Home
Emerson Fisher 846 Instruction Manual
Contents
1. 45 PANS eign oe kane ee 46 8 Installation Drawings 50 s es EMERSON Process Management 846 Transducer Instruction Manual March 2015 D102005X012 Section 1 Introduction Scope of Manual This instruction manual provides installation operating calibration maintenance and parts ordering information Fisher 846 current to pressure transducers Refer to separate manuals for instructions covering equipment used with the transducers Do not install operate or maintain an 846 current to pressure transducer without being fully trained and qualified in valve actuator and accessory installation operation and maintenance To avoid personal injury or property damage it is important to carefully read understand and follow all of the contents of this manual including all safety cautions and warnings If you have any questions about these instructions contact your Emerson Process Management sales office before proceeding Description The 846 current to pressure transducer shown in figure 1 1 accepts an electrical input signal and produces a proportional pneumatic output Typically 4 to 20 mA is converted to 0 2 to 1 0 bar 3 to 15 psi Models are available in direct or reverse action and field selectable full or split range inputs Refer to the Calibration section for more information on input output combinations The most common application of the
2. CEO Fae To vary the pilot output pressure the high velocity stream is diverted away from the receiver nozzle by the deflector which is a cylindrical aerodynamic body located between the two nozzles In response to a change in actuator coil current the deflector is repositioned between the nozzles There is a linear relationship between the coil current and the pilot stage output pressure For direct action units the power off or fail safe position of the top of the deflector is near the center of the stream and results in nearly zero pilot output pressure As the coil is energized the deflector is drawn out of the stream For reverse action units the power off or fail safe position of the deflector is completely out of the stream The result is maximum pilot output pressure As the coil is energized the deflector moves into the stream resulting ina decreased pilot output pressure The deflector material is tungsten carbide and the nozzles are 316 stainless steel The nozzles have a large bore of 0 41 mm 0 016 inches which provides good resistance to plugging 27 846 Transducer Instruction Manual March 2015 0102005 012 Figure 4 3 Detail of Deflector Nozzle Pilot Stage W6287 Booster Stage The receiver nozzle pressure controls the booster stage which has a poppet valve design An increase in receiver nozzle pressure positions the valving in the booster stage to produce an increa
3. 12 to 20 Input Signal Transporting the Module Final Assembly 4 Principle of Operation Electronic Circuit Eh edes bd Magnetic ACLHaEOF Pilot SEdQeus ik eR DERI OH PEE RE REA DOOSLGI SIdde www Fisher com Figure 1 1 Fisher 846 Current to Pressure Transducer X0234 5 Troubleshooting Diagnostic Features 29 Soke PORE 29 Remote Pressure Reading 29 Using a Frequency Counter to read the RPR ta 29 In service Troubleshooting 30 TroubleshootingintheShop 33 6 Maintenance Module Final Assembly 35 Removing the Module Final Assembly 38 Replacing the Module Final Assembly 39 Electronic Circuit Board 40 Remote Pressure Reading Jumper 40 JUMPER sacs vis dice eer Da 4 ado Mec PP PE 41 Removing the Electronic Circuit Board 4 Replacing the Electronic Circuit Board 42 Pilot Actuator Assembly 42 ee Deest 42 Removing the Pilot Actuator Assembly 43 Replacing the Pilot Actuator Assembly 44 Module 44 Terminal Compartment 44 Exhaust and Stroke Port Screens
4. Acable entry hole is provided for the accommodation of a flameproof cable entry device with or without the interposition of a flameproof thread adaptor For ATEX certified versions of 846 transducers the cable entry device and thread adapter shall be suitable for the equipment the cable and the conditions of use and shall be certified as Equipment not a Component under an EC Type Examination Certificate to Directive 94 9 EC Refer to table 2 3 for additional approval information For IECEx certified versions of 846 transducers the cable entry device and thread adapter shall be suitable for the equipment the cable and the conditions of use and shall be certified as Equipment not a Component Refer to table 2 4 for additional approval information Instruction Manual 846 Transducer D102005X012 March 2015 Mounting WARNING This unit will vent to the atmosphere through the stroke port in the module cover and the exhaust port located under the nameplate Do not remote vent this unit The transducer is designed for mounting on a control valve 51 mm 2 inch diameter pipestand wall or panel Figures 2 2 2 3 2 4 and 2 5 show recommended mounting configurations The mounting positions shown allow any moisture buildup in the terminal compartment to drain to the signal wire conduit entrance Any moisture in the pilot stage area will be expelled through the stroke port without affecting pilot stage operation In applications with exce
5. HAZARDOUS LOCATIONS WHEN CONNECTED IN ACCORDANCE WITH THIS DOCUMENT THE TYPE 846 IS ALSO CSA APPROVED AS NONINCENDIVE FOR CLASS DIVISION 2 GROUPS A B C AND D HAZARDOUS LOCATIONS APPROVED BARRIER ASSOCIATED APPARATUS THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION THE CRITERIA FOR INTERCONNECTION IS THAT THE VOLTAGE Vmax OR Ui THE CURRENT OR li AND THE POWER Pmax OR Pi OF THE INTRINSICALLY SAFE APPARATUS MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE Voc OR Uo AND THE CURRENT lsc OR 10 AND THE POWER PO DEFINED BY THE ASSOCIATED APPARATUS IN ADDITION THE SUM OF THE MAX UNPROTECTED CAPACITANCE Ci AND MAX UNPROTECTED INDUCTANCE Li INCLUDING THE INTERCONNECTING CABLING CAPACITANCE Ccable AND CABLING INDUCTANCE Lcable MUST BE LESS THAN THE ALLOWABLE CAPACITANCE Co AND INDUCTANCE Lo DEFINED BY THE ASSOCIATED APPARATUS IF THE ABOVE CRITERIA IS MET THEN THE COMBINATION MAY BE CONNECTED Vmax OR Ui Voc OR Uo Imax OR li gt Isc OR lo Ci Ccable lt Ca Li Lcable 3 La CLASS ll AND Ill DIV GROUPS A C D E F AND APPARATUS PARAMETER BARRIER PARAMETER Vmax 30 VDC Voc MUST BE LESS THAN OR EQUAL TO 30 VDC Imax 100mA Isc MUST BE LESS THAN OR EQUAL TO 100mA Li 20uH La MUST BE GREATER THAN 20 MICROHENRIES Ci O 016uF Ca MUST BE GREATER THAN 0 016 MICROFARADS NOTES 1 THE APPR
6. REDE CRUCE REOR ee 412 U U 12 20 S Standard Performance Unit M Multirange Performance Unit Available in Direct or Reverse Action D Available in Direct Action Onl J Available but if the desired calibration cannot be achieved by adjusting the zero span screws unit may require Hi Lo jumper to be moved The jumper is located on the circuit board assembly andis usually i in the Hi position Disengaging the master module and moving the jumper to the Lo position will calibration to the desired range U Special Build Required 20 Instruction Manual 846 Transducer D102005X012 March 2015 Standard Performance Full Range Input Direct Action A WARNING Refer to the WARNING at the beginning of the Maintenance section Use the following procedure to achieve a standard 0 2 to 1 0 bar 3 to 15 psi output span for a 4 to 20 mA input signal 1 Remove the module final assembly from the housing Refer to Removing the Module Final Assembly in the Maintenance section for an explanation of how to disengage the module final assembly Confirm that the unit is direct acting A green electronic circuit board identifies direct acting units Refer to Action under the heading Electronic Circuit Board in the Maintenance section for more information on direct acting units Position the range jumper in the Hi position for High Range Figure 6 4 sho
7. 1 THE FM APPROVED ASSOCIATED APPARATUS MUST BE A LINEAR OUTPUT DEVICE 2 MAXIMUM SAFE AREA VOLTAGE SHOULD NOT EXCEED 250Vrms 3 RESISTANCE BETWEEN INTRINSICALLY SAFE GROUND AND EARTH GROUND MUST BE LESS THAN ONE OHM 4 INSTALLATION MUST IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE PART 1 AND ANSI ISA 12 06 01 INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS CLASSIFIED LOCATIONS AND THE NATIONAL ELECTRICAL CODE ANSI NFPA 70 5 DUST TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN CLASS AND CLASS Ill ENVIRONMENTS 6 THE NON INCENDIVE FIELD WIRING IS THE SAME AS THE INTRINSIC SAFETY FIELD WIRING WARNING FOR INTRINSICALLY SAFE APPLICATIONS THE APPARATUS ENCLOSURE CONTAINS ALUMINUM AND IS CONSIDERED TO CONSTITUE A POTENTIAL RISK OF IGNITION BY IMPACT AND FRICTION AVOID IMPACT AND FRICTION DURING INSTALLATION AND USE TO PREVENT RISK OF IGNITION WARNING SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY WARNING TO PREVENT IGNITION OF FLAMMABLE OR COMBUSTIBLE ATMOSHPERES DISCONNECT POWER BEFORE SERVICING GE59147 51 846 Transducer Instruction Manual March 2015 D102005X012 Neither Emerson Emerson Process Management nor any of their affiliated entities assumes responsibility for the selection use or maintenance of any product Responsibility for proper selection use and maintenance of any product remains solely with the purchaser and end user Fisher is a mark owned by one of the companie
8. 10 kit 7 8 Screws Pilot Actuator 3 kit 7 Circuit Board 3 kit 7 Nameplate 3 kit 7 Module Cap 5 pkg U Filter Regulator Direct Mounting Kit 9 19 SST Bolts Filter Regulator with Direct Mounting Kit 9 19 SST Bolts Universal Mounting Bracket Epoxy Painted Carbon Steel Carbon Steel Nuts Bolts Epoxy Painted Carbon steel SST Nuts Bolts 316 SST SST Nuts Bolts for use with SST Housing 316 SST SST Nuts Bolts for use with Aluminum Housing Supply Gauge see figure 7 1 0 60 psi 0 400 kPa 0 4 bar SST 0 60 1 0 400 kPa 0 4 bar Output Gauge see figure 7 2 0 30 psi 0 200 kPa 0 2 bar 0 60 psi 0 400 kPa 0 4 bar SST 0 60 psi 0 400 kPa 0 4 bar Tire Valve Adapter Assembly 1 For units with approvals other than ATEX IECEx Ex d use standard module 2 Includes O rings 3 Includes housing span and zero screws electrical feedthroughs and grounding lug 4 For units with approvals other than ATEX IECEx Ex d use standard housing 5 Includes terminal block connection board and screws 6 Spares Categories Category A Recommend 1 spare part per 25 transducers Category B Recommend 1 spare part per 50 transducers Category C None normally required 7 t kit indicates number of transducers that may be serviced 8 Contains O rings for both housing styles 9 Filter Regulator Direct Mounting Kit includes O ring 10 Extra O ring and spacer included for both housing styles Figure 7 1 Supply Gauge Figure 7 2 Output
9. 846 transducers have been designed so that a conduit seal is not required For all other applications install the product per local regional or national code rules and regulations A WARNING Select wiring and or cable glands that are rated for the environment of use such as hazardous location ingress protection and temperature Failure to use properly rated wiring and or cable glands can result in personal injury or property damage from fire or explosion Signal wiring is brought to the terminal compartment through a 1 2 14 NPT housing conduit connection shown in figure 2 1 Where condensate is common use a conduit drip leg to help reduce liquid buildup in the terminal compartment and avoid shorting of the input signal Electrical connections are made at the terminal block Internal and external grounding lugs are provided to facilitate a separate ground when required The internal ground is shown in figure 2 1 and the external grounding lug is shown in figure 2 5 846 Transducer Instruction Manual March 2015 D102005X012 Connect the positive signal lead to the positive terminal marked Connect the negative signal lead to the negative terminal marked Note Units with the Remote Pressure Reading RPR option may cause interference with the analog output signal from some instrumentation systems This problem may be solved by placing a 0 2 microfarad capacitor or a HART filter across the output terminals Venting Ports This
