Home
        Schilder, F. (2004). Torcont v1 (2003) user manual.
         Contents
1.          WH  A          Create the parameter file expected by  torcont    with settings    problem name   pnet     run  1    continuation parameter  epsilon    mesh  30x100    LFil and Reserve  see also ex  kawa   100  200    use a Krylov subspace of at most Restart dimensions  Restart  50    max  number of iterations of gmres  ItMX   350    dropping tolerance for ilu  0 005    max  value of rel residual of gmres  TOL   1 0e 8    don t print debugging information of iterative solver and ilu  LogFile  NULL    continuation interval   1 5  7 0     max  number of continuation steps  150    print every npr steps  npr  5  and run torcont                                      create tc run   pnet   1  continuer param epsilon   discretisation_pointsl   30   discretisation points2   100   linear solver LFil   100   linear solver Reserve   200   linear solver Restart   50           linear  solver ItMX   350   linear  solver DropTOL   0 005                                linear solver TOL   1 0e 8    linear solver LogFile   NULL    clog   continuer param interval    1 5  7 0    continuer ItMX   150     npr   5                  torcont  pnet   1    STEP PAR LIxiI I TOL             Period T2       0 3 000e 00 8 6358e 01 5 7013e 03 6 9584e 00    5 3 355e 00 8 8125e 01 4 0472e 03 7 1356e 00  oF 10 3 934e 00 9 1147e 01 2 7886e 03 7 4471e 00  d 15 4 531e 00 9 4411e 01 2 3816e 03 7 7914e 00  ix 20 4 932e 00 9 6678e 01 2 5076e 03 8 0341e 00  a 25 5 478e 00 9 9835e 01 1 2610e 02 8 3755e 00  25 30
2.     currentdir   export fschild examples lang     mkdir   data     currentdir      Warning  the name changecoords has been redefined       Error   in mkdir  directory exists and is not empty      export fschild examples lang        kh Po ZG ue  V V V V    N Definition of the System and Creation of the Shared Object      The constants and parameters are defined as a list of    name   value    pairs   The system is defined as a function taking a list and a number as arguments and returning a list  of expressions      gt  Constants         Params     epsilon   0  rho   0 55  omega   3 5      LANG     x t    gt                  gt           gt         x 3  0 7  x 1  omega x 2    omega x 1   x 3  0 7  x 2      0 6 x 3  1 3 x 3  3  x 1   2 x 2 72   1 rho x 3   epsilon x 3   xi  3  L 1     Create a shared object by calling codegen and then compiling and linking   The compiler options used are for Solaris  You may need different options        create ode  lang   LANG  Constants  Params                          compiler    gcc  fPIC    linker    gcc  fPIC  shared       codegen  lt  lang ode  gt  lang c     OK  geo      PIC       o lang o lang c     OK  L gcc  fPIC  shared  o lang so lang o     OK    Definition of the Start Solutions      Define initial approximations to the quasiperiodic solution   This function is a guess     This torus function s  must always be 2 Pi periodic in each argument      gt  isol     t th    gt      0 9 0 3 cos th   cos t   0 9 0 3 cos th   sin t  0 7 0 5 
3.    Create the parameter file expected by    pofind    with settings    problem name   kawa     run  1    initial solution file   kawa pol dat   and then compute the initial periodic orbit      gt  create pof run  kawa   1  isol    kawa pol dat     pofind  kawa   1     Iterat D mpfung Normen Rechenzeit  I SI gamma  Ixi   I     gamma    d   F x  DF x  solve  0 0 0 0000e 00 7 3236e 00 2 2614e 01 0 0000e 00 0 0 0  1 1 1 0000e  00 7 7135e 00 2 8230e 02 5 8477e 01 0 0 0 0 0 0  2 1 1 0000e 00 7 6929e  00 7 9791e 04 1 2612e 01 0 0 0 0 0 0  3 1 1 0000e  00 7 6918e 00 6 6770e 06 4 8005e 03 0 0 0 0 0 0  4 1 1 0000e 00 7 6918e 00 2 3129e 07 1 9336e 05 0 0 0 0 0 0    solution written to file  data kawa 1 po0 dat     L     checking for memory leaks     no leaks     Create the parameter file expected by  pocont with settings    problem name   kawa     run  1    continuation parameter  k1    continuation interval   0 04  0 15     print every npr steps  npr  1  and then continue the periodic solution  The solution written to  data kawa 1 po0 dat  by  pofind is used as initial solution         gt  create poc run  kawa   1  continuer param   kl   continuer param interval    0 04  0 15    npr   1        pocont  kawa   1    STEP PAR   x   data file    0 9 000e 02 1 7199e 00 data kawa 1 po0 dat  1 9 438e 02 1 7195e 00 data kawa 1 pol dat                         2 1 027e 01 1 7186e 00 data kawa 1 po2 dat   3 1 187e 01 1 7167e 00 data kawa 1 po3 dat   4 1 361e 01 1 7144e 00 data kawa 1 po4 dat   5 1
4.    grl  surfdata  data4     display grl                        The following demonstrates  how to obtain cross sections  corresponding to invariance curves  of local stroboscopic maps   and how to draw these together with the torus  Note that we create  cross sections of both  the full  blue  and the dissected  coral  torus      gt  data5  sectionl data2  10     data6  sectionl data2  4    data7  2section2 data2  36     data8  section2 data2  31       data5  sectionl data4  1    data6  sectionl data4  15     data7  section2 data4  1    data8  section2 data4  36      gr2  spacecurve data5  thickness 3  color blue    gr3  spacecurve data6  thickness 3  color coral    gr4  spacecurve  data7  thickness 3  color blue    gr5  spacecurve data8  thickness 3  color coral                     gt  drsplavilgtly gr2  959    qui  gr5                         Bifurcation Diagram       At last  we draw the bifurcation diagram    The bifurcation diagrams contain the following columns in each row   fpcont  PAR   x     components of fixed point    pocont  non autonomous   PAR    x      pocont  autonomous   PAR   x   T   torcont  non autonomous   PAR   x   ERR T2   torcont  autonomous   PAR   x   ERR T1 T2    where means     PAR   value of parameter      x      normalised L2 norm of x   T   period  periodic orbit    ERR   estimated error of a quasiperiodic solution  T1   first basic period  quasiperiodic orbit        T2   second basic period  quasiperiodic orbit     The data structure of a bifurc
5.    vdp_qpol dat     mesh  40x40    LFil and Reserve  see also ex  kawa   250  300    use a Krylov subspace of at most Restart dimensions  Restart  50    max  number of iterations of gmres  IEMX   350    dropping tolerance for ilu  0 01    max  value of rel residual of gmres  TOL   1 0e 7    don t print debugging information of iterative solver and ilu  LogFile  NULL  and run torfind      gt  create tf run   vdp   1  isol  vdp_qpol dat                                                                        discretisation_pointsl   40   discret isation points2   40   inear_solver LFil   250    linear_solver Reserve   300   linear_solver Restart   50   linear_solver ItMX   350   linear_solver DropTOL   0 01   linear_solver TOL   1 0e 7   linear_solver LogFile   NULL   clog         torfind  vdp   1     Iterat D mpfung Norme Rechenzeit  I SI gamma MESM  I     gamma   d    F x  DF x   0 0 0 0000e 00 1 1593e 02 2 5166e 01 0 0000e 00 0 0  1 1 1 0000e 00 1 1626e 02 3 1900e 01 9 4264e 00 0 3 4 4  2 1 1 0000e 00 1 1612e 02 2 1970e 04 1 6002e 01 0 6 8 6  3 1 1 0000e 00 1 1612e 02 4 7285e 08 4 8280e 04  0 12 8  4 1 1 0000e 00 1 1612e 02 2 2302e 10 5 3201e 05 1 3 17 0    period T1 6 3150750482154807131e 00  period T2   5 7599935747348069981e 00  solution written to file  data vdp 1 qpo0 dat         checking for memory leaks no leaks     Create the parameter file expected by    torcont    with settings    problem name   vdp     run  1    continuation parameter  beta   b    mesh  40x40    LFi
6.   LogFile  NULL  and run torfind                                                     create tf run   pnet   1  isol  pnet qpol dat    discretisation_pointsl   30   discretisation points2   100   linear solver LFil   250   linear solver Reserve   250   linear solver Restart   35   linear solver ItMX   350   linear solver DropTOL   0 01   linear  solver TOL   1 0e 8   linear solver LogFile   NULL   clog                  torfind  pnet   1         Iterat D mpfung Normen Rechenzeit  I SI gamma biet   I     gamma   d    F  x  DF  x  solve  0 0 0 0000e 00 4 9607e 01 1 8597e  01 0 0000e 00 0 0 0  1 1 1 0000e 00 4 8752e 01 5 9276e 00 8 6662e 00 0 4 VIS  24 7  2 1 1 0000e 00 4 7434e 01 6 5696e 01 2 9055e 00 0 8 3 6 Fed   3 1 1 0000e 00 4 7311e 01 9 6584e 03 2 9172e 01 ql 5 4 44 5  4 1 1 0000e 00 4 7309e 01 1 8311e 06 3 6620e 03 LD Teak 53 9  5 1 1 0000e 00 4 7309e 01 1 8487e 10 1 1100e 06 1 8 8 9 63 7    period T2   6 9584467149239035422e 00  solution written to file  data pnet 1 qpo0 dat     L     checking for memory leaks     no leaks     Create s plot of the computed torus in    phase space  t  x  7 x   Because t is not plotted    ot  periodically  the torus appears not closed in the plot   See the example  kawa  for the format of the data structure      gt  datal  read_torus_data  pnet   1  0    data2   select torus coords datal  1 3 4    surfdata data2                          0 6 3  0 44 SSSS8   4 1 SS x  1 __ LYT TU HC OO WMTYORN  J SEUI  0 24 uu TT     NN  ii  aN       7       
7.   we continue the doubled invariant torus  emerging from the    simple    torus by a  torus doubling bifurcation in the second basic frequency     This run demonstrates  how to    run torfind and torcont     cut out sections of tori     extract cross sections  corresponding to invariant circles of local stroboscopic maps      create 3d plots of computed tori together with space curves       Create the parameter file expected by    torfind    with settings     problem name   kawa     run  3    initial solution file   kawa_qpo3 dat     owerwrite the value of k1 to  0 0775    mesh  20x80  doubled with respect to th2     LFil and Reserve  100  200    dropping tolerance for ilu  0 01    don t print debugging information  LogFile  NULL   and then compute the initial torus                                                            gt  create tf run   kawa   3  isol  kawa qpo3 dat    ode k1   0 0775   discretisation_pointsl   20   discretisation_points2   80   linear_solver LFil   100   linear_solver Reserve 200   linear_solver DropTOL   0 01   linear_solver LogFile   NULL   clog      torfind  kawa   3    Iterat D mpfung Norme Rechenzeit  I SI gamma  Ixi   I     gamma   d    F x  DF x  solve  0 0 0 0000e 00 6 9101e  01 2 1539e 00 0 0000e 00 0 0 0  1 1 1 0000e 00 6 9168e 01 2 9498e 02 2 1636e 00 0 3 LI 19527  2 1 1 0000e 00 6 9134e 01 1 6709e 03 5 0092e 01 Q5 2 1735  3 1 1 0000e 00 6 9132e 01 1 1526e 04 6 1077e 02 0 8 3 8 21 22  4 1 1 0000e 00 6 9132e  01 9 5981e 06 2 3312e 03 1 1 S0 
8.   x 3  x 1   e   1 x 1  2   x 2    x 4          1 d  x 3  b   x 1  x 3    e   1 x 3  2   x 4     L  1     Create a shared object by calling codegen and then compiling and linking   The compiler options used are for Solaris  You may need different options        create ode  vdp   VDP  Constants  Params   compiler    gcc  fPIC                   gt          gt           linker    gcc  fPIC  shared                codegen  lt  vdp ode  gt  vdp c     OK  gcc  lt   PIC  e  o vdp o vdp c     4 OK  L gcc  fPIC  shared  o vdp so vdp o     OK       Definition of the Start Solutions      Define initial approximations to the quasiperiodic solution   This function is a guess     This torus function s  must always be 2 Pi periodic in each argument      gt  isol     t th    gt     2 sin t   2 cos t    2 sin th   2 19 cos th   L       Write the initial solution to disk on a 40x40 mesh        Parameters     problem name   vdp     run  1    name of the function calculating initial solution values  isol    TI  6 3    T2  5 8    mesh  40x40       write tss  vdp   1  isol  6 3  5 8  40  40     vdp qpol dat        Run 1  Continuation of Quasiperiodic Orbits  b  0  0 22     This run demonstrates  how to    run torfind and torcont     tune the step size control of the continuer    print and interpret debugging information of the continuer     create 3D plots and animations       Create the parameter file expected by    torfind    with settings    problem name   vdp     run  1    initial solution file
9.  00 3 0264e 03 1 7952e 00 4  lang 1 qpol dat  10 5 796e 01 1 1676e 00 2 5121e 03 1 7952e 00 4  lang 1 qpo2 dat  15 5 934e 01 1 1602e 00 1 9799e 03 1 7952e 00 4  lang 1 qpo3 dat  20 6 040e 01 1 1546e 00 1 4345e 03 1 7952e 00 4  lang 1 qpo4 dat  25 6 111e 01 1 1507e 00 8 8021e 04 1 7952e 00 4  lang 1 qpo5 dat  30 6 149e 01 1 1486e 00 3 2054e 04 1 7952e 00 4  lang 1 qpo6 dat  31 6 149e 01 1 1486e 00 3 2054e 04 1 7952e 00 4  lang 1 qpo7 dat  damped_newton  no convergence  STEP PAR Llxl   TOL Period Tl P  file  0 5 500e 01 1 1830e 00 3 3538e 03 1 7952e 00 4  lang 1 qpo0 dat  5 5 361e 01 1 1902e 00 3 6695e 03 1 7952e 00 4  lang 1 qpo8 dat  10 5 128e 01 1 2019e 00 4 1218e 03 1 7952e 00 4  lang 1 qpo9 dat  15 4 873e 01 1 2146e 00 4 5389e 03 1 7952e 00 4  lang 1 qpo10 dat  20 4 599e 01 1 2280e 00 4 9178e 03 1 7952e 00 4  lang 1 qpoll dat  25 4 309e 01 1 2419e 00 5 2599e 03 1 7952e 00 4  lang 1 qpol2 dat  30 4 009e 01 1 2560e 00 5 5733e 03 1 7952e 00 5   lang 1 qpol3 dat  35 3 704e 01 1 2704e 00 5 8772e 03 1 7952e 00 5    eriod T2     3115e 00   2625e 00   2007e 00   1527e 00   1173e 00   0939e 00   0820e 00   0820e 00    eriod T2     3115e 00   3676e  00   4673e  00   5867e 00    728 7e 00   8967e 00    0943e 00     3263e 00    data   data   data   data   data   data   data   data     data     data   data   data   data   data   data   data   data     data                 data  select torus coords data   surfdata data              SSW  NNI    35 3 704e 01 1 2704e 00 5 8772e 03  lang 1 
