Registers Contain the monthly demand values of the corresponding zone 15th to 26th Registers Contain the monthly maximum values corresponding to the zone intake 1 27th to 38th Registers Contain the monthly maximum values corresponding to the zone intake 2 if this does not exist results will be 0 39th to 50th Registers Contain the monthly maximum values corresponding to the zone intake 3 if this does not exist results will be 0 51st to 62nd Registers Contain the monthly maximum values corresponding to the zone intake 4 if this does not exist results will be 0 63rd to 74th Registers Contain the monthly maximum values corresponding to the zone intake 5 if this does not exist results will be 0 75th to 74 Nx12 th Registers Contain the values of the monthly deficits recorded throughout the simulation Manual del Usuario de SIMGES 79 75 Nx12 th to 86 Nx12 th Register Contain the values of the mean monthly deficits recorded at the simulation hori
51. egister Name of the file containing data on inflows to be used in the current simulation Name of the file containing the actual evaporation series to be used in the current simulation If these data are not used for any system reservoir this file will not be opened by the program and its non existence will therefore not cause any errors in the execution of the model As this line is always read by the model it must contain a file name between brackets a row of blank characters can be entered if this file is not to be used Name of the file containing the fictitious costs of the internal network Name of file provided for data echo output In Section 8 1 it is identified as writing file nombrel1 ext Name of device or file provided for annual outputs must be different from the preceding file If annual outputs are defined for groups of years as explained in Section 7 2 on register multiple annual output files are generated whose extension corresponds to the three final digits of the number of the first year of each group of years Thus in this case the extension is not maintained and the user must ensure that possible combinations of the name with the different extensions generated do not coincide with any other file names in Section 8 it is identified as nombre2 ext writing file Name of device or file provided for a resumee must be different from the two preceding files If the output of the tar
52. egisters for each non consumptive demand containing Manual del Usuario de SIMGES 91 Ist Register 12 monthly target flow values and total annual value 2nd Register 12 mean monthly values of supply to turbines and mean annual value 3rd Register 12 mean monthly energy production values and mean annual value One register for each additional extraction containing 12 mean monthly pumping values and mean annual value One register for each artificial recharge containing 12 mean monthly values and mean annual value For each aquifer there are 2 initial registers plus one register for each control parameter The 2 initial registers contain Ist Register 12 mean monthly values of net aquifer recharge and mean annual value 2nd Register 12 mean monthly total aquifer extraction values and mean annual value 3rd to 12th Registers Ten registers corresponding to each control parameter contain 12 mean monthly control parameter values and mean annual value If the model has fewer than 10 control parameters it is completed with 0 registers Two registers for each alarm indicator containing Ist Register 12 mean values of mean stored volumes 2nd Register 12 mean values of restriction coefficients Manual del Usuario de SIMGES 92 9 ERROR MESSAGES Simulation may be interrupted if the program detects errors in which case the message TERMINACI N EN ERROR will appear on the screen and the error will be written in the SI
53. elements nor aquifers constitute nodes and alarm indicators are not directly represented in the scheme 5 2 Connections When the nodes have been defined in this way the next stage is to define the inter node connections using the nodes to physically locate the connections Connections or channels always flow in a unique direction This means that water flows from initial node to final node The circulation of water inside the system is defined by these nodes and their corresponding numbers Type 1 channels are assigned a maximum monthly flow and also a minimum monthly flow which can vary from month to month When simulating management the model will never violate maximum flow so that special care must be taken in setting maximum flows for natural channels river reaches since if they Manual del Usuario de SIMGES 7 are too low they may be physically impossible to comply with causing a serious error in the model simulation On the other hand minimum flows are not taken as physical but rather as management limits and the model will do its best to observe them within the established priorities so that if minimums have to be ignored the execution of the model will not be affected Five channel types are recognised with the following definitions and operations Simple channel corresponds to the previous description and is perfectly defined with the inputs mentioned It may also be known as channel type 1 or rive
54. em for the extractions and recharges specified in the graph output file 2nd Register max 300 items Column headings Contains the names of the aquifers corresponding to the extractions of the respective column and also the names of the aquifers corresponding to the recharge of the respective column 3rd Register Contains the terms Extraction and or Recharge according to type of result 4th to 3 Nx12 th Registers Contain all the simulation values 4 Nx12 th to 15 Nx12 th Registers Contain the monthly mean values ALARMAS PRN Contains the values of the reservoir volumes and restriction coefficients obtained for all alarm indicators in the order in which they have been defined in the data file Its structure is as follows Ist and 2nd Registers These are similar to those in EMBALSE PRN 3rd to 2 Nx12 th Registers Contain pairs of volume values restriction coefficients for all indicators 3 Nx12 th to 14 Nx12 th Registers Contain pairs of mean values of volume and restriction coefficients TABLA TXT Contains all simulation results in table format for easy transfer to spreadsheets and is structured as follows Each row contains all monthly simulation results in the following order The 2nd and 3rd items are year and month of simulation The 4 and succeeding items include simulation results ordered as described below A TABLA DIR file is also written with the names of the items that a
55. ers max 300 items Circulating flows in each simulation month from 1 Register 27 to Nx12 Register 26 Nx12 th 27 Nx12 th to 38 Nx12 th Registers Monthly mean flow values for each month of the year from October Register 40 Nx12 th to September Register 51 Nx12 th CONDUC2 PRN Similar to CONDUCTI PRN but for type 2 channels COND2FIL PRN Contains the type 2 channel infiltration results selected to appear in this file Its structure is similar to EMBFILT PRN CONDUC3 PRN Similar to CONDUCI1 PRN but for type 3 channels COND3FIL PRN Contains the type 3 channel infiltration results selected to appear in this file Its structure is similar to EMBFILT PRN CONDUC4 PRN Contains results of the selected type 4 channels and the maximum volumes they could have supplied 1st and 2nd Registers Similar to those in EMBALSE PRN 3rd to 14th Registers Contain the declared monthly minimum flows 15th to 26th Registers Contain the declared monthly maximum flows 27th to 26 Nx24 th Registers These are pairs of registers that contain the circulating flows in each simulated month and the maximums they could have supplied in accordance with the elevations of their start and finish points 27 Nx24 th tol 50 Nx24 th Registers These are pairs of registers that contain mean monthly flow values and the mean possible maximums Manual del Usuario de SIMGES 78 CONDUCS PRN Contain the results of the select
56. ersant with the operation of the model and system priorities have to be changed The behaviour of the target function described Manual del Usuario de SIMGES 68 in Section 6 1 will therefore have to be studied in detail and the information contained in Sections 6 2 and 6 3 will have to be kept in mind The following file is supplied with the model and includes the definition of all the information in the form of the terms used in Section 6 1 File list RESERVOIR COSTS KD K4 K3 K2 K1 CV 2000 700 1000 1100 1700 2000 TYPE 1 CHANNEL COSTS KD 2000 TYPE 2 CHANNEL COSTS Cri KD 2100 2000 TYPE 3 CHANNEL COSTS CFi KD 2100 2000 TYPE 5 CHANNEL COSTS CF5i 1800 CONSUMPTIVE USE DEMANDS GTO CK CDC 750 750 5 HYDROELECTRIC STATIONS CKN CS CDN 1500 5 5 ARTIFICIAL RECHARGE CR Dis Additional information can be included in this file that alters the operation and or output of the model There are various possibilities some of which can be used simultaneously Each one includes one or more additional lines as follows Consideration of the hydrological year in the southern hemisphere JL AGS O N D JAN F M A MY JN An extra line must be included with the name HEMISUR in capitals starting in the first column Result files options There are two other possibilities besides the model s default system Both are specified with a first line which includes the w
57. f annual results output files and target functions the 255 characters may be extended by an additional 3 characters if this has not occurred in DATOS DAT and output has been defined in groups of years If files are in the unit and path assumed by default in the system it will not be necessary to indicate path in the name 7 2 Basic data file This file is composed of a series of cards in the following order card with general data of the problem reservoir cards one for each reservoir declared type 1 channel cards one for each type 1 channel declared type 2 channel cards one for each type 2 channel declared type 3 channel cards one for each type 3 channel declared type 4 channel cards one for each type 4 channel declared type 5 channel cards one for each type 5 channel declared consumptive use cards one for each declared consumptive use return cards one for each return declared power plant cards one for each power plant declared artificial recharge cards one for each artificial recharge declared intermediate inflow cards one for each intermediate inflow declared aquifer cards one for each aquifer declared additional pumping cards one for each additional pumping declared alarm indicator cards one for each alarm indicator declared water importation cards optional The data are in free format on all cards so that alphanumerics must be placed between inverted commas
