Home
T2 144154 T2C 136154 T2C 144144C,144S Owner / Service Manual
Contents
1. 1409915 404550247 491174 ISON 25 0 u 442q 21 oN 5 0445 aqnyeseq aUL WLIJIS 1092 AJ1aW036 9 qe lue utd 30201 1129 Huey AQ paundas 10041 4109 1993 dason SULMAPLS 01104 49455042 94 LSOduo uoquey 10044 1952044 4 455042 40935917 A 7 SS 2 3 081d3084 Bouds 15914046 491184 Z ON 9002 T 002 1 01 ured L 490 966 6060 0668 PLZ 59826 VI JAY 390143N74 005 248 SNLVIS 01351 3 OT LNSWN900 01 3 0015 7 ra WOE 1553 2 OINEAN STEAN NOIST AJY NMOG 3903M dVULS ET AG 19 5 1676 NV ALS OTT d0 102 06 005 44 90 dOL JAVIHS 21 402 401 X 0 PE H 1814 Mod 14 30 d ulg JEGX ES ER NId NOISN4 411 u E ER Ea ES ALISOdWOD NId 39 0907 30 v cvOTcSW 7 LAN YLNI 108 ILV Id 79 202 401 31 14 89 1 202 91
2. 20 Preflight Procedure Along the left leading edge Carefully check the entire length of the leading edge pocket to insure that the Mylar insert is laying flat in the pocket If any section of the Mylar is folded under de tension the crossbar remove the bat ten closest to the area of distortion and unfold the Mylar Failure to correct folded under or severely creased Mylar will cause severe alteration of the flight characteristics of the glider which may lead to dangerous loss of control Open inboard sprog access zipper and look inside making sure that the bottom side wire 15 erly secured to the crossbar that the thimble is not cocked on the tang and that the nuts securing the side wires and the sprog wire are tightened and secure Remember to close the access zipper While pushing up on the leading edge between the nose and the crossbar junction step on the bottom side wire with about 50 lbs of force This is a rough field test of structural security of the side wire loop the control bar and the crossbar and may reveal a major structural defect that could cause an in flight structural failure or loss of control At the left wingtip Check that the tip wand lever access zipper is closed Along the trailing edge left wing Check that there are no tears in the sail material along the trailing edge Check that all battens are properly secured Check that the sprogs are properly secure
3. 1104 UL 112 8 5192944 401 508 UL 114 55944 qu uews d S3JON ALquassy 002 10 9 9 1026 0071 9998 NWLSNOY A3TINd 40 G S9ENY 91 9 LNNXJOT WWRYLS 401 LY 0813 2141 902 19 8487 X 26 8 Nyd TS9T HOT 55 TIYNS INIA 19372492 2081 202 0727 X 820 X 2167 SS ZYTOZSW 91 6 1N 179 4149 WWEE X v T 01 TIV 877 X 0267 X 099 832448 015 101 8217 X 8207 X 2167 SS HSN 116 101 020 X 9167 X SZ NOTAN SZIS NOT Y ZYOTZSW v T LAN HONITO OPLT NOT TIYNS 1676 NY NI 13446 0011 401 1 401571 9817 01 216 00 57 0 21 402 058 x 8207 x 51167 SS hsna 0219 101 WVINLSAITS 3015 01108 YIM 01 40 0 7 X 8207 X 092 830448 EOTT LOT 38154115 UVI 801108 135 206 407 38154115 1084 101108 135 381 6026 400 1464 ON med 223 R EG R e EN 22 2 2 2 SNIVIS 0345148 01 LNAWNOOG 01 3 0015 VI 15
4. 82 902 15 lt 21 782 902 2607 X 592 X 87 118130 1 9 8 0 319829 084 0800 101 6 79 91 6 084 261 X OTZ X 0297 XIHSYM OTTS NOT 2 IG IQ NOSUW3d 60 90 6002 10 60 5002 91614950 211 499866 69 9 866 v1 Z 59806 3801831118 005 AG SNLVIS G9SIA3Y NMYYG QI IN3NNIOA 01 3 0015 GINA FAR NOTSIASY TUIL SS 2680 OYdMOT LNNX907 0221 101 102 867 X 26 8 Nyd 1691 01 1 32018933 2 72018819 1104 1621 402 0 1817 X 0267 098 I 018 101 NIHL b T 9Tb 096NV 13315 YIHSYM 911 001 201 NLNG M ASSY NOTYL 317143509 791 202 002 1YSHIMI 8691 2021 zz ASSY 8062 902 s 5 9 25 JUNOW LES 9500 8 209 SVN 1109 0802 0017 417 8207 6270 492646 Bulqny 01131102 UL pasn 1994 40 10041 UO 15 911 4 IND 4 67 X 26 8 MAYIS TS9T NOT UMOUS JON Ev 2224 12 Y ZYOTZSW b 179 0941 101 EA 99 4894 21 11 4 21 433 5 YVEX 3 0 27 407 950 044 01 401102 lt 062 902 1 24 0 8 6 10
5. 192 902 69 JEIY 25 09 10923594 11 1 041 0927 X 820 X 2 101 EN 14044 24 09 Jaonpay 10905942 01 1 1 221 91 096 13 ve 09 09 1391 34925940 20 1 041 05 09 1491 24 7 Jaonpay 1 389 2 10 1 61 890 31328 044 MOT LN 22 21 UROUS AON 5319 XXX 110151448 9002 1 8 0351133 2 4159111 ZN 01 340015 7002 82 Nu 190 866 69 9 866 PLZ 4 89826 9 JAY 3901 3 18 008 SALVIS 3100 5 WHZS 133 13 9191 5902 ee V9Z SNY 192 V0 26 02 7 295 1028 201 9998 NVLSNOY 131104 102 902 06 T b Z1SSVN 1102 001 X 26 8 Nyd 28 1891 101 X 095 AN 439 46 6018 101 X 0827 Tw 832 45 6011 101 X 81167 SS 5 8 021 101 9217 8207 X 2167 SS 119 101 0927 8207 2167 SS 8 6119 101 144016 1 9817 01 2167 00 87 9 0121 402 12 SS TIWNS 1024 2081 20 02 TIVAS 1696 1335 0011 401 154116 YVIY WOLLOG 135 381 20 40 3 154115 11084 WOLLOG 136 IVIM 028 40 2bTOZSM 91 6 LAN H OSLT NOT G S9ENV 91 9 LN 8154115 3015 01108 SOTE dor WEE X p T 3201 1148 NId 16 301 Kore szts
6. WLLS WING T2 144 154 T2C 136 154 T2C 144 144 1445 Owner Service Manual February 2015 Sixth Edition WIILLSWING T2 144 154 T2C 136 154 T2C 144 144 1445 Owner Service Manual February 2015 Sixth Edition Copyright O 1994 2015 by Sport Kites Inc dba Wills Wing Inc All rights reserved No part of this manual may be reproduced in any form without the express written permission of Sport Kites Inc dba Wills Wing Inc 500 West Blueridge Ave Orange CA 92865 Phone 714 998 6359 FAX 714 998 0647 Web address http www willswing com E mail steve willswing com Introduction Thank you for purchasing Wills Wing glider and welcome to the world wide family of Wills Wing pilots We are company of pilots and aviation enthusiasts and our goal is to serve your flying needs now and in the future as we have done for pilots throughout the world since 1973 We encourage you to read this manual thoroughly for information on the proper use and maintenance of your Wills Wing glider If at any time you have questions about your glider or about any aspect of hang gliding that your Wills Wing dealer cannot answer please feel free to give us a call Because there is no regulation that requires the registration of hang gliders Wills Wing has no way to maintain an accurate contact list of the owners of the hang gliders we manufacture As a result Wills Wing has no reliable way to contact owners directly about s
7. Reliance on the ASI for limiting airspeeds in high banked sustained spiral maneuvers will likely cause you to exceed the placarded speed limitations of the glider and will compromise your safety b Itis only accurate when within 15 20 degrees of the vertical orientation Using the VG System The T2 uses a conventional VG system whereby a reduction system of pulleys and cords is used to vary the longitudinal position of the crossbar center along the keel and thus increase and decrease the nose angle of the airframe changing the tension and twist in the sail Tightening the VG increases the spanwise tension which the airframe places on the sail reducing the spanwise twist and the sail elasticity The result is an increase in L D performance and a reduction in roll control authority and roll control response The VG is activated by pulling laterally on the VG rope and then moving the rope to set the rope in the V cut knife cleat The recommended procedure for increasing VG tension is to grasp the rope firmly at the cleat and pull straight across the basetube VG full loose is for maximizing roll control authority and roll rate Due to the slower trim and in creased pitch pressures at VG full loose you may find that total effective control is actually improved in some conditions at slightly tighter settings up to VG 1 4 VG settings between VG loose and VG 1 3 are recommended for working lift when any significant degree of turbulence is pre
8. and then rotate the tip downwards until it locks into place You should hear a click at this point and the tip should be securely held in the locked position Note A tip with a failed catch will still click when you rotate the lever downwards into position but depending on the degree of failure of the catch it may not support an upward load on the trailing edge sufficient to keep the tip locked in position NOTE The root battens the ones you installed onto the keel studs at the beginning of the set up process on the T2 extend all the way to the trailing edge and are also fitted with lever tips Don t forget to engage these into the trailing edge hem at this time 18 13 The next step is to deploy the sprogs and secure them in position Before doing so working through the sprog access zippers preflight the following items The remaining internal ribs to confirm that they are fully zipped up b The sprog hardware including the leading edge sprog brackets the attachment of the sprogs to these brackets and the sprog cable attachments at both ends of each sprog cable The rear leading edge sail attachment tip wand installation d The leading edge crossbar junction hardware including the bolt and nut that secures the bottom side wire and inboard sprog wire to the crossbar and the bolts and nuts that attach the inboard sprog and crossbar to the leading edge Also preflight the rear leading edge front le
9. off run your body should be leaning forward into the run and you should be driving with your legs The difference here is that while you are leaning into your run and driving forward with your legs your arms are extending fully from your shoulders pushing out and what feels like upwards on the control bar in an accelerating crescendo flare Done correctly this type of flare run combination will bring the glider quickly to a very nose high attitude producing a great deal of drag and quickly arresting all of your forward motion You will feel the glider pulling you from behind resisting your attempt to run and as you slow down the glider will settle gently on your shoulders Even in no wind you should not have to take more than a few steps If your timing is a little early and you feel the glider start to climb simply stop pushing out and resume the flare when the glider again begins to settle If your timing is a little late your feet will touch down a little sooner but as long as you re running and flaring at the same time the glider will stay over your head or behind you Note Pilots who have trouble with the flare and with the glider nosing over during landing usually do so because of one of the following problems a Harness leg straps too long hanging too low below the glider and or hands too low on the control bar This reduces pitch authority and prevents an adequate flare b Improper body position pilot
10. 1 SINAN SITE JILL NO Ba 80001121 315 11 5 21 290 866 629 886 vl Z 59806 0 39014IN78 008 51348 ON 15415 38113 ONIY 13 1817 0467 X 099 X 8007 X 216 SS H X 8007 X 216 SS H 119 4 67 X 26 58 NVd 55 TIWWS 193 9T LAN H 1 25 o o N 4149 X v T 2201 TIVE 0587 X 820 X 98116 SS HSNg NYIULSdITS 4015 1401108 NYIYLSdITS 11084 WOLLOYG 145 341 34154115 WOLLOd 135 Jul 0 X 0267 X 0957 NOTAN UIHSV 8197 X 820 X 094 TIVNS 1676 NV Als 222 r Ta z A 122 pet 144015 1 981 01 216 00 8 14 51 9 1348 9411 11 51 9 1348 9411 331 109 931 1154 101109 931 WYLSA 491 doj gwueauqsdi N 7 2701454 v T LAN H 1102 201 060 1926 01 0207 X 9167 X 827 NOTA 8414 0101 NVIYLS 401 IV MOS 2141 9802 310075 41 2 13340 9191 9042 vel 21 51348 0 49 931 UVI 691 907 VST 21 51348 0 89 931 UVI 971 907 ON 1484 1 lt ri ri gt N lt
11. 11 12 13 15 16 17 18 Mount the sail at the rear of the leading edge see the section on re installing the rear leading edges after shipping at the beginning of this manual Working through the inboard sprog access zippers insert the bottom side wires into the sail through the side wire hole in the bottom surface and attach to the crossbar making sure that no cable is wrapped around a leading edge or crossbar and that no thimbles are cocked or twisted Bolt the bottom rear wires and keel pocket webbing strap to the rear of the keel Flip the glider up onto the control bar Spread the wings If you have not previously mounted the front of the sail work slowly and carefully making sure that the sail rides forward as necessary at the nose without catching Be careful you can easily tear the sail open at the nose at this point Feed the sweep wire through the keel pocket Finish the assembly of the glider completely according to normal assembly procedures Do very careful and complete preflight of the glider according to the normal preflight procedure as explained earlier in this manual During hang check with the pilot pushed out full the backup loop should have minimum of 2 inches and not more than 3 inches of slack 54 Glider Tuning CG adjustment This has already been covered in the section of this manual on using your wing tufts Wills Wing rec ommends that tuning other than
12. 45 50 44 Dar ger Vi 50 60 50 SEK Durger 1 IT eo Pilot OG Position Aerotowing The T2 aerotows fairly easily compared to other gliders in its performance class We recommend that the VG be set to 50 prior to launch This reduces pitch pressures slows the roll response of the glider and provides the best qualitative flight characteristics for flying in formation with the tug at normal aerotow speeds The control bar on the 2 is taller than on most other gliders Ground launch carts designed for the average glider will when used with the T2 usually put the glider at a higher angle of attack on the cart than is optimum If possible it is best to adjust the keel cradle on the cart to re set the glider to the proper angle of attack If it is not possible to re adjust the cart recognize the launch will be more demanding and more dangerous as the glider will have an increased tendency to leave the cart at a lower speed where lateral control is reduced and the tendency to come off the cart with one wing low is increased To some degree this can be compensated for by pulling forward through the control bar to position the basetube below your shoulders and holding tight to the hold down rope This will cause the glider to raise the keel as it begins to develop enough lift to lift out of the cart At that point and not before that point you can release the rope and ease your weight af
13. 6 OMAMOT OETT NOT 8 pals 2 ueqx seoc est v 146044 21 e 91 18 SYN 1108 1911 2001 2 uo e d 91090 ztor 90z 1 2 R Ea 2 KM ot ME pr 00 906002 1060 5002 990 1590 66 1689 86601 59825 12 JONVHO 38013018 005 151715 035 NMYYG 01 INSWNIOA 101 3 0015 q 55 weeg 1894 ZL 20 NOISTAIY ALO 139 1252 ON 1484 50101 2941 91092 484 210 90 9T LZTS SYN 1108 911 201 2 pals 10044 21 484 peoe Cst Y9ENV 91 6 0 4 01 LANNDOT OETT NOT v 2 6 lt 495 27 201 4 YLND 401 31 14 89 1 202 9 YLND 1109 ILV Id YVEX 797 1 202 4 9 v LTSSV 902 90 8 v cvOTcSW 7 LAN OVZT NO 6 2 YVEX 11504 02 NId 3DNIH 0907 30 0 NId 4112 21 0111 50 2 adh Uld 3BULH ueqx Jadung 9606 0198 2 2 401 P E X 0 1014 MIJOS 0114 30 2 9A 931 401 JAVI
14. This is the normal thermalling speed range for There are four color coded bands on the ASI light to moderate thermalling conditions Try to keep your speed within this range when thermalling in light to moderate conditions Very strong or turbulent conditions will warrant a faster flying speed Green The top of green region represents placarded maximum rough air and maximum ma neuvering speeds This speed 46 m p h should not be exceeded except in smooth air and no abrupt large control inputs should be used above this speed In significant turbulence it is recommended that you keep the airspeed in the green for best control and stability and best structural margin at all times Yellow This region represents the upper speed range between maximum rough air maximum maneuvering speed and the speed never to exceed You should fly in this range only in smooth air as described above Red Line This is your never to exceed speed At no time should you fly faster than this speed 30 The design of the Hall type airspeed indicator involves using ram air versus static pressure differen tial to raise a disc in a tapered tube against the force of weight of the disc Because of this ASI has certain operating limitations Itis only accurate in one G flight If you are turning at a bank angle of more than 30 degrees the ASI will read artificially low as a result of the G loading of the turn
15. any items on the glider which require it Safety requires that your glider be fully airwor thy for every flight Nuts and bolts must always be secure safeties must always be in place and damage to any part which could compromise the airworthiness of the glider cannot be tolerated If you have a question about the need to repair or replace some part of your glider feel free to contact your dealer or Wills Wing directly It is not always obvious which items require attention and which may not Minor dents or dings in a non critical location on an airframe tube may not require any repair or maintenance On the other hand a wire that has been kinked one time can fail very quickly after that and should be re placed immediately A control bar corner fitting that has had a significant landing impact may have a crack that is almost undetectable but which could cause the part to fail catastrophically at a later time We recommend that you have all maintenance work done by your Wills Wing dealer Every Six Months 1 Check the adjustment of your sprogs as described in the last section 2 Check your battens on a flat level floor against the batten diagram provided and correct any that deviate from the pattern by more than 1 4 3 Ifyou fly in a dusty or sandy environment it will help to prolong the life of your batten pockets if you wipe each batten with a rag before you install it in the sail 4 Have acomplete inspection performed on the gli
16. can be induced to spin at any VG setting At VG settings of less than 50 VG middle or looser the T2 is moderately resistant to spinning and has spin and spin recovery characteristics that are typical for other Wills Wing high performance flex wing gliders At VG settings greater than 50 VGM to VG full tight the T2 becomes progressively and rapidly more susceptible to spinning and the spin characteristics and spin recovery characteristics become markedly more extreme In the most ex treme case spin entry at VG full tight initiated by rapid pitch up to significantly nose high attitude the spin response will be very sudden and abrupt spin with very high rotation rate and ten dency towards very nose down attitude Any spin and or the recovery from the spin involves signifi cant possibility of a total loss of control of the glider including in flight inversion and possible structural failure The probability of this result increases with the abruptness of the spin entry the abruptness of the spin recovery and the percentage of VG that is on when the spin is performed Recovery from a spin requires unstalling of the wing and it is therefore critically important that in the event of a spin no application of nose up pitch control be held The T2 will tend to recover from a spin once control pressures are relaxed To recover from a spin move to the center of the control bar and gen tly pull in to position the ba
