Home

User Manual

image

Contents

1. CtorSt Cutout reset mode parameter Press SET to access the parameter setting Normally the cutout is set for manual mode Cto Auto Cutout set for automatic reset Serial Interface Parameters The serial RS 232 interface parameters menu is indicated by SErlAL Serial RS 232 interface parameters menu The serial interface parameters menu contains parameters which determine the operation of the serial interface These controls only apply to controllers fitted with the serial interface The parameters in the menu are baud rate sample period duplex mode and linefeed Baud Rate The baud rate is the first parameter in the menu The baud rate setting determines the serial communications transmission rate The baud rate parameter is indicated by BAUd Serial baud rate parameter Press SET to choose to set the baud rate The current baud rate value will then be displayed 2400 b Current baud rate The baud rate of the serial communications may be programmed to 300 600 1200 or 2400 baud Use UP or DOWN to change the baud rate value 1200 b New baud rate Press SET to set the baud rate to the new value or EXIT to abort the operation and skip to the next parameter in the menu 2100 User Manual 6 13 2 Sample Period The sample period is the next parameter in the serial interface parameter menu The sample period is the time period in seconds between temperature measurements transmitted
2. 6 3 1 Programmable Set points The controller stores 8 set point temperatures in memory The set points can be quickly recalled to conveniently set the system to a previously programmed temperature To set the temperature one must first select the set point memory This function is accessed from the temperature display function by pressing SET The number of the set point memory currently being used is shown at the left on the display followed by the current set point value 25 00C Process temperature in degrees Celsius SE Access set point memory 1 25 0 Set point memory 1 25 0 C currently used 2100 User Manual Press SET to accept the new selection and access the set point value SEI Accept selected set point memory 6 3 2 Set point Value The set point value may be adjusted after selecting the set point memory and pressing SET The set point value is displayed with the units C or F at the left IC X 40 00 Set point 4 value in C If the set point value need not be changed then press EXIT to resume displaying the bath temperature To adjust the set point value press UP or DOWN UFP Increment display l C 42 50 New set point value When the desired set point value is reached press SET to accept the new value and access the set point vernier If EXIT is pressed instead then any changes made to the set point will be ignored E SET Accept new set point value 6 3 3 Set
3. 0 00385x 10 0 0 126 ALPHA 50 0 10 0 00385 0 0038621 Figure 10 Calibration Example Thermistor Probe 8 6 Chapter 9 Maintenance 9 1 Maintenance The controller has been designed with the utmost care Ease of operation and simplicity of maintenance have been a central theme in the product development Therefore with proper care the instrument should require very little maintenance Avoid operating the instrument in dirty or dusty environments If the unit must be used in a dusty environment the controller can be sealed at the seams with a silicone sealant Sealing the controller protects the electrical components e A battery is used to maintain operating parameters in the unit All operating parameters including calibration parameters should be checked on a regular basis to insure accuracy and proper operation of the instrument See the troubleshooting section for the procedure on checking the status of the battery e If the outside of the controller becomes soiled it may be wiped clean with a damp cloth and mild detergent Do not use harsh chemicals on the surface which may damage the paint e f a hazardous material is spilt on or inside the equipment the user is responsible for taking the appropriate decontamination steps as outlined by the national safety council with respect to the material MSDS sheets applicable to all fluids used in the baths should be kept in close proximity to the ins
4. Ono ie ODO tnt eaten md 4 4 Thermocouple 4 5 Power Parts and Controls 5 1 Control System RANNER 5 2 Temperature Controller 5 3 Front Panel 5 4 Rear Panel Controller Operation 2100 User Manual 6 1 Process temperature aaneen nnen ven enen eenen nennen nnns 6 2 Reset Cutout annen nen enen enen enen eren een enen enen enenen senses 6 3 Temperature Set point annae eeen enen EE 6 3 1 Programmable Set points oan ann nennen enen nennen 6 3 2 SOL DONE Valle nee ee 6 3 3 Set point Vemmier nennen 6 4 Temperature Scale Une 6 5 Secondary Menu 6 6 Heater POWER Eee en 6 7 Proportional Band 6 8 SU EE 6 9 Controller Configuration aan anne neen enenn eneen enneren enen 6 9 6 10 Probe Parameters RTD Gensor eee ONLUS MEE 0 SKI ALPE c 6 11 Probe Parameters Thermistor Sensor NM MEME T m OM RA DO tenminste 6 12 Operating Parameters aan anan en enen enn eneneneenerenenenen 6 12 1 Cutout Reset Mode nanne eeen eeen se nne nennen 6 10 6 13 Serial Interface Parameters un aan enen enen enen ereneenneen eeens 6 13 1 srlse cIc ZK E Sample PENOU neren 6 13 3 Duplex Mode asana eenen nennen nennen nnns 0 1952 ENC OE nnee 6 14 IEEE 488 Parameters ennen eneen een enenreneneneenens Bell IEEE 288 AGS SS ensen eben 6 15 Calibration Parametere Lo Gl neede 0 1952 CON OC NI MEM LEO
5. ENTRO ee ee nen 6 16 Operation Gumman nnen nennen eneen enen ener Digital Communication Interface nnnnnnnnnnrn eenn enansnensnnnen eneen 7 1 Serial Communications aaneen enen eenen sneren enen enen enen 7 1 1 MIG mc m 7 1 2 SCUD eege 7 1 2 1 Dad SAS meestentieds ends 7 1 2 2 Sample PERO sneden deet 1 2 9 CIO IE INO cet 7 1 2 4 AT TS o E EE ERE E E E EEE 1 1 3 senal OS FANON znne nette 7 2 IEEE 488 Communication optional 7 2 1 Setup and Address Selection nennen enen enen 7 2 2 IEEE 459 OPel Allo seccion it salut ub du baden 7 3 Interface Commands aaneen enen enen eren erenerenernenenen Calibration OCS CUI nme 8 1 RID Probe CallDrAUOA u a 8 1 1 leie ler e ee rennen 8 1 2 Measuring the Set point Error 8 1 3 Computing RO and ALPHA ME 8 2 calibration EXAMP Enns 8 3 Thermistor Probe Calibration annen enen enen eee een enen ii Contents continued 8 3 1 Calibration POS u 8 3 8 3 2 Measuring the Set point Error 8 4 8 3 3 Computing DO and DG neen 8 5 8 3 4 Calibration Exame 8 5 Maintenance 9 1 Maintenance TLFOUDIESNOOUNG paneer deerne sede ade 10 1 Troubleshooting 10 2 COMMEN marenae UU 102 1 EMG DIE CUIN T Tm 10 2 2 Low Voltage Directive Safety iii 2100 User Manual List of Tables Table Title Page 1 International Electrical Symbols naan eneen enen en eene nenen rennen 2 SS CI
6. Setting the control temperature is done directly in degrees of the current scale It can be set to one hundredth of a degree Celsius The functions of the buttons are as follows SET Used to display the next parameter in the menu and to set parameters to the displayed value DOWN Used to decrement the displayed value of parameters UP Used to increment the displayed value EXIT Used to exit from a menu When EXIT is pressed any changes made to the displayed value will be ignored 9 4 Parts and Controls 5 4 Rear Panel 2100 TEMPERATURE CONTROLLER Calibration 1 Figure 4 Front panel features 3 The Control Indicator is a two color light emitting diode This indicator lets the user visually see the ratio of heating to cooling When the indicator is red the heater is on and when it is green the heater is off and the system is cooling Rear Panel The following features are found on the rear panel of the controller 1 power entry module 2 the solid state relay 3 the heater power connector 4 the stirrer power connector 5 the control probe input connector 6 the cutout thermocouple connector 7 the optional IEEE 488 GPIB interface connector 8 the RS 232 interface connector and 9 the serial number label see Figure 5 IN WARNING The output voltage to the heater and stirrer sockets Items 3 and 4 in Figure 5 is the same as the input voltage of the power entry module Item 1 in Fig
7. and type If you have questions contact an Authorized Service Center see Section 1 4 High voltage is used in the operation of this equipment Severe injury or death may result if personnel fail to observe the safety precautions Before working inside the instrument turn off the power and disconnect the power cord Before You Start 1 3 Safety Information FLUIDS Fluids used in the system controlled by this instrument may produce noxious or toxic fumes under certain circumstances Consult the fluid manufacturer s MSDS Material Safety Data Sheet Proper ventilation and safety precautions must be observed The instrument is equipped with a soft cutout adjustable parameter and a hard cutout set at the factory Adjust the soft cutout according to fluid characteristics or application As a guideline the soft cutout should be set 10 C to 15 C below the flash point of the fluid see Section 6 8 Cutout Insure that the flash point boiling point or other key fluid characteristics are not exceeded 1 3 2 CAUTIONS N CAUTION To avoid possible damage to the instrument follow these guidelines DO NOT plug the instrument into 230 V if the indicator window of the power entry module reads 115 V This action Will cause the fuses to blow and may damage the instrument DO use a ground fault interrupt device Operate the instrument in room temperatures as listed in Section 2 2 Environmental Conditions Calibration consta
8. at each of two different temperatures Any two reasonably separated temperatures may be used for the calibration however best results will be obtained when using temperatures which are just within the most useful operating range of the system The farther apart the calibration temperatures the larger will be the calibrated temperature range but the calibration error will also be greater over the range If for instance 20 C and 80 C are chosen as the calibration temperatures then the controller may achieve an accuracy of say 0 2 C over the range 20 to 80 C Choosing 30 C and 70 C may allow the controller to have a better accuracy of maybe 0 05 C over the range 30 to 70 C but outside that range the accuracy may be only 0 5 C 8 3 2100 User Manual RO 100 000 ALPHA 0 0038500 t 80 00 C measured t 79 843 C ty 120 00 C measured t 119 914 C Compute Errors err 79 843 80 00 C 0 157 C erry 119 914 120 00 C 0 086 C Compute RO 0 00385 1 100 000 100 115 120 0 80 0 1 0 00385 x 120 0 0 157 1 0 00385 x 80 0 0 086 120 0 80 0 ALPHA 00385 0 0038387 Figure 9 Calibration Example Platinum RTD Probe 8 3 2 Measuring the Set point Error The first step in the calibration procedure is to measure the temperature errors including sign at the two calibration temperatures First set the controller to the lower set point which w
9. order to be correct for the system Once the instrument is connected to the system the system current needs to be measured or calculated and the appropriate fuse size and characteristics selected Section 4 6 Fuses can be used as a guide for selecting a fuse Once the correct fuse type and rating is selected the following information is applicable The instrument is equipped with operator accessible fuses If a fuse blows it may be due to a power surge or failure of a component Replace the fuses once If a fuse blows a second time it is likely caused by failure of a component As a test disconnect the output device heater and apply power to the rest of the system Check to see if the fuse s blow If the fuse s blow only when an output device heater stirrer is connected the fault may be in the system component If not contact an Authorized Service Center see Section 1 4 If a mains supply power fluctuation occurs immediately turn off the instrument Power bumps from brown outs and black outs can damage the system Wait until the power has stabilized before re energizing the instrument For best accuracy the instrument needs to be calibrated with the system it controls Before You Start 1 4 Authorized Service Centers 1 4 Authorized Service Centers Please contact one of the following authorized Service Centers to coordinate service on your Hart product Fluke Corporation Hart Scientific Division 799 E Utah Valle