58. g rules data reference volumes in alarm restriction elements restriction values in alarm restriction elements The order of each type of elements is the same as that read by the program in the physical data file coinciding with the user numeration order in AQUATOOLDMA Also the column containing the first item of each set of values is indicated in the graph results file in xml format described in the next section to examine this it should be renamed with the extension xml and opened with Internet Explorer in the set of lt NOMBRES gt located before each set of names under the lt ICol1Tabla gt label Manual del Usuario de SIMGES 84 8 3 File containing results labelled for graphs A data structure labelled in XML style was designed to be read by specially designed libraries and by any program that uses SIMGES results as inputs This file is also used by the GRAFDMA graph file in the AQUATOOLDMA interface Its default name is salanupp tmp Data labels Data are grouped by opening and closing labels as indicated in XML but not in such great detail Labels occupy a single line so as to be easily read and interpreted by sequential reading programs such as Fortran the symbols lt y gt are added to the beginning and end of the labels in the table respectively Labels Description 1 2 3 SIMGES SIMRISK OPTIGES according to what program they are generated in x DATGEN MODEL Number of ele
59. get function is required see below the average of the results is written in the second part of this file In Section 8 1 it is identified as nombre3 ext writing file If the results writing indicator for graphs in the system s physical definition file is greater than 0 otherwise this register is excluded Name of file containing graph specifications 9th register if results output for graphs has not been indicated Only necessary if the system definition file indicates that an output of balances is required otherwise this register is excluded Name of file provided for writing results for further processing obtaining balances making summaries etc May be 9th or 10th according to whether or not graph output and post processing registers have been included Manual del Usuario de SIMGES 47 Name of file for annual outputs of partial results of the target function must be different from all previous file names If output is defined for groups of years as specified below the extension is substituted in the same way as in the annual results output file Special care must be taken not to repeat the name given to the 7 register In all cases care must be taken not to repeat file or device names including DATOS DAT as otherwise the running of the model may be aborted data may be deleted or incomplete and or incorrect results may be produced Names may have a maximum length of 255 characters In the case o
60. given the default values of CK CTC and CDC of 750 750 and 5 respectively imply that F 1504 5 NP 6 30 which means that a deficit unit in a zone with priority NP 1 increases the target function by 1499 cost units and a unit with priority of 2 increases it by 1494 and so on It can thus be seen that the model will first try to satisfy the demands with the lowest priority number From Eqs 6 4 to 6 12 it can be concluded that a unit of water that does not pass through a minimum flow channel until the minimum is reached implies an increase in the target function of F CD KD NP 6 31 so that a deficit unit in the minimum flow in a channel with priority 7 implies an increase in the target function of 1999 units with priority 2 of 1998 and so on Comparing the values given by Eqs 6 30 and 6 31 it can be seen that with the default values of the cost parameters ecological demands will be given preference over consumptive demands If KD CK CTC CDC then the minimum flow and consumptive demand priorities will coincide with priority n 1 If the minimum flows are given priority numbers in sets of fives CDCs their priorities will be equal to demands with priorities 2 3 etc It should also be noted that with these parameter default values water from the reserve zone of the reservoir will be used to supply minimum flows in channels Manual del Usuario de SIMGES 43 From Egs 6 23 and 6 25 it can be concluded that a unit
61. gment etc f Deciding how many na Eigenvalues to include Reducing the number of Eigenvalues truncation also reduces computation time Andreu and Sahuquillo 1986 Manual del Usuario de SIMGES 19 g Obtaining the matrices AR Lio hl j Thef A matrix is known as the reduced A matrix Andreu and Sahuquillo 1987 and has a row for each control parameter It will therefore be mp X na where np is the number of control parameters The J matrix is the diagonal matrix that contains the Eigenvalues so that only the na elements of the principal diagonal are other than zero yw is the state modification matrix so that the vectorial equations used in the SIMGES model are the following fer AF ln 5 26 0 6 Lra 1 yw B 5 27 where B is a vector containing the intensities of the basic actions for the month under study and therefore has ne elements one for each basic action defined l is the aquifer state vector see Andreu and Sahuquillo 1987 which contains na elements The y matrix therefore has ng x ne elements with a column for every basic action The data needed for the model are The q matrix diagonal or Eigenvalues The 7 vector for the initial state lo The rows of the A matrix a row for each control parameter and The columns of the y matrix a column for each basic stress 5 9 6 Homogeneous rectangular aquifer connected on one side with a totally penetrati
62. h a distributed parameters model is considered necessary and thus also the exact location of the actions that affect the aquifer as well as the aquifer s response to such actions The Eigenvalue method was chosen since it has been shown Andreu and Sahuquillo 1987 to be more efficient for supposedly linear systems in which few responses are studied control parameters and on which few actions take place which could be described as linear combinations of predetermined unitary actions basic actions Users should first become familiar with the method Andreu and Sahuquillo 1987 The steps are as follows a Definition of the hydrodynamic characteristics of the aquifer transmisivities storage coefficient as well as its geometry and the initial and operational conditions b The creation of a finite differences or finite elements grid adapted to the shape of the aquifer and obtaining a system of differential equations whose unknowns are the elevations of the nodes or discretization blocks c Obtaining the corresponding Eigenvalues and Eigenvectors This can be carried out by any package of mathematical subroutines d Definition of basic actions Each basic action is a vector with a non null value in the element corresponding to the cell on which it acts and 0 in the rest The sum of the components is unity e Definition of control parameters e g level in a cell average levels zone volume flow through a river aquifer boundary se
63. he aquifer 4thRegister 2 items Control parameters for extraction test Threshold value 5thRegister one item for each cell Manual del Usuario de SIMGES 62 Values of amonth 6thRegister 1 item for each cell Initial cell volume Him 7thRegister Name of the basic stress for uniform recharge 8thRegister 1 item for each cell Coefficient of distribution of uniform recharge 0 to 1 Registers 7 and 8 are repeated once for each declared exterior action apart from uniform recharge If aquifer is type 11 THREE LEVEL AQUIFER the remainder of the card content is as follows 3rd Register 2 items Number of the extraction test parameter control O always allowed 1 flow with river 2 flow with irrigation channel 3 Evaporation 4 volume Threshold value 4thRegister 14 items Value of al river in month D Value of a irrigation channel in month 1 12 Values of a Evaporation in month SthRegister 3 items Value of volume between river and irrigation channel Hm Value of volume between irrigation channels and evaporation Hm Value of initial volume Hm 6thRegister 10 items 12 historical recharge values Hm month 7 2 13 ADDITIONAL PUMPING cards These consist of 2 registers containing Ist Register 1 item Name up to 15 characters 2nd Register 8 items 2nd and 3rd items depend on type of aquifer Number of aquifer from which water is pumped Man
64. hed by the IPH 2008 for agricultural demands Manual del Usuario de SIMGES 56 Coefficients G and H for the calculation of guarantee criteria as established by the IPH 2008 for urban demands in theory 8 and 10 See Section 8 1 name 3 ext file for the meaning of these coefficients If coefficients A B and C are assigned a value of 0 failures may be declared when they do not in fact exist This is due to rounding out and it is recommended to give them a minimum value of 1 Sth Register 1 item Number of different intakes max 5 For each intake 6 registers containing Ist Register 1 item Name up to 15 characters 2nd Register 2 items Intake node Intake elevation This figure affects the calculation when the intake node belongs to a reservoir 3rd Register 3 items Annual Volume Hm Return coefficient between 0 and 1 Consumption coefficient between 0 and 1 4th Register 3 items Priority number Restriction alarm indicator number If 0 no alarm indicator is connected to the intake 1 or 0 1 for annual flow and O for monthly flow Sth Register 1 item Number of return element used 6th Register 12 items 12 monthly peak values Hm month 7 2 8 RETURNS cards These consist of 2 registers containing Ist Register 1 item Name up to 15 characters Manual del Usuario de SIMGES 57 2nd Register 1 item Node at which they return This can
65. ing in the system For type 5 channels it gives monthly circulating flows and the annual total For consumptive demands it repeats the value of the volume supplied gives surface supply groundwater supply and deficit Surface supply is divided by intakes For return elements it gives monthly and annual totals For hydropower plants it repeats the value of the target flow and gives the values of the flow used to generate power gross head and power production For additional extractions it draws up a table with monthly extracted water volumes and annual total For artificial recharges monthly results and annual totals are given For aquifers monthly net recharge values are obtained minus extracted water values monthly extracted water values and monthly values of the control parameters For system alarm indicators it gives the monthly values of the volume in each group of reservoirs and their corresponding restriction coefficients where label3 ext is the name declared in the reading and writing data file for the file that will contain the simulated horizon summary e g SUMMARY SAL This file must always be included and contains the mean values of the values mentioned in the preceding item as well as For reservoirs the number of times they were filled and emptied in absolute numbers and percentages For channels except type 5 number of minimum flow failures a failure is a month in which minimum flow is not reached a
