Home

Delta Electronics Series DNM04 User's Manual

image

Contents

1. Delphi DNM Non Isolated Point of Load DC DC Power Modules 2 8 5 5Vin 0 75 3 3V 10A out E The Delphi Series DNMO04 2 8 5 5V input single output non isolated FS Point of Load DC DC converters are the latest offering from a world leader in power system and technology and manufacturing Delta Electronics Inc The DNMO4 series provides a programmable output voltage from 0 75V to 3 3V using an external resistor The DNM series has flexible and programmable tracking and sequencing features to enable a variety of startup voltages as well as sequencing and tracking between power modules This product family is available in a surface mount or SIP package and provides up to 10A of current in an industry standard footprint With creative design technology and optimization of component placement these converters possess outstanding electrical and thermal performance and extremely high reliability under highly stressful operating conditions DATASHEET DS_DNM04SIP10_07162008D FEATURES High efficiency 96 5 0Vin 3 3V 10A out Small size and low profile SIP 50 8x 13 4x 8 5 mm 2 00 x 0 53 x 0 33 Signle in line SIP packaging Standard footprint Voltage and resistor based trim Pre bias startup Output voltage tracking No minimum load required Output voltage programmable from 0 75Vdc to 3 3Vdc via external resistor Fixed frequency operation Input UVLO output OTP OCP Remote ON OFF Remote sense ISO 9001 TL 90
2. SS SIP PACKAGE A MAX q 50 8 2 00 _ 1 60 0 063 00 O s 5 o E E o S 11 1 e 2 54 0 100 0 70 0 028 Ll LL 1 3 0 05 0 50 0 020 5 08 0 200 me 2 54 0 100 P 7 62 0 300 5 08 0 200 En 10 16 0 400 7 62 0 300 12 70 0 500 p _ 10 16 0 400 B 48 26 1 900 A B HEIGHT 045 18 5 0 33 7 15 0 281 13 4 0 53 os 9 5 0 37 8 15 0 320 12 7 0 50 BACK VIEW SIDE VIEW Z KEEP OUT AREA lt A PIN Function I 5 00 o Q 1 Vo 0 100 o 2 54 0 100 NE ae 01 10 0 043 sue 3 e 5 08 9 200 s ax 2 54 0 100 4 Vo 7 62 0 300 5 08 0 200 5 GND 10 16 ozo E _ 7 62 0 300 6 GND p 48 26 1 900 _ 3 Vi 9 TRACK A B 10 TRIM 04S 8 5 0 332 7 45 0 281 11 ONZOFF 10s 9 5 0 37 8 15 0 320 RECOMMENDED P WB PAD LAYOUT ES NOTES DIMENSIONS ARE IN MILLIMETERS AND INCH TOLERANCES X Xmm 0 5mm X XX in 0 02 in X XXmm 0 25mm X XXX in 0 010 in ba YY PART
3. nda ie ere igus CHO ey CH et HIM ey DEl DG El W El C 1 Figure 42 Ratio metric a Y FEATURE DESCRIPTIONS CON Sequential Start up Sequential start up Figure 40 is implemented by placing an On Off control circuit between Vops and the On Off pin of PS2 Simultaneous Simultaneous tracking Figure 41 is implemented by using the TRACK pin The objective is to minimize the voltage difference between the power supply outputs during power up and down The simultaneous tracking can be accomplished by connecting Vops to the TRACK pin of PS2 Please note the voltage apply to TRACK pin needs to always higher than the Vops set point voltage PS1 PS2 DS_DNMO0O45SIP10_07162008D Ratio Metric Ratio metric Figure 42 is implemented by placing the voltage divider on the TRACK pin that comprises R1 and R2 to create a proportional voltage with Vops to the Track pin of PS2 For Ratio Metric applications that need the outputs of PS1 and PS2 reach the regulation set point at the same time The following equation can be used to calculate the value of R1 and R2 The suggested value of R2 is 10kQ PS1 PS2 Vops2 On Off The high for positive logic The low for negative logic THERMAL CONSIDERATIONS Thermal management is an important part of the system design To ensure proper reliable operation sufficient cooling of the power module is needed over the