10. values Ry and ALPHA are computed by entering the old values for Ro and ALPHA the calibration temperature set points t and ty and the temperature errors err and err into the following equations 4 t R in pan RO Lu t 1 ALPHA t jerr 1 ALPHA t err ly mi ALPHA ALPHA If for example Ro and ALPHA were previously set for 100 000 and 0 0038500 respectively and the data for t ty err and erry were as given above then the new values RO and ALPHA would be computed as 100 193 and 0 0038272 respectively Program the new values RO and ALPHA into the controller Check the calibration by setting the temperature to t and ty and measuring the errors again If desired the calibration procedure may be repeated again to further improve the accuracy Calibration Procedure 8 8 2 Calibration Example 8 2 Calibration Example The controller is to be used between 75 and 125 C and it is desired to calibrate the system as accurately as possible for operation within this range The current values for RO and ALPHA are 100 000 and 0 0038500 respectively The calibration points are chosen to be 80 00 and 120 00 C The measured temperatures are 79 843 and 119 914 C respectively Refer to Figure 9 for applying equations to the example data and computing the new probe constants 8 3 Thermistor Probe Calibration 8 3 1 Calibration Points In calibrating the bath DO and DG are adjusted to minimize the set point error
11. 0 d RW DG mm a pa L To If for example DO and DG were previously set for 25 229 and 186 9740 respectively and the data for t ty err and erry were as given above then the new values DO and DG would be computed as 24 880 and 185 728 respectively Program the new values DO and DG into the controller The new constants will be used the next time the bath temperature is set Check the calibration by setting the temperature to t and ty and measuring the errors again If desired the calibration procedure may be repeated again to further improve the accuracy Calibration Example The system is to be used between 25 and 75 C and it is desired to calibrate the controller as accurately as possible for operation within this range The current values for DO and DG are 25 229 and 0028530 respectively The calibration points are chosen to be 25 00 and 75 00 C The measured bath temperatures are 24 869 and 74 901 C respectively Refer to Figure 10 for applying equations to the example data and computing the new probe constants 8 5 2100 User Manual RO 100 000 ALPHA 0 0038500 t 10 00 C measured t 9 943 C ty 50 00 C measured t 49 874 C Compute errors err 9 943 10 00 C 0 057 C erry 49 874 50 00 C 0 126 C Compute RO RO 60 126 x 710 0 0 57 x 50 0 p 50 0 10 0 0 00385 100 00 99 9898 Compute ALPHA 1 0 00385x50 0 0 057 1
12. 00 User Manual 10 6
13. 2 Chapter 4 Installation setup The 2100 controller is a precision instrument which should be located in an appropriate environment The location should be free from excessive dirt moisture vibration or temperature variations There should be no present danger of spilled liquids Heater Stirrer IN WARNING The output voltage to the heater and stirrer sockets is the same as the input voltage of the power entry module A CAUTION Insure that the combined current of the heater and stirrer does not exceed that listed in Section 2 1 Specifications Connect the heater to the back of the controller into the socket labeled HEATER Be sure the heater cable is adequate for the amount of current required and that the heater is wired correctly and safely See Figure 1 for heater wiring If applicable connect the stirring device to the back of the controller in the socket labeled STIRRER The stirrer outlet wiring is the same as the heater outlet shown in Figure 1 4 1 2100 User s Guide 4 3 CONTROLLED SYSTEM CONTROLLER HEATER SOCKET HEATER 10 A MAX NEUTRAL GROUND Figure 1 Controller to Heater Wiring Control Probe A CAUTION Before using the controller check controller settings and insure they are set appropriately for the limitations of the control probe If a control probe was ordered with the controller note the following PRT The controller hard cutout is factory set to 685 C T
14. Calibration 2100 Temperature Controller User Manual PN 3729079 November 2013 2013 Fluke Corporation All rights reserved Specifications are subject to change without notice All product names are trademarks of their respective companies LIMITED WARRANTY AND LIMITATION OF LIABILITY Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service The warranty period is two years and begins on the date of shipment Parts product repairs and services are warranted for 90 days This warranty extends only to the original buyer or end user customer of a Fluke authorized reseller and does not apply to fuses disposable batteries or to any product which in Fluke s opinion has been misused altered neglected contaminated or damaged by accident or abnormal conditions of operation or handling Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non defective media Fluke does not warrant that software will be error free or operate without interruption Fluke authorized resellers shall extend this warranty on new and unused products to end user customers only but have no authority to extend a greater or different warranty on behalf of Fluke Warranty support is available only if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable internationa
15. If the cutout feature of the controller is not used the thermocouple input must be shorted with a wire jumper in order for the controller to continue to function see Figure 3 6 The optional IEEE 488 GPIB interface connector for remote computer control 7 The RS 232 communications cable is connected to this 9 pin D subminiature connector This enables the controller to be programmed and operated remotely 8 The serial number label is located on the bottom of the unit towards the back panel Chapter 6 Controller Operation This chapter discusses in detail how to operate the temperature controller using the front control panel Using the front panel key switches and LED display the user may monitor the process temperature set the temperature set point in degrees C or F monitor the heater output power adjust the controller proportional band set the cutout set point and program the probe calibration parameters operating parameters serial and IEEE 488 interface configuration and controller calibration parameters Operation of the functions are shown in the flowchart summarized in Figure 6 6 1 Process temperature The digital LED display on the front panel allows direct viewing of the process temperature This temperature value is what is normally shown on the display The units C or F of the temperature value are displayed at the right For example 25 00C Process temperature in degrees Celsius The temperature disp
16. RD The instrument can be used to control instruments which generate extreme temperatures Precautions must be taken to prevent personal injury or damage to objects Probes may be extremely hot or cold when removed from a calibration bath Cautiously handle probes to prevent personal injury Carefully place probes on a heat resistant surface or rack until they are at room temperature Fires and severe burns may result if personnel fail to observe safety precautions ELECTRICAL HAZARD These guidelines must be followed to ensure that the safety mechanisms in this instrument will operate properly The instrument must be plugged into an appropriate outlet as specified in Section 2 1 Specifications Also the current and voltage capability of the instrument must not be exceeded The power cord of the instrument is equipped with a three pronged grounding plug for your protection against electrical shock hazards It must be plugged directly into a properly grounded three prong receptacle The receptacle must be installed in accordance with local codes and ordinances Consult a qualified electrician DO NOT use an extension cord or adapter plug DO use a ground fault interrupt device This system that is controlled by this instrument may contain a fluid A ground fault device is advised in case fluid is present in the electrical system and could cause an electrical shock Always replace the power cord with an approved cord of the correct rating
17. RRANTIES EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES INCLUDING LOSS OF DATA ARISING FROM ANY CAUSE OR THEORY Since some countries or states do not allow limitation of the term of an implied warranty or exclusion or limitation of incidental or consequential damages the limitations and exclusions of this warranty may not apply to every buyer If any provision of this Warranty is held invalid or unenforceable by a court or other decision maker of competent jurisdiction such holding will not affect the validity or enforceability of any other provision Fluke Corporation Fluke Europe B V P O Box 9090 P O Box 1186 Everett WA 98206 9090 5602 BD Eindhoven U S A The Netherlands 11 99 Table of Contents Chapter Title 1 Before You Start NENNEN ENKER NEEN ENKEN NENNEN ENKEN Weiter elle e EE Symbols Ueed oan aaneen eren en enen eenen nnne nnns Safety Information 1 WARNINGS 2 GAUTIONS eege Authorized Service Centers Specifications and Environmental Conditions 2 1 eg ele Un e ee ee S MU EUIS 2 2 Environmental Conditions QUICK Star nennen neden mese NEE ERTIECEENS EFVEREESSFEEFUEDENEEEESEN 3 1 Biere KUNG enter 3 2 v8 MEE 3 3 Setting the Temperature La UL ko gE 4 1 iij me KT 4 2 Heater Stirrer 4 3
18. SET and EXIT to enter the secondary menu and show the heater power Then press SET to access the proportional band Access heater power in secondary menu 12 Pct Heater power in percent SET Access proportional band Pb 0 101C Proportional band setting J 2100 User Manual 6 8 To change the proportional band press UP or DOWN Decrement display DOW To accept the new setting and access the cutout set point press SET Pressing EXIT will exit the secondary menu ignoring any changes just made to the proportional band value Accept the new proportional band setting Cutout As a protection against software or hardware fault shorted heater triac or user error the controller is equipped with an adjustable heater cutout device that will shut off power to the heater if the system temperature exceeds a set value This protects the heater and system materials from excessive temperatures The cutout temperature is programmable by the operator from the front panel of the controller It must always be set below the upper temperature limit of the system components If the cutout is activated because of excessive temperature then power to the heater will be shut off and the system will cool It will cool until it reaches a few degrees below the cutout set point temperature At this point the action of the cutout is determined by the setting of the cutout mode parameter The cutou