10. Removing the Module Final Assembly Indicating Boss from the Module Cover 6649 MODULE ALIGNMENT KEY INDICATING BOSS Replacing the Module Final Assembly Use the following procedure to attach the module cover and replace the module final assembly 1 Ensure that the electronic circuit board and the pilot actuator assembly provide the desired action direct reverse See the Electronic Circuit Board and Pilot actuator Assembly Action descriptions later in this section Ensure that the slip ring is in place around the feet of the module final assembly The module cover O ring should be lightly lubricated with silicone grease and placed in the O ring gland The stroke port screen should be clean and in place Note The module cover O ring must be in the O ring gland not down on the threads of the cover This will ensure proper sealing of the pilot pressure area Position the retaining clips in the module cover so they are ready to accept the feet of the module final assembly Ensure the leaves on the retaining clips are facing up Figure 6 1 shows the correct orientation Insert one of the module feet into a cover slot and push on the module final assembly to compress the retaining clip Insert the opposite foot into the opposite cover slot and rotate the module 90 degrees in the module cover to secure it in place Ensure that the three module O rings are in the O ring glan
11. 5 Ta 1 E eR NE A Thes QUT SOM Se MODULE COVER WITH MULTIPLE PORTS STROKE PORT MOUNTING BOLT HOLES 5 16 18 3 OUTPUT GAUGE PORT 1 4 18 NPT TEST PINS POSITIVE NEGATIVE INTERNAL GROUND WIRING CONNECTION NOTE REFER TO FIGURE 2 5 FOR TRANSDUCER DIMENSIONS WITH ATEX IECEx FLAMEPROOF CERTIFICATIONS B2473 1 12 NAMEPLATE Instruction Manual D102005X012 CONDUIT CONNECTION OUTPUT PORT AN 1 4 18 NPT EXHAUST PORT UNDERNEATH NAMEPLATE 1 S a COVER REMOVAL 110 4 33 ETC 102 4 007 27 Pat i O RING GROOVE FOR FILTER REGULATOR s SUPPLY PORT 1 4 18 NPT 5 16 18 2 mm INCHES Instruction Manual 846 Transducer D102005X012 March 2015 Supply Pressure A WARNING Severe personal injury or property damage may occur from process instability if the instrument supply medium is not clean dry air While use and regular maintenance of a filter that removes particles larger than 40 micrometers in diameter will suffice in most applications check with an Emerson Process Management field office and industry instrument air quality standards if you are unsure about the proper amount or method of air filtration or filter maintenance The supply medium must
12. Doing so could alter the alignment or disable the deflector mechanism CAUTION Do not use chlorinated solvents for cleaning the pilot actuator assembly The chlorinated solvents will deteriorate the rubber diaphragm 846 Transducer Instruction Manual March 2015 D102005X012 Figure 6 7 Cleaning the Nozzles WIRE DEFLECTOR BAR WIRE A6655 1 HOUSING Replacing the Pilot Actuator Assembly 1 Verify that the rubber diaphragm under the nozzle area is blue for pilot actuators inserted into a direct action unit or red for pilot actuators inserted into a reverse action unit Inspect the pilot actuator assembly cavity in the module final assembly to ensure that it is clean Lightly lubricate the two O rings with silicone grease and place them in the beveled O ring glands O rings between the pilot actuator assembly and the module should be installed justified to the lower portion of the O ring gland When properly positioned the air passageway should be visible through the O ring inside diameter 4 Prepare to insert the assembly by aligning the key on the pilot actuator assembly with the key slot in the module subassembly 5 Insert the assembly into the module subassembly and engage the four mounting screws UJ NJ Module Subassembly Refer to the Maintenance WARNING at the beginning of this section The module subassembly shown in fiqure 6 1 consists of the module final assembly with both the electronic cir
13. Gauge RES 1 4 1454 1459 0 55 0 55 mm 1 4 mm Recommended spare parts 47 846 Transducer Instruction Manual March 2015 Figure 7 3 Exploded Parts Drawing also see table 7 2 NOTE 1 gt THREE O RINGS ARE REQUIRED FOR THE MODULE SUBASSEMBLY FOR ATEX IECEX FLAMEPROOF APPROVED UNITS THE TWO UPPER O RINGS ARE SILICONE AND THE LOWER O RING IS NITRILE ALL OTHER UNITS HAVE THREE NITRILE O RINGS Table 7 2 Key Number Quick Reference Description Terminal Compartment Cover Terminal Compartment Cover O ring Terminal Block Kit 26000 Electronic Circuit Board Screws tectonic Circuit BoardAssembly 2 O o 1 14 48 D102005X012 Instruction Manual D102005X012 Figure 7 3 Exploded Parts Drawing also see table 7 2 continued B2468 846 Transducer March 2015 49 846 Transducer Instruction Manual March 2015 D102005X012 Section 8 Installation Drawings This section includes installation drawings required for wiring of intrinsically safe installations If you have any questions contact your Emerson Process Management sales office Figure 8 1 CSA Installation Drawing GE59146 HAZARDOUS AREA NON HAZARDOUS AREA CSA ENTITY CONCEPT APPROVALS THE FISHER 846 CURRENT TO PRESSURE I P TRANSDUCER IS APPROVED AS INTRINSICALLY SAFE FOR USE IN CLASS Il AND DIVISION I GROUPS A B C D E F AND
14. Transducer D102005X012 March 2015 Repeat steps 4 5 to verify and complete the calibration Turn off the air supply Remove the module final assembly from the housing Place the range jumper in the Lo position for Low Range as indicated in figure 6 4 Replace the module final assembly Turn on the air supply Apply an input of 12 0 mA Vm 3 0 V and adjust the zero screw to achieve an output of 0 2 bar 3 0 psi Apply an input of 20 0 mA Vm 5 0 V and note the error the actual reading versus 15 0 psi Adjust the span screw to overcorrect the error by a factor of two For example if the reading was 0 9 bar 14 95 psi adjust the span screw to achieve an output of 1 1 bar 15 05 psi WO 10 Repeat steps 8 and 9 to verify and complete the calibration Standard Performance Full Range Input Reverse Action A WARNING Refer to the WARNING at the beginning of the Maintenance section Use the following procedure on reverse action units to achieve a 1 0 to 0 2 bar 15 to 3 psi output span for a 4 to 20 mA input signal 1 Perform steps 1 through 9 under Standard Performance Full Range Input Direct Action except for step 2 In place of step 2 confirm that the unit is reverse acting A red electronic circuit board identifies reverse acting units Refer to Action under the heading Electronic Circuit Board in the Maintenance section for more information on reverse acting units Apply an in
15. VOLTAGE DROP WITH NEGLIGIBLE INDUCTANCE 6325 MODULE COVER 6643 Educational Services For information on available courses for the 846 current to pressure transducer as well as a variety of other products contact Emerson Process Management Educational Services Registration Phone 1 641 754 3771 or 1 800 338 8158 Email education emerson com http www emersonprocess com education Instruction Manual 846 Transducer D102005X012 March 2015 Section 2 Installation A WARNING To avoid personal injury or property damage from the sudden release of pressure or air Always wear protective clothing gloves and eyewear when performing any installation operations Disconnect any operating lines providing air pressure electric power or a control signal to the actuator Be sure the actuator cannot suddenly open or close the valve Use bypass valves or completely shut off the process to isolate the valve from process pressure Relieve process pressure on both sides of the valve Use lock out procedures to be sure that the above measures stay in effect while you work on the equipment Check with your process or safety engineer for any additional measures that must be taken to protect against process media This section presents information on installing the 846 current to pressure transducer Figures 2 1 2 2 2 3 and 2 5 can be used as references for instructions contained in this section When a contro
16. be clean dry air that meets the requirements of ISA Standard 7 0 01 or ISO 8573 1 An output span of 0 2 to 1 0 bar 3 to 15 psi requires a nominal supply pressure of 1 4 bar 20 psi and a flow capacity not less than 6 4 normal m hr 240 scfh For multirange performance units with higher output spans the supply pressure should be at least 0 2 bar 3 psi greater than the maximum calibrated output pressure The air supply line can be connected to the 1 4 18 NPT supply port or to the supply port of a filter requlator mounted directly to the transducer Figures 2 2 2 3 2 4 and 2 5 show installation options Figure 2 2 Typical Dimensions with Fisher 67CFR Filter Regulator and Gauges FOR PROPER MOISTURE DRAINAGE THIS END MUST BE UP COVER a REMOVAL CLEARANCE FOR ATEX IECEx FLAMEPROOF UNITS BOLT ENGAGEMENT MODULE 137 NOT TO EXCEED CENTERLINE COVER 5 38 12 9 mm 0 51 INCHES OF ACTUATOR YOKE MOUNTED REMOVAL 5116 18 BOLTS CLEARANCE NOTE 1 THE MOUNTING POSITIONS SHOWN ALLOW ANY MOISTURE BUILDUP IN THE TERMINAL COMPARTMENT TO DRAIN TO THE SIGNAL WIRE CONDUIT ENTRANCE DO NOT MOUNT THE TRANSDUCER WITH THE TERMINAL COMPARTMENT COVER ON THE BOTTOM MOISTURE MAY ACCUMULATE IN THE TERMINAL COMPARTMENT OR PILOT STAGE PREVENTING PROPER TRANSDUCER OPERATION THE VERTICAL MOUNT IS MOST EFFECTIVE FOR MOISTURE DRAINAGE IN WET APPLICATIONS 14B7361 D mm 6626 3 13 846 Transducer Instr
17. circuit board remove the five mounting screws and pull upward on the plastic board standoff blackemultirange white standard CAUTION Standard electronic assembly handling procedures apply Do not attempt to remove the circuit board by pulling on the components Doing so could weaken the connections and disable the electronics Be careful when handling the pressure sensor located beneath the circuit board The pressure sensor lead frame is bent to allow the pressure sensor to fit properly in the sensor cavity of the module final assembly and to maintain flush contact with the pressure sensor manifold Three O rings accompany the pressure sensor Two O rings of the same size are located on each side of the pressure sensor A third smaller O ring is positioned in the beveled O ring gland of the module sub assembly Table 6 1 shows 41 846 Transducer Instruction Manual March 2015 D102005X012 the O ring sizes The pressure sensor may be gently bent away from the pressure sensor manifold to access the sensor O ring and confirm that the pressure ports are clear Replacing the Electronic Circuit Board 1 Verify that the circuit board is green for assembly into a direct action unit or red for assembly into a reverse action unit 2 Ensure that the three O rings are in the proper position The small O ring is positioned in the beveled O ring gland of the module subassembly The two sensor O rings are each positioned on the shoulders of the
18. circuit should show an open between the positive and negative terminals If not replace the housing or terminal block and connection board Use a wire jumper to connect the two electrical feedthroughs located in the module compartment The resistance between the positive and negative terminals in the terminal compartment should be 10 ohms If not check the electrical feedthroughs for short or open circuits If a short or open circuit is found replace the housing With the electrical feedthroughs jumpered as stated above connect the ohmmeter to either the positive or negative terminal and the grounding lug The circuit should show an open If not check for a short to the housing 4 Remove the module from the module cover and inspect the pilot actuator assembly for damage or clogging NJ UJ Some of the previous troubleshooting steps may be inconvenient to perform in the field It may be best to make use of the modular design of the 846 and keep a spare calibrated module final assembly available for exchange If the module final assembly is to be transported to the shop for repair first remove it from the module cover Attach the spare module final assembly to the module cover Refer to Module Final Assembly in the Maintenance section for complete instructions The nonfunctioning module can then be returned to the shop for troubleshooting Troubleshooting in the Shop If the entire transducer is brought to the