66. io de SIMGES 17 Bi 24 5 24 Should this value be negative the corresponding volume will be extracted from the river flow through the type 3 channel connected to the aquifer If the river does not have sufficient flow to make this withdrawal so called impossible extractions are generated which will be discounted in the following month from the volume stored in the cell with the most dynamic relationship with the river i e the one with the lowest a value For this cell the preceding month end volume is modified in the following way V r V DI 5 25 CR being the index of the cell with the lowest q value and DI is the value of the impossible withdrawal calculated for month n 1 DI is negative Obviously Eq 5 25 is applied before Eq 5 20 This model can be applied to three similar aquifer situations but with different physical conditions These are firstly an aquifer connected to a river modeled by superposition of the impaired regime the second is the spring aquifer also modeled in the same way and the third is a spring aquifer completely modeled with historic rainfall data 1 Aquifer connected to a river modeled by superposition of the impaired regime In this case the aquifer can extract water from the river with the available flow being the only limit Modeling requires a type 3 channel connected to the aquifer model downstream of surface system inflow in the impaired regime including aquifer discharge to the sy
67. lculation of the reserve volume at the start of the month or to establish a minimum threshold volume which the program will try to stay above To calculate the start of the month volume the program totals the volumes stored in the reservoirs and by means of the table provided obtains the restriction coefficient corresponding to the indicator for the month under study It should be emphasized that these indicators are based Manual del Usuario de SIMGES 32 on the reserves at the start of the month and do not take into account any inflows in the course of the month or the situation of the reservoir at the end of the month The table below gives an example of interpolating a curve of this type Definition of Reservoirs Reservoir 1 alarm restriction Reservoir 2 indicator as a continuous curve evaluated at the start of the month Examples Volume of reservoir at start of month Restriction Supply Reservoir 1 Reservoir 2 Total Situation 1 10 4 14 79 21 Situation 2 15 11 26 50 50 Situation 3 50 40 90 44 56 Situation 4 70 70 140 14 86 For volume values below the first number interpolate with volume 0 restriction 1 0 For volume values above the last number extrapolate from the 2 final data if there is only one use this and the value volume 0 restriction 1 In the case of defining the operating rule as threshold the program does not interpolate between the differe
68. m month 7th Register 12 items 12 values for maximum volume Hm Manual del Usuario de SIMGES 51 8th Register 12 items 12 objective volume values Him 9th Register 12 items 12 minimum volume values Hm Registers 10 12 compose the Elevation Surface V olume table of the reservoir 10th Register 10 items 10 elevation values m 11th Register 10 statistics 10 surface values Ha 12th Register 10 items 10 volume values Him 13th Register 12 items 12 monthly evaporation values mm These will be used by the model when the evaporation column number is 0 7 2 2 TYPE 1 CHANNEL cards These are composed of four registers containing 1st Register 4 items Name up to 15 characters Maximum annual volume Hm 0 is selected if there is no annual limit This channel is eliminated by giving it a value of 0 001 The restriction indicator to be used Value 0 1 2 or 3 0 monthly max flow 1 annual max flow 2 both max flows and 3 minimum monthly flow 2nd Register 5 items Initial node Final node 0 indicates system output Minimum flow priority number in this reach River reach cost indicator O No cost 1 unit cost or bypass 2 cost chosen by user River reach flow cost only used when River Reach Cost Indicator is 2 3rd Register 13 items 12 minimum flow values Hm month Manual del Usuario de SIMGES 52 Acceptable Qmin failure
69. ments of each type in general one item per label except derived elements such as intakes that have the ordered numbers of intakes of each demand x X x TITRE Title 1 of scheme x xX x TITULO Title 2 of scheme x xX x NANY Number of simulation years x xX x NANI Initial simulation year x x x MSINI1 Initial simulation month 1 January x NSERI Number of simulated series x NMSCAM Total number of simulated months x NNOD nodes x Xx x NEMB reservoirs x xX x NTR1 Type 1 river reaches x xX x NTR2 Type 2 river reaches x x NTR3 Type 3 river reaches x x NTR4 Type 4 river reaches x x NTRS Type 5 river reaches x x NAPINT Intermediate inflows x x x NDC Consumptive demands X xX xX NUMTO Number of ordered intakes for each demand x x NDN Non consumptive demands x x NRAR Artificial recharges x x NACU aquifers x x NPCS Number of control parameter in each aquifer x x NAES Number of basic stresses in each aquifer x x NBAD Additional extractions x x NRET returns X xX x NISOP Isopriority groups x x NINRE Restriction indicators x x NAMES Labels of the names of all elements Format i3 1x a30 x x Manual del Usuario de SIMGES 85 Labels Description 3 IColl Tabla Indicates position of first item of each type of element in the results file in the form of a single table Situated at the same level as the names just before each names label NOMDC Name of consumptive use demand 1 x NOMTC Name of intake J of consumptive demand 1 x N
70. nal resumee If 1 is used only the final summary will be provided If an extensive output is required in groups with the same number of years in different files this indicator will have the value 100 n n being the number of years in each group The names of these files are generated from those declared in DATOS DAT changing the extension the three last digits of the first year in each group are selected For example the hydrological year group1940 41 to 1944 45 5 years would have the extension 940 the following group 1945 46 to 1949 50 would have the extension 945 Graph files output indicator No 0 If a number other than O is selected this will be assumed to be the maximum number of years for which information is required for graphs Balance file output indicator Yes 1 No 0 Target function output indicator Yes 1 No 0 100 n If 1t is required to divide the detailed output of the target function into groups of n years 100 n is selected following the same criteria of file names as with annual results output 4th Register 1 items Title n 2 up to 80 characters Both title no 1 1st Register and title no 2 will appear in the list sheets Sth Register 17 items 1 2 3 4 5 6 7 8 9 Maximum number used to number user scheme nodes Final Node not included Number of reservoirs Number of type 1 channels Number of type 2 channels Number of type 3 channels Number of type 4 channels
71. ne of reservoir k even if NP lt NP The result will therefore be to keep both reservoirs at the same level and to take water first from the one with the highest NP Manual del Usuario de SIMGES 44 With the default values kj k7 1700 k2 1100 k3 1000 k 700 we see that water can be taken from any zone to satisfy demands except from the reserve zone which will remain untouched since it is at level 1700 while demands were at level 1500 The cost associated with uncontrolled releases is simply to avoid the algorithm sending water through this part of the network before the reservoir is full If there were several reaches with ecological flow situated in series downstream then we could have the situation of extracting water from the reservoir by spillage which would not correspond to the physical reality of the system Any such situations must be detected by the user 6 3 Isopriority groups The same priority number can be given to different intakes for different consumptive use in which case the intakes will form an isopriority group In the case of a water shortage the model will then share out the available supply among the intakes in the group in proportion to the peak demand value of each one This will occur whenever possible although it may not always be so for example in the case of a zone far upstream which does not receive intermediate flows 6 4 Iterative process Besides the above described target f
72. ng river This model permits the simulation of homogeneous rectangular geometry aquifers connected to river reaches In many cases this approach involves an over simplification of the real situation but also allows the deferred effects of the river aquifer interaction to be studied in greater detail than the single cell model The model is based on the analytic solution of the case shown in the figure below and allows different locations to be chosen for actions involving the aquifer The solution to the problem was provided by Sahuquillo 1981 and was applied to the joint use of surface and ground waters by Marco and Andreu 1983 Manual del Usuario de SIMGES 20 y 7 D 10 a 5 x E ZA The following data should be available a Hydrodynamic parameters transmissivity Tx in the direction of the X axis transmissivity Ty in the direction of the Y axis and storage coefficient S b Geometry the lengths of D and L as shown in the above figure c Initial aquifer levels 15 quantities must be obtained to form an approximation of the initial state initial state vector of the aquifer to be supplied to the model as data input The following cases can be considered c 1 Proceeding by superposition of the impaired regime of the aquifer In this case the 15 quantities are all zero c 2 Considering an elevation distribution in the aquifer given by the function H x y The following quantities must be calculated lo
73. nitial node Final node Priority of min flow 3rd Register 13 statistics 12 min flow values Hm month Acceptable Qmin failure level This defines as a percentage of Qm n the acceptable Qmin deficit before a failure If this flow is O due to rounding off problems a failure may be declared when it does not in fact exist It is recommended to use as the minimum value 4th Register 12 items 12 max flow values Hm month Sth Register 4 statistics The last two items depend on the aquifer with which the channel is connected Number of aquifer to which it is connected Number of the control parameter corresponding to the relationship Number of basic action to compensate for impossible withdrawals from the river valid for type 1 5 and 6 aquifers for other aquifers the basic action is predetermined Coefficient between O and 1 to allocate the result of the connection of the aquifer among various type 3 reaches The sum of the connections of a control parameter must be equal to 1 7 2 5 TYPE 4 CHANNEL cards These consist of 7 registers containing Ist Register 2 items Name up to 15 characters Annual max flow Hm 0 for unlimited max flow 2nd Register 5 items Initial node Final node Priority of min flow in this reach River stretch cost indicator O No cost l unit cost or bypass 2 cost fixed by user Manual del Usuario de SIMGES 54 River reach flow cost