19. TC AMONG mennen ERR RET 3 2100 Controller Communications Commande 2100 User Manual vi Figure zc ED LM ee at a List of Figures Title Page Controller to Heater Wiring oan snanen enn enen en venre ener ennen sneren RTO TOBE WIIN REOR EC Cutout Probe Connections uk Front Panel Features uu snnnseneenenensenenensenrenenenerneeeneenensnrenenen Back Panel FEAE EE Controller Operation Flowchart aaneen enen eeenernenenenenenenenenen System Temperature Fluctuations at Various Proportional Band Settings 67 Serial Interface Cable Wiring un eunenenensereneeenen een enen eneen Calibration Example Platinum RTD brobe Calibration Example Thermistor Probe annen nennen enen ennen yii 2100 User Manual viii 1 1 Chapter 1 Before You Start Introduction The Fluke Calibration 2100 is a solid state temperature controller It is specifically designed to control the temperature of fluid baths but is well suited for many other applications as well The unique combination of analog and digital electronic circuitry provides exceptional accuracy and stability together with ease of operation and programmability Temperature sensing is done with a 4 wire 100 ohm platinum resistance probe thermistor probe optionally available which plugs into the back of the controller To maintain a constant temperature the controller adjusts the pulses of power supplied to the heater by
20. The controller may be operated in temperature units of degrees Celsius or Fahrenheit The controller is operated and programmed from the front control panel using the four key switches and digital LED display The controller equipped with an RS 232 serial or may also be optionally equipped with an IEEE 488 GPIB digital interface for remote operation Operation of the controller using the front control panel is discussed following in Section6 Operation using the digital interface is discussed in Section When the controller is set to a new set point the system will heat or cool to the new temperature Once the new temperature is reached it usually takes 10 15 minutes for the temperature to settle and stabilize There may be a small overshoot or undershoot of about 0 5 C or more depending on the system and proportional band Front Panel The following controls and indicators are present 1 the digital display 2 the control buttons and 3 the control indicator light see Figure 4 1 The digital display is an important part of the temperature controller because it not only displays set and actual temperatures but also various controller functions settings and constants The display shows temperatures in values according to the selected scale C or F 2 The control buttons SET DOWN UP and EXIT are used to set the temperature set point access and set other operating parameters and access and set calibration parameters
21. alibration Equipment should only be used by Trained Personnel If this instrument is used in a manner not specified by the manufacturer the protection provided by the instrument may be impaired If the instrument is used to control a calibration heat source insure the heater is wired correctly see Figure 1 Before initial use or after transport or after storage in humid or semi humid environments or anytime the dry well has not been energized for more than 10 days the instrument needs to be energized for a dry out period of 2 hours before it can be assumed to meet all of the safety requirements of the IEC 61010 1 If the product is wet or has been in a wet environment take necessary measures to remove moisture prior to applying power such as storage in a low humidity temperature chamber operating at 50 C for 4 hours or more The instrument is intended for indoor use only The instrument is a precision instrument Although it has been designed for optimum durability and trouble free operation it must be handled with care 1 3 2100 User Manual 1 4 Operate the instrument in room temperatures listed in Section 2 2 Environmental Conditions The instrument is not vented Therefore clearance for ventilation is not a requirement However do not place the instrument on top of a calibration bath or dry well where it would be in contact or direct path of heat DO NOT stack items on top of the instrument BURN HAZA
22. arriage return and linefeed Then the value is returned as indicated in the RETURNED column 7 1 2100 User Manual 7 8 8 1 8 1 1 Chapter 8 Calibration Procedure In some instances the user may want to calibrate the controller to improve the temperature set point accuracy Calibration is done by adjusting the controller probe calibration constants RO and ALPHA or DO and DG for thermistor probes so that the process temperature as measured with a standard thermometer agrees more closely with the set point The thermometer used must be able to measure the temperature with higher accuracy than the desired accuracy of the system RTD Probe Calibration Calibration Points In calibrating the bath RO and ALPHA are adjusted to minimize the set point error at each of two different temperatures Any two reasonably separated temperatures may be used for the calibration however best results will be obtained when using temperatures which are just within the most useful operating range of the system The further apart the calibration temperatures the larger will be the calibrated temperature range but the calibration error will also be greater the range If for instance 50 C and 150 C are chosen as the calibration temperatures then the bath may achieve an accuracy of say 0 03 C over the range 40 to 160 C Choosing 80 C and 120 C may allow the bath to have a better accuracy of maybe 0 01 C over the range 75 to 125 C but outside t
23. blem The display flashes Cut out and an incorrect process temperature If the problem remains the cause may be a defective electronic component Verify that the probe is of the correct type for which the controller was configured to use The controller configuration may be checked by watching the controller display as the power is switched on The display briefly flashes CP 1 Pt LO or Pt HI Flashing CP 1 indicates the controller is configured to use a thermistor probe Pt LO and Pt HI indicate the controller is configured to use a DIN 43760 RTD probe with the range of 100 to 200 and 100 to 600 C respectively If the probe is not correct use the correct probe Both types of probes are available from Hart Scientific If the configuration is not as desired contact an Authorized Service Center The range for a thermistor probe is 10 to 110 C For an RTD probe the range is either 100 to 200 C or 100 to 600 C depending on the configuration as discussed in item above If the configuration is not as desired contact an Authorized Service Center 10 3 2100 User Manual The controller controls or attempts to control at an inaccurate temperature The controller shows that the output power is steady but the process temperature is unstable The controller alternately heats for a while then cools The controller erratically heats then cools control is unstable 10 4 The controll
24. control stability the percent heating power should not fluctuate more than 1 within one minute The heater power display is accessed in the secondary menu Press SET and EXIT simultaneously and release The heater power will be displayed as a percentage of full power ar Access heater power in secondary menu 12 Pet Heater power in percent To exit out of the secondary menu press EXIT To continue on to the proportional band setting function press SET Return to temperature display Proportional Band In a proportional controller such as this the heater output power is proportional to the process temperature over a limited range of temperatures around the set point This range of temperature is called the proportional band At the bottom of the proportional band the heater output is 100 At the top of the proportional band the heater output is O Thus as the temperature rises the heater power is reduced which consequently tends to lower the temperature back down In this way the temperature is maintained at a fairly constant value The temperature stability of the system depends on the width of the proportional band See Figure 7 If the band is too wide the temperature will tend to deviate excessively from the set point due to varying external conditions This is because the power output changes very little with temperature and the controller cannot respond very well to changing conditions or noise in the
25. described below The displayed process temperature is in error and the controller remains in the cooling or heating state at any set point value The controller will not control above approximately 250 C Troubleshooting 1 0 10 1 Troubleshooting Factory Reset Sequence Hold the SET and EXIT buttons down at the same time while powering up the instrument The instrument display shows mt the model number and the firmware version Each of the controller parameters and calibration constants must be reprogrammed The values can be found on the Report of Test that was shipped with the instrument Possible causes may be either a faulty control probe or erroneous data in memory The probe may be disconnected shorted burned out wired incorrectly or incompatible with the controller Check that the probe is connected properly If wired properly and using a 100 ohm RTD the probe may be checked with an ohmmeter to see if it is open or shorted The probe is a platinum 4 wire Din 43760 type The resistance should read 0 2 to 2 0 ohms between pins 1 and 2 on the probe connector and 0 2 to 2 0 ohms between pins 3 and 4 It should read 100 to 300 ohms between pins 1 and 4 depending on the temperature If the probe appears to be defective contact an Authorized Service Center see Section 1 4 for assistance If the problem is not the probe erroneous data in memory may be the cause Re initialize the memory as discussed in the pro
26. ds may now be sent via the IEEE 488 interface to read or set the temperature or access other controller functions All commands are ASCII character strings and are terminated with a carriage return CR ASCII 13 Interface commands are listed below 7 3 Interface Commands The various commands for accessing the controller functions via the digital interfaces are listed in this section see Table 3 These commands are used with both the RS 232 serial interface and the IEEE 488 GPIB interface In either case the commands are terminated with a carriage return character The interface makes no distinction between upper and lower case letters hence either may be used Commands may be abbreviated to the minimum number of letters which determines a unique command A command may be used to either set a parameter or display a parameter depending on whether or not a value is sent with the command following a character For example s CR gt will return the current set point and s 50 00 CR will set the set point set point 1 to 50 00 degrees In the following list of commands characters or data within brackets P and T are optional for the command A slash denotes alternate characters or data Numeric data denoted by n may be entered in decimal or exponential notation Characters are shown in lower case although upper case may be used Spaces may be added within command strings and will simply be ignored Backs