19. cover should be hand tightened and then advanced 1 4 to 1 2 turn 24 to 27 Nem 18 to 20 Ibfeft 2 Confirm the general functionality of the unit by using the diagnostic features described earlier in this section 30 Instruction Manual 846 Transducer D102005X012 March 2015 Figure 5 2 Field Troubleshooting Flowchart RPR ON z Q YES SEAVICE FIELD OK WIRING CURRENT TO TROUBLESHOOTING TROUBLESHOOTING FROM THE CONTROL ROOM IN THE FIELD l MODULE COVER OK TIGHT vor Fu OK COMPONENT VP FREQUENCY o m APA REMOVE VOLTAGE MODULE TERMINAL ACROSS AND BLOCK VP RECHECK VOLTAGE FEED CHECK REPLACE LOOP OR HOUSING OPERATION ASSEMBLY REPAIR NOT OR REPLACE CHECK TEST OK ERE NOT CHECK AIR LINES TO free OK VALVE OR POSITIONER K REPAIR COMPLETE INCREASE NOT LOAD VOLUME LOAD GREATER THAN VOLUME OK 2 CUBIC INCHES OK STROKE amp EXHAUST PORTS CLEAR SERVICE VALVE POSITIONER OR OTHER RECEIVING INSTRUMENT ENSURE THE ENSURE THE O RING IS O RING IS PROPERLY PROPERLY SPAN PLACED ON MODULE PLACED ON THE MODULE THE MODULE AND THE AND THE MODULE MODULE coven 1 REPAIR OK CHECK CHECK COMPLETE LOOP REGULATOR OPERATION SET TO REGULATOR NOT OK NOT OK NOT OK PRO
20. is located on top of the module final assembly as shown in figure 6 1 Beneath the circuit board and permanently attached to it is the pressure sensor Two jumpers on the circuit board control various functions of the transducer Figure 6 4 shows the location of these jumpers Figure 6 4 Circuit Board Jumper Positions HIGH RANGE lt 1 LOW RANGE NOTE RPR ON lt 1 1 RPR JUMPER ONLY ON UNITS WITH REMOTE PRESSURE READING RPR OPTION 6652 Optional Remote Pressure Reading RPR Jumper Remote Pressure Reading RPR is an optional diagnostic feature that enables the operator to determine the transducer output signal from any location along the signal wire path The transducer generates a frequency signal 40 Instruction Manual 846 Transducer D102005X012 March 2015 that can be received by a frequency counter Operation of the RPR feature is jumper selectable in units so equipped The RPR feature operates when the jumper is located in the N position on the circuit board With the jumper in the D position the RPR feature does not operate When the RPR feature is included the transducer is shipped with the RPR jumper in the N position unless otherwise specified For more information about the RPR feature refer to Remote Pressure Reading RPR in the Troubleshooting section Note When operating 846 transducers in series only one unit may be configured for Remote Pressure Reading Activating the RPR feature
21. milliammeter or a digital voltmeter to confirm that proper input current is supplied to the transducer 8 Remove the terminal compartment cover see Warning above and short the loop across the positive and the negative terminals to check the output The output should be nearly 0 psi If the output is not 0 psi replace the module final assembly 9 Remove the terminal compartment cover see Warning above and using a digital voltmeter check the voltage between the transducer positive and negative terminals The voltage should measure 6 0 to 8 2 V Alower voltage can indicate a short in the input wires or defective controller No voltage can indicate an open circuit in the control loop A voltage of greater than 8 5 volts indicates a problem with the transducer a faulty or corroded connection at the transducer or an overcurrent condition Replace the module final assembly If the voltage is still not in the proper range 6 0 to 8 2 V remove the terminal block and terminal block connection board Apply power to the electrical feedthroughs Note the polarity of the feedthroughs shown in figure 6 8 Recheck the voltage If the voltage is in the proper range replace the terminal block and terminal block connection board If the voltage is still not in the proper range replace the housing 10 Prepare to remove the module final assembly from the housing or to remove the transducer from its mounting bracket Refer to Module Fina
22. transducer is to receive an electrical signal from a controller and produce a pneumatic output for operating a control valve actuator or positioner The 846 may also be used to transduce a signal for a pneumatic receiving instrument The 846 is an electronic I P transducer It has a single electronic circuit board as shown in figure 1 2 The circuit contains a solid state pressure sensor that monitors output pressure and is part of an electronic feedback network The self correcting ability provided by the sensor circuit combination allows the transducer to produce a very stable and responsive output signal All active mechanical and electrical components of the 846 are incorporated into a single field replaceable module called the module final assembly shown in figure 1 2 The module final assembly contains the electronic circuit board pilot actuator assembly and booster stage The module final assembly is easily removed by unscrewing the module cover Its design minimizes parts and reduces the time required for repair and troubleshooting The terminal compartment and module compartment are separated by a sealed compartment wall This multi compartment housing also protects the electronics from contaminants and moisture in the supply air Specifications WARNING This product is intended for specific range of pressures temperatures and other application specifications Applying different pressure temperature and other service conditio
23. unit will vent to the atmosphere through the stroke port in the module cover and the exhaust port located under the nameplate Do not remote vent this unit Stroke Port The constant bleed of supply medium from the pilot stage is directed out the stroke port which is a screened hole located at the center of the module cover Figure 2 1 shows the location of the stroke port Before installing the transducer ensure the stroke port is clear Do not mount the transducer in a location where foreign material may cover the stroke port For information on using the stroke port refer to the Troubleshooting section Exhaust Port The transducer exhausts through a screened port located beneath the instrument nameplate Figure 2 1 shows the location of the exhaust port The nameplate holds the screen in place Exhaust will occur with a reduction in output pressure The transducer should not be mounted in a location where foreign material may clog the exhaust port Signal Interruption Upon loss of input current or if input current decreases below 3 3 0 3 mA the output of the direct action unit will decrease to less than 0 1 bar 1 psi In the same situation the output of the reverse action unit will increase to near supply pressure Instruction Manual 846 Transducer D102005X012 March 2015 Section 3 Calibration A WARNING The following calibration procedures require taking the transducer out of service To avoid personal injury and propert
24. your warranty might adversely affect the performance of the instrument and could cause personal injury and property damage Parts Kit Parts List Description Part Number See table 7 1 Repair Kit Kit includes O rings and slip ring R846X000012 Note Contact your Emerson Process Management sales office for part numbers Table 7 1 Parts List Module standard Final Assembly Standard Performance Direct Action 4 20 mA Reverse Action 4 20 mA Multirange Performance Direct Action 4 20 mA Reverse Action 4 20 mA Module ATEX IECEx Ex d and Dust Final Assembly Standard Performance Direct Action 4 20 mA Reverse Action 4 20 mA Multirange Performance Direct Action 4 20 mA Reverse Action 4 20 mA B B B B B B B B Module Subassembly 1 2 Standard Performance Direct or Reverse Action B ATEX IECEx Ex d and Dust Direct or Reverse Action B B B B B C C C C C Pilot Actuator Assembly 2 Direct Action Reverse Action Circuit Board Assembly Standard Performance Direct Action Reverse Action Housing 3 4 Standard ATEX IECEx Ex d and Dust Module Cover Single Stroke Port Multiple Ports Threaded Stroke Port 46 Recommended spare parts Instruction Manual 846 Transducer D102005X012 March 2015 Table 7 1 Parts List continued O Rings Module 5 kit 7 Module 5 kit ATEX IECEx Ex d and Dust 7 Pilot Actuator 5 kit 7 Circuit Board 5 kit 7 Cover 12 O rings 12 slip rings U Filter Regulator
25. 0 4 2 kV contact 8 kV air Enclosure 80 to 1000 MHz 10V m with 1 kHz AM at 80 Radiated EM field IEC 61000 4 3 1400 to 2000 MHz 3V m with 1kHz AM at 80 2000 to 2700 MHz 1V m with 1kHz AM at 80 Burst fast transients IEC 61000 4 4 45 TRV line to ground only each 8 150 to 8 MHz Vrms _ E Conducted RF IEC 61000 4 6 8 MHz to 80 MHz at 3 Vrms Specification limit 1 of span 1 A No degradation during testing B Temporary degradation during testing but is self recovering Related Documents This section lists other documents containing information related to the 846 transducer These documents include INMETRO Hazardous Area Approvals for Fisher 846 Current to Pressure Transducers Instruction Manual D103623X012 NEPSI Hazardous Area Approvals for Fisher 846 Current to Pressure Transducers Instruction Manual 0103618 012 All documents are available from your Emerson Process Management sales office Also visit our website at www Fisher com 846 Transducer Instruction Manual March 2015 D102005X012 Figure 1 2 Transducer Modular Construction Figure 1 3 Equivalent Circuit TERMINAL COMPARTMENT COVER TERMINAL BLOCK MODULE HOUSING SUPPLY ELECTRONIC CIRCUIT BOARD MODULE FINAL ASSEMBLY NOTE THE 846 IS NOT A CONSTANT RESISTOR IN SERIES WITH AN INDUCTOR IT IS BETTER MODELED IN THE LOOP AS A 50 OHM RESISTOR IN SERIES WITH A 6 VOLT DC
26. 5X012 March 2015 Output Pressure Connect the output signal line to the transducer at the output port The output port is 1 4 18 NPT as shown in figure 2 1 The output gauge port can be used as an alternate signal port If the gauge port is used as a signal port a threaded plug must be installed in the output port The output gauge port allows connection of an output gauge to provide local output signal indication The output gauge port is 1 4 18 NPT If an output gauge is not specified a threaded plug is shipped with the transducer The plug must be installed in the output gauge port when the port is not used Electrical Connections WARNING Personal injury property damage could result from fire or explosion In explosive atmospheres remove power and shut off the air supply to the I P unit before attempting to remove the terminal compartment cover or module cover Failure to do so could result in an electrical spark or explosion Personal injury or property damage could result from an uncontrolled process Unscrewing the module cover removes power from the electronics and the output signal will be 0 0 psi Perform the steps in the WARNING at the beginning of this section before removing the module cover to ensure the process is properly controlled CAUTION Excessive current can damage the transducer Do not connect an input current of more than 100 mA to the transducer Note For North American explosion proof applications
27. Direct Action 2 Apply an input of 4 0 mA Vm 1 0 V and adjust the zero screw to achieve an output of 0 2 bar 3 0 psi 3 Apply an input of 12 0 mA Vm 3 0 V and adjust the span screw to achieve an output of 1 0 bar 15 0 psi 4 Repeat steps 2 and3 to verify and complete the calibration 12 to 20 mA Input Signal Use the following calibration procedure to produce a 0 2 to 1 0 bar 3 to 15 psi output span for a 12 to 20 mA input signal Note There may be some span interaction with zero in this range and the following steps compensate for this Perform steps 1 through 9 of the calibration procedure for Standard Performance Full Range Input Direct Action Apply an input of 4 0 mA Vm 1 0 V and adjust the zero screw to achieve an output of 0 2 bar 3 0 psi Apply an input of 12 0 mA Vm 3 0 V and adjust the span screw to achieve an output of 1 0 bar 15 0 psi Maintain the input of 12 0 mA Vm 3 0 V and adjust the zero screw to achieve an output of 0 2 bar 3 0 psi The unit may not turn down this low if it does not go to step 7 5 If the output reaches 0 2 bar 3 0 psi in step 4 apply an input of 20 0 ma Vm 5 0 V and note the error the actual reading versus 15 0 psi Adjust the span screw to overcorrect the error by a factor of two For example if the reading was 0 9 bar 14 95 psi adjust the span screw to achieve an output of 1 1 bar 15 05 psi gt N 22 Instruction Manual 846