74. nitial volume Vi Historical recharge values From these data and the net recharge values basic stress n 1 excluding natural flow the model supplies the values of the relationship with the river Q control parameter n 1 outflows by drainage channels Q2 control parameter n 2 actual evaporation Q control parameter n 3 and month end volume Vj control parameter n 4 It should be noted that in this case we are not working by superposition so that the values are total values Caution should therefore be exercised if there are inflows downstream of the connection with the aquifer as in this case they should be previously corrected by deducting the historical river aquifer relationship 5 9 9 Summary of basic stresses for different types of aquifer Manual del Usuario de SIMGES 29 Tank 1 1 Net Recharge Single cell 1 1 Net Recharge Spring 1 Recharge far from the spring 2 Recharge near the spring Modeling by NAES actions are defined by the user Eigenvalues NAES Rectangular homogeneous connected NAES Type of Aquifer on one side 1 Rectangular The user defines NAES actions homogeneous connected NAES The following three actions on two contiguous sides 3 correspond to compensation for impossible extractions NAES 1 for connection by x L NAES 2 for connection by y D NAES 3 for the case of connection by only one type 3 channel but on two sides x L and y D Three levels 1 1 Ne
75. not be the final node 7 2 9 HYDROPOWER PLANT cards These consist of 4 registers containing Ist Register 1 item Name up to 15 characters 2nd Register 6 statistics Intake node Return node Minimum usable flow Hm month If there are no abnormal conditions this value is normally 0 as otherwise it is assumed that flow to the turbines is constant during the month Max flow Hm month Priority number Number of alarm restriction indicator used to reduce the values of monthly target flow if 0 no alarm indicator is applied 3rd Register 12 items 12 target flow values Hm month Ath Register 3 items Node number of reservoir below which the station is situated 0 if run of the river Gross head m For stations below a dam the value entered is the elevation difference with the reservoir surface height to obtain gross head Global electrical energy production coefficient Gwh Hm m Sth Register Not used if the first statistic of the 4th register is 0 i e if the station is run of the river type 1 item Minimum height of reservoir surface for power generation No power is produced if monthly average elevation of reservoir surface is lower than the value entered 7 2 10 ARTIFICIAL RECHARGE cards These consist of 2 registers containing Ist Register 1 item Name up to 15 characters Manual del Usuario de SIMGES 58 2nd Register 4 items Intake node Num
76. nt values of the curve but each volume value is taken as the minimum threshold below which the level must not be allowed to drop Therefore the control of the alarm indicator is achieved in the iterative process on the final reference volume instead of being calculated on the initial volume In this case the table of values defined above would have the following restrictions Reservoirs Reservoir 1 Definition of Reservoir 2 alarm restriction indicator as a minimum threshold Examples Calculated final monthly volume Restriction Supply Reservoir 1 Reservoir 2 Total Situation 1 10 4 14 70 30 Situation 2 15 11 26 50 50 Situation 3 50 40 90 50 50 Situation 4 70 70 140 0 100 Tt should be noted that unlike the previous case these volumes are based on monthly management statistics and therefore depend on the restriction applied For volume results near to the threshold the calculated restriction coefficient may take a value between the threshold and the previous coefficient Also by means of an iterative process the program will attempt not to descend below the threshold of the supply defined in the same step so that if the difference between the volume available and the immediate threshold volume is small a supply will be calculated that is not under the threshold level Manual del Usuario de SIMGES 33 It should be noted that in each case even if the curve values are the
77. nual value and the number of months in which minimum flow has not been reached 2nd Register 12 mean possible maximum flow values for each month and mean annual total One register for each type 5 channel containing 12 mean monthly outflow values and their mean annual value For each consumptive demand there are 4 initial registers plus one register per intake The 4 initial registers contain Ist Register 12 monthly demand values and total annual value 2nd Register 12 mean monthly surface supply values and mean annual value 3rd Register 12 mean monthly groundwater supply values and mean annual value 4th Register 12 mean monthly deficit values and mean annual value Then follow 3 registers for intakes each of which contains 12 mean monthly supply values of the supply provided by each intake and mean annual value If there are fewer than 5 intakes the lines are completed with values of 0 Next register 3 items Number of months in which demand has not been met number of failures max deficit in a month and max deficit in two consecutive months Hm Next register Number of failures according to the criteria of Hydrological Plans Final register 4 items Number of failures according to the UTA DWR type criterion if greater than 0 it is no longer complied with Max deficit as for 1 2 and 10 years One register for each return element containing 12 mean monthly return values and mean annual value Three r
78. o EMBFILT PRN RECARTF PRN Contains the artificial recharge results selected to appear in this file and has the following structure Ist and 2nd Registers These are similar to those in EMBALSE PRN 3rd Register Contains the declared maximum recharge capacities Ath to 3 Nx12 th Registers Contain the values of monthly recharges carried out during the simulation 4 Nx12 th to 15 Nx12 th Registers Contain mean monthly recharge values BOMBAD PRN Similar to RECARTF PRN but with additional extractions instead of artificial recharges and extraction instead of recharge PCACU PRN Contains the values of the results control parameters obtained from aquifers for which this information has been requested and has the following structure 1st and 2nd Registers These are similar to those in EMBALSE PRN 3rd Register Contains the names of the control parameters in the corresponding column 4th to 3 Nx12 th Registers Contain the monthly values of the control parameters registered throughout the simulation 4 Nx12 th to 15 Nx12 th Registers Contain the mean monthly values of the control parameters RNBOMBAC PRN Contains the values of net recharges and water extracted from aquifers that have been requested and has the following structure Manual del Usuario de SIMGES 81 Ist Register 1 item Number of years in simulation title of the problem Each of the following registers contains an it
79. o occur the stored water must exceed maximum volume Vmax defined for each month and exceed the capacity of controlled discharge This maximum volume can be varied each month so as to be able to define the safety margins for possible floodwater levels If uncontrolled releases cannot be used they can be defined as supply nodes at the end of the system It should also be noted that the model needs a value for maximum release flow S and if the demands that have to be met from the reservoir exceed this value the model will not be able to supply total demand from this reservoir even if there are usable reserves The management of the basin reservoirs is done in such a way that they are all kept as far as possible within the same capacity zone considered as the user s definition of monthly target volume V and monthly minimum volume Vmin the zones being automatically defined as follows Upper zone between Vmax and Vopj may Intermediate zone between V and V Y Vorj V min Vobj Lower zone between V and Vmin F reserve zone between Vmin and empty NE m A storage priority number in reservoir N is also defined for each reservoir In this way the model will not use water from the intermediate zone of a reservoir until all the water has been used from the upper zones of all the other reservoirs If two reservoirs are in the same zone the model will first take water from the reservoir with the highest storage priori
80. of the rest of the demand zones To simulate the subsequent evolution of the water used two coefficients must be defined for each intake a return coefficient and a consumption coefficient J The water returned to the system in the form of surface water is thus R ax Soup 5 6 Where Ssup is the intake s surface supply To properly measure this return the number of the return element at which the R volumes are incorporated must be defined The water consumed and so lost to the system is given by X BX Soup 5 7 The rest is considered as deep infiltration and is given by I 1 a B x Sow 5 8 which goes to increase the recharge of the underlying aquifer So that this can be accurately measured the user must supply the model with the data of the number of the underlying aquifer and basic stress corresponding to the recharge caused by infiltration in the zone Should the surface supply be insufficient the rest of the demand can be supplied by pumping water from an aquifer which does not necessarily have to be the same aquifer recharged by the infiltration in the zone It is therefore necessary to supply the number of the aquifer in the zone from which water can be pumped as well as the number of the basic stress that corresponds to this pumping The decision to pump also depends on the state of the aquifer for which the user defines a given control parameter value after which pumping ceases The control parameters are defined in