27. e communication Serial Communications The controller comes installed with an RS 232 serial interface that allows serial digital communications over fairly long distances With the serial interface the user may access any of the functions parameters and settings discussed in Chapter 7 with the exception of the BAUD rate setting The serial interface operates with 8 data bits 1 stop bit and no parity 7 1 2100 User Manual 7 2 7 1 1 7 1 2 Wiring The serial communications cable attaches to the controller through the DB 9 connector on the back panel Figure 8 shows the pin out of this connector and suggested cable wiring To eliminate noise the serial cable should be shielded with low resistance between the RS 232 Cable Wiring for connector DB 9 and the IBM PC and Compatibles shield Instrument Computer DTE Connector Connector Setup DB 9 Pin DB 9 Pin Before operation the serial ES E f xD e e X interface must first be set up by cs ann programming the baud rate and ANC e e 4DTR other configuration parameters SC d ion These parameters are THIS Mone programmed within the serial 8CTS 8CTS interface menu aNg TANG To enter the serial parameter programming mode first press Instrument Computer DTE EXIT while pressing SET Connector Connector and release to enter the EEN DEREN secondary menu Press SET Sen wer repeat
28. e will call t Wait for the system to reach the set point and allow 15 minutes to stabilize at that temperature Check the stability with the thermometer When both the system and the thermometer have stabilized measure the system temperature with the thermometer and compute the temperature error err which is the actual temperature minus the set point temperature If for example the controller is set for a lower set point of t 220 C and the system reaches a measured temperature of 19 7 C then the error is 0 3 C Next set the controller for the upper set point ty and after stabilizing measure the temperature and compute the error erry For our example we will suppose the temperature was set for 80 C and the thermometer measured 80 1 C giving an error of 40 1 C 8 4 8 3 3 8 3 4 Calibration Procedure 8 8 3 Thermistor Probe Calibration Computing DO and DG Before computing the new values for DO and DG the current values must be known The values may be found by either accessing the probe calibration menu from the controller panel or by inquiring through the digital interface The user should keep a record of these values in case they may need to be restored in the future The new values DO and DG are computed by entering the old values for DO and DG the calibration temperature set points tL and tH and the temperature errors err and err into the following equations NU t DO err t DO LD DO
29. ed of f ot Calibration Menu Available with PRT configuration Read CO calibration parameter cO c0 c0 9 c0 0 Set CO calibration parameter to n cO n c0 0 999 9 to 999 9 Read CG calibration parameter cg cg cg 999 99 cg 406 25 Set CG calibration parameterto n cg n cg 406 25 999 9 to 999 9 Read BO calibration parameter DU b0 b0 9 b0 0 Set BO calibration parameter ton bO n b0 0 999 9 to 999 9 Read BG calibration parameter bg bg bg 999 99 bg 156 25 Set BG calibration parameterto n bg n bg 156 25 999 9 to 999 9 Read low set point limit value tl ow tl tl 999 tl 80 Set low set point limit to n tl ow n tl 80 999 9 to 999 9 Read high set point limit value th igh th th 999 th 205 Set high set point limit to n thligh n th 205 099 9 to 999 9 Digital Communication Interface 7 3 Interface Commands Table 3 2100 Controller Communications Commands continued Command Command Returned Acceptable Command Description Format Example Returned Example Values Miscellaneous not on menus Read firmware version number ver sion ver ver 9999 9 99 ver 2100 3 56 Read structure of all commands _ h elp h list of commands Legend Note Optional Command data Returns either information n Numeric data supplied by user 9 Numeric data returned to user x Character data returned to user When DUPLEX is set to FULL and a command is sent to READ the command is returned followed by a c
30. edly until the display 3TxD e 3RXD reads ProbE This is the ANC o ARTS menu selection Press UP gen m repeatedly until the serial 7 RTS e d 7GND interface menu is indicated with 8 CTS e rz 8DCD SErlAL Finally press SET to SC aan enter the serial interface parameters menu In the serial interface parameters menu are the baud rate sample rate duplex mode and linefeed parameters Figure 8 Serial Interface Cable Wiring 7 1 2 1 Baud Rate The baud rate is the first parameter in the menu The display will prompt with the baud rate parameter by showing BAUd Press SET to choose to set the baud rate The current baud rate value will then be displayed The baud rate of the serial communications may be programmed to 300 600 1200 or 2400 baud The baud rate is pre programmed to 1200 baud Use UP or DOWN to change the baud rate value Press SET to set the baud rate to the new value or EXIT to abort the operation and skip to the next parameter in the menu 1 2 2 Sample Period The sample period is the next parameter in the menu and prompted with SAMPLE The sample period is the time period in seconds between temperature measurements transmitted from the serial interface If the sample rate is set to 5 for instance then the controller will transmit the current measurement over the serial interface approximately every five seconds The automatic sampling is disabled with a sample period of 0 Pre
31. er operates normally except when controlling at a specified set point At this set point the temperature displayed does not agree with the temperature measured by the user s reference thermometer to within the specified accuracy This problem may be caused by an actual difference in temperature between the points where the control probe and thermometer probe measure temperature by erroneous bath calibration parameters or by a damaged control probe Check that the system has an adequate amount of fluid in the tank and that the stirrer is operating properly if applicable Check that the thermometer probe and control probe are both fully inserted into the bath to minimize temperature gradient errors Check that the calibration parameters are all correct according to the Report of Test If not re program the constants The memory backup battery may be weak causing errors in data as described in the problem The display flashes cutout and an incorrect process temperature Check that the control probe has not been struck bent or damaged If the user s own probe is used the calibration parameters namely RO and ALPHA may need to be adjusted to more closely match the characteristics of the probe Calibration assistance may be obtained from an Authorized Service Center Possible causes are an improper proportional band setting or the fluid being used If the bath temperature does not achieve the expected degree of stability when
32. ess SET to enter the menu The probe parameters menu contains the parameters DO and DG These parameters characterize the transfer function of the linearized thermistor control probe The parameters may be adjusted to improve the accuracy of the bath This procedure is explained in detail in Section 8 The probe parameters are accessed by pressing SET after the name of the parameter is displayed The value of the parameter may be changed using the UP and DOWN buttons After the desired value is reached press SET to set the parameter to the new value Pressing EXIT will cause the parameter to be skipped ignoring any changes that may have been made 6 11 1 DO This parameter refers to the temperature at which the control probe output would be 0 Normally this is set for 25 229 6 11 2 DG This probe parameter refers to the temperature span of the probe between 0 and 100 output Normally this is set for 186 794 6 12 Operating Parameters The operating parameters menu is indicated by PA i Operating parameters menu Le eee J Press SET to enter the menu The operating parameters menu contains the cutout reset mode parameter 6 12 1 Cutout Reset Mode The cutout reset mode determines whether the cutout resets automatically when the system temperature drops to a safe value or must be manually reset by the operator 6 13 1 Controller Operation 6 6 13 Serial Interface Parameters The parameter is indicated by
33. et Mode Adj ALPHA Probe Menu Thermistor Probe Menu Adjust Baud Rate Sample Period Adj Sample Period Duplex Mode Adj Duplex Mode Linefeed Adjust Linefeed Adj Device Address IEEE 488 Option Installed Figure 6 Controller Operation Flowchart zen deeded DO NOT CHANGE THESE VALUES SEE MANUAL 7070700007 a Adjust L Controller Operation 6 3 Temperature Set point This will also switch the display to the set temperature function To return to displaying the temperature press the EXIT button If the cutout is still in the over temperature fault condition the display will continue to flash cutout The bath temperature must drop a few degrees below the cutout set point before the cutout can be reset 6 3 Temperature Set point The temperature can be set to any value within the range as given in the specifications with a high degree of resolution The temperature range of the particular fluid used in the bath must be known by the operator and the bath should only be operated well below the upper temperature limit of the liquid In addition the cutout temperature should also be set below the upper limit of the fluid Setting the temperature involves three steps 1 select the set point memory 2 adjust the set point value and 3 adjust the vernier if desired
34. from the serial interface If the sample rate is set to 5 for instance then the controller will transmit the current measurement over the serial interface approximately every five seconds The automatic sampling is disabled with a sample period of 0 The sample period is indicated by SAmPLE i Serial sample period parameter EN TN EE EBEN J Press SET to choose to set the sample period The current sample period value will be displayed SA 1 Current sample period seconds Dl J Adjust the value with UP or DOWN and then use SET to set the sample rate to the displayed value En SA 60 l New sample period 6 13 3 Duplex Mode The next parameter is the duplex mode The duplex mode may be set to full duplex or half duplex With full duplex any commands received by the controller via the serial interface will be immediately echoed or transmitted back to the device of origin With half duplex the commands will be executed but not echoed The duplex mode parameter is indicated by dUPL Serial duplex mode parameter Press SET to access the mode setting e J dUP FULL l Current duplex mode setting The mode may be changed using UP or DOWN and pressing SET Tree j dUP HALF l New duplex mode setting 6 13 4 Linefeed The final parameter in the serial interface menu is the linefeed mode This parameter enables on or disables off transmission of a linefeed character LF ASCII 10 after transmiss
35. hat range the accuracy may be only 0 05 C 8 1 2100 User Manual 8 2 8 1 2 8 1 3 Measuring the Set point Error The first step in the calibration procedure is to measure the temperature errors including sign at the two calibration temperatures First set the temperature to the lower set point which we will call t Wait for the system to reach the set point and allow 15 minutes to stabilize at that temperature Check the stability with the thermometer When both the system and the thermometer have stabilize measure the system temperature with the thermometer and compute the temperature error err which is the actual temperature minus the set point temperature If for example the temperature is set for a lower set point of t 50 C and the bath reaches a measured temperature of 49 7 C then the error is 0 3 C Next set the temperature for the upper set point ty and after stabilizing measure the temperature and compute the error erry For our example we will suppose the temperature was set for 150 C and the thermometer measured 150 1 C giving an error of 40 1 C Computing RO and ALPHA Before computing the new values for Ro and ALPHA the current values must be known The values may be found by either accessing the probe calibration menu from the controller panel or by inquiring through the digital interface The user should keep a record of these values in case they may need to be restored in the future The new