17. end brackets Flip the glider upright on the control bar Try to set the basetube on level ground Remove the glider bag and all the Velcro sail ties Do not remove the leading edge tip protector bags at this time Install the root battens onto the studs on top the keel at this time Spread the wings almost all the way you spread the wings and before you make any attempt to tension the crossbar verify that the bottom side wires are not wrapped around or tangled in the inboard sprog 10 6 Remove the battens from the batten bag and check each batten for symmetry against the corresponding batten from the other wing Align the battens at the nose and at about the 60 chord point as shown There should not be any deviation of more than 1 8 from one to the other along the full length of the battens 1 Wills Wing convention is that black tipped battens go in the right wing and white tipped battens in the left Battens are numbered from the tip inwards and the shortest top surface cambered batten in T2 is designated as the 2 batten Working from the root out install the three longest cambered top surface battens in the sail Do not engage the tips in the trailing edge at this time Insert the battens carefully so as to minimize stress and wear on the sail Never insert or remove the inboard most top surface battens with the crossbar tensioned and never insert or remove battens with heavy wind pressur
18. not VIYLS 401 LY 21 1 902 7 2701254 ovct Not 0 89 931 11 192 909 0 59 931 LIT tzrt 90 315415 0 TIST 40r N 119 8267 181 X 0467 0117 X 820 0587 X 820 oO 0 N N VST 21 8 1 45 091 ZN SL SST 25 77 7 41 801 ZN 51 1497 12 14B1Y 194024G 4049504 2491 108 01108 1191 do 09 1159111 bn 145 111 8014 82 8871 9302 6871 9024 415 111 6114 99 8 71 902 14613 401 1222 12 09 1159111 6114 99 6 71 902 SF TONY NOSYUVAd 2 900 9 7002 82 2 415 111 ZN XXX AG SNIVIS 036139 01 3 0015 SAT LT 161433 20 Luvd 190 866 69 9 866 vLZ XYdlHd 99876 9 JAY 01 3118 008 nid 1104 UL 5941 YY Y4 401 AL quiasse 114 1115 9 SJ oRdS pue OA 511 4094 01 JUOJJ WOJ4 1 7112 34619 401 SL BuLysng 40 apis 10044
19. the internal Velcro attachments of the top surface to the bottom surface which define the airfoil The setting of the tip wands Correct attachment and proper adjustment of the sprogs are critical to providing adequate stability at low angles of attack particularly those below the normal operating range T2 and T2C Sprog Adjustment and Flight Testing The T2 and T2C use two internal sprogs per side in combination with one transverse batten on each sprog Each transverse batten spans two top surface battens so a total of eight top surface battens are supported The sprog system is the primary components of the system which provides pitch stability The function of the system is to support the trailing edge of the sail at low angles of attack and thus provide a nose up pitching moment The sprogs are adjusted at the factory to their proper settings Note that we use a very precise method of setting and checking the sprogs at the factory and you should not readjust the sprogs unless you have some specific reason for doing so We describe below a method for checking the sprog settings however no such method performed outside of the factory can hope to be as precise or accurate as the factory adjustment and many factors can lead to an inaccurate measurement or setting Flight Testing Note that in the end in order to be airworthy the glider must meet two separate criteria for pitch stability as specified in the HGMA Airworthiness Standards On
20. the lever tip down into its locked position This is the point at which chordwise slackness begins to be pulled out of the sail the high point of the batten begins to make a prominent ridge in the top surface and a noticeable increase in resistance is felt in pivoting the tip downwards On any battens inboard of the crossbar junction this point should not come until the lever tip is within no more than the last 20 to 30 degrees of travel before becoming straight On battens outboard of the crossbar junction this point should come when the lever is between 30 and 40 degrees of straight To lengthen the batten simply unscrew the batten tip shank from the batten to shorten the batten screw the tip further in Each three turns changes the length of the batten by 1 8 of an inch 56 5 10 90 d rd kn 1 90 866 I 69 9 866 PLZ XV4 Hd 09806 39 0 JAY 390141018 006 AG SNLVLS 0351 3 4 01 1940200 01 4 0015 Jaysnfpy JUNOW LES 21 NOISIA3Y I VIL 57 2 and 2008 2 Turn Trim Car Top Mounting and Transport Improper or careless transport of your glider can cause significant damage You should transport your glider on a rack that has at least three support points that span at least 13 of the length of the glider These should be well padded and at least four inches wide to distribute the lo
21. the pitch well is very defined and the pitch force increases quickly as you pull in from trim speed At tighter VG settings the pitch well becomes more shallow and the pitch force in creases much less as you pull in from trim speed At VG full tight the pitch pressures when pulled all way forward may be as light as 2 165 per hand Overall pitch trim is affected by several factors Among the most significant is the location along the keel of your hang point commonly if mistakenly referred to as your CG location The farther forward your hang point is the faster the glider will trim the less effort will be required to fly fast and the more effort will be required to fly slow If the glider s trim is too slow it will make the glider more difficult to control in roll especially in turbulent air and when the nose pitches up on entering a strong thermal For this reason you may well find that it is easier to thermal with the VG set between 1 4 and 1 2 as this will speed up the trim and make the glider less subject to pitching up in thermal gusts On the T2 hang loop fore and aft position is adjusted by repositioning the elevated hang bracket on the keel The bracket is secured by a bolt a through the keel On early model T2 s there are three holes in the keel and two holes in the bracket to allow six positions in increments of 1 2 over a range of 2 1 2 of adjustment On later models there is one hole in the bra
22. the transverse battens in the sail Feed the cord sewn to the end of the transverse batten pocket through the hole in the transverse batten and tie knot to retain the batten in the pocket Position the sail on the floor with the keel pocket up and the wings folded over so that the leading edges lie along the length of the root line with the Mylar pockets lying on top The frame is most easily inserted without the rear leading edges installed and without the inboard sprogs attached Position the frame with the bottom of the noseplate facing up and with the rear end of the leading edges at the nose of the sail Slide the frame into the sail through the open bottom surface zipper making sure that the leading edges of the frame pass properly into the leading edge pockets of the sail and don t get caught at the rear of the bottom surface near the root As you feed the frame slowly into the sail check periodically to see that none of the hardware is snagging on the sail or internal sail ribs Be sure to guide the keel through the keel pocket as you insert the frame into the sail Reconnect the bottom surface center zipper at the nose zip part way up and install a new securing zip tie at the nose Install the rear leading edges and inboard sprogs see the section on re installing the rear leading edges after shipping at the beginning of this manual Mount the sail at the front of the leading edges if you are able to 53 10
23. 127 6 2 Rear sail attachment point 186 5 12 191 5 120 b Outside diameter at 1 Nose 2 44 2 Crossbar 2 44 3 Rear sail attachment point 1 97 T2 2 05 T2C 3 Crossbar Dimensions a Overall pin to pin length from hole at leading edge bracket attachment to center of load bearing in at center plate 116 1 b Largest outside dimension 3425 4 Keel dimensions least and greatest allowable distances whether variable through tuning or through in flight variable geometry from the line joining the leading edge nose bolts to a The center of the xbar load bearing pin at the center plate 31 75 36 25 stop installed 37 88 stop removed b The pilot hang loop 49 75 51 25 5 Sail Dimensions a Chord lengths at 1 3 ft outboard of centerline 65 2 3 ft inboard of tip A5 b Span extreme tip to tip 389 5 VGT raked tips 394 6 VGT with raked tips 6 Location of Information Placard Location of Test Fly Sticker Keel 7 Recommended Pilot Weight Range 160 235 8 Recommended Pilot Proficiency USHGA Advanced HGMA AIRWORTHINESS STANDARDS T2C 144C COMPLIANCE VERIFICATION SPECIFICATION SHEET GLIDER MODEL T2C 144 MANUFACTURED BY Wills Wing Inc All dimensions in inches weights in pounds NOTE These specifications are intended only as a guideline for determining whether a given glider is a certifled model and whether it is in t
24. 15 310 ONVL 10264 102 41511 415415 3 4 WLY 135 3 20 lt lt 407 SZE X 91 6 99 0 st aabung 4800116 suLeley 9 627 1909 201 32 81 9 1108 21 Eg v 2v01ZSW LAN OFZT NO 11084 WAZ OL WW2S 332003 cv0e CST 4 20 3 0906 0481 UVIY OL WW2S 3320039 TYOE PST 10114041425 ON 1484 Ne 9002 T S002 T S Asse 0448 ALI 90 86 69 9 866 v12 99806 0 JAY 38013018 008 1501715 035 NMYYG OI IN3NNIOA 01 3 0015 21 Assy IN BAR 551 PAR NOISIA3 ITIL OGZ 0E 0057 lt 190 HST 21 13467068 521796 190 21 6 2 6IXT 2 91492 491100 102 21 4002 1 8 BY0 ILANZG MOT 118001 0700 0 vt 9 X 9 W 9960 301 61 200054 v T LAN OpZT NOT 21 VET TZNY 072 X 820 X 2167 SS HSN 1 ZbTOZSN 91 6 LON HONIT oeno ro el ES gsnfpy 30 Force 461114 36UlH 3104 60 95 8772 902 SSa ULPIS 3204 60 95 172 902 6 04 021 Assy 9 29 JONI 9044 31 130 99 2892
25. 902 29 JONIH 9044 31 130 99 1992 902 pueogur pueocana pueodanp uordtuoseg om uea 90068760 002 9 JP 6 6060 466 01 XVdIHd 89826 VI 0 38083118 006 AG SNLVIS 01351 3 8 11 GI IN3NNIOA 01 3 0015 3 Kiquassy puen 411 EIN PAR NOTSIASY FUL 8315020 TIVS aUWovidf 6107 9021 TIVNS 1606 NY 13446 001 4010 a 261 X OTZ X 029 W3HSVM 0118 001 08 680125 91 6 LNNXJOT 119 9 67 X 26 8 NYd MINIS 9 88 8 6 1015 2 I 52172 X 80617 X 2 6006 HSNE 291025 91 6 INN osz 491 095 891 00 911 504 9 2510 020 lt 5 a 981da00y puer 021 lt 902 203 4 29 puem deopug 010 lt 6 054 34 10 50 9002 60 90 6002 31 8 21 90 866 8929886 11 XVildd 59806 2 39 0 JAY 006 AG SNLVIS 01351 33 01 1 341200 01 3 0015 7 1 p 90dWHJ SLE X 91 6 TY LIANG 9960 401 90 X SLE X 0071 NOTAN MIHSVM 9915 07 38154115 3015 01108 IVIN 801 407 TIVNS 1696 NY 1335 0011 401 04 091 91 4 GMS YINAIY 11335442 vOLT CS 04 09 LHOIY 149 4910394 10395399 6071 28 090 X 292 X 2187 HSYM 805 001 JJ 31 3 8
26. CG adjustment be performed by your Wills Wing dealer Turn trim Turns are caused by an asymmetry in the glider If you have a turn first try to make the glider sym metrical in every way If a turn only appears at VG settings of 3 4 to full tight it may be an indication that the sprogs are set asymmetrically See the section below on tip wand receptacles Airframe Check the leading edges for possible bent tubes Check that the keel is not bent to one side Check for symmetrical twist in the leading edges by checking for symmetry in the alignment of tip wand receptacles Battens Check the battens for symmetrical shape Tip Wand Receptacles checking rotational alignment The plastic plug that fits directly into the rear leading edge determines the rotational alignment of the tip wand This plug is secured against rotation by a small screw in the end of the leading edge There are five holes in the plastic cap allowing for two notches of rotational adjustment on either side of the normal center hole A label on the rear leading edge shows the range of adjustment and how the glider is adjusted at the present time and shows which direction to adjust the cap to correct a turn Sail tension Check for symmetrical sail tension on the leading edges In order to check this sight the hem of the sail at the bottom of the leading edge tube relative to the noseplate on each side On T2s produced before June 2006 leading edge sail tension is
27. HS 1104 408 v 26 466045 0122 90 4 TIVWS 1676 NY ALI4VS 0011 40 9 NMOG 3903M INOY4 dVULS YVEX HIET NG 4 4315 21 3903M 0 8 9T E LAN 113 O ZT NO 6 5 100 YVAN 21 dVYLS 4904M YVEX 2461 3480 02 9 9000 VOODOO MOE AG SNALVIS 0351 3 QI 1 340200 01 3 0015 40394159 DA 21 2 STE NOISIA3Y ITIL 2101 941 10 402 919 1 0404 SL YOLUM OT T 9641 51214154 0015 PST ZL 2101 941 10 62 919 1 0444 SL YOLUM 9T TI T 9941 4994 51214154 0015 ZL J 11130 91 6 OYdMOT 10 3201 0611 501 ez 261 X 012 X 029 M3HSVM 0118 001 tze NOSUW3d 60 90 6002 10 60 9002 1994 49199 L 490 966 8869 888 0 1 59806 VO 9 0 18 008 SNLVIS 01351 3 QI IN3NNIOA 01 3 0015 55 25153 GAR NOIST AJY TULL 7 904 2 SLE X 9 TV 13 13 9980 3401 21 8 8 83093848 722 902 LNI 5467 X 26 8 Nyd M3UIS LS9L KOT 22019814 WOT AITING 621 402 590 X 6071 X 8471 814130 YIHSYM 9 01 N3LSAS NVH 21 310045
28. ably you should transition both hands while at altitude before you start your approach Otherwise if you fail to make a quick transition you could be out of control close to the ground and suffer a turbulence in duced change in heading or attitude without sufficient time to recover Many pilots make the mistake of trying to change position while flying fast and close to the ground and experience a dangerous loss of control as a result A third principle to observe is that if you are using a pod type harness you should unzip and confirm that your legs are free to exit the harness at least 500 feet above the ground and before you start your approach If there is any problem finding the zipper pull or dealing with a stuck zipper you don t want to have to try to fix that problem while also flying the approach Once established on a wings level short final into the wind body semi upright and with both hands on the downtubes your final concern is the timing and execution of the landing flare The goal is to arrive on the ground on your feet under control with the glider settling on your shoulders If the wind is 15 mph or more you will not really execute a flare at all you will simply slow to minimum flying 2385 speed put foot down and step onto the ground In lighter winds you will want to use some combi nation of a final nose up flare and running out your landing in order to finish the flight on your feet with the glider set
29. ad Your glider should be securely tied down with webbing straps which are at least 1 2 wide but not tied so tightly or with such small diameter rope that the Mylar insert is permanently deformed If you drive on rough roads where the glider receives impact loads you should take extra care to pad your glider internally when you pack it up 58 In Closing Few Final Words on Your Safety With proper care and maintenance your glider will retain a high level of airworthiness for some years Because of the relatively short history of hang gliding and the rapid advances in new designs we do not have lot of information about the ultimate service life of hang glider We do know that ultraviolet UV damage to the sail from sunlight is probably the limiting factor in the life of your sail Try to avoid expos ing your sail to sunlight any time you are not actually flying it We also know that there are forces in nature that can be so violent that they can result in fatal accidents regardless of airworthiness of your aircraft Ultimately your safety is your responsibility Know the limitations of your knowledge skill and experience and know the limitations of your aircraft Fly within those limitations Analysis of accidents across the whole spectrum of aviation shows that most accidents are caused by avoidable errors in pilot decision making The quality of your decisions as a pilot is the single most important determinin
30. ading edge junction at this time To deploy and secure each sprog swing the sprog away from the leading edge and align it in the center of the rear end of the sprog access zipper such that the rear end sprog paddle lies below both the transverse batten and the short piece of webbing in the sail Fully close the sprog access zipper and this will secure the sprog in the proper position underneath the transverse batten and 201055 capture it in position with the webbing 14 Attach the bottom front wires to the bottom of the noseplate Install the keyhole tang over the collared bolt by pulling down on the nose of the glider while pressing the tang upwards over the collared bolt Remember it is the pulling down of the glider s nose rather than upward pressure on the tang that allows you to install the tang over the bolt After installing the keyhole tang verify that it has been secured in position by the button lock make sure that the button pops up in front of the tang to lock the tang in position after the tang is fully seated on the collar Note that on the T2 there is not as much tension in the bottom wires to keep the keyhole tang engaged as there would be on a glider with top rigging Because of the lack of a kingpost and top rigging on the T2 design tethering the glider by the nose such as is sometimes done after setup and while waiting to fly creates the potential for overloading the keel tube of the glider which could r
31. adjust the sprogs set up the glider fully as if you were intending to fly it and set the VG to full tight Note the 2 and T2C are equipped with VG stop on the keel that limits the rearward travel of the crossbar center beam and sets the upper limit on the VG tight adjustment On the T2C models this stop can be re moved for added VG range Use caution at any time you are operating the glider at VG settings tighter than about 33 as lateral control authority will be measurably reduced and stall and spin characteristics will be adversely affected VG settings beyond the normal VG tight setting stop installed are not recommended for any but the most skilled and experienced pilots and even then significant caution should be exercised Place support under the rear keel at the rear wire junction and adjust the height of this support until the keel tube in this location is perfectly horizontal zero degrees Unzip the smallest section of the sprog zipper that allows adequate access to the sprog and place your angle measuring device flat against the sprog tube The sprog is straight so all locations along the tube should yield the same angle measurement Be careful in taking the measurement any force applied against the tube will change its angle When set to stock factory settings and with the VG stop installed the angle of the sprog should be at least as high as the measurements in the tables below front of the sprog is lower tha