10.  1301e 02  norm v x  2 2373e 00  rel_abs_diff 1 9625e 02  beta 1 8554e 01  h_facl 1  2139e401  h fac2 1 0772e400  h 1 3867e 01       15 2 013e 01 2 8249e 00 2 8938e 01 5 8351e 00 5 1614e 00 data   vdp 1 qpo5 dat                                  continuer  step    norm x  1 1334e 02  norm v x  2 3340e 00  rel abs diff 2 0412e 02  beta 1 9131e 01  h_facl 1 2247e 01  h_fac2 1 0450e 00  h 1 3766e 01   continuer  step    norm x  1 1341e 02  norm v x  2 3952e 00  rel_abs_diff 2 0935e 02  beta 1 9711e 01  h_facl 1 1942e 01  h_fac2 1 0145e 00  h 1 3267e 01   continuer  step    norm x  1 1322e 02  norm v x  2 2104e 00  rel abs diff 1 9352e 02  beta 1 8712e 01  h facl 1  29186401  h fac2 1 0681e400       h 1 3463e 01  18 2 035e 01 2 8302e 00 3 1390e 01 5 8404e 00 5 1589e 00 data   vdp 1 qpo6 dat                                  continuer  step    norm x  1 1278e 02  norm v x  2 1901e 00  rel_abs_diff 1 9248e 02  beta 1 8354e 01  h_facl 1 2988e 01  h_fac2 1 0888e 00  h 1 3926e 01   continuer  step    norm x  1 1207e 02  norm v x  2 3721e 00  rel abs diff 2 0979e 02  beta 1 9381e 01  h_facl 1 1917e 01  h_fac2 1 0316e 00  h 1 3648e 01   continuer  step    norm x  1 1112e 02  norm v x  2 3814e 00  rel_abs_diff 2 1240e 02  beta 1 9265e 01  h_facl 1  17706401  h fac2 1 0378e400  h 1 3455e 01       21 1 901e 01 2 7776e 00 2 2214e 00 5 8322e 00 5 1908e 00 data   vdp 1 qpo7 dat                            continuer  step    norm x  1 1000e 02  norm v x  2 2160e 00  rel abs diff 1 9963e 02  beta 
11.  2 8238e 00 7 4058e 00 6 0297e 00  vdp 2 qpol18 dat  30 9 676e 02 2 8302e 00 5 9467e 00 6 0252e 00  vdp 2 qpol19 dat  35 9 752e 02 2 8345e 00 1 8941e 00 6 0222e 00  vdp 2 qpo20 dat  40 9 471e 02 2 8383e 00 2 6917e 00 6 0186e 00  vdp 2 qpo21 dat  45 8 979e 02 2 8362e 00 5 1114e 00 6 0156e 00  vdp 2 qpo22 dat  50 8 366e 02 2 8195e 00 3 6437e 00 6 0182e 00  vdp 2 qpo23 dat  55 8 042e 02 2 8008e 00 1 2183e 01 6 0249e 00    vdp 2 qpo24 dat  time     real  4 28 20 5  user  4 27 33 4  Sys 2 4    command terminated abnormally     Torcont was killed here  hence the message of time      gt      0269e  00   0198e  00   0172e  00   0164e  00   0166e 00   0195e  00   0272e  00    NY CBr BN D dq NY o BN o PB     0488e  00    Period T2   5309e  00   6612e  00   7655e  00   7819e  00   7837e  00   7801e  00   7679e  00    7574e 00   7555e  00   7589e  00   7703e 00    a a a nnn ona won QUO     7797e 00    data   data   data   data   data   data   data     data     data   data   data   data   data   data   data   data   data   data   data   data     data     Here  we create two animations of the torus  At first  we read in all the solutions given in a list   nums   The for loop creates two sequences of plot structures  anl and an2   See example   kawa  for the format of the torus data structure                                nums i       nums i     2734   y 5276       gt  nums        24  14      0 13     anl  NULL an2  NULL   for i from 1 by 1 to nops nums  do  printf   reading graph  d n    
12.  5 507e 00 1 0000e 00 1 7242e 02 8 3937e 00  e 35 5 515e 00 1 0005e 00 2 1305e 02 8 3985e 00     i 40 5 520e 00 1 0008e 00 2 3145e 02 8 4016e 00  ee 45 5 524e 00 1 0010e 00 2 4256e 02 8 4042e 00  a  50 5 528e 00 1 0012e 00 2 4240e 02 8 4066e 00    55 5 532e 00 1 0014e 00 2 2975e 02 8 4093e 00  oa 60 5 537e 00 1 0018e 00 2 0943e 02 8 4129e 00  i 65 5 546e 00 1 0023e 00 1 8557e 02 8 4190e 00    70 5 567e 00 1 0036e 00 1 7132e 02 8 4325e 00  E 75 5 602e 00 1 0057e 00 1 7816e 02 8 4552e 00  Mis 80 5 722e 00 1 0128e 00 2 3569e 02 8 5325e  00  idi 85 6 281e 00 1 0463e 00 1 1788e 02 8 9001e 00  n  90 6 745e 00 1 0748e 00 6 4120e 02 9 2135e 00    95 6 866e 00 1 0823e 00 6 5148e 02 9 2947e 00  S   6 941e 00 1 0859e 00 3 6025e 01 9 3314e 00  dat 05 6 975e 00 1 0868e 00 7 7580e 01 9 3359e  00   Sen 7 005e 00 1 0876e 00 4 1035e 01 9 3406e 00  dat   STEP PAR IIx  TOL Period T2   0 3 000e 00 8 6358e 01 5 7013e 03 6 9584e 00  js 5 2 687e 00 8 4858e 01 1 0881e 02 6 8123e 00  TCU 10 2 385e 00 8 3450e 01 1 9077e 02 6 6801e 00  isti no convergence  bifurcation diagramm written to file   data pnet 1 bd dat     output written to file   data pnet      checking for memory leaks     no leaks     real  1 19 53 5  user 1 19 37 3    Sys 14 5     datal  read torus data  pnet   1  17    data2   select torus coords datal  1 3       surfdata data2      data file    data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p  data p 
13.  535e 01 1 7121e 00 data kawa 1 po5 dat   STEP PAR    x   data file   0 9 000e 02 1 7199e 00 data kawa 1 po0 dat   1 8 563e 02 1 7204e 00 data kawa 1 po6 dat   2 7 735e 02 1 7212e 00 data kawa 1 po7 dat   3 6 166e 02 1 7225e 00 data kawa 1 po8 dat   4 4 442e 02 1 7236e 00 data kawa 1 po9 dat   5 2 677e 02 1 7244e 00 data kawa 1 pol10 dat  bifurcation diagramm written to file   data kawa 1l bd dat   output written to file   data kawa l pocont log       checking for memory leaks     no leaks   real 0 6  user 0 4  sys 0 0    Read the computed data of the periodic orbit into datal  Here orbit 0 of run 1 is choosen   Then select the columns 2 3 4 from the data  which contain the projection onto the   x y z  subspace     The data of a periodic orbit in R n at N mesh points has the following structure  note  t0    tN           tO  x1 t0   x2 t0        xn tO          tN  x1 tN   x2 tN        xn tN          datal  read po data  kawa  1 0    data   select po coords datal  2 3 4     gt  spacecurve   data   thickness 3  color blue  axes boxed            1 38 4  1 378 4  1 376 4  1 374 4  1 372 4   1 37 4  1 368                          gt     N Run 2  Continuation of a Quasiperiodic Orbit   Invariant  2 Torus    Secondly  we continue the invariant torus  emerging from the periodic orbit by a Hopf  bifurcation     This run demonstrates  how to    run torfind and torcont     create 3d plots of computed tori       Create the parameter file expected by    torfind    with settings    problem 
14.  9658e 05 sin t  cos 2 0 th  8 3610e 05 cos t    cos 2 0 th  1 8230e 03 sin 3 0 th  4 0360e 05 sin t  sin 3   O0 th  3 5066e 05 cos t  sin 3 0 th  6 2331e 03 cos  3 0 th   7   7939e 05 sin t  cos 3 0 th  6 0643e 05 cos t   cos 3 0 th   2 3  175e 03 sin 4 0 th  1 0078e 04 sin t  sin 4 0 th  2 0976e 05   cos t  sin 4 0 th  9 0188e 03 cos 4 0 th  9 4243e 05 sin t  c  os 4 0 th  3 5578e 05 cos t  cos 4 0 th  1 4481e 03 sin 5 0 t  h  2 3374e 04 sin t  sin 5 0 th  1 8662e 05 cos t  sin 5 0 th    7 2119e 04 cos 5 0 th  8 0794e 07 sin t  cos 5 0 th  2 7773  e 05 cos t  cos 5 0 th                  Write discretisations of the initial solutions to unique files   This takes some time  so do not call this functions if not necessary     Note that the first period is always equal to the forcing period  For the second period we give  initial guesses  60 4 and 118   The computations are done on a 20x40 mesh  single torus  and  a 20x80 mash  doubled torus       gt    Args  name run iso  T1 T2 N1 N2       write_poss  kawa   1  psol  2  Pac  20             write tss   kawa   2  tsol  Z P  60 4  20  40    write tss   kawa   3  dtsol  2 Pi  118  20  80       kawa  pol dat               kawa  qpo2 dat           L  kawa  qpo3 dat        gt     3 Run 1  Continuation of a Periodic Orbit    At first  we continue the periodic orbit  from which the invariant torus emerges by a Hopf  bifurcation     This run demonstrates  how to    run pofind and pocont     create 3D plots of computed periodic orbits    
15.  Default Values   ode  lt parname gt     lt value gt    sets the value of the free parameter  lt parname gt  to  lt value gt    overwrites the default value     discretisation_points   20   set the number of mesh points    linear_solver LFil   10   set the number of values which are reserved for fill in for each  line of L and U computed by the ilu preconditioner   linear_solver Reserve   20   set the number of additional fill in elements per line  if more  than LFil elements violate the drop condition of the ilu preconditioner   linear  solver Restart   15   restart gmres after Restart iterations   linear  solver ItrMX   150   max  number of iterations of gmres  this is the global iteration  index  counting subiterations    linear  solver DropTOL   0 02   dropping tolerance for the ilu preconditioner   linear solver PermTOL   1   criterion for pivotisation  should always be set to 1   linear solver  TOL   1 0e 4   the stopping criterion for gmres  relative residual    linear solver LogFile   NULL   for printing debugging information of the linear solver set  LogFile to clog  this helps very much to tune the linear solver    nonlinear solver ItrMX   10   max  number of Newton steps  nonlinear solver SubItMX   8   max  number of damping steps per Newton step  nonlinear solver TOL   1 0e 4   stopping criterion for the Newton iteration    continuer param    lt parname gt    set the primary continuation parameter   continuer param interval     1 1    set the parameter interval   
16.  L and U computed by the ilu preconditioner   linear  solver Reserve   200   set the number of additional fill in elements per line  if more  than LFil elements violate the drop condition of the ilu preconditioner   linear  solver Restart   35   restart gmres after Restart iterations   linear solver ItrMX   350   max  number of iterations of gmres  this is the global iteration  index  counting subiterations    linear solver DropTOL   0 02   dropping tolerance for the ilu preconditioner   linear solver PermTOL   1   criterion for pivotisation  should always be set to 1   linear solver  TOL   1 0e 4   the stopping criterion for gmres  relative residual    linear solver LogFile 2 NULL   for printing debugging information of the linear solver set  LogFile to clog  this helps very much to tune the linear solver    nonlinear solver ItrMX   10   max  number of Newton steps  nonlinear solver SubItMX   8   max  number of damping steps per Newton step  nonlinear solver TOL   1 0e 4   stopping criterion for the Newton iteration       IN create tc run  problem  name  run  continuer param par name  options        Creates the parameter file expected by pocont   Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1 2       options   a sequence of    name   value  pairs    Possible Options and Default Values   ode  lt parname gt     lt value gt    sets the value of the free parameter  lt parname gt  to  lt value gt    overwrites
17.  Reserve  see also ex  kawa   250  300     use a Krylov subspace of at most Restart dimensions  Restart  50     max  number of iterations of gmres  ItMX   350     dropping tolerance for ilu  0 01     max  value of rel residual of gmres  TOL   1 0e 7     don t print debugging information of iterative solver and ilu  LogFile  NULL  and run torfind to compute the solution  torfind automatically writes the solution to the start  solution of run 2      gt  Qreate tf run   vdp   2  isol  data vdp l qpol dat    ode b   0 1                                                  discretisation_pointsl   40   discretisation points2   40   linear_solver LFil   250   linear_solver Reserve   300   linear_solver Restart   50   linear_solver ItMX   350   linear_solver DropTOL   0 01   linear_solver TOL   1 0e 7   linear_solver LogFile   NULL   clog                     torfind  vdp   2      Iterat D mpfung Normen Rechenzeit  I SI gamma   x    I     gamma    d    F  x  DF  x  solve  0 0 0 0000e 00 1 1488e 02 1 9697e 00 0 0000e 00 0 0 0  1 1 1 0000e 00 1 1634e 02 6 0309e 01 8 2195e 00 05 3 4 3 134 6  2 1 1 0000e 00 1 1595e 02 1 1565e 01 3 4337e 00 0 26 8 5 228 6  3 1 1 0000e 00 1 1583e 02 2 6079e 03 4 9449e 01 1 0 12 7 322 4  4 1 1 0000e 00 1 1582e 02 7 9621e 06 2 7182e 02 1 3 16 9 418 3  5 1 1 0000e 00 1 1582e 02 1 3183e 08 5 4643e 05 1 6 2120 253715 1    period T1   6 0421905943890745760e 00  period T2   5 5308650816578683873e 00  solution written to file  data vdp 2 qpo0 dat           estimating 
18.  course  between these two strong  resonances  there are some more or less weak resonances  see therefore also the next plot     We read the bifurcation diagram into datal  datal then contains two lists of data  one for the  forward continuation and one for the backward continuation  From both lists we extract the  parameter and the second basic period  By dividing the second period by Pi  the first basic  period   we obtain the inverse rotation number  These is plotted  blue  together with the lines  of the 1 2 and the 1 3 resonances  red  over the parameter epsilon                                                              See example  kawa  for the format of the bifurcation diagram data structure                                                         gt  datal    read bd  pnet    1     data2    select bd cols datal  1  4    data3    NULL   for i from 1 by 1 to nops data2 1   do  data3     data2 1  i l 1   evalf data2 1  i  2  Pi    data3   od   for i from 1 by 1 to nops data2 2   do  data3    data3   data2 2  i  1   evalf data2 2  i  2  Pi     od   pl    plot   data3    color blue    pl i  Bl  plot Cl Lb2621s   bf2 1  Lbb2  9      Pt  edly  0010reored    display  pl    34  2 84  2 64  2 44  2 24  241    i  2 3 4 5 6 7      A plot of the estimated error of the torus solution  The error is plottet over epsilon  Areas with  larger error values indicate  where    ilands    of weak resonances may reside  But numerically   this is very hard to verify  At strong resonances  ou
19.  data p  data p  data p  data p  data p    net     net     net     net     net     net     net     net    net     net     net     net     net    net     net     net     net     net    net     net     net     net     net    data file    data p  data p  data p     l torcont log       4      net     net        net      1 qpo7     1 qpo0   1 qpol   1 qpo2   1 qpo3   1 qpo4   1 qpo5   1 qpo6     1 qpo8     O a O O Q Q Q a a a    1 qpo9   1 qpol0   1 qpoll      1 gpo12     1 qpol13   1 qpol4   1 qpol5   1 qpol6      1 gpo17     1 qpo18   1 qpol9   1 qpo20   1 qpo21      1 gpo22     1 qpo0 d  1 qpo23   1 qpo24                                                               H   ba III    2 III   206A jil  Re      Here  we create an animation of the evolution of the torus under changes of the parameter  epsilon    At first  we read in all solutions given in a list  nums   The for loop creates a sequence of  plot structures      gt  nums   24  23   0  22     an  NULL    for i from 1 by 1 to nops nums  do  printf   reading graph  d n   nums i     datal  read torus data  pnet   1  nums i     data2   select torus coords datal  1 3 4    an  an  surfdata  data2      od     reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  rea