36. he controller is set up to be used with a metrology bath however you may want to use the controller with a dry well or other system Contact an Authorized Service center for assistance on setting the Gain Range for the system Fuses A CAUTION Never use this instrument in a system that uses more power or current as listed in Section 2 1 Specifications The controller is shipped from the factory with fast acting fuses rated for the maximum capacity of the instrument If the controller is connected to a system which uses less than 10 amps the fuses will need to be changed in order to be correct for the system Once the controller is connected in the system the system current needs to be measured or calculated and the appropriate fuse size and characteristics selected Generally the fuse selected is rated at 125 of the maximum current of the system The time current characteristics of the fuse are selected by the application Usually fast acting fuses are selected systems without a high in rush current i e hot calibration baths Time delay or slow blow fuses are selected for systems with a high in rush current i e cold calibration baths Refer to the fuse ology section of your fuse catalog for help in determining fuse size and characteristics or contact an Authorized Service Center see Section 1 4 for assistance Once the correct fuse characteristics and rating of the fuses have been selected and the appropriate fuses placed
37. he controller soft cutout is set to 300 C due to the temperature limit of the PRT Thermistor The controller hard cutout is factory set to 125 C The controller soft cutout is set to 125 C due to the temperature limit of the thermistor If the controller was ordered without a control probe all controller parameters are set to factory default settings and need to checked and set for the specific control probe used with the controller Connect the control probe into the socket at the back of the controller labeled PROBE see Figure 2 Insert the probe into the bath or system to be controlled For best stability and response time the control probe should be located in close proximity to the heater Observe the maximum temperature rating of the probe and be careful it is not exceeded Normally the 2100 controller is set up to use a 100 Q platinum probe If better resolution and stability are desired the 2100 may alternately be configured to use Hart s 2611 linearized thermistor probe The controller operating temperature range with the thermistor probe is 10 C to 110 C For information on setup for the thermistor probe see Section Installation 4 4 4 Thermocouple Rear Panel Probe Connector RTD Sensor Figure 2 RTD Probe Wiring 4 4 Thermocouple Connect the optional thermocouple cutout probe to the back of the controller to the connector labeled TC Insert the probe into the bath or system being controlled If t
38. he safety cutout feature is not to be used then this input must be shorted with a small wire jumper in order for the controller to operate properly see Figure 3 Rear Panel Thermocouple Connector J K Thermocouple If cutout is not used Wire Jumper Figure 3 Cutout Probe Connections 4 5 Power A CAUTION Do not plug the instrument into 230 V if the indicator window of the power entry module reads 115 V This action will cause the fuses to blow and may damage the instrument 4 3 2100 User s Guide Plug the controller power cord into a mains outlet of the proper voltage 4 4 4 6 frequency and current capability see Section 2 1 Specifications Insure that the indicator window of the power entry module matches the voltage of the mains supply Turn the controller on using the rear panel POWER switch The controller will turn on and begin to heat or cool the system to reach the previously programmed temperature set point The front panel LED display will indicate the actual process temperature See Section 4 6 Fuses for information on selecting the correct fuse for the application When powered on the control panel display will briefly show a four digit number This number indicates the number of times power has been applied to the unit Also briefly displayed is data which indicates the controller hardware configuration This data is used in some circumstances for diagnostic purposes Ordinarily t
39. imized altitude less than 2 000 meters indoor use only 3 1 Chapter 3 Quick Start This chapter gives a brief summary of the steps required to set up and operate the 2100 temperature controller This should be used as a general overview and reference and not as a substitute for the remainder of the manual Please read Sections4 through carefully before operating the controller Unpacking Unpack the controller carefully and inspect it for any damage that may have occurred during shipment If there is shipping damage notify the carrier immediately An RTD thermistor optional control probe and a thermocouple cutout probe should have been purchased along with the controller Typically the user provides the bath or system to be controlled and the heater Verify that the following components are present e 2100 Controller e Control Probe e Power Cord e Two Power Cords 1 for the Heater and 1 for the Stirrer e Thermocouple Connector e User s Guide 3 1 2100 User s Guide 3 2 3 2 3 3 Set Up Set up of the controller requires unpacking and placement of the controller connection of the heater connection of the stirrer if applicable installation of the control and cutout probes and connection of power A CAUTION Refer to Section 4 Installation for detailed instructions on proper installation of the controller Pay particular attention to instructions for the heater stirrer control probe and power set
40. in the power entry module of the instrument mark the instrument so the user can visibly see the fuse size and rating for fuse replacement Be sure to change both fuses to the new rating and correct characteristic Installation 4 4 6 Fuses The controller uses 0 2 amps of current This current should be taken into consideration when calculating the system power Example when using the power of the system P Power of the system Total Watts V Nominal line voltage 115 VAC or 230 VAC Fuse current P 0 9xV Example when using the system current 21 255 System current IF Fuse current rating IF 1 25 x 4 5 2100 User s Guide 4 6 9 1 9 2 Chapter 5 Parts and Controls Control System The 2100 temperature controller is not specified for use with a particular system Its flexibility enables it to be used with a large variety of control systems Often the controller is used with a precision constant temperature bath It is the responsibility of the user to ensure that the components are chosen and the system constructed to ensure safe and proper operation of the complete system The user should have a good knowledge of and experience with electrical fundamentals and wiring practice as well as control systems Hart Scientific cannot be responsible for any damages or injury resulting from improper design or operation of the control system Technical support for setting up and operating a control system us
41. ing the 2100 controller is available by telephone or fax from Hart Scientific Be sure to read the 2100 user manual Temperature Controller The system temperature is controlled by Hart Scientific s unique hybrid digital analog temperature controller The controller offers the tight control stability of an analog temperature controller as well as the flexibility and programmability of a digital controller The temperature is monitored with a platinum resistance sensor in the control probe or alternately a linearized thermistor probe The signal is electronically compared with the programmable reference signal amplified and then passed to a pulse width modulator circuit which controls the amount of power applied to the bath heater For protection against solid state relay failure or other circuit failure the controller will automatically turn off the heater with a second mechanical relay anytime the process temperature is more than a certain amount above the set point temperature As a second protection device the controller is also equipped with a separate thermocouple temperature monitoring circuit which will shut off the heater if the temperature exceeds the cutout set point 2100 User Manual 9 3 The controller allows the operator to set the set point temperature with high resolution set the cutout adjust the proportional band monitor the heater output power and program the controller configuration and calibration parameters
42. ion of any carriage return The linefeed parameter is indicated by 6 14 1 6 15 Controller Operation 6 6 15 Calibration Parameters IEEE 488 Parameters Controllers may optionally be fitted with an IEEE 488 GPIB interface In this case the user may set the interface address within the IEEE 488 parameter menu This menu does not appear on instruments not fitted with the interface The menu is indicated by IEEE IEEE 488 parameters menu J Press SET to enter the menu IEEE 488 Address The IEEE 488 interface must be configured to use the same address as the external communicating device The address is indicated by Adjust the value with UP or DOWN and then use SET to set the address to the displayed value Add 15 l New IEEE 488 interface address Calibration Parameters The operator of the controller has access to a number of the calibration and setup constants namely CTO CO CG H and L The calibration values are set at the factory and must not be altered The correct values are important to the accuracy of the bath Access to these parameters is available to the user only so that in the event that the controller s memory fails the user may restore these values to the factory settings The user should have a list of these constants and their settings with the manual 6 13 2100 User Manual 6 15 1 6 15 2 6 15 3 6 16 The calibration parameters menu is indicated by CAL Calibratio
43. ious parameters The interface commands are discussed in Section 7 3 All commands are ASCII character strings terminated with a carriage return character CR ASCII 13 7 2 IEEE 488 Communication optional 7 2 1 The IEEE 488 interface is available as an option Controllers supplied with this option may be connected to a GPIB type communication bus which allows many instruments to be connected and controlled simultaneously To eliminate noise the GPIB cable should be shielded Setup and Address Selection To use the IEEE 488 interface first connect an IEEE 488 standard cable to the back of the bath Next set the device address This parameter is programmed within the IEEE 488 interface menu To enter the IEEE 488 parameter programming menu first press EXIT while pressing SET and release to enter the secondary menu Press SET repeatedly until the display reaches PrObE This is the menu selection Press UP repeatedly until the IEEE 488 interface menu is indicated with IEEE Press SET to enter the IEEE 488 parameter menu The IEEE 488 menu contains the IEEE 488 address parameter 7 3 2100 User Manual 7 4 7 2 2 The IEEE 488 address is prompted with AddrESS Press SET to program the address The default address is 22 Change the device address of the bath if necessary to match the address used by the communication equipment by pressing UP or DOWN and then SET IEEE 488 Operation Comman