4. 08 7 chal 2 00V 17 Nov 2004 56 00 16 25 22 Figure 18 Turn on delay time at remote turn on with external capacitors Co 5000 uF 3 3Vin 2 5V 16A out SS ELECTRICAL CHARACTERISTICS CURVES rr YAA Trig Tek Provu eternal 15 E rn a a e I l APPS O A A E epee S Ya TR A Aik TEE I i ee p AAN 1 1 y ee A en i nn s a N oe ee a 1 om Ra a G e a Hey a WA AA A O T ES TA lt rr lee m A stereyeessseess i A A re rr s n De ee ere eed corner ae ee ere cen eee eee y ii Ol sls srl s sssi srl s s gt 0 0 m y Ay a 4 Os rn ch 1 f 5 6 g mv a a AS rn K 4 F A ni TIT TE 1 00 Y By 21 ne 2004 Ch3 1 00 v 21 Apr 2004 51 20 20 48 19 5 Figure 19 Typical transient response to step load change at 2 5A uS from 100 to 50 of lo max at 5Vin 3 3Vout Cout 1uF ceramic 10uF tantalum Tek Prevu I Tg SS SS E q aw N U 4 II TITAN MECA mU EINER EOL E IA BL Cas e ee IEEE A O TR TA Te we a ee eer ey a s a Jsumg i A E E meee ee ne ae eam ne Aas 1 i J BA E ee os en asss toners a ELO andan nada nano bs rae ch3 1 00 V gt 21 Apr 2004 24 59 20 20 53 2 Figure 21 Typical transient response to step load change at 2 5A uS from 100 to 50 of lo max at 5Vin 1 8Vout Cout 1uF ceramic 10uF tantalum DS_DNM04SIP10_07162008D 59 20 20 48 5 Figure 20 Typical transient response to step load change at 2 5A uS from 50 to 100 of lo
5. NUMBERING SYSTEM a OA R P E Product Numbers of Output Package Output On Off logic WE E Series Input Voltage Outputs Voltage Option Code DNS 6A DNL 16A 04 2 8 5 5V S Single DAO R SIP 10 10A N negative F RoHS 6 6 D Standard Function DNM 10A 10 8 3 14V Programmable S SMD P positive Lead Free MODEL LIST Model Name Packaging Input Voltage Output Voltage Output Current 5 Pete aad 96 0 3 3V DNM04S0A0S10NFD 2 8 5 5Vdc 0 75 V 3 3Vdc 96 0 3 3V CONTACT www delta com tw dcdc USA Europe Asia amp the rest of world Telephone Phone 41 31 998 53 11 Telephone 886 3 4526107 ext 6220 East Coast 888 335 8201 Fax 886 3 4513485 West Coast 888 335 8208 dogs ha 5 5 Email DCDC delta com tw Fax 978 656 3964 Email DCDC delta es com Email DCDC delta corp com WARRANTY Delta offers a two 2 year limited warranty Complete warranty information is listed on our web site or is available upon request from Delta Information furnished by Delta is believed to be accurate and reliable However no responsibility is assumed by Delta for its use nor for any infringements of patents or other rights of third parties which may result from its use No license is granted by implication or otherwise under any patent or patent rights of Delta Delta reserves the right to revise these specifications at any time without notice DS_DNM04SIP10_07162008D ae a 16