32. adjusted by adjusting the strap where the sail mounts to the rear leading edge This strap should be just slack when the VG is set full loose and should be come snug as the VG is tightened On later model T2s the sail anchor in not adjustable Sail tension at the tip is also affected by the length of the tip wands A one eighth of an inch difference 3mm in the length of the tip wand can make a noticeable difference in how a glider handles If you have a glider that is a little too stiff you might try shortening the wands by an eighth inch by carefully cutting off the thick end of the wand and beveling the cut edge with a file or sandpaper Twisting a tip After you have made everything symmetrical if you still have a turn you can correct it by rotating one or both tip wand receptacle end caps A left turn is corrected by twisting the left sail plug counter clockwise moving the wand receptacle down or twisting the right sail plug counter clockwise mov ing the wand receptacle up or both as indicated on the labels at the end of the leading edge Twist clockwise on either or both plugs to correct a right turn Note that the mechanism of adjusting the sail wand receptacle for tuning out a turn in the glider is the same as performing the same tuning function on a conventional tip although the direction of rotation seems to be opposite For example to remove a right turn if working with the right wing tip you would rotate the end cap
33. as shown below left T2 s assembled between mid July 2005 and mid May 2006 were upgraded to the current type support pillar which provides for the spreader bar to be rotated 90 degrees during glider breakdown and reduces interference with and wear on the spars when the glider is folded up This configuration is shown below on the right The spreader bar and hang loop for both these configurations are the same spreader bar incorporates removable end caps which secure the hang loop to spreader bar and which are held on by self locking Allen screws After mid 2006 T2 s were made with the same 2 configuration support pillar but with a new one piece spreader bar with integral end caps and new type of hang loop which fits tightly over the integral end caps and is then secured with plastic zip ties that pass through small webbing loops picture on the following page shows the older T2 type spreader bar and hang loop on the left and the most recent one piece spreader bar hang loop assembly on the right While both T2 type spreader bars are compatible with either support pillar each requires the specific compatible hang loop designed for that spreader bar Wills Wing Inc 500 West Blueridge Ave Orange CA 92865 Ph Fax 714 998 6359 0647 http www willswing com Wills Wing Technical Bulletin 20061019 2 Hang Loop and Spreader Bar Replacement Issue Date 10 19 2006 Rev Date Page 2 2 P
34. associated risks Please fly safely Technical Information and Placarded Operating Limitations The 2 144 2 154 T2C 144 2 144 T2C 1445 T2C 154 and 2 136 have been tested and found to comply with the Hang Glider Manufacturers Association HGMA Airworthiness Standards Certifi cates of Compliance were granted by the HGMA on the following dates T2 144 May 22 2006 T2 154 October 6 2006 T2C 144 19 2009 T2C 154 June 16 2009 T2C 136 February 26 2013 2 144C February 22 2015 2 1445 February 22 2015 The DHV Technical Department an approved testing center for hang gliders and paragliders for the LBA German Civil Aviation Authorities has issued Giitesiegels for the Wills Wing T2C 154 144 and 136 hang gliders on the following dates signifying that these gliders meets the German LTF Airworthiness Standards for hang gliders T2C 154 December 22 2008 T2C 144 October 11 2013 T2C 136 December 12 2013 Updated information on the current HGMA certification status of any hang glider can be found on the HMGA web site at www hgma net The HGMA standards require 1 positive load test at root stall angle of attack at a speed equal to at least the greatest of 141 of the placarded maximum maneuvering speed b 141 of the placarded maximum rough air speed c 123 of the placarded speed never to exceed for at least three seconds without failure The required speed for the T2 for this test was 65 m
35. be made prior to launching Because of the lack of a kingpost and top rigging on the T2 design tethering the glider by the nose such as is commonly done during platform towing operations creates the potential for overloading the keel tube of the glider which could result in a structural failure To avoid overloading the keel any y tether line attached to the nose should pull as much as possible in line with the keel and in no case in a direction more than 45 degrees below the line of the keel tube itself As the following table indicates the load on the keel is also very sensitive to pilot weight and sition With a nose release tether angle of 45 degrees the load the keel is marginally acceptable at a pilot position corresponding to free flight airspeed of approximately 30mph With an arms extended pilot position the keel will be overstressed and the front wires will be quite slack A keel angle of 7 degrees has been used for platform tow operations which allowed the glider to start lifting off the chocks at approximately 30 m p h Nose Release Tether Angle 1 eg 94 T gt 1 127 5 Pilot Tather Pilot OG Kee Weight Angle Position Follure Strength 1 20 1 30 30 x 2 250 45 20 6 2 250 60 30 35 Hargina 27 if eso so ax 1 2 250
36. be necessary to adjust the sprogs to a setting higher than that given in the measurements below in order to 40 obtain compliance with this requirement Flight testing to determine compliance with this requirement should be done at significant altitude above the ground and in smooth air as it will usually require exceeding the maneuvering speed and even poten tially the VNE speed of the glider Static pitch stability and return to trim tendency decreases with increased VG setting and therefore it is sufficient to test the glider at the tightest VG setting The test procedure is to set the VG to full tight establish wings level straight flight and gradually relax pressure on the control bar allowing the glider to go to trim Then pull forward very gradually and observe the pressure in the basetube There should be continuous return to trim pressure opposing your nose down pitch control and that pressure should remain though it may diminish after you reach pilot full forward At pilot full forward the glider should stabilize at some final airspeed and at that point assuming smooth air the return to trim pressure should remain constant 4 Sprog Measurement To measure the sprogs you will need an accurate and reliable gravity actuated protractor or digital level Note cell phone aps are NOT adequate for this even when recently calibrated they tend to have large inconsistent and unpredictable errors To measure or
37. cket and three holes in the keel at intervals of to allow for three positions in increments of 4 over a range of 2 of adjustment Note that the bracket on early models and the base saddle on later models are front to rear asymmetric providing more support to the rear Do not mount either the old style bracket or the new style saddle in the reversed position We recommend that you not stow your glider bag or any other cargo on the glider The practice of putting your glider bag inside the sail for example can drastically alter the pitch trim and static balance of your glider and adversely affect its flying and landing characteristics The best place to carry your glider bag or other cargo is in your harness Another factor that can affect pitch trim is the adjustment of the keel pocket rear support strap If this strap is too tight it can significantly slow the trim speed to the point where the glider is difficult to fly With the glider fully set up on the ground and the VG set full loose there should be some slack in this strap Finally the adjustment of the sprogs will affect pitch trim at tighter VG settings although not at VG 29 settings looser than about 2 3 If there is excessive transient trim increase in trim speed at tighter VG settings it is an indication that the sprogs are set too low If there is a marked reduction in trim speed between VG 2 3 and VG tight it indicates that the sprogs are
38. clockwise so as to rotate the wand down thus depressing the right wing tip On a conventional wingtip you would rotate the end cap counter clockwise because doing so would rotate the wingtip downwards The aerodynamic effect is the same even though the direction of rotation appears at first glance to be opposite Adjust ments are best made in one notch increments If you have rotated the right wing down both avail able notches and still have a right turn you can rotate the left wing up To rotate the tip wand receptacle end cap remove the screw rotate the cap to align the next hole and re install the screw Note that it is acceptable to use up to three holes of adjustment from the initial center position even though the caps are normally only drilled with two holes on each side of center You can drill a third hole at the same additional distance if you need more adjustment Batten tension The outboard most batten on each wing is tensioned by looping the batten string over the notched end of the batten twice The remaining battens are all fitted with lever tips The outboard batten with strings should be adjusted quite tight for maximum sail cleanliness On the battens fitted with lever tips it is important to adjust the lever tips to set the right batten ten sion The lever action makes it easy to have the battens set too tight Batten tension is best judged by noting at what point the batten begins to tension the sail as you pivot
39. d cup against the front side of the tip wand While supporting the leading edge tube by pulling it towards you push back against the wand with the wand cup allowing the cup to slide outwards along the wand as the wand bows back Keep in mind here that you are not trying to stretch the sail lengthwise along the wand that won t work You are bowing the wand back by pressing the cup against the front which will naturally pull the sail outwards around the bow of the wand as you do so Also keep in mind that the wand must be allowed to bow in order for this to work you cannot be holding onto the wand with your other hand during 13 this operation As the wand cup reaches the end of the wand it will rotate and pop into place over the end of the wand Note There are two other methods that can be used to install the wand cup onto the wand if you re having difficulty with this method One is to use the same procedure as described above but to follow the procedure before tensioning the crossbar The other is to install the wands and wand cups before installing any battens or tensioning the crossbar To do this install the wand into the wand receptacle as described above Then grasp the wand in one hand and the cam lever in the other hand Pull straight back on the cam lever until the cup is beyond the end of the wand and then install the cup onto the wand Either of these methods is an acceptable alternative to the primary m
40. d in position supporting the transverse battens and that the sprog access zippers are properly closed 29122 From the rear keel Check again that the keyhole tang is fully engaged and that the button lock is fully up and engaged Look inside the keel pocket and verify that the VG activation rope is not twisted Also check that the sweep wires are tight and actively tensioning the tang on the bolt Along the trailing edge right wing Same as for left wing At the right tip Same as for left tip Along the right leading edge Same as for left leading edge Under the glider at the control bar Sight down the downtubes making sure that they are straight Unzip the center zipper Check the sweep wire for wear where it passes the hang system pillar Check that the routing of all VG ropes and pulleys is clear and straight Check the crossbar center plate and wedge assembly including the following The four nuts and bolts that attach the crossbar plates to the wedge The attachment of sweep wire at the rear of the cross bar center wedge Also visually inspect the crossbars by sighting along the length of the crossbars looking for any evi dence of damage Zip up the center zipper Pull down the neoprene protectors and check the control bar apex bracket hardware including the clevis pin safeties the control bar top plug bolts and nuts and the elbow to apex bracket bolt and nut JED Check the cables at the control bar co
41. d of the leading edge tube into the sail through the inboard front sprog access zipper As the end of the outer sprog reaches the outer sprog access zipper bring the sprog outside of the sail through that opening as shown The photo below shows the right rear leading edge being inserted into the sail as described Then slide the rear leading edge forward allowing the sprog end to remain outside the sail until front end of rear leading edge is at end of the front leading edge Carefully align the rear leading edge with the front leading edge using the clevis pin hole in the front crescent and the corresponding hole in the front leading edge as an alignment guide so that you can slide the rear leading edge into the front without twisting Carefully slide the rear leading edge into the front leading edge until the clevis pin hole in the crescent appears through corresponding hole in the front leading edge Just prior to this point if the rear crescent has remained in position on the rear leading edge you will need to insert the rear crescent into the front leading edge Install the clevis pin from the bottom of the front leading edge and install the safety ring on top of the leading edge Make sure at this point that the clevis pin passes through all three parts the front leading edge the rear leading edge tube and the front crescent If the clevis pin is properly installed in all three you should not be able to pul
42. d to con trol the steepness of the descent Drogue chutes have been used which attach to the glider and others have been used which attach directly to the pilot s harness There are several significant dangers in using a drogue chute One pilot died when he deployed a drogue chute over the bottom side wire and the glider was pulled into a fatal spiral dive A drogue chute attached to the pilot s harness can if it becomes caught on the keel or on a batten at the trailing edge interfere in a dangerous way with the pilot s control of the glider A drogue chute that is unstable or does not remain inflated can create distractions for the pilot that interfere with his safe operation of the glider Wills Wing manufactures a drogue chute that attaches to the pilot s harness on one side and deploys and flies off to one side behind the pilot attached to a very short bridle that keeps it inside the keel and the trailing edge of the sail This configuration minimizes the prospect of entanglement of the chute with the glider When using a drogue chute we recommend that you deploy it early before you begin your approach Deploying the drogue will effectively change the performance polar of your glider the glide ratio will be reduced at all speeds and it will be reduced more and more as you fly faster and faster As a result proper approach technique will include setting up a normal approach but at a significantly steeper approach angle in all
43. de diameter at 1 Nose 2 44 2 Crossbar 2 44 3 Rear sail attachment point 2 05 Crossbar Dimensions a Overall pin to pin length from hole at leading edge bracket attachment to center of load bearing in at center plate 113 5 b Largest outside dimension 3 25 Keel dimensions least and greatest allowable distances whether variable through tuning or through in flight variable geometry from the line joining the leading edge nose bolts to a The center of the xbar load bearing pin at the center plate 30 2 34 7 stop installed 37 88 stop removed b The pilot hang loop 48 25 49 75 Sail Dimensions a Chord lengths at 1 3 ft outboard of centerline 62 2 3 ft inboard of tip 44 b Span extreme tip to tip 381 7 VGT wo raked tips 386 8 VGT with raked tips Location of Information Placard Keel Location of Test Fly Sticker Keel Recommended Pilot Weight Range 150 210 Recommended Pilot Proficiency USHGA Advanced E3 2102 06 01 ISTAJ 2102 06 0 NOSUVId pasea pay Md 511915 01 INSWNJDOA 21 101 3 0015 790 866 I 69 9 866 1 XVilHd 89826 VI JONVYO JAY 390184018 008 SJUaUOduo ZL 0161 38 2 2944 94019608 6114 qnqumop 4109 WED HS OU LM 4894 01104 6114 do 4 115 dey JULBUISIJ 49455032 doo JaM01
44. der and replace any suspension system component that shows any wear and any cable that shows any kinks wear damage corrosion etc Replace any structural cables that are less than 3 32 diameter 5 Inspect all bolts for tightness all safeties for proper installation and possible damage Inspect plates and fittings for damage holes in tubes for elongation 6 Inspect the sail for wear tears UV damage loose stitching etc 7 Disassemble basetube pulley assembly clean lubricate with white grease and re assemble 8 Lightly spray all zippers on the glider with silicone spray lubricant Also spray your battens before you install them in the glider to lubricate the insides of the batten pockets Do not use any other type of lubricant Wipe off any excess silicone so that it does not attract dirt 9 Inspect the sprogs sprog hardware and sprog cables If the sprogs have been loaded heavily it is possible that the sprog tubes may have been bent and the cables may have been stretched If it is not possible to achieve proper adjustment of the sprogs the sprog cables may need to be replaced On late model T2s the cables are part of an integral assembly with the sprogs and cannot be replaced separately from the sprogs themselves There are three hinge mechanisms in each sprog assembly that must be free to swivel One is the cable attachment to the leading edge Make sure the cable can swivel in the horizontal plane at this attachment Also mak
45. e glider checking all assemblies which have not already been checked 19 Installing the Wills Wing Raked Tips The raked tips are specific to the glider size T2C 136 T2 T2C 144 T2 T2C 154 you must have the correct tips Your sail must be configured to be compatible with the raked tips In general this means serial number greater than 40841 and production date after February 9th 2014 There are 2 12 inch carbon rods stowed in the edge seam of each raked tip The larger one is about 0 10 inches diameter and the smaller about 0 06 inches The smaller one always remains completely in the tip but the larger one is only stowed in the seam for protection during transport Open the Velcro completely between the top and bottom surface at the tip Pull 4 inches of the 0 10 inch diameter rod out from the seam before you install the tips This extension should be plugged in to the sail between the wand lever and the adjacent seam at the edge of the sail in order to support the raked tip and align it properly with the sail body before securing the Velcro Carefully align the mating Velcro surfaces of the raked tip to those of the sail Attach the Velcro on the sail top surface to the top surface of the raked tip Then separate any Velcro that has become attached on the bottom pull any slack out of the bottom surface and make a smooth attach ment of the bottom surface of the sail to the bottom surface of the Velcro