44. l price Fluke reserves the right to invoice Buyer for importation costs of repair replacement parts when product purchased in one country is submitted for repair in another country Fluke s warranty obligation is limited at Fluke s option to refund of the purchase price free of charge repair or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period To obtain warranty service contact your nearest Fluke authorized service center to obtain return authorization information then send the product to that service center with a description of the difficulty postage and insurance prepaid FOB Destination Fluke assumes no risk for damage in transit Following warranty repair the product will be returned to Buyer transportation prepaid FOB Destination If Fluke determines that failure was caused by neglect misuse contamination alteration accident or abnormal condition of operation or handling including overvoltage failures caused by use outside the product s specified rating or normal wear and tear of mechanical components Fluke will provide an estimate of repair costs and obtain authorization before commencing the work Following repair the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges FOB Shipping Point THIS WARRANTY IS BUYER S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WA
45. lay function may be accessed from any other function by pressing the EXIT button 6 2 Reset Cutout If the over temperature cutout has been triggered then the temperature display will alternately flash Cutout Indicates cutout condition The message will continue to flash until the temperature is reduced and the cut out is reset The cutout has two modes automatic reset and manual reset The mode determines how the cutout is reset which allows the bath to heat up again When in automatic mode the cutout will reset itself as soon as the temperature is lowered below the cutout set point With manual reset mode the cutout must be reset by the operator after the temperature falls below the set point 2100 User Manual When the cutout is active and the cutout mode is set to manual reset then the display will flash cutout until the user resets the cutout To access the reset cutout function press the SET button Access cutout reset function The display will indicate the reset function Secondary Functions SET EXIT EXIT Display Power Aa Reset Cutout Set Proportional Band Set Cutout Temp SET EXIT EXIT Set Scale C F Configuration Menu SET SET EXIT l EXIT EXIT Operating Serial gt IEEE 488 TA Parameters Interface Interface Menu lt _ Menu Menu X5 Adj Cutout Res
46. means of a solid state relay The maximum current rating of the controller is 10 amps Any combination of heater or stirrer may be connected to the controller as long as the combined current does not exceed 10 amps The 2100 controller can be easily programmed via the four button front panel or by the optional serial interface Programming allows the user to set the control temperature units C or F the proportional band and the calibration variables The process or actual temperature is continuously displayed on a bright green LED panel The percent heating power may also be monitored An added safety device the over temperature cutout is also programmable This built in feature protects the system from fault conditions causing excessive temperatures by disabling the heater if the temperature sensed by a separate thermocouple probe exceeds the cutout set point Before using the 2100 controller you should understand the proper setup and operation 1 1 2100 User Manual 1 2 1 2 1 3 Symbols Used Table 1 lists the International Electrical Symbols Some or all ofthese symbols may be used on the instrument or in this manual Table 1 International Electrical Symbols ENEKGNNKE LI TI ee Bro o e L emen d CY TA li gt O d e Js Canadian Standards Association OVERVOLTAGE Installation CATEGORY II Pollution Degree 2 per IEC1010 1 refers to the level of Impulse CATII Withstand Voltage protection pr
47. measured using a thermometer try adjusting the proportional and to a narrower width as discussed in Section 6 7 Proportional Band Check to ensure the fluid has not deteriorated or is not too thick The bath is not stable and the duty cycle is not constant The proportional band being too narrow typically causes this oscillation Increase the width of the proportional band until the temperature stabilizes as discussed in Section 6 7 Proportional Band If both the bath temperature and output power do not vary periodically but in a very erratic manner the problem may be excess noise in the system Noise due to the control sensor should be less than 0 001 C However if the probe has been damaged or has developed an intermittent short erratic behavior may exist The probe is located inside the stirrer motor cover Check for a damaged probe or poor connection between the probe and bath Intermittent shorts in the heater or controller electronic The heater heats continuously and the stirrer motor stirs sporadically or not at all The controller does not maintain controller parameters or parameters are reset each time the power to the unit is removed 10 2 Comments 10 2 1 EMC Directive Troubleshooting 1 0 10 2 Comments circuitry may also be a possible cause Contact an Authorized Service Center see Section 1 4 for assistance Check to see that the heater and stirrer motor are plugged into the correct sockets o
48. n parameters menu Press SET five times to enter the menu CTO Parameter CTO sets the calibration of the over temperature cutout This is not adjustable by software but is adjusted with an internal potentiometer CO and CG These parameters calibrate the accuracy of the bath set point These are programmed at the factory when the bath is calibrated Do not alter the value of these parameters If the user desires to calibrate the bath for improved accuracy then calibrate RO and ALPHA according to the procedure given in Section 8 If the temperature range set by the H and L parameters is limited then the calibration constants appear as BO and BG CO BO and CG BG are not used if the controller is configured to operate with a thermistor probe H and L These parameters set the upper and lower set point limits of the bath These parameters should not be set beyond the safe operating temperature limits of the system Operation Summary A complete flowchart of controller operation is shown in Figure 6 This chart may be reproduced and used as a reference and operating guide 7 1 Chapter 7 Digital Communication Interface The 2100 controller is capable of communicating with and being controlled by other equipment through the digital interface The RS 232 serial interface is standard The IEEE 488 GPIB interface can be included as an option Hart recommends the use of shielded RS 232 and IEEE 488 GPIB cables for all remot
49. n the back of the unit If not plug them in correctly If they are plugged in correctly call an Authorized Service Center Note Before performing the memory check you need to record the controller calibration parameters found in the CAL menu of the instrument and any user adjusted parameters that you have changed such as the programmable set points and proportional band Memory Check Doing a memory check is the easiest way to verify the ability of the battery to maintain controller parameters 1 Power off the instrument 2 Disconnect the instrument from AC power for 10 seconds 3 Reconnect the AC power and power on the instrument 4 If the display shows InIT and or the cycle count shows a low number such as 0002 the battery is spent and should be replaced Contact an Authorized Service Center for assistance 5 After replacing the battery you must reprogram the calibration and user adjustable parameters into the controller Hart Scientifics equipment has been tested to meet the European Electromagnetic Compatibility Directive EMC Directive 89 336 EEC The Declaration of Conformity for your instrument lists the specific standards to which the unit was tested 10 2 2 Low Voltage Directive Safety In order to comply with the European Low Voltage Directive 73 23 EEC Hart Scientific equipment has been designed to meet the IEC 1010 1 EN61010 1 and the IEC 1010 2 010 EN 61010 2 010 standards 10 5 21
50. ng properly 10 1 2100 User Manual The controller display flashes Cut out and the heater does not operate The display flashes Cut out and an incorrect process temperature 10 2 The display flashes Cut out alternately with the process temperature If the process temperature displayed seems grossly in error consult the following problem The display flashes Cut out and an incorrect process temperature Normally the cutout disconnects power to the heater when the bath temperature exceeds the cutout set point causing the temperature to drop back down to a safe value If the cutout mode is set to AUTO the heater switches back on when the temperature drops If the mode is set to RESET the heater only comes on again when the temperature is reduced and the cutout is manually reset by the operator see Section 6 8 Cutout Check that the cutout set point is adjusted to 10 or 20 C above the maximum bath operating temperature and that the cutout mode is set as desired If the cutout activates when the bath temperature is well below the cutout set point or the cutout does not reset when the bath temperature drops and it is manually reset then the cutout circuitry or the cutout thermocouple sensor may be faulty or disconnected The problem may be that the controller s voltmeter circuit is not functioning properly A problem with the thermocouple probe the cutout operation or the cut out circ
51. nts should only be changed by trained personnel The correct setting of these parameters is important to the safety and proper operation of the instrument The Factory Reset Sequence should be performed only by authorized personnel if no other action is successful in correcting a malfunction You must have a copy of the most recent Report of Test to restore the test parameters DO NOT operate this instrument in an excessively wet oily dusty or dirty environment or place in locations where hot or cold liquids are splashed on it Most probes have handle temperature limits Be sure that the probe handle temperature limit is not exceeded in the air above the system controlled by this instrument 1 5 2100 User Manual 1 6 The instrument and any thermometer probes used with it are sensitive instruments that can be easily damaged Always handle these devices with care Do not allow them to be dropped struck stressed or overheated DO NOT use this instrument in a system that exceeds the current capability of the instrument as listed in Section 2 1 Specifications DO NOT replace fuse s with one of a higher current rating or type Always replace the fuse with one of the same rating voltage and type The current rating listed in Section 2 1 Specifications 7 is the maximum for the instrument If the instrument is connected to a system which uses less than the maximum capability of this instrument the fuses need to be changed in