28. Ex ia 66 Da T90 C Tamb lt 80 C Li 20 uH Ex ia 66 Da T50 C Tamb lt 40 C Flameproof T4 Tamb lt 80 C T5 Tamb 40 C 126 5 Tamb lt 80 C Gas T6 Tamb lt 65 C Ex d IIB T5 T6 Gb Typen 113 GD Gas Ex nA IIC T5 T6 Gc Dust Ex tc IIIC T88 C Dc IP66 Ex tc IIIC T77 C Dc IP66 T5 Tamb 85 C T6 Tamb lt 74 846 Transducer Instruction Manual March 2015 D102005X012 IECEx Special Conditions for Safe Use Intrinsically Safe No special conditions for safe use Flameproof See below Refer to table 2 4 for additional approval information Table 2 4 Hazardous Area Classifications IECEx Certification Obtained Entity Rating Temperature Code Intrinsically Safe T4 Tamb 80 C Gas Ex ia IIC T4 T5 Ga T5 Tamb lt 40 Flameproof Gas T5 Tamb 80 C Ex d IIB T5 T6 Gb T6 Tamb lt 65 ATEX IECEx Special Conditions for Safe Use Flameproof 1 The equipment incorporates flameproof joints which have a maximum gap less than that stated in EN 60079 1 The user shall refer to the manufacturer s installation operation and maintenance document for guidance 2 The cable entry device used shall be certified Ex d IIB or Ex d IIC 3 The user shall ensure that the maximum system pressure does not exceed 35 psi 4 Refer to figures 2 2 and 2 3 for proper bolting engagement length for ATEX and IECEx flameproof units 5
29. ITH THIS DOCUMENT THE TYPE 846 IS ALSO FM APPROVED AS NONINCENDIVE FOR CLASS DIVISION 2 GROUPS A B C AND D HAZARDOUS LOCATIONS FM APPROVED BARRIER ASSOCIATED APPARATUS THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN SUCH COMBINATION THE CRITERIA FOR INTERCONNECTION IS THAT THE VOLTAGE Vmax OR Ui THE CURRENT OR 10 AND THE POWER Pmax OR Pi OF THE INTRINSICALLY SAFE APPARATUS MUST BE EQUAL TO OR GREATER THAN THE VOLTAGE Voc OR Uo AND THE CURRENT Isc OR iO AND THE POWER PO DEFINED BY THE ASSOCIATED APPARATUS IN ADDITION THE SUM OF THE MAX UNPROTECTED CAPACITANCE AND MAX UNPROTECTED INDUCTANCE Li INCLUDING THE INTERCONNECTING CABLING CAPACITANCE Ccable AND CABLING INDUCTANCE Lcable MUST BE LESS THAN THE ALLOWABLE CAPACITANCE AND INDUCTANCE Lo DEFINED BY THE ASSOCIATED APPARATUS IF THE ABOVE CRITERIA IS MET THEN THE COMBINATION MAY BE CONNECTED Vmax OR Ui gt Voc OR Uo Imax OR li 2 Isc OR lo Pmax OR Pi 2 Po Ci Ccable lt Ca Li Lcable s La CLASS Il AND Ill DIV GROUPS A D E F AND G APPARATUS PARAMETER BARRIER PARAMETER Vmax 30 VDC Voc MUST BE LESS THAN OR EQUAL TO 30 VDC Imax 100mA Isc MUST BE LESS THAN OR EQUAL TO 100mA Pi 1W Po MUST BE LESS THAN OR EQUAL TO Pi Li 20uH La MUST BE GREATER THAN 20 MICROHENRIES Ci O 016uF Ca MUST BE GREATER THAN 0 016 MICROFARADS NOTES
30. Instruction Manual D102005X012 846 Transducer March 2015 Fisher 846 Current to Pressure Transducer Contents 1 Introduction Scope DeSCrIpDHONN dou dn Dae Uti ESQ Ee EE Specifications Related Documents Educational Services 2 Installation Hazardous Area Classifications and Special Instructions for Safe Use and Installation in Hazardous EMEN ATEX ECEE MOUNINO ETE Pressure Connections Supply Pressure OUtpub Presse ob pub Electrical Connections POS oct he ecules aot tes de RBS iUm 3 Calibration Standard Performance Full Range Input Direct Action Multirange Performance Full Range Input Direct Action Standard Performance Split Range Input Direct Action 4to 12 MA Input Signal 12to 20 mA Input Signal Standard Performance Full Range Input Reverse Action Multirange Performance Full Range Input Reverse Action Standard Performance Split Range Input Reverse Action 4to 12 Input Signal
31. Max 7 2 V at 20 mA Required Operating Voltage with Remote Pressure Reading On Min 6 4 V at 4 mA Max 8 2 V at 20 mA Instruction Manual D102005X012 Electrical Classification Hazardous area CSA C US Intrinsically Safe Explosion proof Non Incendive FM Intrinsically Safe Explosion proof Non Incendive ATEX Intrinsically Safe Flameproof Type n IECEx Intrinsically Safe Flameproof Refer to Hazardous Area Classifications and Special Instructions for Safe Use and Installation in Hazardous Locations in Section 2 for additional information Electrical Housing Tropicalization Fungus test per MIL STD 810 CSA C US Type 4X FM Type 4X ATEX IP66 9 IECEx IP66 9 Other Classifications Certifications INMETRO National Institute of Metrology Quality and Technology Brazil KGS Korea Gas Safety Corporation South Korea NEPSI National Supervision and Inspection Centre for Explosion Protection and Safety of Instrumentation China Contact your Emerson Process Management sales office for classification certification specific information Construction Materials Housing Low copper aluminum with polyurethane paint or 316 stainless steel O Rings Nitrile except silicone for sensor O rings Options Fisher 67CFR filter regulator supply and output gauges or tire valve remote pressure reading module cover with multiple stroke ports stainless steel housing or stainless steel mounti
32. NAL WIRE CONDUIT ENTRANCE DO NOT MOUNT THE TRANSDUCER WITH THE TERMINAL COMPARTMENT COVER ON THE BOTTOM MOISTURE MAY ACCUMULATE IN THE TERMINAL COMPARTMENT OR PILOT STAGE PREVENTING PROPER TRANSDUCER OPERATION THE VERTICAL MOUNT IS MOST EFFECTIVE FOR MOISTURE DRAINAGE IN WET APPLICATIONS INCH 2 gt IF MOUNTED ON HORIZONTAL PIPE THE I P MUST BE ON TOP OF THE PIPE FOR PROPER MOISTURE DRAINAGE 3 gt THIS DIMENSION IS 44 1 74 FOR STAINLESS STEEL HOUSING 14B7332 19B9484 B E0786 14 Instruction Manual 846 Transducer D102005X012 March 2015 Figure 2 3 Typical Transducer Mounting with Universal Mounting Bracket continued FOR STAINLESS STEEL HOUSING 4X10 0 375 39 ALIGN 4 HOLES WITH I P HOUSING 1 18 3 50 5 X 10 0 375 FOR ALUMINUM HOUSING ALIGN HOLES WITH I P HOUSING es 2 312 DETAIL A MOUNTING BRACKET 38 U BOLTSLOTS 38 19 0 75 1 50 U BOLT SLOTS 19 0 75 57 2 25 57 2 25 2 10 0 375 e 4X5 0 188 Hm 2 X 10 0 375 i 4X5 0 188 DETAIL ADAPTER PLATE INCH ADDITIONAL ADAPTOR PLATE PART NUMBER 03311 0318 0001 REQUIRED FOR I P WITH STAINLESS STEEL HOUSING NOTES 1 ATTACH THE BRACKET SHOWN IN DETAIL TO THE TRANSDUCER 2 ATTACH THE ADAPTER PLATE SHOWN IN DETAIL B TO THE VALVE OR PIPE 3 CONNECT THE TWO PIECES 34B4990 C 34B5000 B E0787 The mounting boss for the air supply connection contains two 5 16 18 UNC tapped holes t
33. OVED ASSOCIATED APPARATUS MUST BE A LINEAR OUTPUT DEVICE 2 MAXIMUM SAFE AREA VOLTAGE SHOULD NOT EXCEED 250Vrms 3 RESISTANCE BETWEEN INTRINSICALLY SAFE GROUND AND EARTH GROUND MUST BE LESS THAN ONE OHM 4 INSTALLATION MUST IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE CEC PART 1 AND ANSI ISA 12 06 01 INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS CLASSIFIED LOCATIONS AND THE NATIONAL ELECTRICAL CODE ANSI NFPA 70 5 DUST TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN CLASS AND CLASS ENVIRONMENTS 6 THE NON INCENDIVE FIELD WIRING IS THE SAME AS THE INTRINSIC SAFETY FIELD WIRING WARNING FOR INTRINSICALLY SAFE APPLICATIONS THE APPARATUS ENCLOSURE CONTAINS ALUMINUM AND 15 CONSIDERED CONSTITUE A POTENTIAL RISK OF IGNITION BY IMPACT AND FRICTION AVOID IMPACT AND FRICTION DURING INSTALLATION AND USE TO PREVENT RISK OF IGNITION WARNING SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY WARNING TO PREVENT IGNITION OF FLAMMABLE OR COMBUSTIBLE ATMOSHPERES DISCONNECT POWER BEFORE SERVICING GE59146 50 Instruction Manual 846 Transducer D102005X012 March 2015 Figure 8 2 FM Installation Drawing GE59147 HAZARDOUS AREA NON HAZARDOUS AREA FM ENTITY CONCEPT APPROVALS THE FISHER 846 CURRENT TO PRESSURE I P TRANSDUCER IS FM APPROVED AS INTRINSICALLY SAFE FOR USE IN CLASS AND Ill DIVISION GROUPS A B C D E F AND G HAZARDOUS LOCATIONS WHEN CONNECTED IN ACCORDANCE W
34. PER AIR NOTE SET SUPPLY TO AFTER FINAL CORRECTIVE ACTION CHECK LOOP OPERATION REGULATOR IF NOT OK RESTART TROUBLESHOOTING PROCEDURE 1_ gt REFER TO REPLACING THE MODULE FINAL ASSEMBLY IN SECTION 6 C0789 3 Confirm that the filter regulator is not full of water or oil and that supply air is reaching the unit The air supply pressure should be at least 0 2 bar 3 psi greater than the maximum calibrated output pressure 4 Confirm that there are no major leaks in the output signal line or from the output gauge port 5 Confirm that there are no obstructions and the screens are clean in the stroke port or the exhaust port 31 846 Transducer Instruction Manual March 2015 D102005X012 A WARNING Personal injury or property damage could result from an uncontrolled process Unscrewing the module cover removes power from the electronics and the output signal will be 0 0 psi Before removing the module cover ensure the process is properly controlled A WARNING Personal injury or property damage could result from fire or an explosion In explosive atmospheres remove power and shut off the air supply to the transducer before attempting to remove the terminal compartment cover or module cover Failure to do so could result in an electrical spark or explosion 6 If applicable remove the cover lock and screw to allow access to the terminal compartment cover 7 Remove the terminal compartment cover see Warning above and use a
35. Standard PMC 31 1 Sec 5 3 Condition 3 Steady State Shock Effect 0 5 of span when tested per SAMA Standard PMC 31 1 Sec 5 4 Supply Pressure Effect Negligible 846 Transducer March 2015 Table 1 1 Specifications continued Performance continued gt Electromagnetic Interference EMI Tested per IEC 61326 1 Edition 1 1 Meets emission levels for Class A equipment industrial locations and Class B equipment domestic locations Meets immunity requirements for industrial locations Table A 1 in the IEC specification document Immunity performance is shown in table 1 2 Leak Sensitivity 4 Less than 1 0 of span for up to 4 8 m hr 180 scfh downstream leakage Overpressure Effect Less than 0 2525 of span for misapplication of up to 7 0 bar 100 psi supply pressure for less than 5 minutes to the input port Reverse Polarity Protection No damage occurs from reversal of normal supply current 4 to 20 mA or from misapplication of up to 100 mA Connections Supply Air Output Signal and Output Gauge 1 4 18 NPT internal connection Electrical 1 2 14 NPT internal conduit connection Adjustments Zero and Span screwdriver adjustments located in terminal compartment Remote Pressure Reading RPR Jumper selectable ON or OFF if unit includes option Frequency Range 0 to 10 000 Hz Amplitude 0 4 to 1 0 Vp p Required Operating Voltage with Remote pressure Reading Off Min 6 0 V at 4 mA
36. ctor bar and nozzle area identifies the direct action pilot actuator assembly A red diaphragm under the nozzle area identifies the reverse action pilot actuator assembly Figure 6 6 shows the bottom view of the pilot actuator assembly 42 Instruction Manual D102005X012 Figure 6 6 Pilot Actuator Assembly Bottom View ALIGNMENT KEY RUBBER DIAPHRAGM MOUNTING SCREWS A6654 Removing the Pilot Actuator Assembly 846 Transducer March 2015 To remove the pilot actuator assembly disengage the four mounting screws and gently pull the assembly out of the module subassembly To aid removal the pilot actuator framework may be gently gripped with a pair of pliers CAUTION Do not attempt to remove the pilot actuator assembly by gripping or pulling on the deflector or nozzles Doing so could alter the alignment or disable the deflector nozzle mechanism Inspect the assembly for a buildup of foreign material The nozzle passageways should be clear and the deflector should be clean The deflector can be cleaned by spraying it with contact cleaner Clean the nozzles by gently inserting a wire with a maximum diameter of 0 38 mm 0 015 inches Insert the wire into each nozzle separately from the outside as shown in figure 6 7 e Do not try to put the wire through both nozzles simultaneously e Do not push the wire on the deflector CAUTION Do not apply force to the deflector bar while cleaning the nozzles
37. cuit board and pilot actuator assembly removed The module subassembly contains the porting and valving for the booster stage Note The module subassembly is aligned at the factory and should not be further disassembled Disassembling the module subassembly may result in performance outside specifications Terminal Compartment WARNING Refer to the Maintenance WARNING at the beginning of this section Instruction Manual 846 Transducer D102005X012 March 2015 The terminal compartment contains the terminal block terminal block connection board span and zero screws electrical feedthroughs and internal grounding lug as shown in figure 6 8 The terminal block connection board is attached to the terminal block and to the electrical feedthroughs Figure 6 8 Terminal Compartment Exploded View TEST PINS E TERMINAL BLOCK NM E y CONNECTION BOARD X 9 ZERO AND SPAN SCREWS ELECTRICAL z IDN FEEDTHROUGHS ce EF 57 GROUNDING LUG A6656 Separate test points are provided that have a 10 ohm resistor in series with the signal negative terminal The test points allow the input current to be determined with a voltmeter without disconnecting a signal lead A 4 to 20 mA span produces a 40 to 200 mV DC voltage drop across the 10 ohm resistor The test points can accommodate different connections including alligator clips and E Z hooks The terminal block and terminal block connection board can be removed by dise