81. of water not supplied to a non consumptive demand until the target flow is reached implies an increase in the target function of F CN CKN CDN CDN NP 6 32 which with the above defect values mean that F 1505 5 NP 6 33 with the same comments being applicable as those for Eq 6 30 Therefore with the default values non consumptive and consumptive demands have practically the same priority From Eq 6 26 it can be seen that a unit of water for artificial recharge increases the value of the target function by F CR 6 34 which with the default value of CR is F 5 6 35 From Eqs 6 27 and 6 28 it can be seen that a unit of water taken out by additional extraction increases the value of the target function by F CB CTC CK NP 0 5 CDC 6 36 which with the default values of CTC and CDC is F 1500 5 NP 0 5 6 37 so that an additional extraction in which NP 1 would give F 1497 5 From Eqs 6 2 and 6 3 it can be deduced that a unit of water stored in reservoir zone j involves an increase in the target function given by Eq 6 3 which since k are negative by default in fact mean a decrease in the target function As NP increases the value of F also increases so that the algorithm will tend store water in the j zone of a reservoir with lower NP than in one with higher NP However since Mess lt lt Ik the algorithm will tend to store in the j zone of reservoir i before the 1 zo
82. oirs correspond to points in the scheme at which there is water storage capacity and are basic management elements Simulation is performed simply by mass balance so that the end of month volume Vs can be expressed as V Vi Ae 4Aa Pj E Se Sy 5 2 where Vi is the start of month volume Ae is the reservoir hydrological inflow Aa are inflows from upstream of the reservoir P are seepage losses E are losses due to evaporation Se are controlled releases 1 e those that do not exceed reservoir drainage capacity including intakes inside the reservoir S are uncontrolled releases due to excess capacity that cannot be dealt with by controlled drainage To apply Eq 5 2 in the first month initial reservoir volume must be defined at the start of the simulation Seepage losses can be expressed as P a bV 5 3 Where P and V are losses and instantaneous volume and a b and c are parameters supplied by the user and required by the model The linear integration of Eq 5 3 for a period of one month gives us the following equation b P a _ ___ Oe INV Vi V V 5 4 with units of P in Eq 5 3 of Hm month and V Vr and V in Hm To calculate evaporation losses we apply 9 Pe Si 2 E 10 5 5 where Sp and S are the reservoir surface areas Hectares of the final and initial volumes respectively and e is evaporation figure in mm Manual del Usuario de SIMGES 10 For uncontrolled releases t
83. olumns Sii da Evaporation file columns ooooonoccnoncconaconaccnnnconnnonononnnanos Consumptive demand intakes ooooconccnoncnncnncnnonnnonnnnnnnnos Elements of each type in output for graphs N of inputs in type 4 and 5 channel tables and alarm A sss eect tn aa a E endeared deca eines N of inputs of imported water eee eeeeeeeeeeeeeeeee 300 100 300 20 20 2 2 50 200 30 110 20 10 200 20 30 8 5 10 10 150 100 300 These limits are considered to be sufficiently wide to enable the simulation of any system If required an executable file can be supplied with limits different to those cited above If limits are expanded executable file sizes are larger The physical data file begins with the GENERAL DATA file of the problem It is composed of 5 registers which contain Manual del Usuario de SIMGES 49 1st Register 1 item Title n 1 up to 80 characters 2nd Register 2 items Number of simulation years Number of initial year e g 1940 3rd Register 5 items Data echo indicator Yes 1 No 0 2 can also be specified instead of O or 1 which means that after the reading of data and the writing of the data echo the program execution stops This feature can be used to review data without running the program Short list indicator resumee only Yes 1 No 0 100 n If 2 is used it will give an extended list with all the results of all the simulated months with a fi
84. option 3 as often as the value of item 4 in the ye register 4th Register 2 items Number of month in which the next operating rule is calculated 1 October Number of valid data in the next curve nd Sth Register 10 items 10 values for reference volume only the first nd values will be valid Manual del Usuario de SIMGES 64 6th Register 10 items 10 coefficient values to be applied from 0 to 1 only the first nd values will be valid 7 2 15 WATER IMPORT cards These consist of 2 registers for each water import element and contain 1st Register 1 item Number of node at which imported water enters the system 2nd Register 1 item for each month of the simulation period Imported volume hm in each month of the simulation Manual del Usuario de SIMGES 65 7 3 Graph data file If the graph indicator of the physical data file is equal to 1 3 line 3 item it will be necessary to provide a file whose name must be specified in the file data file 7 line This file determines the results that will be written in the monthly results files separated by types of elements These results files are described in Section 8 2 The contents of the specifications for graphs will have the following format The first three registers pertain to reservoirs 1st Register No reading data free for comments 2nd Register Number of reservoirs for which data are required max 300 3rd Register Numbers of th
85. ord CODCOL in capitals beginning in the first column In the next line there are two options 0 Output is limited to 132 columns with printing codes pertaining to FORTRAN 0 1 and programming language formats Results are given to fewer decimal places than with the default method 1 Similar to the above option but without FORTRAN printing codes Manual del Usuario de SIMGES 69 Conversion to whole numbers for optimisation The number of decimal places is specified for the calculation By default the model works to 3 decimal places but this figure can be modified to 2 or 4 A first line is included with the word CODCONV in capital letters beginning in the first column For the next line there are three options 2 2 decimal places 3 3 decimal places 4 4 decimal places The number of decimal places only needs to be increased when working with values close to the minimum precision number Configuration to exit program without waiting for the user s confirmation A line is included with the code CODFIN and a second line with the value 1 This usually becomes necessary in a process involving multiple simulations There are other options designed to analyse any model internal network problems or to modify convergence criteria number of iterations etc These are not described here since they require the user to be perfectly familiar with the internal working of the model However if operational problems were to be
86. osition is assumed Manual del Usuario de SIMGES 61 Two registers for each basic action The first includes Ist Register 2 items Name up to 15 characters Type 1 group of individual actions 2 distributed in a rectangle If type 1 the 2nd register includes 2nd Register Number of grouped individual actions and a set of three numbers for each number in the preceding item consisting of Xp coordinate of the action m Y coordinate of the action m Weight of the action Px the sum of the weights will be 1 and all will be positive If type 2 the next register has 2nd Register 4 items XG coordinate of the centre of the rectangle m YG coordinate of the centre of the rectangle m Length LX of the side parallel to the X axis m Length LY of the side parallel to the Y axis m If the aquifer type is equal to 6 RECTANGULAR HOMOGENEOUS WITH TWO RIVERS the rest of the card contains exactly the same data as type 5 but there are differences in the following registers Ath Register 2 items Number of the extraction test control parameter O always allowed 1 volume 2 discharge into river 3 outflows by X L 4 outflows by Y D 6th Register 15 items Initial state vector components will be defined as in Section 5 9 6 If aquifer is type 7 MULTI CELL SPRING AQUIFER the rest of the card consists of 3rd Register 2 items N of cells in the model N of exterior stresses on t
87. ply as in the 30th register 34th Register Numbers of aquifers Data from all the system alarm indicators are always considered to be required 7 4 Inflow data file Manual del Usuario de SIMGES 67 This consists of the following registers Ist Register 1 item Name of type of data in file This will always be INFLOWS including inverted commas 2nd Register 1 item Title up to 20 characters 3rd Register 1 item Title up to 20 characters 4th Register 1 item Number of inflow columns a 5th Register 2 a items Text YEAR Text MONTH Names between inverted commas of the a inflows 6th and following Registers 2 a items Number of year 4 digits Number of month 1 January to 12 December a data separated by blank spaces containing inflows Hm month corresponding to month and year of the register and the inflow element of the column indicated in the 5 Register Inflow data registers must be consecutive and contain the simulation period defined in the physical data file as otherwise the program will give incorrect readings in this file 7 5 Evaporation data file The structure of this file will be identical to the inflow data file except in the case of the first register which will contain EVAPORATION The contents will be of specific evaporation series 7 6 Fictitious costs data file This file must only be modified when the user is fully conv
88. pothetical infrastructures demand patterns and basin operating rules The most suitable operating rules for the required guarantee levels The advantages and disadvantages of changing water use priorities Reservoir channel and pumping capacities for given demand and guarantee levels Manual del Usuario de SIMGES 2 2 ELEMENTS CONSIDERED The definition of pattern elements which can be combined as required by the user means the model can be adapted to any type of scheme These elements include Surface reservoirs including interbasin flow These are defined by their physical and management parameters maximum volumes target volumes and storage priority over other reservoirs Intermediate inflows these are inflows that cannot or should not be considered as direct reservoir inflows Channels including river reaches canals etc Defined by their physical parameters including maximum capacity and possible minimum inflows normally ecological There are 5 types Type 1 As defined above Type 2 Include loss by infiltration Type 3 Consider hydraulic connection between a river and an underlying aquifer including aquifer river and vice versa depending on the state of the aquifer Type 4 Defined as in Type 1 with instantaneous maximum flow as a function of the difference between the elevations of the start and finish of the channel If it begins or ends in a reservoir the height difference is consider