52. ovided Equipment of OVERVOLTAGE CATEGORY Il is energy consuming equipment to be supplied from the fixed installation Examples include household office and laboratory appliances The European Waste Electrical and Electronic Equipment WEEE Directive 2002 96 EC mark Safety Information Use this instrument only as specified in this manual Otherwise the protection provided by the instrument may be impaired The following definitions apply to the terms Warning and Caution e WARNING identifies conditions and actions that may pose hazards to the user e CAUTION identifies conditions and actions that may damage the instrument being used 1 3 1 Before You Start 1 3 Safety Information WARNINGS IN WARNINGS To avoid personal injury follow these guidelines GENERAL The instrument does not come with a system cutout unless purchased as an option If not purchased with the controller the user should provide a bi metal cutout or other safety device for the system A cutout device compatible with the controller can be purchased from Hart Scientific DO NOT use the instrument for any application other than calibration work The instrument was designed for temperature calibration Any other use of the instrument may cause unknown hazards to the user DO NOT use the instrument in environments other than those listed in the user s guide Follow all safety guidelines listed in the user s manual C
53. pace BS ASCII 8 may be used to erase the previous character A terminating CR is implied with all commands Digital Communication Interface 7 7 3 Interface Commands Table 3 2100 Controller Communications Commands Command Command Returned Acceptable Command Description Format Example Returned Example Values Display Temperature Read current set point s etpoint S set 9999 99 C or F set 150 00 C Set current set point to n s etpoint n s 450 Instrument Range Read vernier v ernier V v 9 99999 v 0 00000 Set vernier to n v ernier n v 00001 Depends on Configuration Read temperature tlemperature t t 9999 99 C or F t 55 69 C Read temperature units u nits u u X u C Set temperature units u nits c f CorF Set temperature units to Celsius ufnits c Lec Set temperature units to u nits f Usi Fahrenheit Secondary Menu Read proportional band setting pr op band pr pr 999 9 pr 15 9 Set proportional band to n pr op band n pr 8 83 Depends on Configuration Read cutout setting c utout E c 9999 x xxx c 620 C in Set cutout setting c utout n r eset Set cutout to n degrees c utout n c 500 Temperature Range Reset cutout now c utout r eset Gar Read heater power po wer po po 9999 po 1 duty cycle Configuration Menu Probe Menu Read RO calibration parameter r 0 r r0 999 999 r0 100 578 Set RO calibration parameter ton
54. point Vernier The set point value can be set with a resolution of 0 01 C The user may want to adjust the set point slightly to achieve a more precise temperature The set point vernier allows one to adjust the temperature below or above the set point by a small amount with very high resolution Each of the 8 stored set points has an associated vernier setting The vernier is accessed from the set point by pressing SET The vernier setting is displayed as a 6 digit number with five digits after the decimal point This is a temperature offset in degrees of the selected units C or F p nem 0 00000 l Current vernier value in C To adjust the vernier press UP or DOWN Unlike most functions the vernier setting has immediate effect as the vernier is adjusted SET need not be pressed This allows one to continually adjust the system temperature with the vernier as it is displayed TT t displ ncrement display 0 00090 New vernier setting 6 4 Controller Operation 6 6 4 Temperature Scale Units Next press EXIT to return to the temperature display or SET to access the temperature scale units selection SEI Access scale units Temperature Scale Units The temperature scale units of the controller may be set by the user to degrees Celsius C or Fahrenheit F The units will be used in displaying the process temperature set point vernier proportional band and cutout set poin
55. r 0 n r 100 324 98 0 to 104 9 Read ALPHA calibration al pha al al 9 9999999 al 0 0038573 parameter Set ALPHA calibration parameter al pha n al 0 0038433 00370 to ton 00399 7 5 2100 User Manual 7 6 Table 3 2100 Controller Communications Commands continued Command Command Returned Acceptable Command Description Format Example Returned Example Values Available only with Thermistor configuration Read DO calibration parameter dO d0 d0 99 999 d0 25 299 Set DO calibration parameter ton dcO n d0 25 299 999 9 to 999 9 Read DG calibration parameter dg dg dg 999 99 dg 186 974 Set DG calibration parameterto n dg n dg 186 974 999 9 to 999 9 Operating Parameters Menu Read cutout mode cm ode cm cm Xxxx cm AUTO Set cutout mode cm ode r eset a uto RESET or AUTO Set cutout to be reset manually cmlode r eset cmar Set cutout to be reset cm ode a uto cm a automatically Serial Interface Menu Read serial sample setting sa mple Sa sa 9 sa 1 Set serial sampling setting to n sa mple n sa 0 0 to 4000 seconds Set serial duplex mode du plex f ull h alf FULL or HALF Set serial duplex mode to full du plex f ull du f Set serial duplex mode to half du plex h alf du h Set serial linefeed mode Iffeed on of f ON or OFF Set serial linefeed mode to on If eed on If on Set serial linefeed mode to off Iffe
56. ss SET to choose to set the sample period Adjust the period with UP or DOWN and then use SET to set the sample rate to the displayed value Digital Communication Interface 7 2 IEEE 488 Communication optional 1 2 3 Duplex Mode The next parameter is the duplex mode indicated with dUPL The duplex mode may be set to half duplex HALF or full duplex FULL With full duplex any commands received by the bath via the serial interface will be immediately echoed or transmitted back to the device of origin With half duplex the commands will be executed but not echoed The default setting is full duplex The mode may be changed using UP or DOWN and pressing SET 7 1 2 4 Linefeed 7 1 3 The final parameter in the serial interface menu is the linefeed mode This parameter enables On or disables OFF transmission of a linefeed character LF ASCII 10 after transmission of any carriage return The default setting is with linefeed on The mode may be changed using UP or DOWN and pressing SET Serial Operation Once the cable has been attached and the interface set up properly the controller will immediately begin transmitting temperature readings at the programmed rate The serial interface operates with 8 data bits 1 stop bit and no parity The set point and other commands may be sent to the bath via the serial interface to set the controller and view or program the var
57. system If the proportional band is too narrow the temperature may swing back and Controller Operation 6 Proportional Band WNS Proportional Band too Narrow Proportional Band too Wide Optimum Proportional Band Lr Figure 7 System Temperature Fluctuations at Various Proportional Band Settings forth because the controller overreacts to temperature variations For best control stability the proportional band must be set for the optimum width The optimum proportional band width depends on several factors including system heat transfer characteristics and heater probe positioning Thus the proportional band width may require adjustment for best bath stability when any of these conditions change The proportional band width is easily adjusted from the controller front panel The width may be set to discrete values in degrees C or F depending on the selected units The optimum proportional band width setting may be determined by monitoring the stability with a high resolution thermometer or with the controller percent output power display Narrow the proportional band width to the point at which the process temperature begins to oscillate and then increase the band width from this point to 3 or 4 times wider The integral time of the controller is determined by component selection and cannot be set by the user It is fixed at approximately 300 seconds The proportional band adjustment may be accessed within the secondary menu Press
58. t The temperature scale units selection is accessed after the vernier adjustment function by pressing SET From the temperature display function access the units selection by pressing SET 4 times 25 00 C Process temperature J SET Access set point memory Access vernier 0 00000 Vernier setting SET Access scale units selection UP Change units Un F New units selected Press SET to accept the new selection and resume displaying the bath temperature SET Set the new units and resume temperature display 2100 User Manual 6 5 6 6 6 7 Secondary Menu Functions which are used less often are accessed within the secondary menu The secondary menu is accessed by pressing SET and EXIT simultaneously and then releasing The first function in the secondary menu is the heater power display Heater Power The temperature controller controls the temperature of the system by pulsing the heater on and off The total power being applied to the heater is determined by the duty cycle or the ratio of heater on time to the pulse cycle time This value may be estimated by watching the red green control indicator light or read directly from the digital display By knowing the amount of heating the user can tell if the system is heating up to the set point cooling down or controlling at a constant temperature Monitoring the percent heater power will let the user know how stable the temperature is With good
59. t has two modes automatic reset or manual reset If the mode is set to automatic then the cutout will automatically reset itself when the system temperature falls below the reset temperature allowing the system to heat up again If the mode is set to manual then the heater will remain disabled until the user manually resets the cutout The cutout set point may be accessed within the secondary menu Press SET and EXIT to enter the secondary menu and show the heater power Then press SET twice to access the cutout set point Access heater power in secondary menu Controller Operation 6 6 9 Controller Configuration Access cutout set point Bee on CO 210C Cutout set point To change the cutout set point press UP or DOWN Decrement display passes To accept the new cutout set point press SET si Accept cutout set point The next function is the configuration menu Press EXIT to resume displaying the process temperature 6 9 Controller Configuration The controller has a number of configuration and operating options and calibration parameters which are programmable via the front panel These are accessed from the secondary menu after the cutout set point function by pressing SET The display will prompt with COnFIG Press SET once more There are 5 sets of configuration parameters probe parameters operating parameters serial interface parameters IEEE 488 interface parame
60. ters and controller calibration parameters The menus are selected using the UP and DOWN keys and then pressing SET See Figure 6 6 10 Probe Parameters RTD Sensor The probe parameter menu is indicated by PrObE Probe parameters menu J Press SET to enter the menu The probe parameters menu contains the parameters RO and ALPHA which characterize the resistance temperature relationship of the platinum control probe If the controller is configured to use a thermistor probe then the constants are DO and DG These parameters may be adjusted to improve the accuracy of the bath This procedure is explained in detail in Sections The probe parameters are accessed by pressing SET after the name of the parameter is displayed The value of the parameter may be changed using the UP and DOWN buttons After the desired value is reached press SET to set the parameter to the new value Pressing EXIT will cause the parameter to be skipped ignoring any changes that may have been made 6 9 2100 User Manual 6 10 6 10 1 RO This probe parameter refers to the resistance of the control probe at 0 C Normally this is set for 100 000 ohms 6 10 2 ALPHA This probe parameter refers to the average sensitivity of the probe between 0 and 100 C Normally this is set for 0 00385 C 6 11 Probe Parameters Thermistor Sensor The probe parameter menu is indicated by PrObE Probe parameters menu ES NENNEN J Pr