6. gt Output Current A Vin 3 3V Vo 2 5V Either Orientation Convection pi PEA C 7 as a dl D E y y H ji ur t g 9 9 9 e 6 EK NI C ls 34mm gt a 7 E 1 34 80 85 I Ambient Temperature C Figure 44 Temperature measurement location The allowed maximum hot spot temperature is defined at 125 C Figure 47 DNM04S0A0R10 Standard Output current vs ambient temperature and air velocity Vin 3 3V DNM04S0A0R10 Standard Output Current vs Ambient Temperature and Air Velocity Vo 2 SV Either Orientation 2 Output Current A Vin 5V Vo 3 3V Either Orientation DNM04S0A0R10 Standard Output Current vs Ambient Temperature and Air Velocity 2 Output Current A Vin 3 3V Vo 0 75V Either Orientation Natural Convection Natural Convection u e i l Ambient Temperature C 60 65 70 P pa 85 Ambient Temperature C Figure 45 DNM04S0A0R10 Standard Output current vs ambient temperature and air velocity Vin 5V Vo 3 3V Either Figure 48 DNMO4S0A0R10 Standard Output current vs Orientation ambient temperature and air velocity Vin 3 3V Vo 0 75V Either Orientation DNMO04S0A0R10 Standard Output Current vs Ambient Tempe
7. max at 5Vin 3 3Vout Cout 1uF ceramic 10uF tantalum P rev u A UAL abi aa ae I i ia aa aaa aa RRA i 1 a ed Lagi SSR RI ERAT ea Ch3 1 00 Y Hi 21 Apr 2004 59 20 20 53 45 Figure 22 Typical transient response to step load change at 2 5A uS from 50 to 100 of lo max at 5Vin 1 8Vout Cout 1uF ceramic 10uF tantalum ELECTRICAL PAPES CURVES A LU yhloa R IS ee reee II aan I L o I A A a E L a aa a et a aa a a aaa e non 5 E O AA A A ees ee 3 x s On n n as A SW pu D my A ines la IEA asi 3 TE ES ina la oni teeny JEEKIM 21 Apr 2004 E 1 00 Y 21 Apr 2004 60 00 20 43 31 63 20 20 43 37 Figure 23 Typical transient response to step load change at Figure 24 Typical transient response to step load change at 2 5A uS from 100 to 50 of lo max at 3 3Vin 2 5A uS from 50 to 100 of lo max at 3 3Vin 2 5Vout Cout 1uF ceramic 10uF tantalum 2 5Vout Cout 1uF ceramic 10uF tantalum Tek PreVu LSO e eee a Se u U ee S z BO E P E DL s s ae ad ee n I IEA A O ka Du ae KES SS a Si SSL E IIS n er E I 2 S T 2 35052 2 A ot Oc ro nn A ar ee ae NN O C Oaks a 5 5 A 5 o O ee ee ee A S ag S E FS s O A eee l a SE a a js ian ri CFE A IV 11 54 60 20 45 45 a chs o 59 60 20 48 07 Figure 25 Typical transient response to step load change at Figure 26 Typical transient response to step load change at 2 5A uS from 100 to 50 of lo max at 3 3Vin 2 5A uS from 50 t
8. 00 ISO 14001 QS9000 OHSAS18001 certified manufacturing facility UL cUL 60950 US amp Canada Recognized and TUV EN60950 Certified CE mark meets 73 23 EEC and 93 68 EEC directives OPTIONS Negative On Off logic Tracking feature SIP package APPLICATIONS Telecom DataCom Distributed power architectures Servers and workstations LAN WAN applications Data processing applications Ad MELTA Delta Electronics ha l TECHNICAL SPECIFICATIONS Ta 25 C airflow rate 300 LFM Vi 2 8Vdc and 5 5Vdc nominal Vout unless otherwise noted PARAMETER NOTES and CONDITIONS DNM04S0A0R10 Min Typ Max Units ABSOLUTE MAXIMUM RATINGS Input Voltage Continuous 0 5 8 Vdc Tracking Voltage Vin max Vdc Operating Temperature Refer to Figure 45 for measuring point 40 125 C Storage Temperature 55 125 C INPUT CHARACTERISTICS Operating Input Voltage Vout lt Vin 0 5 2 8 5 5 V Input Under Voltage Lockout Turn On Voltage Threshold 22 V Turn Off Voltage Threshold 2 0 V Maximum Input Current Vin 2 8V to 5 5V lo lo max 10 A No Load Input Current 70 mA Off Converter Input Current 5 mA Inrush Transient Vin 2 8V to 5 5V lo lo min to lo max P f AS Recommended Input F