20.  number of values which are reserved for fill in for each  line of L and U computed by the ilu preconditioner   linear_solver Reserve   20   set the number of additional fill in elements per line  if more  than LFil elements violate the drop condition of the ilu preconditioner   linear_solver Restart   15   restart gmres after Restart iterations   linear_solver ItMX   150   max  number of iterations of gmres  this is the global iteration  index  counting subiterations    linear_solver DropTOL   0 02   dropping tolerance for the ilu preconditioner   linear_solver PermTOL   1   criterion for pivotisation  should always be set to 1   linear_solver TOL   1 0e 4   the stopping criterion for gmres  relative residual    linear_solver LogFile   NULL   for printing debugging information of the linear solver set          linear_solver LogFile   NULL   for printing debugging information of the linear solver set  LogFile to clog  this helps very much to tune the linear solver    nonlinear_solver ItMX   10   max  number of Newton steps  nonlinear_solver SubItMX   8   max  number of damping steps per Newton step  nonlinear_solver TOL   1 0e 4   stopping criterion for the Newton iteration         create_poc_run  problem_name  run  options          Creates the parameter file expected by pocont     Parameters     problem_name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2       options   a sequence of    name   value  pairs    Possible Options and
21.  nums  do  printf   reading graph  d n   nums i                   data  read_torus_data  vdp   1  nums i     datal  select_torus_coords data  2 3 4                              anl  anl  surfdata  datal   an2  an2  surfdata  data2   od     reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  L reading graph      We create two animations  which show the evolution of the torus as the continuation  progresses  For beta near 0 2035  the torus disappears in a Hopf bifurcation to a periodic    orbit  The angle coordinate 0  becomes obsolete at this point  as the dimension of the manifold                   data2  select_torus_coords data  1 5 6              PpPPpPpPpPpDDHDH       OOO 1 OY O1 4S CO PD ES  O       drops from 2  torus  to 1  periodic orbit    Therefore  the plot over     seems to be still a    torus  but it is rather the same periodic orbit plottet for each value of  0      There is an interesting additional observation  The Hopf point seems also to be a limit point of  the torus curve  This impression is aided by the second animation  which clearely shows  different pictures for each of the branches   In addition to the continuation process  which turns  around near this Hopf point  Further  for beta 0  the torus is not unique  Thats the reason for  choosing beta 0 001 for the initial solution  This all together indicates  that there is a closed  loop of tori with limit points for beta 0 and at t
22.  poc run    create tf run  create tc run    fpfind  fpcont  pofind  pocont  torfind  torcont   odeinfo  print odeinfo    line scan format  read bd  select bd cols   read po data  select po coordas    read torus data  copy periodic solution    copy torus solution  select torus  coords    cutl  cut2  sectionl  section2     contpack m         The Example of C  Hayashi  T  Yoshinaga and H  Kawakami    This example was given by T  Yoshinaga and H  Kawakamiand shows a cascade of torus doubling  bifurcations which lead to a strange attractor  This is a nice test example because no  numerical   obserbable resonances occour  The system is given by the equations    9  g   d 1 x   32 x  3 7777 o   B cosi   3 1 k  3x   2 z  gag      with the parameter values k     5e 1  B  22  B   3e 1 and k     4e 1     15      Attention  Before starting the computations  please set the paths in the    read    and the    currentdir     commands correctly  Ignore the error message issued by    mkdir         gt  restart   with plots    with process    read   export fschild maple contpack m    currentdir   export fschild examples kawa     mkdir   data     currentdir      Warning  the name changecoords has been redefined       Error   in mkdir  directory exists and is not empty      export fschild examples kawa        V V V V    3 Definition of the System and Creation of the Shared Object      The constants and parameters are defined as a list of    name   value    pairs   The system is defined as a functio
23.  the default value        discretisation_points1   20   set the number of mesh points at the thl axis  discretisation points2   20   set the number of mesh points at the th2 axis    linear solver LFil   100   set the number of values which are reserved for fill in for each  line of L and U computed by the ilu preconditioner   linear  solver Reserve   200   set the number of additional fill in elements per line  if more  than LFil elements violate the drop condition of the ilu preconditioner   linear  solver Restart     35   restart gmres after Restart iterations   linear  solver ItrMX   350   max  number of iterations of gmres  this is the global iteration  index  counting subiterations    linear  solver DropTOL   0 02   dropping tolerance for the ilu preconditioner   linear solver PermTOL   1   criterion for pivotisation  should always be set to 1   linear  solver TOL   1 0e 4   the stopping criterion for gmres  relative residual    linear solver LogFile 2 NULL   for printing debugging information of the linear solver set  LogFile to clog  this helps very much to tune the linear solver    nonlinear solver ItrMX   10   max  number of Newton steps  nonlinear solver SubItMX   8   max  number of damping steps per Newton step  nonlinear solver TOL   1 0e 4   stopping criterion for the Newton iteration    continuer param    lt parname gt    set the primary continuation parameter   continuer param interval     1 1    set the parameter interval   continuer ItMX   50   set the maximu
24.  torcont  vdp   2    STEP PAR   1x    TOL Period Tl Period T2  file  0 2 000e 01 2 8953e 00 1 8118e 01 6 0422e 00 5 5309e 00  vdp 2 qpo0 dat  5 3 362e 01 2 9568e 00 5 9696e 02 6 0470e 00 5 2557e 00  vdp 2 qpol dat  10 1 020e 00 3 2137e 00 1 2898e 02 6 0418e 00 4 3208e 00  vdp 2 qpo2 dat  15 2 405e 00 3 6314e 00 1 0497e 02 6 0321e 00 3 3598e 00  vdp 2 qpo3 dat  20 4 229e 00 4 1058e 00 1 0368e 02 6 0277e 00 2 7241e 00  vdp 2 qpo4 dat  25 6 447e 00 4 6153e 00 1 1818e 02 6 0256e 00 2 2886e 00    vdp 2 qpo5 dat       data   data   data   data   data   data     data                 30 8 518e 00 5 0441e 00 2 1908e 01 6 0256e 00  vdp 2 apo6 dat  95 8 586e 00 5 0556e 00 4 3107e 01 6 0255e 00  vdp 2 qpo7 dat  40 8 611e 00 5 0582e 00 5 9263e 01 6 0234e 00  vdp 2 qpo8 dat  45 8 619e 00 5 0591e 00 6 4788e 01 6 0225e 00  vdp 2 apo9 dat  50 8 617e 00 5 0589e 00 7 2793e 01 6 0227e 00  vdp 2 qpol0 dat  55 8 588e400 5 0559e 00 2 8561e 00 6 0253e 00  vdp 2 qpoll dat  60 8 515e 00 5 0436e 00 2 0275e 01 6 0255e 00  vdp 2 qpo12 dat  65 8 314e 00 5 0038e 00 1 0920e 01 6 0251e 00  vdp 2 qpol13 dat  Sparskit  PGMRES  pgmres  no convergence  STEP PAR Llxl I TOL Period T1  file  0 2 000e 01 2 8953e 00 1 8118e 01 6 0422e 00  vdp 2 qpo0 dat  5 1 430e 01 2 8685e 00 1 6337e 01 6 0366e 00  vdp 2 qpol4 dat  10 1 005e 01 2 8465e 00 3 8479e 01 6 0293e 00  vdp 2 qpol5 dat  15 9 374e 02 2 8343e 00 2 3998e 02 6 0304e 00  vdp 2 qpol6 dat  20 9 252e 02 2 8267e 00 2 2195e 01 6 0311e 00  vdp 2 qpol7 dat  25 9 326e 02
25. 0 4 3    10 4 3         0 3 2    10 3 2            0 2 1    10 2 1                               0 3 1    10 3 1       color red    display pl            3    2 5                               0 2 4 6 8    areas of the strong 1 1 and 1 3 resonances are clearly visible      gt  data2    select bd cols datal  1  3    plot  data2  0  10  0  3  color blue    plot  data2  0  10  0  0 2  color blue                             A plot of the estimated error of the torus solution  The error is plottet over d  delta   The two                            0 24  0 18 7  0 16 4  0 14 4  0 12 4   0 14  0 08 4  0 06    0 04 4  0 02 4                
26. 02 1 7276e 00 9 2680e 02 1 1847e 02 data kawa 3 qpo2   a   STEP PAR IuIxi   TOL Period T2 data file   0 7 750e 02 1 7283e 00 1 3375e 01 1 1720e 02 data kawa 3 qpo0    de 5 7 505e 02 1 7290e 00 1 3710e 01 1 1584e 02 data kawa 3 qpo3   on 10 6 826e 02 1 7313e 00 1 3451e 01 1 1107e 02 data kawa 3 qpo4   e 15 6 219e 02 1 7345e 00 1 9847e 01 1 0459e 02 data kawa 3 qpo5     20 5 877e 02 1 7386e 00 1 1273e 00 9 8277e 01 data kawa 3 qpo6   3 25 5 589e 02 1 7439e 00 6 0845e 01 9 3032e 01 data kawa 3 qpo7   9s 30 5 065e 02 1 7491e 00 3 0263e 01 8 9128e 01 data kawa 3 qpo8   25 35 4 508e 02 1 7520e 00 2 5987e 01 8 6736e 01 data kawa 3 qpo9   Di 39 3 962e 02 1 7535e 00 2 6043e 01 8 4890e 01 data kawa 3 qpo10   a  bifurcation diagramm written to file   data kawa 3 bd dat   output written to file   data kawa 3 torcont log       checking for memory leaks     no leaks   real 24 53 4  user 24 51 7  sys 0 5    Read the computed data of the invariant torus into datal  Here torus 0 of run 3 is choosen   Then select the columns 3 4 5 from the data  which contain the projection onto the   x y z  subspace      gt  datal  read torus _data   kawa   3  0    data2  select_torus_coords datal  3 4 5     Different from the previous plots  we want to cut out some segments for a better view  In this   example we cut out parts in both direction to show  that this is  successively  possible  We   obtain a nice view into the doubled torus               gt  data3  cut1  data2  Ae 0s  data4  cut2  data3  56  70 
27. 1 8481e 01  h_facl 1 2523e 01  h_fac2 1 0814e 00  h 1 3823e 01   continuer  step    norm x  1 0889e402  norm v x  2 3212e 00  rel abs diff 2 1124e 02  beta 1 8871e 01  h_facl 1 1835e 01  h_fac2 1 0593e 00  h 1 3910e 01   continuer  step    norm x  1 0849e 02  norm v x  2 7439e 00  rel_abs_diff 2 5059e 02  beta 2 8563e 01  h_fac1 9 9763e 00  h_fac2 7 0393e 01          h 9 3019e 00  24 1 751e 01 2 7121e 00 7 5788e 01 5 9136e 00 5 3052e 00 data   vdp 1 qpo8 dat  continuer  step   norm x  1 1129e 02  norm v x  6 5002e 00  rel_abs_diff 5 7886e 02  beta 6 0485e 01  h_fac1 4 3188e 00  h_fac2 3 4477e 01  h 4 4184e 00   25 1 539e 01 2 7820e 00 1 5968e 00 5 9347e 00 5 3946e 00 data   vdp 1 qpo9 dat       continuer  initialize   h  1 0000e 01  h_max 2 5000e 01  h_min 1 0000e 00  h fac min 5 0000e 01  h_fac_max 2 0000e 00  MaxDiff 2 5000e 01  alpha 2 0000  e 01  gamma 9 5000e  01   STEP PAR   1x1  TOL Period Tl Period T2 data  file       0 1 000e 03 2 9027e 00 1 1089e 02 6 3151e 00 5 7600e 00 data   vdp 1 qpo0 dat  continuer  step  norm x  1 1536e 02  norm v x  7 7010e 01  rel_abs_diff 6 6182e 03  beta 8 8840e 00  h_facl 3 7774e 01  h_fac2 2 2421e 00  h  1 9000e 01   1  2 167e 02 2 8838e 00 3 4924e 02 6 3899e 00 5 8156e 00 data   vdp 1 qpol10 dat             bifurcation diagramm written to file   data vdp 1 bd dat   output written to file   data vdp 1 torcont log         checking for memory leaks     no leaks     real   1 33 32  5  user 1 33 29 8  sys 1 0      Interpretation of the debug
28. 24 9  5 1 1 0000e 00 6 9132e 01 3 8010e 07 2 4931e 04 1 3 6 2 28 7  6 1 1 0000e 00 6 9132e 01 4 2433e 08 1 2618e 05 Pd 7 4 32 00  period T2   1 1719963027479205664e 02  solution written to file  data kawa 3 qpo0 dat         checking for memory leaks no leaks   Create the parameter file expected by    torcont    with settings    problem name   kawa     run  3    continuation parameter  k1    owerwrite the value of k1 to  0 0775    mesh  20x80    LFil and Reserve  300  300    max  number of iterations of gmres  IEMX   700    max  value of rel  residual of gmres  TOL   1 0e 8    continuation interval   0 04  0 08     max  continuation step size  1 0  and then continue the invariant torus     In the output  Note the jump in the tolerance for k 1   0 05877    0 05725   which is due to a  number of weak resonances                                                               gt  create tc run   kawa   3  continuer param k1   ode k1   0 0775   discretisation_pointsl   20   discretisation_points2   80   linear_solver LFil   300   linear_solver Reserve   300   linear_solver ItMX   700   linear_solver TOL   1 0e 8   continuer param_interval    0 04  0 08    continuer h_max   1 0       torcont  kawa   3    STEP PAR LIxi I TOL Period T2 data file  0 7 750e 02 1 7283e 00 1 3375e 01 1 1720e 02 data kawa 3 qpo0 d      5 7 917e 02 1 7278e400 1 1748e 01 1 1804e 02 data kawa 3 qpol d  zs 8 8 006e 02 1 7276e400 9 2680e 02 1 1847e 02 data kawa 3 qpo2 d             O a O O Q Q Q a       8 8 006e 
29. 30E 03 cos  1  os t  cos th       1 47861E 04   5 20006E O01 cos  1     1 23093E 03 sin    os t  sin th     14 01392E 04 cos  1                os t  cos th     1 32976E 00  13 91183E 05 ocos  1   6 18952E 02 sin    os t  sin th     19 68285E 02 cos  1  os t  cos th                 dtsol     C  th             gt    6 3293e 05 4 7468e 01 sin t  8   n 1 0 th  9 9029e           5 17355E 01 sin t     t     th  6 34324E 01 sin  1       th  8 63900E 02 sin      t  sin         th  4        t  cos       7 99765E 01 sin t     t     th  6 06000E 02 sin  1       th  3 69231E O1 sin      t  sin         ch   4     th  5        t  cos      11 91934E 04 sin t     t        th  6 28914E 05 sin         th  3 91103E 04 sin              02 sin t  sin     t  sin         th  9     th  8        t  cos      th  9     00134E 02 c    43208E 01 c    95267E 01 c    74376E 02 c    69171E 05 c    41343E 05 c    1639e 01 cos t  6 1526e 04 si  1 0 th  8 2113e 03 cos t  sin           1 0 th  3 1443e 04 cos 1 0 th  3 9425e 02 sin t  cos 1 0 th    8 6842e 03 cos t  cos 1 0 th  7 1716e 04 sin 2 0 th  3 0896e   01 sin t  sin 2 0 th  5 1457e 01 cos t  sin 2 0 th  1 0355e   03 cos 2 0 th  5 9266e 01 sin t  cos 2 0 th  1 0655e 01 cos t    cos 2 0 th  2 9828e 05 sin 3 0 th  6 5673e 02 sin t  sin 3   0 th  7 2169e 02 cos t  sin 3 0 th  1 7579e 03 cos 3 0 th  7   1634e 02 sin t  cos 3 0 th  7 8122e 02 cos t  cos 3 0 th  1 1  177e 03 sin 4 0 th  8 6009e 02 sin t  sin 4 0 th  1 6180e 01   cos t  sin 4 0 th  1 6492e 03 co