46. e of these is that the pitching moment coefficient measured on a test vehicle must have the minimum values at each combination of speed and angle of attack at each VG adjustment setting as prescribed in the HGMA Airworthiness Standards The primary purpose of the vehicle pitch tests is to measure the static pitch stability outside of the normal flight enve lope at combinations of angle of attack and airspeed that cannot easily be achieved in flight There is no way for the user to determine these pitching moment coefficient values they are best insured by proper adjustment of the sprogs to the correct factory settings and proper configuration of all other aspects of the glider that affect pitch stability The second requirement is that at all VG settings it must be possible for the pilot to slowly pull forward to the full forward pilot position and the glider must have positive return to trim pitch bar pressure at all speeds above trim and for each pilot position relative to trim position including pilot full forward the glider must stabilize at a specific steady state airspeed Irrespective of the measured adjustment of the sprogs or any other setting or adjustment if the glider does not demonstrate pitch stability in this manner it does not meet the HGMA Certification requirements and cannot be considered airworthy Flight testing is therefore the final evaluative test available to the user to confirm this aspect of airworthiness It may
47. e on the top of the sail or in any condition which causes the battens to slide with great resistance in the pockets If you choose not to check your battens for symmetry before each flight you should at minimum check them every few flights 7 Spread the wings all the way and check all cables for any twisted thimbles or tangled cables At the rear of keel reach inside the keel pocket and find the sweep wire Pull sweep wire out the rear end of the keel pocket and check that it is not wrapped around the keel Insert the T2 Set Up Tool in the string loop on the keyhole tang and tension the crossbar by pulling back on the sweep wire Secure the sweep wire by installing the keyhole tang onto the keyhole collar on the rear wire bolt Make sure the tang slides fully forward in the slot on the collar so that the narrow part of the keyhole slot is fully captive in the narrow part of the bolt collar Make sure at this time that the button lock safety is in the full up engaged position On the 2 it is ABSOLUTELY NECESSARY that the sweep wire button lock safety be fully functioning and fully engaged whenever the sweep wire is attached it is a NO FLY condition if the button lock becomes stuck in the down position such that it is does not properly prevent the sweep wire from becoming detached from the collar The reason that this is so critically important on the 2 is that if the VG is pulled on and then released on the ground the cr
48. e photos in the section above for reference if necessary 1 Lay the glider on the ground or floor unzip the bag and remove the Velcro ties Remove the tip bags and lay the tips out flat The sprog access zippers should be fully unzipped Unzip the access zipper at the wing tip and rotate the tip wand cam lever outside the bottom surface Reach into the sail from the cam lever access opening and grasp the end of the leading edge tube Work the sail up over the end of the leading edge to expose the clevis pin that secures the sail mount strap to the leading edge Remove the safety ring from the sail mount clevis pin and remove the pin from the leading edge and from the tang on the sail mount strap Immediately re install the clevis pin in the leading edge tube and re install the safety ring Check to see that the rear leading edges are labeled Left and Right If they are not mark them with an indelible marker Working through the inboard front sprog access zipper remove the clevis pin and safety that secures the front crescent and front end of the rear leading edge in place Also remove the hex socket button screw that secures the rear crescent reducer in place 2 a Pull straight aft on the rear leading edge to disengage it from the front The rear leading edge should come out of the front with both crescents still in position Re install the clevis pin and safety in the front end of rear leading edge secur
49. e sure that the locknut is fully engaged and secure on the bolt Second is the junction of the sprog fork and sprog pillar This junction should be disassembled cleaned and lightly lubricated with white grease When reassembling take care not to over tighten the nut as there should be no clamping effect of the sprog fork on the pillar Third is the junction of the pillar and the sprog 50 bracket attached to the leading edge Service this junction in the same manner and again do not over tighten the nut Every Year In addition to the normal six month service items also perform the following 1 6 Have the sail completely removed from the frame and disassemble all frame components Inspect every part of the glider for any damage or wear Inspect the tubes for straightness and for signs of corrosion Anytime you have the sail off the frame turn the sail inside out through the bottom surface center zipper and inspect all of the batten pockets and batten pocket terminations Replace bottom side wires and hang loops Note The bottom side wires are retained by a lightly press fit bushing This bushing is best removed with a special stepped drift by pushing it out of the fitting from the rear Take care not to damage the fitting Replace the VG ropes Inspect the composite crossbar and all associated fittings Remove the hollow steel pins at the spar root circlip pliers required clean the pins and the area where the pin
50. ectively out of the way of the spars during breakdown and may thus reduce wear on or damage to the spars during transport 2 The one piece spreader bar avoids the possibility of a screw breaking off during installation of a new hang loop 3 The most recent hang loop design on which the back up is installed over the top of the sweep wire and VG ropes may provide a more secure attachment of the pilot to the glider in the event of an in flight failure of the keel Wills Wing Inc 500 West Blueridge Ave Orange CA 92865 Ph Fax 714 998 6359 0647 http www willswing com Parts Ordering and Parts Replacement Wills Wing policy requires for safety reasons that replacement parts be ordered through an authorized Wills Wing dealer The purpose of this policy is to insure that the parts will be delivered to someone who has the required expertise to install the parts properly We have seen multiple examples of incidents in which pilot s life was endangered as result of incorrect installation of replacement parts or incorrect assembly of a glider The serial number of the glider is required when ordering any fabricated replacement part The serial number is a five digit number which can be found in several places on the glider on an embossed label on the bottom of the front of the keel tube on the operating limitations placard on the bottom of the rear of the keel and written inside the nose area of the sail In addition to t
51. eel stand as shown below to raise the trailing edge of the glider This will keep the tips off the ground and make installation of the remaining battens easier 8 The next step is to install the tip wands Remove the wingtip protector bag Unfold the tip of the sail and open the zipper closure that provides access to the tip wand cam lever Rotate the cam lever outside the sail The tip wands are tapered the larger end is installed in the receptacle in the end of the leading edge tube Near the outboard end of the wand is a label that reads BACK This indicates the side of the tip wand that should be positioned towards the rear of the glider after the wand is inserted in the leading edge and before the cam lever and cup are installed Reach into the opening with the tip wand in your hand and work your way up to the end of the leading edge Install the tip wand into the receptacle and push it all the way in until it bottoms out Rotate the wand to align the back label to the rear away from the front of the leading edge Note The purpose of aligning the wand in this way is to extend the service life of the wand see Wills Wing Technical Bulletin TB20040424 available at www willswing com for more information 9 Working from the front side of the leading edge facing the glider hold the end of the leading edge tube from underneath in one hand and grasp the wand lever and cup in the other hand Place the open end of the wan
52. efore you start the landing approach This will allow you to take the time to learn how the glider flies with the drogue properly designed and mounted drogue chute should not have any major effect on the glider s flight characteristics other than to reduce the glide ratio but you should get a feel for these effects at altitude Also keep in mind that if there are gliders in the pattern below you you may descend through them prior to landing due to your higher sink rate If possible wait to deploy your drogue until you are the lowest glider in the pattern 2 Breakdown Breakdown of the glider is the reverse of assembly 1 Start with the VG set full loose Unzip all four sprog access zippers all the way to the leading edge and disengage the sprogs from the sail and pivot them towards the keel Do this before any other step in the breakdown of the glider If you unzip the sprog zippers but leave the sprogs in position in the sail they can become caught on the sail and damage it during breakdown 2 Remove the nosecone and put it aside Remove any instruments Detach the bottom front wires at the noseplate 3 Unzip the center zipper On early model 727 verify that the bungee attached to the hang lever is pulling the lever down on one side On later model 727 rotate the hang pillar 90 degrees to align the lever with the keel tube See photo 4 Remove number two through numbe
53. en length and hence the chordwise tension that the batten puts on the sail The locking mechanism can be broken if it is not released properly before the lever portion of the tip is rotated upwards If it does break it will usually break at the locking hook on the lever rear portion of the tip Also the hinge portion can pop apart relatively easily This is not a failure of the tip and you can easily pop the hinge back together again If you do have a failure of the locking hook on the lever portion simply pop the hinge apart and pop on a new lever part It is also possible though less likely to break the forward portion of the tip If that happens unthread the tip from the batten and thread in a new piece Once the batten is installed in order to fit the batten tip into the trailing edge hem you will need to unlock the lever part of the tip and pivot it upwards To unlock the tip place a slight downward pressure on the top of the lever portion of the tip and squeeze upwards on the bottom of the lever portion just behind the locking clasp Then pivot the lever tip upwards You should not feel any resistance to the lever rotating upwards if you do you haven t properly released the locking portion If you hear a click when pivoting the lever upwards it is likely that you have broken or partly failed the locking tab on the lever After the rear of the tip has been rotated upwards fit it into the gap in the hem of the trailing edge
54. ervice and safety issues It is therefore of ne cessity your responsibility as an owner to check periodically for service advisories and technical updates that relate you your glider You can do so most effectively by going to our web site at www willswing com The site features extensive information about Wills Wing gliders and products a Wills Wing Dealer directory a comprehensive list of service and technical bulletins the latest editions of owners manuals our complete retail price list search engine e mail and more The most important contents of our internet site are the service and technical bulletins technical articles and the latest editions of owner s manuals These your best sources for safety and airworthiness advi sories and information on Wills Wing products Many of the documents are published in Adobe Acrobat format free viewer for Acrobat files is available at http www adobe com Note that it is best to have the most current available release of the viewer for Acrobat files as newer files may not display properly in earlier versions If you are unable to obtain service information from the web site you can contact us by email by U S mail or by telephone We wish you safe and enjoyable flying career and once again welcome aboard Mike Meier Linda Meier and Steven Pearson Wills Wing Inc Disclaimer and Warning Hang gliding is a form of aviation Like any form of aviation its safe prac
55. esult in a structural failure A similar problem could arise during a hang check To avoid overloading the keel any tether line attached to the nose or any restraint used during a hang check should pull as much as possible in line with the keel and in no case in a direction more than 45 degrees below the line of the keel tube itself See the diagram in the section on towing Alternately for performing a hang check the glider can be supported by pushing up from underneath the rear keel instead of pulling down and forward at the nose 16 Unzip the center zipper On later model T2 s rotate the hang system base pillar to align the hang lever at right angles to the keel tube See photo 17 17 With the center zipper open look inside the sail to preflight the following items including all nuts bolts pins and safeties a The spar center section including the front spar hold down strap and the rear spar anchor b The routing of the VG line c Each spar along its entire length The top to bottom surface sail velcro attachments gt 1 5 v 1 7 The hang lever and main and backup hang loops 18 Check the operation of the VG throughout the range and leave the VG set full tight Zip up the center sail zipper 18 19 Install the nosecone as follows fit the nose cone to the nose of sail and stretch top rear end of the nose cone back along the centerline
56. ethod described above and you may find either or both to be easier The disadvantage of either is that because the crossbar is not tensioned the wing tips are not being held up off the ground so the tip area of the sail is more exposed to dirt and wear 10 The next step is to cam over the tip wand cam lever tensioning the sail at the tip Tension the crossbar haulback cable if you have not done so already Hook your thumb into the loop of string on the cam lever and grasp the opening of the sail in the bottom surface with your other hand 11 Pull the string around in a circular motion first towards the trailing edge and then inboards towards the keel to cam the wand lever over and tension the wand Before you zip up the access zipper look into the sail from the tip and verify that the most outboard internal rib is fully zipped up and that the back label on the wand is properly aligned it should now be aligned with the 14 portion of the cam lever that is resting against the wand Then close the access opening 12 Install the remaining outboard top surface battens Secure the shortest cambered battens with a double purchase loop of the 205 leech line At this time you can install the batten tips for the cambered battens into the hem of the trailing edge using the following procedures The lever tip incorporates a hinge and a snap locking mechanism as well as a threaded shank that allows for adjustment of the overall batt
57. ettings of VGM 50 or two marks and looser At tighter VG settings the stall rapidly becomes markedly more abrupt and the T2 becomes much easier to spin and spins much more rapidly with a more severe recovery We therefore recommend that flight at speeds less than five mph above minimum sink airspeed by avoided at VG settings of tighter than 50 except in smooth air We recommend against deliberate spins or aggressive full breaking stalls with the exception of the landing flare Once you have familiarized yourself with the glider s characteristics in the range of speeds near minimum sink you will not need to look at the tufts very often You will know from bar position and bar pressure and from the sound and feel of the relative wind when you are at your minimum sink minimum controllable airspeed In general you should not fly your glider below this speed Be aware however that when you are flying at minimum sink in thermal gusts and turbulence you will experi ence gust induced separation of the airflow which will periodically cause the tufts on your sail to reverse Of course in a turn your minimum sink speed goes up because you are banked and the bank effec tively increases your wing loading that increases your flying speed for any angle of attack But note this The tufts indicate angle of attack without regard to airspeed Therefore if you practice flying various bank angles in smooth air while well away from any terrain or o
58. full tight in smooth air if you slowly pull in to a pilot full forward position normal prone position not hunched over or balled up the glider should reach a steady state top speed and you should have at least 1 2 165 5 to 1 kg of positive pitch pressure per hand on the control bar If the pitch pressure is less than this or goes negative or if the glider does not stabilize at some maximum steady state speed then the glider does not exhibit the static pitch stability that is required by the HGMA standards and this situation should be cor rected 44 Note The top speed reached in the above test will likely be between 58 and 78 mph In order to perform this test it is therefore necessary to exceed the placarded 53 mph VNE for the glider This test is best performed by a qualified test pilot and in any case should be performed only in smooth air and with caution Raising the sprogs 15 one way to increase this pitch pressure If your sprogs are already set at or above the recommended measurements there are a few other things that you can due to increase pitch pressure 1 Check adjustment of keel pocket rear strap It should be no more than just slack on the ground at VG loose and slightly snug at VGT Increase the overlap in inboard most and next outboard internal sail velcros that connect the bottom and top surface at the bottom surface battens You can tighten these velcros by at a time until you ju