9. 1 2V out DS_DNM04SIP10_07162008D 100 05 S 3 90 Z s Vin 3 0V 85 ES Vin 5 0V 80 Vin 5 5V 75 l j 3 4 5 6 7 8 9 10 OUTPUR CURRENT A Figure 2 Converter efficiency vs output current 2 5V out 95 90 Co Nn Vin 2 8V lt Nn Vin 5 0V EFFICIENCY CO Vin 5 5V lt O 65 1 2 a 4 5 6 l 8 9 10 OUTPUR CURRENT A Figure 4 Converter efficiency vs output current 1 5V out 95 90 0 00 O Vin 2 8V EFFICIENCY J Un Vin 5 0V Vin 5 5V ON Un 60 1 2 j 4 5 6 1 8 9 10 OUTPUR CURRENT A Figure 6 Converter efficiency vs output current 0 75V out ELECTRICAL CHARACTERISTICS CURVES Prevu Tek prevu Trig a i sa a rw ai A qa re use OP rd ers Ke La orci a a fel var a 08 aa as a a aa i 4 J J A S Pa A AE N m 5 i j I Ch1 Pk Pk AE E E Ip ae ete ile E S P aa pana 1 16 0mv j i l U i ir S WD TP SS u Ei ec i Chi RMS I I i lt 4 53mv rp O E E E PSS Oa ry E s ees i 4 4 4 A i 4 Te ae A E ee ee i i dol gt LL CS KS ETTI 21 Apr 2004 50 80 19 40 40 Figure 7 Output ripple amp noise at 3 3Vin 2 5V 10A out Tek Prevyu ch1 Pk Pk 26 8mYV Chi RMS 8 54mV 20 DURE MZ A OMS rn Chi foil Sein 21 Apr 2004 11 50 80 19 41 37 Figure 9 Output ripple amp noise at 5Vin 3 3V 10A out Tek Run l 2 roov NEF rooy aca oom a chi F108 y 56 00 Figure 11 Tu
10. 9 Circuit configuration for output voltage margining Voltage Tracking The DNM family was designed for applications that have output voltage tracking requirements during power up and power down The devices have a TRACK pin to implement three types of tracking method sequential Start up simultaneous and ratio metric TRACK simplifies the task of supply voltage tracking in a power system by enabling modules to track each other or any external voltage during power up and power down By connecting multiple modules together customers can get multiple modules to track their output voltages to the voltage applied on the TRACK pin DS_DNM04SIP10_07162008D The output voltage tracking feature Figure 40 to Figure 42 is achieved according to the different external connections If the tracking feature is not used the TRACK pin of the module can be left unconnected or tied to Vin For proper voltage tracking input voltage of the tracking power module must be applied in advance and the remote on off pin has to be in turn on status Negative logic Tied to GND or unconnected Positive logic Tied to Vin or unconnected HORS Sam fh AOS EAS rt Tra hy Ian ads HApped manas MN Figure 40 Sequential HOBEA Vin de w 1 rapped 1 le ray CHA Mer FHIR ies CH ier THE bey DG El DC El DG EI oc El it A Sree pe PS1 PS1 j PS2 Ps2 Figure 41 Simultaneous MERA VALES n lan fos HOPE HE n Hg der Segre Al TE irapperd J
11. Vi 5V 100 Load 86 3 Switching Frequency 300 ON OFF Control Negative logic Logic Low Voltage Module On Von off 0 2 0 3 V Logic High Voltage Module Off Von off 1 5 Vin max V Logic Low Current Module On lon off 10 HA Logic High Current Module Off lon off 0 2 1 mA ON OFF Control Positive Logic Logic High Voltage Module On Von off Vin max V Logic Low Voltage Module Off Von off 0 2 0 3 V Logic Low Current Module On lon off 0 2 1 mA Logic High Current Module Off lon off 10 HA Tracking Slew Rate Capability 0 1 2 V msec Tracking Delay Time Delay from Vin min to application of tracking voltage 10 ms Tracking Accuracy Power up 2V mS 100 200 mV Power down 1V mS 200 400 mV Remote Sense Range 0 1 V MTBF lo 80 of lo max Ta 25 C 21 91 M hours Weight 10 grams Over Temperature Shutdown Refer to Figure 45 for measuring point 130 C 7 DS_DNM04SIP10_07162008D ae i ELECTRICAL CHARACTERISTICS CURVES Vin 4 5V Vin 5 0V Vin 5 5V EFFICIENCY ha NO Uo 4 5 6 8 9 10 OUTPUR CURRENT A Figure 1 Converter efficiency vs output current 3 3V out Vin 2 8V Vin 5 0V EFFICIENCY Vin 5 5V l 2 3 4 5 6 7 8 9 10 OUTPUR CURRENT A Figure 3 Converter efficiency vs output current 1 8V out 95 90 OO Un Vin 2 8V J n Vin 5 0V EFFICIENCY CO O Vin 5 5V 65 l 2 3 4 5 6 1 8 9 10 OUTPUR CURRENT A Figure 5 Converter efficiency vs output current