38. d to output pressure using a simple mathematical line formula as shown below Figure 5 1 shows the wiring connections Notes The Remote Pressure Reading RPR frequency signal has an amplitude of 0 4 to 1 0 V peak to peak If other noise frequency with a comparable or greater amplitude is present on the line it may make the RPR frequency signal unreadable The following procedure is applicable for 846 transducers manufactured starting March 2015 Contact your Emerson Process Management sales office for information on reading the RPR signal for products purchased prior to this date 29 846 Transducer Instruction Manual March 2015 D102005X012 Equations 1 P m f b P pressure Example f frequency P1 3 psig f 6000 Hz 2 m P4 P2 15psig f2 9000 Hz 12593 m 1 5 3 Procedure 9000 6000 3000 1 Find frequencies at zero and span pressure 3 SOON 6000 b 2 Solve for m using equation 2 b 3 24 b 21 3 Solve for b by inserting initial pressure and initial frequency into equation 1 12 f 21 4 Insert m and b into equation 1 to find conversion formula Figure 5 1 Wiring Connections for Frequency Counter CONTROLLER POSITIVE NEGATIVE FREQUENCY COUNTER GROUND B2466 In service Troubleshooting A number of simple checks can be made on the transducer while the unit is in service Figure 5 2 shows a troubleshooting flowchart 1 Make sure that the module cover is tight The
39. dium Clean dry air Per ISA Standard 7 0 01 A maximum 40 micrometer particle size in the air system is acceptable Further filtration down to 5 micrometer particle size is recommended Lubricant 846 Transducer March 2015 content is not to exceed 1 ppm weight w w or volume v v basis Condensation in the air supply should be minimized Per ISO 8573 1 Maximum particle density size Class 7 Oil content Class 3 Pressure Dew Point Class 3 or at least 10 C less than the lowest ambient temperature expected Output Air Capacity 4 Standard 6 4 m hr 240 scfh at 1 4 bar 20 psi supply pressure Multirange 9 7 m hr 360 scfh at 2 5 bar 35 psig supply pressure Maximum Steady State Air Consumption 4 0 3 m3 hr 12 scfh at 1 4 bar 20 psi supply pressure Temperature Limits 2 Operating 40 to 85 C 40 to 185 F Storage 40 to 93 C 40 to 200 F Humidity Limits 0 to 100 condensing relative humidity Performance 5 Note The performance of all 846 I Ps is verified using computer automated manufacturing systems to ensure that every unit shipped meets its performance specifications Linearity Hysteresis and Repeatability 0 325 of span Temperature Effect total effect including zero and span 0 07 C 0 045 F of span Vibration Effect 0 325 of span per g during the following conditions 5 to 15 Hz at 4 mm constant displacement 15 150 Hz at 2 g 150 to 2000 Hz at 1 per SAMA
40. ds and are lightly lubricated with silicone grease Inspect the O rings to ensure that they are not twisted or stretched Apply lubricant to module cover threads for ease of assembly 7 Prepare to insert the module into the housing Align the V groove located on the module final assembly with the indicating mark located on the nameplate This positions the alignment key with the key slot Figure 6 1 shows the location of the V groove and the indicating mark Insert the module engage the module cover threads and screw on the module cover The module final assembly will automatically engage the electrical feedthroughs and span and zero screws 39 846 Transducer Instruction Manual March 2015 D102005X012 9 Hand tighten the module cover as much as possible Use a wrench or long screwdriver shaft to tighten the module cover an additional 1 4 to 1 2 turn 24 to 27 Nem 18 to 20 Ibfeft For units with ATEX IECEx Flameproof approvals make sure the cover lock and screw are securely re installed The screw accepts a 3 mm hex drive Note When the module cover is tightened connection is made with the electrical feedthroughs and span and zero screws and the module final assembly O rings become seated Failure to fully tighten the module cover may prevent the transducer from operating properly Electronic Circuit Board WARNING Refer to the Maintenance WARNINGS at the beginning of this section The electronic circuit board
41. e markings affixed to the product Always refer to the nameplate itself to identify the appropriate certification Contact your Emerson Process Management sales office for approval certification information not listed here 846 Transducer Instruction Manual March 2015 D102005X012 A WARNING Failure to follow these conditions of safe use could result in personal injury or property damage from fire or explosion and area re classification CSA Intrinsically Safe Explosion proof Non Incendive No special conditions for safe use Refer to table 2 1 for approval information Table 2 1 Hazardous Area Classifications for Canada cCSAus Certification Body Certification Obtained Entity Rating Temperature Code mE Vmax 30 VDC Ex ia Intrinsically Safe Imax 100 mA Class Division 1 Groups A B C D T4 n T4 Tamb lt 60 C i Ci 0 016 uF per drawing GE59146 see figure 8 1 Li 20 uH XP Explosion proof Class Division 1 Groups C D DIP Dust Ignition proof lt 602 Class II III Division Groups E F G 4 NI Non incendive Class Division 2 Groups A B C D T4 FM Special Conditions of Use Intrinsically Safe Explosion proof Non Incendive 1 The apparatus enclosure contains aluminum and is considered to constitute a potential risk of ignition by impact or friction Care must be taken into account during installation and use to prevent impact or friction Refer to table 2 2 for additional approval informat
42. ease to within 2 psi of supply pressure for either direct or reverse action If output pressure does not increase to this level it may indicate that supply air is not reaching the pilot stage or that a pilot stage nozzle is plugged Note If the stroke port diagnostic feature is not desired the transducer is available with an optional cover that contains multiple stroke ports as shown in figure 2 1 This prevents increasing the output by covering the stroke port Remote Pressure Reading RPR Remote Pressure Reading RPR is an optional diagnostic feature that enables the user to determine the output pressure from any location along the signal wire path For loop troubleshooting this allows the user to confirm the functionality of the transducer from a remote location A frequency signal directly proportional to the output pressure is superimposed on the input signal loop The frequency range of the RPR function is 0 to 10 000 Hz A jumper on the circuit board activates the Remote Pressure Reading function The Maintenance section provides instruction on positioning the jumper The jumper shown in figure 6 4 has two positions N for ON or D for OFF The RPR jumper is in the N ON position when the unit ships from the factory unless otherwise specified Using a Frequency Counter to Read the RPR Signal A frequency counter can be used for Remote Pressure Reading The frequency counter displays the RPR output frequency that can be converte
43. hat are 2 1 4 inches apart The tapped holes allow direct connection integral mount of a 67CFR filter requlator if desired When the filter regulator is factory mounted the mounting hardware consists of two 5 16 18 x 3 1 2 inch stainless steel bolts and one O ring When the filter regulator is field mounted the mounting hardware consists of two 5 16 18 x 3 1 2 inch stainless steel bolts two spacers which may or may not be required and two O rings of which only one will fit correctly into the housing O ring groove and the other may be discarded This is due to the fact that the current housing has been slightly modified from its original design hence the additional hardware if needed when field mounting the 67CFR filter regulator 846 Transducer Instruction Manual March 2015 D102005X012 Figure 2 4 Typical Transducer Dimensions with Gauges SUPPLY GAGE OUTPUT GAGE FILTER _ Y REGULATOR 1 92 67CFR Ls 1 4 18 NPT SUPPLY CONN PLUGGED WHEN 14873220 0 36 GAUGE NOT FURNISHED Figure 2 5 Transducer Dimensions with ATEX IECEx Flameproof Certifications EXTERNAL EARTHING CONNECTION SST TERMINAL CLAMP AND SLOTTED M5 SCREW AND SPLIT RING WASHER TERMINAL COMPARTMENT COVER COVER LOCK HOUSING INTERNAL MODULE COVER HEX DRIVE 121 ROUND HEAD 4 75 SCREW 3 mm f B2465 16 mm INCH mm INCH Instruction Manual 846 Transducer D10200
44. ies as shown in figure 6 1 They are the electronic circuit board pilot actuator assembly and module subassembly Table 6 1 O Ring Sizes Module O rings 043 gt NI N n Board O rings NE 5mm 6 005 36 Instruction Manual 846 Transducer D102005X012 March 2015 Figure 6 1 Fisher 846 Exploded View ELECTRONIC CIRCUIT BOARD SCREWS ELECTRONIC CIRCUIT BOARD MODULE SUBASSEMBLY PILOT ACTUATOR ASSEMBLY ELECTRONIC CIRCUIT BOARD O RINGS TERMINAL COVER MODULE HOUSING PILOT ACTUATOR V GROOVE ASSEMBLY O RINGS ALIGNMENT PILOT ACTUATOR ASSEMBLY SCREWS MODULE FINAL ASSEMBLY V GROOVE MODULE FEET SLIP RING O RING MODULE COVER KEY SLOT INDICATING BOSS STROKE PORT SCREEN ALIGNMENT KEY RETAINING CLIP 2 O RING CLIP COVER SLOT 2 MODULE COVER NOTE 1 THREE O RINGS ARE REQUIRED FOR THE MODULE SUBASSEMBLY FOR ATEX IECEX FLAMEPROOF APPROVED UNITS THE TWO UPPER O RINGS ARE SILICONE AND THE LOWER O RING IS NITRILE ALL OTHER UNITS HAVE THREE NITRILE O RINGS C0790 37 846 Transducer Instruction Manual March 2015 D102005X012 Removing the Module Final Assembly The module final assembly is attached to the module cover Removing the module cover automatically removes the module final assembly from the housing When the module cover is unscrewed the electrical feedthroughs and span and zero adjustme
45. ignals to successfully pass through undistorted 26 Instruction Manual 846 Transducer D102005X012 March 2015 Magnetic Actuator The electronic circuit controls the level of current flowing through the actuator coil which is located in the pilot actuator assembly A change to the level of coil current is made by the electronic circuit when it senses a discrepancy between the pressure measured by the sensor and the pressure required by the input signal The actuator performs the task of converting electrical energy current to motion It uses a coaxial moving magnet design optimized for efficient operation and is highly damped at its mechanical resonance A silicone rubber diaphragm helps to protects its working magnetic gaps from contamination Pilot Stage The pilot stage contains two opposed fixed nozzles the supply nozzle and the receiver nozzle It also contains the deflector which is the moving element See figures 4 2 and 4 3 The supply nozzle is connected to the supply air and provides a high velocity air stream The receiver nozzle captures the air stream and converts it back to pressure The receiver nozzle pressure is the output pressure of the pilot stage Figure 4 2 Deflector Nozzle Pilot Stage Operation Direct Action HIGH OUTPUT PRESSURE REGULATED AIR SUPPLY PRESSURE TO BOOSTER STAGE LOW OUTPUT PRESSURE DEFLECTED NOZZLE REGULATED FLOW PATTERN AIR SUPPLY BOOSTER STAGE A6645 DEG
46. in two units will result in an unusable signal Range Jumper The range jumper is positioned according to the calibration specified All full span calibrations and some split range calibrations can be accomplished with the range jumper in the High Range position Some split range calibrations require the jumper to be in the Low Range position For more information about the range jumper refer to Standard Performance Split Range Input Direct Action in the Principle of Operation section Action For direct action units output changes directly with a corresponding change in input For example as the input increases from 4 to 20 mA output increases from 0 2 to 1 0 bar 3 to 15 psi Direct action circuit boards are green in color For reverse action units output changes inversely with a change in input For example as the input increases from 4 to 20 mA the output decreases from 1 0 to 0 2 bar 15 to psi Reverse action circuit boards are red in color Upon loss of input current or if input current decreases below 3 3 0 3 mA the output of the direct action unit decreases to less than 0 1 bar 1 psi In the same situation the output of the reverse action unit increases to near supply pressure Removing the Electronic Circuit Board The electronic circuit board is connected to the module final assembly by five mounting screws The circuit board must be removed to inspect the pressure sensor located beneath it To remove the