30. 332e 04  2 qpol dat  2 2 706e 03  2 qpo2 dat  3 6 075e 03  2 qpo3 dat  4 1 074e 02  2 qpo4 dat  5 1 541e 02  2 qpo5 dat  6 2 010e 02  2 qpo6 dat  7 2 483e 02  2 qpo7 dat  8 2 963e 02  2 qpo8 dat  9 3 455e 02   2 qpo9 dat  10 3 966e 02  lang 2 qpo10 dat  11 4 507e 02  lang 2 qpoll dat  12 5 091e 02  lang 2 qpol2 dat  13 5 739e 02  lang 2 qpol3 dat  14 6 479e 02  lang 2 qpol4 dat  JS 7 355e 02  lang 2 qpo15 dat  16 8 429e 02  lang 2 qpol6 dat  17 9 570e 02  lang 2 qpol7 dat  18 1 051e 01  lang 2 qpo18 dat    lang   lang   lang   lang   lang   lang   lang   lang   lang     lang       STEP  file       PAR    0 0 000e 00  lang 2 qpo0 dat   1  9 332e 04  lang 2 qpol9 dat    bifurcation diagramm written to file       20     2      xl    3288e 00   3288e 00   3288e 00   3289e 00   3289e  00   3290e  00   3290e  00   3291e  00   3292e  00   3293e  00   3294e  00   3296e  00   3297e 00   3298e  00   3298e  00   3299e  00   3299e  00   3298e  00   3297e 00     ixil   3288e 00   3288e 00    output written to file         checking for memory leaks    real Be  user I3 10 0  sys 0 8       gt  data  read torus data  lang   2   data  select torus coords data   surfdata data            TOL     0399e 03 T   3369e 03 1   0275e 02 1    6476e 02 1    6758e 02 Tes   7694e 02 T5   9045e 02 1    0820e 02 1    3100e 02 LA   6002e 02 La   9691e 02 1    1442e 01 1    3066e 01 1    4933e 01 La   7229e 01 1    0330e 01 La   4993e 01 1    1286e 01 1    7633e 01 La    TOL     0399e 03 1   3369e 03 1    Peri
31. 4    an  NULL   for i from 1 by 1 to nops nums  do  printf  reading graph  d n   nums i    data  read torus data  lang   1  nums  data  select torus coords data  3 4 5  an  an  surfdata  data     od     reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap  reading grap                   NO O O   N Q  i O1 OY    1    DD mE mds Hu  m Bou usu   as meus mu  NEPPPPHHHHH  O OOO O O1 iS QON I O    reading graph 21  reading graph 22  reading graph 23          reading graph 24  Then  we display the tori together in a plot with the option insequence true  which creates an  animation  Select the plot and start the animation with the buttons in the toolbar        display  an   insequence true               R    N Run 2  Continuation of Quasiperiodic Orbits  e  0  0 1     This run demonstrates the same as run 1  and in addition    how to obtain a start solution for a new run from a previous run at a specified parameter value   Only this additional point is commented here       Create a start solution for run 2 from a solution of run 1  Parameters     problem name   lang     old run  1    number of solution  18    new run  2  Because torcont does not print solutions at user specified parameter values yet  this function  may not be of much use at this time     See the 
32. Ec University of  OPEN    ACCESS BRISTOL    Schilder  F   2004   Torcont v1  2003  user manual     Link to publication record in Explore Bristol Research  PDF document    University of Bristol   Explore Bristol Research  General rights    This document is made available in accordance with publisher policies  Please cite only the published  version using the reference above  Full terms of use are available   http   www bristol ac uk pure about ebr terms html    Take down policy    Explore Bristol Research is a digital archive and the intention is that deposited content should not be  removed  However  if you believe that this version of the work breaches copyright law please contact  open access  bristol ac uk and include the following information in your message       Your contact details    Bibliographic details for the item  including a URL    An outline of the nature of the complaint    On receipt of your message the Open Access Team will immediately investigate your claim  make an  initial judgement of the validity of the claim and  where appropriate  withdraw the item in question  from public view        TORCONT v1  2003     Continuation Software for Quasi Periodic 2 Tori    Frank Schilder     Bristol Centre for Applied Nonlinear Mathematics   Department of Engineering Mathematics   University of Bristol  Bristol BS8 1TR  UK           1  License    Copyright  C  2003 by Frank Schilder  MAPLE and MAPLE V are registered trademarks of Waterloo Maple Inc   This software and 
33. an these  computed by pocont  consider using pofind with a start solution as close to the required  parameter as possible  This is   equal to    copying and changing the parameter     In future versions  this    detour    should  become unneseccary     Parameters     problem name   an unique name of your problem as a string  e g   vdp    run   the run the orbit was computed in   num   the number of the orbit within the run  see the output of pocont   new run   the    target    run for which the copied solution shall become the start solution    copy  torus solution  problem  name  run  num  new run     Copies a the quasiperiodic solution num of run run to the start solution of run new  run   Because torcont does not yet output tori at specified parameter values  this function may not  be of much use  If you want to restart from a solution at a different parameter value than  these computed by torcont  consider using torfind with a start solution as close to the  required parameter as possible  This is   equal to    copying and changing the parameter     In future versions  this    detour    should  become unneseccary     Parameters     problem name   an unique name of your problem as a string  e g   vdp    run   the run the torus was computed in   num   the number of the torus within the run  see the output of torcont   new run   the    target    run for which the copied solution shall become the start solution    data    select torus coords  data  x  y  z     Select the spec
34. ata kawa 2 qpo0     data kawa 2 qpo5     data kawa 2 qpo6     data kawa 2 qpo7     O Aa Q Q Q    a Aa Q Q          15 3 828e 02 1 7396e 00 7 9678e 02 4 7345e 01 data kawa 2 qpo7 d    at   bifurcation diagramm written to file   data kawa 2 bd dat   output written to file   data kawa 2 torcont log       checking for memory leaks     no leaks    real 4 33 4   user 4 32 28   Sys 0 1    Read the computed data of the invariant torus into datal  Here torus 0 of run 2 is choosen   Then select the columns 3 4 5 from the data  which contain the projection onto the   X  y Z  subspace     The data of a 2 torus in R n at a NIXN2 mesh has the following structure  note  thl  0    thl NI  th2 0   th2 N2                                          thi  0   th2 0    xXl thl 0    th2 0     x2 thl 0 o th2  0          xn thl O0    th2 0   J  thl N1  th2 O0   x1 thl N1  th2 O    x2 th1_N1  th2 0         xn thl  N1  th2 O      ly     thl 0   th2 1   xl thl 0   th2 1    x2 thl 0   th2 1 yy    i  xn thl 0   th2 l y J   thl Nl  th2 1   x1 thl N1  th2 1    x2 thl N1  th2 1         xn thl N1  th2 1      ly     L  Ehl 0 4 th2 N2  xl thLl 0    th2 N2    x2 thl 0    th2 N2    22  xn thl1 0 4 th2 N2  1 5    th1_N1  th2 N2  x1 thl N1  th2 N2   x2 thl N1  th2 N2        xn thl N1  th2 N2          datal  read torus data  kawa   2  0    data   select torus coords datal  3 4 5        surfdata  data                         gt     N Run 3  Continuation of the Doubled Quasiperiodic Orbit    Invariant 2 Torus    Thirdly
35. ation diagram is a list of such rows  which are also lists   By  reading in multiple bifurcation diagrams  you get a list of such lists  which may have different  formats        Read in the bifurcation diagrams of the different runs     Note  that the bifurcation diagrams of different runs contain different numbers of columns  and  the same data may appear in columns depending on the problem type  But the first two  columns always contain the parameter and the norm of the solution  Therefore  we can select  the columns 1 and 2 from all these data sets  otherwise  we would have to do this for each  bifurcation diagram separately         datal read bd  kawa    1 2 3     datal    select bd cols datal  1  2    plot datal  x 0 04  0 15  color blue                1 75    1 74    1 73      172           0 04 0 06 0 08 0 1 0 12 0 14       The Nonlinear Parametrically forced Network    The parametrically forced network is described by the equation    9   Rd    m   0 3   p 3    1 Bsin 21  x 0    and is of interest to electrical engineers  It is investigated in dependence of epsilon and the  remaining parameters are given by  B  1  a e B    2 B  poe    The system is constructed to posess a so called subharmonic response solution with halved  frequency  frequence divider  for epsilon B  Here  we investigate the system for epsilon  1 5     6 5      Attention  Before starting the computations  please set the paths in the    read    and the    currentdir     commands correctly  Ignore the e
36. bserve this phase lock for the 1 1 and the 1 3 resonance  where our  method breaks down  which here is mostly due to the crude discretisation   The other resonances  are numerically not observable  because for epsilon 0 3 and beta 0 1  these  phase locking intervals are very narrow  For a finer mesh and higher values of epsilon and beta   these are observed also       We read the bifurcation diagram into datal  datal then contains two lists of data  one for the  forward and one for the backward continuation  From both lists we extract the parameter and  the two basic periods  By dividing both periods by each other  we obtain the rotation number   These is plotted  blue  together with the lines of strong resonances  red   which are possible for  rotation numbers in the interval  1 3   over the parameter d  delta   Weak er  resonances are  not considered here  and also not    really    observed numerically      See example  kawa  for the format of the bifurcation diagram structure                    datal    read bd  vdp    2     data2    NULL   for i from 1 by 1 to nops datal 1   do  data2    data2   datal 1   i   1    evalf  datal 1   i   4  datal 1  i  5      od   for i from 1 by 1 to nops datal 2   do                         data2     datal 2  ill1    evalf  data1 2   i   4  d  ata1 2  i  5     data2                    od   pl    plot   data2    color blue    pl    pl  plot       0 1 1    10 1 1         0 5 4    10 5 4       0 5 3    10 5 3       0 5 2    10 5 2            
37. continuer ItMX   50   set the maximum number of continuation steps in both directions   continuer  MaxDiff   0 25   set the maximum rel abs difference between predicted and  corrected solution  for step size control    continuer  Alpha   7 0   set the maximum angle between the tangent vectors of two solution  points   continuer h0   0 1   set the initial continuation stepsize   continuer h max   0 5   set the maximal continuation stepsize   continuer h min   0 01   set the minimal continuation stepsize   continuer LogFile   for printing debugging information of the continuer set LogFile to clog   this helps very much to tune the continuer          npr   5   print solution every npr steps      create tf run  problem name  run  isol file_name  options        Creates the parameter file expected by torfind   Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2        isol   the name of the file containing the initial solution  see write tss   options   a sequence of    name   value  pairs    Possible Options and Default Values   ode  lt parname gt      value     sets the value of the free parameter  lt parname gt  to   value     overwrites the default value     discretisation_points1   20   set the number of mesh points at the thl axis  discretisation points2   20   set the number of mesh points at the th2 axis    linear solver LFil   100   set the number of values which are reserved for fill in for each  line of
38. data  read torus data  vdp   2   datal  select torus coords data   data2  2select torus coords data   anl  anl  surfdata  datal     an2  an2  surfdata  data2                od     reading  reading  reading  reading  reading    graph  graph  graph  graph  graph    24  23  22  21  20             reading graph 19  reading graph 18  reading graph 17  reading graph 16  reading graph 15  reading graph 14  reading graph 0  reading graph 1  reading graph 2  reading graph 3  reading graph 4  reading graph 5  reading graph 6  reading graph 7  reading graph 8  reading graph 9  reading graph 10  reading graph 11  reading graph 12  L reading graph 13    In this animation you can see some tori  which appear not smooth  This is due to  strong   resonances  which occour at different subintervals of our continuation interval  See the section     Bifurcation Diagram    for further information         gt  display  anl   insequence true     display  an2   insequence true                                  Nt  Sy                           AE  NS MN             gt           N Bifurcation Diagram    Within the continuation interval  there occour some strong resonances  For easy detection  we  plot the rotation number together with lines of critical values over the parameter d  delta   At  points  where the rotation number crosses such a critical line  a strong resonance occurs  The  rotation number then remains constant over some interval  This effect is known as a phase lock   In our graph  we can o