12. entire temperature range of the module Convection cooling is usually the dominant mode of heat transfer Hence the choice of equipment to characterize the thermal performance of the power module is a wind tunnel Thermal Testing Setup Delta s DC DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted The following figure shows the wind tunnel characterization setup The power module is mounted on a test PWB and is vertically positioned within the wind tunnel The height of this fan duct is constantly kept at 25 4mm 1 Thermal Derating Heat can be removed by increasing airflow over the module To enhance system reliability the power module should always be operated below the maximum operating temperature If the temperature exceeds the maximum module temperature reliability of the unit may be affected PWB FACING PWB MODULE AIR VELOCITY AND AMBIENT TEMPERATURE MEASURED BELOW THE MODULE 50 8 2 0 lt 127 0 5 lt 25 44 1 0 Note Wind Tunnel Test Setup Figure Dimensions are in millimeters and Inches Figure 43 Wind tunnel test setup DS_DNM04SIP10_07162008D Pa THERMAL CURVES DNM04S0A0R10 Standard Output Current vs Ambient Temperature and Air Velocity
13. m values required for some common output voltages while Table 2 provides value of external voltage source Vtrim for the same common output voltages By using a 1 tolerance trim resistor set point tolerance of 2 can be achieved as specified in the electrical specification Table 1 0 7525 Table 2 0 7525 Open 1 5 0 573 1 8 0 522 0403 3 3 sa Y FEATURE DESCRIPTIONS CON The amount of power delivered by the module is the voltage at the output terminals multiplied by the output current When using the trim feature the output voltage of the module can be increased which at the same output current would increase the power output of the module Care should be taken to ensure that the maximum output power of the module must not exceed the maximum rated power Vo set x lo max lt P max Voltage Margining Output voltage margining can be implemented in the DNL modules by connecting a resistor R margin up from the Trim pin to the ground pin for margining up the output voltage and by connecting a resistor Rmargin down from the Trim pin to the output pin for margining down Figure 39 shows the circuit configuration for output voltage margining If unused leave the trim pin unconnected A calculation tool is available from the evaluation procedure which computes the values of R margin up ANd Rmargin dow for a specific output voltage and margin percentage Rmargin down On Off Trim Figure 3