61. to find and solve the problem Several possible problem conditions are described along with likely causes and solutions If a problem arises please read this section carefully and attempt to understand and solve the problem If the problem cannot otherwise be solved contact an Authorized Service Center see Section 1 4 for assistance Be sure to have the instrument model number serial number voltage and problem description available IN NOTE It is assumed that the controller is being used to control a calibration bath The heater indicator LED The problem may be either insufficient heating or no heating stays red but the at all Insufficient heating may be caused by the amount of temperature does not cooling to the system being greater than the amount of heat increase the heater is capable of supplying Check that the heater is operational using a clamp on ammeter to measure the current to the heater If the heater is receiving current but not heating enough either replace the heater with one of greater rating not to exceed specifications of instrument or decrease the amount of cooling to the system If the heater is not receiving power at all use a voltmeter to verify that voltage is present at the heater socket at the back of the controller If voltage is present check the heater for correct wiring An ohmmeter may help to find a discontinuity in the wiring Check for a shorted heater The solid state relay may not be operati
62. tor 2 The heater socket is the source of controlled power for the system heater This power is switched by the solid state relay to maintain a constant temperature The voltage is the same as that supplied through the power cord A For a diagram of how to wire the heater to the controller see Figure 1 An extra line cord has been included with the unit to make this connection 3 The stirrer socket is an auxiliary power socket for a stirring device for the bath The voltage is the same as supplied through the mains supply to the power cord An extra line cord is included with the unit to make this connection 4 The control probe is plugged in here Normally the probe is a DIN 43760 type RTD Optionally a thermistor probe with a much more limited temperature range but better stability is available The controller must be internally configured to work with one type of probe or the other Probes or additional connectors for use with the user s own probes are available from Hart For assistance in wiring an RTD to the controller see Figure 2 A probe connector has been provided 5 The thermocouple cutout probe plugs in here This probe senses the system temperature for the safety cutout When the temperature exceeds the cutout set point the heater is disabled by opening a relay inside the controller This feature should be utilized for added safety The thermocouple probe is type K Probes and connectors are available from Hart Scientific
63. trument 2100 User Manual e Ifthe mains supply cord becomes damaged replace it with a cord with the appropriate gauge wire for the current of the system If there are any questions call Hart Scientific Customer Service for more information e Before using any cleaning or decontamination method except those recommended by Hart users should check with Hart Scientific Customer Service to be sure that the proposed method will not damage the equipment e lf the instrument is used in a manner not in accordance with the equipment design the operation of the bath may be impaired or safety hazards may arise The over temperature cutout should be checked every 6 months to see that it is working properly In order to check the user selected cutout follow the controller directions Section 6 8 for setting the cutout Both the manual and the auto reset option of the cutout should be checked Set the bath temperature higher than the cutout Check to see if the display flashes cutout and the temperature is decreasing IN WARNING When checking the over temperature cutout be sure that the temperature limits of the bath fluid are not exceeded Exceeding the temperature limits of the bath fluid could cause harm to the operator lab and instrument 10 1 Chapter 10 Troubleshooting This section contains information on troubleshooting Troubleshooting In the event that the instrument appears to function abnormally this section may help
64. uitry may cause the cutout to remain in this condition Check that the thermocouple probe is plugged into the controller and wired correctly Check that the probe temperature is well below the programmed set point If not then reset the cutout temperature to a value well above the probe temperature or wait for the temperature to cool well below the cutout set point If the cutout is set for manual reset mode then after the temperature cools the user must also manually reset the cutout according to the directions in this manual under Section 6 8 Cutout If the probe is not connected to the controller either plug in the appropriate thermocouple probe into the cutout probe socket or use a wire jumper inserted into the socket to short the input to simulate a probe at ambient temperature A problem could exist with the memory back up battery If the battery voltage is insufficient to maintain the memory data may become scrambled causing problems A nearby large static discharge may also affect data in memory Verify that the parameters on the Report of Test are accurate Cycle the power off disconnect the bath from AC and then restart the bath If the problem reoccurs the battery should be replaced Contact an Authorized Service Center see Section 1 4 for assistance If initializing the memory does not remedy the problem there may be a failed electronic component The controller may need to be reset Perform the Factory Reset Sequence
65. ult Protection High temperature cutout Type K thermocouple input Sensor burnout and short protection Combined Auxiliary and 115 VAC 10 50 60 Hz 7 8 A 895 W Heater Output max 230 VAC 10 50 60 Hz 7 8 A 1795 W Power max 115 VAC 10 50 60 Hz 8 A 1150 W 230 VAC 10 50 60 Hz 8 A 2300 W Note Internal electronics require 0 2 A to operate System Fuses 10 A 250 V fast acting max Exterior Dimension 72 mm H x 172 mm W x 250 mm D 2 83 in x 6 75 in x 9 86 in 1 8 kg 4 Ibs Safety OVERVOLTAGE Installation CATEGORY II Pollution Degree 2 per IEC 61010 1 Performance is dependent on system design including the control sensor Capabilities are based on Factory observed performance 2 1 2100 User s Manual 2 2 2 2 Environmental Conditions Although the instrument has been designed for optimum durability and trouble free operation it must be handled with care The instrument should not be operated in an excessively dusty or dirty environment Maintenance and cleaning recommendations can be found in the Maintenance Section of this manual The instrument operates safely under the following conditions ambient temperature range 5 50 C 41 122 F ambient relative humidity maximum 80 for temperature lt 31 C decreasing linearly to 50 at 40 C pressure 5kPa 106kPa mains voltage within 10 of nominal vibrations in the calibration environment should be min
66. up Setting the Temperature In the following discussion and throughout this manual a solid box around the word SET U P DOWN or EXIT indicates the panel button to press while the dotted box indicates the display reading on the front panel Explanation of the button function or display reading is written at the right To view or set the temperature set point proceed as follows The front panel LED display normally shows the actual process temperature 24 68 C Process temperature display When SET is pressed the display will show the set point memory that is currently being used and its value Eight set point memories are available SET Access set point selection Quick Start 3 3 Setting the Temperature Press UP or DOWN to change the set point value UP Increment display Press SET to accept the new value and display the vernier value The system begins heating or cooling to the new set point mi Store new set point access vernier 0 00000 Current vernier value Press EXIT and the process temperature will be displayed again Return to the temperature display 24 73 C Process temperature display The system will heat or cool until it reaches the new set point temperature The over temperature cutout should be correctly set for added safety See Section 6 8 IN Note To obtain optimum control stability adjust the proportional band as discussed in Section 6 7 2100 User s Guide 3 4 4 1 4
67. ure 5 1 The power entry module includes A the IEC power line connector B the ON OFF switch C the voltage selector with indicator window and two fuses The unit is shipped from the factory with 10 A 250 V F fuses Additional information on fuse usage is in Section 1 3 and Section 4 6 A The appropriate power cord with IEC connector has been included with the controller for the voltage specified in the order B The double pole single throw DPST power switch indicates the ON OFF positions with the universal I O C The power entry module is provided with a dual voltage selector integrated into the fuse holder The controller has been specially designed to allow either 115 or 230 VAC operation The voltage indicator window notifies the user of the voltage selected See Figure 5 2100 User Manual STIRRER UN 115 230 VAC 50 60 HZ RS 232 HEATER TC PROBE IEEE 488 POWER 115 230 VAC 920 1840 W 50 60 Hz 6 ES 10AF250V d Figure 5 Back panel features Two fuses are contained in the internal fuse holder The fuse holder will accept either 1 4 x 1 1 4 or 5 x 20 mm fuses Access to the fuses and the voltage selector is obtained by placing a flathead screwdriver in the slot at the top of the power entry module and opening the module front panel IN WARNING Access to the fuses may not be obtained with the power cord plugged into the IEC power line connec
68. y Drive American Fork UT 84003 9775 USA Phone 1 801 763 1600 Telefax 1 801 763 1010 E mail support hartscientific com Fluke Nederland B V Customer Support Services Science Park Eindhoven 5108 5692 EC Son NETHERLANDS Phone 31 402 675300 Telefax 31 402 675321 E mail ServiceDesk fluke nl Fluke Int l Corporation Service Center Instrimpex Room 2301 Sciteck Tower 22 Jianguomenwai Dajie Chao Yang District Beijing 100004 PRC CHINA Phone 86 10 6 512 3436 Telefax 86 10 6 512 3437 E mail xingye han fluke com cn 1 7 2100 User Manual 1 8 Fluke South East Asia Pte Ltd Fluke ASEAN Regional Office Service Center 60 Alexandra Terrace 03 16 The Comtech Lobby D 118502 SINGAPORE Phone 65 6799 5588 Telefax 65 6799 5588 E mail antng singa fluke com When contacting these Service Centers for support please have the following information available e Model Number e Serial Number e Voltage e Complete description of the problem Chapter 2 Specifications and Environmental Conditions 2 1 Specifications Table 2 Specifications Temperature Range 100 C to 670 C 148 F to 1238 F Stability Capability 2100 T 0 0005 C 2100 P 0 001 C Stabilization Time approximately 30 minutes depends on system design 100 Q RTD 4 wire 3 wire linearized thermistor optional probe type set at the factory 0 0002 C F in high resolution mode Switchable C or F Fa

Download Pdf Manuals

image

Related Search

Related Contents

取扱説明書(PDF)  OWNER'S MANUAL  Cisco 888EA  resumen de las características del producto 1  

Copyright © All rights reserved.
Failed to retrieve file