47. ing paragraphs describe the functional parts of the 846 Figure 4 1 shows the block diagram Figure 4 1 Functional Parts Block Diagram 4to 20 MA INPUT SOLID STATE PRESSURE SENSOR TO VALVE ACTUATOR 3 TO 15 PSI 6324 1 OUTPUT TYPICAL Electronic Circuit During operation the input current signal is received by the transducer s electronic circuit and compared to the output pressure from the booster stage A solid state pressure sensor is part of the electronic circuit and monitors the booster stage output The silicon based sensor uses strain gauge thin film technology The sensors pressure signal is fed to a simple internal control circuit By using this technique the transducer s performance is set by the sensor circuit combination Changes in output load leaks variations in supply pressure or even component wear are sensed and corrected by the sensor circuit combination Electronic feedback allows crisp dynamic performance and readily compensates for output changes induced by vibration Note Because the transducer is electronic in nature it is not well modeled in the loop as a simple resistor in series with an inductor It is better thought of as a 50 ohm resistor in series with a 6 0 V voltage drop with negligible inductance This is important when calculating the loop load When the transducer is used in series with a microprocessor based transmitter the noninductive nature of the transducer allows digital s
48. ion Table 2 2 Hazardous Area Classification for United Stated FM Certification Body Certification Obtained Entity Rating Temperature Code Vmax 30 VDC IS Intrinsically Safe Imax 100 mA Class Il III Division 1 Groups A B C D E F G Pmax 1 0W T4 Tamb 60 C per drawing GE59147 see figure 8 2 Ci 0 016 uF Li 20 uH XP Explosion proof Class Division 1 Groups B C D DIP Dust Ignition proof o Class Il 111 Division Groups EFG NI Non incendive Class Division 2 Groups A B C D Instruction Manual 846 Transducer D102005X012 March 2015 ATEX Special Conditions for Safe Use Intrinsically Safe This equipment is intrinsically safe and can be used in potentially explosive atmospheres The apparatus must be only connected to a certified associated intrinsically safe equipment and this combination must be compatible as regards intrinsic safety rules The electrical parameters of certified equipment which can be connected to the sensor must not exceed one of these following values Ug x 30V lg lt 100 mA Po lt 1 0 W Ambient temperature 40 C to 80 C Flameproof Refer to page 10 Typen No special conditions for safe use Refer to table 2 3 for additional approval information Table 2 3 Hazardous Area Classifications ATEX Certification Obtained Entity Rating Temperature Code Intrinsically Safe 9 1 GD Ui 30 VDC Gas li 100mA Ex ia IIC T4 T5 Ga Pi 1 0W Dust Ci 8 nF
49. l Assembly in the Maintenance section for instructions on removing the module final assembly from the module housing WARNING Personal injury property damage could result from uncontrolled process Unscrewing the module cover removes power from the electronics and the output signal will be 0 0 psi Before removing the module cover ensure the process is properly controlled With the module final assembly removed from the housing the following checks can be made 1 Review the position of the Remote Pressure Reading jumper if so equipped and range jumper to confirm that they are placed in the desired position Refer to Electronic Circuit Board in the Maintenance section and figure 6 4 for the location of these jumpers and instructions on placement Observe the position and condition of the three module O rings to confirm they make a tight seal Verify that the O ring is correctly positioned in the groove on the flat face of the module cover Refer to figure 6 8 for an exploded view Inspect the porting on the module final assembly to determine if large amounts of contaminants have entered the transducer UJ N 4 Instruction Manual 846 Transducer D102005X012 March 2015 Before making the following checks disconnect both signal wires from the transducer and ensure the module final assembly is removed from the housing 1 Using an ohmmeter check the electrical connections in the housing terminal compartment The
50. l valve is ordered with a 846 transducer specified to be mounted on the actuator the factory mounted transducer is connected to the actuator with the necessary tubing and calibrated to the specifications on the order If the transducer is purchased separately for mounting on a control valve already in service all the necessary mounting parts are furnished if ordered This includes the appropriate bracket for attaching the unit to an actuator boss with tapped holes or for attaching it to the diaphragm casing If preferred mounting parts can be supplied for mounting the transducer on a 51 mm 2 inch diameter pipestand a flat surface or a bulkhead Transducers also can be ordered separately for mounting on a control valve assembly already in service The transducer may be ordered with or without mounting parts Mounting parts include the appropriate bracket and bolts for attaching the unit to an actuator boss with tapped holes or for attaching it to the diaphragm casing Hazardous Area Classifications and Special Instructions for Safe Use and Installation in Hazardous Locations Certain nameplates may carry more than one approval and each approval may have unique installation wiring requirements and or conditions of safe use These special instructions for safe use are in addition to and may override the standard installation procedures Special instructions are listed by approval Note This information supplements the nameplat
51. nce section Note Consult your Emerson Process Management sales office or the factory for calibration of multirange performance units with split range input 846 Transducer Instruction Manual March 2015 D102005X012 Use the following procedure with a multirange performance unit to achieve the desired direct action output span fora 4 to 20 mA input signal 1 Perform steps 1 through 9 of the calibration procedure for Standard Performance Full Range Input Direct Action 2 Apply a 4 0 mA Vm 1 0 V signal and adjust the zero screw to achieve the desired lower limit of the output range The lower limit must be between 0 03 and 0 6 bar 0 5 and 9 0 psi The output increases with clockwise rotation of the zero screw 3 Apply a 20 0 mA Vm 5 0 V signal and adjust the span screw to achieve the desired upper limit of the output range The span must be at least 0 4 bar 6 0 psi The maximum upper limit is 2 0 bar 30 0 psi The output increases with clockwise rotation of the span screw 4 Repeat steps 2 and3 to verify and complete the calibration Standard Performance Split Range Input Direct Action WARNING Refer to the WARNING at the beginning of the Maintenance section 4 to 12 mA Input Signal Use ihe following calibration procedure to produce 0 2 to 1 0 bar 3 to 15 psi output span for a 4 to 12 mA input signal 1 Perform steps 1 through 9 of the calibration procedure for Standard Performance Full Range Input
52. ng any maintenance operations Disconnect any operating lines providing air pressure electric power or a control signal to the actuator Be sure the actuator cannot suddenly open or close the valve Use bypass valves or completely shut off the process to isolate the valve from process pressure Relieve process pressure on both sides of the valve Use lock out procedures to be sure that the above measures stay in effect while you work on the equipment Check with your process or safety engineer for any additional measures that must be taken to protect against process media A WARNING The presence of Emerson Process Management personnel and approval agency personnel may be required if you service other than normal routine maintenance such as calibration or replace components on an 846 transducer that carries a third party approval When replacing components use only components specified by the factory Substitution with other components may void the third party approval and result in personal injury or property damage Use only the procedures and component replacement techniques specifically referenced in this manual Unauthorized procedures and improper techniques can cause poor quality repairs impair the safety features of the device and affect product performance and the output signal used to control a process Module Final Assembly Refer to the Maintenance WARNINGS at the beginning of this section The active mecha
53. ng bracket Weight Aluminum 2 9 6 5 Ib excluding options Stainless Steel 6 7 kg 14 8 Ib excluding options Instruction Manual 846 Transducer D102005X012 March 2015 Table 1 1 Specifications continued Declaration of SEP with Sound Engineering Practice SEP and cannot Fisher Controls International LLC declares this bear the CE marking related to PED compliance product to be in compliance with Article 3 paragraph However the product may bear the CE marking to of the Pressure Equipment Directive PED 97 23 indicate compliance with other applicable European EC It was designed and manufactured in accordance Community Directives NOTE Specialized instrument terms are defined in ANSI ISA Standard 51 1 Process Instrument Terminology 1 Metric calibration also available 2 The pressure temperature limits in this document and any applicable standard or code limitation should not be exceeded 3 0 14 bar 2 psi for a 2 3 bar 33 psi output 4 Normal m3 hr Normal cubic meters per hour 0 C and 1 01325 bar absolute Scfh Standard cubic feet per hour 60 F and 14 7 psia 5 Reference Conditions 4 0 to 20 mA DC input 0 2 to 1 0 bar 3 to 15 psi output and 1 4 bar 20 psi supply pressure 6 ATEX and IECEx Flameproof IP66 per CSA Letter of Attestation Table 1 2 EMC Immunity Performance Criteria Port Phenomenon Basic Standard Test Level Performance Criteria Electrostatic discharge ESD IEC 6100
54. ngaging the two terminal block mounting screws Lubricate the terminal compartment cover threads with anti seizing paste or a low temperature lubricant See table 6 1 for the size of the terminal compartment cover O ring Exhaust and Stroke Port Screens A WARNING Refer to the Maintenance WARNING at the beginning of this section Two identical screens the exhaust port screen and the stroke port screen allow air to vent to the outside environment The exhaust port screen is located behind the nameplate Removing the two nameplate screws and rotating the nameplate to the side allows access to the exhaust port screen Figure 7 3 shows an exploded parts view The stroke port screen is located at the center of the module cover Removing the module final assembly from the housing and then from the module cover allows access to the stroke port screen Removing the Module Final Assembly earlier in this section describes this procedure Figure 7 3 shows an exploded parts view 45 846 Transducer Instruction Manual March 2015 D102005X012 Section Parts Whenever corresponding with your Emerson Process Management sales office about this equipment always mention the transducer serial number A WARNING Use only genuine Fisher replacement parts Components that are not supplied by Emerson Process Management should not under any circumstances be used in any Fisher instrument Use of components not supplied by Emerson Process Management may void