14. mpedance To maintain low noise and ripple at the input voltage it is critical to use low ESR capacitors at the input to the module Figure 32 shows the input ripple voltage mVp p for various output models using 200 uF 2 x100uF low ESR tantalum capacitor KEMET p n T491D107M016AS AVX p n TAJD107M106R or equivalent in parallel with 47 uF ceramic capacitor TDK p n C5750X7R1C476M or equivalent Figure 33 shows much lower input voltage ripple when input capacitance is increased to 400 uF 4 x 100 uF tantalum capacitors in parallel with 94 uF 2 x 47 UF ceramic capacitor The input capacitance should be able to handle an AC ripple current of at least Vout 7 Vout Vin Vin Irms lout Arms 2350 5300 s DA Ey 200 S D 150 a 100 5 O Input R Output Voltage Vdc Figure 32 Input voltage ripple for various output models IO 10 A CIN 2x100 uF tantalum 47 uF ceramic t S Input Ripple Voltage mVp p O UN UN LN Ww lt a j i s he gt P NO Uo Output Voltage Vdc Figure 33 Input voltage ripple for various output models IO 10 A CIN 4x100 UF tantalum 2x47 uF ceramic a Y DESIGN CONSIDERATIONS CON The power module should be connected to a low ac impedance input source Highly inductive source impedances can affect the stability of the module A
15. n input capacitance must be placed close to the modules input pins to filter ripple current and ensure module Stability in the presence of inductive traces that supply the input voltage to the module Safety Considerations For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end use safety agency standards For the converter output to be considered meeting the requirements of safety extra low voltage SELV the input must meet SELV requirements The power module has extra low voltage ELV outputs when all inputs are ELV The input to these units is to be provided with a maximum 15A time delay fuse in the ungrounded lead DS_DNM04SIP10_07162008D FEATURES DESCRIPTIONS Remote On Off The DNM DNL series power modules have an On Off pin for remote On Off operation Both positive and negative On Off logic options are available in the DNM DNL series power modules For positive logic module connect an open collector NPN transistor or open drain N channel MOSFET between the On Off pin and the GND pin see figure 34 Positive logic On Off signal turns the module ON during the logic high and turns the module OFF during the logic low When the positive On Off function is not used leave the pin floating or tie to Vin module will be On For negative logic module the On Off pin is pulled high with an external pull up 5kQ resistor see figure 35 Negative l
16. o 100 of lo max at 3 3Vin 1 8Vout Cout 1uF ceramic 10uF tantalum 1 8Vout Cout 1uF ceramic 10uF tantalum ch1 Max 23 2A Ch1 Mean 775mA Ch TOO A s x OS A cht 7 RTE sa roy i OS A Chi 7 EIE 13 Dec 2004 Ch3 2 00 V 17 Nov 2004 1 60 80 13 49 30 56 20 17 11 11 Figure 27 Output short circuit current 5Vin 0 75Vout Figure 28 Turn on with Prebias 5Vin 3 3V 0A out Vbias 1 0Vdc DS DNM04SIP10_07162008D s a 7 a Y TEST CONFIGURATIONS TO OSCILLOSCOPE Vi BATTERY 2X100uE Tantalum Vi Note Input reflected ripple current is measured with a simulated source inductance Current is measured at the input of the module Figure 29 Input reflected ripple test setup COPPER STRIP SCOPE 10uF luF tantalum ceramic Note Use a 10uF tantalum and 1uF capacitor Scope measurement should be made using a BNC cable Figure 30 Peak peak output noise and startup transient measurement test setup CONTACT AND DISTRIBUTION LOSSES TT VI Vo MAS gt Tr SUPPLY CONTACT RESISTANCE Figure 31 Output voltage and efficiency measurement test setup Note All measurements are taken at the module terminals When the module is not soldered via socket place Kelvin connections at module terminals to avoid measurement errors due to contact resistance Vox lo Vi x li n x100 DS_DNMO0O45SIP10_07162008D DESIGN CONSIDERATIONS Input Source I