39. ding grap  L reading grap    24  23    OO 1 OY O1 iS CO PO ES  O       Np H HBHBpdBdPmpmpmnnm  O00    10Y 01S COND ES O       2DOOOOOO2O2O02O020202202223223220202o2020o0Zo    NIN  NFR        gt      In this animation  you can see some tori  which are not smooth  This is due to week and strong  resonances and occours visibly araund epsilon 5 524 and epsilon 7 05  The strong resonance   at 7 05  can be observed as a phase lock  the    detected    weak resonance may by due to the  relatively crude approximation and does not appear so clearly for finer meshes         gt  display  an   insequence true                                                                                 SATO  VO   2777722   9722 2009  A  AL  TON  ETT   ETN   HTN   2 MM  LANA  77 2 Y        7 LLLA  LLLA     Z ZZ si    HLL WV 4           gt      N Bifurcation Diagram    For growing epsilon  the system runs into a strong  1 3  resonance around epsilon 7 05  For  detecting resonances  one can compute the ratio of the two periods  which gives the rotation  number or its inverse  and do a    rational analysis     This simply means  that we look  if this ratio  crosses or approaches rational numbers which belong to strong resonances  for example 1 1  1 2   wy 1 4        A plot of the inverse rotation number  for the stroboscopic map with period Pi   It is clearly to  see  that the system runs into an 1 2 resonance as epsilon tends to zero  and into an 1 3  resonance as epsilon tends to values greater than 7  Of
40. ed columns from bifurcation diagram data  for instance for plotting   Returns  the values of the specified columns in a list of lists     Parameters     data   a list of lists containing the bifurcation diagram data    X y the two columns to be extracted         data    read_po_data  problem_name  run  orbit   Read the data describing an periodic orbit into a list   Parameters     problem_name   an unique name of your problem as a string  e g   vdp   run   the run the orbit was computed in    orbit   the number of the orbit within the run  see the output of pocont    E data    select po coords  data  x  y  z   Select the specified coordinates from a periodic orbit  for instance for plotting    Parameters     data   the data containing a complete orbit of a periodic orbit  dimension  gt 3                       x y z   the columns to be extracted    data    read torus data  problem name  run  orbit  num   Read the data describing a 2 torus into a list   Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   the run the torus was computed in  orbit   the number of the torus within the run  see the output of torcont    copy  periodic solution  problem name  run  num  new run     Copies a the periodic solution num of run run to the start solution of run new run  Because  pocont does not yet output orbits at specified parameter values  this function may not be of  much use  If you want to restart from a solution at a different parameter value th
41. error      estimated error   1 8118e 01  L     checking for memory leaks     no leaks     Create the parameter file expected by    torcont    with settings     problem name   vdp    run  2    continuation parameter  beta   b    set the value of b  beta  to the desired value  0 1    mesh  40x40    LFil and Reserve  see also ex  kawa   500  500    use a Krylov subspace of at most Restart dimensions  Restart  50    max  number of iterations of gmres  IEM X   500    dropping tolerance for ilu  0 005    max  value of rel residual of gmres  TOL   1 0e 9    continuation interval   0  10     max  number of continuation steps  80    max  angle between the tangencies of two successive continuation steps  degree   10    initial continuation step size  1    max  continuation step size  5    min  continuation step size  0 1    don t print debugging information  continuer   outcommented    print every npr steps  npr  5   and run torcont        create tc run   vdp   2  continuer param d   ode b   0 1                                                                             discretisation_pointsl   40   discretisation points2   40   linear_solver LFil   500   linear_solver Reserve   500   linear_solver Restart   50   linear_solver ItMX   500   linear_solver DropTOL   0 005   linear_solver TOL   1 0e 9   continuer param interval    0  10    continuer ItMX   80   continuer Alpha   10   continuer h0   1   continuer h_max   5   continuer h_min   0 1     continuer LogFile   clog   npr   5      
42. ging information    The continuer class debugging information for two function calls  continuer  initialize and  continuer  step  The output has the following meaning     continuer  initialize       h   the initial continuation step size  the sign decides the direction of the continuation      h max   the max  continuation step size     h min  the min  continuation step size     h fac min   the min  factor for step size adaption    f fac max   the max  factor for step size adaption     MaxDiff   the max  value of llv xll  1  lIxll  where v is the predicted and x the corrected  solution     alpha   the maximum angle between to tangencies of two successice solutions     gamma   a security factor    The step size is adapted by h gamma h_fac h with h  fac min  lt   h fac  lt   h fac max  h fac  is computed  so that two solutions have a  rel abs   distance of at most MaxDiff and the angle  between two successive tangencies is smaller than alpha  We do not take the iteration number  of the corrector into account  Thereby  it is possible to use black box correctors for the  continuation  for instance from the package minpack  which do not provide iteration numbers   or where they do not make too much sense   A clever choice of these parameters can speed up  your continuation dramatically  For hard problems  like this example  you should adjust these  parameters  For checking the success of your adaption  use the output of    continuer  step       norm x    norm of the solution vecto
43. h argument     L gt  isol     t th    gt   sin th   0 8 cos th        Write the initial solution to disk on a 30x100 mesh  The first period is Pi  the second is an  initial guess  The name returned is used in the first call to torfind  run 1   Here we raise Digits  to full double precision to obtain a most exact mesh in th1  which is fixed through all  computations  This is usually not necessary  but shown in this example  This is especially not  neccessary for autonomous systems    because the periods are determined by the extended system with the required accuracy     Parameters     problem name   pnet     run  1    name of the function calculating initial solution values  isol    T1  Pi    T2  6 96    mesh  30x100     gt  Digits  19   write_tss  pnet   1  isol  Pi  6 96  30  100    Digits  10                  pnet_qpol dat     Run 1  Continuation of Quasiperiodic Orbits  eps  1 5  6 5     This run demonstrates  how to    run torfind and torcont     create 3D plots and animations       Create the parameter file expected by    torfind    with settings     problem name   pnet      run  1     initial solution file   pnet_qpol dat      mesh  30x100     LFil and Reserve  see also ex  kawa   250  250     use a Krylov subspace of at most Restart dimensions  Restart  35    max  number of iterations of gmres  ItMX   350     dropping tolerance for ilu  0 01               max  value of rel residual of gmres  TOL   1 0e 8    don t print debugging information of iterative solver and ilu
44. he Hopf points  which depend on delta          gt  display  anl   insequence true    display  an2   insequence true                               KW   RAV  vs SS muss   SOY  d Z    Did A    R  Ord   A   eni                 LZ                   Z    IY     7    TAY  Wiha  SF     77 AA                gt     N Run 2  Continuation of Quasiperiodic Orbits  b 0 1   d  0  10     This run demonstrates the same as run 1 without debugging information  and in addition    how to obtain a start solution from a previous run at a specified parameter value           Only this additional point is commented here at length       Create a start solution for run 2 from a solution of run 1  Parameters     problem name   vdp     old run  1    number of solution  1    new run  2  Because torcont does not print solutions at user specified parameter values yet  this function  may not be of much use at this time     See the next execution group on how to obtain the required start solution      gt  4 copy torus solution  vdp   1  1  2    test  d data vdp 2    mkdir data vdp 2     OK  L cp data vdp 1 qpol dat data vdp 2 qpo0 dat     OK      This    alternative way of obtaining start solutions should become obsolete in the future     We simply    misuse    torfind to create the solution we require  We create a parameter file with  the settings     problem name   vdp      run  2     initial solution  format  data  lt name gt   lt run gt  qpo lt num gt  dat   data vdp 1 qpol dat     mesh  40x40     LFil and
45. he solution x   the unknown  basic frequencies     and     and an estimation of the error  The latter is calculated as the L  norm of    the difference of solutions of methods of order 2 and order 4 at the same mesh  The solution of order  4 is used  therefore the error is largely overestimated     Executing this worksheet creates the file contpack m  which is required if you want to use its  functions       This worksheet is best executed with the menu item Edit  gt Execute  gt Worksheet   Please note the next paragraph before executing      restart   with process      Change the path to the location of the maple file    contpack  mws    at your system      gt  currentdir   export fschild maple       L  gt        Documentation    All functions of this package are described briefely in the following sections  Please refere to the  Maple example files also     This documentation gives hints for using the command line programs without Maple  The expected  format of the input and the parameter files are described in the sections of the preprocessing  functions  Please read the script file    demo     contained in each example   s subdirectory  on how to  call the programs  Postprocessing can be done with e g  gnuplot or Maple     Continuation of invariant tori is usually done in two steps  At first  one has to compute a suitable  initial solution  because one has usually crude approximations only   Then  one can do a parameter  continuation  beginning at this start solution  The
46. i     0 1 000e 03 2 9027e 00    vdp 1 qpo0 dat                               continuer  step    norm x  1 1659e 02  norm v x  7 6098e 01   beta 8 7267e 00  h_facl 3 8630e 01   h 1 9000e 01   continuer  step    norm x  1 1664e 02  norm v x  3 0422e 00   beta 1 8852e 01  h_facl 9 6676e 00   h 1 9138e 01   continuer  step    norm x  1 1488e 02  norm v x  4 5831e 00   beta 3 0713e 01  h_facl 6 3209e 00   h 1 1922e 01       3 1 183e 01  vdp 1 qpol dat    2 8717e 00                                  h 2 1007e 00  6 1 716e 01  vdp 1 qpo2 dat    2 7202e 00                                  h 5 5237e 00  9 1 784e 01  vdp 1 qpo3 dat    2 7097e 00                            continuer  step    norm x  1 0861e 02  norm v x  5 0460e 01   beta 9 6509e 00  h_fac1 5 4304e 01   h 1 0495e 01   continuer  step    norm x  1 0935e 02  norm v x  1 3745e 00   beta 1 4659e 01  h_facl 2 0072e 01   h 1 357le 01   continuer  step    norm x  1 1050e 02  norm v x  2 2317e 00   beta 1 8470e 01  h_facl 1 2490e 01   h 1 3949e 01          12 1 878e 01  vdp 1 qpo4 dat    2 7621e 00    1 1089e 02    5 1927e 01    continuer  step    norm x  1 1140e 02  norm v x  5 0576e 00   beta 5 3340e 01  h_fac1 5 5559e 00   h 5 6629e 00   continuer  step    norm x  1 0951e 02  norm v x  2 5570e 00   beta 3 4501e 01  h_fac1 1 0805e 01   h 3 1502e 00   continuer  step    norm x  1 0882e 02  norm v x  8 0444e 01   beta 2 8645e 01  h_facl 3 4129e 01     2 2653e 00    continuer  step    norm x  1 0855e 02  norm v x  3 8154e 01   be
47. ified coordinates from a 2 torus  for instance for plotting               Parameters     data   the data containing a complete torus of a periodic orbit  phase space dimension  gt 3   x y z   the columns to be extracted    data    cut1  data  begin  end     Cuts out a section of a 2 torus with respect to thl from the mesh point begin to the  mesh point end     Parameters     data   the data of a 2 torus  begin  end   the start  and end segment    data    cut2  data  begin  end     Cuts out a section of a 2 torus with respect to th2 from the mesh point begin to the  mesh point end     Parameters     data   the data of a 2 torus  begin  end   the start  and end segment    data    section1  data  idx     Extracts a cross section of a 2 torus for a fixed value of th1 at the mesh point idx  This is the  incariance curve of the stroboscopic map of the quasiperiodic solution with period  T 1 22 Pi omega 1  locally defined near the torus     Parameters     data   the data of a 2 torus  idx   the index of the mesh point    data    section2  data  idx     Extracts a cross section of a 2 torus for a fixed value of th2 at the mesh point idx  This is the  incariance curve of the stroboscopic map of the quasiperiodic solution with period  T 2 22 Pi omega 2  locally defined near the torus     Parameters     data   the data of a 2 torus  idx   the index of the mesh point        save write poss  write tss  xtd system  create ode     create fpf run  create fpc run        create pof run  create
48. its documentation is distributed under the terms of the    GNU General Public License as published by the Free Software Foundation   either version 2 of the License  or  at your opinion  any later version           You should have received a copy of the GNU General Public License  version 2 together with this documentation  file   tt LICENSE      2  Download    This package will move to SourceForge   http   sourceforge net projects nlstools     In the meantime  you may download it from  http   www mathematik tu ilmenau de  fschild nlsanalyzer     3  Introduction    This continuation package consists of finder and continuer pairs of  programs  It contains algorithms for computation  finder  and continuation   continuer  of        fixed points  fpfind  fpcont         periodic solutions of autonomous and periodically forced systems   pofind  pocont  and       quasiperiodic invariant 2 tori of autonomous and periodically forced    systems  torfind  torcont  torfind4  torcont4         The continuer use pseudo arclength continuation  pofind  pocont  torfind  and torcont use a finite difference method of order 4  For torfind and  torcont  error estimation is done by computing the difference of solutions  obtained by methods of order 2 and 4  Therefore  th rror is largely  overestimated  because it is in fact an estimation for the solution of  order 2                    torfind4 and torcont4 use a finite element method of order 1  There is no  error estimation implemented yet  This p