55. nical and electrical components of the transducer are incorporated into a single field replaceable module called the module final assembly as shown in figure 6 1 Electrical connection between the terminal compartment and module final assembly is made by electrical feedthroughs that extend into the module compartment The feedthroughs enter sockets on the electronic circuit board The span and zero screws extend through the terminal compartment wall into the module compartment Connection to the span and zero potentiometers on the electronic circuit board is made by hook and loop fasteners 35 846 Transducer Instruction Manual March 2015 D102005X012 The module final assembly has three separate radial ports The upper port is for supply air the middle port for the output signal and the lower ports for exhaust Three O rings separate the ports The two lower O rings are the same size and the upper O ring is slightly smaller Table 6 1 shows O ring sizes The module final assembly is attached to the module cover which allows insertion and removal and can be separated from the module cover for further disassembly A module cover O ring provides a seal between the module cover and module final assembly Table 6 1 shows the O ring sizes A slip ring is located around the module feet It allows the module cover to turn easily when the module final assembly is being removed from the housing The module final assembly consists of three major subassembl
56. not be removed reinsert it completely into the housing and fully engage the module cover threads Then proceed again with removal ensuring that you pull slowly in a straight line Support both the module cover and the module final assembly as it comes out of the housing This is to prevent dropping them should they become detached accidentally A WARNING Do not grip the module cover threads The threads are sharp and may cause minor injury Wear gloves when removing the module cover 2 Prepare to remove the module final assembly from the module cover Align the module feet with the two interior cover slots To accomplish this identify the indicating boss on the module cover shown in figure 6 2 Grasp the module cover with one hand and the module final assembly with the other hand Rotate the module final assembly so that the module alignment key is directly above the indicating boss on the module cover Figure 6 2 shows the module alignment key and the indicating boss The module feet are now aligned with the cover slots Instruction Manual 846 Transducer D102005X012 March 2015 3 Remove the module final assembly from the module cover To accomplish this hold the cover steady and push the module final assembly in the direction of the module cover indicating boss At the same time lift the opposite foot of the module final assembly out of the cover slot as shown in figure 6 3 Figure 6 2 Alignment Key Above Module Cover Figure 6 3
57. ns could result in a malfunction of the product property damage or personal injury Specifications for the 846 transducer are listed in table 1 1 Instruction Manual D102005X012 Table 1 1 Specifications Input Signal Standard Performance 4 to 20 mA DC 4 to 12 MA DC or 12 to 20 mA DC Field adjustable split ranging Multirange Performance 4 to 20 mA DC Consult factory for split range input Equivalent Circuit See figure 1 3 Output Signal Standard Performance Consult factory for split range output Direct Action Minimum span of 6 psi Typical outputs 0 2 to 1 0 bar 3 to 15 psi Rangeability between 0 1 and 1 2 bar 1 and 18 psi Reverse Action Minimum span of 11 psi Typical outputs 1 0 to 0 2 bar 15 to 3 psi Rangeability between 1 2 and 0 1 bar 18 and 1 psi Multirange Performance Direct Action Minimum span of 6 psi Typical outputs 0 2 to 1 9 bar 3 to 27 psi 0 4 to 2 bar 6 to 30 psi and 0 3 to 1 7 bar 5 to 25 psi Rangeability between 0 03 and 2 3 bar 0 5 and 33 psi Reverse Action Minimum span of 11 psi Typical outputs 1 9 to 0 2 bar 27 to 3 psi 2 to 0 4 bar 30 to 6 psi and 1 7 to 0 3 bar 25 to 5 psi Rangeability between 2 3 and 0 03 bar 33 and 0 5 psi Supply Pressure 2 Standard Performance 1 2 to 1 6 bar 18 to 24 psi Multirange Performance 0 2 bar 3 psi 3 greater than the maximum calibrated output pressure Maximum 2 4 bar 35 psi Supply Pressure Me
58. nsducer Instruction Manual 34 March 2015 D102005X012 b Make sure the O rings are lightly lubricated with silicone grease and properly seated c Reassemble and check operation d If after cleaning the transducer does not function replace the pilot actuator assembly with a new one e Reassemble and check operation Remove the electronic circuit board from the module final assembly The Maintenance section describes how to remove the board a Inspect the O rings around the sensor for damage and replace them if necessary b Check the sensor port and areas around the sensor for foreign material and clean if necessary c Reassemble and check operation d If the transducer does not function replace the electronic circuit board with a new one Refer to Electronic Circuit Board in the Maintenance section for complete removal information e Reassemble and check operation The module subassembly is aligned at the factory and should not be further disassembled If the above steps fail to produce a working unit the module subassembly is faulty and should be replaced Instruction Manual 846 Transducer D102005X012 March 2015 Section 6 Maintenance This section describes the major components assembly and disassembly of 846 current to pressure transducers A WARNING To avoid personal injury or property damage from the sudden release of pressure or air Always wear protective clothing gloves and eyewear when performi
59. nts automatically disengage The internal air ports are also disengaged The air supply to the transducer should be turned off to prevent uncontrolled air loss through the housing A WARNING Personal injury or property damage could result from an uncontrolled process Unscrewing the module cover removes power from the electronics and the output signal will be 0 0 psi Refer to the WARNING at the beginning of this section before removing the module cover to ensure the process is properly controlled A WARNING Personal injury or property damage could result from fire or an explosion In explosive atmospheres remove power and shut off the air supply to the transducer before attempting to remove the terminal compartment cover or module cover Failure to do so could result in an electrical spark or explosion Use the following steps to remove the module final assembly from the housing and module cover 1 Shut off the air supply If applicable remove the cover lock and screw to allow access to the terminal compartment cover Unscrew the module cover When the module cover threads clear the housing slowly pull on the cover and the module final assembly will gradually come out of the housing Note The module and the housing are designed for minimal clearance therefore patience may be required while pulling on the cover Time must be allowed for release of the vacuum effect between the housing and module If the module becomes tilted and can
60. ote There may be some span interaction with zero in this range and the following steps compensate for this 1 Perform steps 1 through 9 of the calibration procedure for Standard Performance Full Range Input Direct Action except for step 2 In place of step 2 confirm that the unit is reverse action A red electronic circuit board identifies reverse acting units Refer to Action under the heading Electronic Circuit Board in the Maintenance section for more information on reverse acting units 2 Apply an input of 4 0 mA Vm 1 0 V and adjust the zero screw to achieve an output of 1 0 bar 15 0 psi 3 Apply an input of 12 0 mA Vm 3 0 V and adjust the span screw to achieve an output of 0 2 bar 3 0 psi 4 Maintain the input of 12 0 mA Vm 3 0 V and adjust the zero screw to achieve an output of 1 0 bar 15 0 psi The unit may not turn up this high if it does not go to step 7 5 If the output reaches 15 0 psi in step 4 apply an input of 20 mA and adjust the span screw to achieve a 3 0 psi output Apply an input of 20 mA Vm 5 0 V and note the error the actual reading versus 3 0 psi Adjust the span screw to overcorrect the error by a factor of two For example if the reading was 2 95 psi adjust the span screw to achieve an output of 3 05 psi 24 Instruction Manual 846 Transducer D102005X012 March 2015 6 Repeat steps 4 and 5 to verify and complete the calibration 7 Ifthe 12 0 mA Vm 3 0 V cannot be adjusted
61. put of 4 0 mA Vm 1 0 V and adjust the zero screw to achieve an output of 1 0 bar 15 0 psi UJ N Apply an input of 20 0 mA Vm 5 0 V and adjust the span screw to achieve an output of 0 2 bar 3 0 psi A Repeat steps 2 and 3 to verify and complete the calibration Multirange Performance Full Range Input Reverse Action WARNING Refer to the WARNING at the beginning of the Maintenance section Note Consult your Emerson Process Management sales office or the factory for calibration of multirange performance units with split range input Use the following procedure with a multirange unit to achieve the desired reverse action output span for a 4 to 20 mA input signal 1 Perform steps 1 through 9 of the calibration procedure for Standard Performance Full Range Input Direct Action except for step 2 In place of step 2 confirm that the unit is reverse acting A red electronic circuit board identifies reverse acting units Refer to Action under the heading Electronic Circuit Board in the Maintenance section for more information on reverse acting units Apply an input of 4 0 mA Vm 1 0 V and adjust the zero screw to achieve the desired upper limit of the output range The 4 mA point must be between 0 6 and 2 0 bar 9 0 and 30 0 psi The output increases with clockwise rotation of the zero screw NJ 846 Transducer Instruction Manual March 2015 D102005X012 3 Apply an input of 20 0 mA Vm 5 0 V and adj
62. s in the Emerson Process Management business unit of Emerson Electric Co Emerson Process Management Emerson and the Emerson logo are trademarks and service marks of Emerson Electric Co All other marks are the property of their respective owners The contents of this publication are presented for informational purposes only and while every effort has been made to ensure their accuracy they are not to be construed as warranties or guarantees express or implied regarding the products or services described herein or their use or applicability All sales are governed by our terms and conditions which are available upon request We reserve the right to modify or improve the designs or specifications of such products at any time without notice Emerson Process Management Marshalltown lowa 50158 USA Sorocaba 18087 Brazil Chatham Kent ME4 4QZ UK Dubai United Arab Emirates Singapore 128461 Singapore www Fisher com E M ERSON 1995 2015 Fisher Controls International LLC All rights reserved
63. se in the transducer output signal A decrease in the receiver nozzle pressure positions the valving in the booster stage to allow exhaust to occur decreasing the output signal The booster stage operates using a 3 1 pressure gain from the pilot stage High flow rate capability is achieved by large flow area poppet design and internal porting having low flow resistance The booster stage design provides very good stability in high vibration applications and the poppet valve technology provides resistance to plugging 28 Instruction Manual 846 Transducer D102005X012 March 2015 Section 5 Troubleshooting The modular design and unitized subassemblies of the 846 allows for quick and easy troubleshooting and repair This section presents information on the diagnostic features and procedures for troubleshooting both models in service or in the shop Diagnostic Features If a control loop does not perform properly and the cause of malfunction has not been determined two features of the transducer can be used to determine if the transducer is at fault the stroke port and Remote Pressure Reading Stroke Port The stroke port provides a way to quickly increase the transducer output giving a rough measure of the unit s functionality A hole in the module cover vents the constant bleed from the pilot stage When the hole is covered pressure at the pilot stage receiver nozzle increases which in turn increases the output Output pressure will incr