89. ppear here in the same order Each row contains the type of element the name of the element and the type of item for each data series in the table Manual del Usuario de SIMGES 82 inflow data reservoir data channel data demand data returns data intermediate inflows intermediate inflows defined in reservoirs inflows to modelled reservoirs final reservoir volumes final reservoir elevation controlled releases spills evaporation in reservoirs infiltration in reservoirs flow in type 1 river reaches flow at end of type 2 river reaches seepage in type 2 river reaches flow at end of type 3 river reaches seepage or inflows in type 3 river reaches flow in type 4 river reaches maximum flow in type 4 river reaches flow in type 5 river reaches consumptive demand values surface supply to consumptive demands underground supply to consumptive demands supply deficit to consumptive demands supply to consumptive demands by intake ordered by demand and number of intakes for each demand flow in return elements hydroelectric station data target flow flow to turbines elevation of turbines hydroelectric production additional pumping data Manual del Usuario de SIMGES 83 volume of water extracted artrificial recharge data recharged flow aquifer data net recharge in aquifers total extraction in aquifers aquifer control parameters ordered by aquifer operatin
90. r reach type 1 TR1 For reasons of internal program operation there should not be more than one TRI with the same initial and final nodes or with interchanged initial and final nodes TR1 channels can be assigned an arbitrary flow cost or user cost which allows water assignation to be varied arbitrarily To define this user cost see Section 6 1 2 which deals with the contribution of the target function to TR1 channels They can also be defined as unit or by pass cost to divert the flow to another channel when two channels of equal cost are available Type 1 channels may have an Alarm Indicator incorporated described below whose function is to reduce maximum capacity during months in which the volume stored in certain system reservoir groups is low The Alarm Indicator can be optionally assigned to either maximum monthly flow or to annual flow if this is limited Channel with infiltration these lose water through seepage Water loss P is considered as a function of flow Q at the start of the reach and is expressed as follows P a b Of 5 1 a b and c being parameters required by the model and supplied by the user To assign infiltration to an aquifer unitary external stresses must be defined for this aquifer basic stresses are defined in Section 5 9 and that corresponding to the recharge caused by channel infiltration identified These channels may also be called type 2 channels or type 2 river reaches TR2 Channel hydraulicall
91. re nemb Vi CE NP CV 6 1 2 T 5 Erice pcv 6 2 i j l is the number of reservoirs is the month end volume in each zone jJ j 1 2 3 and 4 of reservoir i Zone 1 is the reserve 2 is the lower zone 3 the intermediate and 4 the upper zone is uncontrolled releases from reservoir i is the fictitious cost associated with the volume stored in zone j and is given by CE kj NP 6 3 where are pre established values by default they are k 1700 k2 1100 k 1000 k 700 and is the priority number assigned to the reservoir and is the fictitious cost associated with overflow default CV 2000 Contribution to the target function from Type 1 channels Given the configuration for a type 1 river reach in the internal network we have where ntrl Qi ntrl T y Y D CD Q C0 6 4 i l is the number of type 1 river reaches is the flow in river reach i If a minimum flow has been defined in the river reach the value of Q will be the maximum between actual flow and the defined minimum flow A fictitious cost in a river reach is therefore not added to the cost associated with the minimum flow deficit is the deficit with respect to the declared minimum flow Manual del Usuario de SIMGES 36 0 0 siQ gt 0 D E 6 5 0 si Q lt Q CD is the fictitious cost associated with minimum flow deficit and is given by CD KD NP 6 6 where NP CQ is a constant v
92. rvoirs In this type of channel instantaneous flow is determined only by the height difference between the extremes which cannot be regulated Water can flow in both directions This type may connect two reservoirs Besides initial and final nodes the user must define the curve relating instantaneous flows with elevation difference Monthly flow is determined by integration assuming that elevation difference varies linearly throughout the month These channels are also known as type 5 channels TRS 5 3 Inflows Inflows include all the water added to the system An entrance point is defined which must be a system node A distinction is made between intermediate inflows and reservoir inflows The former are incorporated in non reservoir nodes and the latter in reservoir nodes However intermediate inflows can be incorporated into reservoirs The user must enter monthly inflow values in a special inflow file with a column for every inflow considered in the scheme The column number corresponding to a given inflow will therefore be among the data required by the model This number is requested even for reservoir data in the case of reservoir inflows 5 4 Water imports Like the intermediate inflows these are inflows into the system the difference being that imports can be altered by the user in each simulation and are therefore included in the general model data file 5 5 Reservoirs Manual del Usuario de SIMGES 9 Surface reserv
93. s indicated by the first item of the third register 6th Register na items Initial state vector with a component for each Eigenvalue For each basic stress 2 registers are included Ist basic action register 1 item Name of basic stress up to 15 characters 2 basic stress register Na items Corresponding column of the matrix for conversion of basic action intensities to state vectors For each control parameter 2 registers are included 1st control parameter register 1 item Name of control parameter up to 15 characters 2nd Register Na items Corresponding row of the matrix for conversion of state vectors to control parameter vectors If the aquifer type is equal to 2 SINGLE CELL MODEL the rest of the card includes 2 registers 3rd Register 2 items Number of control parameter for extraction test must be 1 Volume or 2 Flow If 0 no test is carried out Control parameter threshold below which extraction is not carried out in Hm if the preceding value is 1 and in Hm month if 2 Ath Register 2 items Value of a in month Value of initial volume Him 0 if working by superposition If aquifer type is equal to 3 SPRING MODEL the rest of the card includes 3 registers 3rd Register 2 items Number of control parameter for extraction test must be 1 Volume or 2 Flow If 0 no test is carried out Control parameter threshold below which extraction is not carried out
94. same the curve is defined differently In the first case the curve is continuous and in the second it is stepped see figure below restricci n restricci n 0 20 40 60 80 100 120 140 volumen volumen The first curve represents operating rules n s 1 and 3 and the second n s 4 and 5 When calculating reservoir volumes 1 and 2 are based on start of month reserve values while 4 and 5 try not to go below them during the month Alarm indicators can be applied to monthly maximum demand flows monthly maximum type 1 channel flows monthly minimum type 1 channel flows or target monthly non consumptive demand flows They can also be applied to maximum annual demand of the intakes or type 1 channels When applied to annual demand the model calculates the water volume supplied in the preceding months of the hydrological year and if this figure is lower than the new annual demand it maintains supplies until the reduced annual demand is complete The user must use his own discretion in choosing this type of indicator according to the nature of the problem being dealt with Manual del Usuario de SIMGES 34 6 WATER RESOURCES SYSTEM MANAGEMENT To solve the system management problem the program constructs a conservative flow network which it solves by optimization The optimization problem is described in Sections 6 1 and 6 2 The program also carries out an iterative process on the optimization algorithm to solve non lin
95. stem 2 Spring aquifer modeled by superposition of the impaired regime Unlike the previous case this type of aquifer cannot extract water from the river however the natural inflow from this source is included in the series of inflows downstream of the spring It is therefore necessary to limit the simulated extraction to the spring s maximum flow As in the preceding case the model includes a type 3 channel connected to the aquifer model downstream of the natural inflows including that of the aquifer itself The channel s maximum flow must be limited to the value of the water supplied by the spring thus limiting surface water extraction to the maximum value of water supplied from the spring Also to permit the passage of total river flow a type 1 channel will be included with a by pass cost so that it only takes flows that exceed the outflow from the spring Manual del Usuario de SIMGES 18 3 Fully modeled spring aquifer with rainfall recharge data In this case the natural river aquifer discharge is not included in the series of surface inflows downstream of the spring Modeling will include first a stretch of river with infiltration separated from the surface system that receives the monthly rain recharge time series values Secondly a type 3 channel must be included connected to the aquifer with null surface inflows 5 9 5 Aquifer connected to a river modeled by the Eigenvalue method This includes aquifers for whic
96. t Recharge Multicellular Aquifer NAES 1 Uniform recharge 2 a NAES Actions defined by user Manual del Usuario de SIMGES 30 5 9 10 Summary of control parameters for different types of aquifer Aquifer Type Number of Description Parameters Tank 1 1 Stored volume Single cell 2 1 Stored volume 2 Aquifer outflows Spring 2 1 Stored volume 2 Spring outflows Eigenvalue modeling NPC NPC parameters defined by user method Rectangular homogeneous 1 Stored volume connected on one side 2 2 Aquifer outflows from side x L Rectangular homogeneous 1 Stored volume connected on two 4 2 Aquifer outflows from side x L contiguous sides 3 Aquifer outflows from side y D 4 Total outflows from sides x L and y D Three levels 1 Relationship with river 4 2 Outflows through irrigation channels 3 Effective evaporation 4 Month end volumes Multicellular aquifer NANT 3 1 Stored volume 2 Spring outflows at month end hm month 3 Total monthly spring outflows hm month 4 Volume in cell 1 n 3 Volume in cell n Manual del Usuario de SIMGES 31 5 10 Artificial recharges and additional pumping These are simply elements defined to connect possible controlled flows from the surface system to groundwater in the case of artificial recharges and or vice versa additional extraction In both cases they must be defined by supplying the node number of the location in the scheme of the outflow or inflow and the maximum r