49. l and Reserve  see also ex  kawa   250  300    use a Krylov subspace of at most Restart dimensions  Restart  50    max  number of iterations of gmres  ItMX   350    dropping tolerance for ilu  0 01    max  value of rel residual of gmres  TOL   1 0e 7    don t print debugging information of iterative solver and ilu  LogFile  NULL    continuation interval   0  0 22     max  angle between the tangencies of two successive continuation steps  degree   20    initial continuation step size  10    max  continuation step size  25    min  continuation step size  1    max  number of continuation steps  25    print debugging information  continuer   LogFile  clog    print every npr steps  npr  3  and run torcont    gt  create tco run   vdp      1  continuer param b                                                           discretisation_pointsl   40   discret isation points2   40   inear solver LFil   250   linear solver Reserve   300   linear solver Restart   50   linear solver ItMX   350   linear solver DropTOL   0 01   linear solver TOL   1 0e 7   linear solver LogFile   NULL    clog   continuer param interval    0  0 22            solve    64   94   126   158     NOBFO          continuer Alpha    continuer h0   10   continuer h_max   25              continuer h_min   1   continuer ItMX   25   continuer LogFile   clog     npr   3         torcont  vdp   1    continuer  initialize   h 1 0000e 01  h_max 2 5000e 01   h fac min 5 0000e 01   e 01  gamma 9 5000e 01   STEP PAR  file        Ix
50. lay      n       n  n  n  n  n  n  n  n  n  n  n  n  n  n  n  n  n  n       OO 1  OY O1 4S CO NO ES  CO       an   insequence true      7  AZZ                       A    LJ          Two coupled Van der Pol Oscillators    This famous system must appear as an example of a package for computation and continuation of  invariant tori  Here it comes     o   9  T  e x   1  3   x B0 x     i 9  59  reo  Do Jembe n 5    The system is of interest for  different  fixed values of epsilon and for beta  delta    0  Here  we do  only two simple continuations of tori with respect to either beta  run 1  or delta  run 2      Attention  Before starting the computations  please set the paths in the    read    and the    currentdir    commands correctly  Ignore the error message issued by    mkdir           restart   with plots    with process    read   export fschild maple contpack m    currentdir   export fschild examples vdp     mkdir   data     currentdir      Warning  the name changecoords has been redefined       Error   in mkdir  directory exists and is not empty      export fschild examples vdp        PAN RV Lu OE N  V V V V    N Definition of the System and Creation of the Shared Object      The constants and parameters are defined as a list of    name   value    pairs   The system is defined as a function taking a list and a number as arguments and returning a list  of expressions          ini     gt  Constants    Params s   e 0 3  d 0 2  b 0 001      VDP     x t    gt     x 2     x 1  b
51. les  and maple the package contpack and its  documentation  You should strip the executables  because the symbol  information occupies very much of their size              If gmake fails and you have the software versions listed above  or newer   please send me a log file  which you obtain by the  csh   commands        gmake cleaner  gmake  i   amp  tee make log  gzip make log       Please send me the file make log gz by mail  subject   make torcont    Include into this mail the version info  which you obtain by the commands        gcc  v  g    v  g77  v  flex  V  bison  V  gmake  v       I will try to eliminate the errors and probably ask for further help or  information     Note  It is known that colpilation with newer versions of gcc fails  A  new version is under development  Do not send bug reports regarding this issue  They  will not be dealt with     Documentation of the Maple Package contpack mws    General Remarks    We consider two kinds of equations   periodically forced case    d  3 x f x  t      where fis 2 r periodic with respect to t  and  autonomous case    d  FASI   y 79    with x element of R    and t element of R  We seek periodic solutions  x t    u Q  t    or quasiperiodic solutions  x t  2 u Q t      f    In the periodically forced case  the frequency       1 is equal to the forcing frequency  In addition  in  the automomous case  it is possible to compute and continue fixed points     The software computes and continues the torusfunction u  instead of t
52. lver ItMX   350   linear solver DropTOL   0 0025   linear solver TOL   1 0e 12   linear  solver LogFile   clog                                torfind  lang   1                                                                                 Iterat D mpfung Normen Rechenzeit   I SI gamma IuIxiI I        gamma    d   F  x  DF  x  solve   0 0 0 0000e 00 4 8645e 01 4 6590e 00 0 0000e 00 0 0 0  PGMRES  ilutp  time  7 6  nnz A   72004  nnz LU   1292166  max  nnz  3081301  PGMRES  pgmres 32   time  4 2   1 1 1 0000e 00 4 7493e 01 1 0849e 01 1 9569e 00 0 3 Sa 31 4  PGMRES  ilutp  time  7 2  nnz A   72004  nnz LU   1282896  max  nnz  3081301  PGMRES  pgmres 24   time  3 2   2 1 1 0000e 00 4 7473e 01 2 5990e 04 6 5099e 02 OFS 6 1 42 2  PGMRES  ilutp  time  7 2  nnz A   72004  nnz LU   1283517  max  nnz  3081301  PGMRES  pgmres 27   time  3 6   3 1 1 0000e 00 4 7473e 01 7 5179e 05 4 5610e 02 0 8 9 53 4  PGMRES  ilutp  time  7 2  nnz A   72004  nnz LU   1283536  max  nnz  3081301  PGMRES  pgmres 26   time  3 4   4 1 1 0000e 00 4 7473e 01 1 5044e 08 6 4515e 04 1 0 12 2   64 5  PGMRES  ilutp  time  7 2  nnz A   72004  nnz LU   1283510  max  nnz  3081301  PGMRES  pgmres 26   time  3 5   5 1 1 0000e 00 4 7473e 01 2 3314e 12 5 1449e 08 T  3 15 2 75 37  period T1   1 7951594779940944768e 00  period T2   4 3115354542660266901e 00       solution written to file  data lang 1 qpo0 dat    estimating error       PGMRES  ilutp  time  2 05  nnz A   72004  nnz LU   682361  max  nnz  3081301  PGMRES  pgm
53. m number of continuation steps in both directions   continuer  MaxDiff   0 25   set the maximum rel abs difference between predicted and  corrected solution  for step size control    continuer  Alpha   7 0   set the maximum angle between the tangent vectors of two solution  points   continuer h0   0 1   set the initial continuation stepsize   continuer h max   0 5   set the maximal continuation stepsize   continuer h min   0 01   set the minimal continuation stepsize   continuer LogFile   for printing debugging information of the continuer set LogFile to clog   this helps very much to tune the continuer       npr   5   print solution every npr steps       N Procedures to call External Programs  El fpfind  problem_name  run     Runs the program fpfind and prints its output into the worksheet   Parameters     problem_name   an unique name of your problem as a string  e g   vdp     run   number of the run  e g  1  2         E fpcont  problem  name  run     Runs the program fpcont and prints its output into the worksheet  The run is timed                       Parameters     problem_name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2         pofind  problem_name  run   Runs the program pofind and prints its output into the worksheet   Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1 2         pocont  problem name  run   Runs the program pocont and prints its output i
54. mputed torus  See the example  kawa  for the format of the data  structure      gt  data  read_torus_data  lang   1  0    data  select_torus_coords  data  3 4 5    surfdata  data            ANN  ANN  X                      Create the parameter file expected by    torcont    with settings    problem name   lang     run  1               continuation parameter  rho    mesh  40x40    LFil and Reserve  see also ex  kawa   200  300    use a Krylov subspace of at most Restart dimensions  Restart  50    max  number of iterations of gmres  ItMX   350    dropping tolerance for ilu  0 001    max  value of rel residual of gmres  TOL   1 0e 12    don t print debugging information of iterative solver and ilu  LogFile  clog    continuation interval   0 15  0 7     max  number of continuation steps  200    print every npr steps  npr  5  and run torcont        create tc run   lang   1  continuer param rho                                         discretisation pointsl1   40   discretisation points2   40   linear solver LFil   200    linear solver Reserve   300   linear solver Restart   50        linear solver ItMX   350   linear solver DropTOL   0 001                                                        linear  solver TOL   1 0e 12   linear solver LogFile   NULL    clog   continuer param interval    0 15  0 7    continuer ItMX   200   npr   5       torcont  lang   1    STEP PAR IuIxI I TOL Period T1 P  file  0 5 500e 01 1 1830e 00 3 3538e 03 1 7952e 00 4  lang 1 qpo0 dat  5 5 627e 01 1 1764e
55. n taking a list and a number as arguments and returning a list    of expressions    gt  Constants s   k2   0 05  B   0 22  BO   0 03    Params s  PRET   09      Kawa     x t      gt     x 2       k1 x 2  1 8  x 1  2 3 x 3  2  x 1  B cos t     1 8 k2   3 x 1  2 x 3  2  x 3  B0   L li      Create a shared object by calling codegen and then compiling and linking   The compiler options used are for Solaris  You may need different options      gt  create ode  kawa   Kawa  Constants  Params           po        compiler  linker      codege  gcc  fl  L gcc  fPIC     gece     P    gcc  fP1              n  lt  kawa ode  gt  kawa c     OK  PIC  c  o kawa o kawa c     OK  shared  o kawa so kawa o                    E gt     3 Definition of the Start Solutions      Define initial approximations to periodic  psol   q  quasiperiodic  dtsol  solutions  This functions  i e    IC  shared     OK    uasiperiodic  tsol  and the doubled    the coefficients  were obtained by    Fourier analysis of orbits  which were the result of numerical simulation   Unfortunately  there are no branch switching algorithms available yet  so we need this initial             t   8 05828E 01    l cos  i       t  5 20006E 01       l cos  1       guesses     gt  psol     t    gt  I   1 70583E 03 5 17355E 01 sin i   1 47861E 04 7 99765E 01 sin i   1 32976E 00 1 91934E 04 sin i    t  3 91183E 05 cos t    Ja    tsol     t th    gt    1 70583E 03     8 05828E 01 cos  1        1 08938E 04 sin           os t  sin th   13 364
56. name   kawa    run  2    initial solution file   kawa qpo2 dat     mesh  20x40    min  number of nonzero entries per row of L and U  50    max  number of additional nonzero elements is rows reserve  reserve  100    dropping tolerance for the ilu factorisation  0 02    don t print debugging information  LogFile  NULL  and then compute the initial torus     Note  You should always provide enough space for nonzeros generated by ilu  by setting LFil  and Reserve to resonable high values   because the linear systems are very hard to solve  The  iteration methods are very sensitive to dropping too much  This is valid for all of the  computations      gt  create tf run   kawa   2  isol  kawa qpo2 dat                                                            discretisation_pointsl   20   discret isation_points2   40   inear_solver LFil   50   linear_solver Reserve   100   linear_solver DropTOL   0 02   linear_solver LogFile   NULL   clog      torfind  kawa   2    Iterat D mpfung Norme  I SI gamma I Ix I1   1  gamma   dl    0 0 0 0000e 00 4 8714e 01 1 6097e 00 0 0000e 00  1 1 1 0000e 00 4 8993e 01 1 5010e 01 4 4725e 00  2 1 1 0000e 00 4 8789e 01 5 5154e 03 8 3250e 01  3 1 1 0000e 00 4 8781e 01 2 8667e 04 2 6383e 02  4 1 1 0000e 00 4 8781e 01 4 8317e 06 3 8652e 03  5 1 1 0000e 00 4 8781e 01 5 0101e 07 7 9926e 05  period T2   6 1497738681980379738e 01  solution written to file  data kawa 2 qpo0 dat         checking for memory leaks    no leaks       Create the parameter file expected b
57. next execution group for an other way to obtain the required start solution      gt   copy_torus_solution  lang   1  18  2    test  d data lang 2    mkdir data lang 2     OK  L cp data lang 1 qpo18 dat data lang 2 qpo0 dat     OK      This    alternative way of obtaining start solutions should become obsolete in the future     We simply    misuse    torfind to create the solution we require  We create a parameter file with  the settings    problem name   lang                 new   run  2      start solution  format  data  lt name gt   lt run gt  qpo lt num gt  dat    data lang 1 qpo18 dat     set the value of rho to the required value  0 25      mesh  40x40      LFil  Reserve  200  250     restart gmres after Restart iterations  50     max  number of iterations  gmres   350     dropping tolerance  0 0025     max  rel  residual  gmres   1 0e 12     print debugging information  LogFile  clog  and run torfind to compute the solution  torfind automatically writes the solution to the start    solution of run 2                                                                                                gt  create tf run   lang   2  isol  data lang 1 qpol8 dat    ode rho   0 25   discretisation_pointsl   40   discretisation points2   40   linear solver LFil   200   linear solver Reserve   250   linear  solver Restart   50   linear solver ItMX   350   linear solver DropTOL   0 0025   linear  solver TOL   1 0e 12   linear  solver LogFile   clog      torfind  lang   2    Iterat D mpf