64. sensor They should be lightly lubricated with silicone grease 3 Ensure that the pressure sensor is correctly positioned against the manifold The pressure sensor should be centered and in contact with the manifold as shown in figure 6 5 4 Position the circuit board on the module subassembly Ensure that the circuit board mounting holes match those on the module subassembly Place the three long screws the mounting holes adjacent to the pressure sensor 5 Place the two short screws in the remaining mounting holes Tighten the three long screws first then tighten the remaining two screws Figure 6 5 Positioning the Pressure Sensor ELECTRONIC CORRECT POSITION CIRCUIT BOARD MANIFOLD SOLID STATE PRESSURESENSOR ELECTRONIC INCORRECT POSITION CIRCUIT BOARD MANIFOLD 6653 Pilot Actuator Assembly Refer to the Maintenance WARNINGS at the beginning of this section The pilot actuator assembly is located at the bottom of the module final assembly as shown in figure 6 1 It is a unitized assembly consisting of the coil magnet and spring of the actuator and the deflector and nozzles of the pilot stage Two O rings are part of the pilot actuator assembly Table 6 1 shows the O ring sizes They are located in the beveled O ring glands of the module subassembly adjacent to the nozzles The pilot actuator assembly is held in place by four mounting screws Action A blue rubber diaphragm under the defle
65. shop for troubleshooting then the preceding sequence applies If only the module final assembly has been brought to the shop then use another 846 housing as a test fixture Insert the module into the test fixture Perform the previous steps as they apply of the In service Troubleshooting procedure To further aid troubleshooting the module final assembly can be broken down into three subassemblies The troubleshooting sequence consists of exchanging the subassemblies with known working ones to determine which is at fault The three subassemblies are the pilot actuator assembly the electronic circuit board and the module subassembly The module subassembly consists of the module final assembly with both the pilot actuator assembly and electronic circuit board removed 1 Remove the pilot actuator assembly Refer to Pilot Actuator Assembly in the Maintenance section for complete removal information CAUTION Do not apply force to the deflector bar while cleaning the nozzles Doing so could alter the alignment or disable the deflector bar mechanism CAUTION Do not use chlorinated solvents for cleaning the pilot actuator assembly The chlorinated solvents will deteriorate the rubber diaphragm a Inspect the nozzles and deflector If they show a buildup of contaminants clean the nozzles by gently inserting a wire with a maximum diameter of 0 38 mm 0 015 inches Clean the deflector if necessary by spraying with contact cleaner 846 Tra
66. ssive moisture in the supply air vertical mounting allows the most effective drainage through the stroke port CAUTION Do not mount the transducer with the terminal compartment cover on the bottom as moisture or any corrosive elements in the plant atmosphere may accumulate in the terminal compartment or pilot stage resulting in transducer malfunction Mounting is accomplished with an optional universal mounting bracket Before mounting the transducer note the following recommendations e Ensure that all bolts are fully tightened The recommended torque is 22 Nem 16 Ibfeft e Bolts that connect to the transducer and to a valve actuator should have the lock washer placed directly beneath the bolt head and the flat washer placed between the lock washer and bracket All other bolts should have the lock washer next to the nut and the flat washer placed between the lock washer and bracket e Do not mountthe transducer in a location where foreign material may cover the stroke port or exhaust port See the descriptions of the stroke port and exhaust port later in this section Pressure Connections As shown in figure 2 1 all pressure connections are 1 4 18 NPT internal connections Use 9 5 mm 3 8 inch outside diameter tubing for the supply and output connections 11 846 Transducer March 2015 Figure 2 1 Typical Dimensions and Connection Locations Aluminum Construction Shown P 2 2 6 oe E M 2 as BANIA
67. t Reverse Action Multirange Performance Full Range Input Direct Action Split Range Input Direct Action see note below Full Range Input Reverse Action Split Range Input Reverse Action see note below Note Consult your Emerson Process Management sales office or the factory for calibration of multirange performance units with split range input or split range output or both 846 Transducer Instruction Manual March 2015 D102005X012 Figure 3 1 Connecting a Current or Voltage Source for Calibration TO OBTAIN THE 4 AND 20 mA SET POINTS ADJUST THE VOLTAGE SOURCE Vs SO ADJUST THE CURRENT THE VOLTMETER READS SOURCE TO PROVIDE 1 AND 5 VOLTS RESPECTIVELY THE 4 AND 20 mA ACROSS THE 250 ohm RESISTOR SET POINTS CALIBRATION USING A CURRENT SOURCE CALIBRATION USING A VOLTAGE SOURCE CAUTION Excessive current can damage the transducer Do not connect an input current of more than 100 mA to the transducer Table 3 1 lists the various input and output ranges over which the unit may be calibrated The input range is selected by changing the position of a jumper located on the electronic circuit board Refer to Electronic Circuit Board in the Maintenance section and figure 6 4 for the location and instruction on placement Table 3 1 Fisher 846 I P Rangeability Matrix me Pressure wie psi Performance Code Input High Range Splits s S M 5 M M M ECCE ERE
68. to 1 0 bar 15 0 psi in step 4 turn off the air supply Remove the module final assembly from the housing Place the range jumper in the Lo position for Low Range as shown in figure 6 4 Replace the module final assembly Turn the air supply 8 Apply an input of 12 0 mA Vm 3 0 V and adjust the zero screw to achieve an output of 1 0 bar 15 0 psi 9 Apply an input of 20 mA Vm 5 0 V and note the error the actual reading versus 3 0 psi Adjust the span screw to overcorrect the error by a factor of two For example if the reading was 2 95 psi adjust the span screw to achieve and output of 3 05 psi 10 Repeat steps 8 and 9 to verify and complete the calibration Transporting the Module Final Assembly The transducer allows the module final assembly to be removed while the housing is in its installed position In the event the transducer does not function properly an operational module final assembly can be taken to the field and exchanged with the nonfunctional module After the transducer is calibrated in the shop the module final assembly can be removed from the housing At the time the span and zero screws disengage there will be minimal effect on the calibrated span The calibrated module can now be taken to the field Ensure that the span and zero potentiometers are not moved from their calibrated positions 25 846 Transducer Instruction Manual March 2015 D102005X012 Section 4 Principle of Operation The follow
69. uction Manual March 2015 D102005X012 Figure 2 3 Typical Transducer Mounting with Universal Mounting Bracket ADDITIONAL ADAPTER PLATE PART NUMBER 03311 0318 0001 SEDED REQUIRED FOR I P WITH FOEBROPERMIDIERIRE FOR PROPER MOISTURE DRAINAGE THIS END UTERE id ON MUST BEUP lt 1 i TOP OF THE PIPE 1 STAINLESS STEEL HOUSING ADDITIONAL ADAPTER PLATE PART NUMBER 03311 0318 0001 REQUIRED FOR I P WITH STAINLESS STEEL MOUNTING BRACKET SEE DETAIL A 5 16 18 HEX NUT 4 PAGESE 5 16 18 x 5 8 BOLTS HOUSING ADAPTER PLATE ADAPTER PLATE SEEDETAIL B SEE DETAIL B 41 1 61 S 5 16 18 x 3 4 BOLTS 4 PLACES VERTICAL MOUNT HORIZONTAL MOUNT 2 INCH PIPESTAND MOUNTING FOR ATEX IECEx FLAMEPROOF UNITS BOLT ENGAGEMENT NOT TO EXCEED 8 8 mm 0 35 INCHES 5 1 6 18x 3 4 BOLTS 5 16 18 BOLT HOLES FOR ATEX IECEx FLAMEPROOF UNITS MOUNTING BRACKET SEE DETAIL A BOLT ENGAGEMENT NOT TO EXCEED FOR PROPER 8 1 mm 0 32 INCHES MOISTURE 5 16 18 BOLT HOLES DRAINAGE THIS END MUST BE UP GE06214 SHT 3 BOLT HOLES FOR STAINLESS STEEL CONSTRUCTION GE06214 SHT 2 gt 32 COVERLOCK SHOWN 1 25 BOLT HOLES FOR ALUMINUM CONSTRUCTION COVERLOCK SHOWN WALL PANEL MOUNTING ALUMINUM HOUSING NOTES 1 gt THE MOUNTING POSITIONS SHOWN ALLOW ANY MOISTURE BUILDUP IN THE TERMINAL COMPARTMENT TO DRAIN TO THE SIG
70. ust the span screw to achieve the desired lower limit of the output range The span must be at least 0 7 bar 11 0 psi The lower limit of the 20 0 mA setting is 0 03 bar 0 5 psi The output increases with clockwise rotation of the span screw 4 Repeat steps 2 and 3 to verify and complete the calibration Standard Performance Split Range Input Reverse Action A WARNING Refer to the WARNING at the beginning of the Maintenance section 4 to 12 mA Input Signal Use the following procedure on reverse action units to achieve a 1 0 to 0 2 bar 15 to 3 psi output signal for a 4 to 12 mA input signal 1 Perform steps 1 through 9 of the calibration procedure for Standard Performance Full Range Input Direct Action except for step 2 In place of step 2 confirm that the unit is reverse acting A red electronic circuit board identifies reverse acting units Refer to Action under the heading Electronic Circuit Board in the Maintenance section for more information on reverse acting units 2 Apply an input of 4 0 mA Vm 1 0 V and adjust the zero screw to achieve an output of 1 0 bar 15 0 psi 3 Apply an input of 12 0 mA Vm 3 0 V and adjust the span screw to achieve an output of 0 2 bar 3 0 psi 4 Repeat steps 2 and to verify and complete the calibration 12 to 20 mA Input Signal Use the following procedure on reverse action units to achieve a 1 0 to 0 2 bar 15 to psi output signal for a 12 to 20 mA input signal N
71. ws the circuit board jumper positions Replace the module final assembly in the housing Refer to Replacing the Module Final Assembly in the Maintenance section for an explanation of how to engage the module final assembly Connect the air supply to the air supply port Connect a precision output indicator to the output signal port Make sure that the output gauge port has an output gauge or a threaded plug installed A threaded plug is provided for units shipped without output gauges Remove the terminal compartment cover Connect the current source or voltage source positive lead to the terminal block positive and the current source 250 ohm resistor lead negative lead to the terminal block negative Refer to figure 3 1 CAUTION Excessive current can damage the transducer Do not connect an input current of more than 100 mA to the transducer NJ JI uU N Ul 10 Apply a 4 0 mA Vm 1 0 V signal and adjust the zero screw to achieve 0 2 bar 3 0 psi output The output increases with clockwise rotation of the zero screw 11 Apply a 20 0 mA Vm 5 0 V signal and adjust the span screw to achieve a 1 0 bar 15 0 psi output The output increases with clockwise rotation of the span screw 12 Repeat steps 10 and 11 to verify and complete the calibration Multirange Performance Full Range Input Direct Action WARNING Refer to the WARNING at the beginning of the Maintena
72. y damage caused by an uncontrolled process provide some temporary means of control for the process before taking the transducer out of service Also refer to the WARNING at the beginning of the Maintenance section Calibration of the 846 requires either an accurate current generator or an accurate voltage generator with a precision 250 ohm 1 2 watt resistor Figure 3 1 shows how to connect either device Calibration also requires a precision output indicator and a minimum non surging air supply of 5 0 normal m hr 187 scfh at 1 4 bar 20 psi for standard performance units For multirange performance units the air supply must be at least 0 2 bar 3 psi greater than the maximum calibrated output pressure up to 2 4 bar 35 psi maximum For ease of calibration the output load volume including the output tubing and output indicator should be a minimum of 33 cm 2 cubic inches Review the information under Signal Interruption in the Installation section before beginning the calibration procedure Before calibration determine the type of input full or split range and the type of output action direct or reverse Consult the factory for split range output calibration Also determine if the unit offers standard or multirange performance The unit supports eight basic input output combinations Standard Performance e Full Range Input Direct Action e Split Range Input Direct Action e Full Range Input Reverse Action e Split Range Inpu
Download Pdf Manuals
Related Search
Related Contents
Use & Care Guide Guide d`utilisation et d`entretien KingKORG Guide des paramètres ViewTech DT37M Program/User Manual HP Z 420 Kenmore 15358 Sewing Machine User Manual HP LaserJet M1522 MFP Series User Guide Préface et sommaire détaillé iPad Benutzerhandbuch Copyright © All rights reserved.
Failed to retrieve file