59. g factor in your safety In light of this it becomes illustrative to ask the question Why do pilots make bad decisions that lead to accidents This is a complex question For a more detailed treatment of it we invite you to read the article Why Can t We Get A Handle On This Safety Thing published in the September 1998 issue of Hang Gliding Magazine and also published on our web site at www willswing com In brief one answer to the question of why pilots make bad decisions seems to be that pilots are rewarded and reinforced for making bad decisions This happens because most bad decisions do not result in an accident and therefore they appear to the pilot to be good decisions If they don t result an accident how do we know they re bad decisions Think of it this way in any decision you make Do I fly today are these conditions within my abilities Is the glider well enough balanced for me to start my launch run Do I have enough room to turn back into the hill in this thermal Can I continue to drift over the back in this weakening lift and still glide back above the ridge top and avoid the rotor there is a percentage of certainty involved If you make decisions at the 99 level of certainty the vast majority will be rewarded as good decisions However if they re only 99 they are really bad decisions because in one out of 100 you will be wrong Since the consequences of being wrong can be as serious as a fa
60. ggested sources for towing information include the United States Hang Gliding Association and the manufacturer of the towing winch or equipment being used Wills Wing makes no warranty of the suitability of the glider for towing Because of the design of the nose catch for the bottom front wires on the T2 it is critically important that the nose line be attached properly during platform towing operations In no case should the nose line be attached in such way that there is any possibility that the nose line can pull forward on the nose wires nose tang or nose tang handle or in any other way contribute to disengagement of nose wires Please read the section on towing for more information Because of the lack of a kingpost and top rigging on the T2 design tethering the glider by the nose such as 18 commonly done during platform towing operations creates the potential for overloading the keel tube of the glider which could result in a structural failure To avoid overloading the keel any tether line attached to the nose should pull as much as possible in line with the keel and in no case in direction more than 45 degrees below the line of the keel tube itself Please read the section on towing for more information Flight operation of the T2 should be limited to non aerobatic maneuvers those in which the pitch angle will not exceed 30 degrees nose up or nose down from the horizon and the bank angle will not exceed 60 degrees The T2
61. ghts in pounds NOTE These specifications are intended only as guideline for determining whether a given glider is certifled model and whether it is in the certified configuration Be aware however that no set of specifications however detailed can guarantee the ability to determine whether a glider is the same model or is in the same configuration as was certified or has those performance stability and structural characteristics required by the certification standards An owner s manual is required to be delivered with each HGMA certified glider and it is required that it contain additional airworthiness information 1 Weight of glider with all essential parts and without coverbags and non essential parts 71 76 depending on options 2 Leading Edge Dimensions a Nose plate anchor hole to 1 Crossbar attachment hole 131 9 2 Rear sail attachment point 195 2 200 2 b Outside diameter at 1 Nose 2 44 2 Crossbar 2 44 3 Rear sail attachment point 1 97 12 2 05 T2C 3 Crossbar Dimensions a Overall pin to pin length from hole at leading edge bracket attachment to center of load bearing in at center plate 120 1 b Largest outside dimension 3 25 4 Keel dimensions least and greatest allowable distances whether variable through tuning or through in flight variable geometry from the line joining the leading edge nose bolts to a The center of the xbar load bearing pin at the center plate 33 0 37 3 b The pilot ha
62. h Some degree of fatigue due to repeated bending of cables is almost unavoidable in an aircraft that is assembled and disassembled with every flight Bottom side wires are subject to the highest loads in flight and are therefore the most critical This is why we recommend that these wires be replaced annually even if there is no known damage The requirement for immediate replacement of a cable known to have been bent or otherwise damaged supersedes this annual replacement requirement Replacement cables should always be obtained from the factory or if not from the factory from reliable source known to use proper fabrication procedures An improperly made cable may appear perfectly OK on visual inspection but could fail in flight at load much below the intended design strength of the cable Removing the Sail from the Airframe and Re Installing Many maintenance and repair procedures will require the removal of the sail from the frame Please follow these instructions when removing and reinstalling the sail Please read all the instructions for each operation before beginning Sail removal You will need an unobstructed area six feet by thirty feet Make sure the surface is clean If it is abra sive like rough concrete you should either put down a protective tarp or be extremely careful not to scrape your sail 1 Lay the glider its back unzip and remove the glider bag and put the battens and basetube aside Remove the cont
63. hands off without supporting your weight on the control bar you will have a lot more difficulty making good landings Talk to your harness manufacturer or your dealer about getting your harness adjusted to allow you to hang properly in the landing position There are several options for when to make the transition from prone to this semi upright position Some pilots favor going upright and moving both hands to the downtubes while still at altitude prior to the start of the approach Others transition at the start of the approach to a semi upright position with one hand on a downtube and one hand on the basetube and complete the transition by moving the other hand to the downtube just a few seconds prior to flare Still others fly with both hands on the basetube until established on final glide and then transition one hand at a time to the downtubes prior to flare Whichever method you use there are a few important principles to observe The first is that you should not make any change in hand position unless you are flying at or very near trim speed At speeds faster than trim you will be holding the bar in pitch against substantial force and if you let go to move your hand the glider will pitch up and roll towards your remaining hand The second is that while moving either hand you have no control over the glider You should move only one hand at a time Even so if you can t make the transition in the position of each hand quickly and reli
64. he certified configuration Be aware however that no set of specifications however detailed can guarantee the ability to determine whether a glider is the same model or is in the same configuration as was certified or has those performance stability and structural characteristics required by the certification standards An owner s manual is required to be delivered with each HGMA certified glider and it is required that it contain additional airworthiness information 1 Weight of glider with all essential parts and without coverbags and non essential parts 69 73 depending on options 2 Leading Edge Dimensions a Nose plate anchor hole to 1 Crossbar attachment hole 127 6 2 Rear sail attachment point 191 5 b Outside diameter at 1 Nose 2 38 2 Crossbar 2 44 3 Rear sail attachment point 2 05 126 3 Crossbar Dimensions Overall pin to pin length from hole at leading edge bracket attachment to center of load bearing in at center plate 116 1 b Largest outside dimension 3 25 4 Keel dimensions least and greatest allowable distances whether variable through tuning or through in flight variable geometry from the line joining the leading edge nose bolts to a The center of the xbar load bearing pin at the center plate 31 75 36 25 stop installed 37 88 stop removed The pilot hang loop 49 75 51 25 5 Sail Dimensions a Chord lengths at 1 3 ft outboard of centerline 65 2 3 ft inboard of tip 45 b Span extreme ti
65. he clevis pin and pass it through the tang in the sail mount webbing Re install the clevis pin in the leading edge from the bottom and re install the safety ring on the clevis pin on top of the leading edge See the photos below Verify that the sail mount strap is on the bottom of the rear leading edge is not twisted and is not wrapped around the leading edge tube Re mount the sail at the nose Pull the sail back over the end of the leading edge Note if you are unable to remount the sail at the nose at this time you can wait until you set up the glider and spread the wings However anytime you spread the wings without the sail mounted at the nose you must be careful to insure that the sail slides forward as you spread the wings otherwise you could tear open the sail at the nose Fold the outboard sprog to the front and against the leading edge Place a Velcro around the sail at this point Rotate the tip wand cam lever inside the sail and close the Velcro closure or access zipper Fold the tip of the sail over roll it up and re install the tip bags Flip the glider onto its back put the glider bag back on and zip it up To remove the rear leading edges for shipping follow these steps This process will basically be the reverse of installing the rear leading edges after shipping Before beginning read through the section above on how to re install the rear leading edges While following the instructions below refer to th
66. he serial number you should provide any relevant information regarding configuration options for the glider in question When replacing a part on the glider always compare the old part with the new part to make sure that the new part ap pears to be the correct item If you have any question contact Wills Wing Also be sure to do a thorough inspection of the glider after the installation of the part to insure that the part has been installed correctly and appears to be function ing correctly and that the rest of the glider is properly assembled Note that the T2 when equipped with Slipstream downtubes uses a new type of downtube designated as Slipstream2 Slipstream and Slipstream 2 downtubes can be used interchangeably on T2 s or Talons on the left side only but cannot be interchanged on the right due to the VG rout ing 48 Equivalent Drag Area 1 03 WW STREAMLINE BASETUBE 49 FALCON EAGLE AND AT STYLE GLIDERS S2 U2 T2 NOT AVAILABLE S2 U2 STANDARD T2 TALON OPTION TALON OPTION S2 U2 T2 NOT AVAILABLE S2 U2 NOT AVAILABLE T2 OPTION S2 U2 T2 STANDARD FALCON EAGLE AND AT STYLE GLIDERS T2 NOT AVAILABLE Maintenance This section contains recommended schedule of periodic maintenance None of the items in this section are a substitute for the continual and consistent practice of proper pre flight inspections and immediate maintenance of
67. ing crescent to the tube and reinstall the hex socket button screw in the rear crescent Fold the outer sprog towards the rear and remove the rear leading edge from the sail through the inboard front sprog access zipper Tape pad the sprog ends sprog leading edge junctions sprog wire junctions the front end of the rear leading edge tubes and the rear of the front leading edge tubes to prevent sail damage during transit Pivot the tip wand cam lever into the opening in the sail and close the access zipper Carefully fold the rear of the sail over against the front and replace the bag on the glider 2 Set Up Procedure number of set up operations are made easier by the use of the T2 Set Up Tool six inch length of 3 4 tubing included with your glider 1 2 3 Lay the glider on the ground with the bag zipper up with the bag at right angles to the wind Undo the zipper remove the battens and remove the control bar bag Lift and deploy the control bar legs a Remove the ball lock pins from the downtube end fittings b Align downtube bottom plugs properly in the basetube corner fittings c Install ball lock pins securing the brackets to the basetube Make sure that the small bushings that secure the side wire tangs in the downtube end fittings are in place and that the side wire tangs are properly secured Also make sure that the ball lock pins are fully and securely engaged in the basetube
68. l inputs It is our opinion that a great percent age of hang gliding accidents are caused by inadvertent flight below MCA and subsequent loss of control of the glider with impact preceding recovery Such incidents are usually attributed to stalls but it is not the stall per se that causes the problem indeed the glider need not even be stalled in the traditional sense On most hang gliders MCA and MSA have evolved towards a common value during the design and development of the glider This is so because if the wing is tuned so tight that minimum controllable airspeed is at a higher speed than minimum sink speed then effective sink rate performance can be improved by loosening the wing so as to lower the minimum controllable airspeed Conversely if minimum controllable airspeed is reached at a speed below that of minimum sink the wing can usu 24 ally be tightened so as to improve glide performance without significant sacrifice in other areas One important thing to note is that as the VG is tightened minimum sink airspeed normally goes down while minimum controllable airspeed goes up Therefore as you tighten the VG you will find that at some point you can no longer adequately control the glider at minimum sink airspeed The exact VG setting at which this happens depends on how active the air is and how advanced your skills are Using wing tufts to find the minimum sink speed of your glider Your Wills Wing glider has bee
69. l the rear leading edge out of the front leading edge and the rear leading edge should be secure and tight in the front leading edge i e you should not be able to wiggle it up and down at the forward end At this point if the rear crescent has not moved the threaded insert in the rear crescent should be visible through and centered in the forward most of the three holes in the front leading edge Install the hex socket button screw to secure the crescent in place See the photo below showing the clevis pin safety ring and button screw correctly installed in the right leading edge Repeat the process for the other leading edge Unzip the tip access zipper and pivot the cam lever outside of sail Reach into sail from the cam lever access opening and grasp the rear end of the rear leading edge Work the sail forward over the rear leading edge until the last six inches of the leading edge is outside the cam lever access zipper Find sail mount strap and stretch it towards the rear of the leading edge If necessary you can provide additional slack in the sail by disconnecting the sail mount at the nose of the glider by removing the screws that secure the nose mount webbing to the leading edge Position the rear sail mount strap on the bottom of the leading edge tube and make sure the strap is not twisted or wrapped around the tube Remove the safety ring from the clevis pin located five inches from end of the leading edge remove t
70. leaning back away from the anticipated hard landing with feet extended in front This moves the pilot s center of mass forward ahead of his shoulders effectively shortening the pilot s arms and reducing flare authority The proper position is with the pilot s body inclined forward with the shoulders out ahead of the pilot s center of mass Thinking about pushing up instead of when flaring may help you to maintain the proper forward inclined body position c Slowing too much prior to flare so that your arms are too extended to allow enough flare amplitude 34 Using drag devices during landing It is becoming more popular on high performance gliders for pilots to utilize small parachute or drogue chute during landing approach The proper function of such device is to increase drag on the glider and as a result reduce the glide ratio Please note that a drogue chute because it produces only drag and not lift does not slow the glider down or allow it fly at a slower speed or reduce the landing speed What it does do is to allow the pilot to fly a steeper approach at a higher speed have much less float after round out and thus make it much easier for the pilot to plan his approach to time the flare and to accurately hit the spot and land close to the intended landing point It restores the ability which used to be present on lower performing gliders to use adjustments in spee
71. n aggressively on launch and ease the bar out for lift off 3 The flying characteristics of the 2 are typical of a high performance flex wing Make your first flights from a familiar site in mellow conditions to give you time to become accustomed to the glider Minimum controllable airspeed and minimum sink airspeed There are two important airspeeds with which all hang glider pilots should be intimately familiar minimum sink airspeed hereinafter referred to as MSA and minimum controllable airspeed MCA Minimum sink airspeed is that speed at which your descent rate is the slowest possible It is the speed to fly when you want to maximize your climb rate in lift or slow your rate of descent to a minimum in non lifting air You would normally not fly at MSA in sinking air the strategy there is normally to speed up and fly quickly out of the sink By minimizing your time spent in the sinking air you mini mize altitude lost even though you have momentarily increased your sink rate by speeding up Minimum controllable airspeed is that speed below which you begin to rapidly lose effective lateral control of the glider Recognition of this speed and its implications is a subtler problem than many pilots realize We have seen several instances of pilots who were having a lot of trouble flying their gliders simply because they were unknowingly trying to fly them too slowly below the speed at which the glider responded effectively to lateral contro