97. ted for the calculation of hydroelectric production m Minimum flow passing through turbines use can also be defined for a hydropower plant Since the model works on monthly time steps it is better to give this a null value since it is more than likely that one of the regulation elements of the month will allow this volume to be concentrated into a time that will give the real minimum flow of the plant A minimum reservoir water level for power generation can also be defined for a station at the base of a dam to operate In the case of mean water level in the reservoir in a given month being lower than this minimum power production is halted Like the consumptive demand intakes a hydropower station can have an associated system alarm indicator These indicators described below reduce the monthly target flow to the power plant when the water volume in a given group of reservoirs goes below certain thresholds defined by the user This is a way of restricting outflows for electricity production when water supplies are lower than normal 5 9 Aquifers Aquifers form part of the elements of a system which are connected to the other elements by the actions that they initiate Most of these actions have already been described infiltration from reservoirs and river reaches river aquifer connections deep irrigation zone infiltration and pumping Others will be described later such as artificial recharge and additional extraction At this point
98. tent or volume The data to be entered are initial volume and the aquifer s natural recharge The model used is Va Vn 1 Rn Rue 5 11 Volume at the end of the month Vn is the sum of the initial volume V 7 monthly recharge R and natural recharge Rzz which is included in the form of 12 average monthly recharge figures This aquifer model only permits one basic action which is net recharge basic action n 1 and one control parameter the stored volume control parameter n 1 5 9 2 Single cell aquifer This aquifer is hydraulically connected to the surface system with a drainage coefficient of a As demonstrated by Andreu 1983 the resulting equations are lyse Ra f Vn Vnie Pi e 5 12 Q 0V 0 e Ri 1 5 13 The first equation gives the volume at the end of month V or final volume at the end of the preceding or initial month V 7 drainage coefficient a and the recharge in month Rp The second equation gives the relative river aquifer flow Q according to the flow in the preceding month and other factors explained above The data that will have to be supplied are therefore the values of and V initial volume Manual del Usuario de SIMGES 15 If we assume V 0 and the values of R are only those of the net recharges from irrigation we are are working by superposition so that the values of Q are the changes to natural river flow as this is the way in which SIMGES oper
99. th series of demand data Register 4 ndv items Each item contains the position number of each demand in the physical data file Register 5 ndv items Each item contains the number of the column in the demand data file of the demand corresponding to the position indicated in Register 4 Demand data file The structure of this file is identical to that of the inflow data file except in the case of the first register which must contain DEMANDS The contents consist of the monthly demand series which will be used for simulation instead of the fixed demands defined in the physical data file Manual del Usuario de SIMGES 72 8 RESULTS SIMGES provides results in the form of ASCII files which are described below The model creates a file with the name SIMGES ERR and which is located in the work directory This directory records the dates and times of the start and finish of the simulations carried out Also located in SIMGES ERR are any possible model error warnings which will be described later 8 1 Basic Results files Three files are produced which can be printed or included in a report labell ext label2 ext where label ext is the name of the file declared in the reading and writing data file corresponding to echo data e g ECODAT SAL This file is only created if 1 or 2 is the value of the echo data option in the physical data file The file contains a repeat of the data entered as physical and
100. the section dealing with aquifers Surface supply by a given intake may also be limited by other physical and or management conditions In the case of intakes connected to reservoirs the elevation of the connection is considered as part of the data so that water can only be taken from this intake when the water level in the reservoir is above the level of the intake If it is above this level at the start of the month and below at the end the volume that can be supplied is calculated by Manual del Usuario de SIMGES 12 integration and deducting the remaining reservoir discharges and losses In fact the situation of trying to satisfy multiple objectives from a given reservoir can be solved by iterations carried out in each simulated month Each intake of each of the consumptive demands can be associated with a system alarm indicator These indicators described below involve the reduction of the intake s monthly or annual maximum when the volume of water stored in a certain group of reservoirs falls below a certain threshold as defined by the user This is a way of restricting consumption when water supplies are lower than normal 5 7 Return elements The definition of this element is purely functional since it would have been possible to simply define a node number incorporating surface returns from the different intakes However to reduce running time and memory requirements it was decided to define the return elements and th
101. ts are then defined specifying the aquifers from which they can be supplied and those which can receive returns by seepage Artificial recharge point of origin nodes and additional pumping nodes are then identified Restriction criteria for emergency situations are identified These may be associated with demand intakes or Type channels The definition of the hydraulic scheme is completed by providing the model with the connections between nodes besides the individual data pertaining to each element Manual del Usuario de SIMGES 5 4 BRIEF DESCRIPTION OF INTERNAL OPERATION OF MODEL As has already been mentioned the simulation and management of the surface subsystem are run simultaneously by means of a conservative flow network optimisation algorithm The user scheme as described in the previous section is a flow network but is not conservative since it is not a closed system and there are storage nodes corresponding to reservoirs The first task of the model after reading the data is therefore to modify the scheme to a conservative network This means firstly establishing some closing nodes and then extending pattern elements into a subscheme of arcs and nodes to ensure the correct simulation of hydraulic behaviour and element management This will give the model a much more complex and conservative internal flow network than that designed by the user The simulation model is now active For each monthly period aquifers
102. two concepts should be clarified which will be used extensively throughout this manual for model data inputs these are basic stresses and control parameters A basic stress means an action or series of actions involving the aquifer that may vary in intensity in the course of simulation For example pumping water from a well is a basic stress and the monthly flow of water is the intensity Extracting water from different wells in the same zone is also a basic stress as long as the distribution between the wells of the total water pumped 1s considered to be permanent the intensity of the stress being the total water extracted from the wells in a month Modeling of lumped aquifers can admit only one basic stress which is positive or negative recharge since their location does not matter On the other hand the modeling of distributed aquifers does permit various basic stresses Manual del Usuario de SIMGES 14 Control parameter means any aquifer response that provides information e g the level of a cell total volume the river aquifer relationship Control parameters are used as criteria to define the rules of operation of aquifer management Pumping may be stopped when a given control parameter reaches a threshold value The model admits several conceptual types of aquifer which are described below 5 9 1 Tank aquifer This aquifer is not hydraulically connected to the surface system and the only information of interest is its water con
103. ty number When a reservoir is in the reserve zone for the following months no water can be taken from it For exceptions see Section 6 2 The scheme described is of proven efficacy Hisch et al 1977 Loucks and Sigvaldason 1979 and is flexible enough for the user to be able to assess different surface management strategies and joint groundwater strategies by varying Vos and Vmin 5 6 Consumptive demands These include irrigation and industrial and urban zones that use water in such a way that part of it is consumed and is therefore not returned to the system constituting a loss To define the consumptive demands the monthly demand values for the area must be indicated corresponding to the water that if available would be applied to this use Manual del Usuario de SIMGES 11 To satisfy this monthly demand one or more surface system intakes must be defined The concept of intakes corresponds to different water sources but can also be used to distinguish between priorities of water from the same point or even to supplies from different subzones within the zone considered This flexibility is obtained by defining an annual capacity value for each intake besides the intake node so that if this value is reached this intake is not used again until the next hydrological year Monthly peak values different for each month if desired and priority numbers for each intake must also be defined with a relationship to the priority numbers