58. nique name of your problem as a string  e g   vdp    run   number of the run  e g  1 2        solution   a function expecting two real numbers th1 and th2 as arguments and returning a  vector or list  containing the value of u th1 th2   the two periods of this function must be  normalised to 2 Pi   period1  period2   the  initial guesses of the  periods of the starting solution  for  periodically forced systems  period1 must be the exact value   N1  N2   the number of discretisation points on each axis    This function returns a string containing the unique name of the created file  start solution f                      ile name   This name must be used in the call to  create tf run        create ode  problem name  ode  constants  params  options        Creates a shared library containing the right hand side of the ode   Parameters     problem name   an unique name of your problem as a string  e g   vdp    ode   the rhs of the ode  the function always expects the arguments x and t and returns a list  of expressions resp  values   constants   a list of    name   value  pairs for each constant of the ode   params   a list of    name   value  pairs for each free parameter of the ode  an initial value  must be provided   options   a sequence of    name   value  pairs    Possible Options and Default Values   codegen    codegen     name des C file generators  use always codegen  compiler    gcc     name and options of the C compiler to be used  linker    gcc  shared     name and op
59. nto the worksheet  The run is timed   Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2         torfind  problem name  run   Runs the program torfind and prints its output into the worksheet     Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2         torcont  problem  name  run   Runs the program torcont and prints its output into the worksheet  The run is timed     Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2         info    odeinfo  problem  name   Runs the program odeinfo and returns two values in info     info 1    true or false wether or not the ode system is autonomous  info 2    dimension of the ode system    Parameters          problem name   an unique name of your problem as a string  e g   vdp     E print odeinfo  problem name   Runs the program odeinfo and prints its output into the worksheet     Parameters          problem name   an unique name of your problem as a string  e g   vdp   N Postprocessing Procedures      data    read  bd  problem  name   run   run2       runN    Reads the bifurcation diagrams of several runs into a list of lists   Parameters     problem name   an unique name of your problem as a string  e g   vdp      run   run2       runN    a list of the runs of interest    ES data    select bd cols  data  x  y        Selects specifi
60. od T1   7952e  00   7952e  00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00  7952e 00    Period Tl   7952e 00   7952e 00     data lang 2 bd dat      Period T2   7941e 00   7941e 00   7942e 00   7946e  00   7956e  00   7971e 00   7990e  00   8012e 00   8035e 00    6   6   6   6   6   6   6   6   6  6 8058e 00  6 8080e 00  6 8100e 00  6 8115e 00  6 8123e 00  6 8122e 00  6 8107e 00  6 8071e 00  6 8012e 00  6     7951e 00    Period T2  6 7941e 00  6 7941e 00     data lang 2 torcont log     no leaks     10      3 4 5      data   data   data   data   data   data   data   data   data   data   data   data   data   data   data   data   data   data   data     data     data  data     data           an  NULL   for i from 1 by 1 to nops nums  do    prin   da   da             gt  nums    0  18      tf  reading graph sd n   nums il         ta  read torus data  lang   2  nums i          ta  select torus coords data  3 4 5      an  an   od     readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi  readi    ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng  ng       ng  ng       surfdata  data       nums     0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18     grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap  grap     gt  disp
61. ply  install the package and enter  ldd torcont   If there are problems  ldd  will most probably issue an error message              4 3  Compiling the source distribution    Compiling the package is expensive  You will need 250MB RAM and  approximately 250MB free disc space        The source code distribution consists of the files nlsanalyzer 1l 1 tar gz  and examples tar gz  It was compiled using the following compilers and  tools       program version  SOLARIS  version  LINUX        gcc 2 95 3 2 953   g   2495 3 2 95 3  g77 Da 95  3 2 95 3  flex 2 5 4 2 5 4  bison 1 35 1 28   gmake 3299 61 3 79 1    You will need all this programs  You may try older or newer versions of  flex  bison and gmake  You may try newer versions of gcc  g    g77     Move both files to a location of your choice  Change to this directory   Enter the commands        gunzip examples tar gz   gunzip nlsanalyzer 1l 1l tar gz  tar  xf examples tar   tar  xf nlsanalyzer l l tar                This will create the directories examples and nlsanalyzer 1 1   The  directory examples contains the fully documented examples of use        Change to nlsanalyzer 1 1   Enter the command gmake  or make  if gmake  is the default on your system   This will take a while  The package will  compile with gmake only  In addition  the parser files are not lex and  yacc compatible  so you will need flex and bison as listed above           If the package is compiled successfully  then the subdirectory bin  contains the executab
62. qpol4 dat   40 3 399e 01 1 2847e 00 6 2052e 03  lang 1 qpo15 dat   45 3 101e 01 1 2989e 00 6 6068e 03  lang 1 qpol6 dat   50 2 814e 01 1 3128e 00 7 1439e 03  lang 1 qpol7 dat   55 2 545e 01 1 3265e 00 7 8840e 03  lang 1 qpo18 dat   60 2 297e 01 1 3398e 00 8 9780e 03  lang 1 qpol9 dat   65 2 074e 01 1 3528e 00 1 4906e 02  lang 1 qpo20 dat   70 1 877e 01 1 3654e 00 6 9333e 02  lang 1 qpo21 dat   75 1 706e 01 1 3776e 00 3 6438e 01  lang 1 qpo22 dat   80 1 560e 01 1 3895e 00 1 7298e 00  lang 1 qpo23 dat   83 1 485e 01 1 3964e 00 3 5604e 00  lang 1 qpo24 dat  bifurcation diagramm written to file   output written to file       checking for memory leaks no leaks   real 1 12 31 9  user 1 12 08 9   L sys Tya      data  read_torus_data  lang   1     SA ZS  SSS SSS  STI ee   WIZE    M        data lang    data lang     19     Zid 5       7952e  00   7952e  00   7952e  00   7952e  00   7952e  00   7952e  00   7952e  00   7952e  00   7952e  00   7952e  00   7952e  00    1 bd dat       Oo O0         O O O1 CO CO    n     3263e  00   5978e 00   9147e  00   2837e 00   7123e 00   2090e  00   7831e 00   4457e  00   2095e  00   0090e 01   0683e  01    1 torcont log          data   data   data   data   data   data   data   data   data   data     data       Here  we create an animation of the evolution of the torus under changes of the parameter rho           At first  we read in all solutions given in a list  nums   The for loop creates a set of  plot structures      gt  nums        7   0    8  2
63. r     The binary distribution consists of the files nlsa 1 1 linux bin tar gz  for LINUX  on an Intel PC  and nlsa 1 1 sun solaris bin tar gz for SUN  SOLARIS  on a SUN Workstation   respectively  and the fil xamples tar gz   both operating systems               Move both files to a location of your choice  Change to this directory   Enter the commands     gunzip examples tar gz  gunzip nlsa 1 1   bin tar gz  tar  xf examples tar   tar  xf nlsa 1 1   bin tar                   This will create the directories bin  maple and examples  These contain    bin     Scripts and binaries  maple     maple package contpack  examples   four examples of use  kawa  lang  pnet  vdp       The binaries are linked against the following dynamic libraries  You can  use the binaries  if these libs are available on your system      ldd torcont  produced the following output   LINUX     libdl so 2      lib libdl so 2  0x40024000    libstdc   libc6 2 2 s0 3   gt   usr lib libstdc   libc6 2 2 s0 3  0x40028000   libm so 6   gt   lib libm so 6  0x40075000    libc so 6      lib libc so 6  0x40097000     lib ld linux so 2      lib ld linux so 2  0x40000000                          SOLARIS     libdl so 1   gt    usr lib libdl so 1   libstdc   s0 2 10 0   gt   usr local lib libstdct   so 2 10 0  libm so 1   gt    usr lib libm so 1   libc so 1   gt    usr lib libc so 1   usr platform SUNW Ultra 80 lib libc psr so 1                            You can use ldd to check  wether the libs are available or not  Sim
64. r  this is the non normalized euclidian norm     norm v x    norm of the difference between predicted and corrected solution     rel abs diff   norm v x   1 norm x    this value is used to estimate h_fac1 in comparison  with MaxDiff     beta   the actual angle between two successive tangencies  this value is used to estimate  h_fac2 in comparison with alpha     h facl   the factor for changing the step size  estimated  so that rel abs err may become  equal to MaxDiff     h fac2   the factor for changing the step size  estimated  so that beta may become equal to  alpha     h  the new step size which will be used in the next step    Hints   MaxDiff probably needs not to be changed  0 25 is mostly never met   The angle is a quite good measure of the nonlinearity of your problem and usually dominates    the step size control  Change the value of Alpha with care  If you enlarge Alpha  always set  h max to a value  wich is not too large        Usually  the debigging information helps you very much to find out  why the continuer  chooses a small step size  In this case  you may need to adapt the default values      gt     Here  we create an animation of the evolution of the torus under changes of the parameter b   beta    At first  we read in all solutions given in a list  nums   The for loop creates two sequences of  plot structures     g d  For plotting  we choose  0   x  x  for anl and  0   y     y  for an2      gt  nums    0  9    anl  NULL   an2  NULL  for i from 1 by 1 to nops
65. r method breaks down  which is shown by  the peak of the error near epsilon 7                                    gt  data2    select bd cols datal  1  3    plot data2  2  7 05  0  1 1  color blue    plot  data2  2  7 05  0  0 1  color blue    1  0 8     0 6          0 44 i  4 I  J l   0 24             J  02 7 7  4 iy a 7          0 1   0 08    0 06    0 04      0 02 4             The Example of W F  Langford    W F  Langford considered a dynamical system of Hydrodynamics under the following  transformations     1  Reduction to the 3 dimensional center manifold and  2  Transformation into the Poincare Birkhoff Normal Form     Omitting higher order terms he derived the system    d  ay C Toy  d    3 7 9 tG  Dy    9 A di 3     Stg Y  y  1 pz  Ezx  which is considered here for the parameter values epsilon  0  0 1   rho  0 15  0 7  and omega 3 5   For epsilon 0 and rho gt 0 615446    the system posesses a periodic orbit  which for  rho 0 615446    undergoes a Hopf bifurcation  and an attractive invariant 2 torus emerges for  rho gt 0 615446    For smaller values of rho  a Shilnikov type attractor is born in a global bifurcation  involving the torus  see run 1   Values of epsilon gt 0 lead to strong resonances  see run 2      Attention  Before starting the computations  please set the paths in the    read    and the    currentdir    commands correctly  Ignore the error message issued by    mkdir           restart   with plots    with process    read   export fschild maple contpack m
66. refore  for all the considered kinds of solutions   there is a    finder    and a    continuer        solution type finder continuer    fixed point fpfind fpcont  periodic sol  pofint pocont  quasiperiodic sol  torfind torcont    The    finder    saves the solution found to a location  where it is expected by the corresponding     continuer        N Preprocessing Procedures    B ssf_name    write_poss  problem_name  run  solution  period  N    write periodic orbit start solution     Creates a file containing the discretisation of the start solution in the format expected by  pofind     Parameters     problem_name   an unique name of your problem as a string  e g   vdp    run   number of the run  e g  1  2        solution   a function expecting a real number t as argument and returning a vector or list   containing the value of x t   the period of this function must be normalised to 2 Pi  period   the  initial guess of the  period of the starting solution  for periodically forced  systems  this period must be the exact value   N   the number of mesh points    This function returns a string containing the unique name of the created file  start solution f  ile name   This name must be used in the call to  create pof run         E ssf name    write tss  problem name  run  solution  periodl  period2  N1  N2      write torus start solution     Creates a file containing the discretisation of the start solution in the format expected by  torfind     Parameters     problem name   an u
67. res 17   time  1 25   estimated error   3 3538e 03          L     checking for memory leaks     no leaks   Interpretation of the debugging information    The iterative solver class issues a line of debugging information for each call to the  preconditioner  ilutp  and the solver  pgmres   These lines provide the following information     PGMRES  ilutp   time    consumed processor time in seconds    nnz A     structural nonzero elements of matrix A            nnz LU    lt structural nonzero elements used by the factors L and U of A gt   max  nnz    maximum number of structural nonzero elements available with the current  settings gt     PGMRES  pgmres  lt number of iterations gt     time   lt consumed processor time in seconds gt     Hints   Always provide enough space for fill in by setting LFil and Reserve to reasonable high values     Play with DropTOL so that the sum of consumed processor time of ilutp and gmres becomes  approximately a minimum  A good choice seem to be values for which      torfind  both times are almost equal      torcont  the time of ilutp is almost equal to the sum of the times of pgmres of each newton  iteration  in torcont  for each corrector step the incomplete LU factorisation is calculated only  once  i e  the different linear systems of each step are solved with the same preconditioner     Set the tolerance of the linear solver to the maximal possible value  for which the newton  process still converges nicely      gt      Create s plot of the co