72. n equipped from the factory with short yarn tufts on the top surface of each wing The shadow of these tufts will be visible through sail The tufts are useful for indicat ing the local reversal of the airflow which is associated with the onset of the stall in that portion of the wing You can use these tufts as described below to help determine when you are flying at mini mum sink airspeed On a flex wing hang glider with moderate twist the wing experiences a progressive stall and differ ent spanwise stations of the wing stall at different angles of attack The tufts have been placed on your wing at the approximate location of the first onset of stall As the angle of attack is raised further the stall propagates both outward towards the tips and inward towards the root If you wish to observe the stall propagation across the whole wing on your glider you can cut some more tufts from knitting yarn about 3 4 long and tape these to the top surface of your sail across the rest of the span Note On a T2 with the VG set full tight the twist is reduced to a minimal amount and the wing stalls much more abruptly with the stall progressing across the entire span much more quickly During normal flight the flow will be chordwise along the wing and the tufts will point towards the trailing edge When the wing stalls the tufts will reverse direction indicating the local flow towards the leading edge At the first onset of stall the t
73. n five mph of the minimum sustainable airspeed should be avoided at VG settings of tighter than VG middle except in smooth air The maximum steady state speed for a prone pilot in the middle of the recommended weight range full forward on the control bar with the VG set full tight will range from approximately 53 m p h to as high as 75 m p h or more for the T2 depending on wing loading harness design and adjustment and glider tuning The placarded speed never to exceed for the T2 is 53 m p h The placarded maximum speed for maneuvering flight or flight in rough air is 46 m p h This speed will be achieved with the control bar basetube approxi mately at the waist This speed should not be exceeded in anything other than smooth air No abrupt maneu vering or control inputs should be made at anything above this speed An airspeed indicator is provided with the T2 and should be used by the pilot as an aid to comply with the placarded limitations The stability controllability and structural strength of a properly maintained T2 have been determined to be adequate for safe operation when the glider is operated within all of the manufacturer specified limi tations No warranty of adequate stability controllability or structural strength is made or implied for operation outside of these limitations The stall speed of the T2 at maximum recommended wing loading is 22 m p h or less The top steady state speed at minimum recommended wing loading fo
74. n the rear Model Outer Sprog Inner Sprog T2 144 8 degrees 5 5 degrees T2 154 7 degrees 4 5 degrees T2C 144 7 degrees 5 degrees T2C 154 6 degrees 4 degrees T2C 136 8 4 degrees 6 4 degrees T2C 144C 7 degrees 5 degrees T2C 1445 7 degrees 5 degrees When set to the minimum settings at which vehicle and flight testing has confirmed compliance with HGMA airworthiness standards and with the VG stop installed the angle of the sprog should be at least as high as the measurements in the tables below front of the sprog 15 lower than the rear T2C 144 5 3 degrees 4 degrees T2C 154 5 degrees 3 degrees When set to the minimum settings at which vehicle and flight testing has confirmed compliance with HGMA airworthiness standards and with the VG stop removed VG at full tight plus the angle of the sprog should be at least as high as the measurements in the tables below front of the sprog is lower than the rear T2C 144 5 9 degrees 4 4 degrees T2C 144C 5 9 degrees 4 4 degrees T2C 1445 5 9 degrees 4 4 degrees 42 Method of Adjustment To adjust sprogs on the T2C remove the clevis pin that attaches the sprog cable to the sprog center brack et To raise the sprog rotate the sprog so as to loosen or unscrew the threaded fork in the front end of the sprog rotate counter clockwise looking at the sprog from the rear thereby lengthening the sprog To adjust the sprogs on the T2 remove the screw that attaches the sprog fork to the
75. ncreasing glider s sensitivity to control inputs The result is high probability of overshooting the intended landing point and the prospect of roll yaw oscillations which may interfere with a proper landing Once established on a straight final approach with wings level and flying directly into the wind you should fly the glider down to where the basetube is between three and six feet off the ground At this altitude let the control bar out just enough to round out so that your descent is arrested and your flight path parallels the ground The remainder of your approach will consist of bleeding off excess speed while paralleling the ground and keeping the wings level and the nose pointed in your direction of flight until it is time to flare for landing Prior to the landing flare your body position should be generally upright but slightly inclined for ward with your head and shoulders forward of your hips and your legs and feet trailing slightly behind Many pilots make the mistake of trying to get too upright at this stage of the landing which actually reduces your flare authority and makes it harder to land on your feet Your hands should be at shoulder width and shoulder height on the uprights You should be relaxed with a light grip on the bar and your weight should be fully supported in your harness and not at all by your arms If your harness does not allow you to hang in the proper semi upright landing position
76. ng loop 50 75 52 25 5 Sail Dimensions a Chord lengths at 1 3 ft outboard of centerline 66 2 3 ft inboard of tip 46 b Span extreme tip to tip 403 VGT wo raked tips 408 1 VGT with raked tips 6 Location of Information Placard Keel Location of Test Fly Sticker Keel 7 Recommended Pilot Weight Range 185 285 8 Recommended Pilot Proficiency USHGA Advanced 60 HGMA ATRWORTHINESS STANDARDS HGMA T2 and T2C 144 COMPLIANCE VERIFICATION SPECIFICATION SHEET GLIDER MODEL 2 144 MANUFACTURED BY Wills Wing Inc 11 dimensions in inches weights in pounds NOTE These specifications are intended only as guideline for determining whether given glider is certifled model and whether it is in the certified configuration Be aware however that no set of specifications however detailed can guarantee the ability to determine whether a glider is the same model or is in the same configuration as was certified or has those performance stability and structural characteristics required by the 4 certification standards owner s manual is required to be delivered with each HGMA certified glider and it is required that it contain additional gt airworthiness information 1 Weight of glider with all essential parts and without coverbags and non essential parts 69 73 depending on options 2 Leading Edge Dimensions a Nose plate anchor hole to 1 Crossbar attachment hole
77. nly water and a soft brush You may clean small spots or stains with any commercial spot remover that is labeled for use on polyester Such cleaning agents are available at the supermarket or drug store or you may order cleaning solution from Wills Wing through your dealer note about cables and cable maintenance The cables which support the glider s airframe are critical components of the glider s structure and must be maintained in an airworthy condition It is a general practice in the design of aircraft struc 51 tures to design to an ultimate strength of 1 5 times the highest expected load in normal service Hang glider cables like other structural components on the glider are typically designed with a structural safety factor of only about 50 above the expected maximum load No significant loss in cable strength can be tolerated cable with even single broken strand must be replaced before the glider is flown again cable which has been bent sharply enough to have taken permanent set will not lie flat in straight line when all tension is removed must also be replaced immediately If it is not subsequent tensioning and de tensioning of the cable will induce fatigue and the cable will fail In tests we have conducted cable bent one time to 90 degrees and then loaded to the equivalent of a normal flight load 100 times corresponding to 100 or fewer flights failed at only 56 of its original strengt
78. of the glider Press down to attach the velcro Then pull the bottom front end of the nose cone tight around the bottom of the nose and attach the velcro Finally re adjust the top rear attachment as necessary to remove any gaps between the nosecone and the sail along the sides of the nosecone Note T2 s made after June of 2006 feature a nosecone that is attached to the sail at the top rear end To install simply pull the bottom of the nosecone tightly around the nose of the glider and mate the velcro surfaces at the bottom such that the nosecone lies flat and smooth It is important to fit the nosecone carefully so that there are minimal discontinuities in the sail in the nose area Any discontinuity in the sail in the nose area or along the leading edge will tend to promote premature separation of the airflow leading to an increased stall speed and reduced performance Never fly without the nosecone or with any replacement that was not designed for your 20 Return the VG to the full loose position Open the bottom surface zipper and pull forward on the crossbar center to assist the crossbar in returning to the full forward position Then re close the center zipper 21 Install the bottom surface battens The bottom surface battens are retained by a narrowing at the front of the bottom surface batten pockets You will feel increased resistance as you push the battens into this area 22 Conduct a complete preflight of th
79. om Place the bottom surface battens and tip wands on the sail and roll the sail gently and carefully parallel to the trailing edge of the outboard portion of the sail Install a Velcro sail tie on each wing far enough behind the trailing edge to capture the end of the inboard sprog Try to roll the sail in such a way that the leading edge portion remains as smooth as possible Do not attempt to stuff the sail between the Mylar pocket and the leading edge tube at any point where you feel resistance and do not attach the velcro ties so tight so as to induce creases in the Mylar or leading edge sail material Note that the leading edge panel of the sail extends behind the end of the Mylar insert roll the sail in this area so as to avoid creasing the leading edge panel at the rear of the Mylar insert 11 At the wingtips lay the sail at the tip out flat and fold the wingtip forward over onto the bottom surface of the sail 12 13 14 15 16 17 Working from the trailing edge roll the sail tightly to the leading edge and install the tip cover bag Note If you re breaking down in a dirty rocky and or abrasive area you can combine this step with step 7 above by pivoting the wing inwards enough to allow you to flip the sail at the tip over the top of the leading edge fold forward and roll up the wing tip and put it in the tip cover bag Finish rolling the sail in the area of outboard sprogs and install the othe
80. ommend using an aircraft landing approach 45 entry leg downwind leg base leg and final leg whenever possible and we suggest that you practice making your approaches with as much precision as possible Under ideal conditions landing approaches are best done so as to include long straight final into the wind at speed above best L D speed In very limited field or field which slopes slightly downhill when landing in light wind you may need to make your final approach at slower speed perhaps as slow as minimum sink in order to be able to land within the field In winds of less than 5 mph if the landing area slopes down hill at more than 12 1 you should seriously con sider landing downwind and uphill or crosswind across the slope Landing attempts which require slow speed approaches maneuvering around obstacles or into a restricted area or downwind or cross wind landings are not recommended for pilots below an advanced skill level Standard Aircraft Approach Pattern Entry Leg Downwind Leg We recommend that you make your approach with the VG set between full loose and 1 3 on A full loose VG setting will reduce glide performance making it easier to land on target or within small field It will also ensure maximum control authority during the approach and especially when fly ing very slowly on final At VG full loose however there is some loss of aerodynamic efficiency and flare authority F
81. or this reason in very light winds at higher wing loadings or at higher density altitudes it is recommended that setting of VG 1 4 be used full loose VG setting will also in crease the glider s roll sensitivity and some pilots have had difficulty with roll yaw oscillations on final The best way to avoid this is to fly your entire approach at a constant airspeed and to control your touchdown point by making adjustments to the shape of your pattern You should choose your approach speed based on the amount of wind and turbulence present in stronger wind and more tur bulent air fly faster In strong wind when the air is stable and you expect a strong gradient or if ob stacles indicate the likelihood of a wind shadow near the ground fly faster In any case however try to fly a constant airspeed throughout the approach In particular we recommend against the technique of make a diving turn onto final This maneuver sometimes called a slipping turn is often taught to student hang glider pilots as a way to lose altitude during the approach While it will work reasonably well with low or medium performance low aspect ratio gliders which have high levels of yaw stabil ity and damping and which are able to lose energy by diving because of the large increase in drag at higher speeds on a high performance glider this technique serves only to convert the energy of alti tude to energy of speed while at the same time suddenly i
82. ossbar will likely not fully return to its full forward position leaving the sweep wire slack and allowing the sweep wire tang to disengage from the keyhole collar if the safety is not engaged In flight there is enough load on the crossbar to maintain continuous tension on the sweep wire but on the ground cycling the VG can cause the sweep wire to become slack Never install the keyhole tang onto the keyhole bolt without making absolutely sure that the tang is fully engaged on narrow neck of the bolt and pulled forward into the fully locked position with the safety button in the full up position Due to the friction in the system if this attachment were to become disengaged on the ground it could be possible that the pilot would not notice it and he could launch with the sweep wire disengaged This would result in a complete loss of structural support of the glider and a total loss of control Also never attach the pull string to the collar even temporarily Note if the button should become stuck in the down position it can usually be released and made to pop up by lifting on the keel tube just forward of the keyhole collar bolt and taking the ground load off of the rear stinger See the photos below Note T2s manufactured during or after September 2005 include keel stand After you have ten sioned the sweep wire if you are setting up on reasonably level ground and if there is not too much wind you can deploy the k
83. p h 2 negative 30 degree angle of attack load test at a speed equal to at least the greatest of a 100 of the placarded maximum maneuvering speed b 100 of the placarded maximum rough air speed c 87 of the placarded speed never to exceed for at least 3 seconds without failure The required speed for the T2 for this test was 46 m p h 3 negative 150 degree angle of attack load test at a speed equal to at least the greater of 30 m p h or 50 of the required positive load test speed for at least 3 seconds without failure The required speed for the T2 for this test was 32 m p h 4 For the T2 with a Vne of 53 m p h pitch tests at speeds of 20 m p h 37 m p h and 53 m p h which show the glider to be stable over a range of angles of attack from trim angle to 20 degrees below zero lift angle at 20 m p h and from trim angle to 10 degrees below zero lift angle at 37 m p h and from 10 degrees above zero lift angle to zero lift angle at 53 m p h 5 Flight maneuvers which show the glider to be adequately stable and controllable throughout the normal range of operation Note The T2 has been designed for foot launched soaring flight It has not been designed to be motorized tethered or towed It can be towed successfully using proper procedures Pilots wishing to tow should be USHGA skill rated for towing and should avail themselves of all available information on the most current proper and safe towing procedures Su
84. p to tip 389 5 VGT wo raked tips 394 6 VGT with raked tips 6 Location of Information Placard Location of Test Fly Sticker Keel 7 Recommended Pilot Weight Range 160 235 8 Recommended Pilot Proficiency USHGA Advanced f GLIDER MODEL MANUFACTURED BY 11 dimension NOTE These specifi r given gli uration whethe config detailed same model performance certification each HGMA certified gl airworthiness informa 181 T2C Wi s in Be can or is stabil stand HGMA AIRWORTHINESS STANDARDS HGMA T2C 136 COMPLIANCE VERIFICATION SPECIFICATION SHEET 136 115 Wing inches weights in poun cations der is a aware h guarantee the abili in the sa ity and ards ider ion gt An owner s manual Inc ds are intended only as a guideli certifled model and whether it is in the certified owever that no set of specifications however ty to determine whether a glider is the on as was certified or has those aracteristics required by the is required to be delivered with is required that it contain additional ne for determining me configurati structural ch Weight of glider with all essential parts and without coverbags and non essential parts 68 72 depending on options Leading Edge Dimensions a Nose plate anchor hole to 1 Crossbar attachment hole 124 6 2 Rear sail attachment point 186 5 b Outsi
85. ph at VG Between VG and VG full tight the trim speed will normally stay the same or decrease slightly as the sprogs begin to become engaged If the trim speed continues to increase between VG and VG full tight it is an indication that the sprogs may be set too low irrespective of the sprog measurement and the pitch pressure at VG full tight at pilot full forward should be checked carefully to make sure that it remains positive see below Sprogs set too low can cause inadequate stability both inside and outside the normal flight envelope and can increase your chances of experiencing a turbulence induced tumble or delayed recovery from a dive By contrast if the trim speed is lower at VG than it is at VG 1 it may be an indication that sprogs are set too high Sprogs set too high can result in excessive pitch bar pressure at high speeds exces sive roll control pressures lag in roll response and increased adverse yaw Note If after adjusting your sprogs you experience a significant degradation in roll control response be sure to check to see that you have not overtightened the nut that secures the sprog adjustment clevis fork to the sprog pillar Modest adjustments to sprog height will not have a significant effect on the glider s handling response so if you experience a dramatic change it is likely that something else is wrong Pitch pressure at the highest speeds will be lightest when the VG is set to full tight At VG