104. ual del Usuario de SIMGES 63 Number of basic stress Number of extraction authorisation test 0 always allowed Threshold value of preceding control parameter below which pumping is not authorised Max extraction volume Hm month Node at which it enters system Number of isopriority group that initiates extraction Max supply level for extraction to take place For example if 4 and 0 8 are declared for the two preceding items this means that when surface supply is over 80 of demand in the isopriority group 4 additional extraction will not take place but will be performed if the supply drops below 80 of the demand 7 2 14 ALARM RESTRICTION INDICATOR cards These consist of 5 registers containing Ist Register 1 item Name of indicator 2nd Register 6 items Option of type of rule 1 to 5 Option of type of decision 1 or 2 Number of elements reservoir or inflow included in indicator ne Number of months in the year in which operating rule is calculated only used if value of 2nd item is 3 This value will normally be 1 Value 1 reservoirs or 2 inflows Number of months during which inflows have accumulated 3 Register ne items Identification number of each reservoir under study The following three lines are repeated once for each month required to define the operating rule In options of rules type 1 and 4 they are repeated only once options 2 and 5 always 12 times and for
105. unction the program needs to solve certain non linear conditions such as evaporation in reservoirs seepage aquifer simulation and its relationship with a river returns type 4 and 5 channels and alarm restriction type operating rules In order to solve these non linear problems SIMGES enters the solution of a target function in an iterative process which at each step modifies the limits in the arcs corresponding to the target function to adapt it to the new conditions The iterative process continues until there is little difference between successive solutions or until a certain maximum is reached The conditions given by the alarm restriction elements could greatly affect the results of the system management described in the preceding sections since they can completely change the water allocations For example they may alter the priority system established by the isopriority groups by arbitrarily reducing the supply to a demand or demands regardless of their priority number The use of the alarm restriction elements is explained in Section 5 11 Manual del Usuario de SIMGES 45 7 PREPARATION OF DATA FILES Before using the model the user must prepare six data files as follows l Reading and writing data file 2 Physical and management file 3 Fictitious cost file 4 Inflow file 5 Evaporation file optional 6 Graph data file optional As we shall see later the second of these files is the most important and comple
106. und elements for regulation and storage intake transport consumption use and artificial recharge The model admits any configuration and is limited only by hardware capacity so that it can be used for any type of water resource scheme Simulation is performed on a monthly scale and reproduces water flow through the system with the degree of detail selected by the user Surface subsystem flows are calculated simply by continuity or balance For underground subsystems or aquifers flow can be simulated by single or multicellular models as required or also by distributed linear flow models The system computes evaporation and infiltration losses from reservoirs and riverbeds and the interaction between surface and ground waters Water resource management is carried out with operating rules that tend to maintain similar water levels in reservoirs based on the initial reservoir zoning curves entered by the user Minimum ecological flows and different user priorities can be defined Surface system simulation and management are run simultaneously using a conservative flow network optimisation algorithm which controls system flow while minimising deficits and maximising adaptation to reservoir target volume curves and hydroelectric production Results include monthly or annual evolution of the variables average simulation period variables and reliability This means the model can be used to determine The reliability obtained from different hy
107. utovalores y autofunciones de acu feros relacionados con r os V Asamblea Nacional de Geodesia y Geof sica Madrid Octubre 1983 Sahuquillo A Obtenci n de funciones de influencia sobre los caudales de un r o de los bombeos en un acu fero rectangular homog neo e is tropo conectado con l IV Asamblea Nacional de Geodesia y Geof sica Zaragoza 1981 Sahuquillo A Modelos no lineales Modelos cuasi agregados Manantiales en Utilizaci n conjunta de aguas superficiales y subterr neas ed por M Varela S G O P Madrid 1983 Andreu J Capilla J y Sanch s E AQUATOOL a generalized decision support system for water resources planning and operational management en Journal of Hidrology 1996 Capilla J y Andreu J AQUIVAL A GUI for groundwater modelling incorporated into the simulation of complex water resources systems en 6 International Conference on Hydraulic Engenering Software Penang Malaysia de Por W R Blain
108. x The first third and sixth are quite simple The data for Nos 4 and 5 dealing with evaporation and inflows must be obtained from previous studies It is important to specify the number of decimals used in calculations By default the model works to three decimal places maximum is four decimal places A description of the content of the data files is given below 7 1 Reading and writing data file This has been given the name of DATOS DAT and the model looks for it under this name in the directory from which it is executed It contains the names of other data files besides those used for the results output files It contains the following registers lines in free format with alphanumerics between brackets Ist register Will contain the number of the SIMGES version being used preceded by the letter V and a blank space V 1 30 etc This information allows simulations to be carried out with previous versions of data files that are described in previous editions of this manual and which may therefore not contain certain data described here The description of data files included in this manual is V 2 20 2nd register Name of the file containing the data that define the topology physical characteristics and system management rules Manual del Usuario de SIMGES 46 3rd register 4th register Sth register 6th register 7th register 8th register 9th register 10th register 11th r
109. xtraction 41 6 2 EXPLANATION OF THE SYSTEM MANAGEMENT AS A CONSEQUENCE OF THE TARGET FUNCTION 41 6 3 ESOPREOR TTY CEROS IAS A E a A O aa 44 634 ITERATIVE PROCESS o ihi Gre AAA e A AN e te 44 7 PREPARATION OF DATA FILES cene e eaaa a a a a ele a a ee eles 45 Tel READING AND WRITING DATA FILE eeens oc Sis ote wee ee eee CR eo ee we ss 45 7 2 BASIC DATA FILE A A A A A AS Eee Bg ee fee 47 Tie GRAPH DATA PTE A A Since A a ia 65 7 4 INELOW DATAS FILE ss mi iura a A As 66 TES EVAPORATION DATA FILE A A ia Woe a as 67 TG ETOTETIOQUSCOSTS DATA PELE a A Tasted ae ev E E A E 67 7 7 MODIFICATION BASIC DATA PILE 0 di A A DG a ARS AS Ree dey eels 69 Demanda data Lale a a A A ds a ts 71 8 RESULT Biases en tc ad 72 BL IBAS TC RESULTS ELLE Sa a A E a dE afte 72 8 2 RESULTS FILES ARRANGED FOR SPREADSHEETS o o eee eee eee eee eee 75 8 3 FILE CONTAINING RESULTS LABELLED FOR GRAPHS o o eee eee ee eee eee 84 8 4 BALANCE CALCULATION ELLE css oieri Seve a to GE gees oe OAS Se E SE ae SERS wp Ree a Oe sa 88 9 ERROR MESSAGES seis ccerefeue i ais aia e isla diia ad eer eens 92 10 INSTALLATION OF THE MODEL oo oooooooooooooooooooooooooooo 95 Ll REFERENCES ii a da orev en iS oie 16 LAA ATA EA aa ii 95 Manual del Usuario de SIMGES 1 1 INTRODUCTION SIMGES is a general management simulation model for basins or complex water resources systems that contain surface and undergro
110. y connected to aquifer This type passes through an aquifer with a hydraulic connection between both so that water may seep from the channel to the aquifer or from the aquifer to the channel according to the piezometric levels in the aquifer It will therefore be necessary to define which aquifer is connected to the channel and which aquifer control response control parameters quantifies the flow between both see Section 5 9 These channels are also known as river reach type 3 TR3 Manual del Usuario de SIMGES 8 Channel hydraulically limited by the height difference between its extremes Its definition is basically that of a simple channel TR1 but with the constraint that maximum instantaneous flow is a function of the height difference between the initial and final nodes This type of channel can simulate situations such as that of a channel starting from a reservoir at a certain elevation in such a way that the maximum flow is limited by the elevation of the water surface Apart from the usual inputs for simple channels TR1 the user will have to define the curve relating maximum instantaneous flow with height difference This difference can vary from month to month if there is a reservoir at either end In such a case maximum flow is obtained by integration assuming that height difference varies linearly during the month These channels are also known as type 4 channels TR4 Hydraulic connections between nodes and or rese
111. zon 87 N 12 to 98 Nx12 from 99 Nx12 to 110 Nx12 from 111 Nx12 to 122 Nx12 from 123 Nx12 to 1344 Nx12 and from 135 Nx12 to 146 Nx12 Registers Contain mean supplies through intakes 1 2 3 4 and 5 respectively of the demand zone 147 Nx12 th to 158 Nx12 th Registers Contain the mean monthly values of pumping carried out in the demand zone SUMINIST PRN Contains the results of supplies to the consumptive demands selected to appear in this file and has the following structure 1st and 2nd Registers These are similar to those in EMBALSE PRN 3rd to 2 Nx12 th Registers Contain the values of the monthly supplies recorded throughout the simulation CENTRALS PRN Contains the results of supplies to the non consumptive demands selected to appear in this file and has the following structure 1st and 2nd Registers These are similar to those in EMBALSE PRN 3rd Register Contains the declared maximum flow value Ath to 15th Registers Contain the declared monthly target flow values 16th to 15 Nx12 th Registers Contain the flow values used by hydropower plants during the simulation period 16 Nx12 th to 27 Nx12 th Registers Contain mean monthly flow values of the water used by hydropower plants 12 values Manual del Usuario de SIMGES 80 CENTPROD PRN Contains the non consumptive demand hydroelectric production results selected to appear in this file The structure is similar t

Download Pdf Manuals

image

Related Search

Related Contents

EW-7438APn Guia de instalação rápida  brpi rennes - Stéphane DREAN Sport  Sony KDE-50XS955, KDE-37XS955, KDE-42XS955 Flat Panel Television User Manual  Data Sheet DB EN IB IL 24 DO 4  SP-250™ → - Allied Time  VueLink for SharePoint User Manual  cephascreen® 10 - annar diagnóstica  FN1050D/FN1054S取扱説明書【PDF472KB】  Bedienungsanleitung  TP-Link TL-SF1005D V10 Quick Installation Guide  

Copyright © All rights reserved.
DMCA: DMCA_mwitty#outlook.com.