17. ogic On Off signal turns the module OFF during logic high and turns the module ON during logic low If the negative On Off function is not used leave the pin floating or tie to GND module will be On On Off Figure 35 Negative remote On Off implementation Over Current Protection To provide protection in an output over load fault condition the unit is equipped with internal over current protection When the over current protection is triggered the unit enters hiccup mode The units operate normally once the fault condition is removed Na FEATURES DESCRIPTIONS CON Over Temperature Protection The over temperature protection consists of circuitry that provides protection from thermal damage If the temperature exceeds the over temperature threshold the module will shut down The module will try to restart after shutdown If the over temperature condition still exists during restart the module will shut down again This restart trial will continue until the temperature is within specification Remote Sense The DNM DNL provide Vo remote sensing to achieve proper regulation at the load points and reduce effects of distribution losses on output line In the event of an open remote sense line the module shall maintain local sense regulation through an internal resistor The module shall correct for a total of 0 5V of loss The remote sense line impedance shall be lt 10Q Distribution Losses Distribution Los
18. rature and Air Velocity 3 Output Current A Vin 5 0V Vo 0 75V Either Orientation Natural Convection 60 65 70 75 80 85 Ambient Temperature C Figure 46 DNM04S0A0R10 Standard Output current vs ambient temperature and air velocity Vin 5V Vo 0 75V Either Orientation DS _DNMO04SIP10_07162008D MECHANICAL DRAWING SMD PACKAGE OPTIONAL 2335 2 _ 35 0 150 s s s I p es D O 12 00 0 079 OPTIONAL s 6 3 loa S Ze Ue Ul 62 Y TRACK GND Vout TRIM SENSE 7 0 120 A Vin ON OFF E e 7 0 004 m 1 40 0 055 2 80 0 110 1 2 0 05 Ll 7 54 0 297 _ _ 12 37 0 487 17 20 0 677 22 03 0 867 26 86 1 057 29 90 11777 HEIGHT 04S 8 8 0 35 10S 9 7 0 38 SIDE VIEW BOTTOM VIEW SENSE IRIM Vout GND TRACK N O I Cos O Or via 1 s yt 7 54 0 297 La 0 157 12 37 0 487 17 20 0 677 _ _ 22 03 0 867 _ _ 26 86 1 057 al p 29 90 1 177 RECOMMENDED P W B PAD LAYOUT DS_DNM04SIP10_07162008D
19. rn on delay time at 3 3Vin 2 5V 10A out DS_DNMO0O45SIP10_07162008D Ch1 Pk Pk 20 8mY ch1 RMS 6 53mY 20 NE MZ a OMS rn chi 7 9 som 21 Apr 2004 50 80 19 41 09 Figure 8 Output ripple amp noise at 3 3Vin 1 8V 10A out 168 Prevu Ch1 Pk Pk 27 6mY ch1 RMS 8 98mV 20 VE MZ a OMS rn Chi 4 13 amv 21 Apr 2004 50 80 19 42 46 Figure 10 Output ripple amp noise at 5Vin 1 8V 10A out Tek Run TOO V chs 100 V aps 00m 2 chi F ER 17 56 00 16 Figure 12 Turn on delay time at 3 3Vin 1 8V 10A out ELECTRICAL salle CURVES Tek Run a ERC OTE CURR ARTS 2 chi T 56 00 Figure 13 Turn on delay time at 5Vin 3 3V 10A out aE P rev u EA M2 oom AJ Chi TOO V E 1708 x cha 2 00 V 17 Nov 2004 56 00 16 22 35 Figure 15 Turn on delay time at remote turn on 5Vin 3 3V 16A out Toov Modom Al chi Z BON Chal 2 00 V 17 Nov 2004 56 00 16 24 52 Figure 17 Turn on delay time at remote turn on with external capacitors Co 5000 uF 5Vin 3 3V 16A out DS_DNM04SIP10_07162008D Jon rin 1 62 v 1 64 Y 8 04ms 1 52ms 100 V NE 300 V qu 00m al chi 1 08 v 17 Nov 2004 wi56 00 16 19 06 Figure 14 Turn on delay time at 5Vin 1 8V 10A out lok Run_ ETA En Mi2 00m al chi T 08 U 2 00 Y 17 Nov 2004 56 00 16 24 08 Figure 16 Turn on delay time at remote turn on 3 3Vin 2 5V 16A out Tek Run M 2 00m al chi 7 ch EREE 00 V 1