86. phases of the approach In other words you will be higher and on a steeper angle of descent at every point during the approach You should also err on the high side when in doubt because with the drogue chute you have limited ability to extend flatten your glide but very good ability to reduce steepen it For example in the normal glider configuration if you 35 were approaching at best L D speed into head wind and were coming up short you would speed up With the drogue speeding up will primarily degrade your glide and will not get you significantly more distance When using the drogue set up higher and approach with more speed Then if you are too high you can still speed up more and cut your glide while if you are too low you can slow down and extend your glide When you round out on short final and begin slowing down the drogue will shorten the time period between round out and flare This reduces the opportunity that turbulence would otherwise have to lift wing or yaw the nose away from your flight direction As result tim ing the flare becomes easier and the chances of making wings level flare with the glider pointed in the direction of flight are increased Overall the effect is very much that of making the glider take on the landing characteristics of a lower performance easier to land glider The first time you use drogue chute you should fly over LZ at more than 1000 AGL and deploy it long b
87. r ties at this point Install the long wide sail Velcro around sail forward of control bar apex and stow the nosecone under this Velcro Install the glider bag Flip the glider over onto the ground Put the battens in the batten bag Remove both ball lock pins and remove the basetube entirely from the control bar Stow the ball lock pins in the downtube bottom end plugs Bring the legs of the control bar together and lay them down against the keel and install the control bar bag Stow the basetube in the tail end of the glider bag between the leading edges Lay the batten bag along the side of the control bar with the open end to the rear and slide the forward end of the basetube into the open end the batten bag to isolate it from the sail Zip up the glider bag 39 T2 and T2G Stability Systems Several design features of the 2 and T2C determine the degree of glider s stability in pitch The combination of the wing sweep and spanwise twist Reflex in the root and inboard section of the wing the degree of which is determined by the lengths and hole locations of the keel the control bar the front and rear bottom wires and by the shape of the battens in the inboard area of the wing The alignment of the sprogs and the height at which they and the transverse battens support the trailing edge The shape of the preformed battens and the internal fabric ribs and the adjustment of
88. r a prone pilot with a properly designed and ad justed harness is at least 40 m p h All speeds given above are indicated airspeeds for a properly calibrat ed airspeed indicator mounted in the vicinity of the pilot Wills Wing provides such an airspeed indicator with the glider It is strongly recommended that the pilot fly with such an airspeed indicator Refer to the section on using the airspeed indicator for further information on speeds to fly The recommended hook in pilot weight range for the T2 is T2 and T2C 154 185 285 lbs 2 and 2 144 160 235 Ibs T2C 136 150 210 lbs Be advised that pilots with hook in weights of less than 20 lbs above minimum will find the 2 more demanding of pilot skill to fly and that pilots hooking in within 20 Ibs of the maximum will experience some relative degradation of optimum sink rate performance due to their higher wing loading as well as increased difficulty in foot landing the glider in very light winds or at high density altitudes A minimum USHGA Advanced IV level of pilot proficiency is required to fly the T2 safely Pilots are advised that the optimum proficiency level for the T2 is higher than the minimum recommended Opera tion of the glider by unqualified or under qualified pilots may be dangerous Operating the T2 outside of the above limitations may result in injury and death Flying the T2 in the pres ence of strong or gusty winds or turbulence may result in loss of cont
89. r and front leading edges are in contact along a line on the leading edge of the tube just below the horizontal centerline where the sail contacts the leading edge tube Two crescent reducers are used to step down from the larger diam eter of the front leading edge to the smaller diameter of the rear leading edge and hold the rear leading edge in proper position inside the front leading edge A screw holds the rear crescent in place in the front leading edge and a clevis pin holds the front crescent in place in the front leading edge and simultane ously passes through and secures the rear leading edge in place in the front leading edge Note that this clevis pin passes through the center of the front leading edge but is offset from the center of the rear lead ing edge due to the eccentric location of the rear leading edge within the front The rear end of the rear leading edge contains a receptacle for the tip wand secured in place by a clevis pin five inches from the rear end of the tube and a small screw 1 2 from the end of the tube The clevis pin also passes through a tang on the rear sail mount webbing strap and secures this strap to the rear lead ing edge Reassembling the T2 after breakdown for shipping 1 Lay the glider down on its back bag zipper up on a smooth clean work surface Unzip the glider bag pull it off of the glider at the front and rear and unfold the sail to its full length Turn the glider right side up a
90. r six battens five shortest cambered battens 5 Unzip the zipper at the wing tip and pull on the string attached to the end of the tip wand cam lever lever to un cam the lever and straighten the tip wand Install the tip bag over wand and tip of the sail at this time 6 De tension the crossbar sweep wire and let the wings fold in slightly Re install the neoprene protective socks over the rear wire junction bolt and the rear end of the keel Remove the remaining top surface battens and the bottom surface battens at this time Disengage the rear lever tips on the two root nose battens from the trailing edge hem but leave the battens in the sail 7 Swing each wing in about 1 3 of the way At each wingtip remove the tip cover bag Holding the tip wand in one hand pull straight aft on the cam lever and disengage the cup from the end of the wand Remove the tip wand by pulling straight aft from the end of the leading edge Rotate the lever inside the sail and close the access opening 8 Fold the wings all the way in to the keel pulling the sail over the top of the leading edges and folding all of the sprogs forward At this time you should dismount the front ends of the root battens from the studs on the keel and pull them out several inches 9 Make sure the sprog zippers are fully open The sprogs remain outside the sail when the glider is packed up 10 Pull the sail out away from the keel until it is even on top and bott
91. reversed tuft should be wig gling rapidly If it is not it is probably stuck A tuft indicating normal flow will not usually wiggle An 5 occasional application of silicone spray to the tufts and making sure that they are positioned so that they cannot catch on any seam will minimize the problem of sticking Towing Special care must be taken in any form of towing In particular in platform towing it is critically important that the nose line be attached so that there is no possibility of inducing spontaneous disengagement of the bottom front wires In particular there must be no way that the nose line can pull forward on the nose wires the nose tang or anything attached to either See the photos below for the correct and incorrect methods of nose line attachment The photo above shows CORRECT method for attaching nose line for platform towing Note that the line is cinched over the top of the tang in front of the tang handle and in front of the wires The photo above shows an INCORRECT method for attaching nose line In the photo the nose line is routed between the wires making it likely that the nose line could push forward on the nose tang causing it become disconnected It is also possible for the nose line to pull forward if routed outside the V of the wires but behind the tang handle In any platform towing launch a final check of routing of the nose line and the security of the nose tang should
92. rners making sure there are no kinks or twisted thimbles Check for proper installation of all nuts and safety rings at the control bar corners Check for full engage ment of the ball lock pins Launching and Flying the T2 Before launching hook in to the glider and do a careful hang check We recommend that you hang as close to the basetube as possible this will give you lighter control pressures and better control in both roll and pitch 1 We recommend that you launch with the VG set between full loose and 1 3 on Having the VG set at 1 4 when launching will enhance the glider s lifting capability and increase the trim speed slightly enhancing control of the glider during departure If you launch with the VG set partly on you must make sure that there is no way that the excess VG rope can catch on anything on the ground or that you can step on it One way to do this is to fold the rope into a flat loop about eight inches long and tuck it around the outside of the right downtube above the bottom front rear and side wires If the wind is more than 10 m p h or gusty you should have an assistant on your nose wires on launch and if necessary an assistant on one or both side wires Make sure all signals are clearly understood The angle at which you hold the glider should depend on the wind speed and slope of the terrain at launch you want to achieve a slight positive angle of attack at the start of your run 2 Ru
93. rocedures Inspection Replacement Adjustment On the original T2 type spreader bar with the removable end caps it 15 important not to over tighten the securing Allen screws as they be broken during installation or removal if over tightened These screws are manufactured with small patch of locking material to insure that they will not back out after installation so if you have removed them to replace the hang loop you should use small amount of non permanent Loc Tite when you re install them As shown in the second photo on the first page the back up portion of the original T2 type hang loop is secured to the glider by larks heading the loop around the keel underneath the sweep wire and VG ropes On the most recent T2 type hang loop the back up portion is secured around the keel and over the top of the sweep wire and VG ropes with a quick link After installation the quick like should be finger tightened and then tightened not more than one quarter additional turn with a wrench The purpose of routing the backup loop over the top of the sweep wire and VG ropes is that this will provide an additional means of connection between the pilot and glider in the event of a failure in flight of the keel tube There is no requirement to upgrade from an older configuration to one of the newer configurations There are some possible reasons to upgrade 1 The swiveling type of support pillar allows the spreader bar to be rotated more eff
94. rol bar bag 2 Remove the screws that secure the sail at the front of the leading edges Remove the zip tie at the bottom nose area Completely unzip and separate the bottom surface zipper 3 Spread the wings slightly Dismount the sail from the rear leading edges by removing the clevis pin located five inches forward of the rear of the leading edge tube Remove the pin from the sail anchor strap and re install it in the leading edge 4 Remove the rear leading edges and the inboard sprogs from the glider See the section on To Remove The Rear Leading Edges for Shipping at the beginning of this manual 5 Unbolt the bottom side wires from the crossbar and feed them through the hole and out of the sail 7 Unbolt the bottom rear flying wires from the rear keel Reassemble the hardware removed onto the bolt in the original order so that it doesn t get lost All disassembled assemblies on the glider must be reassembled in the proper order and orientation Use the exploded parts diagrams in this manual to help you 52 Slide the frame out through the open center zipper If you encounter resistance stop and find out what is hanging up If you need to send the sail in to the factory for repair remove the Mylar and the transverse battens The Mylar is removed from the front end of the Mylar pocket It helps to secure the opposite end of the sail to something solid so that you can lay the leading edge out straight and pull the M
95. rol of the glider that may lead to injury and death Do not fly in such conditions unless you realize and wish to personally assume the associated risks Wills Wing is well aware that pilots have and continue to perform maneuvers and fly in conditions that are outside the recommended operating limitations stated herein Please be aware that the fact that some pilots have exceeded these limitations in the past without dangerous incident does not imply or insure that the limitations may be exceeded without risk We do know that gliders which meet all current industry standards for airworthiness can and do suffer in flight structural failures both as a result of turbulence and as a result of various maneuvers outside the placarded operating limitations including but not necessarily limited to aerobatics We do not know and cannot know the full range of maneuvers or conditions that may cause the pilot s safety to be compromised nor can Vetest the glider in all possible circumstances 2 Reassembly After Shipping and Breakdown for Shipping Procedures The front leading edge is 60mm 2 36 over sleeved with 62mm 2 44 at crossbar junction The rear leading edge is 50mm 1 97 over sleeved with 52mm 2 05 at the outer sprog attachment point Because of the different diameters of the front and rear leading edges the front and rear leading edges are not concentric that is they do not share the same axial centerline Rather the rea
96. s bear in the spar and spar root plates and lubricate the bearing surfaces with white grease Look for any visual evidence of damage to the spar If any damage is suspected remove the spar completely from the glider for more thorough inspection and contact Wills Wing Remove the transverse battens from the sail and inspect for damage Special circumstances 1 Any time you suffer crash or extremely hard landing you should have an annual inspection done on your glider to insure that you find all damaged parts Following any hard landing be sure to inspect the apex hardware the control bar legs and basetube and all control bar fittings for damage Any time you replace control bar leg or basetube you must carefully inspect all related fittings and replace any that are bent or damaged Hard landings may also impose very high loads on the sprog assemblies and transverse battens In spect accordingly 2 If your glider is ever exposed to salt water you will need to have the glider completely disassembled in accordance with the recommended annual inspection procedure All frame parts will need to be disassembled including the removal of all sleeves and bushings flushed liberally with fresh water dried completely and treated for corrosion inhibition with LPS 3 or other suitable agent Cleaning Your Sail Keeping your sail clean will extend the life of the cloth When cleaning the entire sail you should generally use o
97. s this is the easiest way to install the rear leading edges Remove all Velcro sail packing ties 2 Identify the rear leading edges as to left and right in order to make sure you are mounting the correct rear leading edge into the correct front Check the right left label or marking on the rear leading edges If the leading edges are not marked identify left and right by consideration of the following The sprogs are mounted to the back side of the leading edges the sprog cables are attached to the top of the leading edges and the wand receptacle is at the outboard end of the leading edge The photo below shows the right rear leading edge in a right side up orientation Each rear leading edge should have one crescent on the front end of the tube and another six inches aft of that There should be a clevis pin and safety ring installed in the front crescent and a small hex socket button screw installed in the rear crescent The spare parts kit included with the glider should have a small hex wrench that fits this hex socket button screw Remove the clevis pin and safety and the hex socket button screw from each rear leading edge Take care to preserve the position and orientation of each crescent on the leading edge tube Working on one wing at time and working with the appropriate rear leading edge fold the outer sprog which is attached to the rear leading edge to the rear against the rear leading edge Slide the outboard en
98. sent or when you are in proximity to terrain or other gliders Between VG full loose and VG one half the glider retains good lateral control authority and response Tighter than VG one half the glider s roll pressures increase significantly and the roll rate becomes significantly slower Tighter VG settings are recommended for straight line gliding or for flying in smoother conditions when well clear of both the terrain and of other gliders The stall characteristics of the T2 at tighter VG settings are more abrupt and less forgiving and the glider is more susceptible to spinning Full breaking stalls and accelerated stalls at tighter VG settings are not recommended The T2 may be equipped with either Litestream or Slipstream 2 type downtubes Unlike the Talon the VG system is rigged the same whether the glider has Litestream or Slipstream 2 downtubes in each case the VG rope is routed down the front side of the downtube As a result Slipstream downtubes as used on the Talon cannot be used on the T2 on the right VG side of the control bar although they can be used on the left side Similarly Slipstream 2 downtubes cannot be used on a Talon on the right side though they can be used on the left side 2 1 Landing the T2 The following discussion assumes that you are executing the landing without the aid of drag device such as drogue chute At the end of this section we will discuss the use of drag inducing devices We rec