68. rograms give much nicer results  than torfind and torcont  which is due to the fact that the FEM does   not rely as much on smoothness  If you want to use the FEM within Maple   change the procedures torfind and torcont in contpack mws accordingly and  execute contpack mws for updating the library contpack m        All algorithms are still experimental and not adaptive yet     4  Installation       This is a stable pre release of the continuation package TORCONT   written by Frank Schilder at the TU Ilmenau  Germany        Contents of directory nlsanalyzer 1 1    INSTALL   this file   LICENSE     copy of the FSF GPL V2   Readme     very brief overview of abilities  nlsanalyzer l l tar gz     the complete source tree  examples tar gz      examples of use  Maple worksheets   nlsa 1 1 linux bin tar gz     binary distribution for LINUX          nlsa 1 1 sun solaris bin tar gz   binary distribution for SOLARIS  doc tar gz     documentation only    4 1  Documentation    You need gunzip and tar     If you don t want to install the package  or just want to read trough the  documentation  then you may install the documentation only  Move the file  doc tar gz to a location of your choice  Change to this directory  Enter  the commands    gunzip doc tar gz  tar  xf doc tar    This will create the directory doc which contains the documentation of  the Maple package contpack and of the examples in postscript format           4 2  Installing the binary distribution    You need gunzip and ta
69. rror message issued by    mkdir           restart   with plots    with process    read   export fschild maple contpack m    currentdir   export fschild examples pnet     mkdir   data     currentdir      Warning  the name changecoords has been redefined       Error   in mkdir  directory exists and is not empty      export fschild examples pnet        V V V V    3 Definition of the System and Creation of the Shared Object    The constants and parameters are defined as a list of    name   value pairs   The system is defined as a function taking a list and a number as arguments and returning a list  of expressions        Constants  alpha epsilon B  beta epsilon 2 B      Params     epsilon 3 0  B 0 1    PNet     x t    gt     x 2          alpha x 2  3 beta x 2   1 B sin 2 t   x 1    l   3   PNet     x  t   gt   x   ax    Bx      1   Bsin 2 t   x       Create a shared object by calling codegen and then compiling and linking   The compiler options used are for Solaris  You may need different options                 gt         gt  create_ode   pnet   PNet  Constants  Params   compiler    gcc  fPIC    linker    gcc  fPIC  shared                     codegen    pnet ode    pnet c     OK  gcc  fPIC  c  o pnet o pnet c     OK  L gcc  fPIC  shared  o pnet so pnet o     OK                3 Definition of the Start Solutions          gt          Define initial approximations to the quasiperiodic solution   This function is a guess     This torus function s  must always be 2 Pi periodic in eac
70. s 4 0 th  1 4964e 01 sin t  c  os 4 0 th  9 3327e 02 cos t  cos 4 0 th  1 7377e 03 sin 5 0 t  h  4 2339e 02 sin t  sin 5 0 th  1 1509e 02 cos t  sin 5 0 th    9 3014e 04 cos 5 0 th  1 6307e 02 sin t  cos 5 0 th  4 4285  e 02 cos t  cos 5 0 th       1 7772e 04 8 1657e 01 sin t  4 7682e 01 cos t  7 2020e 04 si  n 1 0 th  1 1031e 02 sin t  sin 1 0 thn  9 9793e 02 cos t  sin   1 0 th  7 2372e 04 cos 1 0 th  3 3203e 03 sin t  cos 1 0 th    4 2824e 02 cos t  cos 1 0 th  9 0885e 04 sin 2 0 th  4 5432e   01 sin t  sin 2 0 th  3 0015e 01 cos t  sin 2 0 th  1 2109e   03 cos 2 0 th  7 2740e 02 sin t  cos 2 0 th  5 3331le 01 cos t    cos 2 0 th  8 1945e 04 sin 3 0 th  6 1829e 02 sin t  sin 3   O th  5 4459e 02 cos t  sin 3 0 th  1 8827e 03 cos 3 0 th  6   6952e 02 sin t  cos 3 0 th  5 5852e 02 cos t  cos 3 0 th  2 2  792e 04 sin 4 0 th  1 3274e 01 sin t  sin 4 0 th  6 9366e 02   cos t  sin 4 0 th  2 1520e 03 cos 4 0 th  7 0248e 02 sin t  c  os 4 0 th  1 1002e 01 cos t  cos 4 0 th  2 5432e 04 sin 5 0 t  h  8 3238e 03 sin t  sin 5 0 th  2 9773e 02 cos t  sin 5 0 th    2 1189e 03 cos 5 0 th  3 2202e 02 sin t  cos 5 0 th  9 3574  e 03 cos t  cos 5 0 th                1 3092e 00 1 091le 04 sin t  5 1342e 05 cos t  1 7796e 02 si  n 1 0 th  1 0779e 04 sin t  sin 1 0 th  1 5922e 05 cos t  sin   1 0 th  4 194le 02 cos 1 0 th  1 6124e 04 sin t  cos 1 0 th    9 3525e 05 cos t  cos 1 0 th  5 9965e 02 sin 2 0 th  1 2945e   04 sin t  sin 2 0 th  3 246le 05 cos t  sin 2 0 th  9 9713e   02 cos 2 0 th  3
71. sin th     x                   LL    d     Write the initial solution to disk on a 40x40 mesh  The first period is exactly known  from  analysis of the system   the second is an initial guess  The name returned is used in the first call  to torfind  run 1      Parameters     problem name   lang     run  1    name of the function calculating initial solution values  isol    T1  2 Pi 3 5    T2  431    mesh  40x40       write tss  lang   1  isol  2 Pi 3 5  4 31  40  40     lang qpol dat           Run 1  Continuation of Quasiperiodic Orbits  rho  0 15     0 7     This run demonstrates  how to    run torfind and torcont     obtain and interpret debugging information of the linear solver     create 3D plots and animations          Create the parameter file expected by    torfind    with settings    problem name   lang     run  1    initial solution file   lang_qpol dat     mesh  40x40    LFil and Reserve  see also ex  kawa   200  250    use a Krylov subspace of at most Restart dimensions  Restart  50    max  number of iterations of gmres  IEMX   350    dropping tolerance for ilu  0 0025    max  value of rel residual of gmres  TOL   1 0e 12    print debugging information of iterative solver and ilu  LogFile  clog  and run torfind     B en                                        create tf run   lang   1  isol  lang qpol dat    discretisation_pointsl   40   discretisation points2   40   linear solver LFil   200   linear solver Reserve   250   linear solver Restart   50        linear so
72. ta 1 8878e 01  h_fac1 7 1783e 01   h 2 1131e 00   continuer  step    norm x  1 0842e 02  norm v x  2 9877e 01   beta 1 3773e 01  h_facl 9 1562e 01   h 2 9072e 00   continuer  step    norm x  1 0840e 02  norm v x  2 5602e 01   beta 9 0787e 00  h_fac1 1 0683e 02     3 4224e 00    1 2184e 01    h_min 1 0000e 00  h_fac_max 2 0000e 00     MaxDiff 2 5000e 01  alpha 2 0000    TOL Period T1 Period T2 data    6 3151e 00 5 7600e 00 data     rel_abs_diff 6 4717e 03  h_fac2 2 2824e 00    rel abs diff 2 5860e 02  h_fac2 1 0603e 00    rel abs diff 3 9551e 02  h fac226 5572e 01       6 0004e 00 5 4889e 00 data     rel_abs_diff 4 4997e 02  h_fac2 3 8688e 01    rel_abs_diff 2 3138e 02  h_fac2 5 8556e 01    rel abs diff 7 3251e 03  h fac227 0195e 01       5 9185e 00 5 3240e 00 data     rel_abs_diff 3 4827e 03  h_fac2 1 0589e 00    rel_abs_diff 2 7304e 03  h_fac2 1 4482e 00    rel_abs_diff 2 3402e 03  h_fac2 2 1941e 00       5 9041e 00 5 2836e 00 data     rel abs diff 4 6037e 03  h_fac2 2 0643e 00    rel_abs_diff 1 2455e 02  h_fac2 1 3611e 00    rel_abs_diff 2 0016e 02  h_fac2 1 0820e 00       5 8412e 00 5 2039e 00 data                                         continuer  step    norm x  1 1159e 02  norm v x  2 3874e 00  rel abs diff 2 1205e 02  beta 1 9306e 01  h_facl 1 1790e 01  h_fac2 1 0356e 00  h 1 3723e 01   continuer  step    norm x  1 1243e 02  norm v x  2 3620e 00  rel abs diff 2 0823e 02  beta 1 9235e 01  h_facl 1 2006e 01  h_fac2 1 0394e 00  h 1 3551le 01   continuer  step    norm x  1
73. tions of the linker to produce a shared object    create fpf run  problem name  run  isol x0  options        Creates the parameter file expected by fpfind   Parameters     problem name   an unique name of your problem as a string  e g   vdp    run   number of the run  e g  1 2        isol   the initial solution given as a list of values  if isol is not given  x0 is assumed to be the  zero vector   options   a sequence of    name   value  pairs    Possible Options and Default Values   ode  lt parname gt     lt value gt    sets the value of the free parameter  lt parname gt  to  lt value gt    overwrites the default value     nonlinear_solver ItMX   10   max  number of Newton steps  nonlinear_solver SubItMX   8   max  number of damping steps per Newton step  nonlinear_solver TOL   1 0e 4   stopping criterion for the Newton iteration    create fpc run  problem name  run  options        Creates the parameter file expected by fpcont   Parameters     problem name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1 2       options   a sequence of    name   value  pairs       Possible Options and Default Values   ode  lt parname gt     lt value gt    sets the value of the free parameter  lt parname gt  to  lt value gt    overwrites the default value     nonlinear_solver ItMX   10   max  number of Newton steps  nonlinear_solver SubItMX   8   max  number of damping steps per Newton step  nonlinear_solver TOL   1 0e 4   stopping criterion for the Ne
74. ung Normen Rechenzeit  TSI gamma  Ixi   I     gamma    d   F x  DF x  solve  0 0 0 0000e 00 5 3183e 01 1 5007e 01 0 0000e 00 0 0 0  PGMRES  ilutp  time  6 7  nnz A   72004  nnz LU   1024023  max  nnz  3081301  PGMRES  pgmres 20   time  2 2  1 1 1 0000e  00 5 3278e 01 238 1023e 03 4 3433e 01 03 od 28 5  PGMRES  ilutp  time  6 4  nnz A   72004  nnz LU   998435  max  nnz  3081301  PGMRES  pgmres 18   time  1 9  2 1 1 0000e 00 5 3277e 01 1 1367e 06 5 1322e 03 0 5 6 1 Shel  PGMRES  ilutp  time  6 4  nnz A   72004  nnz LU   1003641  max  nnz  3081301  PGMRES  pgmres 19   time  2 0  3 1 1 0000e 00 5 3277e 01 1 1644e 12 4 5306e 07 0 8 9 2 46 1  period T1   1 7951594779940942548e 00  period T2   6 7940976510276360756e 00  solution written to file  data lang 2 qpo0 dat   estimating error     PGMRES  ilutp  time  3 27  nnz A   72004  nnz LU   737751  max  nnz  3081301  PGMRES  pgmres 18   time  1 43  estimated error   8 0399e 03      checking for memory leaks no leaks                                                            create tc run   lang   2  continuer param epsilon   ode rho   0 25   discretisation_pointsl   40   discretisation points2   40   linear_solver LFil   200   linear_solver Reserve   250   linear_solver Restart   50   linear_solver ItMX   350   linear_solver DropTOL   0 0025   linear solver TOL   1 0e 12   continuer param interval    0  0 1                        continuer ItMX    npr   1         torcont  lang      STEP  file       PAR    0 0 000e 00  2 qpo0 dat  1 9 
75. wton iteration    continuer param    lt parname gt    set the primary continuation parameter   continuer param_interval     1 1    set the parameter interval   continuer ItMX   50   set the maximum number of continuation steps in both directions   continuer MaxDiff   0 25   set the maximum rel abs difference between predicted and  corrected solution  for step size control    continuer Alpha   7 0   set the maximum angle between the tangent vectors of two solution  points   continuer h0   0 1   set the initial continuation stepsize   continuer h_max   0 5   set the maximal continuation stepsize   continuer h_min   0 01   set the minimal continuation stepsize   continuer LogFile   for printing debugging information of the continuer set LogFile to clog   this helps very much to tune the continuer    npr   5   print solution every npr steps      create_pof_run  problem_name  run  isol file_name  options        Creates the parameter file expected by pofind   Parameters     problem_name   an unique name of your problem as a string  e g   vdp   run   number of the run  e g  1  2        isol   the name of the file containing the initial solution  see write poss   options   a sequence of    name   value  pairs    Possible Options and Default Values   ode  lt parname gt     lt value gt    sets the value of the free parameter  lt parname gt  to  lt value gt    overwrites the default value     discretisation_points   20   set the number of mesh points    linear_solver LFil   10   set the
76. y    torcont    with settings    problem name   kawa       run  2      continuation parameter  k1      mesh  20x40      dropping tolerance  0 01    max  norm of relative residual for gmres  TOL   1 0e 8    don t print dedugging information  LogFile  NULL    continuation interval   0 04  0 12     max  continuation step size  1 0  and then continue the invariant torus                                                         gt  create tc run   kawa   2  continuer param kl   discretisation pointsl 20   discret isation_points2   40   inear_solver DropTOL   0 01   linear_solver TOL   1 0e 8   linear_solver LogFile   NULL    clog   continuer param_interval    0 04  0 12    continuer h_max   1 0       torcont  kawa   2    STEP PAR LIxi I TOL Period T2  0 9 000e 02 1 7247e400 1 0136e 01 6 1498e 01  at  5 9 902e 02 1 7221e 00 1 1373e 01 6 3415e 01  at  10 1 128e 01 1 7183e 00 1 4946e 01 6 6012e 01  at  15 1 197e 01 1 7167e 00 1 9703e 01 6 7101e 01  at  16 1 204e 01 1 7166e 00 1 9810e 01 6 7206e 01  at  STEP PAR LIxi I TOL Period T2  0 9 000e 02 1 7247e400 1 0136e 01 6 1498e 01  at  5 7 953e 02 1 7277e400 9 1782e 02 5 9108e 01  at  10 5 752e 02 1 7339e 00 8 1960e 02 5 3408e 01  at  15 3 828e 02 1 7396e 00 7 9678e 02 4 7345e 01    Rechenzeit    F x  DF x  solve    olelelete   O OI 4s PN F O  CO CO SO IE  CO  NO   i gt  OY CO O  o    1 OY O1 QO  BOO NO H   OO    data file  data kawa 2 qpo0     data kawa 2 qpol     data kawa 2 qpo2     data kawa 2 qpo3     data kawa 2 qpo4     data file  d
    
Download Pdf Manuals
 
 
    
Related Search
    
Related Contents
DPA10001, DPN10002, DPG10002,3,4 User`s Guide  User Manual  - Affordable Scales & Balances  Installation Manual - SUNNY MULTIGATE XT  Philips SWF2620/10  Andis Company 82075 User's Manual  PDFファイル  ursing ttle Breastmilk Storage & Handling    Cornelius SPIRIT 414385-XXX User's Manual  M M2 3D Printer V4    Copyright © All rights reserved. 
   Failed to retrieve file