20. ses Distribution Distribution Figure 36 Effective circuit configuration for remote sense operation Output Voltage Programming The output voltage of the DNM DNL can be programmed to any voltage between 0 7 5Vdc and 3 3Vdc by connecting one resistor shown as Rtrim in Figure 37 between the TRIM and GND pins of the module Without this external resistor the output voltage of the module is 0 7525 Vdc To calculate the value of the resistor Rtrim for a particular output voltage Vo please use the following equation 21070 Vo 0 7525 For example to program the output voltage of the DNL module to 1 8Vdc Rtrim is calculated as follows Rtrim 51 100 Rtrim Freee 5110 0 15KQ 1 8 0 7525 DNL can also be programmed by apply a voltage between the TRIM and GND pins Figure 38 The following equation can be used to determine the value of Vtrim needed for a desired output voltage Vo DS_DNMO0O45SIP10_07162008D Vtrim 0 7 0 1698x Vo 0 7525 For example to program the output voltage of a DNL module to 3 3 Vdc Vtrim is calculated as follows Vtrim 0 7 0 1698 x 3 3 0 7525 0 267V Vo RLoad TRIM Rtrim GND Figure 37 Circuit configuration for programming output voltage using an external resistor Vtrim RLoad TRIM Figure 38 Circuit Configuration for programming output voltage using external voltage source Table 1 provides Rtri
21. use Output Voltage Set Point Vin 5V lo 100 lo max Tc 25 C 2 0 Vo set 2 0 Vo set Output Voltage Adjustable Range 0 7525 3 63 V Output Voltage Regulation Over Line Vin 2 8V to 5 5V 0 3 Vo set Over Load lo lo min to lo max 0 4 Vo set Over Temperature Tc 40 C to 100 C 0 8 Vo set Total Output Voltage Range Over sample load line and temperature 3 0 3 0 Vo set Output Voltage Ripple and Noise 5Hz to 20MHz bandwidth Peak to Peak Full Load 1uF ceramic 10uF tantalum 25 50 mV RMS Full Load 1uF ceramic 10uF tantalum 8 15 mV Output Current Range 0 10 A Output Voltage Over shoot at Start up Vout 3 3V 1 Vo set Output DC Current Limit Inception lo Output Short Circuit Current Hiccup Mode lo s c Adc Dynamic Load Response 10uF Tan amp 1uF Ceramic load cap 2 5A us Positive Step Change in Output Current 50 lo max to 100 lo max 200 mV Negative Step Change in Output Current 100 lo max to 50 lo max 200 mV Settling Time to 10 of Peak Deviation 25 us Turn On Transient lo lo max Start Up Time From On Off Control Vin Vin min Vo 10 of Vo set 4 ms Start Up Time From Input Vo 10 of Vo set 4 ms Output Voltage Rise Time Time for Vo to rise from 10 to 90 of Vo set 4 8 ms Maximum Output Startup Capacitive Load Full load ESR 1mQ 1000 E Full load ESR 10m0 5000 Vo 3 3V Vi 5V 100 Load 96 0 Vo 2 5V Vi 5V 100 Load 94 2 7 Vo 1 8V Vi 5V 100 Load 92 4 Vo 1 5V Vi 5V 100 Load 91 4 Vo 1 2V Vi 5V 100 Load 90 0 z Vo 0 75V

Download Pdf Manuals

image

Related Search

Related Contents

  laissez-vous conter - Villes et Pays d`art et d`histoire    2015 User's Manual S B D I - saskatchewan bid depository    Intermediaries/Carriers  Memorex Ultra TravelDrive 250GB  Télécharger - Agence de l`Eau Rhin  Equip USB 3.0 Cable A/M to A/F  Manual do utilizador  

Copyright © All rights reserved.
Failed to retrieve file