99. set too high When the sprogs are set properly the trim speed will normally increase at least up to VG 3 4 and will not be significantly higher or lower at VGT than at VG 3 4 In the absence of the use of tufts it has become common for pilots to talk about bar position or about indicated airspeed when trying to communicate how to trim a glider properly or how to fly a glider at the proper speed for a given situation The problem is that these methods are unreliable and inconsis tent from one pilot to another even on the same glider The angle at which your harness suspends your body in your glider has a great deal to do with your perception of the bar position relative to your body Airspeed indicators vary in their indicated airspeed depending on the make of the instrument its calibration any installation error etc The use of tufts gives you an absolute first hand indication of the actual aerodynamic event associated with two critically important airspeeds on your glider It is a potentially useful tool that may improve your flying Speeds to Fly and Using Your Airspeed Indicator The Wills Wing Hall Airspeed Indicator has been specially designed to help you fly your T2 at the proper speeds for optimum safety and performance and is provided with your glider Color Coding 55 mph Red 48 55 mph Yellow 28 48 mph Green 18 28 mph White 30 27 30 20 20 White This is the range from 18 m p h to 28 m p h
100. setube below your shoulders Do not pull in rapidly and do not stuff the bar As the nose lowers and the angle of attack is reduced the stall will be broken and the spin will stop In an aggravated spin be prepared for the nose to pitch down significantly and for the glider to accelerate to a high speed during the resulting dive Ease the control bar out gently to recover to level flight Recognize that such recovery will consume significant altitude and will result in the glider assuming an unpredict able heading and attitude Recovery from a spin at low altitude or in the vicinity of terrain or other aircraft may involve a flight trajectory which intersects the terrain or another aircraft at a high rate of speed In view of the unpredictable nature of spins and spin recovery Wills Wing recommends that no attempt should ever be made to deliberately spin the glider The T2 provides the pilot with a high degree of pitch authority in combination with a very low twist sail As a result it is possible to produce a very aggravated and severe stall the recovery from which may involve very severe pitch down rotation the pilot going 4 weightless and the glider recovering via an unpredictable trajectory with a significant altitude loss There fore aggravated stalls should not be induced except on landing flare Due to the increased sharpness of the stall break and the reduced directional control available at tighter VG settings flight withi
101. sprog pillar block and adjust the sprog fork directly loosening or unscrewing the fork to raise the sprog NOTE It is very im portant if you remove this screw to adjust the sprogs that you not overtighten the nut when you re install it Doing so can severely degrade the glider s roll response by causing the fork to bind on the pillar block The screw should be free to turn by hand in the fork after re installation Use the opposite procedure shortening the sprog to lower the sprog Caution Sprogs set too low can result in inadequate stability in pitch both inside and outside the normal flight envelope and can increase your chances of experiencing a turbulence induced tumble or delayed recovery from a dive EE Test flight Setting the sprogs to prescribed measurements 15 only the first step in ensuring that glider has an appropriate level of pitch stability There are two components to the pitch stability requirements _ the required vehicle test results and the required flight test results The primary purpose of the vehicle pitch tests is to measure static pitch stability outside of the normal flight envelope and it is important that the sprogs be adjusted correctly to at least the minimum listed settings in order for the glider to meet the ve hicle pitch test stability requirements However adequate stability for safe operation also requires that the glider conform to the required levels of pitch stability within
102. st begin to notice the tension on the bottom surface from the velcros in flight with the VG set to full loose Increase the amount of reflex upward deflection at the tail in the three most inboard battens on each wing You can increase the reflex by up to an inch over what is shown on the batten pattern _ the result will be an increase in pitch pressure a slight improvement in high speed glide and a slight degradation in minimum sink rate performance Note Do not try to re shape the 12mm battens they are difficult to re camber without breaking Raise the height of the rear of each tip wand up one turn of adjustment see the section on tip wand adjustment 45 Wills Wing Technical Bulletin 20061019 T2 Hang Loop and Spreader Bar Replacement Issue Date 10 19 2006 Rev Date Page 1 2 Applies To All Models T2 Introduction There have been two types of hang loop spreader bar configurations used on the T2 and three different configurations of hang loop spreader bar and support pillar combination When order ing replacement hang loop or replacement spreader bar you must specify the glider serial number and the hang loop type and spreader bar type and take note of the proper installation procedures as detailed below The first 50 or so T2 s those assembled through mid July of 2005 were made with the original 2 type hang loop and hang loop spreader bar and the non swiveling support pillar
103. t to fly the glider off of the cart Be prepared to pull in once clear of the cart if necessary so as not to climb more quickly than the tug Once clear of the cart and in position behind the tug use firm lateral movements of short duration for roll and directional control in order to stay in position behind the tug Do not move to one side of the bar and wait for the glider to respond this will lead to over control and being out of position and may lead to roll yaw oscillations It is better to bump the glider firmly in the direction of desired correction and then return to center If you need more correction bump again In pitch stay on top of the situation and be as aggressive as necessary to keep the tug on the horizon Trimming Your Glider in Pitch You will find that the pitch trim of the T2 as well as the basetube position at trim changes with VG setting At VG loose the T2 will normally be trimmed very close to stall and may even be trimmed below the minimum sink or minimum sustainable speed trimmed partly in a mush The bar position at trim at VG loose will be relatively far out As you set the VG tighter the trim speed will normally increase and the trim bar position will move back On a competition tuned T2 with a Mylar sail the trim speed at VG full tight may be as high as 30 mph or more At tighter VG settings the amount of pitch pressure felt as you move away from trim also decreases At VG loose
104. tal accident any decision that can be wrong is a bad decision The logical conclusion of this analysis of safety is that most pilots are making far too many bad decisions If they weren t we wouldn t see nearly as many accidents in the sport The logical conclusion from that is that not only can you not use a good result as evidence you made a good decision you also cannot use other people s decision making as an example for your own If you want to beat the odds and have better personal safety than the statistical average you have to make better decisions than the average pilot That will sometimes mean choosing not to fly at all and it will sometimes mean passing up that turbulent thermal that is too close to the hill and as a result going down to the LZ instead of staying up It will sometimes mean cut ting an XC flight short to take advantage of a more suitable landing area In each of these cases your friends may well not take the conservative route and in most cases they will be rewarded with successful flights In the end however making the more conservative decision will mean you ll still be around to fly another day Have fun Fly safely See you in the sky Wills Wing Inc www willswing com GLIDER MODEL HGMA ATRWORTHINESS STANDARDS HGMA T2 and T2C 154 COMPLIANCE VERIFICATION SPECIFICATION SHEET 2 154 MANUFACTURED BY Wills Wing Inc All dimensions in inches wei
105. the flight envelope and such conformance can only be verified by actual flight testing and this may require a higher sprog setting and or other ad justments Specifically at all VG settings when flown in smooth air the glider should have a trim point in pitch that corresponds to a constant steady state speed at which the glider seeks to fly Speeds below this trim point should require a continuous outward pressure or push on the control bar and speeds above this trim point should require a continuous inward pressure or pull on the control bar As this pressure is relaxed the glider should return to the trim bar position and the associated trim speed Note that it is common for this trim speed to increase with increasing VG settings and that it is considered permissible as a matter of individual pilot choice to set the trim speed at the looser VG settings to be at or even slightly below the glider s stall speed thus requiring a constant pull in to maintain flight above stall speed at the loosest VG settings It should be possible however to set a position for the pilot hang loop that will provide a trim point within the normal operating speed range at any VG setting It is typical on a T2 or T2C for the trim at VG full loose to be near or even below the minimum sink speed perhaps 21 mph 34 kph indicated As the VG setting is increased it is typically for the trim speed to rise to a maximum of perhaps 25 29 mph 40 47 k
106. ther gliders and watch your tufts on the inside wing which will be at the highest angle of attack you will get a feel for the way your minimum sink speed varies at varying bank angles Also be aware that in some thermalling situations such as when trying to maximize climb rate in a thermal with a very strong and very small core there may be an advantage in overall effective climb performance to flying so slowly that some portion of the inside wing is partially stalled most of the time This is however an advanced and potentially dangerous technique it is the beginning of a spin entry and if pushed just a little too far can result in a sudden and extreme loss of control and or altitude In general if the tufts are indicating flow reversal associated with the stall you will improve both performance and controllability by pulling in and speeding up a little One final caution from time to time a tuft may to stick completely to the sail and fail to properly indicate the direction of local flow This may result from static buildup or from the fine threads of the yarn becoming caught on a seam or some dirt or imperfection in the sail The tuft may stick while in dicating normal flow but most often it will stick after having reversed such that the tuft will indicate a stalled condition that does not exist One clue in this situation is to note whether or not the tuft is wiggling Since flow reversal occurs during a turbulent separated flow a
107. tice demands the consistent exercise of pilot skill knowledge of airmanship and weather judgment and attention at a level that is ap propriate to the demands of each individual situation Pilots who do not possess or exercise the required knowledge skills and judgment are frequently injured and killed The statistical rate at which fatalities occur in hang gliding is approximately one per thousand participants per year The Federal Aviation Administration does not require a pilot s license to operate a hang glider Hang glid ers and hang gliding equipment are not designed manufactured tested or certified to any state or federal government airworthiness standards or requirements Federal Aviation Regulation Part 103 states in part ultralight vehicles are not required meet the airworthiness certification standards specified for aircraft or to have certificates of airworthiness and operators of ultralight vehicles are not required to meet any aeronautical knowledge age or experience requirements to operate those vehicles or to have airman or medical certificates Wills Wing hang gliding products are not covered by product liability insurance As a hang glider pilot you are entirely responsible for your own safety You should never attempt to fly a hang glider without having received competent instruction We strongly recommend that you not partici pate in hang gliding unless you recognize fully and wish to personally assume all of the
108. tling on your shoulders The lighter the wind the stronger should be both your flare and your run The traditional method of landing in light or no wind calls for a sharp aggressive flare at precisely the correct moment This technique works fine when done correctly but it s not easy to get the timing just right Flare too early and you will climb and then fall with the nose pitching down Flare too late and you won t get the nose up enough to stop your forward motion and the glider may nose into the ground as you run into it from behind The flare timing process is made much easier by using a combination of a crescendo flare and a run out of the landing As you bleed off speed on final flying just above the ground you are at first letting the control bar out towards its trim position As the glider reaches trim speed which will normally be one to three mph above stall speed you begin to gently push the bar out to keep the glider from settling At this point it is almost time to flare As the glider enters the mushing range of angles of attack it will begin to settle in spite of your continuing to ease the bar out This should be hap pening well before your arms are significantly extended At this point begin your flare by smoothly accelerating the rate at which you push out on the bar At the same time draw one leg forward put a foot down and start to run as hard as you can This run should be very much like an aggressive take
109. ufts Also in active air the tuft behavior will be affected by transient changes in angle of attack due to gusts That is why familiariza tion with these other more accessible indicators is important After finding your minimum sink speed experiment with roll control response at speeds just above and just below this speed to find the value of MCA and the corresponding bar position and other indicators for this speed Realize that your effective MCA is going to be higher and higher as the air 25 becomes more and more turbulent control response that is perfectly adequate in smooth air will not be good enough in rougher air At VG 1 4 or looser you can try flying the glider with the tufts indicat ing spanwise flow or partially reversed You will probably find that the glider is controllable but only with more than normal physical effort Note that both MCA and MSA come well before the glider actually stalls in the traditional sense i e pitches uncontrollably nose down You may also be able to sense or your vario may tell you that although the glider has not stalled pitched nose down your sink rate has increased significantly In this mode the glider is mushing The VG rope is marked in 25 increments one mark indicates VG 1 4 two marks VG 1 2 or VGM three marks VG 3 4 and one long mark at the full pull of the rope indicates VG tight VGT The stall and spin characteristics of the T2 are relatively benign at VG s
110. ufts will indicate the impending separation by first wiggling and then deflecting spanwise before they fully reverse and point forward The first onset of stall occurs well before the familiar stall break in which the glider pitches uncontrollably nose down to recover from the stall By the time the stall break occurs all tufts but those farthest outboard will have indicated reversed flow On the T2 minimum sink rate is achieved with the tufts deflected spanwise between 30 and 60 degrees Significant control authority is normally retained even with the tufts indicating 90 degree spanwise flow however you will usually achieve better performance at a slightly higher speed To find the glider s minimum sink speed fly the glider in smooth air early in the morning or late in the afternoon When you are well away from the terrain and well clear of other aircraft look up at the wing tufts while you very gradually reduce the speed of the glider Note the speed at which the tufts indicate a partial spanwise flow between 30 and 60 degrees of deflection This is your speed for minimum sink rate Familiarize yourself with the position of the control bar relative to your body at this speed with the sound and feel of the wind with the reading on your airspeed indicator and with the feel of the glider in terms of pitch and roll pressures Most of the time when you are flying it will not be practical to look up for extended periods of time at your t
111. ylar straight out of the pocket If you have trouble getting it to slide out freely it is probably because the edge of the Mylar has worked its way into the seam and gotten stuck on the adhesive seam stick tape Work your way up and down the leading edge pocket rolling the Mylar away from the seam until it is free along its entire length Fold and package the sail carefully if you plan to ship it in for repair Be sure to include written instructions of what you want done your name address email address and phone number where you can be reached during the day Re installing the sail on the frame 1 Install the Mylar in sail Make sure you install it right side up the slit edge is at the front and on the bottom The easiest way to install the Mylar is to push it into the pocket using long lofting batten attached to the end of the Mylar insert which is first inserted in the pocket small diameter pin on the end of the lofting batten placed through small hole in the end of the Mylar insert allows you to push the Mylar into the sail and remove the batten while leaving the Mylar in place You will have to stop from time to time to make sure the Mylar is properly lying flat in the pocket Do not push the Mylar too far into the pocket Make sure there are no folds in the Mylar especially at the tips Make sure the Mylar wraps in the proper direction to follow the sail around the leading edge as it enters the pocket Install
Download Pdf Manuals
Related Search
Related Contents
Manuel d`utilisation de ndv3 - Neocoretech Support Website ダウンロード c12) United States Patent Power Pack Service Manual for units Weslo C22 User's Manual COLLE SECONDE INDUSTRIE CN2600 Series Dual-LAN Terminal Server User`s Manual Global Mapper Shortcut Key AR-02 取扱説明書 Copyright © All rights reserved.
Failed to retrieve file